]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block, bfq: correctly charge and reset entity service in all cases
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c9254f2d
BVA
351/**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358int blk_set_preempt_only(struct request_queue *q)
359{
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368}
369EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371void blk_clear_preempt_only(struct request_queue *q)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 377 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
c246e80d
BVA
382/**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393inline void __blk_run_queue_uncond(struct request_queue *q)
394{
2fff8a92 395 lockdep_assert_held(q->queue_lock);
332ebbf7 396 WARN_ON_ONCE(q->mq_ops);
2fff8a92 397
c246e80d
BVA
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
24faf6f6
BVA
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
c246e80d 409 q->request_fn(q);
24faf6f6 410 q->request_fn_active--;
c246e80d 411}
a7928c15 412EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 413
1da177e4 414/**
80a4b58e 415 * __blk_run_queue - run a single device queue
1da177e4 416 * @q: The queue to run
80a4b58e
JA
417 *
418 * Description:
2fff8a92 419 * See @blk_run_queue.
1da177e4 420 */
24ecfbe2 421void __blk_run_queue(struct request_queue *q)
1da177e4 422{
2fff8a92 423 lockdep_assert_held(q->queue_lock);
332ebbf7 424 WARN_ON_ONCE(q->mq_ops);
2fff8a92 425
a538cd03
TH
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
c246e80d 429 __blk_run_queue_uncond(q);
75ad23bc
NP
430}
431EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 432
24ecfbe2
CH
433/**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
445 */
446void blk_run_queue_async(struct request_queue *q)
447{
2fff8a92 448 lockdep_assert_held(q->queue_lock);
332ebbf7 449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 450
70460571 451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 453}
c21e6beb 454EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 455
75ad23bc
NP
456/**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
80a4b58e
JA
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 462 * May be used to restart queueing when a request has completed.
75ad23bc
NP
463 */
464void blk_run_queue(struct request_queue *q)
465{
466 unsigned long flags;
467
332ebbf7
BVA
468 WARN_ON_ONCE(q->mq_ops);
469
75ad23bc 470 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 471 __blk_run_queue(q);
1da177e4
LT
472 spin_unlock_irqrestore(q->queue_lock, flags);
473}
474EXPORT_SYMBOL(blk_run_queue);
475
165125e1 476void blk_put_queue(struct request_queue *q)
483f4afc
AV
477{
478 kobject_put(&q->kobj);
479}
d86e0e83 480EXPORT_SYMBOL(blk_put_queue);
483f4afc 481
e3c78ca5 482/**
807592a4 483 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 484 * @q: queue to drain
c9a929dd 485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 486 *
c9a929dd
TH
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 490 */
807592a4
BVA
491static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
e3c78ca5 494{
458f27a9
AH
495 int i;
496
807592a4 497 lockdep_assert_held(q->queue_lock);
332ebbf7 498 WARN_ON_ONCE(q->mq_ops);
807592a4 499
e3c78ca5 500 while (true) {
481a7d64 501 bool drain = false;
e3c78ca5 502
b855b04a
TH
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
5efd6113 510 blkcg_drain_queue(q);
e3c78ca5 511
4eabc941
TH
512 /*
513 * This function might be called on a queue which failed
b855b04a
TH
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
4eabc941 518 */
b855b04a 519 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 520 __blk_run_queue(q);
c9a929dd 521
8a5ecdd4 522 drain |= q->nr_rqs_elvpriv;
24faf6f6 523 drain |= q->request_fn_active;
481a7d64
TH
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
e97c293c 531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
8a5ecdd4 534 drain |= q->nr_rqs[i];
481a7d64 535 drain |= q->in_flight[i];
7c94e1c1
ML
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
538 }
539 }
e3c78ca5 540
481a7d64 541 if (!drain)
e3c78ca5 542 break;
807592a4
BVA
543
544 spin_unlock_irq(q->queue_lock);
545
e3c78ca5 546 msleep(10);
807592a4
BVA
547
548 spin_lock_irq(q->queue_lock);
e3c78ca5 549 }
458f27a9
AH
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
a051661c
TH
557 struct request_list *rl;
558
a051661c
TH
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
458f27a9 562 }
e3c78ca5
TH
563}
564
454be724
ML
565void blk_drain_queue(struct request_queue *q)
566{
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570}
571
d732580b
TH
572/**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 578 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
d732580b
TH
581 */
582void blk_queue_bypass_start(struct request_queue *q)
583{
332ebbf7
BVA
584 WARN_ON_ONCE(q->mq_ops);
585
d732580b 586 spin_lock_irq(q->queue_lock);
776687bc 587 q->bypass_depth++;
d732580b
TH
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
776687bc
TH
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
807592a4
BVA
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
b82d4b19
TH
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
d732580b
TH
604}
605EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607/**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
615 */
616void blk_queue_bypass_end(struct request_queue *q)
617{
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623}
624EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
aed3ea94
JA
626void blk_set_queue_dying(struct request_queue *q)
627{
1b856086
BVA
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
aed3ea94 631
d3cfb2a0
ML
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
aed3ea94
JA
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
bbfc3c5d 644 spin_lock_irq(q->queue_lock);
aed3ea94
JA
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
34d9715a
ML
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
649 }
650 }
bbfc3c5d 651 spin_unlock_irq(q->queue_lock);
aed3ea94 652 }
055f6e18
ML
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
656}
657EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
c9a929dd
TH
659/**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
c246e80d
BVA
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 665 */
6728cb0e 666void blk_cleanup_queue(struct request_queue *q)
483f4afc 667{
c9a929dd 668 spinlock_t *lock = q->queue_lock;
e3335de9 669
3f3299d5 670 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 671 mutex_lock(&q->sysfs_lock);
aed3ea94 672 blk_set_queue_dying(q);
c9a929dd 673 spin_lock_irq(lock);
6ecf23af 674
80fd9979 675 /*
3f3299d5 676 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
6ecf23af
TH
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
c9a929dd
TH
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 689 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
c246e80d
BVA
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
3ef28e83 697 blk_freeze_queue(q);
9c1051aa 698 spin_lock_irq(lock);
c246e80d 699 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 700 spin_unlock_irq(lock);
c9a929dd 701
5e4415a1
ML
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
ce9d0cbb
ML
706 * from more than one contexts.
707 *
708 * No need to quiesce queue if it isn't initialized yet since
709 * blk_freeze_queue() should be enough for cases of passthrough
710 * request.
5e4415a1 711 */
ce9d0cbb 712 if (q->mq_ops && blk_queue_init_done(q))
5e4415a1
ML
713 blk_mq_quiesce_queue(q);
714
5a48fc14
DW
715 /* for synchronous bio-based driver finish in-flight integrity i/o */
716 blk_flush_integrity();
717
c9a929dd 718 /* @q won't process any more request, flush async actions */
dc3b17cc 719 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
720 blk_sync_queue(q);
721
45a9c9d9
BVA
722 if (q->mq_ops)
723 blk_mq_free_queue(q);
3ef28e83 724 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 725
5e5cfac0
AH
726 spin_lock_irq(lock);
727 if (q->queue_lock != &q->__queue_lock)
728 q->queue_lock = &q->__queue_lock;
729 spin_unlock_irq(lock);
730
c9a929dd 731 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
732 blk_put_queue(q);
733}
1da177e4
LT
734EXPORT_SYMBOL(blk_cleanup_queue);
735
271508db 736/* Allocate memory local to the request queue */
6d247d7f 737static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 738{
6d247d7f
CH
739 struct request_queue *q = data;
740
741 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
742}
743
6d247d7f 744static void free_request_simple(void *element, void *data)
271508db
DR
745{
746 kmem_cache_free(request_cachep, element);
747}
748
6d247d7f
CH
749static void *alloc_request_size(gfp_t gfp_mask, void *data)
750{
751 struct request_queue *q = data;
752 struct request *rq;
753
754 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
755 q->node);
756 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
757 kfree(rq);
758 rq = NULL;
759 }
760 return rq;
761}
762
763static void free_request_size(void *element, void *data)
764{
765 struct request_queue *q = data;
766
767 if (q->exit_rq_fn)
768 q->exit_rq_fn(q, element);
769 kfree(element);
770}
771
5b788ce3
TH
772int blk_init_rl(struct request_list *rl, struct request_queue *q,
773 gfp_t gfp_mask)
1da177e4 774{
85acb3ba 775 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
776 return 0;
777
5b788ce3 778 rl->q = q;
1faa16d2
JA
779 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
780 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
781 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
782 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 783
6d247d7f
CH
784 if (q->cmd_size) {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_size, free_request_size,
787 q, gfp_mask, q->node);
788 } else {
789 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
790 alloc_request_simple, free_request_simple,
791 q, gfp_mask, q->node);
792 }
1da177e4
LT
793 if (!rl->rq_pool)
794 return -ENOMEM;
795
b425e504
BVA
796 if (rl != &q->root_rl)
797 WARN_ON_ONCE(!blk_get_queue(q));
798
1da177e4
LT
799 return 0;
800}
801
b425e504 802void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 803{
b425e504 804 if (rl->rq_pool) {
5b788ce3 805 mempool_destroy(rl->rq_pool);
b425e504
BVA
806 if (rl != &q->root_rl)
807 blk_put_queue(q);
808 }
5b788ce3
TH
809}
810
165125e1 811struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 812{
c304a51b 813 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
814}
815EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 816
3a0a5299
BVA
817/**
818 * blk_queue_enter() - try to increase q->q_usage_counter
819 * @q: request queue pointer
820 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
821 */
9a95e4ef 822int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 823{
3a0a5299
BVA
824 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
825
3ef28e83 826 while (true) {
3a0a5299 827 bool success = false;
3ef28e83 828
1f8c7019 829 rcu_read_lock();
3a0a5299
BVA
830 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
831 /*
832 * The code that sets the PREEMPT_ONLY flag is
833 * responsible for ensuring that that flag is globally
834 * visible before the queue is unfrozen.
835 */
836 if (preempt || !blk_queue_preempt_only(q)) {
837 success = true;
838 } else {
839 percpu_ref_put(&q->q_usage_counter);
840 }
841 }
1f8c7019 842 rcu_read_unlock();
3a0a5299
BVA
843
844 if (success)
3ef28e83
DW
845 return 0;
846
3a0a5299 847 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
848 return -EBUSY;
849
5ed61d3f 850 /*
1671d522 851 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 852 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
853 * .q_usage_counter and reading .mq_freeze_depth or
854 * queue dying flag, otherwise the following wait may
855 * never return if the two reads are reordered.
5ed61d3f
ML
856 */
857 smp_rmb();
858
e650f3d6
AJ
859 wait_event(q->mq_freeze_wq,
860 (atomic_read(&q->mq_freeze_depth) == 0 &&
861 (preempt || !blk_queue_preempt_only(q))) ||
862 blk_queue_dying(q));
3ef28e83
DW
863 if (blk_queue_dying(q))
864 return -ENODEV;
3ef28e83
DW
865 }
866}
867
868void blk_queue_exit(struct request_queue *q)
869{
870 percpu_ref_put(&q->q_usage_counter);
871}
872
873static void blk_queue_usage_counter_release(struct percpu_ref *ref)
874{
875 struct request_queue *q =
876 container_of(ref, struct request_queue, q_usage_counter);
877
878 wake_up_all(&q->mq_freeze_wq);
879}
880
bca237a5 881static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 882{
bca237a5 883 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
884
885 kblockd_schedule_work(&q->timeout_work);
886}
887
165125e1 888struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 889{
165125e1 890 struct request_queue *q;
1946089a 891
8324aa91 892 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 893 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
894 if (!q)
895 return NULL;
896
00380a40 897 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 898 if (q->id < 0)
3d2936f4 899 goto fail_q;
a73f730d 900
93b27e72 901 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
902 if (!q->bio_split)
903 goto fail_id;
904
d03f6cdc
JK
905 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
906 if (!q->backing_dev_info)
907 goto fail_split;
908
a83b576c
JA
909 q->stats = blk_alloc_queue_stats();
910 if (!q->stats)
911 goto fail_stats;
912
dc3b17cc 913 q->backing_dev_info->ra_pages =
09cbfeaf 914 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
915 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
916 q->backing_dev_info->name = "block";
5151412d 917 q->node = node_id;
0989a025 918
bca237a5
KC
919 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
920 laptop_mode_timer_fn, 0);
921 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 922 INIT_WORK(&q->timeout_work, NULL);
b855b04a 923 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 924 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 925 INIT_LIST_HEAD(&q->icq_list);
4eef3049 926#ifdef CONFIG_BLK_CGROUP
e8989fae 927 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 928#endif
3cca6dc1 929 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 930
8324aa91 931 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 932
5acb3cc2
WL
933#ifdef CONFIG_BLK_DEV_IO_TRACE
934 mutex_init(&q->blk_trace_mutex);
935#endif
483f4afc 936 mutex_init(&q->sysfs_lock);
e7e72bf6 937 spin_lock_init(&q->__queue_lock);
483f4afc 938
c94a96ac
VG
939 /*
940 * By default initialize queue_lock to internal lock and driver can
941 * override it later if need be.
