]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
sd: implement unmapping Write Zeroes
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
b60503ba
MW
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
4cc09e2d 25#include <linux/hdreg.h>
5aff9382 26#include <linux/idr.h>
b60503ba
MW
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kdev_t.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
2d55cd5f 42#include <linux/timer.h>
b60503ba 43#include <linux/types.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
a98e58e5 46#include <linux/sed-opal.h>
797a796a 47
f11bb3e2
CH
48#include "nvme.h"
49
9d43cf64 50#define NVME_Q_DEPTH 1024
d31af0a3 51#define NVME_AQ_DEPTH 256
b60503ba
MW
52#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 54
adf68f21
CH
55/*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
f866fc42 59#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 60
58ffacb5
MW
61static int use_threaded_interrupts;
62module_param(use_threaded_interrupts, int, 0);
63
8ffaadf7
JD
64static bool use_cmb_sqes = true;
65module_param(use_cmb_sqes, bool, 0644);
66MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
9a6b9458 68static struct workqueue_struct *nvme_workq;
1fa6aead 69
1c63dc66
CH
70struct nvme_dev;
71struct nvme_queue;
b3fffdef 72
4cc06521 73static int nvme_reset(struct nvme_dev *dev);
a0fa9647 74static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 75static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 76
1c63dc66
CH
77/*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80struct nvme_dev {
1c63dc66
CH
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
1c63dc66 93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
5c8809e6 95 struct work_struct remove_work;
2d55cd5f 96 struct timer_list watchdog_timer;
77bf25ea 97 struct mutex shutdown_lock;
1c63dc66 98 bool subsystem;
1c63dc66
CH
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
202021c1 103 u32 cmbloc;
1c63dc66 104 struct nvme_ctrl ctrl;
db3cbfff 105 struct completion ioq_wait;
4d115420 106};
1fa6aead 107
1c63dc66
CH
108static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109{
110 return container_of(ctrl, struct nvme_dev, ctrl);
111}
112
b60503ba
MW
113/*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117struct nvme_queue {
118 struct device *q_dmadev;
091b6092 119 struct nvme_dev *dev;
3193f07b 120 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
8ffaadf7 123 struct nvme_command __iomem *sq_cmds_io;
b60503ba 124 volatile struct nvme_completion *cqes;
42483228 125 struct blk_mq_tags **tags;
b60503ba
MW
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
b60503ba
MW
128 u32 __iomem *q_db;
129 u16 q_depth;
6222d172 130 s16 cq_vector;
b60503ba
MW
131 u16 sq_tail;
132 u16 cq_head;
c30341dc 133 u16 qid;
e9539f47
MW
134 u8 cq_phase;
135 u8 cqe_seen;
b60503ba
MW
136};
137
71bd150c
CH
138/*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 141 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
142 * allocated to store the PRP list.
143 */
144struct nvme_iod {
d49187e9 145 struct nvme_request req;
f4800d6d
CH
146 struct nvme_queue *nvmeq;
147 int aborted;
71bd150c 148 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
bf684057 152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
b60503ba
MW
155};
156
157/*
158 * Check we didin't inadvertently grow the command struct
159 */
160static inline void _nvme_check_size(void)
161{
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
174}
175
ac3dd5bd
JA
176/*
177 * Max size of iod being embedded in the request payload
178 */
179#define NVME_INT_PAGES 2
5fd4ce1b 180#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
181
182/*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187static int nvme_npages(unsigned size, struct nvme_dev *dev)
188{
5fd4ce1b
CH
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
ac3dd5bd
JA
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192}
193
f4800d6d
CH
194static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
ac3dd5bd 196{
f4800d6d
CH
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199}
ac3dd5bd 200
f4800d6d
CH
201static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202{
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
205}
206
dca51e78
CH
207static int nvmeq_irq(struct nvme_queue *nvmeq)
208{
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
dca51e78
CH
274static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275{
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279}
280
b60503ba 281/**
adf68f21 282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
e3f879bf
SB
288static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
b60503ba 290{
a4aea562
MB
291 u16 tail = nvmeq->sq_tail;
292
8ffaadf7
JD
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
b60503ba
MW
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
7547881d 300 writel(tail, nvmeq->q_db);
b60503ba 301 nvmeq->sq_tail = tail;
b60503ba
MW
302}
303
f4800d6d 304static __le64 **iod_list(struct request *req)
b60503ba 305{
f4800d6d 306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
308}
309
b131c61d 310static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 311{
f4800d6d 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 313 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 314 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 315
f4800d6d
CH
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
ac3dd5bd
JA
322 }
323
f4800d6d
CH
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
f80ec966 328
bac0000a 329 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
330}
331
f4800d6d 332static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 333{
f4800d6d 334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 335 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 336 int i;
f4800d6d 337 __le64 **list = iod_list(req);
eca18b23
MW
338 dma_addr_t prp_dma = iod->first_dma;
339
340 if (iod->npages == 0)
341 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
342 for (i = 0; i < iod->npages; i++) {
343 __le64 *prp_list = list[i];
344 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
345 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
346 prp_dma = next_prp_dma;
347 }
ac3dd5bd 348
f4800d6d
CH
349 if (iod->sg != iod->inline_sg)
350 kfree(iod->sg);
b4ff9c8d
KB
351}
352
52b68d7e 353#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
354static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
355{
356 if (be32_to_cpu(pi->ref_tag) == v)
357 pi->ref_tag = cpu_to_be32(p);
358}
359
360static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
361{
362 if (be32_to_cpu(pi->ref_tag) == p)
363 pi->ref_tag = cpu_to_be32(v);
364}
365
366/**
367 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
368 *
369 * The virtual start sector is the one that was originally submitted by the
370 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
371 * start sector may be different. Remap protection information to match the
372 * physical LBA on writes, and back to the original seed on reads.
373 *
374 * Type 0 and 3 do not have a ref tag, so no remapping required.
