]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
block: introduce new block status code type
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
ff5350a8 22#include <linux/dmi.h>
b60503ba
MW
23#include <linux/errno.h>
24#include <linux/fs.h>
25#include <linux/genhd.h>
4cc09e2d 26#include <linux/hdreg.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kernel.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
77bf25ea 36#include <linux/mutex.h>
b60503ba 37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
c3bfe717 39#include <linux/ptrace.h>
b60503ba
MW
40#include <linux/sched.h>
41#include <linux/slab.h>
e1e5e564 42#include <linux/t10-pi.h>
2d55cd5f 43#include <linux/timer.h>
b60503ba 44#include <linux/types.h>
2f8e2c87 45#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 46#include <asm/unaligned.h>
a98e58e5 47#include <linux/sed-opal.h>
797a796a 48
f11bb3e2
CH
49#include "nvme.h"
50
9d43cf64 51#define NVME_Q_DEPTH 1024
d31af0a3 52#define NVME_AQ_DEPTH 256
b60503ba
MW
53#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 55
adf68f21
CH
56/*
57 * We handle AEN commands ourselves and don't even let the
58 * block layer know about them.
59 */
f866fc42 60#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 61
58ffacb5
MW
62static int use_threaded_interrupts;
63module_param(use_threaded_interrupts, int, 0);
64
8ffaadf7
JD
65static bool use_cmb_sqes = true;
66module_param(use_cmb_sqes, bool, 0644);
67MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
9a6b9458 69static struct workqueue_struct *nvme_workq;
1fa6aead 70
1c63dc66
CH
71struct nvme_dev;
72struct nvme_queue;
b3fffdef 73
4cc06521 74static int nvme_reset(struct nvme_dev *dev);
a0fa9647 75static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 76static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 77
1c63dc66
CH
78/*
79 * Represents an NVM Express device. Each nvme_dev is a PCI function.
80 */
81struct nvme_dev {
1c63dc66
CH
82 struct nvme_queue **queues;
83 struct blk_mq_tag_set tagset;
84 struct blk_mq_tag_set admin_tagset;
85 u32 __iomem *dbs;
86 struct device *dev;
87 struct dma_pool *prp_page_pool;
88 struct dma_pool *prp_small_pool;
89 unsigned queue_count;
90 unsigned online_queues;
91 unsigned max_qid;
92 int q_depth;
93 u32 db_stride;
1c63dc66 94 void __iomem *bar;
1c63dc66 95 struct work_struct reset_work;
5c8809e6 96 struct work_struct remove_work;
2d55cd5f 97 struct timer_list watchdog_timer;
77bf25ea 98 struct mutex shutdown_lock;
1c63dc66 99 bool subsystem;
1c63dc66
CH
100 void __iomem *cmb;
101 dma_addr_t cmb_dma_addr;
102 u64 cmb_size;
103 u32 cmbsz;
202021c1 104 u32 cmbloc;
1c63dc66 105 struct nvme_ctrl ctrl;
db3cbfff 106 struct completion ioq_wait;
f9f38e33
HK
107 u32 *dbbuf_dbs;
108 dma_addr_t dbbuf_dbs_dma_addr;
109 u32 *dbbuf_eis;
110 dma_addr_t dbbuf_eis_dma_addr;
4d115420 111};
1fa6aead 112
f9f38e33
HK
113static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114{
115 return qid * 2 * stride;
116}
117
118static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119{
120 return (qid * 2 + 1) * stride;
121}
122
1c63dc66
CH
123static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124{
125 return container_of(ctrl, struct nvme_dev, ctrl);
126}
127
b60503ba
MW
128/*
129 * An NVM Express queue. Each device has at least two (one for admin
130 * commands and one for I/O commands).
131 */
132struct nvme_queue {
133 struct device *q_dmadev;
091b6092 134 struct nvme_dev *dev;
b60503ba
MW
135 spinlock_t q_lock;
136 struct nvme_command *sq_cmds;
8ffaadf7 137 struct nvme_command __iomem *sq_cmds_io;
b60503ba 138 volatile struct nvme_completion *cqes;
42483228 139 struct blk_mq_tags **tags;
b60503ba
MW
140 dma_addr_t sq_dma_addr;
141 dma_addr_t cq_dma_addr;
b60503ba
MW
142 u32 __iomem *q_db;
143 u16 q_depth;
6222d172 144 s16 cq_vector;
b60503ba
MW
145 u16 sq_tail;
146 u16 cq_head;
c30341dc 147 u16 qid;
e9539f47
MW
148 u8 cq_phase;
149 u8 cqe_seen;
f9f38e33
HK
150 u32 *dbbuf_sq_db;
151 u32 *dbbuf_cq_db;
152 u32 *dbbuf_sq_ei;
153 u32 *dbbuf_cq_ei;
b60503ba
MW
154};
155
71bd150c
CH
156/*
157 * The nvme_iod describes the data in an I/O, including the list of PRP
158 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 159 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
160 * allocated to store the PRP list.
161 */
162struct nvme_iod {
d49187e9 163 struct nvme_request req;
f4800d6d
CH
164 struct nvme_queue *nvmeq;
165 int aborted;
71bd150c 166 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
167 int nents; /* Used in scatterlist */
168 int length; /* Of data, in bytes */
169 dma_addr_t first_dma;
bf684057 170 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
171 struct scatterlist *sg;
172 struct scatterlist inline_sg[0];
b60503ba
MW
173};
174
175/*
176 * Check we didin't inadvertently grow the command struct
177 */
178static inline void _nvme_check_size(void)
179{
180 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
181 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 185 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 186 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
187 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
189 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
190 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 191 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
192 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
193}
194
195static inline unsigned int nvme_dbbuf_size(u32 stride)
196{
197 return ((num_possible_cpus() + 1) * 8 * stride);
198}
199
200static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
201{
202 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
203
204 if (dev->dbbuf_dbs)
205 return 0;
206
207 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
208 &dev->dbbuf_dbs_dma_addr,
209 GFP_KERNEL);
210 if (!dev->dbbuf_dbs)
211 return -ENOMEM;
212 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
213 &dev->dbbuf_eis_dma_addr,
214 GFP_KERNEL);
215 if (!dev->dbbuf_eis) {
216 dma_free_coherent(dev->dev, mem_size,
217 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
218 dev->dbbuf_dbs = NULL;
219 return -ENOMEM;
220 }
221
222 return 0;
223}
224
225static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
226{
227 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
228
229 if (dev->dbbuf_dbs) {
230 dma_free_coherent(dev->dev, mem_size,
231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232 dev->dbbuf_dbs = NULL;
233 }
234 if (dev->dbbuf_eis) {
235 dma_free_coherent(dev->dev, mem_size,
236 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
237 dev->dbbuf_eis = NULL;
238 }
239}
240
241static void nvme_dbbuf_init(struct nvme_dev *dev,
242 struct nvme_queue *nvmeq, int qid)
243{
244 if (!dev->dbbuf_dbs || !qid)
245 return;
246
247 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
248 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
249 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
250 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
251}
252
253static void nvme_dbbuf_set(struct nvme_dev *dev)
254{
255 struct nvme_command c;
256
257 if (!dev->dbbuf_dbs)
258 return;
259
260 memset(&c, 0, sizeof(c));
261 c.dbbuf.opcode = nvme_admin_dbbuf;
262 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
263 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
264
265 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 266 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
267 /* Free memory and continue on */
268 nvme_dbbuf_dma_free(dev);
269 }
270}
271
272static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
273{
274 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
275}
276
277/* Update dbbuf and return true if an MMIO is required */
278static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
279 volatile u32 *dbbuf_ei)
280{
281 if (dbbuf_db) {
282 u16 old_value;
283
284 /*
285 * Ensure that the queue is written before updating
286 * the doorbell in memory
287 */
288 wmb();
289
290 old_value = *dbbuf_db;
291 *dbbuf_db = value;
292
293 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
294 return false;
295 }
296
297 return true;
b60503ba
MW
298}
299
ac3dd5bd
JA
300/*
301 * Max size of iod being embedded in the request payload
302 */
303#define NVME_INT_PAGES 2
5fd4ce1b 304#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
305
306/*
307 * Will slightly overestimate the number of pages needed. This is OK
308 * as it only leads to a small amount of wasted memory for the lifetime of
309 * the I/O.