942 */
943 q->queue_lock = &q->__queue_lock;
944
b82d4b19
TH
945 /*
946 * A queue starts its life with bypass turned on to avoid
947 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
948 * init. The initial bypass will be finished when the queue is
949 * registered by blk_register_queue().
b82d4b19
TH
950 */
951 q->bypass_depth = 1;
952 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
953
320ae51f
JA
954 init_waitqueue_head(&q->mq_freeze_wq);
955
3ef28e83
DW
956 /*
957 * Init percpu_ref in atomic mode so that it's faster to shutdown.
958 * See blk_register_queue() for details.
959 */
960 if (percpu_ref_init(&q->q_usage_counter,
961 blk_queue_usage_counter_release,
962 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 963 goto fail_bdi;
f51b802c 964
3ef28e83
DW
965 if (blkcg_init_queue(q))
966 goto fail_ref;
967
1da177e4 968 return q;
a73f730d 969
3ef28e83
DW
970fail_ref:
971 percpu_ref_exit(&q->q_usage_counter);
fff4996b 972fail_bdi:
a83b576c
JA
973 blk_free_queue_stats(q->stats);
974fail_stats:
d03f6cdc 975 bdi_put(q->backing_dev_info);
54efd50b
KO
976fail_split:
977 bioset_free(q->bio_split);
a73f730d
TH
978fail_id:
979 ida_simple_remove(&blk_queue_ida, q->id);
980fail_q:
981 kmem_cache_free(blk_requestq_cachep, q);
982 return NULL;
1da177e4 983}
1946089a 984EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
985
986/**
987 * blk_init_queue - prepare a request queue for use with a block device
988 * @rfn: The function to be called to process requests that have been
989 * placed on the queue.
990 * @lock: Request queue spin lock
991 *
992 * Description:
993 * If a block device wishes to use the standard request handling procedures,
994 * which sorts requests and coalesces adjacent requests, then it must
995 * call blk_init_queue(). The function @rfn will be called when there
996 * are requests on the queue that need to be processed. If the device
997 * supports plugging, then @rfn may not be called immediately when requests
998 * are available on the queue, but may be called at some time later instead.
999 * Plugged queues are generally unplugged when a buffer belonging to one
1000 * of the requests on the queue is needed, or due to memory pressure.
1001 *
1002 * @rfn is not required, or even expected, to remove all requests off the
1003 * queue, but only as many as it can handle at a time. If it does leave
1004 * requests on the queue, it is responsible for arranging that the requests
1005 * get dealt with eventually.
1006 *
1007 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1008 * request queue; this lock will be taken also from interrupt context, so irq
1009 * disabling is needed for it.
1da177e4 1010 *
710027a4 1011 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1012 * it didn't succeed.
1013 *
1014 * Note:
1015 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1016 * when the block device is deactivated (such as at module unload).
1017 **/
1946089a 1018
165125e1 1019struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1020{
c304a51b 1021 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1022}
1023EXPORT_SYMBOL(blk_init_queue);
1024
165125e1 1025struct request_queue *
1946089a
CL
1026blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1027{
5ea708d1 1028 struct request_queue *q;
1da177e4 1029
5ea708d1
CH
1030 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1031 if (!q)
c86d1b8a
MS
1032 return NULL;
1033
5ea708d1
CH
1034 q->request_fn = rfn;
1035 if (lock)
1036 q->queue_lock = lock;
1037 if (blk_init_allocated_queue(q) < 0) {
1038 blk_cleanup_queue(q);
1039 return NULL;
1040 }
18741986 1041
7982e90c 1042 return q;
01effb0d
MS
1043}
1044EXPORT_SYMBOL(blk_init_queue_node);
1045
dece1635 1046static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1047
1da177e4 1048
5ea708d1
CH
1049int blk_init_allocated_queue(struct request_queue *q)
1050{
332ebbf7
BVA
1051 WARN_ON_ONCE(q->mq_ops);
1052
6d247d7f 1053 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1054 if (!q->fq)
5ea708d1 1055 return -ENOMEM;
7982e90c 1056
6d247d7f
CH
1057 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1058 goto out_free_flush_queue;
7982e90c 1059
a051661c 1060 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1061 goto out_exit_flush_rq;
1da177e4 1062
287922eb 1063 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1064 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1065
f3b144aa
JA
1066 /*
1067 * This also sets hw/phys segments, boundary and size
1068 */
c20e8de2 1069 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1070
44ec9542
AS
1071 q->sg_reserved_size = INT_MAX;
1072
eb1c160b
TS
1073 /* Protect q->elevator from elevator_change */
1074 mutex_lock(&q->sysfs_lock);
1075
b82d4b19 1076 /* init elevator */
eb1c160b
TS
1077 if (elevator_init(q, NULL)) {
1078 mutex_unlock(&q->sysfs_lock);
6d247d7f 1079 goto out_exit_flush_rq;
eb1c160b
TS
1080 }
1081
1082 mutex_unlock(&q->sysfs_lock);
5ea708d1 1083 return 0;
eb1c160b 1084
6d247d7f
CH
1085out_exit_flush_rq:
1086 if (q->exit_rq_fn)
1087 q->exit_rq_fn(q, q->fq->flush_rq);
1088out_free_flush_queue:
ba483388 1089 blk_free_flush_queue(q->fq);
001b077d 1090 q->fq = NULL;
5ea708d1 1091 return -ENOMEM;
1da177e4 1092}
5151412d 1093EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1094
09ac46c4 1095bool blk_get_queue(struct request_queue *q)
1da177e4 1096{
3f3299d5 1097 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1098 __blk_get_queue(q);
1099 return true;
1da177e4
LT
1100 }
1101
09ac46c4 1102 return false;
1da177e4 1103}
d86e0e83 1104EXPORT_SYMBOL(blk_get_queue);
1da177e4 1105
5b788ce3 1106static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1107{
e8064021 1108 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1109 elv_put_request(rl->q, rq);
f1f8cc94 1110 if (rq->elv.icq)
11a3122f 1111 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1112 }
1113
5b788ce3 1114 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1115}
1116
1da177e4
LT
1117/*
1118 * ioc_batching returns true if the ioc is a valid batching request and
1119 * should be given priority access to a request.
1120 */
165125e1 1121static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1122{
1123 if (!ioc)
1124 return 0;
1125
1126 /*
1127 * Make sure the process is able to allocate at least 1 request
1128 * even if the batch times out, otherwise we could theoretically
1129 * lose wakeups.
1130 */
1131 return ioc->nr_batch_requests == q->nr_batching ||
1132 (ioc->nr_batch_requests > 0
1133 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1134}
1135
1136/*
1137 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1138 * will cause the process to be a "batcher" on all queues in the system. This
1139 * is the behaviour we want though - once it gets a wakeup it should be given
1140 * a nice run.
1141 */
165125e1 1142static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1143{
1144 if (!ioc || ioc_batching(q, ioc))
1145 return;
1146
1147 ioc->nr_batch_requests = q->nr_batching;
1148 ioc->last_waited = jiffies;
1149}
1150
5b788ce3 1151static void __freed_request(struct request_list *rl, int sync)
1da177e4 1152{
5b788ce3 1153 struct request_queue *q = rl->q;
1da177e4 1154
d40f75a0
TH
1155 if (rl->count[sync] < queue_congestion_off_threshold(q))
1156 blk_clear_congested(rl, sync);
1da177e4 1157
1faa16d2
JA
1158 if (rl->count[sync] + 1 <= q->nr_requests) {
1159 if (waitqueue_active(&rl->wait[sync]))
1160 wake_up(&rl->wait[sync]);
1da177e4 1161
5b788ce3 1162 blk_clear_rl_full(rl, sync);
1da177e4
LT
1163 }
1164}
1165
1166/*
1167 * A request has just been released. Account for it, update the full and
1168 * congestion status, wake up any waiters. Called under q->queue_lock.
1169 */
e8064021
CH
1170static void freed_request(struct request_list *rl, bool sync,
1171 req_flags_t rq_flags)
1da177e4 1172{
5b788ce3 1173 struct request_queue *q = rl->q;
1da177e4 1174
8a5ecdd4 1175 q->nr_rqs[sync]--;
1faa16d2 1176 rl->count[sync]--;
e8064021 1177 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1178 q->nr_rqs_elvpriv--;
1da177e4 1179
5b788ce3 1180 __freed_request(rl, sync);
1da177e4 1181
1faa16d2 1182 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1183 __freed_request(rl, sync ^ 1);
1da177e4
LT
1184}
1185
e3a2b3f9
JA
1186int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1187{
1188 struct request_list *rl;
d40f75a0 1189 int on_thresh, off_thresh;
e3a2b3f9 1190
332ebbf7
BVA
1191 WARN_ON_ONCE(q->mq_ops);
1192
e3a2b3f9
JA
1193 spin_lock_irq(q->queue_lock);
1194 q->nr_requests = nr;
1195 blk_queue_congestion_threshold(q);
d40f75a0
TH
1196 on_thresh = queue_congestion_on_threshold(q);
1197 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1198
d40f75a0
TH
1199 blk_queue_for_each_rl(rl, q) {
1200 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1201 blk_set_congested(rl, BLK_RW_SYNC);
1202 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1203 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1204
d40f75a0
TH
1205 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1206 blk_set_congested(rl, BLK_RW_ASYNC);
1207 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1208 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1209
e3a2b3f9
JA
1210 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1211 blk_set_rl_full(rl, BLK_RW_SYNC);
1212 } else {
1213 blk_clear_rl_full(rl, BLK_RW_SYNC);
1214 wake_up(&rl->wait[BLK_RW_SYNC]);
1215 }
1216
1217 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1218 blk_set_rl_full(rl, BLK_RW_ASYNC);
1219 } else {
1220 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1221 wake_up(&rl->wait[BLK_RW_ASYNC]);
1222 }
1223 }
1224
1225 spin_unlock_irq(q->queue_lock);
1226 return 0;
1227}
1228
da8303c6 1229/**
a06e05e6 1230 * __get_request - get a free request
5b788ce3 1231 * @rl: request list to allocate from
ef295ecf 1232 * @op: operation and flags
da8303c6 1233 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1234 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1235 *
1236 * Get a free request from @q. This function may fail under memory
1237 * pressure or if @q is dead.