375 */
376static void nvme_dif_remap(struct request *req,
377 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
378{
379 struct nvme_ns *ns = req->rq_disk->private_data;
380 struct bio_integrity_payload *bip;
381 struct t10_pi_tuple *pi;
382 void *p, *pmap;
383 u32 i, nlb, ts, phys, virt;
384
385 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
386 return;
387
388 bip = bio_integrity(req->bio);
389 if (!bip)
390 return;
391
392 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
393
394 p = pmap;
395 virt = bip_get_seed(bip);
396 phys = nvme_block_nr(ns, blk_rq_pos(req));
397 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 398 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
399
400 for (i = 0; i < nlb; i++, virt++, phys++) {
401 pi = (struct t10_pi_tuple *)p;
402 dif_swap(phys, virt, pi);
403 p += ts;
404 }
405 kunmap_atomic(pmap);
406}
52b68d7e
KB
407#else /* CONFIG_BLK_DEV_INTEGRITY */
408static void nvme_dif_remap(struct request *req,
409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410{
411}
412static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
413{
414}
415static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
416{
417}
52b68d7e
KB
418#endif
419
b131c61d 420static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 421{
f4800d6d 422 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 423 struct dma_pool *pool;
b131c61d 424 int length = blk_rq_payload_bytes(req);
eca18b23 425 struct scatterlist *sg = iod->sg;
ff22b54f
MW
426 int dma_len = sg_dma_len(sg);
427 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 428 u32 page_size = dev->ctrl.page_size;
f137e0f1 429 int offset = dma_addr & (page_size - 1);
e025344c 430 __le64 *prp_list;
f4800d6d 431 __le64 **list = iod_list(req);
e025344c 432 dma_addr_t prp_dma;
eca18b23 433 int nprps, i;
ff22b54f 434
1d090624 435 length -= (page_size - offset);
ff22b54f 436 if (length <= 0)
69d2b571 437 return true;
ff22b54f 438
1d090624 439 dma_len -= (page_size - offset);
ff22b54f 440 if (dma_len) {
1d090624 441 dma_addr += (page_size - offset);
ff22b54f
MW
442 } else {
443 sg = sg_next(sg);
444 dma_addr = sg_dma_address(sg);
445 dma_len = sg_dma_len(sg);
446 }
447
1d090624 448 if (length <= page_size) {
edd10d33 449 iod->first_dma = dma_addr;
69d2b571 450 return true;
e025344c
SMM
451 }
452
1d090624 453 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
454 if (nprps <= (256 / 8)) {
455 pool = dev->prp_small_pool;
eca18b23 456 iod->npages = 0;
99802a7a
MW
457 } else {
458 pool = dev->prp_page_pool;
eca18b23 459 iod->npages = 1;
99802a7a
MW
460 }
461
69d2b571 462 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 463 if (!prp_list) {
edd10d33 464 iod->first_dma = dma_addr;
eca18b23 465 iod->npages = -1;
69d2b571 466 return false;
b77954cb 467 }
eca18b23
MW
468 list[0] = prp_list;
469 iod->first_dma = prp_dma;
e025344c
SMM
470 i = 0;
471 for (;;) {
1d090624 472 if (i == page_size >> 3) {
e025344c 473 __le64 *old_prp_list = prp_list;
69d2b571 474 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 475 if (!prp_list)
69d2b571 476 return false;
eca18b23 477 list[iod->npages++] = prp_list;
7523d834
MW
478 prp_list[0] = old_prp_list[i - 1];
479 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
480 i = 1;
e025344c
SMM
481 }
482 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
483 dma_len -= page_size;
484 dma_addr += page_size;
485 length -= page_size;
e025344c
SMM
486 if (length <= 0)
487 break;
488 if (dma_len > 0)
489 continue;
490 BUG_ON(dma_len < 0);
491 sg = sg_next(sg);
492 dma_addr = sg_dma_address(sg);
493 dma_len = sg_dma_len(sg);
ff22b54f
MW
494 }
495
69d2b571 496 return true;
ff22b54f
MW
497}
498
f4800d6d 499static int nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 500 struct nvme_command *cmnd)
d29ec824 501{
f4800d6d 502 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
503 struct request_queue *q = req->q;
504 enum dma_data_direction dma_dir = rq_data_dir(req) ?
505 DMA_TO_DEVICE : DMA_FROM_DEVICE;
506 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 507
f9d03f96 508 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
509 iod->nents = blk_rq_map_sg(q, req, iod->sg);
510 if (!iod->nents)
511 goto out;
d29ec824 512
ba1ca37e 513 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
514 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
515 DMA_ATTR_NO_WARN))
ba1ca37e 516 goto out;
d29ec824 517
b131c61d 518 if (!nvme_setup_prps(dev, req))
ba1ca37e 519 goto out_unmap;
0e5e4f0e 520
ba1ca37e
CH
521 ret = BLK_MQ_RQ_QUEUE_ERROR;
522 if (blk_integrity_rq(req)) {
523 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
524 goto out_unmap;
0e5e4f0e 525
bf684057
CH
526 sg_init_table(&iod->meta_sg, 1);
527 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 528 goto out_unmap;
0e5e4f0e 529
ba1ca37e
CH
530 if (rq_data_dir(req))
531 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 532
bf684057 533 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 534 goto out_unmap;
d29ec824 535 }
00df5cb4 536
eb793e2c
CH
537 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
538 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 539 if (blk_integrity_rq(req))
bf684057 540 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 541 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 542
ba1ca37e
CH
543out_unmap:
544 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
545out:
546 return ret;
00df5cb4
MW
547}
548
f4800d6d 549static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 550{
f4800d6d 551 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
552 enum dma_data_direction dma_dir = rq_data_dir(req) ?
553 DMA_TO_DEVICE : DMA_FROM_DEVICE;
554
555 if (iod->nents) {
556 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
557 if (blk_integrity_rq(req)) {
558 if (!rq_data_dir(req))
559 nvme_dif_remap(req, nvme_dif_complete);
bf684057 560 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 561 }
e19b127f 562 }
e1e5e564 563
f9d03f96 564 nvme_cleanup_cmd(req);
f4800d6d 565 nvme_free_iod(dev, req);
d4f6c3ab 566}
b60503ba 567
d29ec824
CH
568/*
569 * NOTE: ns is NULL when called on the admin queue.
570 */
a4aea562
MB
571static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
572 const struct blk_mq_queue_data *bd)
edd10d33 573{
a4aea562
MB
574 struct nvme_ns *ns = hctx->queue->queuedata;
575 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 576 struct nvme_dev *dev = nvmeq->dev;
a4aea562 577 struct request *req = bd->rq;
ba1ca37e
CH
578 struct nvme_command cmnd;
579 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 580
e1e5e564
KB
581 /*
582 * If formated with metadata, require the block layer provide a buffer
583 * unless this namespace is formated such that the metadata can be
584 * stripped/generated by the controller with PRACT=1.
585 */
d29ec824 586 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364 587 if (!(ns->pi_type && ns->ms == 8) &&
57292b58 588 !blk_rq_is_passthrough(req)) {
eee417b0 589 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
590 return BLK_MQ_RQ_QUEUE_OK;
591 }
592 }
593
f9d03f96 594 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 595 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 596 return ret;
a4aea562 597
b131c61d 598 ret = nvme_init_iod(req, dev);
bac0000a 599 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 600 goto out_free_cmd;
a4aea562 601
f9d03f96 602 if (blk_rq_nr_phys_segments(req))
b131c61d 603 ret = nvme_map_data(dev, req, &cmnd);
a4aea562 604
bac0000a 605 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 606 goto out_cleanup_iod;
a4aea562 607
aae239e1 608 blk_mq_start_request(req);
a4aea562 609
ba1ca37e 610 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 611 if (unlikely(nvmeq->cq_vector < 0)) {
9ef3932e 612 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 613 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 614 goto out_cleanup_iod;
ae1fba20 615 }
ba1ca37e 616 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
617 nvme_process_cq(nvmeq);
618 spin_unlock_irq(&nvmeq->q_lock);
619 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 620out_cleanup_iod:
f4800d6d 621 nvme_free_iod(dev, req);
f9d03f96
CH
622out_free_cmd:
623 nvme_cleanup_cmd(req);
ba1ca37e 624 return ret;
b60503ba 625}
e1e5e564 626
77f02a7a 627static void nvme_pci_complete_rq(struct request *req)
eee417b0 628{
f4800d6d 629 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
e1e5e564 630
77f02a7a
CH
631 nvme_unmap_data(iod->nvmeq->dev, req);
632 nvme_complete_rq(req);
b60503ba
MW
633}
634
d783e0bd
MR
635/* We read the CQE phase first to check if the rest of the entry is valid */
636static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
637 u16 phase)
638{
639 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
640}
641
a0fa9647 642static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 643{
82123460 644 u16 head, phase;
b60503ba 645
b60503ba 646 head = nvmeq->cq_head;
82123460 647 phase = nvmeq->cq_phase;
b60503ba 648
d783e0bd 649 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 650 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 651 struct request *req;
adf68f21 652
b60503ba
MW
653 if (++head == nvmeq->q_depth) {
654 head = 0;
82123460 655 phase = !phase;
b60503ba 656 }
adf68f21 657
a0fa9647
JA
658 if (tag && *tag == cqe.command_id)
659 *tag = -1;
adf68f21 660
aae239e1 661 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 662 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
663 "invalid id %d completed on queue %d\n",
664 cqe.command_id, le16_to_cpu(cqe.sq_id));
665 continue;
666 }
667
adf68f21
CH
668 /*
669 * AEN requests are special as they don't time out and can
670 * survive any kind of queue freeze and often don't respond to
671 * aborts. We don't even bother to allocate a struct request
672 * for them but rather special case them here.