310 */
311static int nvme_npages(unsigned size, struct nvme_dev *dev)
312{
5fd4ce1b
CH
313 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
314 dev->ctrl.page_size);
ac3dd5bd
JA
315 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
316}
317
f4800d6d
CH
318static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
319 unsigned int size, unsigned int nseg)
ac3dd5bd 320{
f4800d6d
CH
321 return sizeof(__le64 *) * nvme_npages(size, dev) +
322 sizeof(struct scatterlist) * nseg;
323}
ac3dd5bd 324
f4800d6d
CH
325static unsigned int nvme_cmd_size(struct nvme_dev *dev)
326{
327 return sizeof(struct nvme_iod) +
328 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
329}
330
a4aea562
MB
331static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
e85248e5 333{
a4aea562
MB
334 struct nvme_dev *dev = data;
335 struct nvme_queue *nvmeq = dev->queues[0];
336
42483228
KB
337 WARN_ON(hctx_idx != 0);
338 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
339 WARN_ON(nvmeq->tags);
340
a4aea562 341 hctx->driver_data = nvmeq;
42483228 342 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 343 return 0;
e85248e5
MW
344}
345
4af0e21c
KB
346static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
347{
348 struct nvme_queue *nvmeq = hctx->driver_data;
349
350 nvmeq->tags = NULL;
351}
352
d6296d39
CH
353static int nvme_admin_init_request(struct blk_mq_tag_set *set,
354 struct request *req, unsigned int hctx_idx,
355 unsigned int numa_node)
22404274 356{
d6296d39 357 struct nvme_dev *dev = set->driver_data;
f4800d6d 358 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
359 struct nvme_queue *nvmeq = dev->queues[0];
360
361 BUG_ON(!nvmeq);
f4800d6d 362 iod->nvmeq = nvmeq;
a4aea562 363 return 0;
22404274
KB
364}
365
a4aea562
MB
366static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
367 unsigned int hctx_idx)
b60503ba 368{
a4aea562 369 struct nvme_dev *dev = data;
42483228 370 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 371
42483228
KB
372 if (!nvmeq->tags)
373 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 374
42483228 375 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
376 hctx->driver_data = nvmeq;
377 return 0;
b60503ba
MW
378}
379
d6296d39
CH
380static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
381 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 382{
d6296d39 383 struct nvme_dev *dev = set->driver_data;
f4800d6d 384 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
385 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
386
387 BUG_ON(!nvmeq);
f4800d6d 388 iod->nvmeq = nvmeq;
a4aea562
MB
389 return 0;
390}
391
dca51e78
CH
392static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
393{
394 struct nvme_dev *dev = set->driver_data;
395
396 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
397}
398
b60503ba 399/**
adf68f21 400 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
401 * @nvmeq: The queue to use
402 * @cmd: The command to send
403 *
404 * Safe to use from interrupt context
405 */
e3f879bf
SB
406static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
407 struct nvme_command *cmd)
b60503ba 408{
a4aea562
MB
409 u16 tail = nvmeq->sq_tail;
410
8ffaadf7
JD
411 if (nvmeq->sq_cmds_io)
412 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
413 else
414 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
415
b60503ba
MW
416 if (++tail == nvmeq->q_depth)
417 tail = 0;
f9f38e33
HK
418 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
419 nvmeq->dbbuf_sq_ei))
420 writel(tail, nvmeq->q_db);
b60503ba 421 nvmeq->sq_tail = tail;
b60503ba
MW
422}
423
f4800d6d 424static __le64 **iod_list(struct request *req)
b60503ba 425{
f4800d6d 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 427 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
428}
429
b131c61d 430static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 431{
f4800d6d 432 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 433 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 434 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 435
f4800d6d
CH
436 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
437 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
438 if (!iod->sg)
439 return BLK_MQ_RQ_QUEUE_BUSY;
440 } else {
441 iod->sg = iod->inline_sg;
ac3dd5bd
JA
442 }
443
f4800d6d
CH
444 iod->aborted = 0;
445 iod->npages = -1;
446 iod->nents = 0;
447 iod->length = size;
f80ec966 448
bac0000a 449 return BLK_MQ_RQ_QUEUE_OK;
ac3dd5bd
JA
450}
451
f4800d6d 452static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 453{
f4800d6d 454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 455 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 456 int i;
f4800d6d 457 __le64 **list = iod_list(req);
eca18b23
MW
458 dma_addr_t prp_dma = iod->first_dma;
459
460 if (iod->npages == 0)
461 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462 for (i = 0; i < iod->npages; i++) {
463 __le64 *prp_list = list[i];
464 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466 prp_dma = next_prp_dma;
467 }
ac3dd5bd 468
f4800d6d
CH
469 if (iod->sg != iod->inline_sg)
470 kfree(iod->sg);
b4ff9c8d
KB
471}
472
52b68d7e 473#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
474static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
475{
476 if (be32_to_cpu(pi->ref_tag) == v)
477 pi->ref_tag = cpu_to_be32(p);
478}
479
480static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
481{
482 if (be32_to_cpu(pi->ref_tag) == p)
483 pi->ref_tag = cpu_to_be32(v);
484}
485
486/**
487 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
488 *
489 * The virtual start sector is the one that was originally submitted by the
490 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
491 * start sector may be different. Remap protection information to match the
492 * physical LBA on writes, and back to the original seed on reads.
493 *
494 * Type 0 and 3 do not have a ref tag, so no remapping required.
495 */
496static void nvme_dif_remap(struct request *req,
497 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
498{
499 struct nvme_ns *ns = req->rq_disk->private_data;
500 struct bio_integrity_payload *bip;
501 struct t10_pi_tuple *pi;
502 void *p, *pmap;
503 u32 i, nlb, ts, phys, virt;
504
505 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
506 return;
507
508 bip = bio_integrity(req->bio);
509 if (!bip)
510 return;
511
512 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
513
514 p = pmap;
515 virt = bip_get_seed(bip);
516 phys = nvme_block_nr(ns, blk_rq_pos(req));
517 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 518 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
519
520 for (i = 0; i < nlb; i++, virt++, phys++) {
521 pi = (struct t10_pi_tuple *)p;
522 dif_swap(phys, virt, pi);
523 p += ts;
524 }
525 kunmap_atomic(pmap);
526}
52b68d7e
KB
527#else /* CONFIG_BLK_DEV_INTEGRITY */
528static void nvme_dif_remap(struct request *req,
529 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
530{
531}
532static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
533{
534}
535static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
536{
537}
52b68d7e
KB
538#endif
539
b131c61d 540static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 541{
f4800d6d 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 543 struct dma_pool *pool;
b131c61d 544 int length = blk_rq_payload_bytes(req);
eca18b23 545 struct scatterlist *sg = iod->sg;
ff22b54f
MW
546 int dma_len = sg_dma_len(sg);
547 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 548 u32 page_size = dev->ctrl.page_size;
f137e0f1 549 int offset = dma_addr & (page_size - 1);
e025344c 550 __le64 *prp_list;
f4800d6d 551 __le64 **list = iod_list(req);
e025344c 552 dma_addr_t prp_dma;
eca18b23 553 int nprps, i;
ff22b54f 554
1d090624 555 length -= (page_size - offset);
ff22b54f 556 if (length <= 0)
69d2b571 557 return true;
ff22b54f 558
1d090624 559 dma_len -= (page_size - offset);
ff22b54f 560 if (dma_len) {
1d090624 561 dma_addr += (page_size - offset);
ff22b54f
MW
562 } else {
563 sg = sg_next(sg);
564 dma_addr = sg_dma_address(sg);
565 dma_len = sg_dma_len(sg);
566 }
567
1d090624 568 if (length <= page_size) {
edd10d33 569 iod->first_dma = dma_addr;
69d2b571 570 return true;
e025344c
SMM
571 }
572
1d090624 573 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
574 if (nprps <= (256 / 8)) {
575 pool = dev->prp_small_pool;
eca18b23 576 iod->npages = 0;
99802a7a
MW
577 } else {
578 pool = dev->prp_page_pool;
eca18b23 579 iod->npages = 1;
99802a7a
MW
580 }
581
69d2b571 582 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 583 if (!prp_list) {
edd10d33 584 iod->first_dma = dma_addr;
eca18b23 585 iod->npages = -1;
69d2b571 586 return false;
b77954cb 587 }
eca18b23
MW
588 list[0] = prp_list;
589 iod->first_dma = prp_dma;
e025344c
SMM
590 i = 0;
591 for (;;) {
1d090624 592 if (i == page_size >> 3) {
e025344c 593 __le64 *old_prp_list = prp_list;
69d2b571 594 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 595 if (!prp_list)
69d2b571 596 return false;
eca18b23 597 list[iod->npages++] = prp_list;
7523d834
MW
598 prp_list[0] = old_prp_list[i - 1];
599 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
600 i = 1;
e025344c
SMM
601 }
602 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
603 dma_len -= page_size;
604 dma_addr += page_size;
605 length -= page_size;
e025344c
SMM
606 if (length <= 0)
607 break;
608 if (dma_len > 0)
609 continue;
610 BUG_ON(dma_len < 0);
611 sg = sg_next(sg);
612 dma_addr = sg_dma_address(sg);
613 dma_len = sg_dma_len(sg);
ff22b54f
MW
614 }
615
69d2b571 616 return true;
ff22b54f
MW
617}
618
f4800d6d 619static int nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 620 struct nvme_command *cmnd)
d29ec824 621{
f4800d6d 622 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
623 struct request_queue *q = req->q;
624 enum dma_data_direction dma_dir = rq_data_dir(req) ?