1238 *
da3dae54 1239 * Must be called with @q->queue_lock held and,
a492f075
JL
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1242 */
ef295ecf 1243static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1244 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1245{
5b788ce3 1246 struct request_queue *q = rl->q;
b679281a 1247 struct request *rq;
7f4b35d1
TH
1248 struct elevator_type *et = q->elevator->type;
1249 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1250 struct io_cq *icq = NULL;
ef295ecf 1251 const bool is_sync = op_is_sync(op);
75eb6c37 1252 int may_queue;
6a15674d
BVA
1253 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1254 __GFP_DIRECT_RECLAIM;
e8064021 1255 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1256
2fff8a92
BVA
1257 lockdep_assert_held(q->queue_lock);
1258
3f3299d5 1259 if (unlikely(blk_queue_dying(q)))
a492f075 1260 return ERR_PTR(-ENODEV);
da8303c6 1261
ef295ecf 1262 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1263 if (may_queue == ELV_MQUEUE_NO)
1264 goto rq_starved;
1265
1faa16d2
JA
1266 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1267 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1268 /*
1269 * The queue will fill after this allocation, so set
1270 * it as full, and mark this process as "batching".
1271 * This process will be allowed to complete a batch of
1272 * requests, others will be blocked.
1273 */
5b788ce3 1274 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1275 ioc_set_batching(q, ioc);
5b788ce3 1276 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1277 } else {
1278 if (may_queue != ELV_MQUEUE_MUST
1279 && !ioc_batching(q, ioc)) {
1280 /*
1281 * The queue is full and the allocating
1282 * process is not a "batcher", and not
1283 * exempted by the IO scheduler
1284 */
a492f075 1285 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1286 }
1287 }
1da177e4 1288 }
d40f75a0 1289 blk_set_congested(rl, is_sync);
1da177e4
LT
1290 }
1291
082cf69e
JA
1292 /*
1293 * Only allow batching queuers to allocate up to 50% over the defined
1294 * limit of requests, otherwise we could have thousands of requests
1295 * allocated with any setting of ->nr_requests
1296 */
1faa16d2 1297 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1298 return ERR_PTR(-ENOMEM);
fd782a4a 1299
8a5ecdd4 1300 q->nr_rqs[is_sync]++;
1faa16d2
JA
1301 rl->count[is_sync]++;
1302 rl->starved[is_sync] = 0;
cb98fc8b 1303
f1f8cc94
TH
1304 /*
1305 * Decide whether the new request will be managed by elevator. If
e8064021 1306 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1307 * prevent the current elevator from being destroyed until the new
1308 * request is freed. This guarantees icq's won't be destroyed and
1309 * makes creating new ones safe.
1310 *
e6f7f93d
CH
1311 * Flush requests do not use the elevator so skip initialization.
1312 * This allows a request to share the flush and elevator data.
1313 *
f1f8cc94
TH
1314 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1315 * it will be created after releasing queue_lock.
1316 */
e6f7f93d 1317 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1318 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1319 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1320 if (et->icq_cache && ioc)
1321 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1322 }
cb98fc8b 1323
f253b86b 1324 if (blk_queue_io_stat(q))
e8064021 1325 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1326 spin_unlock_irq(q->queue_lock);
1327
29e2b09a 1328 /* allocate and init request */
5b788ce3 1329 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1330 if (!rq)
b679281a 1331 goto fail_alloc;
1da177e4 1332
29e2b09a 1333 blk_rq_init(q, rq);
a051661c 1334 blk_rq_set_rl(rq, rl);
ef295ecf 1335 rq->cmd_flags = op;
e8064021 1336 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1337 if (flags & BLK_MQ_REQ_PREEMPT)
1338 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1339
aaf7c680 1340 /* init elvpriv */
e8064021 1341 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1342 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1343 if (ioc)
1344 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1345 if (!icq)
1346 goto fail_elvpriv;
29e2b09a 1347 }
aaf7c680
TH
1348
1349 rq->elv.icq = icq;
1350 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1351 goto fail_elvpriv;
1352
1353 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1354 if (icq)
1355 get_io_context(icq->ioc);
1356 }
aaf7c680 1357out:
88ee5ef1
JA
1358 /*
1359 * ioc may be NULL here, and ioc_batching will be false. That's
1360 * OK, if the queue is under the request limit then requests need
1361 * not count toward the nr_batch_requests limit. There will always
1362 * be some limit enforced by BLK_BATCH_TIME.
1363 */
1da177e4
LT
1364 if (ioc_batching(q, ioc))
1365 ioc->nr_batch_requests--;
6728cb0e 1366
e6a40b09 1367 trace_block_getrq(q, bio, op);
1da177e4 1368 return rq;
b679281a 1369
aaf7c680
TH
1370fail_elvpriv:
1371 /*
1372 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1373 * and may fail indefinitely under memory pressure and thus
1374 * shouldn't stall IO. Treat this request as !elvpriv. This will
1375 * disturb iosched and blkcg but weird is bettern than dead.
1376 */
7b2b10e0 1377 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1378 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1379
e8064021 1380 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1381 rq->elv.icq = NULL;
1382
1383 spin_lock_irq(q->queue_lock);
8a5ecdd4 1384 q->nr_rqs_elvpriv--;
aaf7c680
TH
1385 spin_unlock_irq(q->queue_lock);
1386 goto out;
1387
b679281a
TH
1388fail_alloc:
1389 /*
1390 * Allocation failed presumably due to memory. Undo anything we
1391 * might have messed up.
1392 *
1393 * Allocating task should really be put onto the front of the wait
1394 * queue, but this is pretty rare.
1395 */
1396 spin_lock_irq(q->queue_lock);
e8064021 1397 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1398
1399 /*
1400 * in the very unlikely event that allocation failed and no
1401 * requests for this direction was pending, mark us starved so that
1402 * freeing of a request in the other direction will notice
1403 * us. another possible fix would be to split the rq mempool into
1404 * READ and WRITE
1405 */
1406rq_starved:
1407 if (unlikely(rl->count[is_sync] == 0))
1408 rl->starved[is_sync] = 1;
a492f075 1409 return ERR_PTR(-ENOMEM);
1da177e4
LT
1410}
1411
da8303c6 1412/**
a06e05e6 1413 * get_request - get a free request
da8303c6 1414 * @q: request_queue to allocate request from
ef295ecf 1415 * @op: operation and flags
da8303c6 1416 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1417 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1418 *
d0164adc
MG
1419 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1420 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1421 *
da3dae54 1422 * Must be called with @q->queue_lock held and,
a492f075
JL
1423 * Returns ERR_PTR on failure, with @q->queue_lock held.
1424 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1425 */
ef295ecf 1426static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1427 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1428{
ef295ecf 1429 const bool is_sync = op_is_sync(op);
a06e05e6 1430 DEFINE_WAIT(wait);
a051661c 1431 struct request_list *rl;
1da177e4 1432 struct request *rq;
a051661c 1433
2fff8a92 1434 lockdep_assert_held(q->queue_lock);
332ebbf7 1435 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1436
a051661c 1437 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1438retry:
6a15674d 1439 rq = __get_request(rl, op, bio, flags);
a492f075 1440 if (!IS_ERR(rq))
a06e05e6 1441 return rq;
1da177e4 1442
03a07c92
GR
1443 if (op & REQ_NOWAIT) {
1444 blk_put_rl(rl);
1445 return ERR_PTR(-EAGAIN);
1446 }
1447
6a15674d 1448 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1449 blk_put_rl(rl);
a492f075 1450 return rq;
a051661c 1451 }
1da177e4 1452
a06e05e6
TH
1453 /* wait on @rl and retry */
1454 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1455 TASK_UNINTERRUPTIBLE);
1da177e4 1456
e6a40b09 1457 trace_block_sleeprq(q, bio, op);
1da177e4 1458
a06e05e6
TH
1459 spin_unlock_irq(q->queue_lock);
1460 io_schedule();
d6344532 1461
a06e05e6
TH
1462 /*
1463 * After sleeping, we become a "batching" process and will be able
1464 * to allocate at least one request, and up to a big batch of them
1465 * for a small period time. See ioc_batching, ioc_set_batching
1466 */
a06e05e6 1467 ioc_set_batching(q, current->io_context);
05caf8db 1468
a06e05e6
TH
1469 spin_lock_irq(q->queue_lock);
1470 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1471
a06e05e6 1472 goto retry;
1da177e4
LT
1473}
1474
6a15674d 1475/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1476static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1477 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1478{
1479 struct request *rq;
6a15674d
BVA
1480 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1481 __GFP_DIRECT_RECLAIM;
055f6e18 1482 int ret = 0;
1da177e4 1483
332ebbf7
BVA
1484 WARN_ON_ONCE(q->mq_ops);
1485
7f4b35d1
TH
1486 /* create ioc upfront */
1487 create_io_context(gfp_mask, q->node);
1488
3a0a5299 1489 ret = blk_queue_enter(q, flags);
055f6e18
ML
1490 if (ret)
1491 return ERR_PTR(ret);
d6344532 1492 spin_lock_irq(q->queue_lock);
6a15674d 1493 rq = get_request(q, op, NULL, flags);
0c4de0f3 1494 if (IS_ERR(rq)) {
da8303c6 1495 spin_unlock_irq(q->queue_lock);
055f6e18 1496 blk_queue_exit(q);
0c4de0f3
CH
1497 return rq;
1498 }
1da177e4 1499
0c4de0f3
CH
1500 /* q->queue_lock is unlocked at this point */
1501 rq->__data_len = 0;
1502 rq->__sector = (sector_t) -1;
1503 rq->bio = rq->biotail = NULL;
1da177e4
LT
1504 return rq;
1505}
320ae51f 1506
6a15674d
BVA
1507/**
1508 * blk_get_request_flags - allocate a request
1509 * @q: request queue to allocate a request for
1510 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1511 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1512 */
1513struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1514 blk_mq_req_flags_t flags)
320ae51f 1515{
d280bab3
BVA
1516 struct request *req;
1517
6a15674d 1518 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1519 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1520
d280bab3 1521 if (q->mq_ops) {
6a15674d 1522 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1523 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1524 q->mq_ops->initialize_rq_fn(req);
1525 } else {
6a15674d 1526 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1527 if (!IS_ERR(req) && q->initialize_rq_fn)
1528 q->initialize_rq_fn(req);
1529 }
1530
1531 return req;
320ae51f 1532}
6a15674d
BVA
1533EXPORT_SYMBOL(blk_get_request_flags);
1534
1535struct request *blk_get_request(struct request_queue *q, unsigned int op,
1536 gfp_t gfp_mask)
1537{
1538 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1539 0 : BLK_MQ_REQ_NOWAIT);
1540}
1da177e4
LT
1541EXPORT_SYMBOL(blk_get_request);
1542
1543/**
1544 * blk_requeue_request - put a request back on queue
1545 * @q: request queue where request should be inserted
1546 * @rq: request to be inserted
1547 *
1548 * Description:
1549 * Drivers often keep queueing requests until the hardware cannot accept
1550 * more, when that condition happens we need to put the request back
1551 * on the queue. Must be called with queue lock held.
1552 */
165125e1 1553void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1554{
2fff8a92 1555 lockdep_assert_held(q->queue_lock);
332ebbf7 1556 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1557
242f9dcb
JA
1558 blk_delete_timer(rq);
1559 blk_clear_rq_complete(rq);
5f3ea37c 1560 trace_block_rq_requeue(q, rq);
87760e5e 1561 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1562
e8064021 1563 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1564 blk_queue_end_tag(q, rq);
1565
ba396a6c
JB
1566 BUG_ON(blk_queued_rq(rq));
1567
1da177e4
LT
1568 elv_requeue_request(q, rq);
1569}
1da177e4
LT
1570EXPORT_SYMBOL(blk_requeue_request);
1571
73c10101
JA
1572static void add_acct_request(struct request_queue *q, struct request *rq,
1573 int where)
1574{
320ae51f 1575 blk_account_io_start(rq, true);
7eaceacc 1576 __elv_add_request(q, rq, where);
73c10101
JA
1577}
1578
d62e26b3 1579static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1580 struct hd_struct *part, unsigned long now,
1581 unsigned int inflight)
074a7aca 1582{
b8d62b3a 1583 if (inflight) {
074a7aca 1584 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1585 inflight * (now - part->stamp));
074a7aca
TH
1586 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1587 }
1588 part->stamp = now;
1589}
1590
1591/**
496aa8a9 1592 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1593 * @q: target block queue
496aa8a9
RD
1594 * @cpu: cpu number for stats access
1595 * @part: target partition
1da177e4
LT
1596 *
1597 * The average IO queue length and utilisation statistics are maintained
1598 * by observing the current state of the queue length and the amount of
1599 * time it has been in this state for.