673 */
674 if (unlikely(nvmeq->qid == 0 &&
675 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
676 nvme_complete_async_event(&nvmeq->dev->ctrl,
677 cqe.status, &cqe.result);
adf68f21
CH
678 continue;
679 }
680
eee417b0 681 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
d49187e9 682 nvme_req(req)->result = cqe.result;
d783e0bd 683 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
b60503ba
MW
684 }
685
82123460 686 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 687 return;
b60503ba 688
604e8c8d
KB
689 if (likely(nvmeq->cq_vector >= 0))
690 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 691 nvmeq->cq_head = head;
82123460 692 nvmeq->cq_phase = phase;
b60503ba 693
e9539f47 694 nvmeq->cqe_seen = 1;
a0fa9647
JA
695}
696
697static void nvme_process_cq(struct nvme_queue *nvmeq)
698{
699 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
700}
701
702static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
703{
704 irqreturn_t result;
705 struct nvme_queue *nvmeq = data;
706 spin_lock(&nvmeq->q_lock);
e9539f47
MW
707 nvme_process_cq(nvmeq);
708 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
709 nvmeq->cqe_seen = 0;
58ffacb5
MW
710 spin_unlock(&nvmeq->q_lock);
711 return result;
712}
713
714static irqreturn_t nvme_irq_check(int irq, void *data)
715{
716 struct nvme_queue *nvmeq = data;
d783e0bd
MR
717 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
718 return IRQ_WAKE_THREAD;
719 return IRQ_NONE;
58ffacb5
MW
720}
721
a0fa9647
JA
722static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
723{
724 struct nvme_queue *nvmeq = hctx->driver_data;
725
d783e0bd 726 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
727 spin_lock_irq(&nvmeq->q_lock);
728 __nvme_process_cq(nvmeq, &tag);
729 spin_unlock_irq(&nvmeq->q_lock);
730
731 if (tag == -1)
732 return 1;
733 }
734
735 return 0;
736}
737
f866fc42 738static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 739{
f866fc42 740 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 741 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 742 struct nvme_command c;
b60503ba 743
a4aea562
MB
744 memset(&c, 0, sizeof(c));
745 c.common.opcode = nvme_admin_async_event;
f866fc42 746 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 747
9396dec9 748 spin_lock_irq(&nvmeq->q_lock);
f866fc42 749 __nvme_submit_cmd(nvmeq, &c);
9396dec9 750 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
751}
752
b60503ba 753static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 754{
b60503ba
MW
755 struct nvme_command c;
756
757 memset(&c, 0, sizeof(c));
758 c.delete_queue.opcode = opcode;
759 c.delete_queue.qid = cpu_to_le16(id);
760
1c63dc66 761 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
762}
763
b60503ba
MW
764static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
765 struct nvme_queue *nvmeq)
766{
b60503ba
MW
767 struct nvme_command c;
768 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
769
d29ec824
CH
770 /*
771 * Note: we (ab)use the fact the the prp fields survive if no data
772 * is attached to the request.
773 */
b60503ba
MW
774 memset(&c, 0, sizeof(c));
775 c.create_cq.opcode = nvme_admin_create_cq;
776 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
777 c.create_cq.cqid = cpu_to_le16(qid);
778 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
779 c.create_cq.cq_flags = cpu_to_le16(flags);
780 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
781
1c63dc66 782 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
783}
784
785static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
786 struct nvme_queue *nvmeq)
787{
b60503ba
MW
788 struct nvme_command c;
789 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
790
d29ec824
CH
791 /*
792 * Note: we (ab)use the fact the the prp fields survive if no data
793 * is attached to the request.
794 */
b60503ba
MW
795 memset(&c, 0, sizeof(c));
796 c.create_sq.opcode = nvme_admin_create_sq;
797 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
798 c.create_sq.sqid = cpu_to_le16(qid);
799 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
800 c.create_sq.sq_flags = cpu_to_le16(flags);
801 c.create_sq.cqid = cpu_to_le16(qid);
802
1c63dc66 803 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
804}
805
806static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
807{
808 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
809}
810
811static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
812{
813 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
814}
815
e7a2a87d 816static void abort_endio(struct request *req, int error)
bc5fc7e4 817{
f4800d6d
CH
818 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
819 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 820 u16 status = req->errors;
e44ac588 821
1cb3cce5 822 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 823 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 824 blk_mq_free_request(req);
bc5fc7e4
MW
825}
826
31c7c7d2 827static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 828{
f4800d6d
CH
829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 831 struct nvme_dev *dev = nvmeq->dev;
a4aea562 832 struct request *abort_req;
a4aea562 833 struct nvme_command cmd;
c30341dc 834
31c7c7d2 835 /*
fd634f41
CH
836 * Shutdown immediately if controller times out while starting. The
837 * reset work will see the pci device disabled when it gets the forced
838 * cancellation error. All outstanding requests are completed on
839 * shutdown, so we return BLK_EH_HANDLED.
840 */
bb8d261e 841 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 842 dev_warn(dev->ctrl.device,
fd634f41
CH
843 "I/O %d QID %d timeout, disable controller\n",
844 req->tag, nvmeq->qid);
a5cdb68c 845 nvme_dev_disable(dev, false);
fd634f41
CH
846 req->errors = NVME_SC_CANCELLED;
847 return BLK_EH_HANDLED;
c30341dc
KB
848 }
849
fd634f41
CH
850 /*
851 * Shutdown the controller immediately and schedule a reset if the
852 * command was already aborted once before and still hasn't been
853 * returned to the driver, or if this is the admin queue.
31c7c7d2 854 */
f4800d6d 855 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 856 dev_warn(dev->ctrl.device,
e1569a16
KB
857 "I/O %d QID %d timeout, reset controller\n",
858 req->tag, nvmeq->qid);
a5cdb68c 859 nvme_dev_disable(dev, false);
c5f6ce97 860 nvme_reset(dev);
c30341dc 861
e1569a16
KB
862 /*
863 * Mark the request as handled, since the inline shutdown
864 * forces all outstanding requests to complete.
865 */
866 req->errors = NVME_SC_CANCELLED;
867 return BLK_EH_HANDLED;
c30341dc 868 }
c30341dc 869
e7a2a87d 870 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 871 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 872 return BLK_EH_RESET_TIMER;
6bf25d16 873 }
7bf7d778 874 iod->aborted = 1;
a4aea562 875
c30341dc
KB
876 memset(&cmd, 0, sizeof(cmd));
877 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 878 cmd.abort.cid = req->tag;
c30341dc 879 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 880
1b3c47c1
SG
881 dev_warn(nvmeq->dev->ctrl.device,
882 "I/O %d QID %d timeout, aborting\n",
883 req->tag, nvmeq->qid);
e7a2a87d
CH
884
885 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 886 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
887 if (IS_ERR(abort_req)) {
888 atomic_inc(&dev->ctrl.abort_limit);
889 return BLK_EH_RESET_TIMER;
890 }
891
892 abort_req->timeout = ADMIN_TIMEOUT;
893 abort_req->end_io_data = NULL;
894 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 895
31c7c7d2
CH
896 /*
897 * The aborted req will be completed on receiving the abort req.
898 * We enable the timer again. If hit twice, it'll cause a device reset,
899 * as the device then is in a faulty state.
