]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme-rdma: add support for host_traddr
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
b60503ba
MW
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
4cc09e2d 25#include <linux/hdreg.h>
5aff9382 26#include <linux/idr.h>
b60503ba
MW
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
2d55cd5f 42#include <linux/timer.h>
b60503ba 43#include <linux/types.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
a98e58e5 46#include <linux/sed-opal.h>
797a796a 47
f11bb3e2
CH
48#include "nvme.h"
49
9d43cf64 50#define NVME_Q_DEPTH 1024
d31af0a3 51#define NVME_AQ_DEPTH 256
b60503ba
MW
52#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 54
adf68f21
CH
55/*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
f866fc42 59#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 60
58ffacb5
MW
61static int use_threaded_interrupts;
62module_param(use_threaded_interrupts, int, 0);
63
8ffaadf7
JD
64static bool use_cmb_sqes = true;
65module_param(use_cmb_sqes, bool, 0644);
66MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
9a6b9458 68static struct workqueue_struct *nvme_workq;
1fa6aead 69
1c63dc66
CH
70struct nvme_dev;
71struct nvme_queue;
b3fffdef 72
4cc06521 73static int nvme_reset(struct nvme_dev *dev);
a0fa9647 74static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 75static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 76
1c63dc66
CH
77/*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80struct nvme_dev {
1c63dc66
CH
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
1c63dc66 93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
5c8809e6 95 struct work_struct remove_work;
2d55cd5f 96 struct timer_list watchdog_timer;
77bf25ea 97 struct mutex shutdown_lock;
1c63dc66 98 bool subsystem;
1c63dc66
CH
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
202021c1 103 u32 cmbloc;
1c63dc66 104 struct nvme_ctrl ctrl;
db3cbfff 105 struct completion ioq_wait;
4d115420 106};
1fa6aead 107
1c63dc66
CH
108static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109{
110 return container_of(ctrl, struct nvme_dev, ctrl);
111}
112
b60503ba
MW
113/*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117struct nvme_queue {
118 struct device *q_dmadev;
091b6092 119 struct nvme_dev *dev;
3193f07b 120 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
8ffaadf7 123 struct nvme_command __iomem *sq_cmds_io;
b60503ba 124 volatile struct nvme_completion *cqes;
42483228 125 struct blk_mq_tags **tags;
b60503ba
MW
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
b60503ba
MW
128 u32 __iomem *q_db;
129 u16 q_depth;
6222d172 130 s16 cq_vector;
b60503ba
MW
131 u16 sq_tail;
132 u16 cq_head;
c30341dc 133 u16 qid;
e9539f47
MW
134 u8 cq_phase;
135 u8 cqe_seen;
b60503ba
MW
136};
137
71bd150c
CH
138/*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 141 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
142 * allocated to store the PRP list.
143 */
144struct nvme_iod {
d49187e9 145 struct nvme_request req;
f4800d6d
CH
146 struct nvme_queue *nvmeq;
147 int aborted;
71bd150c 148 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
bf684057 152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
b60503ba
MW
155};
156
157/*
158 * Check we didin't inadvertently grow the command struct
159 */
160static inline void _nvme_check_size(void)
161{
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
174}
175
ac3dd5bd
JA
176/*
177 * Max size of iod being embedded in the request payload
178 */
179#define NVME_INT_PAGES 2
5fd4ce1b 180#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
181
182/*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187static int nvme_npages(unsigned size, struct nvme_dev *dev)
188{
5fd4ce1b
CH
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
ac3dd5bd
JA
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192}
193
f4800d6d
CH
194static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
ac3dd5bd 196{
f4800d6d
CH
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199}
ac3dd5bd 200
f4800d6d
CH
201static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202{
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
205}
206
dca51e78
CH
207static int nvmeq_irq(struct nvme_queue *nvmeq)
208{
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
dca51e78
CH
274static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275{
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279}
280
b60503ba 281/**
adf68f21 282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
e3f879bf
SB
288static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
b60503ba 290{
a4aea562
MB
291 u16 tail = nvmeq->sq_tail;
292
8ffaadf7
JD
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
b60503ba
MW
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
7547881d 300 writel(tail, nvmeq->q_db);
b60503ba 301 nvmeq->sq_tail = tail;
b60503ba
MW
302}
303
f4800d6d 304static __le64 **iod_list(struct request *req)
b60503ba 305{
f4800d6d 306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
308}
309
b131c61d 310static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 311{
f4800d6d 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 313 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 314 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 315
f4800d6d
CH
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
ac3dd5bd
JA
322 }
323
f4800d6d
CH
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
f80ec966 328
e8064021 329 if (!(rq->rq_flags & RQF_DONTPREP)) {
f80ec966 330 rq->retries = 0;
e8064021 331 rq->rq_flags |= RQF_DONTPREP;
f80ec966 332 }
bac0000a 333 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
334}
335
f4800d6d 336static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 337{
f4800d6d 338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 339 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 340 int i;
f4800d6d 341 __le64 **list = iod_list(req);
eca18b23
MW
342 dma_addr_t prp_dma = iod->first_dma;
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
ac3dd5bd 352
f4800d6d
CH
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
b4ff9c8d
KB
355}
356
52b68d7e 357#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
358static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359{
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362}
363
364static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365{
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368}
369
370/**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382{
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 402 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410}
52b68d7e
KB
411#else /* CONFIG_BLK_DEV_INTEGRITY */
412static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414{
415}
416static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417{
418}
419static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420{
421}
52b68d7e
KB
422#endif
423
b131c61d 424static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 425{
f4800d6d 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 427 struct dma_pool *pool;
b131c61d 428 int length = blk_rq_payload_bytes(req);
eca18b23 429 struct scatterlist *sg = iod->sg;
ff22b54f
MW
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 432 u32 page_size = dev->ctrl.page_size;
f137e0f1 433 int offset = dma_addr & (page_size - 1);
e025344c 434 __le64 *prp_list;
f4800d6d 435 __le64 **list = iod_list(req);
e025344c 436 dma_addr_t prp_dma;
eca18b23 437 int nprps, i;
ff22b54f 438
1d090624 439 length -= (page_size - offset);
ff22b54f 440 if (length <= 0)
69d2b571 441 return true;
ff22b54f 442
1d090624 443 dma_len -= (page_size - offset);
ff22b54f 444 if (dma_len) {
1d090624 445 dma_addr += (page_size - offset);
ff22b54f
MW
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
1d090624 452 if (length <= page_size) {
edd10d33 453 iod->first_dma = dma_addr;
69d2b571 454 return true;
e025344c
SMM
455 }
456
1d090624 457 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
eca18b23 460 iod->npages = 0;
99802a7a
MW
461 } else {
462 pool = dev->prp_page_pool;
eca18b23 463 iod->npages = 1;
99802a7a
MW
464 }
465
69d2b571 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 467 if (!prp_list) {
edd10d33 468 iod->first_dma = dma_addr;
eca18b23 469 iod->npages = -1;
69d2b571 470 return false;
b77954cb 471 }
eca18b23
MW
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
e025344c
SMM
474 i = 0;
475 for (;;) {
1d090624 476 if (i == page_size >> 3) {
e025344c 477 __le64 *old_prp_list = prp_list;
69d2b571 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 479 if (!prp_list)
69d2b571 480 return false;
eca18b23 481 list[iod->npages++] = prp_list;
7523d834
MW
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
e025344c
SMM
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
e025344c
SMM
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
ff22b54f
MW
498 }
499
69d2b571 500 return true;
ff22b54f
MW
501}
502
f4800d6d 503static int nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 504 struct nvme_command *cmnd)
d29ec824 505{