625 DMA_TO_DEVICE : DMA_FROM_DEVICE;
626 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 627
f9d03f96 628 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
629 iod->nents = blk_rq_map_sg(q, req, iod->sg);
630 if (!iod->nents)
631 goto out;
d29ec824 632
ba1ca37e 633 ret = BLK_MQ_RQ_QUEUE_BUSY;
2b6b535d
MFO
634 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
635 DMA_ATTR_NO_WARN))
ba1ca37e 636 goto out;
d29ec824 637
b131c61d 638 if (!nvme_setup_prps(dev, req))
ba1ca37e 639 goto out_unmap;
0e5e4f0e 640
ba1ca37e
CH
641 ret = BLK_MQ_RQ_QUEUE_ERROR;
642 if (blk_integrity_rq(req)) {
643 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
644 goto out_unmap;
0e5e4f0e 645
bf684057
CH
646 sg_init_table(&iod->meta_sg, 1);
647 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 648 goto out_unmap;
0e5e4f0e 649
ba1ca37e
CH
650 if (rq_data_dir(req))
651 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 652
bf684057 653 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 654 goto out_unmap;
d29ec824 655 }
00df5cb4 656
eb793e2c
CH
657 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
658 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 659 if (blk_integrity_rq(req))
bf684057 660 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 661 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 662
ba1ca37e
CH
663out_unmap:
664 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
665out:
666 return ret;
00df5cb4
MW
667}
668
f4800d6d 669static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 670{
f4800d6d 671 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
672 enum dma_data_direction dma_dir = rq_data_dir(req) ?
673 DMA_TO_DEVICE : DMA_FROM_DEVICE;
674
675 if (iod->nents) {
676 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
677 if (blk_integrity_rq(req)) {
678 if (!rq_data_dir(req))
679 nvme_dif_remap(req, nvme_dif_complete);
bf684057 680 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 681 }
e19b127f 682 }
e1e5e564 683
f9d03f96 684 nvme_cleanup_cmd(req);
f4800d6d 685 nvme_free_iod(dev, req);
d4f6c3ab 686}
b60503ba 687
d29ec824
CH
688/*
689 * NOTE: ns is NULL when called on the admin queue.
690 */
a4aea562
MB
691static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
692 const struct blk_mq_queue_data *bd)
edd10d33 693{
a4aea562
MB
694 struct nvme_ns *ns = hctx->queue->queuedata;
695 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 696 struct nvme_dev *dev = nvmeq->dev;
a4aea562 697 struct request *req = bd->rq;
ba1ca37e
CH
698 struct nvme_command cmnd;
699 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 700
e1e5e564
KB
701 /*
702 * If formated with metadata, require the block layer provide a buffer
703 * unless this namespace is formated such that the metadata can be
704 * stripped/generated by the controller with PRACT=1.
705 */
d29ec824 706 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364 707 if (!(ns->pi_type && ns->ms == 8) &&
57292b58 708 !blk_rq_is_passthrough(req)) {
2a842aca 709 blk_mq_end_request(req, BLK_STS_NOTSUPP);
e1e5e564
KB
710 return BLK_MQ_RQ_QUEUE_OK;
711 }
712 }
713
f9d03f96 714 ret = nvme_setup_cmd(ns, req, &cmnd);
bac0000a 715 if (ret != BLK_MQ_RQ_QUEUE_OK)
f4800d6d 716 return ret;
a4aea562 717
b131c61d 718 ret = nvme_init_iod(req, dev);
bac0000a 719 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 720 goto out_free_cmd;
a4aea562 721
f9d03f96 722 if (blk_rq_nr_phys_segments(req))
b131c61d 723 ret = nvme_map_data(dev, req, &cmnd);
a4aea562 724
bac0000a 725 if (ret != BLK_MQ_RQ_QUEUE_OK)
f9d03f96 726 goto out_cleanup_iod;
a4aea562 727
aae239e1 728 blk_mq_start_request(req);
a4aea562 729
ba1ca37e 730 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 731 if (unlikely(nvmeq->cq_vector < 0)) {
9ef3932e 732 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20 733 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 734 goto out_cleanup_iod;
ae1fba20 735 }
ba1ca37e 736 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
737 nvme_process_cq(nvmeq);
738 spin_unlock_irq(&nvmeq->q_lock);
739 return BLK_MQ_RQ_QUEUE_OK;
f9d03f96 740out_cleanup_iod:
f4800d6d 741 nvme_free_iod(dev, req);
f9d03f96
CH
742out_free_cmd:
743 nvme_cleanup_cmd(req);
ba1ca37e 744 return ret;
b60503ba 745}
e1e5e564 746
77f02a7a 747static void nvme_pci_complete_rq(struct request *req)
eee417b0 748{
f4800d6d 749 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 750
77f02a7a
CH
751 nvme_unmap_data(iod->nvmeq->dev, req);
752 nvme_complete_rq(req);
b60503ba
MW
753}
754
d783e0bd
MR
755/* We read the CQE phase first to check if the rest of the entry is valid */
756static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
757 u16 phase)
758{
759 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
760}
761
a0fa9647 762static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 763{
82123460 764 u16 head, phase;
b60503ba 765
b60503ba 766 head = nvmeq->cq_head;
82123460 767 phase = nvmeq->cq_phase;
b60503ba 768
d783e0bd 769 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 770 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 771 struct request *req;
adf68f21 772
b60503ba
MW
773 if (++head == nvmeq->q_depth) {
774 head = 0;
82123460 775 phase = !phase;
b60503ba 776 }
adf68f21 777
a0fa9647
JA
778 if (tag && *tag == cqe.command_id)
779 *tag = -1;
adf68f21 780
aae239e1 781 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 782 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
783 "invalid id %d completed on queue %d\n",
784 cqe.command_id, le16_to_cpu(cqe.sq_id));
785 continue;
786 }
787
adf68f21
CH
788 /*
789 * AEN requests are special as they don't time out and can
790 * survive any kind of queue freeze and often don't respond to
791 * aborts. We don't even bother to allocate a struct request
792 * for them but rather special case them here.
793 */
794 if (unlikely(nvmeq->qid == 0 &&
795 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
796 nvme_complete_async_event(&nvmeq->dev->ctrl,
797 cqe.status, &cqe.result);
adf68f21
CH
798 continue;
799 }
800
eee417b0 801 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
27fa9bc5 802 nvme_end_request(req, cqe.status, cqe.result);
b60503ba
MW
803 }
804
82123460 805 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 806 return;
b60503ba 807
604e8c8d 808 if (likely(nvmeq->cq_vector >= 0))
f9f38e33
HK
809 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
810 nvmeq->dbbuf_cq_ei))
811 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 812 nvmeq->cq_head = head;
82123460 813 nvmeq->cq_phase = phase;
b60503ba 814
e9539f47 815 nvmeq->cqe_seen = 1;
a0fa9647
JA
816}
817
818static void nvme_process_cq(struct nvme_queue *nvmeq)
819{
820 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
821}
822
823static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
824{
825 irqreturn_t result;
826 struct nvme_queue *nvmeq = data;
827 spin_lock(&nvmeq->q_lock);
e9539f47
MW
828 nvme_process_cq(nvmeq);
829 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
830 nvmeq->cqe_seen = 0;
58ffacb5
MW
831 spin_unlock(&nvmeq->q_lock);
832 return result;
833}
834
835static irqreturn_t nvme_irq_check(int irq, void *data)
836{
837 struct nvme_queue *nvmeq = data;
d783e0bd
MR
838 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
839 return IRQ_WAKE_THREAD;
840 return IRQ_NONE;
58ffacb5
MW
841}
842
7776db1c 843static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 844{
d783e0bd 845 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
846 spin_lock_irq(&nvmeq->q_lock);
847 __nvme_process_cq(nvmeq, &tag);
848 spin_unlock_irq(&nvmeq->q_lock);
849
850 if (tag == -1)
851 return 1;
852 }
853
854 return 0;
855}
856
7776db1c
KB
857static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
858{
859 struct nvme_queue *nvmeq = hctx->driver_data;
860
861 return __nvme_poll(nvmeq, tag);
862}
863
f866fc42 864static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 865{
f866fc42 866 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 867 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 868 struct nvme_command c;
b60503ba 869
a4aea562
MB
870 memset(&c, 0, sizeof(c));
871 c.common.opcode = nvme_admin_async_event;
f866fc42 872 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 873
9396dec9 874 spin_lock_irq(&nvmeq->q_lock);
f866fc42 875 __nvme_submit_cmd(nvmeq, &c);
9396dec9 876 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
877}
878
b60503ba 879static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 880{
b60503ba
MW
881 struct nvme_command c;
882
883 memset(&c, 0, sizeof(c));
884 c.delete_queue.opcode = opcode;
885 c.delete_queue.qid = cpu_to_le16(id);
886
1c63dc66 887 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
888}
889
b60503ba
MW
890static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
891 struct nvme_queue *nvmeq)
892{
b60503ba
MW
893 struct nvme_command c;
894 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
895
d29ec824
CH
896 /*
897 * Note: we (ab)use the fact the the prp fields survive if no data
898 * is attached to the request.