900 */
901 return BLK_EH_RESET_TIMER;
c30341dc
KB
902}
903
a4aea562
MB
904static void nvme_free_queue(struct nvme_queue *nvmeq)
905{
9e866774
MW
906 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
907 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
908 if (nvmeq->sq_cmds)
909 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
910 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
911 kfree(nvmeq);
912}
913
a1a5ef99 914static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
915{
916 int i;
917
a1a5ef99 918 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 919 struct nvme_queue *nvmeq = dev->queues[i];
22404274 920 dev->queue_count--;
a4aea562 921 dev->queues[i] = NULL;
f435c282 922 nvme_free_queue(nvmeq);
121c7ad4 923 }
22404274
KB
924}
925
4d115420
KB
926/**
927 * nvme_suspend_queue - put queue into suspended state
928 * @nvmeq - queue to suspend
4d115420
KB
929 */
930static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 931{
2b25d981 932 int vector;
b60503ba 933
a09115b2 934 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
935 if (nvmeq->cq_vector == -1) {
936 spin_unlock_irq(&nvmeq->q_lock);
937 return 1;
938 }
dca51e78 939 vector = nvmeq_irq(nvmeq);
42f61420 940 nvmeq->dev->online_queues--;
2b25d981 941 nvmeq->cq_vector = -1;
a09115b2
MW
942 spin_unlock_irq(&nvmeq->q_lock);
943
1c63dc66 944 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 945 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 946
aba2080f 947 free_irq(vector, nvmeq);
b60503ba 948
4d115420
KB
949 return 0;
950}
b60503ba 951
a5cdb68c 952static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 953{
a5cdb68c 954 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
955
956 if (!nvmeq)
957 return;
958 if (nvme_suspend_queue(nvmeq))
959 return;
960
a5cdb68c
KB
961 if (shutdown)
962 nvme_shutdown_ctrl(&dev->ctrl);
963 else
964 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
965 dev->bar + NVME_REG_CAP));
07836e65
KB
966
967 spin_lock_irq(&nvmeq->q_lock);
968 nvme_process_cq(nvmeq);
969 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
970}
971
8ffaadf7
JD
972static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
973 int entry_size)
974{
975 int q_depth = dev->q_depth;
5fd4ce1b
CH
976 unsigned q_size_aligned = roundup(q_depth * entry_size,
977 dev->ctrl.page_size);
8ffaadf7
JD
978
979 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 980 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 981 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 982 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
983
984 /*
985 * Ensure the reduced q_depth is above some threshold where it
986 * would be better to map queues in system memory with the
987 * original depth
988 */
989 if (q_depth < 64)
990 return -ENOMEM;
991 }
992
993 return q_depth;
994}
995
996static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
997 int qid, int depth)
998{
999 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1000 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1001 dev->ctrl.page_size);
8ffaadf7
JD
1002 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1003 nvmeq->sq_cmds_io = dev->cmb + offset;
1004 } else {
1005 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1006 &nvmeq->sq_dma_addr, GFP_KERNEL);
1007 if (!nvmeq->sq_cmds)
1008 return -ENOMEM;
1009 }
1010
1011 return 0;
1012}
1013
b60503ba 1014static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1015 int depth, int node)
b60503ba 1016{
d3af3ecd
SL
1017 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1018 node);
b60503ba
MW
1019 if (!nvmeq)
1020 return NULL;
1021
e75ec752 1022 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1023 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1024 if (!nvmeq->cqes)
1025 goto free_nvmeq;
b60503ba 1026
8ffaadf7 1027 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1028 goto free_cqdma;
1029
e75ec752 1030 nvmeq->q_dmadev = dev->dev;
091b6092 1031 nvmeq->dev = dev;
3193f07b 1032 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1033 dev->ctrl.instance, qid);
b60503ba
MW
1034 spin_lock_init(&nvmeq->q_lock);
1035 nvmeq->cq_head = 0;
82123460 1036 nvmeq->cq_phase = 1;
b80d5ccc 1037 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1038 nvmeq->q_depth = depth;
c30341dc 1039 nvmeq->qid = qid;
758dd7fd 1040 nvmeq->cq_vector = -1;
a4aea562 1041 dev->queues[qid] = nvmeq;
36a7e993
JD
1042 dev->queue_count++;
1043
b60503ba
MW
1044 return nvmeq;
1045
1046 free_cqdma:
e75ec752 1047 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1048 nvmeq->cq_dma_addr);
1049 free_nvmeq:
1050 kfree(nvmeq);
1051 return NULL;
1052}
1053
dca51e78 1054static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1055{
58ffacb5 1056 if (use_threaded_interrupts)
dca51e78
CH
1057 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1058 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1059 else
1060 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1061 nvmeq->irqname, nvmeq);
3001082c
MW
1062}
1063
22404274 1064static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1065{
22404274 1066 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1067
7be50e93 1068 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1069 nvmeq->sq_tail = 0;
1070 nvmeq->cq_head = 0;
1071 nvmeq->cq_phase = 1;
b80d5ccc 1072 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1073 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1074 dev->online_queues++;
7be50e93 1075 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1076}
1077
1078static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1079{
1080 struct nvme_dev *dev = nvmeq->dev;
1081 int result;
3f85d50b 1082
2b25d981 1083 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1084 result = adapter_alloc_cq(dev, qid, nvmeq);
1085 if (result < 0)
22404274 1086 return result;
b60503ba
MW
1087
1088 result = adapter_alloc_sq(dev, qid, nvmeq);
1089 if (result < 0)
1090 goto release_cq;
1091
dca51e78 1092 result = queue_request_irq(nvmeq);
b60503ba
MW
1093 if (result < 0)
1094 goto release_sq;
1095
22404274 1096 nvme_init_queue(nvmeq, qid);
22404274 1097 return result;
b60503ba
MW
1098
1099 release_sq:
1100 adapter_delete_sq(dev, qid);
1101 release_cq:
1102 adapter_delete_cq(dev, qid);
22404274 1103 return result;
b60503ba
MW
1104}
1105
f363b089 1106static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1107 .queue_rq = nvme_queue_rq,
77f02a7a 1108 .complete = nvme_pci_complete_rq,
a4aea562 1109 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1110 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1111 .init_request = nvme_admin_init_request,
1112 .timeout = nvme_timeout,
1113};
1114
f363b089 1115static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1116 .queue_rq = nvme_queue_rq,
77f02a7a 1117 .complete = nvme_pci_complete_rq,
a4aea562
MB
1118 .init_hctx = nvme_init_hctx,
1119 .init_request = nvme_init_request,
dca51e78 1120 .map_queues = nvme_pci_map_queues,
a4aea562 1121 .timeout = nvme_timeout,
a0fa9647 1122 .poll = nvme_poll,
a4aea562
MB
1123};
1124
ea191d2f
KB
1125static void nvme_dev_remove_admin(struct nvme_dev *dev)
1126{
1c63dc66 1127 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1128 /*
1129 * If the controller was reset during removal, it's possible
1130 * user requests may be waiting on a stopped queue. Start the
1131 * queue to flush these to completion.
1132 */
1133 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1134 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1135 blk_mq_free_tag_set(&dev->admin_tagset);
1136 }
1137}
1138
a4aea562
MB
1139static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1140{
1c63dc66 1141 if (!dev->ctrl.admin_q) {
a4aea562
MB
1142 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1143 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1144
1145 /*
1146 * Subtract one to leave an empty queue entry for 'Full Queue'
1147 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1148 */
1149 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1150 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1151 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1152 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1153 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1154 dev->admin_tagset.driver_data = dev;
1155
1156 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1157 return -ENOMEM;
1158
1c63dc66
CH
1159 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1160 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1161 blk_mq_free_tag_set(&dev->admin_tagset);
1162 return -ENOMEM;
1163 }
1c63dc66 1164 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1165 nvme_dev_remove_admin(dev);
1c63dc66 1166 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1167 return -ENODEV;
1168 }
0fb59cbc 1169 } else
25646264 1170 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1171
1172 return 0;
1173}
1174
8d85fce7 1175static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1176{
ba47e386 1177 int result;
b60503ba 1178 u32 aqa;
7a67cbea 1179 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1180 struct nvme_queue *nvmeq;
1181
8ef2074d 1182 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1183 NVME_CAP_NSSRC(cap) : 0;
1184
7a67cbea
CH
1185 if (dev->subsystem &&
1186 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1187 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1188
5fd4ce1b 1189 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1190 if (result < 0)
1191 return result;
b60503ba 1192
a4aea562 1193 nvmeq = dev->queues[0];
cd638946 1194 if (!nvmeq) {
d3af3ecd
SL
1195 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1196 dev_to_node(dev->dev));
cd638946
KB
1197 if (!nvmeq)
1198 return -ENOMEM;
cd638946 1199 }
b60503ba
MW
1200
1201 aqa = nvmeq->q_depth - 1;
1202 aqa |= aqa << 16;
1203
7a67cbea
CH
1204 writel(aqa, dev->bar + NVME_REG_AQA);
1205 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1206 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1207
5fd4ce1b 1208 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1209 if (result)
d4875622 1210 return result;
a4aea562 1211
2b25d981 1212 nvmeq->cq_vector = 0;
dca51e78 1213 result = queue_request_irq(nvmeq);
758dd7fd
JD
1214 if (result) {
1215 nvmeq->cq_vector = -1;
d4875622 1216 return result;
758dd7fd 1217 }
025c557a 1218
b60503ba
MW
1219 return result;
1220}
1221
c875a709
GP
1222static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1223{
1224
1225 /* If true, indicates loss of adapter communication, possibly by a
1226 * NVMe Subsystem reset.