f4800d6d 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 511
f9d03f96 512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
d29ec824 516
ba1ca37e 517 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 DMA_ATTR_NO_WARN))
ba1ca37e 520 goto out;
d29ec824 521
b131c61d 522 if (!nvme_setup_prps(dev, req))
ba1ca37e 523 goto out_unmap;
0e5e4f0e 524
ba1ca37e
CH
525 ret = BLK_MQ_RQ_QUEUE_ERROR;
526 if (blk_integrity_rq(req)) {
527 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 goto out_unmap;
0e5e4f0e 529
bf684057
CH
530 sg_init_table(&iod->meta_sg, 1);
531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 532 goto out_unmap;
0e5e4f0e 533
ba1ca37e
CH
534 if (rq_data_dir(req))
535 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 536
bf684057 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 538 goto out_unmap;
d29ec824 539 }
00df5cb4 540
eb793e2c
CH
541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 543 if (blk_integrity_rq(req))
bf684057 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 545 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 546
ba1ca37e
CH
547out_unmap:
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549out:
550 return ret;
00df5cb4
MW
551}
552
f4800d6d 553static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 554{
f4800d6d 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
556 enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559 if (iod->nents) {
560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 if (blk_integrity_rq(req)) {
562 if (!rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_complete);
bf684057 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 565 }
e19b127f 566 }
e1e5e564 567
f9d03f96 568 nvme_cleanup_cmd(req);
f4800d6d 569 nvme_free_iod(dev, req);
d4f6c3ab 570}
b60503ba 571
d29ec824
CH
572/*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
a4aea562
MB
575static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
edd10d33 577{
a4aea562
MB
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 580 struct nvme_dev *dev = nvmeq->dev;
a4aea562 581 struct request *req = bd->rq;
ba1ca37e
CH
582 struct nvme_command cmnd;
583 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 584
e1e5e564
KB
585 /*
586 * If formated with metadata, require the block layer provide a buffer
587 * unless this namespace is formated such that the metadata can be
588 * stripped/generated by the controller with PRACT=1.
589 */
d29ec824 590 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364 591 if (!(ns->pi_type && ns->ms == 8) &&
57292b58 592 !blk_rq_is_passthrough(req)) {
eee417b0 593 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
594 return BLK_MQ_RQ_QUEUE_OK;
595 }
596 }
597
f9d03f96 598 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 599 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 600 return ret;
a4aea562 601
b131c61d 602 ret = nvme_init_iod(req, dev);
bac0000a 603 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 604 goto out_free_cmd;
a4aea562 605
f9d03f96 606 if (blk_rq_nr_phys_segments(req))
b131c61d 607 ret = nvme_map_data(dev, req, &cmnd);
a4aea562 608
bac0000a 609 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 610 goto out_cleanup_iod;
a4aea562 611
aae239e1 612 blk_mq_start_request(req);
a4aea562 613
ba1ca37e 614 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 615 if (unlikely(nvmeq->cq_vector < 0)) {
9ef3932e 616 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 617 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 618 goto out_cleanup_iod;
ae1fba20 619 }
ba1ca37e 620 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
621 nvme_process_cq(nvmeq);
622 spin_unlock_irq(&nvmeq->q_lock);
623 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 624out_cleanup_iod:
f4800d6d 625 nvme_free_iod(dev, req);
f9d03f96
CH
626out_free_cmd:
627 nvme_cleanup_cmd(req);
ba1ca37e 628 return ret;
b60503ba 629}
e1e5e564 630
eee417b0
CH
631static void nvme_complete_rq(struct request *req)
632{
f4800d6d
CH
633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 635 int error = 0;
e1e5e564 636
f4800d6d 637 nvme_unmap_data(dev, req);
e1e5e564 638
eee417b0
CH
639 if (unlikely(req->errors)) {
640 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 641 req->retries++;
eee417b0
CH
642 nvme_requeue_req(req);
643 return;
e1e5e564 644 }
1974b1ae 645
57292b58 646 if (blk_rq_is_passthrough(req))
eee417b0
CH
647 error = req->errors;
648 else
649 error = nvme_error_status(req->errors);
650 }
a4aea562 651
f4800d6d 652 if (unlikely(iod->aborted)) {
1b3c47c1 653 dev_warn(dev->ctrl.device,
eee417b0
CH
654 "completing aborted command with status: %04x\n",
655 req->errors);
656 }
a4aea562 657
eee417b0 658 blk_mq_end_request(req, error);
b60503ba
MW
659}
660
d783e0bd
MR
661/* We read the CQE phase first to check if the rest of the entry is valid */
662static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
663 u16 phase)
664{
665 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
666}
667
a0fa9647 668static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 669{
82123460 670 u16 head, phase;
b60503ba 671
b60503ba 672 head = nvmeq->cq_head;
82123460 673 phase = nvmeq->cq_phase;
b60503ba 674
d783e0bd 675 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 676 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 677 struct request *req;
adf68f21 678
b60503ba
MW
679 if (++head == nvmeq->q_depth) {
680 head = 0;
82123460 681 phase = !phase;
b60503ba 682 }
adf68f21 683
a0fa9647
JA
684 if (tag && *tag == cqe.command_id)
685 *tag = -1;
adf68f21 686
aae239e1 687 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 688 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
689 "invalid id %d completed on queue %d\n",
690 cqe.command_id, le16_to_cpu(cqe.sq_id));
691 continue;
692 }
693
adf68f21
CH
694 /*
695 * AEN requests are special as they don't time out and can
696 * survive any kind of queue freeze and often don't respond to
697 * aborts. We don't even bother to allocate a struct request
698 * for them but rather special case them here.
699 */
700 if (unlikely(nvmeq->qid == 0 &&
701 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
702 nvme_complete_async_event(&nvmeq->dev->ctrl,
703 cqe.status, &cqe.result);
adf68f21
CH
704 continue;
705 }
706
eee417b0 707 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
d49187e9 708 nvme_req(req)->result = cqe.result;
d783e0bd 709 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
b60503ba
MW
710 }
711
82123460 712 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 713 return;
b60503ba 714
604e8c8d
KB
715 if (likely(nvmeq->cq_vector >= 0))
716 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 717 nvmeq->cq_head = head;
82123460 718 nvmeq->cq_phase = phase;
b60503ba 719
e9539f47 720 nvmeq->cqe_seen = 1;
a0fa9647
JA
721}
722
723static void nvme_process_cq(struct nvme_queue *nvmeq)
724{
725 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
726}
727
728static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
729{
730 irqreturn_t result;
731 struct nvme_queue *nvmeq = data;
732 spin_lock(&nvmeq->q_lock);
e9539f47
MW
733 nvme_process_cq(nvmeq);
734 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
735 nvmeq->cqe_seen = 0;
58ffacb5
MW
736 spin_unlock(&nvmeq->q_lock);
737 return result;
738}
739
740static irqreturn_t nvme_irq_check(int irq, void *data)
741{
742 struct nvme_queue *nvmeq = data;
d783e0bd
MR
743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
744 return IRQ_WAKE_THREAD;
745 return IRQ_NONE;
58ffacb5
MW
746}
747
a0fa9647
JA
748static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
749{
750 struct nvme_queue *nvmeq = hctx->driver_data;
751
d783e0bd 752 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
753 spin_lock_irq(&nvmeq->q_lock);
754 __nvme_process_cq(nvmeq, &tag);
755 spin_unlock_irq(&nvmeq->q_lock);
756
757 if (tag == -1)
758 return 1;
759 }
760
761 return 0;
762}
763
f866fc42 764static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 765{
f866fc42 766 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 767 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 768 struct nvme_command c;
b60503ba 769
a4aea562
MB
770 memset(&c, 0, sizeof(c));
771 c.common.opcode = nvme_admin_async_event;
f866fc42 772 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 773
9396dec9 774 spin_lock_irq(&nvmeq->q_lock);
f866fc42 775 __nvme_submit_cmd(nvmeq, &c);
9396dec9 776 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
777}
778
b60503ba 779static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 780{
b60503ba
MW
781 struct nvme_command c;
782
783 memset(&c, 0, sizeof(c));
784 c.delete_queue.opcode = opcode;
785 c.delete_queue.qid = cpu_to_le16(id);
786
1c63dc66 787 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
788}
789
b60503ba
MW
790static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
791 struct nvme_queue *nvmeq)
792{
b60503ba
MW
793 struct nvme_command c;
794 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
795
d29ec824
CH
796 /*
797 * Note: we (ab)use the fact the the prp fields survive if no data
798 * is attached to the request.