1600 *
1601 * Normally, that accounting is done on IO completion, but that can result
1602 * in more than a second's worth of IO being accounted for within any one
1603 * second, leading to >100% utilisation. To deal with that, we call this
1604 * function to do a round-off before returning the results when reading
1605 * /proc/diskstats. This accounts immediately for all queue usage up to
1606 * the current jiffies and restarts the counters again.
1607 */
d62e26b3 1608void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1609{
b8d62b3a 1610 struct hd_struct *part2 = NULL;
6f2576af 1611 unsigned long now = jiffies;
b8d62b3a
JA
1612 unsigned int inflight[2];
1613 int stats = 0;
1614
1615 if (part->stamp != now)
1616 stats |= 1;
1617
1618 if (part->partno) {
1619 part2 = &part_to_disk(part)->part0;
1620 if (part2->stamp != now)
1621 stats |= 2;
1622 }
1623
1624 if (!stats)
1625 return;
1626
1627 part_in_flight(q, part, inflight);
6f2576af 1628
b8d62b3a
JA
1629 if (stats & 2)
1630 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1631 if (stats & 1)
1632 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1633}
074a7aca 1634EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1635
47fafbc7 1636#ifdef CONFIG_PM
c8158819
LM
1637static void blk_pm_put_request(struct request *rq)
1638{
e8064021 1639 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1640 pm_runtime_mark_last_busy(rq->q->dev);
1641}
1642#else
1643static inline void blk_pm_put_request(struct request *rq) {}
1644#endif
1645
165125e1 1646void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1647{
e8064021
CH
1648 req_flags_t rq_flags = req->rq_flags;
1649
1da177e4
LT
1650 if (unlikely(!q))
1651 return;
1da177e4 1652
6f5ba581
CH
1653 if (q->mq_ops) {
1654 blk_mq_free_request(req);
1655 return;
1656 }
1657
2fff8a92
BVA
1658 lockdep_assert_held(q->queue_lock);
1659
c8158819
LM
1660 blk_pm_put_request(req);
1661
8922e16c
TH
1662 elv_completed_request(q, req);
1663
1cd96c24
BH
1664 /* this is a bio leak */
1665 WARN_ON(req->bio != NULL);
1666
87760e5e
JA
1667 wbt_done(q->rq_wb, &req->issue_stat);
1668
1da177e4
LT
1669 /*
1670 * Request may not have originated from ll_rw_blk. if not,
1671 * it didn't come out of our reserved rq pools
1672 */
e8064021 1673 if (rq_flags & RQF_ALLOCED) {
a051661c 1674 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1675 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1676
1da177e4 1677 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1678 BUG_ON(ELV_ON_HASH(req));
1da177e4 1679
a051661c 1680 blk_free_request(rl, req);
e8064021 1681 freed_request(rl, sync, rq_flags);
a051661c 1682 blk_put_rl(rl);
055f6e18 1683 blk_queue_exit(q);
1da177e4
LT
1684 }
1685}
6e39b69e
MC
1686EXPORT_SYMBOL_GPL(__blk_put_request);
1687
1da177e4
LT
1688void blk_put_request(struct request *req)
1689{
165125e1 1690 struct request_queue *q = req->q;
8922e16c 1691
320ae51f
JA
1692 if (q->mq_ops)
1693 blk_mq_free_request(req);
1694 else {
1695 unsigned long flags;
1696
1697 spin_lock_irqsave(q->queue_lock, flags);
1698 __blk_put_request(q, req);
1699 spin_unlock_irqrestore(q->queue_lock, flags);
1700 }
1da177e4 1701}
1da177e4
LT
1702EXPORT_SYMBOL(blk_put_request);
1703
320ae51f
JA
1704bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1705 struct bio *bio)
73c10101 1706{
1eff9d32 1707 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1708
73c10101
JA
1709 if (!ll_back_merge_fn(q, req, bio))
1710 return false;
1711
8c1cf6bb 1712 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1713
1714 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1715 blk_rq_set_mixed_merge(req);
1716
1717 req->biotail->bi_next = bio;
1718 req->biotail = bio;
4f024f37 1719 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1720 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1721
320ae51f 1722 blk_account_io_start(req, false);
73c10101
JA
1723 return true;
1724}
1725
320ae51f
JA
1726bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1727 struct bio *bio)
73c10101 1728{
1eff9d32 1729 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1730
73c10101
JA
1731 if (!ll_front_merge_fn(q, req, bio))
1732 return false;
1733
8c1cf6bb 1734 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1735
1736 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1737 blk_rq_set_mixed_merge(req);
1738
73c10101
JA
1739 bio->bi_next = req->bio;
1740 req->bio = bio;
1741
4f024f37
KO
1742 req->__sector = bio->bi_iter.bi_sector;
1743 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1744 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1745
320ae51f 1746 blk_account_io_start(req, false);
73c10101
JA
1747 return true;
1748}
1749
1e739730
CH
1750bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1751 struct bio *bio)
1752{
1753 unsigned short segments = blk_rq_nr_discard_segments(req);
1754
1755 if (segments >= queue_max_discard_segments(q))
1756 goto no_merge;
1757 if (blk_rq_sectors(req) + bio_sectors(bio) >
1758 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1759 goto no_merge;
1760
1761 req->biotail->bi_next = bio;
1762 req->biotail = bio;
1763 req->__data_len += bio->bi_iter.bi_size;
1764 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1765 req->nr_phys_segments = segments + 1;
1766
1767 blk_account_io_start(req, false);
1768 return true;
1769no_merge:
1770 req_set_nomerge(q, req);
1771 return false;
1772}
1773
bd87b589 1774/**
320ae51f 1775 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1776 * @q: request_queue new bio is being queued at
1777 * @bio: new bio being queued
1778 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1779 * @same_queue_rq: pointer to &struct request that gets filled in when
1780 * another request associated with @q is found on the plug list
1781 * (optional, may be %NULL)
bd87b589
TH
1782 *
1783 * Determine whether @bio being queued on @q can be merged with a request
1784 * on %current's plugged list. Returns %true if merge was successful,
1785 * otherwise %false.
1786 *
07c2bd37
TH
1787 * Plugging coalesces IOs from the same issuer for the same purpose without
1788 * going through @q->queue_lock. As such it's more of an issuing mechanism
1789 * than scheduling, and the request, while may have elvpriv data, is not
1790 * added on the elevator at this point. In addition, we don't have
1791 * reliable access to the elevator outside queue lock. Only check basic
1792 * merging parameters without querying the elevator.
da41a589
RE
1793 *
1794 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1795 */
320ae51f 1796bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1797 unsigned int *request_count,
1798 struct request **same_queue_rq)
73c10101
JA
1799{
1800 struct blk_plug *plug;
1801 struct request *rq;
92f399c7 1802 struct list_head *plug_list;
73c10101 1803
bd87b589 1804 plug = current->plug;
73c10101 1805 if (!plug)
34fe7c05 1806 return false;
56ebdaf2 1807 *request_count = 0;
73c10101 1808
92f399c7
SL
1809 if (q->mq_ops)
1810 plug_list = &plug->mq_list;
1811 else
1812 plug_list = &plug->list;
1813
1814 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1815 bool merged = false;
73c10101 1816
5b3f341f 1817 if (rq->q == q) {
1b2e19f1 1818 (*request_count)++;
5b3f341f
SL
1819 /*
1820 * Only blk-mq multiple hardware queues case checks the
1821 * rq in the same queue, there should be only one such
1822 * rq in a queue
1823 **/
1824 if (same_queue_rq)
1825 *same_queue_rq = rq;
1826 }
56ebdaf2 1827
07c2bd37 1828 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1829 continue;
1830
34fe7c05
CH
1831 switch (blk_try_merge(rq, bio)) {
1832 case ELEVATOR_BACK_MERGE:
1833 merged = bio_attempt_back_merge(q, rq, bio);
1834 break;
1835 case ELEVATOR_FRONT_MERGE:
1836 merged = bio_attempt_front_merge(q, rq, bio);
1837 break;
1e739730
CH
1838 case ELEVATOR_DISCARD_MERGE:
1839 merged = bio_attempt_discard_merge(q, rq, bio);
1840 break;
34fe7c05
CH
1841 default:
1842 break;
73c10101 1843 }
34fe7c05
CH
1844
1845 if (merged)
1846 return true;
73c10101 1847 }
34fe7c05
CH
1848
1849 return false;
73c10101
JA
1850}
1851
0809e3ac
JM
1852unsigned int blk_plug_queued_count(struct request_queue *q)
1853{
1854 struct blk_plug *plug;
1855 struct request *rq;
1856 struct list_head *plug_list;
1857 unsigned int ret = 0;
1858
1859 plug = current->plug;
1860 if (!plug)
1861 goto out;
1862
1863 if (q->mq_ops)
1864 plug_list = &plug->mq_list;
1865 else
1866 plug_list = &plug->list;
1867
1868 list_for_each_entry(rq, plug_list, queuelist) {
1869 if (rq->q == q)
1870 ret++;
1871 }
1872out:
1873 return ret;
1874}
1875
da8d7f07 1876void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1877{
0be0dee6
BVA
1878 struct io_context *ioc = rq_ioc(bio);
1879
1eff9d32 1880 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1881 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1882
4f024f37 1883 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1884 if (ioprio_valid(bio_prio(bio)))
1885 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1886 else if (ioc)
1887 req->ioprio = ioc->ioprio;
1888 else
1889 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1890 req->write_hint = bio->bi_write_hint;
bc1c56fd 1891 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1892}
da8d7f07 1893EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1894
dece1635 1895static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1896{
73c10101 1897 struct blk_plug *plug;
34fe7c05 1898 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1899 struct request *req, *free;
56ebdaf2 1900 unsigned int request_count = 0;
87760e5e 1901 unsigned int wb_acct;
1da177e4 1902
1da177e4
LT
1903 /*
1904 * low level driver can indicate that it wants pages above a
1905 * certain limit bounced to low memory (ie for highmem, or even
1906 * ISA dma in theory)
1907 */
1908 blk_queue_bounce(q, &bio);
1909
af67c31f 1910 blk_queue_split(q, &bio);
23688bf4 1911
e23947bd 1912 if (!bio_integrity_prep(bio))
dece1635 1913 return BLK_QC_T_NONE;
ffecfd1a 1914
f73f44eb 1915 if (op_is_flush(bio->bi_opf)) {
73c10101 1916 spin_lock_irq(q->queue_lock);
ae1b1539 1917 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1918 goto get_rq;
1919 }
1920
73c10101
JA
1921 /*
1922 * Check if we can merge with the plugged list before grabbing
1923 * any locks.
1924 */
0809e3ac
JM
1925 if (!blk_queue_nomerges(q)) {
1926 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1927 return BLK_QC_T_NONE;
0809e3ac
JM
1928 } else
1929 request_count = blk_plug_queued_count(q);
1da177e4 1930
73c10101 1931 spin_lock_irq(q->queue_lock);
2056a782 1932
34fe7c05
CH
1933 switch (elv_merge(q, &req, bio)) {
1934 case ELEVATOR_BACK_MERGE:
1935 if (!bio_attempt_back_merge(q, req, bio))
1936 break;
1937 elv_bio_merged(q, req, bio);
1938 free = attempt_back_merge(q, req);
1939 if (free)
1940 __blk_put_request(q, free);
1941 else
1942 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1943 goto out_unlock;
1944 case ELEVATOR_FRONT_MERGE:
1945 if (!bio_attempt_front_merge(q, req, bio))
1946 break;
1947 elv_bio_merged(q, req, bio);
1948 free = attempt_front_merge(q, req);
1949 if (free)
1950 __blk_put_request(q, free);
1951 else
1952 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1953 goto out_unlock;
1954 default:
1955 break;
1da177e4
LT
1956 }
1957
450991bc 1958get_rq:
87760e5e
JA
1959 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1960
1da177e4 1961 /*
450991bc 1962 * Grab a free request. This is might sleep but can not fail.
d6344532 1963 * Returns with the queue unlocked.