899 */
b60503ba
MW
900 memset(&c, 0, sizeof(c));
901 c.create_cq.opcode = nvme_admin_create_cq;
902 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
903 c.create_cq.cqid = cpu_to_le16(qid);
904 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
905 c.create_cq.cq_flags = cpu_to_le16(flags);
906 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
907
1c63dc66 908 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
909}
910
911static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
912 struct nvme_queue *nvmeq)
913{
b60503ba 914 struct nvme_command c;
81c1cd98 915 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 916
d29ec824
CH
917 /*
918 * Note: we (ab)use the fact the the prp fields survive if no data
919 * is attached to the request.
920 */
b60503ba
MW
921 memset(&c, 0, sizeof(c));
922 c.create_sq.opcode = nvme_admin_create_sq;
923 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
924 c.create_sq.sqid = cpu_to_le16(qid);
925 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
926 c.create_sq.sq_flags = cpu_to_le16(flags);
927 c.create_sq.cqid = cpu_to_le16(qid);
928
1c63dc66 929 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
930}
931
932static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
933{
934 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
935}
936
937static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
938{
939 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
940}
941
2a842aca 942static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 943{
f4800d6d
CH
944 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
945 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 946
27fa9bc5
CH
947 dev_warn(nvmeq->dev->ctrl.device,
948 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 949 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 950 blk_mq_free_request(req);
bc5fc7e4
MW
951}
952
31c7c7d2 953static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 954{
f4800d6d
CH
955 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
956 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 957 struct nvme_dev *dev = nvmeq->dev;
a4aea562 958 struct request *abort_req;
a4aea562 959 struct nvme_command cmd;
c30341dc 960
7776db1c
KB
961 /*
962 * Did we miss an interrupt?
963 */
964 if (__nvme_poll(nvmeq, req->tag)) {
965 dev_warn(dev->ctrl.device,
966 "I/O %d QID %d timeout, completion polled\n",
967 req->tag, nvmeq->qid);
968 return BLK_EH_HANDLED;
969 }
970
31c7c7d2 971 /*
fd634f41
CH
972 * Shutdown immediately if controller times out while starting. The
973 * reset work will see the pci device disabled when it gets the forced
974 * cancellation error. All outstanding requests are completed on
975 * shutdown, so we return BLK_EH_HANDLED.
976 */
bb8d261e 977 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 978 dev_warn(dev->ctrl.device,
fd634f41
CH
979 "I/O %d QID %d timeout, disable controller\n",
980 req->tag, nvmeq->qid);
a5cdb68c 981 nvme_dev_disable(dev, false);
27fa9bc5 982 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 983 return BLK_EH_HANDLED;
c30341dc
KB
984 }
985
fd634f41
CH
986 /*
987 * Shutdown the controller immediately and schedule a reset if the
988 * command was already aborted once before and still hasn't been
989 * returned to the driver, or if this is the admin queue.
31c7c7d2 990 */
f4800d6d 991 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 992 dev_warn(dev->ctrl.device,
e1569a16
KB
993 "I/O %d QID %d timeout, reset controller\n",
994 req->tag, nvmeq->qid);
a5cdb68c 995 nvme_dev_disable(dev, false);
c5f6ce97 996 nvme_reset(dev);
c30341dc 997
e1569a16
KB
998 /*
999 * Mark the request as handled, since the inline shutdown
1000 * forces all outstanding requests to complete.
1001 */
27fa9bc5 1002 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1003 return BLK_EH_HANDLED;
c30341dc 1004 }
c30341dc 1005
e7a2a87d 1006 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1007 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1008 return BLK_EH_RESET_TIMER;
6bf25d16 1009 }
7bf7d778 1010 iod->aborted = 1;
a4aea562 1011
c30341dc
KB
1012 memset(&cmd, 0, sizeof(cmd));
1013 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1014 cmd.abort.cid = req->tag;
c30341dc 1015 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1016
1b3c47c1
SG
1017 dev_warn(nvmeq->dev->ctrl.device,
1018 "I/O %d QID %d timeout, aborting\n",
1019 req->tag, nvmeq->qid);
e7a2a87d
CH
1020
1021 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1022 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1023 if (IS_ERR(abort_req)) {
1024 atomic_inc(&dev->ctrl.abort_limit);
1025 return BLK_EH_RESET_TIMER;
1026 }
1027
1028 abort_req->timeout = ADMIN_TIMEOUT;
1029 abort_req->end_io_data = NULL;
1030 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1031
31c7c7d2
CH
1032 /*
1033 * The aborted req will be completed on receiving the abort req.
1034 * We enable the timer again. If hit twice, it'll cause a device reset,
1035 * as the device then is in a faulty state.
1036 */
1037 return BLK_EH_RESET_TIMER;
c30341dc
KB
1038}
1039
a4aea562
MB
1040static void nvme_free_queue(struct nvme_queue *nvmeq)
1041{
9e866774
MW
1042 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1043 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1044 if (nvmeq->sq_cmds)
1045 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1046 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1047 kfree(nvmeq);
1048}
1049
a1a5ef99 1050static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1051{
1052 int i;
1053
a1a5ef99 1054 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1055 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1056 dev->queue_count--;
a4aea562 1057 dev->queues[i] = NULL;
f435c282 1058 nvme_free_queue(nvmeq);
121c7ad4 1059 }
22404274
KB
1060}
1061
4d115420
KB
1062/**
1063 * nvme_suspend_queue - put queue into suspended state
1064 * @nvmeq - queue to suspend
4d115420
KB
1065 */
1066static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1067{
2b25d981 1068 int vector;
b60503ba 1069
a09115b2 1070 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1071 if (nvmeq->cq_vector == -1) {
1072 spin_unlock_irq(&nvmeq->q_lock);
1073 return 1;
1074 }
0ff199cb 1075 vector = nvmeq->cq_vector;
42f61420 1076 nvmeq->dev->online_queues--;
2b25d981 1077 nvmeq->cq_vector = -1;
a09115b2
MW
1078 spin_unlock_irq(&nvmeq->q_lock);
1079
1c63dc66 1080 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1081 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1082
0ff199cb 1083 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1084
4d115420
KB
1085 return 0;
1086}
b60503ba 1087
a5cdb68c 1088static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1089{
a5cdb68c 1090 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1091
1092 if (!nvmeq)
1093 return;
1094 if (nvme_suspend_queue(nvmeq))
1095 return;
1096
a5cdb68c
KB
1097 if (shutdown)
1098 nvme_shutdown_ctrl(&dev->ctrl);
1099 else
1100 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1101 dev->bar + NVME_REG_CAP));
07836e65
KB
1102
1103 spin_lock_irq(&nvmeq->q_lock);
1104 nvme_process_cq(nvmeq);
1105 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1106}
1107
8ffaadf7
JD
1108static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1109 int entry_size)
1110{
1111 int q_depth = dev->q_depth;
5fd4ce1b
CH
1112 unsigned q_size_aligned = roundup(q_depth * entry_size,
1113 dev->ctrl.page_size);
8ffaadf7
JD
1114
1115 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1116 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1117 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1118 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1119
1120 /*
1121 * Ensure the reduced q_depth is above some threshold where it
1122 * would be better to map queues in system memory with the
1123 * original depth
1124 */
1125 if (q_depth < 64)
1126 return -ENOMEM;
1127 }
1128
1129 return q_depth;
1130}
1131
1132static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1133 int qid, int depth)
1134{
1135 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1136 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1137 dev->ctrl.page_size);
8ffaadf7
JD
1138 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1139 nvmeq->sq_cmds_io = dev->cmb + offset;
1140 } else {
1141 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1142 &nvmeq->sq_dma_addr, GFP_KERNEL);
1143 if (!nvmeq->sq_cmds)
1144 return -ENOMEM;
1145 }
1146
1147 return 0;
1148}
1149
b60503ba 1150static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1151 int depth, int node)
b60503ba 1152{
d3af3ecd
SL
1153 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1154 node);
b60503ba
MW
1155 if (!nvmeq)
1156 return NULL;
1157
e75ec752 1158 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1159 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1160 if (!nvmeq->cqes)
1161 goto free_nvmeq;
b60503ba 1162
8ffaadf7 1163 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1164 goto free_cqdma;
1165
e75ec752 1166 nvmeq->q_dmadev = dev->dev;
091b6092 1167 nvmeq->dev = dev;
b60503ba
MW
1168 spin_lock_init(&nvmeq->q_lock);
1169 nvmeq->cq_head = 0;
82123460 1170 nvmeq->cq_phase = 1;
b80d5ccc 1171 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1172 nvmeq->q_depth = depth;
c30341dc 1173 nvmeq->qid = qid;
758dd7fd 1174 nvmeq->cq_vector = -1;
a4aea562 1175 dev->queues[qid] = nvmeq;
36a7e993
JD
1176 dev->queue_count++;
1177
b60503ba
MW
1178 return nvmeq;
1179
1180 free_cqdma:
e75ec752 1181 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1182 nvmeq->cq_dma_addr);
1183 free_nvmeq:
1184 kfree(nvmeq);
1185 return NULL;
1186}
1187
dca51e78 1188static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1189{
0ff199cb
CH
1190 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1191 int nr = nvmeq->dev->ctrl.instance;
1192
1193 if (use_threaded_interrupts) {
1194 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1195 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1196 } else {
1197 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1198 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1199 }
3001082c
MW
1200}
1201
22404274 1202static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1203{
22404274 1204 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1205
7be50e93 1206 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1207 nvmeq->sq_tail = 0;
1208 nvmeq->cq_head = 0;
1209 nvmeq->cq_phase = 1;
b80d5ccc 1210 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1211 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1212 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1213 dev->online_queues++;
7be50e93 1214 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1215}
1216
1217static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1218{
1219 struct nvme_dev *dev = nvmeq->dev;
1220 int result;
3f85d50b 1221
2b25d981 1222 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1223 result = adapter_alloc_cq(dev, qid, nvmeq);
1224 if (result < 0)
22404274 1225 return result;
b60503ba
MW
1226
1227 result = adapter_alloc_sq(dev, qid, nvmeq);
1228 if (result < 0)
1229 goto release_cq;
1230
dca51e78 1231 result = queue_request_irq(nvmeq);
b60503ba
MW
1232 if (result < 0)
1233 goto release_sq;
1234
22404274 1235 nvme_init_queue(nvmeq, qid);
22404274 1236 return result;
b60503ba
MW
1237
1238 release_sq:
1239 adapter_delete_sq(dev, qid);
1240 release_cq:
1241 adapter_delete_cq(dev, qid);
22404274 1242 return result;
b60503ba
MW
1243}
1244
f363b089 1245static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1246 .queue_rq = nvme_queue_rq,
77f02a7a 1247 .complete = nvme_pci_complete_rq,
a4aea562 1248 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1249 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1250 .init_request = nvme_admin_init_request,
1251 .timeout = nvme_timeout,
1252};
1253
f363b089 1254static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1255 .queue_rq = nvme_queue_rq,
77f02a7a 1256 .complete = nvme_pci_complete_rq,
a4aea562
MB
1257 .init_hctx = nvme_init_hctx,
1258 .init_request = nvme_init_request,
dca51e78 1259 .map_queues = nvme_pci_map_queues,
a4aea562 1260 .timeout = nvme_timeout,
a0fa9647 1261 .poll = nvme_poll,
a4aea562
MB
1262};
1263
ea191d2f
KB
1264static void nvme_dev_remove_admin(struct nvme_dev *dev)
1265{
1c63dc66 1266 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1267 /*
1268 * If the controller was reset during removal, it's possible
1269 * user requests may be waiting on a stopped queue. Start the
1270 * queue to flush these to completion.