799 */
b60503ba
MW
800 memset(&c, 0, sizeof(c));
801 c.create_cq.opcode = nvme_admin_create_cq;
802 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
803 c.create_cq.cqid = cpu_to_le16(qid);
804 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
805 c.create_cq.cq_flags = cpu_to_le16(flags);
806 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
807
1c63dc66 808 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
809}
810
811static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
812 struct nvme_queue *nvmeq)
813{
b60503ba
MW
814 struct nvme_command c;
815 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
816
d29ec824
CH
817 /*
818 * Note: we (ab)use the fact the the prp fields survive if no data
819 * is attached to the request.
820 */
b60503ba
MW
821 memset(&c, 0, sizeof(c));
822 c.create_sq.opcode = nvme_admin_create_sq;
823 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
824 c.create_sq.sqid = cpu_to_le16(qid);
825 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
826 c.create_sq.sq_flags = cpu_to_le16(flags);
827 c.create_sq.cqid = cpu_to_le16(qid);
828
1c63dc66 829 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
830}
831
832static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
833{
834 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
835}
836
837static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
838{
839 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
840}
841
e7a2a87d 842static void abort_endio(struct request *req, int error)
bc5fc7e4 843{
f4800d6d
CH
844 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
845 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 846 u16 status = req->errors;
e44ac588 847
1cb3cce5 848 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 849 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 850 blk_mq_free_request(req);
bc5fc7e4
MW
851}
852
31c7c7d2 853static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 854{
f4800d6d
CH
855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
856 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 857 struct nvme_dev *dev = nvmeq->dev;
a4aea562 858 struct request *abort_req;
a4aea562 859 struct nvme_command cmd;
c30341dc 860
31c7c7d2 861 /*
fd634f41
CH
862 * Shutdown immediately if controller times out while starting. The
863 * reset work will see the pci device disabled when it gets the forced
864 * cancellation error. All outstanding requests are completed on
865 * shutdown, so we return BLK_EH_HANDLED.
866 */
bb8d261e 867 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 868 dev_warn(dev->ctrl.device,
fd634f41
CH
869 "I/O %d QID %d timeout, disable controller\n",
870 req->tag, nvmeq->qid);
a5cdb68c 871 nvme_dev_disable(dev, false);
fd634f41
CH
872 req->errors = NVME_SC_CANCELLED;
873 return BLK_EH_HANDLED;
c30341dc
KB
874 }
875
fd634f41
CH
876 /*
877 * Shutdown the controller immediately and schedule a reset if the
878 * command was already aborted once before and still hasn't been
879 * returned to the driver, or if this is the admin queue.
31c7c7d2 880 */
f4800d6d 881 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 882 dev_warn(dev->ctrl.device,
e1569a16
KB
883 "I/O %d QID %d timeout, reset controller\n",
884 req->tag, nvmeq->qid);
a5cdb68c 885 nvme_dev_disable(dev, false);
c5f6ce97 886 nvme_reset(dev);
c30341dc 887
e1569a16
KB
888 /*
889 * Mark the request as handled, since the inline shutdown
890 * forces all outstanding requests to complete.
891 */
892 req->errors = NVME_SC_CANCELLED;
893 return BLK_EH_HANDLED;
c30341dc 894 }
c30341dc 895
e7a2a87d 896 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 897 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 898 return BLK_EH_RESET_TIMER;
6bf25d16 899 }
7bf7d778 900 iod->aborted = 1;
a4aea562 901
c30341dc
KB
902 memset(&cmd, 0, sizeof(cmd));
903 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 904 cmd.abort.cid = req->tag;
c30341dc 905 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 906
1b3c47c1
SG
907 dev_warn(nvmeq->dev->ctrl.device,
908 "I/O %d QID %d timeout, aborting\n",
909 req->tag, nvmeq->qid);
e7a2a87d
CH
910
911 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 912 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
913 if (IS_ERR(abort_req)) {
914 atomic_inc(&dev->ctrl.abort_limit);
915 return BLK_EH_RESET_TIMER;
916 }
917
918 abort_req->timeout = ADMIN_TIMEOUT;
919 abort_req->end_io_data = NULL;
920 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 921
31c7c7d2
CH
922 /*
923 * The aborted req will be completed on receiving the abort req.
924 * We enable the timer again. If hit twice, it'll cause a device reset,
925 * as the device then is in a faulty state.