450991bc 1964 */
055f6e18 1965 blk_queue_enter_live(q);
6a15674d 1966 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1967 if (IS_ERR(req)) {
055f6e18 1968 blk_queue_exit(q);
87760e5e 1969 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1970 if (PTR_ERR(req) == -ENOMEM)
1971 bio->bi_status = BLK_STS_RESOURCE;
1972 else
1973 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1974 bio_endio(bio);
da8303c6
TH
1975 goto out_unlock;
1976 }
d6344532 1977
87760e5e
JA
1978 wbt_track(&req->issue_stat, wb_acct);
1979
450991bc
NP
1980 /*
1981 * After dropping the lock and possibly sleeping here, our request
1982 * may now be mergeable after it had proven unmergeable (above).
1983 * We don't worry about that case for efficiency. It won't happen
1984 * often, and the elevators are able to handle it.
1da177e4 1985 */
da8d7f07 1986 blk_init_request_from_bio(req, bio);
1da177e4 1987
9562ad9a 1988 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1989 req->cpu = raw_smp_processor_id();
73c10101
JA
1990
1991 plug = current->plug;
721a9602 1992 if (plug) {
dc6d36c9
JA
1993 /*
1994 * If this is the first request added after a plug, fire
7aef2e78 1995 * of a plug trace.
0a6219a9
ML
1996 *
1997 * @request_count may become stale because of schedule
1998 * out, so check plug list again.
dc6d36c9 1999 */
0a6219a9 2000 if (!request_count || list_empty(&plug->list))
dc6d36c9 2001 trace_block_plug(q);
3540d5e8 2002 else {
50d24c34
SL
2003 struct request *last = list_entry_rq(plug->list.prev);
2004 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2005 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2006 blk_flush_plug_list(plug, false);
019ceb7d
SL
2007 trace_block_plug(q);
2008 }
73c10101 2009 }
73c10101 2010 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2011 blk_account_io_start(req, true);
73c10101
JA
2012 } else {
2013 spin_lock_irq(q->queue_lock);
2014 add_acct_request(q, req, where);
24ecfbe2 2015 __blk_run_queue(q);
73c10101
JA
2016out_unlock:
2017 spin_unlock_irq(q->queue_lock);
2018 }
dece1635
JA
2019
2020 return BLK_QC_T_NONE;
1da177e4
LT
2021}
2022
1da177e4
LT
2023static void handle_bad_sector(struct bio *bio)
2024{
2025 char b[BDEVNAME_SIZE];
2026
2027 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2028 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2029 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2030 (unsigned long long)bio_end_sector(bio),
74d46992 2031 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
2032}
2033
c17bb495
AM
2034#ifdef CONFIG_FAIL_MAKE_REQUEST
2035
2036static DECLARE_FAULT_ATTR(fail_make_request);
2037
2038static int __init setup_fail_make_request(char *str)
2039{
2040 return setup_fault_attr(&fail_make_request, str);
2041}
2042__setup("fail_make_request=", setup_fail_make_request);
2043
b2c9cd37 2044static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2045{
b2c9cd37 2046 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2047}
2048
2049static int __init fail_make_request_debugfs(void)
2050{
dd48c085
AM
2051 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2052 NULL, &fail_make_request);
2053
21f9fcd8 2054 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2055}
2056
2057late_initcall(fail_make_request_debugfs);
2058
2059#else /* CONFIG_FAIL_MAKE_REQUEST */
2060
b2c9cd37
AM
2061static inline bool should_fail_request(struct hd_struct *part,
2062 unsigned int bytes)
c17bb495 2063{
b2c9cd37 2064 return false;
c17bb495
AM
2065}
2066
2067#endif /* CONFIG_FAIL_MAKE_REQUEST */
2068
74d46992
CH
2069/*
2070 * Remap block n of partition p to block n+start(p) of the disk.
2071 */
2072static inline int blk_partition_remap(struct bio *bio)
2073{
2074 struct hd_struct *p;
2075 int ret = 0;
2076
2077 /*
2078 * Zone reset does not include bi_size so bio_sectors() is always 0.
2079 * Include a test for the reset op code and perform the remap if needed.
2080 */
2081 if (!bio->bi_partno ||
2082 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2083 return 0;
2084
2085 rcu_read_lock();
2086 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2087 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2088 bio->bi_iter.bi_sector += p->start_sect;
2089 bio->bi_partno = 0;
2090 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2091 bio->bi_iter.bi_sector - p->start_sect);
2092 } else {
2093 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2094 ret = -EIO;
2095 }
2096 rcu_read_unlock();
2097
2098 return ret;
2099}
2100
c07e2b41
JA
2101/*
2102 * Check whether this bio extends beyond the end of the device.
2103 */
2104static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2105{
2106 sector_t maxsector;
2107
2108 if (!nr_sectors)
2109 return 0;
2110
2111 /* Test device or partition size, when known. */
74d46992 2112 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2113 if (maxsector) {
4f024f37 2114 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2115
2116 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2117 /*
2118 * This may well happen - the kernel calls bread()
2119 * without checking the size of the device, e.g., when
2120 * mounting a device.
2121 */
2122 handle_bad_sector(bio);
2123 return 1;
2124 }
2125 }
2126
2127 return 0;
2128}
2129
27a84d54
CH
2130static noinline_for_stack bool
2131generic_make_request_checks(struct bio *bio)
1da177e4 2132{
165125e1 2133 struct request_queue *q;
5a7bbad2 2134 int nr_sectors = bio_sectors(bio);
4e4cbee9 2135 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2136 char b[BDEVNAME_SIZE];
1da177e4
LT
2137
2138 might_sleep();
1da177e4 2139
c07e2b41
JA
2140 if (bio_check_eod(bio, nr_sectors))
2141 goto end_io;
1da177e4 2142
74d46992 2143 q = bio->bi_disk->queue;
5a7bbad2
CH
2144 if (unlikely(!q)) {
2145 printk(KERN_ERR
2146 "generic_make_request: Trying to access "
2147 "nonexistent block-device %s (%Lu)\n",
74d46992 2148 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2149 goto end_io;
2150 }
c17bb495 2151
03a07c92
GR
2152 /*
2153 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2154 * if queue is not a request based queue.
2155 */
2156
2157 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2158 goto not_supported;
2159
74d46992 2160 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2161 goto end_io;
2056a782 2162
74d46992
CH
2163 if (blk_partition_remap(bio))
2164 goto end_io;
2056a782 2165
5a7bbad2
CH
2166 if (bio_check_eod(bio, nr_sectors))
2167 goto end_io;
1e87901e 2168
5a7bbad2
CH
2169 /*
2170 * Filter flush bio's early so that make_request based
2171 * drivers without flush support don't have to worry
2172 * about them.
2173 */
f3a8ab7d 2174 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2175 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2176 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2177 if (!nr_sectors) {
4e4cbee9 2178 status = BLK_STS_OK;
51fd77bd
JA
2179 goto end_io;
2180 }
5a7bbad2 2181 }
5ddfe969 2182
288dab8a
CH
2183 switch (bio_op(bio)) {
2184 case REQ_OP_DISCARD:
2185 if (!blk_queue_discard(q))
2186 goto not_supported;
2187 break;
2188 case REQ_OP_SECURE_ERASE:
2189 if (!blk_queue_secure_erase(q))
2190 goto not_supported;
2191 break;
2192 case REQ_OP_WRITE_SAME:
74d46992 2193 if (!q->limits.max_write_same_sectors)
288dab8a 2194 goto not_supported;
58886785 2195 break;
2d253440
ST
2196 case REQ_OP_ZONE_REPORT:
2197 case REQ_OP_ZONE_RESET:
74d46992 2198 if (!blk_queue_is_zoned(q))
2d253440 2199 goto not_supported;
288dab8a 2200 break;
a6f0788e 2201 case REQ_OP_WRITE_ZEROES:
74d46992 2202 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2203 goto not_supported;
2204 break;
288dab8a
CH
2205 default:
2206 break;
5a7bbad2 2207 }
01edede4 2208
7f4b35d1
TH
2209 /*
2210 * Various block parts want %current->io_context and lazy ioc
2211 * allocation ends up trading a lot of pain for a small amount of
2212 * memory. Just allocate it upfront. This may fail and block
2213 * layer knows how to live with it.
2214 */
2215 create_io_context(GFP_ATOMIC, q->node);
2216
ae118896
TH
2217 if (!blkcg_bio_issue_check(q, bio))
2218 return false;
27a84d54 2219
fbbaf700
N
2220 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2221 trace_block_bio_queue(q, bio);
2222 /* Now that enqueuing has been traced, we need to trace
2223 * completion as well.
2224 */
2225 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2226 }
27a84d54 2227 return true;
a7384677 2228
288dab8a 2229not_supported:
4e4cbee9 2230 status = BLK_STS_NOTSUPP;
a7384677 2231end_io:
4e4cbee9 2232 bio->bi_status = status;
4246a0b6 2233 bio_endio(bio);
27a84d54 2234 return false;
1da177e4
LT
2235}
2236
27a84d54
CH
2237/**
2238 * generic_make_request - hand a buffer to its device driver for I/O
2239 * @bio: The bio describing the location in memory and on the device.
2240 *
2241 * generic_make_request() is used to make I/O requests of block
2242 * devices. It is passed a &struct bio, which describes the I/O that needs
2243 * to be done.
2244 *
2245 * generic_make_request() does not return any status. The
2246 * success/failure status of the request, along with notification of
2247 * completion, is delivered asynchronously through the bio->bi_end_io
2248 * function described (one day) else where.
2249 *
2250 * The caller of generic_make_request must make sure that bi_io_vec
2251 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2252 * set to describe the device address, and the
2253 * bi_end_io and optionally bi_private are set to describe how
2254 * completion notification should be signaled.
2255 *
2256 * generic_make_request and the drivers it calls may use bi_next if this
2257 * bio happens to be merged with someone else, and may resubmit the bio to
2258 * a lower device by calling into generic_make_request recursively, which
2259 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2260 */
dece1635 2261blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2262{
f5fe1b51
N
2263 /*
2264 * bio_list_on_stack[0] contains bios submitted by the current
2265 * make_request_fn.
2266 * bio_list_on_stack[1] contains bios that were submitted before
2267 * the current make_request_fn, but that haven't been processed
2268 * yet.
2269 */
2270 struct bio_list bio_list_on_stack[2];
dece1635 2271 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2272
27a84d54 2273 if (!generic_make_request_checks(bio))
dece1635 2274 goto out;
27a84d54
CH
2275
2276 /*
2277 * We only want one ->make_request_fn to be active at a time, else
2278 * stack usage with stacked devices could be a problem. So use
2279 * current->bio_list to keep a list of requests submited by a
2280 * make_request_fn function. current->bio_list is also used as a
2281 * flag to say if generic_make_request is currently active in this
2282 * task or not. If it is NULL, then no make_request is active. If
2283 * it is non-NULL, then a make_request is active, and new requests
2284 * should be added at the tail
2285 */
bddd87c7 2286 if (current->bio_list) {
f5fe1b51 2287 bio_list_add(&current->bio_list[0], bio);
dece1635 2288 goto out;
d89d8796 2289 }
27a84d54 2290
d89d8796
NB
2291 /* following loop may be a bit non-obvious, and so deserves some
2292 * explanation.