1227 */
1228 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1229
1230 /* If there is a reset ongoing, we shouldn't reset again. */
1231 if (work_busy(&dev->reset_work))
1232 return false;
1233
1234 /* We shouldn't reset unless the controller is on fatal error state
1235 * _or_ if we lost the communication with it.
1236 */
1237 if (!(csts & NVME_CSTS_CFS) && !nssro)
1238 return false;
1239
1240 /* If PCI error recovery process is happening, we cannot reset or
1241 * the recovery mechanism will surely fail.
1242 */
1243 if (pci_channel_offline(to_pci_dev(dev->dev)))
1244 return false;
1245
1246 return true;
1247}
1248
d2a61918
AL
1249static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1250{
1251 /* Read a config register to help see what died. */
1252 u16 pci_status;
1253 int result;
1254
1255 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1256 &pci_status);
1257 if (result == PCIBIOS_SUCCESSFUL)
1258 dev_warn(dev->dev,
1259 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1260 csts, pci_status);
1261 else
1262 dev_warn(dev->dev,
1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1264 csts, result);
1265}
1266
2d55cd5f 1267static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1268{
2d55cd5f
CH
1269 struct nvme_dev *dev = (struct nvme_dev *)data;
1270 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1271
c875a709
GP
1272 /* Skip controllers under certain specific conditions. */
1273 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1274 if (!nvme_reset(dev))
d2a61918 1275 nvme_warn_reset(dev, csts);
2d55cd5f 1276 return;
1fa6aead 1277 }
2d55cd5f
CH
1278
1279 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1280}
1281
749941f2 1282static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1283{
949928c1 1284 unsigned i, max;
749941f2 1285 int ret = 0;
42f61420 1286
749941f2 1287 for (i = dev->queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1288 /* vector == qid - 1, match nvme_create_queue */
1289 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1290 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1291 ret = -ENOMEM;
42f61420 1292 break;
749941f2
CH
1293 }
1294 }
42f61420 1295
949928c1
KB
1296 max = min(dev->max_qid, dev->queue_count - 1);
1297 for (i = dev->online_queues; i <= max; i++) {
749941f2 1298 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1299 if (ret)
42f61420 1300 break;
27e8166c 1301 }
749941f2
CH
1302
1303 /*
1304 * Ignore failing Create SQ/CQ commands, we can continue with less
1305 * than the desired aount of queues, and even a controller without
1306 * I/O queues an still be used to issue admin commands. This might
1307 * be useful to upgrade a buggy firmware for example.
1308 */
1309 return ret >= 0 ? 0 : ret;
b60503ba
MW
1310}
1311
202021c1
SB
1312static ssize_t nvme_cmb_show(struct device *dev,
1313 struct device_attribute *attr,
1314 char *buf)
1315{
1316 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1317
c965809c 1318 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1319 ndev->cmbloc, ndev->cmbsz);
1320}
1321static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1322
8ffaadf7
JD
1323static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1324{
1325 u64 szu, size, offset;
8ffaadf7
JD
1326 resource_size_t bar_size;
1327 struct pci_dev *pdev = to_pci_dev(dev->dev);
1328 void __iomem *cmb;
1329 dma_addr_t dma_addr;
1330
7a67cbea 1331 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1332 if (!(NVME_CMB_SZ(dev->cmbsz)))
1333 return NULL;
202021c1 1334 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1335
202021c1
SB
1336 if (!use_cmb_sqes)
1337 return NULL;
8ffaadf7
JD
1338
1339 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1340 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1341 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1342 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1343
1344 if (offset > bar_size)
1345 return NULL;
1346
1347 /*
1348 * Controllers may support a CMB size larger than their BAR,
1349 * for example, due to being behind a bridge. Reduce the CMB to
1350 * the reported size of the BAR
1351 */
1352 if (size > bar_size - offset)
1353 size = bar_size - offset;
1354
202021c1 1355 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1356 cmb = ioremap_wc(dma_addr, size);
1357 if (!cmb)
1358 return NULL;
1359
1360 dev->cmb_dma_addr = dma_addr;
1361 dev->cmb_size = size;
1362 return cmb;
1363}
1364
1365static inline void nvme_release_cmb(struct nvme_dev *dev)
1366{
1367 if (dev->cmb) {
1368 iounmap(dev->cmb);
1369 dev->cmb = NULL;
1370 }
1371}
1372
9d713c2b
KB
1373static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1374{
b80d5ccc 1375 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1376}
1377
8d85fce7 1378static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1379{
a4aea562 1380 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1381 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1382 int result, nr_io_queues, size;
b60503ba 1383
2800b8e7 1384 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1385 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1386 if (result < 0)
1b23484b 1387 return result;
9a0be7ab 1388
f5fa90dc 1389 if (nr_io_queues == 0)
a5229050 1390 return 0;
b60503ba 1391
8ffaadf7
JD
1392 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1393 result = nvme_cmb_qdepth(dev, nr_io_queues,
1394 sizeof(struct nvme_command));
1395 if (result > 0)
1396 dev->q_depth = result;
1397 else
1398 nvme_release_cmb(dev);
1399 }
1400
9d713c2b
KB
1401 size = db_bar_size(dev, nr_io_queues);
1402 if (size > 8192) {
f1938f6e 1403 iounmap(dev->bar);
9d713c2b
KB
1404 do {
1405 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1406 if (dev->bar)
1407 break;
1408 if (!--nr_io_queues)
1409 return -ENOMEM;
1410 size = db_bar_size(dev, nr_io_queues);
1411 } while (1);
7a67cbea 1412 dev->dbs = dev->bar + 4096;
5a92e700 1413 adminq->q_db = dev->dbs;
f1938f6e
MW
1414 }
1415
9d713c2b 1416 /* Deregister the admin queue's interrupt */
dca51e78 1417 free_irq(pci_irq_vector(pdev, 0), adminq);
9d713c2b 1418
e32efbfc
JA
1419 /*
1420 * If we enable msix early due to not intx, disable it again before
1421 * setting up the full range we need.
1422 */
dca51e78
CH
1423 pci_free_irq_vectors(pdev);
1424 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1425 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1426 if (nr_io_queues <= 0)
1427 return -EIO;
1428 dev->max_qid = nr_io_queues;
fa08a396 1429
063a8096
MW
1430 /*
1431 * Should investigate if there's a performance win from allocating
1432 * more queues than interrupt vectors; it might allow the submission
1433 * path to scale better, even if the receive path is limited by the
1434 * number of interrupts.