926 */
927 return BLK_EH_RESET_TIMER;
c30341dc
KB
928}
929
a4aea562
MB
930static void nvme_free_queue(struct nvme_queue *nvmeq)
931{
9e866774
MW
932 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
933 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
934 if (nvmeq->sq_cmds)
935 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
936 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
937 kfree(nvmeq);
938}
939
a1a5ef99 940static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
941{
942 int i;
943
a1a5ef99 944 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 945 struct nvme_queue *nvmeq = dev->queues[i];
22404274 946 dev->queue_count--;
a4aea562 947 dev->queues[i] = NULL;
f435c282 948 nvme_free_queue(nvmeq);
121c7ad4 949 }
22404274
KB
950}
951
4d115420
KB
952/**
953 * nvme_suspend_queue - put queue into suspended state
954 * @nvmeq - queue to suspend
4d115420
KB
955 */
956static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 957{
2b25d981 958 int vector;
b60503ba 959
a09115b2 960 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
961 if (nvmeq->cq_vector == -1) {
962 spin_unlock_irq(&nvmeq->q_lock);
963 return 1;
964 }
dca51e78 965 vector = nvmeq_irq(nvmeq);
42f61420 966 nvmeq->dev->online_queues--;
2b25d981 967 nvmeq->cq_vector = -1;
a09115b2
MW
968 spin_unlock_irq(&nvmeq->q_lock);
969
1c63dc66 970 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 971 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 972
aba2080f 973 free_irq(vector, nvmeq);
b60503ba 974
4d115420
KB
975 return 0;
976}
b60503ba 977
a5cdb68c 978static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 979{
a5cdb68c 980 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
981
982 if (!nvmeq)
983 return;
984 if (nvme_suspend_queue(nvmeq))
985 return;
986
a5cdb68c
KB
987 if (shutdown)
988 nvme_shutdown_ctrl(&dev->ctrl);
989 else
990 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
991 dev->bar + NVME_REG_CAP));
07836e65
KB
992
993 spin_lock_irq(&nvmeq->q_lock);
994 nvme_process_cq(nvmeq);
995 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
996}
997
8ffaadf7
JD
998static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
999 int entry_size)
1000{
1001 int q_depth = dev->q_depth;
5fd4ce1b
CH
1002 unsigned q_size_aligned = roundup(q_depth * entry_size,
1003 dev->ctrl.page_size);
8ffaadf7
JD
1004
1005 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1006 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1007 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1008 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1009
1010 /*
1011 * Ensure the reduced q_depth is above some threshold where it
1012 * would be better to map queues in system memory with the
1013 * original depth
1014 */
1015 if (q_depth < 64)
1016 return -ENOMEM;
1017 }
1018
1019 return q_depth;
1020}
1021
1022static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1023 int qid, int depth)
1024{
1025 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1026 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1027 dev->ctrl.page_size);
8ffaadf7
JD
1028 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1029 nvmeq->sq_cmds_io = dev->cmb + offset;
1030 } else {
1031 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1032 &nvmeq->sq_dma_addr, GFP_KERNEL);
1033 if (!nvmeq->sq_cmds)
1034 return -ENOMEM;
1035 }
1036
1037 return 0;
1038}
1039
b60503ba 1040static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1041 int depth)
b60503ba 1042{
a4aea562 1043 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1044 if (!nvmeq)
1045 return NULL;
1046
e75ec752 1047 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1048 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1049 if (!nvmeq->cqes)
1050 goto free_nvmeq;
b60503ba 1051
8ffaadf7 1052 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1053 goto free_cqdma;
1054
e75ec752 1055 nvmeq->q_dmadev = dev->dev;
091b6092 1056 nvmeq->dev = dev;
3193f07b 1057 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1058 dev->ctrl.instance, qid);
b60503ba
MW
1059 spin_lock_init(&nvmeq->q_lock);
1060 nvmeq->cq_head = 0;
82123460 1061 nvmeq->cq_phase = 1;
b80d5ccc 1062 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1063 nvmeq->q_depth = depth;
c30341dc 1064 nvmeq->qid = qid;
758dd7fd 1065 nvmeq->cq_vector = -1;
a4aea562 1066 dev->queues[qid] = nvmeq;
36a7e993
JD
1067 dev->queue_count++;
1068
b60503ba
MW
1069 return nvmeq;
1070
1071 free_cqdma:
e75ec752 1072 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1073 nvmeq->cq_dma_addr);
1074 free_nvmeq:
1075 kfree(nvmeq);
1076 return NULL;
1077}
1078
dca51e78 1079static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1080{
58ffacb5 1081 if (use_threaded_interrupts)
dca51e78
CH
1082 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1083 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1084 else
1085 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1086 nvmeq->irqname, nvmeq);
3001082c
MW
1087}
1088
22404274 1089static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1090{
22404274 1091 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1092
7be50e93 1093 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1094 nvmeq->sq_tail = 0;
1095 nvmeq->cq_head = 0;
1096 nvmeq->cq_phase = 1;
b80d5ccc 1097 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1098 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1099 dev->online_queues++;
7be50e93 1100 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1101}
1102
1103static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1104{
1105 struct nvme_dev *dev = nvmeq->dev;
1106 int result;
3f85d50b 1107
2b25d981 1108 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1109 result = adapter_alloc_cq(dev, qid, nvmeq);
1110 if (result < 0)
22404274 1111 return result;
b60503ba
MW
1112
1113 result = adapter_alloc_sq(dev, qid, nvmeq);
1114 if (result < 0)
1115 goto release_cq;
1116
dca51e78 1117 result = queue_request_irq(nvmeq);
b60503ba
MW
1118 if (result < 0)
1119 goto release_sq;
1120
22404274 1121 nvme_init_queue(nvmeq, qid);
22404274 1122 return result;
b60503ba
MW
1123
1124 release_sq:
1125 adapter_delete_sq(dev, qid);
1126 release_cq:
1127 adapter_delete_cq(dev, qid);
22404274 1128 return result;
b60503ba
MW
1129}
1130
a4aea562 1131static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1132 .queue_rq = nvme_queue_rq,
eee417b0 1133 .complete = nvme_complete_rq,
a4aea562 1134 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1135 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1136 .init_request = nvme_admin_init_request,
1137 .timeout = nvme_timeout,
1138};
1139
1140static struct blk_mq_ops nvme_mq_ops = {
1141 .queue_rq = nvme_queue_rq,
eee417b0 1142 .complete = nvme_complete_rq,
a4aea562
MB
1143 .init_hctx = nvme_init_hctx,
1144 .init_request = nvme_init_request,
dca51e78 1145 .map_queues = nvme_pci_map_queues,
a4aea562 1146 .timeout = nvme_timeout,
a0fa9647 1147 .poll = nvme_poll,
a4aea562
MB
1148};
1149
ea191d2f
KB
1150static void nvme_dev_remove_admin(struct nvme_dev *dev)
1151{
1c63dc66 1152 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1153 /*
1154 * If the controller was reset during removal, it's possible
1155 * user requests may be waiting on a stopped queue. Start the
1156 * queue to flush these to completion.
1157 */
1158 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1159 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1160 blk_mq_free_tag_set(&dev->admin_tagset);
1161 }
1162}
1163
a4aea562
MB
1164static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1165{
1c63dc66 1166 if (!dev->ctrl.admin_q) {
a4aea562
MB
1167 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1168 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1169
1170 /*
1171 * Subtract one to leave an empty queue entry for 'Full Queue'
1172 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1173 */
1174 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1175 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1176 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1177 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1178 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1179 dev->admin_tagset.driver_data = dev;
1180
1181 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1182 return -ENOMEM;
1183
1c63dc66
CH
1184 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1185 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1186 blk_mq_free_tag_set(&dev->admin_tagset);
1187 return -ENOMEM;
1188 }
1c63dc66 1189 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1190 nvme_dev_remove_admin(dev);
1c63dc66 1191 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1192 return -ENODEV;
1193 }
0fb59cbc 1194 } else
25646264 1195 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1196
1197 return 0;
1198}
1199
8d85fce7 1200static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1201{
ba47e386 1202 int result;
b60503ba 1203 u32 aqa;
7a67cbea 1204 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1205 struct nvme_queue *nvmeq;
1206
8ef2074d 1207 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1208 NVME_CAP_NSSRC(cap) : 0;
1209
7a67cbea
CH
1210 if (dev->subsystem &&
1211 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1212 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1213
5fd4ce1b 1214 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1215 if (result < 0)
1216 return result;
b60503ba 1217
a4aea562 1218 nvmeq = dev->queues[0];
cd638946 1219 if (!nvmeq) {
2b25d981 1220 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1221 if (!nvmeq)
1222 return -ENOMEM;
cd638946 1223 }
b60503ba
MW
1224
1225 aqa = nvmeq->q_depth - 1;
1226 aqa |= aqa << 16;
1227
7a67cbea
CH
1228 writel(aqa, dev->bar + NVME_REG_AQA);
1229 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1230 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1231
5fd4ce1b 1232 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1233 if (result)
d4875622 1234 return result;
a4aea562 1235
2b25d981 1236 nvmeq->cq_vector = 0;
dca51e78 1237 result = queue_request_irq(nvmeq);
758dd7fd
JD
1238 if (result) {
1239 nvmeq->cq_vector = -1;
d4875622 1240 return result;
758dd7fd 1241 }
025c557a 1242
b60503ba
MW
1243 return result;
1244}
1245
c875a709
GP
1246static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1247{
1248
1249 /* If true, indicates loss of adapter communication, possibly by a
1250 * NVMe Subsystem reset.