2293 * Before entering the loop, bio->bi_next is NULL (as all callers
2294 * ensure that) so we have a list with a single bio.
2295 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2296 * we assign bio_list to a pointer to the bio_list_on_stack,
2297 * thus initialising the bio_list of new bios to be
27a84d54 2298 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2299 * through a recursive call to generic_make_request. If it
2300 * did, we find a non-NULL value in bio_list and re-enter the loop
2301 * from the top. In this case we really did just take the bio
bddd87c7 2302 * of the top of the list (no pretending) and so remove it from
27a84d54 2303 * bio_list, and call into ->make_request() again.
d89d8796
NB
2304 */
2305 BUG_ON(bio->bi_next);
f5fe1b51
N
2306 bio_list_init(&bio_list_on_stack[0]);
2307 current->bio_list = bio_list_on_stack;
d89d8796 2308 do {
74d46992 2309 struct request_queue *q = bio->bi_disk->queue;
9a95e4ef 2310 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
3a0a5299 2311 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 2312
3a0a5299 2313 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
2314 struct bio_list lower, same;
2315
2316 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2317 bio_list_on_stack[1] = bio_list_on_stack[0];
2318 bio_list_init(&bio_list_on_stack[0]);
dece1635 2319 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2320
2321 blk_queue_exit(q);
27a84d54 2322
79bd9959
N
2323 /* sort new bios into those for a lower level
2324 * and those for the same level
2325 */
2326 bio_list_init(&lower);
2327 bio_list_init(&same);
f5fe1b51 2328 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2329 if (q == bio->bi_disk->queue)
79bd9959
N
2330 bio_list_add(&same, bio);
2331 else
2332 bio_list_add(&lower, bio);
2333 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2334 bio_list_merge(&bio_list_on_stack[0], &lower);
2335 bio_list_merge(&bio_list_on_stack[0], &same);
2336 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2337 } else {
03a07c92
GR
2338 if (unlikely(!blk_queue_dying(q) &&
2339 (bio->bi_opf & REQ_NOWAIT)))
2340 bio_wouldblock_error(bio);
2341 else
2342 bio_io_error(bio);
3ef28e83 2343 }
f5fe1b51 2344 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2345 } while (bio);
bddd87c7 2346 current->bio_list = NULL; /* deactivate */
dece1635
JA
2347
2348out:
2349 return ret;
d89d8796 2350}
1da177e4
LT
2351EXPORT_SYMBOL(generic_make_request);
2352
f421e1d9
CH
2353/**
2354 * direct_make_request - hand a buffer directly to its device driver for I/O
2355 * @bio: The bio describing the location in memory and on the device.
2356 *
2357 * This function behaves like generic_make_request(), but does not protect
2358 * against recursion. Must only be used if the called driver is known
2359 * to not call generic_make_request (or direct_make_request) again from
2360 * its make_request function. (Calling direct_make_request again from
2361 * a workqueue is perfectly fine as that doesn't recurse).
2362 */
2363blk_qc_t direct_make_request(struct bio *bio)
2364{
2365 struct request_queue *q = bio->bi_disk->queue;
2366 bool nowait = bio->bi_opf & REQ_NOWAIT;
2367 blk_qc_t ret;
2368
2369 if (!generic_make_request_checks(bio))
2370 return BLK_QC_T_NONE;
2371
3a0a5299 2372 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2373 if (nowait && !blk_queue_dying(q))
2374 bio->bi_status = BLK_STS_AGAIN;
2375 else
2376 bio->bi_status = BLK_STS_IOERR;
2377 bio_endio(bio);
2378 return BLK_QC_T_NONE;
2379 }
2380
2381 ret = q->make_request_fn(q, bio);
2382 blk_queue_exit(q);
2383 return ret;
2384}
2385EXPORT_SYMBOL_GPL(direct_make_request);
2386
1da177e4 2387/**
710027a4 2388 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2389 * @bio: The &struct bio which describes the I/O
2390 *
2391 * submit_bio() is very similar in purpose to generic_make_request(), and
2392 * uses that function to do most of the work. Both are fairly rough
710027a4 2393 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2394 *
2395 */
4e49ea4a 2396blk_qc_t submit_bio(struct bio *bio)
1da177e4 2397{
bf2de6f5
JA
2398 /*
2399 * If it's a regular read/write or a barrier with data attached,
2400 * go through the normal accounting stuff before submission.
2401 */
e2a60da7 2402 if (bio_has_data(bio)) {
4363ac7c
MP
2403 unsigned int count;
2404
95fe6c1a 2405 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
6b257c46 2406 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2407 else
2408 count = bio_sectors(bio);
2409
a8ebb056 2410 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2411 count_vm_events(PGPGOUT, count);
2412 } else {
4f024f37 2413 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2414 count_vm_events(PGPGIN, count);
2415 }
2416
2417 if (unlikely(block_dump)) {
2418 char b[BDEVNAME_SIZE];
8dcbdc74 2419 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2420 current->comm, task_pid_nr(current),
a8ebb056 2421 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2422 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2423 bio_devname(bio, b), count);
bf2de6f5 2424 }
1da177e4
LT
2425 }
2426
dece1635 2427 return generic_make_request(bio);
1da177e4 2428}
1da177e4
LT
2429EXPORT_SYMBOL(submit_bio);
2430
ea435e1b
CH
2431bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2432{
2433 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2434 return false;
2435
2436 if (current->plug)
2437 blk_flush_plug_list(current->plug, false);
2438 return q->poll_fn(q, cookie);
2439}
2440EXPORT_SYMBOL_GPL(blk_poll);
2441
82124d60 2442/**
bf4e6b4e
HR
2443 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2444 * for new the queue limits
82124d60
KU
2445 * @q: the queue
2446 * @rq: the request being checked
2447 *
2448 * Description:
2449 * @rq may have been made based on weaker limitations of upper-level queues
2450 * in request stacking drivers, and it may violate the limitation of @q.
2451 * Since the block layer and the underlying device driver trust @rq
2452 * after it is inserted to @q, it should be checked against @q before
2453 * the insertion using this generic function.
2454 *
82124d60 2455 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2456 * limits when retrying requests on other queues. Those requests need
2457 * to be checked against the new queue limits again during dispatch.
82124d60 2458 */
bf4e6b4e
HR
2459static int blk_cloned_rq_check_limits(struct request_queue *q,
2460 struct request *rq)
82124d60 2461{
8fe0d473 2462 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2463 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2464 return -EIO;
2465 }
2466
2467 /*
2468 * queue's settings related to segment counting like q->bounce_pfn
2469 * may differ from that of other stacking queues.
2470 * Recalculate it to check the request correctly on this queue's
2471 * limitation.
2472 */
2473 blk_recalc_rq_segments(rq);
8a78362c 2474 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2475 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2476 return -EIO;
2477 }
2478
2479 return 0;
2480}
82124d60
KU
2481
2482/**
2483 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2484 * @q: the queue to submit the request
2485 * @rq: the request being queued
2486 */
2a842aca 2487blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2488{
2489 unsigned long flags;
4853abaa 2490 int where = ELEVATOR_INSERT_BACK;
82124d60 2491
bf4e6b4e 2492 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2493 return BLK_STS_IOERR;
82124d60 2494
b2c9cd37
AM
2495 if (rq->rq_disk &&
2496 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2497 return BLK_STS_IOERR;
82124d60 2498
7fb4898e
KB
2499 if (q->mq_ops) {
2500 if (blk_queue_io_stat(q))
2501 blk_account_io_start(rq, true);
157f377b
JA
2502 /*
2503 * Since we have a scheduler attached on the top device,
2504 * bypass a potential scheduler on the bottom device for
2505 * insert.
2506 */
b0850297 2507 blk_mq_request_bypass_insert(rq, true);
2a842aca 2508 return BLK_STS_OK;
7fb4898e
KB
2509 }
2510
82124d60 2511 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2512 if (unlikely(blk_queue_dying(q))) {
8ba61435 2513 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2514 return BLK_STS_IOERR;
8ba61435 2515 }
82124d60
KU
2516
2517 /*
2518 * Submitting request must be dequeued before calling this function
2519 * because it will be linked to another request_queue
2520 */
2521 BUG_ON(blk_queued_rq(rq));
2522
f73f44eb 2523 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2524 where = ELEVATOR_INSERT_FLUSH;
2525
2526 add_acct_request(q, rq, where);
e67b77c7
JM
2527 if (where == ELEVATOR_INSERT_FLUSH)
2528 __blk_run_queue(q);
82124d60
KU
2529 spin_unlock_irqrestore(q->queue_lock, flags);
2530
2a842aca 2531 return BLK_STS_OK;
82124d60
KU
2532}
2533EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2534
80a761fd
TH
2535/**
2536 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2537 * @rq: request to examine
2538 *
2539 * Description:
2540 * A request could be merge of IOs which require different failure
2541 * handling. This function determines the number of bytes which
2542 * can be failed from the beginning of the request without
2543 * crossing into area which need to be retried further.
2544 *
2545 * Return:
2546 * The number of bytes to fail.
80a761fd
TH
2547 */
2548unsigned int blk_rq_err_bytes(const struct request *rq)
2549{
2550 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2551 unsigned int bytes = 0;
2552 struct bio *bio;
2553
e8064021 2554 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2555 return blk_rq_bytes(rq);
2556
2557 /*
2558 * Currently the only 'mixing' which can happen is between
2559 * different fastfail types. We can safely fail portions
2560 * which have all the failfast bits that the first one has -
2561 * the ones which are at least as eager to fail as the first
2562 * one.
2563 */
2564 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2565 if ((bio->bi_opf & ff) != ff)
80a761fd 2566 break;
4f024f37 2567 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2568 }
2569
2570 /* this could lead to infinite loop */
2571 BUG_ON(blk_rq_bytes(rq) && !bytes);
2572 return bytes;
2573}
2574EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2575
320ae51f 2576void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2577{
c2553b58 2578 if (blk_do_io_stat(req)) {
bc58ba94
JA
2579 const int rw = rq_data_dir(req);
2580 struct hd_struct *part;
2581 int cpu;
2582
2583 cpu = part_stat_lock();
09e099d4 2584 part = req->part;
bc58ba94
JA
2585 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2586 part_stat_unlock();
2587 }
2588}
2589
320ae51f 2590void blk_account_io_done(struct request *req)
bc58ba94 2591{
bc58ba94 2592 /*
dd4c133f
TH
2593 * Account IO completion. flush_rq isn't accounted as a
2594 * normal IO on queueing nor completion. Accounting the
2595 * containing request is enough.
bc58ba94 2596 */
e8064021 2597 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2598 unsigned long duration = jiffies - req->start_time;
2599 const int rw = rq_data_dir(req);
2600 struct hd_struct *part;
2601 int cpu;
2602
2603 cpu = part_stat_lock();
09e099d4 2604 part = req->part;
bc58ba94
JA
2605
2606 part_stat_inc(cpu, part, ios[rw]);
2607 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2608 part_round_stats(req->q, cpu, part);
2609 part_dec_in_flight(req->q, part, rw);
bc58ba94 2610
6c23a968 2611 hd_struct_put(part);
bc58ba94
JA
2612 part_stat_unlock();
2613 }
2614}
2615
47fafbc7 2616#ifdef CONFIG_PM
c8158819
LM
2617/*
2618 * Don't process normal requests when queue is suspended
2619 * or in the process of suspending/resuming
2620 */
e4f36b24 2621static bool blk_pm_allow_request(struct request *rq)
c8158819 2622{
e4f36b24
CH
2623 switch (rq->q->rpm_status) {
2624 case RPM_RESUMING:
2625 case RPM_SUSPENDING:
2626 return rq->rq_flags & RQF_PM;
2627 case RPM_SUSPENDED:
2628 return false;
2629 }
2630
2631 return true;
c8158819
LM
2632}
2633#else
e4f36b24 2634static bool blk_pm_allow_request(struct request *rq)
c8158819 2635{
e4f36b24 2636 return true;
c8158819
LM
2637}
2638#endif
2639
320ae51f
JA
2640void blk_account_io_start(struct request *rq, bool new_io)
2641{
2642 struct hd_struct *part;
2643 int rw = rq_data_dir(rq);
2644 int cpu;
2645
2646 if (!blk_do_io_stat(rq))
2647 return;
2648
2649 cpu = part_stat_lock();
2650
2651 if (!new_io) {
2652 part = rq->part;
2653 part_stat_inc(cpu, part, merges[rw]);
2654 } else {
2655 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2656 if (!hd_struct_try_get(part)) {
2657 /*
2658 * The partition is already being removed,
2659 * the request will be accounted on the disk only
2660 *
2661 * We take a reference on disk->part0 although that
2662 * partition will never be deleted, so we can treat
2663 * it as any other partition.