1271 */
1272 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1273 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1274 blk_mq_free_tag_set(&dev->admin_tagset);
1275 }
1276}
1277
a4aea562
MB
1278static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1279{
1c63dc66 1280 if (!dev->ctrl.admin_q) {
a4aea562
MB
1281 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1282 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1283
1284 /*
1285 * Subtract one to leave an empty queue entry for 'Full Queue'
1286 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1287 */
1288 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1289 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1290 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1291 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1292 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1293 dev->admin_tagset.driver_data = dev;
1294
1295 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1296 return -ENOMEM;
1297
1c63dc66
CH
1298 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1299 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1300 blk_mq_free_tag_set(&dev->admin_tagset);
1301 return -ENOMEM;
1302 }
1c63dc66 1303 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1304 nvme_dev_remove_admin(dev);
1c63dc66 1305 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1306 return -ENODEV;
1307 }
0fb59cbc 1308 } else
25646264 1309 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1310
1311 return 0;
1312}
1313
8d85fce7 1314static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1315{
ba47e386 1316 int result;
b60503ba 1317 u32 aqa;
7a67cbea 1318 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1319 struct nvme_queue *nvmeq;
1320
8ef2074d 1321 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1322 NVME_CAP_NSSRC(cap) : 0;
1323
7a67cbea
CH
1324 if (dev->subsystem &&
1325 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1326 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1327
5fd4ce1b 1328 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1329 if (result < 0)
1330 return result;
b60503ba 1331
a4aea562 1332 nvmeq = dev->queues[0];
cd638946 1333 if (!nvmeq) {
d3af3ecd
SL
1334 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1335 dev_to_node(dev->dev));
cd638946
KB
1336 if (!nvmeq)
1337 return -ENOMEM;
cd638946 1338 }
b60503ba
MW
1339
1340 aqa = nvmeq->q_depth - 1;
1341 aqa |= aqa << 16;
1342
7a67cbea
CH
1343 writel(aqa, dev->bar + NVME_REG_AQA);
1344 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1345 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1346
5fd4ce1b 1347 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1348 if (result)
d4875622 1349 return result;
a4aea562 1350
2b25d981 1351 nvmeq->cq_vector = 0;
dca51e78 1352 result = queue_request_irq(nvmeq);
758dd7fd
JD
1353 if (result) {
1354 nvmeq->cq_vector = -1;
d4875622 1355 return result;
758dd7fd 1356 }
025c557a 1357
b60503ba
MW
1358 return result;
1359}
1360
c875a709
GP
1361static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1362{
1363
1364 /* If true, indicates loss of adapter communication, possibly by a
1365 * NVMe Subsystem reset.
1366 */
1367 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1368
1369 /* If there is a reset ongoing, we shouldn't reset again. */
1370 if (work_busy(&dev->reset_work))
1371 return false;
1372
1373 /* We shouldn't reset unless the controller is on fatal error state
1374 * _or_ if we lost the communication with it.
1375 */
1376 if (!(csts & NVME_CSTS_CFS) && !nssro)
1377 return false;
1378
1379 /* If PCI error recovery process is happening, we cannot reset or
1380 * the recovery mechanism will surely fail.
1381 */
1382 if (pci_channel_offline(to_pci_dev(dev->dev)))
1383 return false;
1384
1385 return true;
1386}
1387
d2a61918
AL
1388static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1389{
1390 /* Read a config register to help see what died. */
1391 u16 pci_status;
1392 int result;
1393
1394 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1395 &pci_status);
1396 if (result == PCIBIOS_SUCCESSFUL)
9bdcfb10 1397 dev_warn(dev->ctrl.device,
d2a61918
AL
1398 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1399 csts, pci_status);
1400 else
9bdcfb10 1401 dev_warn(dev->ctrl.device,
d2a61918
AL
1402 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1403 csts, result);
1404}
1405
2d55cd5f 1406static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1407{
2d55cd5f
CH
1408 struct nvme_dev *dev = (struct nvme_dev *)data;
1409 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1410
c875a709
GP
1411 /* Skip controllers under certain specific conditions. */
1412 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1413 if (!nvme_reset(dev))
d2a61918 1414 nvme_warn_reset(dev, csts);
2d55cd5f 1415 return;
1fa6aead 1416 }
2d55cd5f
CH
1417
1418 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1419}
1420
749941f2 1421static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1422{
949928c1 1423 unsigned i, max;
749941f2 1424 int ret = 0;
42f61420 1425
749941f2 1426 for (i = dev->queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1427 /* vector == qid - 1, match nvme_create_queue */
1428 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1429 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1430 ret = -ENOMEM;
42f61420 1431 break;
749941f2
CH
1432 }
1433 }
42f61420 1434
949928c1
KB
1435 max = min(dev->max_qid, dev->queue_count - 1);
1436 for (i = dev->online_queues; i <= max; i++) {
749941f2 1437 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1438 if (ret)
42f61420 1439 break;
27e8166c 1440 }
749941f2
CH
1441
1442 /*
1443 * Ignore failing Create SQ/CQ commands, we can continue with less
1444 * than the desired aount of queues, and even a controller without
1445 * I/O queues an still be used to issue admin commands. This might
1446 * be useful to upgrade a buggy firmware for example.