1251 */
1252 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1253
1254 /* If there is a reset ongoing, we shouldn't reset again. */
1255 if (work_busy(&dev->reset_work))
1256 return false;
1257
1258 /* We shouldn't reset unless the controller is on fatal error state
1259 * _or_ if we lost the communication with it.
1260 */
1261 if (!(csts & NVME_CSTS_CFS) && !nssro)
1262 return false;
1263
1264 /* If PCI error recovery process is happening, we cannot reset or
1265 * the recovery mechanism will surely fail.
1266 */
1267 if (pci_channel_offline(to_pci_dev(dev->dev)))
1268 return false;
1269
1270 return true;
1271}
1272
d2a61918
AL
1273static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1274{
1275 /* Read a config register to help see what died. */
1276 u16 pci_status;
1277 int result;
1278
1279 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1280 &pci_status);
1281 if (result == PCIBIOS_SUCCESSFUL)
1282 dev_warn(dev->dev,
1283 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1284 csts, pci_status);
1285 else
1286 dev_warn(dev->dev,
1287 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1288 csts, result);
1289}
1290
2d55cd5f 1291static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1292{
2d55cd5f
CH
1293 struct nvme_dev *dev = (struct nvme_dev *)data;
1294 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1295
c875a709
GP
1296 /* Skip controllers under certain specific conditions. */
1297 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1298 if (!nvme_reset(dev))
d2a61918 1299 nvme_warn_reset(dev, csts);
2d55cd5f 1300 return;
1fa6aead 1301 }
2d55cd5f
CH
1302
1303 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1304}
1305
749941f2 1306static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1307{
949928c1 1308 unsigned i, max;
749941f2 1309 int ret = 0;
42f61420 1310
749941f2
CH
1311 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1312 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1313 ret = -ENOMEM;
42f61420 1314 break;
749941f2
CH
1315 }
1316 }
42f61420 1317
949928c1
KB
1318 max = min(dev->max_qid, dev->queue_count - 1);
1319 for (i = dev->online_queues; i <= max; i++) {
749941f2 1320 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1321 if (ret)
42f61420 1322 break;
27e8166c 1323 }
749941f2
CH
1324
1325 /*
1326 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 * than the desired aount of queues, and even a controller without
1328 * I/O queues an still be used to issue admin commands. This might
1329 * be useful to upgrade a buggy firmware for example.
1330 */
1331 return ret >= 0 ? 0 : ret;
b60503ba
MW
1332}
1333
202021c1
SB
1334static ssize_t nvme_cmb_show(struct device *dev,
1335 struct device_attribute *attr,
1336 char *buf)
1337{
1338 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1339
c965809c 1340 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1341 ndev->cmbloc, ndev->cmbsz);
1342}
1343static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1344
8ffaadf7
JD
1345static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1346{
1347 u64 szu, size, offset;
8ffaadf7
JD
1348 resource_size_t bar_size;
1349 struct pci_dev *pdev = to_pci_dev(dev->dev);
1350 void __iomem *cmb;
1351 dma_addr_t dma_addr;
1352
7a67cbea 1353 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1354 if (!(NVME_CMB_SZ(dev->cmbsz)))
1355 return NULL;
202021c1 1356 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1357
202021c1
SB
1358 if (!use_cmb_sqes)
1359 return NULL;
8ffaadf7
JD
1360
1361 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1362 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1363 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1364 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1365
1366 if (offset > bar_size)
1367 return NULL;
1368
1369 /*
1370 * Controllers may support a CMB size larger than their BAR,
1371 * for example, due to being behind a bridge. Reduce the CMB to
1372 * the reported size of the BAR
1373 */
1374 if (size > bar_size - offset)
1375 size = bar_size - offset;
1376
202021c1 1377 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1378 cmb = ioremap_wc(dma_addr, size);
1379 if (!cmb)
1380 return NULL;
1381
1382 dev->cmb_dma_addr = dma_addr;
1383 dev->cmb_size = size;
1384 return cmb;
1385}
1386
1387static inline void nvme_release_cmb(struct nvme_dev *dev)
1388{
1389 if (dev->cmb) {
1390 iounmap(dev->cmb);
1391 dev->cmb = NULL;
1392 }
1393}
1394
9d713c2b
KB
1395static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1396{
b80d5ccc 1397 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1398}
1399
8d85fce7 1400static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1401{
a4aea562 1402 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1403 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1404 int result, nr_io_queues, size;
b60503ba 1405
2800b8e7 1406 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1407 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1408 if (result < 0)
1b23484b 1409 return result;
9a0be7ab 1410
f5fa90dc 1411 if (nr_io_queues == 0)
a5229050 1412 return 0;
b60503ba 1413
8ffaadf7
JD
1414 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1415 result = nvme_cmb_qdepth(dev, nr_io_queues,
1416 sizeof(struct nvme_command));
1417 if (result > 0)
1418 dev->q_depth = result;
1419 else
1420 nvme_release_cmb(dev);
1421 }
1422
9d713c2b
KB
1423 size = db_bar_size(dev, nr_io_queues);
1424 if (size > 8192) {
f1938f6e 1425 iounmap(dev->bar);
9d713c2b
KB
1426 do {
1427 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1428 if (dev->bar)
1429 break;
1430 if (!--nr_io_queues)
1431 return -ENOMEM;
1432 size = db_bar_size(dev, nr_io_queues);
1433 } while (1);
7a67cbea 1434 dev->dbs = dev->bar + 4096;
5a92e700 1435 adminq->q_db = dev->dbs;
f1938f6e
MW
1436 }
1437
9d713c2b 1438 /* Deregister the admin queue's interrupt */
dca51e78 1439 free_irq(pci_irq_vector(pdev, 0), adminq);
9d713c2b 1440
e32efbfc
JA
1441 /*
1442 * If we enable msix early due to not intx, disable it again before
1443 * setting up the full range we need.
1444 */
dca51e78
CH
1445 pci_free_irq_vectors(pdev);
1446 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1447 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1448 if (nr_io_queues <= 0)
1449 return -EIO;
1450 dev->max_qid = nr_io_queues;
fa08a396 1451
063a8096
MW
1452 /*
1453 * Should investigate if there's a performance win from allocating
1454 * more queues than interrupt vectors; it might allow the submission
1455 * path to scale better, even if the receive path is limited by the
1456 * number of interrupts.
1457 */
063a8096 1458
dca51e78 1459 result = queue_request_irq(adminq);
758dd7fd
JD
1460 if (result) {
1461 adminq->cq_vector = -1;
d4875622 1462 return result;
758dd7fd 1463 }
749941f2 1464 return nvme_create_io_queues(dev);
b60503ba
MW
1465}
1466
db3cbfff 1467static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1468{
db3cbfff 1469 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1470
db3cbfff
KB
1471 blk_mq_free_request(req);
1472 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1473}
1474
db3cbfff 1475static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1476{
db3cbfff 1477 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1478
db3cbfff
KB
1479 if (!error) {
1480 unsigned long flags;
1481
2e39e0f6
ML
1482 /*
1483 * We might be called with the AQ q_lock held
1484 * and the I/O queue q_lock should always
1485 * nest inside the AQ one.