2664 */
2665 part = &rq->rq_disk->part0;
2666 hd_struct_get(part);
2667 }
d62e26b3
JA
2668 part_round_stats(rq->q, cpu, part);
2669 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2670 rq->part = part;
2671 }
2672
2673 part_stat_unlock();
2674}
2675
9c988374
CH
2676static struct request *elv_next_request(struct request_queue *q)
2677{
2678 struct request *rq;
2679 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2680
2681 WARN_ON_ONCE(q->mq_ops);
2682
2683 while (1) {
e4f36b24
CH
2684 list_for_each_entry(rq, &q->queue_head, queuelist) {
2685 if (blk_pm_allow_request(rq))
2686 return rq;
2687
2688 if (rq->rq_flags & RQF_SOFTBARRIER)
2689 break;
9c988374
CH
2690 }
2691
2692 /*
2693 * Flush request is running and flush request isn't queueable
2694 * in the drive, we can hold the queue till flush request is
2695 * finished. Even we don't do this, driver can't dispatch next
2696 * requests and will requeue them. And this can improve
2697 * throughput too. For example, we have request flush1, write1,
2698 * flush 2. flush1 is dispatched, then queue is hold, write1
2699 * isn't inserted to queue. After flush1 is finished, flush2
2700 * will be dispatched. Since disk cache is already clean,
2701 * flush2 will be finished very soon, so looks like flush2 is
2702 * folded to flush1.
2703 * Since the queue is hold, a flag is set to indicate the queue
2704 * should be restarted later. Please see flush_end_io() for
2705 * details.
2706 */
2707 if (fq->flush_pending_idx != fq->flush_running_idx &&
2708 !queue_flush_queueable(q)) {
2709 fq->flush_queue_delayed = 1;
2710 return NULL;
2711 }
2712 if (unlikely(blk_queue_bypass(q)) ||
2713 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2714 return NULL;
2715 }
2716}
2717
3bcddeac 2718/**
9934c8c0
TH
2719 * blk_peek_request - peek at the top of a request queue
2720 * @q: request queue to peek at
2721 *
2722 * Description:
2723 * Return the request at the top of @q. The returned request
2724 * should be started using blk_start_request() before LLD starts
2725 * processing it.
2726 *
2727 * Return:
2728 * Pointer to the request at the top of @q if available. Null
2729 * otherwise.
9934c8c0
TH
2730 */
2731struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2732{
2733 struct request *rq;
2734 int ret;
2735
2fff8a92 2736 lockdep_assert_held(q->queue_lock);
332ebbf7 2737 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2738
9c988374 2739 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2740 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2741 /*
2742 * This is the first time the device driver
2743 * sees this request (possibly after
2744 * requeueing). Notify IO scheduler.
2745 */
e8064021 2746 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2747 elv_activate_rq(q, rq);
2748
2749 /*
2750 * just mark as started even if we don't start
2751 * it, a request that has been delayed should
2752 * not be passed by new incoming requests
2753 */
e8064021 2754 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2755 trace_block_rq_issue(q, rq);
2756 }
2757
2758 if (!q->boundary_rq || q->boundary_rq == rq) {
2759 q->end_sector = rq_end_sector(rq);
2760 q->boundary_rq = NULL;
2761 }
2762
e8064021 2763 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2764 break;
2765
2e46e8b2 2766 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2767 /*
2768 * make sure space for the drain appears we
2769 * know we can do this because max_hw_segments
2770 * has been adjusted to be one fewer than the
2771 * device can handle
2772 */
2773 rq->nr_phys_segments++;
2774 }
2775
2776 if (!q->prep_rq_fn)
2777 break;
2778
2779 ret = q->prep_rq_fn(q, rq);
2780 if (ret == BLKPREP_OK) {
2781 break;
2782 } else if (ret == BLKPREP_DEFER) {
2783 /*
2784 * the request may have been (partially) prepped.
2785 * we need to keep this request in the front to
e8064021 2786 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2787 * prevent other fs requests from passing this one.
2788 */
2e46e8b2 2789 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2790 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2791 /*
2792 * remove the space for the drain we added
2793 * so that we don't add it again
2794 */
2795 --rq->nr_phys_segments;
2796 }
2797
2798 rq = NULL;
2799 break;
0fb5b1fb 2800 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2801 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2802 /*
2803 * Mark this request as started so we don't trigger
2804 * any debug logic in the end I/O path.
2805 */
2806 blk_start_request(rq);
2a842aca
CH
2807 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2808 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2809 } else {
2810 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2811 break;
2812 }
2813 }
2814
2815 return rq;
2816}
9934c8c0 2817EXPORT_SYMBOL(blk_peek_request);
158dbda0 2818
5034435c 2819static void blk_dequeue_request(struct request *rq)
158dbda0 2820{
9934c8c0
TH
2821 struct request_queue *q = rq->q;
2822
158dbda0
TH
2823 BUG_ON(list_empty(&rq->queuelist));
2824 BUG_ON(ELV_ON_HASH(rq));
2825
2826 list_del_init(&rq->queuelist);
2827
2828 /*
2829 * the time frame between a request being removed from the lists
2830 * and to it is freed is accounted as io that is in progress at
2831 * the driver side.
2832 */
9195291e 2833 if (blk_account_rq(rq)) {
0a7ae2ff 2834 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2835 set_io_start_time_ns(rq);
2836 }
158dbda0
TH
2837}
2838
9934c8c0
TH
2839/**
2840 * blk_start_request - start request processing on the driver
2841 * @req: request to dequeue
2842 *
2843 * Description:
2844 * Dequeue @req and start timeout timer on it. This hands off the
2845 * request to the driver.
9934c8c0
TH
2846 */
2847void blk_start_request(struct request *req)
2848{
2fff8a92 2849 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2850 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2851
9934c8c0
TH
2852 blk_dequeue_request(req);
2853
cf43e6be 2854 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2855 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2856 req->rq_flags |= RQF_STATS;
87760e5e 2857 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2858 }
2859
4912aa6c 2860 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2861 blk_add_timer(req);
2862}
2863EXPORT_SYMBOL(blk_start_request);
2864
2865/**
2866 * blk_fetch_request - fetch a request from a request queue
2867 * @q: request queue to fetch a request from
2868 *
2869 * Description:
2870 * Return the request at the top of @q. The request is started on
2871 * return and LLD can start processing it immediately.
2872 *
2873 * Return:
2874 * Pointer to the request at the top of @q if available. Null
2875 * otherwise.
9934c8c0
TH
2876 */
2877struct request *blk_fetch_request(struct request_queue *q)
2878{
2879 struct request *rq;
2880
2fff8a92 2881 lockdep_assert_held(q->queue_lock);
332ebbf7 2882 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2883
9934c8c0
TH
2884 rq = blk_peek_request(q);
2885 if (rq)
2886 blk_start_request(rq);
2887 return rq;
2888}
2889EXPORT_SYMBOL(blk_fetch_request);
2890
ef71de8b
CH
2891/*
2892 * Steal bios from a request and add them to a bio list.
2893 * The request must not have been partially completed before.
2894 */
2895void blk_steal_bios(struct bio_list *list, struct request *rq)
2896{
2897 if (rq->bio) {
2898 if (list->tail)
2899 list->tail->bi_next = rq->bio;
2900 else
2901 list->head = rq->bio;
2902 list->tail = rq->biotail;
2903
2904 rq->bio = NULL;
2905 rq->biotail = NULL;
2906 }
2907
2908 rq->__data_len = 0;
2909}
2910EXPORT_SYMBOL_GPL(blk_steal_bios);
2911
3bcddeac 2912/**
2e60e022 2913 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2914 * @req: the request being processed
2a842aca 2915 * @error: block status code
8ebf9756 2916 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2917 *
2918 * Description:
8ebf9756
RD
2919 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2920 * the request structure even if @req doesn't have leftover.
2921 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2922 *
2923 * This special helper function is only for request stacking drivers
2924 * (e.g. request-based dm) so that they can handle partial completion.
2925 * Actual device drivers should use blk_end_request instead.
2926 *
2927 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2928 * %false return from this function.
3bcddeac
KU
2929 *
2930 * Return:
2e60e022
TH
2931 * %false - this request doesn't have any more data
2932 * %true - this request has more data
3bcddeac 2933 **/
2a842aca
CH
2934bool blk_update_request(struct request *req, blk_status_t error,
2935 unsigned int nr_bytes)
1da177e4 2936{
f79ea416 2937 int total_bytes;
1da177e4 2938
2a842aca 2939 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2940
2e60e022
TH
2941 if (!req->bio)
2942 return false;
2943
2a842aca
CH
2944 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2945 !(req->rq_flags & RQF_QUIET)))
2946 print_req_error(req, error);
1da177e4 2947
bc58ba94 2948 blk_account_io_completion(req, nr_bytes);
d72d904a 2949
f79ea416
KO
2950 total_bytes = 0;
2951 while (req->bio) {
2952 struct bio *bio = req->bio;
4f024f37 2953 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2954
4f024f37 2955 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2956 req->bio = bio->bi_next;
1da177e4 2957
fbbaf700
N
2958 /* Completion has already been traced */
2959 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2960 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2961
f79ea416
KO
2962 total_bytes += bio_bytes;
2963 nr_bytes -= bio_bytes;
1da177e4 2964
f79ea416
KO
2965 if (!nr_bytes)
2966 break;
1da177e4
LT
2967 }
2968
2969 /*
2970 * completely done
2971 */
2e60e022
TH
2972 if (!req->bio) {
2973 /*
2974 * Reset counters so that the request stacking driver
2975 * can find how many bytes remain in the request
2976 * later.
2977 */
a2dec7b3 2978 req->__data_len = 0;
2e60e022
TH
2979 return false;
2980 }
1da177e4 2981
a2dec7b3 2982 req->__data_len -= total_bytes;
2e46e8b2
TH
2983
2984 /* update sector only for requests with clear definition of sector */
57292b58 2985 if (!blk_rq_is_passthrough(req))
a2dec7b3 2986 req->__sector += total_bytes >> 9;
2e46e8b2 2987
80a761fd 2988 /* mixed attributes always follow the first bio */
e8064021 2989 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2990 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2991 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2992 }
2993
ed6565e7
CH
2994 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2995 /*
2996 * If total number of sectors is less than the first segment
2997 * size, something has gone terribly wrong.