1447 */
1448 return ret >= 0 ? 0 : ret;
b60503ba
MW
1449}
1450
202021c1
SB
1451static ssize_t nvme_cmb_show(struct device *dev,
1452 struct device_attribute *attr,
1453 char *buf)
1454{
1455 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1456
c965809c 1457 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1458 ndev->cmbloc, ndev->cmbsz);
1459}
1460static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1461
8ffaadf7
JD
1462static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1463{
1464 u64 szu, size, offset;
8ffaadf7
JD
1465 resource_size_t bar_size;
1466 struct pci_dev *pdev = to_pci_dev(dev->dev);
1467 void __iomem *cmb;
1468 dma_addr_t dma_addr;
1469
7a67cbea 1470 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1471 if (!(NVME_CMB_SZ(dev->cmbsz)))
1472 return NULL;
202021c1 1473 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1474
202021c1
SB
1475 if (!use_cmb_sqes)
1476 return NULL;
8ffaadf7
JD
1477
1478 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1479 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1480 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1481 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1482
1483 if (offset > bar_size)
1484 return NULL;
1485
1486 /*
1487 * Controllers may support a CMB size larger than their BAR,
1488 * for example, due to being behind a bridge. Reduce the CMB to
1489 * the reported size of the BAR
1490 */
1491 if (size > bar_size - offset)
1492 size = bar_size - offset;
1493
202021c1 1494 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1495 cmb = ioremap_wc(dma_addr, size);
1496 if (!cmb)
1497 return NULL;
1498
1499 dev->cmb_dma_addr = dma_addr;
1500 dev->cmb_size = size;
1501 return cmb;
1502}
1503
1504static inline void nvme_release_cmb(struct nvme_dev *dev)
1505{
1506 if (dev->cmb) {
1507 iounmap(dev->cmb);
1508 dev->cmb = NULL;
f63572df
JD
1509 if (dev->cmbsz) {
1510 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1511 &dev_attr_cmb.attr, NULL);
1512 dev->cmbsz = 0;
1513 }
8ffaadf7
JD
1514 }
1515}
1516
9d713c2b
KB
1517static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1518{
b80d5ccc 1519 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1520}
1521
8d85fce7 1522static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1523{
a4aea562 1524 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1525 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1526 int result, nr_io_queues, size;
b60503ba 1527
2800b8e7 1528 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1529 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1530 if (result < 0)
1b23484b 1531 return result;
9a0be7ab 1532
f5fa90dc 1533 if (nr_io_queues == 0)
a5229050 1534 return 0;
b60503ba 1535
8ffaadf7
JD
1536 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1537 result = nvme_cmb_qdepth(dev, nr_io_queues,
1538 sizeof(struct nvme_command));
1539 if (result > 0)
1540 dev->q_depth = result;
1541 else
1542 nvme_release_cmb(dev);
1543 }
1544
9d713c2b
KB
1545 size = db_bar_size(dev, nr_io_queues);
1546 if (size > 8192) {
f1938f6e 1547 iounmap(dev->bar);
9d713c2b
KB
1548 do {
1549 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1550 if (dev->bar)
1551 break;
1552 if (!--nr_io_queues)
1553 return -ENOMEM;
1554 size = db_bar_size(dev, nr_io_queues);
1555 } while (1);
7a67cbea 1556 dev->dbs = dev->bar + 4096;
5a92e700 1557 adminq->q_db = dev->dbs;
f1938f6e
MW
1558 }
1559
9d713c2b 1560 /* Deregister the admin queue's interrupt */
0ff199cb 1561 pci_free_irq(pdev, 0, adminq);
9d713c2b 1562
e32efbfc
JA
1563 /*
1564 * If we enable msix early due to not intx, disable it again before
1565 * setting up the full range we need.
1566 */
dca51e78
CH
1567 pci_free_irq_vectors(pdev);
1568 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1569 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1570 if (nr_io_queues <= 0)
1571 return -EIO;
1572 dev->max_qid = nr_io_queues;
fa08a396 1573
063a8096
MW
1574 /*
1575 * Should investigate if there's a performance win from allocating
1576 * more queues than interrupt vectors; it might allow the submission
1577 * path to scale better, even if the receive path is limited by the
1578 * number of interrupts.
1579 */
063a8096 1580
dca51e78 1581 result = queue_request_irq(adminq);
758dd7fd
JD
1582 if (result) {
1583 adminq->cq_vector = -1;
d4875622 1584 return result;
758dd7fd 1585 }
749941f2 1586 return nvme_create_io_queues(dev);
b60503ba
MW
1587}
1588
2a842aca 1589static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1590{
db3cbfff 1591 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1592
db3cbfff
KB
1593 blk_mq_free_request(req);
1594 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1595}
1596
2a842aca 1597static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1598{
db3cbfff 1599 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1600
db3cbfff
KB
1601 if (!error) {
1602 unsigned long flags;
1603
2e39e0f6
ML
1604 /*
1605 * We might be called with the AQ q_lock held
1606 * and the I/O queue q_lock should always
1607 * nest inside the AQ one.
1608 */
1609 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1610 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1611 nvme_process_cq(nvmeq);
1612 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1613 }
db3cbfff
KB
1614
1615 nvme_del_queue_end(req, error);
a5768aa8
KB
1616}
1617
db3cbfff 1618static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1619{
db3cbfff
KB
1620 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1621 struct request *req;
1622 struct nvme_command cmd;
bda4e0fb 1623
db3cbfff
KB
1624 memset(&cmd, 0, sizeof(cmd));
1625 cmd.delete_queue.opcode = opcode;
1626 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1627
eb71f435 1628 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1629 if (IS_ERR(req))
1630 return PTR_ERR(req);
bda4e0fb 1631
db3cbfff
KB
1632 req->timeout = ADMIN_TIMEOUT;
1633 req->end_io_data = nvmeq;
1634
1635 blk_execute_rq_nowait(q, NULL, req, false,
1636 opcode == nvme_admin_delete_cq ?
1637 nvme_del_cq_end : nvme_del_queue_end);
1638 return 0;
bda4e0fb
KB
1639}
1640
70659060 1641static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1642{
70659060 1643 int pass;
db3cbfff
KB
1644 unsigned long timeout;
1645 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1646
db3cbfff 1647 for (pass = 0; pass < 2; pass++) {
014a0d60 1648 int sent = 0, i = queues;
db3cbfff
KB
1649
1650 reinit_completion(&dev->ioq_wait);
1651 retry:
1652 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1653 for (; i > 0; i--, sent++)
1654 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1655 break;
c21377f8 1656
db3cbfff
KB
1657 while (sent--) {
1658 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1659 if (timeout == 0)
1660 return;
1661 if (i)
1662 goto retry;
1663 }
1664 opcode = nvme_admin_delete_cq;
1665 }
a5768aa8
KB
1666}
1667
422ef0c7
MW
1668/*
1669 * Return: error value if an error occurred setting up the queues or calling
1670 * Identify Device. 0 if these succeeded, even if adding some of the
1671 * namespaces failed. At the moment, these failures are silent. TBD which
1672 * failures should be reported.
1673 */
8d85fce7 1674static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1675{
5bae7f73 1676 if (!dev->ctrl.tagset) {
ffe7704d
KB
1677 dev->tagset.ops = &nvme_mq_ops;
1678 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1679 dev->tagset.timeout = NVME_IO_TIMEOUT;
1680 dev->tagset.numa_node = dev_to_node(dev->dev);
1681 dev->tagset.queue_depth =
a4aea562 1682 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1683 dev->tagset.cmd_size = nvme_cmd_size(dev);
1684 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1685 dev->tagset.driver_data = dev;
b60503ba 1686
ffe7704d
KB
1687 if (blk_mq_alloc_tag_set(&dev->tagset))
1688 return 0;
5bae7f73 1689 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1690
1691 nvme_dbbuf_set(dev);
949928c1
KB
1692 } else {
1693 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1694
1695 /* Free previously allocated queues that are no longer usable */
1696 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1697 }
949928c1 1698
e1e5e564 1699 return 0;
b60503ba
MW
1700}
1701
b00a726a 1702static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1703{
42f61420 1704 u64 cap;
b00a726a 1705 int result = -ENOMEM;
e75ec752 1706 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1707
1708 if (pci_enable_device_mem(pdev))
1709 return result;
1710
0877cb0d 1711 pci_set_master(pdev);
0877cb0d 1712
e75ec752
CH
1713 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1714 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1715 goto disable;
0877cb0d 1716
7a67cbea 1717 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1718 result = -ENODEV;
b00a726a 1719 goto disable;
0e53d180 1720 }
e32efbfc
JA
1721
1722 /*
a5229050
KB
1723 * Some devices and/or platforms don't advertise or work with INTx
1724 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1725 * adjust this later.
e32efbfc 1726 */
dca51e78
CH
1727 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1728 if (result < 0)
1729 return result;
e32efbfc 1730
7a67cbea
CH
1731 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1732
42f61420
KB
1733 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1734 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1735 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1736
1737 /*
1738 * Temporary fix for the Apple controller found in the MacBook8,1 and
1739 * some MacBook7,1 to avoid controller resets and data loss.
1740 */
1741 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1742 dev->q_depth = 2;
9bdcfb10
CH
1743 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1744 "set queue depth=%u to work around controller resets\n",
1f390c1f
SG
1745 dev->q_depth);
1746 }
1747
202021c1
SB
1748 /*
1749 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1750 * populate sysfs if a CMB is implemented. Note that we add the
1751 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1752 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1753 * NULL as final argument to sysfs_add_file_to_group.
1754 */
1755
8ef2074d 1756 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1757 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1758
202021c1
SB
1759 if (dev->cmbsz) {
1760 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1761 &dev_attr_cmb.attr, NULL))
9bdcfb10 1762 dev_warn(dev->ctrl.device,
202021c1
SB
1763 "failed to add sysfs attribute for CMB\n");
1764 }
1765 }
1766
a0a3408e
KB
1767 pci_enable_pcie_error_reporting(pdev);
1768 pci_save_state(pdev);
0877cb0d
KB
1769 return 0;
1770
1771 disable:
0877cb0d
KB
1772 pci_disable_device(pdev);
1773 return result;
1774}
1775
1776static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1777{
1778 if (dev->bar)
1779 iounmap(dev->bar);
a1f447b3 1780 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1781}
1782
1783static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1784{
e75ec752
CH
1785 struct pci_dev *pdev = to_pci_dev(dev->dev);
1786
f63572df 1787 nvme_release_cmb(dev);
dca51e78 1788 pci_free_irq_vectors(pdev);
0877cb0d 1789
a0a3408e
KB
1790 if (pci_is_enabled(pdev)) {
1791 pci_disable_pcie_error_reporting(pdev);
e75ec752 1792 pci_disable_device(pdev);
4d115420 1793 }
4d115420
KB
1794}
1795
a5cdb68c 1796static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1797{
70659060 1798 int i, queues;
302ad8cc
KB
1799 bool dead = true;
1800 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1801
2d55cd5f 1802 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1803
77bf25ea 1804 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1805 if (pci_is_enabled(pdev)) {
1806 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1807
1808 if (dev->ctrl.state == NVME_CTRL_LIVE)
1809 nvme_start_freeze(&dev->ctrl);
1810 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1811 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1812 }
c21377f8 1813
302ad8cc
KB
1814 /*
1815 * Give the controller a chance to complete all entered requests if
1816 * doing a safe shutdown.