1486 */
1487 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1488 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1489 nvme_process_cq(nvmeq);
1490 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1491 }
db3cbfff
KB
1492
1493 nvme_del_queue_end(req, error);
a5768aa8
KB
1494}
1495
db3cbfff 1496static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1497{
db3cbfff
KB
1498 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1499 struct request *req;
1500 struct nvme_command cmd;
bda4e0fb 1501
db3cbfff
KB
1502 memset(&cmd, 0, sizeof(cmd));
1503 cmd.delete_queue.opcode = opcode;
1504 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1505
eb71f435 1506 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1507 if (IS_ERR(req))
1508 return PTR_ERR(req);
bda4e0fb 1509
db3cbfff
KB
1510 req->timeout = ADMIN_TIMEOUT;
1511 req->end_io_data = nvmeq;
1512
1513 blk_execute_rq_nowait(q, NULL, req, false,
1514 opcode == nvme_admin_delete_cq ?
1515 nvme_del_cq_end : nvme_del_queue_end);
1516 return 0;
bda4e0fb
KB
1517}
1518
70659060 1519static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1520{
70659060 1521 int pass;
db3cbfff
KB
1522 unsigned long timeout;
1523 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1524
db3cbfff 1525 for (pass = 0; pass < 2; pass++) {
014a0d60 1526 int sent = 0, i = queues;
db3cbfff
KB
1527
1528 reinit_completion(&dev->ioq_wait);
1529 retry:
1530 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1531 for (; i > 0; i--, sent++)
1532 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1533 break;
c21377f8 1534
db3cbfff
KB
1535 while (sent--) {
1536 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1537 if (timeout == 0)
1538 return;
1539 if (i)
1540 goto retry;
1541 }
1542 opcode = nvme_admin_delete_cq;
1543 }
a5768aa8
KB
1544}
1545
422ef0c7
MW
1546/*
1547 * Return: error value if an error occurred setting up the queues or calling
1548 * Identify Device. 0 if these succeeded, even if adding some of the
1549 * namespaces failed. At the moment, these failures are silent. TBD which
1550 * failures should be reported.
1551 */
8d85fce7 1552static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1553{
5bae7f73 1554 if (!dev->ctrl.tagset) {
ffe7704d
KB
1555 dev->tagset.ops = &nvme_mq_ops;
1556 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1557 dev->tagset.timeout = NVME_IO_TIMEOUT;
1558 dev->tagset.numa_node = dev_to_node(dev->dev);
1559 dev->tagset.queue_depth =
a4aea562 1560 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1561 dev->tagset.cmd_size = nvme_cmd_size(dev);
1562 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1563 dev->tagset.driver_data = dev;
b60503ba 1564
ffe7704d
KB
1565 if (blk_mq_alloc_tag_set(&dev->tagset))
1566 return 0;
5bae7f73 1567 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1568 } else {
1569 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1570
1571 /* Free previously allocated queues that are no longer usable */
1572 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1573 }
949928c1 1574
e1e5e564 1575 return 0;
b60503ba
MW
1576}
1577
b00a726a 1578static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1579{
42f61420 1580 u64 cap;
b00a726a 1581 int result = -ENOMEM;
e75ec752 1582 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1583
1584 if (pci_enable_device_mem(pdev))
1585 return result;
1586
0877cb0d 1587 pci_set_master(pdev);
0877cb0d 1588
e75ec752
CH
1589 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1590 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1591 goto disable;
0877cb0d 1592
7a67cbea 1593 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1594 result = -ENODEV;
b00a726a 1595 goto disable;
0e53d180 1596 }
e32efbfc
JA
1597
1598 /*
a5229050
KB
1599 * Some devices and/or platforms don't advertise or work with INTx
1600 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1601 * adjust this later.
e32efbfc 1602 */
dca51e78
CH
1603 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1604 if (result < 0)
1605 return result;
e32efbfc 1606
7a67cbea
CH
1607 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1608
42f61420
KB
1609 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1610 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1611 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1612
1613 /*
1614 * Temporary fix for the Apple controller found in the MacBook8,1 and
1615 * some MacBook7,1 to avoid controller resets and data loss.
1616 */
1617 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1618 dev->q_depth = 2;
1619 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1620 "queue depth=%u to work around controller resets\n",
1621 dev->q_depth);
1622 }
1623
202021c1
SB
1624 /*
1625 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1626 * populate sysfs if a CMB is implemented. Note that we add the
1627 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1628 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1629 * NULL as final argument to sysfs_add_file_to_group.
1630 */
1631
8ef2074d 1632 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1633 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1634
202021c1
SB
1635 if (dev->cmbsz) {
1636 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1637 &dev_attr_cmb.attr, NULL))
1638 dev_warn(dev->dev,
1639 "failed to add sysfs attribute for CMB\n");
1640 }
1641 }
1642
a0a3408e
KB
1643 pci_enable_pcie_error_reporting(pdev);
1644 pci_save_state(pdev);
0877cb0d
KB
1645 return 0;
1646
1647 disable:
0877cb0d
KB
1648 pci_disable_device(pdev);
1649 return result;
1650}
1651
1652static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1653{
1654 if (dev->bar)
1655 iounmap(dev->bar);
a1f447b3 1656 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1657}
1658
1659static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1660{
e75ec752
CH
1661 struct pci_dev *pdev = to_pci_dev(dev->dev);
1662
dca51e78 1663 pci_free_irq_vectors(pdev);
0877cb0d 1664
a0a3408e
KB
1665 if (pci_is_enabled(pdev)) {
1666 pci_disable_pcie_error_reporting(pdev);
e75ec752 1667 pci_disable_device(pdev);
4d115420 1668 }
4d115420
KB
1669}
1670
a5cdb68c 1671static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1672{
70659060 1673 int i, queues;
7c1b2450 1674 u32 csts = -1;
22404274 1675
2d55cd5f 1676 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1677
77bf25ea 1678 mutex_lock(&dev->shutdown_lock);
b00a726a 1679 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1680 nvme_stop_queues(&dev->ctrl);
7a67cbea 1681 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1682 }
c21377f8 1683
70659060 1684 queues = dev->online_queues - 1;
c21377f8
GKB
1685 for (i = dev->queue_count - 1; i > 0; i--)
1686 nvme_suspend_queue(dev->queues[i]);
1687
7c1b2450 1688 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
82469c59
GKB
1689 /* A device might become IO incapable very soon during
1690 * probe, before the admin queue is configured. Thus,
1691 * queue_count can be 0 here.