1435 */
063a8096 1436
dca51e78 1437 result = queue_request_irq(adminq);
758dd7fd
JD
1438 if (result) {
1439 adminq->cq_vector = -1;
d4875622 1440 return result;
758dd7fd 1441 }
749941f2 1442 return nvme_create_io_queues(dev);
b60503ba
MW
1443}
1444
db3cbfff 1445static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1446{
db3cbfff 1447 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1448
db3cbfff
KB
1449 blk_mq_free_request(req);
1450 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1451}
1452
db3cbfff 1453static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1454{
db3cbfff 1455 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1456
db3cbfff
KB
1457 if (!error) {
1458 unsigned long flags;
1459
2e39e0f6
ML
1460 /*
1461 * We might be called with the AQ q_lock held
1462 * and the I/O queue q_lock should always
1463 * nest inside the AQ one.
1464 */
1465 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1466 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1467 nvme_process_cq(nvmeq);
1468 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1469 }
db3cbfff
KB
1470
1471 nvme_del_queue_end(req, error);
a5768aa8
KB
1472}
1473
db3cbfff 1474static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1475{
db3cbfff
KB
1476 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1477 struct request *req;
1478 struct nvme_command cmd;
bda4e0fb 1479
db3cbfff
KB
1480 memset(&cmd, 0, sizeof(cmd));
1481 cmd.delete_queue.opcode = opcode;
1482 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1483
eb71f435 1484 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1485 if (IS_ERR(req))
1486 return PTR_ERR(req);
bda4e0fb 1487
db3cbfff
KB
1488 req->timeout = ADMIN_TIMEOUT;
1489 req->end_io_data = nvmeq;
1490
1491 blk_execute_rq_nowait(q, NULL, req, false,
1492 opcode == nvme_admin_delete_cq ?
1493 nvme_del_cq_end : nvme_del_queue_end);
1494 return 0;
bda4e0fb
KB
1495}
1496
70659060 1497static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1498{
70659060 1499 int pass;
db3cbfff
KB
1500 unsigned long timeout;
1501 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1502
db3cbfff 1503 for (pass = 0; pass < 2; pass++) {
014a0d60 1504 int sent = 0, i = queues;
db3cbfff
KB
1505
1506 reinit_completion(&dev->ioq_wait);
1507 retry:
1508 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1509 for (; i > 0; i--, sent++)
1510 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1511 break;
c21377f8 1512
db3cbfff
KB
1513 while (sent--) {
1514 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1515 if (timeout == 0)
1516 return;
1517 if (i)
1518 goto retry;
1519 }
1520 opcode = nvme_admin_delete_cq;
1521 }
a5768aa8
KB
1522}
1523
422ef0c7
MW
1524/*
1525 * Return: error value if an error occurred setting up the queues or calling
1526 * Identify Device. 0 if these succeeded, even if adding some of the
1527 * namespaces failed. At the moment, these failures are silent. TBD which
1528 * failures should be reported.
1529 */
8d85fce7 1530static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1531{
5bae7f73 1532 if (!dev->ctrl.tagset) {
ffe7704d
KB
1533 dev->tagset.ops = &nvme_mq_ops;
1534 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1535 dev->tagset.timeout = NVME_IO_TIMEOUT;
1536 dev->tagset.numa_node = dev_to_node(dev->dev);
1537 dev->tagset.queue_depth =
a4aea562 1538 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1539 dev->tagset.cmd_size = nvme_cmd_size(dev);
1540 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1541 dev->tagset.driver_data = dev;
b60503ba 1542
ffe7704d
KB
1543 if (blk_mq_alloc_tag_set(&dev->tagset))
1544 return 0;
5bae7f73 1545 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1546 } else {
1547 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1548
1549 /* Free previously allocated queues that are no longer usable */
1550 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1551 }
949928c1 1552
e1e5e564 1553 return 0;
b60503ba
MW
1554}
1555
b00a726a 1556static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1557{
42f61420 1558 u64 cap;
b00a726a 1559 int result = -ENOMEM;
e75ec752 1560 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1561
1562 if (pci_enable_device_mem(pdev))
1563 return result;
1564
0877cb0d 1565 pci_set_master(pdev);
0877cb0d 1566
e75ec752
CH
1567 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1568 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1569 goto disable;
0877cb0d 1570
7a67cbea 1571 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1572 result = -ENODEV;
b00a726a 1573 goto disable;
0e53d180 1574 }
e32efbfc
JA
1575
1576 /*
a5229050
KB
1577 * Some devices and/or platforms don't advertise or work with INTx
1578 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1579 * adjust this later.
e32efbfc 1580 */
dca51e78
CH
1581 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1582 if (result < 0)
1583 return result;
e32efbfc 1584
7a67cbea
CH
1585 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1586
42f61420
KB
1587 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1588 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1589 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1590
1591 /*
1592 * Temporary fix for the Apple controller found in the MacBook8,1 and
1593 * some MacBook7,1 to avoid controller resets and data loss.
1594 */
1595 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1596 dev->q_depth = 2;
1597 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1598 "queue depth=%u to work around controller resets\n",
1599 dev->q_depth);
1600 }
1601
202021c1
SB
1602 /*
1603 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1604 * populate sysfs if a CMB is implemented. Note that we add the
1605 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1606 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1607 * NULL as final argument to sysfs_add_file_to_group.
1608 */
1609
8ef2074d 1610 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1611 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1612
202021c1
SB
1613 if (dev->cmbsz) {
1614 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1615 &dev_attr_cmb.attr, NULL))
1616 dev_warn(dev->dev,
1617 "failed to add sysfs attribute for CMB\n");
1618 }
1619 }
1620
a0a3408e
KB
1621 pci_enable_pcie_error_reporting(pdev);
1622 pci_save_state(pdev);
0877cb0d
KB
1623 return 0;
1624
1625 disable:
0877cb0d
KB
1626 pci_disable_device(pdev);
1627 return result;
1628}
1629
1630static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1631{
1632 if (dev->bar)
1633 iounmap(dev->bar);
a1f447b3 1634 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1635}
1636
1637static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1638{
e75ec752
CH
1639 struct pci_dev *pdev = to_pci_dev(dev->dev);
1640
dca51e78 1641 pci_free_irq_vectors(pdev);
0877cb0d 1642
a0a3408e
KB
1643 if (pci_is_enabled(pdev)) {
1644 pci_disable_pcie_error_reporting(pdev);
e75ec752 1645 pci_disable_device(pdev);
4d115420 1646 }
4d115420
KB
1647}
1648
a5cdb68c 1649static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1650{
70659060 1651 int i, queues;
302ad8cc
KB
1652 bool dead = true;
1653 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1654
2d55cd5f 1655 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1656
77bf25ea 1657 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1658 if (pci_is_enabled(pdev)) {
1659 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1660
1661 if (dev->ctrl.state == NVME_CTRL_LIVE)
1662 nvme_start_freeze(&dev->ctrl);
1663 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1664 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1665 }
c21377f8 1666
302ad8cc
KB
1667 /*
1668 * Give the controller a chance to complete all entered requests if
1669 * doing a safe shutdown.
1670 */
1671 if (!dead && shutdown)
1672 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1673 nvme_stop_queues(&dev->ctrl);
1674
70659060 1675 queues = dev->online_queues - 1;
c21377f8
GKB
1676 for (i = dev->queue_count - 1; i > 0; i--)
1677 nvme_suspend_queue(dev->queues[i]);
1678
302ad8cc 1679 if (dead) {
82469c59
GKB
1680 /* A device might become IO incapable very soon during
1681 * probe, before the admin queue is configured. Thus,
1682 * queue_count can be 0 here.
1683 */
1684 if (dev->queue_count)
1685 nvme_suspend_queue(dev->queues[0]);
4d115420 1686 } else {
70659060 1687 nvme_disable_io_queues(dev, queues);
a5cdb68c 1688 nvme_disable_admin_queue(dev, shutdown);
4d115420 1689 }
b00a726a 1690 nvme_pci_disable(dev);
07836e65 1691
e1958e65
ML
1692 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1693 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
1694
1695 /*
1696 * The driver will not be starting up queues again if shutting down so
1697 * must flush all entered requests to their failed completion to avoid
1698 * deadlocking blk-mq hot-cpu notifier.