1817 */
1818 if (!dead && shutdown)
1819 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1820 nvme_stop_queues(&dev->ctrl);
1821
70659060 1822 queues = dev->online_queues - 1;
c21377f8
GKB
1823 for (i = dev->queue_count - 1; i > 0; i--)
1824 nvme_suspend_queue(dev->queues[i]);
1825
302ad8cc 1826 if (dead) {
82469c59
GKB
1827 /* A device might become IO incapable very soon during
1828 * probe, before the admin queue is configured. Thus,
1829 * queue_count can be 0 here.
1830 */
1831 if (dev->queue_count)
1832 nvme_suspend_queue(dev->queues[0]);
4d115420 1833 } else {
70659060 1834 nvme_disable_io_queues(dev, queues);
a5cdb68c 1835 nvme_disable_admin_queue(dev, shutdown);
4d115420 1836 }
b00a726a 1837 nvme_pci_disable(dev);
07836e65 1838
e1958e65
ML
1839 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1840 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
1841
1842 /*
1843 * The driver will not be starting up queues again if shutting down so
1844 * must flush all entered requests to their failed completion to avoid
1845 * deadlocking blk-mq hot-cpu notifier.
1846 */
1847 if (shutdown)
1848 nvme_start_queues(&dev->ctrl);
77bf25ea 1849 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1850}
1851
091b6092
MW
1852static int nvme_setup_prp_pools(struct nvme_dev *dev)
1853{
e75ec752 1854 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1855 PAGE_SIZE, PAGE_SIZE, 0);
1856 if (!dev->prp_page_pool)
1857 return -ENOMEM;
1858
99802a7a 1859 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1860 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1861 256, 256, 0);
1862 if (!dev->prp_small_pool) {
1863 dma_pool_destroy(dev->prp_page_pool);
1864 return -ENOMEM;
1865 }
091b6092
MW
1866 return 0;
1867}
1868
1869static void nvme_release_prp_pools(struct nvme_dev *dev)
1870{
1871 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1872 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1873}
1874
1673f1f0 1875static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1876{
1673f1f0 1877 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1878
f9f38e33 1879 nvme_dbbuf_dma_free(dev);
e75ec752 1880 put_device(dev->dev);
4af0e21c
KB
1881 if (dev->tagset.tags)
1882 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1883 if (dev->ctrl.admin_q)
1884 blk_put_queue(dev->ctrl.admin_q);
5e82e952 1885 kfree(dev->queues);
e286bcfc 1886 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
1887 kfree(dev);
1888}
1889
f58944e2
KB
1890static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1891{
237045fc 1892 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1893
1894 kref_get(&dev->ctrl.kref);
69d9a99c 1895 nvme_dev_disable(dev, false);
f58944e2
KB
1896 if (!schedule_work(&dev->remove_work))
1897 nvme_put_ctrl(&dev->ctrl);
1898}
1899
fd634f41 1900static void nvme_reset_work(struct work_struct *work)
5e82e952 1901{
fd634f41 1902 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
a98e58e5 1903 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 1904 int result = -ENODEV;
5e82e952 1905
bb8d261e 1906 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1907 goto out;
5e82e952 1908
fd634f41
CH
1909 /*
1910 * If we're called to reset a live controller first shut it down before
1911 * moving on.
1912 */
b00a726a 1913 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1914 nvme_dev_disable(dev, false);
5e82e952 1915
bb8d261e 1916 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1917 goto out;
1918
b00a726a 1919 result = nvme_pci_enable(dev);
f0b50732 1920 if (result)
3cf519b5 1921 goto out;
f0b50732
KB
1922
1923 result = nvme_configure_admin_queue(dev);
1924 if (result)
f58944e2 1925 goto out;
f0b50732 1926
a4aea562 1927 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1928 result = nvme_alloc_admin_tags(dev);
1929 if (result)
f58944e2 1930 goto out;
b9afca3e 1931
ce4541f4
CH
1932 result = nvme_init_identify(&dev->ctrl);
1933 if (result)
f58944e2 1934 goto out;
ce4541f4 1935
e286bcfc
SB
1936 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1937 if (!dev->ctrl.opal_dev)
1938 dev->ctrl.opal_dev =
1939 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1940 else if (was_suspend)
1941 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1942 } else {
1943 free_opal_dev(dev->ctrl.opal_dev);
1944 dev->ctrl.opal_dev = NULL;
4f1244c8 1945 }
a98e58e5 1946
f9f38e33
HK
1947 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1948 result = nvme_dbbuf_dma_alloc(dev);
1949 if (result)
1950 dev_warn(dev->dev,
1951 "unable to allocate dma for dbbuf\n");
1952 }
1953
f0b50732 1954 result = nvme_setup_io_queues(dev);
badc34d4 1955 if (result)
f58944e2 1956 goto out;
f0b50732 1957
21f033f7
KB
1958 /*
1959 * A controller that can not execute IO typically requires user
1960 * intervention to correct. For such degraded controllers, the driver
1961 * should not submit commands the user did not request, so skip
1962 * registering for asynchronous event notification on this condition.
1963 */
f866fc42
CH
1964 if (dev->online_queues > 1)
1965 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1966
2d55cd5f 1967 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1968
2659e57b
CH
1969 /*
1970 * Keep the controller around but remove all namespaces if we don't have
1971 * any working I/O queue.
1972 */
3cf519b5 1973 if (dev->online_queues < 2) {
1b3c47c1 1974 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1975 nvme_kill_queues(&dev->ctrl);
5bae7f73 1976 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1977 } else {
25646264 1978 nvme_start_queues(&dev->ctrl);
302ad8cc 1979 nvme_wait_freeze(&dev->ctrl);
3cf519b5 1980 nvme_dev_add(dev);
302ad8cc 1981 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
1982 }
1983
bb8d261e
CH
1984 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1985 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1986 goto out;
1987 }
92911a55
CH
1988
1989 if (dev->online_queues > 1)
5955be21 1990 nvme_queue_scan(&dev->ctrl);
3cf519b5 1991 return;
f0b50732 1992
3cf519b5 1993 out:
f58944e2 1994 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1995}
1996
5c8809e6 1997static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1998{
5c8809e6 1999 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2000 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2001
69d9a99c 2002 nvme_kill_queues(&dev->ctrl);
9a6b9458 2003 if (pci_get_drvdata(pdev))
921920ab 2004 device_release_driver(&pdev->dev);
1673f1f0 2005 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2006}
2007
4cc06521 2008static int nvme_reset(struct nvme_dev *dev)
9a6b9458 2009{
1c63dc66 2010 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 2011 return -ENODEV;
c5f6ce97
KB
2012 if (work_busy(&dev->reset_work))
2013 return -ENODEV;
846cc05f
CH
2014 if (!queue_work(nvme_workq, &dev->reset_work))
2015 return -EBUSY;
846cc05f 2016 return 0;
9a6b9458
KB
2017}
2018
1c63dc66 2019static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2020{
1c63dc66 2021 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2022 return 0;
9ca97374
TH
2023}
2024
5fd4ce1b 2025static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2026{
5fd4ce1b
CH
2027 writel(val, to_nvme_dev(ctrl)->bar + off);
2028 return 0;
2029}
4cc06521 2030
7fd8930f
CH
2031static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2032{
2033 *val = readq(to_nvme_dev(ctrl)->bar + off);
2034 return 0;
4cc06521
KB
2035}
2036
f3ca80fc
CH
2037static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2038{
c5f6ce97
KB
2039 struct nvme_dev *dev = to_nvme_dev(ctrl);
2040 int ret = nvme_reset(dev);
2041
2042 if (!ret)
2043 flush_work(&dev->reset_work);
2044 return ret;
4cc06521 2045}
f3ca80fc 2046
1c63dc66 2047static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2048 .name = "pcie",
e439bb12 2049 .module = THIS_MODULE,
c81bfba9 2050 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2051 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2052 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2053 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 2054 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2055 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2056 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2057};
4cc06521 2058
b00a726a
KB
2059static int nvme_dev_map(struct nvme_dev *dev)
2060{
b00a726a
KB
2061 struct pci_dev *pdev = to_pci_dev(dev->dev);
2062
a1f447b3 2063 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2064 return -ENODEV;
2065
2066 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2067 if (!dev->bar)
2068 goto release;
2069
9fa196e7 2070 return 0;
b00a726a 2071 release:
9fa196e7
MG
2072 pci_release_mem_regions(pdev);
2073 return -ENODEV;
b00a726a
KB
2074}
2075
ff5350a8
AL
2076static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2077{
2078 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2079 /*
2080 * Several Samsung devices seem to drop off the PCIe bus
2081 * randomly when APST is on and uses the deepest sleep state.