1692 */
1693 if (dev->queue_count)
1694 nvme_suspend_queue(dev->queues[0]);
4d115420 1695 } else {
70659060 1696 nvme_disable_io_queues(dev, queues);
a5cdb68c 1697 nvme_disable_admin_queue(dev, shutdown);
4d115420 1698 }
b00a726a 1699 nvme_pci_disable(dev);
07836e65 1700
e1958e65
ML
1701 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1702 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1703 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1704}
1705
091b6092
MW
1706static int nvme_setup_prp_pools(struct nvme_dev *dev)
1707{
e75ec752 1708 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1709 PAGE_SIZE, PAGE_SIZE, 0);
1710 if (!dev->prp_page_pool)
1711 return -ENOMEM;
1712
99802a7a 1713 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1714 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1715 256, 256, 0);
1716 if (!dev->prp_small_pool) {
1717 dma_pool_destroy(dev->prp_page_pool);
1718 return -ENOMEM;
1719 }
091b6092
MW
1720 return 0;
1721}
1722
1723static void nvme_release_prp_pools(struct nvme_dev *dev)
1724{
1725 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1726 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1727}
1728
1673f1f0 1729static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1730{
1673f1f0 1731 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1732
e75ec752 1733 put_device(dev->dev);
4af0e21c
KB
1734 if (dev->tagset.tags)
1735 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1736 if (dev->ctrl.admin_q)
1737 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1738 kfree(dev->queues);
4f1244c8 1739 kfree(dev->ctrl.opal_dev);
5e82e952
KB
1740 kfree(dev);
1741}
1742
f58944e2
KB
1743static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1744{
237045fc 1745 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1746
1747 kref_get(&dev->ctrl.kref);
69d9a99c 1748 nvme_dev_disable(dev, false);
f58944e2
KB
1749 if (!schedule_work(&dev->remove_work))
1750 nvme_put_ctrl(&dev->ctrl);
1751}
1752
fd634f41 1753static void nvme_reset_work(struct work_struct *work)
5e82e952 1754{
fd634f41 1755 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
a98e58e5 1756 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 1757 int result = -ENODEV;
5e82e952 1758
bb8d261e 1759 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1760 goto out;
5e82e952 1761
fd634f41
CH
1762 /*
1763 * If we're called to reset a live controller first shut it down before
1764 * moving on.
1765 */
b00a726a 1766 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1767 nvme_dev_disable(dev, false);
5e82e952 1768
bb8d261e 1769 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1770 goto out;
1771
b00a726a 1772 result = nvme_pci_enable(dev);
f0b50732 1773 if (result)
3cf519b5 1774 goto out;
f0b50732
KB
1775
1776 result = nvme_configure_admin_queue(dev);
1777 if (result)
f58944e2 1778 goto out;
f0b50732 1779
a4aea562 1780 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1781 result = nvme_alloc_admin_tags(dev);
1782 if (result)
f58944e2 1783 goto out;
b9afca3e 1784
ce4541f4
CH
1785 result = nvme_init_identify(&dev->ctrl);
1786 if (result)
f58944e2 1787 goto out;
ce4541f4 1788
8a9ae523 1789 if ((dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) && !dev->ctrl.opal_dev) {
4f1244c8
CH
1790 dev->ctrl.opal_dev =
1791 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1792 }
a98e58e5
SB
1793
1794 if (was_suspend)
4f1244c8 1795 opal_unlock_from_suspend(dev->ctrl.opal_dev);
a98e58e5 1796
f0b50732 1797 result = nvme_setup_io_queues(dev);
badc34d4 1798 if (result)
f58944e2 1799 goto out;
f0b50732 1800
21f033f7
KB
1801 /*
1802 * A controller that can not execute IO typically requires user
1803 * intervention to correct. For such degraded controllers, the driver
1804 * should not submit commands the user did not request, so skip
1805 * registering for asynchronous event notification on this condition.
1806 */
f866fc42
CH
1807 if (dev->online_queues > 1)
1808 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1809
2d55cd5f 1810 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1811
2659e57b
CH
1812 /*
1813 * Keep the controller around but remove all namespaces if we don't have
1814 * any working I/O queue.
1815 */
3cf519b5 1816 if (dev->online_queues < 2) {
1b3c47c1 1817 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1818 nvme_kill_queues(&dev->ctrl);
5bae7f73 1819 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1820 } else {
25646264 1821 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1822 nvme_dev_add(dev);
1823 }
1824
bb8d261e
CH
1825 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1826 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1827 goto out;
1828 }
92911a55
CH
1829
1830 if (dev->online_queues > 1)
5955be21 1831 nvme_queue_scan(&dev->ctrl);
3cf519b5 1832 return;
f0b50732 1833
3cf519b5 1834 out:
f58944e2 1835 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1836}
1837
5c8809e6 1838static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1839{
5c8809e6 1840 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1841 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1842
69d9a99c 1843 nvme_kill_queues(&dev->ctrl);
9a6b9458 1844 if (pci_get_drvdata(pdev))
921920ab 1845 device_release_driver(&pdev->dev);
1673f1f0 1846 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1847}
1848
4cc06521 1849static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1850{
1c63dc66 1851 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1852 return -ENODEV;
c5f6ce97
KB
1853 if (work_busy(&dev->reset_work))
1854 return -ENODEV;
846cc05f
CH
1855 if (!queue_work(nvme_workq, &dev->reset_work))
1856 return -EBUSY;
846cc05f 1857 return 0;
9a6b9458
KB
1858}
1859
1c63dc66 1860static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1861{
1c63dc66 1862 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1863 return 0;
9ca97374
TH
1864}
1865
5fd4ce1b 1866static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1867{
5fd4ce1b
CH
1868 writel(val, to_nvme_dev(ctrl)->bar + off);
1869 return 0;
1870}
4cc06521 1871
7fd8930f
CH
1872static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1873{
1874 *val = readq(to_nvme_dev(ctrl)->bar + off);
1875 return 0;
4cc06521
KB
1876}
1877
f3ca80fc
CH
1878static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1879{
c5f6ce97
KB
1880 struct nvme_dev *dev = to_nvme_dev(ctrl);
1881 int ret = nvme_reset(dev);
1882
1883 if (!ret)
1884 flush_work(&dev->reset_work);
1885 return ret;
4cc06521 1886}
f3ca80fc 1887
1c63dc66 1888static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1889 .name = "pcie",
e439bb12 1890 .module = THIS_MODULE,
1c63dc66 1891 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1892 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1893 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1894 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1895 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 1896 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1897};
4cc06521 1898
b00a726a
KB
1899static int nvme_dev_map(struct nvme_dev *dev)
1900{
b00a726a
KB
1901 struct pci_dev *pdev = to_pci_dev(dev->dev);
1902
a1f447b3 1903 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1904 return -ENODEV;
1905
1906 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1907 if (!dev->bar)
1908 goto release;
1909
9fa196e7 1910 return 0;
b00a726a 1911 release:
9fa196e7
MG
1912 pci_release_mem_regions(pdev);
1913 return -ENODEV;
b00a726a
KB
1914}
1915
8d85fce7 1916static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1917{
a4aea562 1918 int node, result = -ENOMEM;
b60503ba
MW
1919 struct nvme_dev *dev;
1920
a4aea562
MB
1921 node = dev_to_node(&pdev->dev);
1922 if (node == NUMA_NO_NODE)
2fa84351 1923 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1924
1925 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1926 if (!dev)
1927 return -ENOMEM;
a4aea562
MB
1928 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1929 GFP_KERNEL, node);
b60503ba
MW
1930 if (!dev->queues)
1931 goto free;
1932
e75ec752 1933 dev->dev = get_device(&pdev->dev);
9a6b9458 1934 pci_set_drvdata(pdev, dev);
1c63dc66 1935
b00a726a
KB
1936 result = nvme_dev_map(dev);
1937 if (result)
1938 goto free;
1939
f3ca80fc 1940 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1941 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1942 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1943 (unsigned long)dev);
77bf25ea 1944 mutex_init(&dev->shutdown_lock);
db3cbfff 1945 init_completion(&dev->ioq_wait);
b60503ba 1946
091b6092
MW
1947 result = nvme_setup_prp_pools(dev);
1948 if (result)
a96d4f5c 1949 goto put_pci;
4cc06521 1950
f3ca80fc
CH
1951 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1952 id->driver_data);
4cc06521 1953 if (result)
2e1d8448 1954 goto release_pools;
740216fc 1955
1b3c47c1
SG
1956 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1957
92f7a162 1958 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1959 return 0;
1960
0877cb0d 1961 release_pools:
091b6092 1962 nvme_release_prp_pools(dev);
a96d4f5c 1963 put_pci:
e75ec752 1964 put_device(dev->dev);
b00a726a 1965 nvme_dev_unmap(dev);
b60503ba
MW
1966 free:
1967 kfree(dev->queues);
b60503ba
MW
1968 kfree(dev);
1969 return result;
1970}
1971
f0d54a54
KB
1972static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1973{
a6739479 1974 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1975
a6739479 1976 if (prepare)
a5cdb68c 1977 nvme_dev_disable(dev, false);
a6739479 1978 else
c5f6ce97 1979 nvme_reset(dev);
f0d54a54
KB
1980}
1981
09ece142
KB
1982static void nvme_shutdown(struct pci_dev *pdev)
1983{
1984 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1985 nvme_dev_disable(dev, true);
09ece142
KB
1986}
1987
f58944e2
KB
1988/*
1989 * The driver's remove may be called on a device in a partially initialized
1990 * state. This function must not have any dependencies on the device state in
1991 * order to proceed.