1699 */
1700 if (shutdown)
1701 nvme_start_queues(&dev->ctrl);
77bf25ea 1702 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1703}
1704
091b6092
MW
1705static int nvme_setup_prp_pools(struct nvme_dev *dev)
1706{
e75ec752 1707 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1708 PAGE_SIZE, PAGE_SIZE, 0);
1709 if (!dev->prp_page_pool)
1710 return -ENOMEM;
1711
99802a7a 1712 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1713 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1714 256, 256, 0);
1715 if (!dev->prp_small_pool) {
1716 dma_pool_destroy(dev->prp_page_pool);
1717 return -ENOMEM;
1718 }
091b6092
MW
1719 return 0;
1720}
1721
1722static void nvme_release_prp_pools(struct nvme_dev *dev)
1723{
1724 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1725 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1726}
1727
1673f1f0 1728static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1729{
1673f1f0 1730 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1731
e75ec752 1732 put_device(dev->dev);
4af0e21c
KB
1733 if (dev->tagset.tags)
1734 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1735 if (dev->ctrl.admin_q)
1736 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1737 kfree(dev->queues);
e286bcfc 1738 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
1739 kfree(dev);
1740}
1741
f58944e2
KB
1742static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1743{
237045fc 1744 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1745
1746 kref_get(&dev->ctrl.kref);
69d9a99c 1747 nvme_dev_disable(dev, false);
f58944e2
KB
1748 if (!schedule_work(&dev->remove_work))
1749 nvme_put_ctrl(&dev->ctrl);
1750}
1751
fd634f41 1752static void nvme_reset_work(struct work_struct *work)
5e82e952 1753{
fd634f41 1754 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
a98e58e5 1755 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 1756 int result = -ENODEV;
5e82e952 1757
bb8d261e 1758 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1759 goto out;
5e82e952 1760
fd634f41
CH
1761 /*
1762 * If we're called to reset a live controller first shut it down before
1763 * moving on.
1764 */
b00a726a 1765 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1766 nvme_dev_disable(dev, false);
5e82e952 1767
bb8d261e 1768 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1769 goto out;
1770
b00a726a 1771 result = nvme_pci_enable(dev);
f0b50732 1772 if (result)
3cf519b5 1773 goto out;
f0b50732
KB
1774
1775 result = nvme_configure_admin_queue(dev);
1776 if (result)
f58944e2 1777 goto out;
f0b50732 1778
a4aea562 1779 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1780 result = nvme_alloc_admin_tags(dev);
1781 if (result)
f58944e2 1782 goto out;
b9afca3e 1783
ce4541f4
CH
1784 result = nvme_init_identify(&dev->ctrl);
1785 if (result)
f58944e2 1786 goto out;
ce4541f4 1787
e286bcfc
SB
1788 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1789 if (!dev->ctrl.opal_dev)
1790 dev->ctrl.opal_dev =
1791 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1792 else if (was_suspend)
1793 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1794 } else {
1795 free_opal_dev(dev->ctrl.opal_dev);
1796 dev->ctrl.opal_dev = NULL;
4f1244c8 1797 }
a98e58e5 1798
f0b50732 1799 result = nvme_setup_io_queues(dev);
badc34d4 1800 if (result)
f58944e2 1801 goto out;
f0b50732 1802
21f033f7
KB
1803 /*
1804 * A controller that can not execute IO typically requires user
1805 * intervention to correct. For such degraded controllers, the driver
1806 * should not submit commands the user did not request, so skip
1807 * registering for asynchronous event notification on this condition.
1808 */
f866fc42
CH
1809 if (dev->online_queues > 1)
1810 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1811
2d55cd5f 1812 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1813
2659e57b
CH
1814 /*
1815 * Keep the controller around but remove all namespaces if we don't have
1816 * any working I/O queue.
1817 */
3cf519b5 1818 if (dev->online_queues < 2) {
1b3c47c1 1819 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1820 nvme_kill_queues(&dev->ctrl);
5bae7f73 1821 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1822 } else {
25646264 1823 nvme_start_queues(&dev->ctrl);
302ad8cc 1824 nvme_wait_freeze(&dev->ctrl);
3cf519b5 1825 nvme_dev_add(dev);
302ad8cc 1826 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
1827 }
1828
bb8d261e
CH
1829 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1830 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1831 goto out;
1832 }
92911a55
CH
1833
1834 if (dev->online_queues > 1)
5955be21 1835 nvme_queue_scan(&dev->ctrl);
3cf519b5 1836 return;
f0b50732 1837
3cf519b5 1838 out:
f58944e2 1839 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1840}
1841
5c8809e6 1842static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1843{
5c8809e6 1844 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1845 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1846
69d9a99c 1847 nvme_kill_queues(&dev->ctrl);
9a6b9458 1848 if (pci_get_drvdata(pdev))
921920ab 1849 device_release_driver(&pdev->dev);
1673f1f0 1850 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1851}
1852
4cc06521 1853static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1854{
1c63dc66 1855 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1856 return -ENODEV;
c5f6ce97
KB
1857 if (work_busy(&dev->reset_work))
1858 return -ENODEV;
846cc05f
CH
1859 if (!queue_work(nvme_workq, &dev->reset_work))
1860 return -EBUSY;
846cc05f 1861 return 0;
9a6b9458
KB
1862}
1863
1c63dc66 1864static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1865{
1c63dc66 1866 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1867 return 0;
9ca97374
TH
1868}
1869
5fd4ce1b 1870static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1871{
5fd4ce1b
CH
1872 writel(val, to_nvme_dev(ctrl)->bar + off);
1873 return 0;
1874}
4cc06521 1875
7fd8930f
CH
1876static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1877{
1878 *val = readq(to_nvme_dev(ctrl)->bar + off);
1879 return 0;
4cc06521
KB
1880}
1881
f3ca80fc
CH
1882static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1883{
c5f6ce97
KB
1884 struct nvme_dev *dev = to_nvme_dev(ctrl);
1885 int ret = nvme_reset(dev);
1886
1887 if (!ret)
1888 flush_work(&dev->reset_work);
1889 return ret;
4cc06521 1890}
f3ca80fc 1891
1c63dc66 1892static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1893 .name = "pcie",
e439bb12 1894 .module = THIS_MODULE,
1c63dc66 1895 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1896 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1897 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1898 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1899 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 1900 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1901};
4cc06521 1902
b00a726a
KB
1903static int nvme_dev_map(struct nvme_dev *dev)
1904{
b00a726a
KB
1905 struct pci_dev *pdev = to_pci_dev(dev->dev);
1906
a1f447b3 1907 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1908 return -ENODEV;
1909
1910 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1911 if (!dev->bar)
1912 goto release;
1913
9fa196e7 1914 return 0;
b00a726a 1915 release:
9fa196e7
MG
1916 pci_release_mem_regions(pdev);
1917 return -ENODEV;
b00a726a
KB
1918}
1919
8d85fce7 1920static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1921{
a4aea562 1922 int node, result = -ENOMEM;
b60503ba
MW
1923 struct nvme_dev *dev;
1924
a4aea562
MB
1925 node = dev_to_node(&pdev->dev);
1926 if (node == NUMA_NO_NODE)
2fa84351 1927 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1928
1929 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1930 if (!dev)
1931 return -ENOMEM;
a4aea562
MB
1932 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1933 GFP_KERNEL, node);
b60503ba
MW
1934 if (!dev->queues)
1935 goto free;
1936
e75ec752 1937 dev->dev = get_device(&pdev->dev);
9a6b9458 1938 pci_set_drvdata(pdev, dev);
1c63dc66 1939
b00a726a
KB
1940 result = nvme_dev_map(dev);
1941 if (result)
1942 goto free;
1943
f3ca80fc 1944 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1945 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1946 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1947 (unsigned long)dev);
77bf25ea 1948 mutex_init(&dev->shutdown_lock);
db3cbfff 1949 init_completion(&dev->ioq_wait);
b60503ba 1950
091b6092
MW
1951 result = nvme_setup_prp_pools(dev);
1952 if (result)
a96d4f5c 1953 goto put_pci;
4cc06521 1954
f3ca80fc
CH
1955 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1956 id->driver_data);
4cc06521 1957 if (result)
2e1d8448 1958 goto release_pools;
740216fc 1959
1b3c47c1
SG
1960 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1961
92f7a162 1962 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1963 return 0;
1964
0877cb0d 1965 release_pools:
091b6092 1966 nvme_release_prp_pools(dev);
a96d4f5c 1967 put_pci:
e75ec752 1968 put_device(dev->dev);
b00a726a 1969 nvme_dev_unmap(dev);
b60503ba
MW
1970 free:
1971 kfree(dev->queues);
b60503ba
MW
1972 kfree(dev);
1973 return result;
1974}
1975
f0d54a54
KB
1976static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1977{
a6739479 1978 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1979
a6739479 1980 if (prepare)
a5cdb68c 1981 nvme_dev_disable(dev, false);
a6739479 1982 else
c5f6ce97 1983 nvme_reset(dev);
f0d54a54
KB
1984}
1985
09ece142
KB
1986static void nvme_shutdown(struct pci_dev *pdev)
1987{
1988 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1989 nvme_dev_disable(dev, true);
09ece142
KB
1990}
1991
f58944e2
KB
1992/*
1993 * The driver's remove may be called on a device in a partially initialized
1994 * state. This function must not have any dependencies on the device state in
1995 * order to proceed.