2082 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2083 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2084 * 950 PRO 256GB", but it seems to be restricted to two Dell
2085 * laptops.
2086 */
2087 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2088 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2089 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2090 return NVME_QUIRK_NO_DEEPEST_PS;
2091 }
2092
2093 return 0;
2094}
2095
8d85fce7 2096static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2097{
a4aea562 2098 int node, result = -ENOMEM;
b60503ba 2099 struct nvme_dev *dev;
ff5350a8 2100 unsigned long quirks = id->driver_data;
b60503ba 2101
a4aea562
MB
2102 node = dev_to_node(&pdev->dev);
2103 if (node == NUMA_NO_NODE)
2fa84351 2104 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2105
2106 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2107 if (!dev)
2108 return -ENOMEM;
a4aea562
MB
2109 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2110 GFP_KERNEL, node);
b60503ba
MW
2111 if (!dev->queues)
2112 goto free;
2113
e75ec752 2114 dev->dev = get_device(&pdev->dev);
9a6b9458 2115 pci_set_drvdata(pdev, dev);
1c63dc66 2116
b00a726a
KB
2117 result = nvme_dev_map(dev);
2118 if (result)
2119 goto free;
2120
f3ca80fc 2121 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2122 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
2123 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2124 (unsigned long)dev);
77bf25ea 2125 mutex_init(&dev->shutdown_lock);
db3cbfff 2126 init_completion(&dev->ioq_wait);
b60503ba 2127
091b6092
MW
2128 result = nvme_setup_prp_pools(dev);
2129 if (result)
a96d4f5c 2130 goto put_pci;
4cc06521 2131
ff5350a8
AL
2132 quirks |= check_dell_samsung_bug(pdev);
2133
f3ca80fc 2134 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2135 quirks);
4cc06521 2136 if (result)
2e1d8448 2137 goto release_pools;
740216fc 2138
1b3c47c1
SG
2139 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2140
92f7a162 2141 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2142 return 0;
2143
0877cb0d 2144 release_pools:
091b6092 2145 nvme_release_prp_pools(dev);
a96d4f5c 2146 put_pci:
e75ec752 2147 put_device(dev->dev);
b00a726a 2148 nvme_dev_unmap(dev);
b60503ba
MW
2149 free:
2150 kfree(dev->queues);
b60503ba
MW
2151 kfree(dev);
2152 return result;
2153}
2154
f0d54a54
KB
2155static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2156{
a6739479 2157 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2158
a6739479 2159 if (prepare)
a5cdb68c 2160 nvme_dev_disable(dev, false);
a6739479 2161 else
c5f6ce97 2162 nvme_reset(dev);
f0d54a54
KB
2163}
2164
09ece142
KB
2165static void nvme_shutdown(struct pci_dev *pdev)
2166{
2167 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2168 nvme_dev_disable(dev, true);
09ece142
KB
2169}
2170
f58944e2
KB
2171/*
2172 * The driver's remove may be called on a device in a partially initialized
2173 * state. This function must not have any dependencies on the device state in
2174 * order to proceed.
2175 */
8d85fce7 2176static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2177{
2178 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2179
bb8d261e
CH
2180 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2181
9a6b9458 2182 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2183
6db28eda 2184 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2185 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2186 nvme_dev_disable(dev, false);
2187 }
0ff9d4e1 2188
9bf2b972 2189 flush_work(&dev->reset_work);
53029b04 2190 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2191 nvme_dev_disable(dev, true);
a4aea562 2192 nvme_dev_remove_admin(dev);
a1a5ef99 2193 nvme_free_queues(dev, 0);
9a6b9458 2194 nvme_release_prp_pools(dev);
b00a726a 2195 nvme_dev_unmap(dev);
1673f1f0 2196 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2197}
2198
13880f5b
KB
2199static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2200{
2201 int ret = 0;
2202
2203 if (numvfs == 0) {
2204 if (pci_vfs_assigned(pdev)) {
2205 dev_warn(&pdev->dev,
2206 "Cannot disable SR-IOV VFs while assigned\n");
2207 return -EPERM;
2208 }
2209 pci_disable_sriov(pdev);
2210 return 0;
2211 }
2212
2213 ret = pci_enable_sriov(pdev, numvfs);
2214 return ret ? ret : numvfs;
2215}
2216
671a6018 2217#ifdef CONFIG_PM_SLEEP
cd638946
KB
2218static int nvme_suspend(struct device *dev)
2219{
2220 struct pci_dev *pdev = to_pci_dev(dev);
2221 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2222
a5cdb68c 2223 nvme_dev_disable(ndev, true);
cd638946
KB
2224 return 0;
2225}
2226
2227static int nvme_resume(struct device *dev)
2228{
2229 struct pci_dev *pdev = to_pci_dev(dev);
2230 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2231
c5f6ce97 2232 nvme_reset(ndev);
9a6b9458 2233 return 0;
cd638946 2234}
671a6018 2235#endif
cd638946
KB
2236
2237static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2238
a0a3408e
KB
2239static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2240 pci_channel_state_t state)
2241{
2242 struct nvme_dev *dev = pci_get_drvdata(pdev);
2243
2244 /*
2245 * A frozen channel requires a reset. When detected, this method will
2246 * shutdown the controller to quiesce. The controller will be restarted
2247 * after the slot reset through driver's slot_reset callback.
2248 */
a0a3408e
KB
2249 switch (state) {
2250 case pci_channel_io_normal:
2251 return PCI_ERS_RESULT_CAN_RECOVER;
2252 case pci_channel_io_frozen:
d011fb31
KB
2253 dev_warn(dev->ctrl.device,
2254 "frozen state error detected, reset controller\n");
a5cdb68c 2255 nvme_dev_disable(dev, false);
a0a3408e
KB
2256 return PCI_ERS_RESULT_NEED_RESET;
2257 case pci_channel_io_perm_failure:
d011fb31
KB
2258 dev_warn(dev->ctrl.device,
2259 "failure state error detected, request disconnect\n");
a0a3408e
KB
2260 return PCI_ERS_RESULT_DISCONNECT;
2261 }
2262 return PCI_ERS_RESULT_NEED_RESET;
2263}
2264
2265static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2266{
2267 struct nvme_dev *dev = pci_get_drvdata(pdev);
2268
1b3c47c1 2269 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2270 pci_restore_state(pdev);
c5f6ce97 2271 nvme_reset(dev);
a0a3408e
KB
2272 return PCI_ERS_RESULT_RECOVERED;
2273}
2274
2275static void nvme_error_resume(struct pci_dev *pdev)
2276{
2277 pci_cleanup_aer_uncorrect_error_status(pdev);
2278}
2279
1d352035 2280static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2281 .error_detected = nvme_error_detected,
b60503ba
MW
2282 .slot_reset = nvme_slot_reset,
2283 .resume = nvme_error_resume,
f0d54a54 2284 .reset_notify = nvme_reset_notify,
b60503ba
MW
2285};
2286
6eb0d698 2287static const struct pci_device_id nvme_id_table[] = {
106198ed 2288 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2289 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2290 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2291 { PCI_VDEVICE(INTEL, 0x0a53),
2292 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2293 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2294 { PCI_VDEVICE(INTEL, 0x0a54),
2295 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2296 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2297 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2298 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2299 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2300 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2301 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2302 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2303 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2304 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2305 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2306 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2307 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2308 { 0, }
2309};
2310MODULE_DEVICE_TABLE(pci, nvme_id_table);
2311
2312static struct pci_driver nvme_driver = {
2313 .name = "nvme",
2314 .id_table = nvme_id_table,
2315 .probe = nvme_probe,
8d85fce7 2316 .remove = nvme_remove,
09ece142 2317 .shutdown = nvme_shutdown,
cd638946
KB
2318 .driver = {
2319 .pm = &nvme_dev_pm_ops,
2320 },
13880f5b 2321 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2322 .err_handler = &nvme_err_handler,
2323};
2324
2325static int __init nvme_init(void)
2326{
0ac13140 2327 int result;
1fa6aead 2328
92f7a162 2329 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2330 if (!nvme_workq)
b9afca3e 2331 return -ENOMEM;
9a6b9458 2332
f3db22fe
KB
2333 result = pci_register_driver(&nvme_driver);
2334 if (result)
576d55d6 2335 destroy_workqueue(nvme_workq);
b60503ba
MW
2336 return result;
2337}
2338
2339static void __exit nvme_exit(void)
2340{
2341 pci_unregister_driver(&nvme_driver);
9a6b9458 2342 destroy_workqueue(nvme_workq);
21bd78bc 2343 _nvme_check_size();
b60503ba
MW
2344}
2345
2346MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2347MODULE_LICENSE("GPL");
c78b4713 2348MODULE_VERSION("1.0");
b60503ba
MW
2349module_init(nvme_init);
2350module_exit(nvme_exit);