1992 */
8d85fce7 1993static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1994{
1995 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1996
bb8d261e
CH
1997 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1998
9a6b9458 1999 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2000
6db28eda 2001 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2002 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2003 nvme_dev_disable(dev, false);
2004 }
0ff9d4e1 2005
9bf2b972 2006 flush_work(&dev->reset_work);
53029b04 2007 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2008 nvme_dev_disable(dev, true);
a4aea562 2009 nvme_dev_remove_admin(dev);
a1a5ef99 2010 nvme_free_queues(dev, 0);
8ffaadf7 2011 nvme_release_cmb(dev);
9a6b9458 2012 nvme_release_prp_pools(dev);
b00a726a 2013 nvme_dev_unmap(dev);
1673f1f0 2014 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2015}
2016
13880f5b
KB
2017static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2018{
2019 int ret = 0;
2020
2021 if (numvfs == 0) {
2022 if (pci_vfs_assigned(pdev)) {
2023 dev_warn(&pdev->dev,
2024 "Cannot disable SR-IOV VFs while assigned\n");
2025 return -EPERM;
2026 }
2027 pci_disable_sriov(pdev);
2028 return 0;
2029 }
2030
2031 ret = pci_enable_sriov(pdev, numvfs);
2032 return ret ? ret : numvfs;
2033}
2034
671a6018 2035#ifdef CONFIG_PM_SLEEP
cd638946
KB
2036static int nvme_suspend(struct device *dev)
2037{
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
a5cdb68c 2041 nvme_dev_disable(ndev, true);
cd638946
KB
2042 return 0;
2043}
2044
2045static int nvme_resume(struct device *dev)
2046{
2047 struct pci_dev *pdev = to_pci_dev(dev);
2048 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2049
c5f6ce97 2050 nvme_reset(ndev);
9a6b9458 2051 return 0;
cd638946 2052}
671a6018 2053#endif
cd638946
KB
2054
2055static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2056
a0a3408e
KB
2057static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2058 pci_channel_state_t state)
2059{
2060 struct nvme_dev *dev = pci_get_drvdata(pdev);
2061
2062 /*
2063 * A frozen channel requires a reset. When detected, this method will
2064 * shutdown the controller to quiesce. The controller will be restarted
2065 * after the slot reset through driver's slot_reset callback.
2066 */
a0a3408e
KB
2067 switch (state) {
2068 case pci_channel_io_normal:
2069 return PCI_ERS_RESULT_CAN_RECOVER;
2070 case pci_channel_io_frozen:
d011fb31
KB
2071 dev_warn(dev->ctrl.device,
2072 "frozen state error detected, reset controller\n");
a5cdb68c 2073 nvme_dev_disable(dev, false);
a0a3408e
KB
2074 return PCI_ERS_RESULT_NEED_RESET;
2075 case pci_channel_io_perm_failure:
d011fb31
KB
2076 dev_warn(dev->ctrl.device,
2077 "failure state error detected, request disconnect\n");
a0a3408e
KB
2078 return PCI_ERS_RESULT_DISCONNECT;
2079 }
2080 return PCI_ERS_RESULT_NEED_RESET;
2081}
2082
2083static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2084{
2085 struct nvme_dev *dev = pci_get_drvdata(pdev);
2086
1b3c47c1 2087 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2088 pci_restore_state(pdev);
c5f6ce97 2089 nvme_reset(dev);
a0a3408e
KB
2090 return PCI_ERS_RESULT_RECOVERED;
2091}
2092
2093static void nvme_error_resume(struct pci_dev *pdev)
2094{
2095 pci_cleanup_aer_uncorrect_error_status(pdev);
2096}
2097
1d352035 2098static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2099 .error_detected = nvme_error_detected,
b60503ba
MW
2100 .slot_reset = nvme_slot_reset,
2101 .resume = nvme_error_resume,
f0d54a54 2102 .reset_notify = nvme_reset_notify,
b60503ba
MW
2103};
2104
6eb0d698 2105static const struct pci_device_id nvme_id_table[] = {
106198ed 2106 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2107 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2108 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2109 { PCI_VDEVICE(INTEL, 0x0a53),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a54),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2115 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2116 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2117 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2118 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2119 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2120 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2121 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2122 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2123 { 0, }
2124};
2125MODULE_DEVICE_TABLE(pci, nvme_id_table);
2126
2127static struct pci_driver nvme_driver = {
2128 .name = "nvme",
2129 .id_table = nvme_id_table,
2130 .probe = nvme_probe,
8d85fce7 2131 .remove = nvme_remove,
09ece142 2132 .shutdown = nvme_shutdown,
cd638946
KB
2133 .driver = {
2134 .pm = &nvme_dev_pm_ops,
2135 },
13880f5b 2136 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2137 .err_handler = &nvme_err_handler,
2138};
2139
2140static int __init nvme_init(void)
2141{
0ac13140 2142 int result;
1fa6aead 2143
92f7a162 2144 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2145 if (!nvme_workq)
b9afca3e 2146 return -ENOMEM;
9a6b9458 2147
f3db22fe
KB
2148 result = pci_register_driver(&nvme_driver);
2149 if (result)
576d55d6 2150 destroy_workqueue(nvme_workq);
b60503ba
MW
2151 return result;
2152}
2153
2154static void __exit nvme_exit(void)
2155{
2156 pci_unregister_driver(&nvme_driver);
9a6b9458 2157 destroy_workqueue(nvme_workq);
21bd78bc 2158 _nvme_check_size();
b60503ba
MW
2159}
2160
2161MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2162MODULE_LICENSE("GPL");
c78b4713 2163MODULE_VERSION("1.0");
b60503ba
MW
2164module_init(nvme_init);
2165module_exit(nvme_exit);