1996 */
8d85fce7 1997static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1998{
1999 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2000
bb8d261e
CH
2001 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2002
9a6b9458 2003 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2004
6db28eda 2005 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2006 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2007 nvme_dev_disable(dev, false);
2008 }
0ff9d4e1 2009
9bf2b972 2010 flush_work(&dev->reset_work);
53029b04 2011 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2012 nvme_dev_disable(dev, true);
a4aea562 2013 nvme_dev_remove_admin(dev);
a1a5ef99 2014 nvme_free_queues(dev, 0);
8ffaadf7 2015 nvme_release_cmb(dev);
9a6b9458 2016 nvme_release_prp_pools(dev);
b00a726a 2017 nvme_dev_unmap(dev);
1673f1f0 2018 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2019}
2020
13880f5b
KB
2021static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2022{
2023 int ret = 0;
2024
2025 if (numvfs == 0) {
2026 if (pci_vfs_assigned(pdev)) {
2027 dev_warn(&pdev->dev,
2028 "Cannot disable SR-IOV VFs while assigned\n");
2029 return -EPERM;
2030 }
2031 pci_disable_sriov(pdev);
2032 return 0;
2033 }
2034
2035 ret = pci_enable_sriov(pdev, numvfs);
2036 return ret ? ret : numvfs;
2037}
2038
671a6018 2039#ifdef CONFIG_PM_SLEEP
cd638946
KB
2040static int nvme_suspend(struct device *dev)
2041{
2042 struct pci_dev *pdev = to_pci_dev(dev);
2043 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2044
a5cdb68c 2045 nvme_dev_disable(ndev, true);
cd638946
KB
2046 return 0;
2047}
2048
2049static int nvme_resume(struct device *dev)
2050{
2051 struct pci_dev *pdev = to_pci_dev(dev);
2052 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2053
c5f6ce97 2054 nvme_reset(ndev);
9a6b9458 2055 return 0;
cd638946 2056}
671a6018 2057#endif
cd638946
KB
2058
2059static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2060
a0a3408e
KB
2061static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2062 pci_channel_state_t state)
2063{
2064 struct nvme_dev *dev = pci_get_drvdata(pdev);
2065
2066 /*
2067 * A frozen channel requires a reset. When detected, this method will
2068 * shutdown the controller to quiesce. The controller will be restarted
2069 * after the slot reset through driver's slot_reset callback.
2070 */
a0a3408e
KB
2071 switch (state) {
2072 case pci_channel_io_normal:
2073 return PCI_ERS_RESULT_CAN_RECOVER;
2074 case pci_channel_io_frozen:
d011fb31
KB
2075 dev_warn(dev->ctrl.device,
2076 "frozen state error detected, reset controller\n");
a5cdb68c 2077 nvme_dev_disable(dev, false);
a0a3408e
KB
2078 return PCI_ERS_RESULT_NEED_RESET;
2079 case pci_channel_io_perm_failure:
d011fb31
KB
2080 dev_warn(dev->ctrl.device,
2081 "failure state error detected, request disconnect\n");
a0a3408e
KB
2082 return PCI_ERS_RESULT_DISCONNECT;
2083 }
2084 return PCI_ERS_RESULT_NEED_RESET;
2085}
2086
2087static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2088{
2089 struct nvme_dev *dev = pci_get_drvdata(pdev);
2090
1b3c47c1 2091 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2092 pci_restore_state(pdev);
c5f6ce97 2093 nvme_reset(dev);
a0a3408e
KB
2094 return PCI_ERS_RESULT_RECOVERED;
2095}
2096
2097static void nvme_error_resume(struct pci_dev *pdev)
2098{
2099 pci_cleanup_aer_uncorrect_error_status(pdev);
2100}
2101
1d352035 2102static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2103 .error_detected = nvme_error_detected,
b60503ba
MW
2104 .slot_reset = nvme_slot_reset,
2105 .resume = nvme_error_resume,
f0d54a54 2106 .reset_notify = nvme_reset_notify,
b60503ba
MW
2107};
2108
6eb0d698 2109static const struct pci_device_id nvme_id_table[] = {
106198ed 2110 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2111 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2112 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2113 { PCI_VDEVICE(INTEL, 0x0a53),
2114 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2115 NVME_QUIRK_DISCARD_ZEROES, },
2116 { PCI_VDEVICE(INTEL, 0x0a54),
2117 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2118 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2119 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2120 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2121 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2122 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2123 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2124 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2125 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2126 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2127 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2128 { 0, }
2129};
2130MODULE_DEVICE_TABLE(pci, nvme_id_table);
2131
2132static struct pci_driver nvme_driver = {
2133 .name = "nvme",
2134 .id_table = nvme_id_table,
2135 .probe = nvme_probe,
8d85fce7 2136 .remove = nvme_remove,
09ece142 2137 .shutdown = nvme_shutdown,
cd638946
KB
2138 .driver = {
2139 .pm = &nvme_dev_pm_ops,
2140 },
13880f5b 2141 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2142 .err_handler = &nvme_err_handler,
2143};
2144
2145static int __init nvme_init(void)
2146{
0ac13140 2147 int result;
1fa6aead 2148
92f7a162 2149 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2150 if (!nvme_workq)
b9afca3e 2151 return -ENOMEM;
9a6b9458 2152
f3db22fe
KB
2153 result = pci_register_driver(&nvme_driver);
2154 if (result)
576d55d6 2155 destroy_workqueue(nvme_workq);
b60503ba
MW
2156 return result;
2157}
2158
2159static void __exit nvme_exit(void)
2160{
2161 pci_unregister_driver(&nvme_driver);
9a6b9458 2162 destroy_workqueue(nvme_workq);
21bd78bc 2163 _nvme_check_size();
b60503ba
MW
2164}
2165
2166MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2167MODULE_LICENSE("GPL");
c78b4713 2168MODULE_VERSION("1.0");
b60503ba
MW
2169module_init(nvme_init);
2170module_exit(nvme_exit);