2998 */
2999 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3000 blk_dump_rq_flags(req, "request botched");
3001 req->__data_len = blk_rq_cur_bytes(req);
3002 }
2e46e8b2 3003
ed6565e7
CH
3004 /* recalculate the number of segments */
3005 blk_recalc_rq_segments(req);
3006 }
2e46e8b2 3007
2e60e022 3008 return true;
1da177e4 3009}
2e60e022 3010EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3011
2a842aca 3012static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3013 unsigned int nr_bytes,
3014 unsigned int bidi_bytes)
5efccd17 3015{
2e60e022
TH
3016 if (blk_update_request(rq, error, nr_bytes))
3017 return true;
5efccd17 3018
2e60e022
TH
3019 /* Bidi request must be completed as a whole */
3020 if (unlikely(blk_bidi_rq(rq)) &&
3021 blk_update_request(rq->next_rq, error, bidi_bytes))
3022 return true;
5efccd17 3023
e2e1a148
JA
3024 if (blk_queue_add_random(rq->q))
3025 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3026
3027 return false;
1da177e4
LT
3028}
3029
28018c24
JB
3030/**
3031 * blk_unprep_request - unprepare a request
3032 * @req: the request
3033 *
3034 * This function makes a request ready for complete resubmission (or
3035 * completion). It happens only after all error handling is complete,
3036 * so represents the appropriate moment to deallocate any resources
3037 * that were allocated to the request in the prep_rq_fn. The queue
3038 * lock is held when calling this.
3039 */
3040void blk_unprep_request(struct request *req)
3041{
3042 struct request_queue *q = req->q;
3043
e8064021 3044 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3045 if (q->unprep_rq_fn)
3046 q->unprep_rq_fn(q, req);
3047}
3048EXPORT_SYMBOL_GPL(blk_unprep_request);
3049
2a842aca 3050void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3051{
cf43e6be
JA
3052 struct request_queue *q = req->q;
3053
2fff8a92 3054 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3055 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3056
cf43e6be 3057 if (req->rq_flags & RQF_STATS)
34dbad5d 3058 blk_stat_add(req);
cf43e6be 3059
e8064021 3060 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3061 blk_queue_end_tag(q, req);
b8286239 3062
ba396a6c 3063 BUG_ON(blk_queued_rq(req));
1da177e4 3064
57292b58 3065 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3066 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3067
e78042e5
MA
3068 blk_delete_timer(req);
3069
e8064021 3070 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3071 blk_unprep_request(req);
3072
bc58ba94 3073 blk_account_io_done(req);
b8286239 3074
87760e5e
JA
3075 if (req->end_io) {
3076 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3077 req->end_io(req, error);
87760e5e 3078 } else {
b8286239
KU
3079 if (blk_bidi_rq(req))
3080 __blk_put_request(req->next_rq->q, req->next_rq);
3081
cf43e6be 3082 __blk_put_request(q, req);
b8286239 3083 }
1da177e4 3084}
12120077 3085EXPORT_SYMBOL(blk_finish_request);
1da177e4 3086
3b11313a 3087/**
2e60e022
TH
3088 * blk_end_bidi_request - Complete a bidi request
3089 * @rq: the request to complete
2a842aca 3090 * @error: block status code
2e60e022
TH
3091 * @nr_bytes: number of bytes to complete @rq
3092 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3093 *
3094 * Description:
e3a04fe3 3095 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3096 * Drivers that supports bidi can safely call this member for any
3097 * type of request, bidi or uni. In the later case @bidi_bytes is
3098 * just ignored.
336cdb40
KU
3099 *
3100 * Return:
2e60e022
TH
3101 * %false - we are done with this request
3102 * %true - still buffers pending for this request
a0cd1285 3103 **/
2a842aca 3104static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3105 unsigned int nr_bytes, unsigned int bidi_bytes)
3106{
336cdb40 3107 struct request_queue *q = rq->q;
2e60e022 3108 unsigned long flags;
32fab448 3109
332ebbf7
BVA
3110 WARN_ON_ONCE(q->mq_ops);
3111
2e60e022
TH
3112 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3113 return true;
32fab448 3114
336cdb40 3115 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3116 blk_finish_request(rq, error);
336cdb40
KU
3117 spin_unlock_irqrestore(q->queue_lock, flags);
3118
2e60e022 3119 return false;
32fab448
KU
3120}
3121
336cdb40 3122/**
2e60e022
TH
3123 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3124 * @rq: the request to complete
2a842aca 3125 * @error: block status code
e3a04fe3
KU
3126 * @nr_bytes: number of bytes to complete @rq
3127 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3128 *
3129 * Description:
2e60e022
TH
3130 * Identical to blk_end_bidi_request() except that queue lock is
3131 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3132 *
3133 * Return:
2e60e022
TH
3134 * %false - we are done with this request
3135 * %true - still buffers pending for this request
336cdb40 3136 **/
2a842aca 3137static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3138 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3139{
2fff8a92 3140 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3141 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3142
2e60e022
TH
3143 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3144 return true;
336cdb40 3145
2e60e022 3146 blk_finish_request(rq, error);
336cdb40 3147
2e60e022 3148 return false;
336cdb40 3149}
e19a3ab0
KU
3150
3151/**
3152 * blk_end_request - Helper function for drivers to complete the request.
3153 * @rq: the request being processed
2a842aca 3154 * @error: block status code
e19a3ab0
KU
3155 * @nr_bytes: number of bytes to complete
3156 *
3157 * Description:
3158 * Ends I/O on a number of bytes attached to @rq.
3159 * If @rq has leftover, sets it up for the next range of segments.
3160 *
3161 * Return:
b1f74493
FT
3162 * %false - we are done with this request
3163 * %true - still buffers pending for this request
e19a3ab0 3164 **/
2a842aca
CH
3165bool blk_end_request(struct request *rq, blk_status_t error,
3166 unsigned int nr_bytes)
e19a3ab0 3167{
332ebbf7 3168 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3169 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3170}
56ad1740 3171EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3172
3173/**
b1f74493
FT
3174 * blk_end_request_all - Helper function for drives to finish the request.
3175 * @rq: the request to finish
2a842aca 3176 * @error: block status code
336cdb40
KU
3177 *
3178 * Description:
b1f74493
FT
3179 * Completely finish @rq.
3180 */
2a842aca 3181void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3182{
b1f74493
FT
3183 bool pending;
3184 unsigned int bidi_bytes = 0;
336cdb40 3185
b1f74493
FT
3186 if (unlikely(blk_bidi_rq(rq)))
3187 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3188
b1f74493
FT
3189 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3190 BUG_ON(pending);
3191}
56ad1740 3192EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3193
e3a04fe3 3194/**
b1f74493
FT
3195 * __blk_end_request - Helper function for drivers to complete the request.
3196 * @rq: the request being processed
2a842aca 3197 * @error: block status code
b1f74493 3198 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3199 *
3200 * Description:
b1f74493 3201 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3202 *
3203 * Return:
b1f74493
FT
3204 * %false - we are done with this request
3205 * %true - still buffers pending for this request
e3a04fe3 3206 **/
2a842aca
CH
3207bool __blk_end_request(struct request *rq, blk_status_t error,
3208 unsigned int nr_bytes)
e3a04fe3 3209{
2fff8a92 3210 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3211 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3212
b1f74493 3213 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3214}
56ad1740 3215EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3216
32fab448 3217/**
b1f74493
FT
3218 * __blk_end_request_all - Helper function for drives to finish the request.
3219 * @rq: the request to finish
2a842aca 3220 * @error: block status code
32fab448
KU
3221 *
3222 * Description:
b1f74493 3223 * Completely finish @rq. Must be called with queue lock held.
32fab448 3224 */
2a842aca 3225void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3226{
b1f74493
FT
3227 bool pending;
3228 unsigned int bidi_bytes = 0;
3229
2fff8a92 3230 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3231 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3232
b1f74493
FT
3233 if (unlikely(blk_bidi_rq(rq)))
3234 bidi_bytes = blk_rq_bytes(rq->next_rq);
3235
3236 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3237 BUG_ON(pending);
32fab448 3238}
56ad1740 3239EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3240
e19a3ab0 3241/**
b1f74493
FT
3242 * __blk_end_request_cur - Helper function to finish the current request chunk.
3243 * @rq: the request to finish the current chunk for
2a842aca 3244 * @error: block status code
e19a3ab0
KU
3245 *
3246 * Description:
b1f74493
FT
3247 * Complete the current consecutively mapped chunk from @rq. Must
3248 * be called with queue lock held.
e19a3ab0
KU
3249 *
3250 * Return:
b1f74493
FT
3251 * %false - we are done with this request
3252 * %true - still buffers pending for this request
3253 */
2a842aca 3254bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3255{
b1f74493 3256 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3257}
56ad1740 3258EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3259
86db1e29
JA
3260void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3261 struct bio *bio)
1da177e4 3262{
b4f42e28 3263 if (bio_has_data(bio))
fb2dce86 3264 rq->nr_phys_segments = bio_phys_segments(q, bio);
acf1bbe8
JA
3265 else if (bio_op(bio) == REQ_OP_DISCARD)
3266 rq->nr_phys_segments = 1;
b4f42e28 3267
4f024f37 3268 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3269 rq->bio = rq->biotail = bio;
1da177e4 3270
74d46992
CH
3271 if (bio->bi_disk)
3272 rq->rq_disk = bio->bi_disk;
66846572 3273}
1da177e4 3274
2d4dc890
IL
3275#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3276/**
3277 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3278 * @rq: the request to be flushed
3279 *
3280 * Description:
3281 * Flush all pages in @rq.
3282 */
3283void rq_flush_dcache_pages(struct request *rq)
3284{
3285 struct req_iterator iter;
7988613b 3286 struct bio_vec bvec;
2d4dc890
IL
3287
3288 rq_for_each_segment(bvec, rq, iter)
7988613b 3289 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3290}
3291EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3292#endif
3293
ef9e3fac
KU
3294/**
3295 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3296 * @q : the queue of the device being checked
3297 *
3298 * Description:
3299 * Check if underlying low-level drivers of a device are busy.
3300 * If the drivers want to export their busy state, they must set own
3301 * exporting function using blk_queue_lld_busy() first.
3302 *
3303 * Basically, this function is used only by request stacking drivers
3304 * to stop dispatching requests to underlying devices when underlying
3305 * devices are busy. This behavior helps more I/O merging on the queue
3306 * of the request stacking driver and prevents I/O throughput regression
3307 * on burst I/O load.
3308 *
3309 * Return:
3310 * 0 - Not busy (The request stacking driver should dispatch request)
3311 * 1 - Busy (The request stacking driver should stop dispatching request)
3312 */
3313int blk_lld_busy(struct request_queue *q)
3314{
3315 if (q->lld_busy_fn)
3316 return q->lld_busy_fn(q);
3317
3318 return 0;
3319}
3320EXPORT_SYMBOL_GPL(blk_lld_busy);
3321
78d8e58a
MS
3322/**
3323 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3324 * @rq: the clone request to be cleaned up
3325 *
3326 * Description:
3327 * Free all bios in @rq for a cloned request.
3328 */
3329void blk_rq_unprep_clone(struct request *rq)
3330{
3331 struct bio *bio;
3332
3333 while ((bio = rq->bio) != NULL) {
3334 rq->bio = bio->bi_next;
3335
3336 bio_put(bio);
3337 }
3338}
3339EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3340
3341/*
3342 * Copy attributes of the original request to the clone request.
3343 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3344 */
3345static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3346{
3347 dst->cpu = src->cpu;
b0fd271d
KU
3348 dst->__sector = blk_rq_pos(src);
3349 dst->__data_len = blk_rq_bytes(src);
710108e0
BVA
3350 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3351 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3352 dst->special_vec = src->special_vec;
3353 }
b0fd271d
KU
3354 dst->nr_phys_segments = src->nr_phys_segments;
3355 dst->ioprio = src->ioprio;
3356 dst->extra_len = src->extra_len;
78d8e58a
MS
3357}
3358
3359/**
3360 * blk_rq_prep_clone - Helper function to setup clone request
3361 * @rq: the request to be setup
3362 * @rq_src: original request to be cloned
3363 * @bs: bio_set that bios for clone are allocated from
3364 * @gfp_mask: memory allocation mask for bio
3365 * @bio_ctr: setup function to be called for each clone bio.
3366 * Returns %0 for success, non %0 for failure.
3367 * @data: private data to be passed to @bio_ctr
3368 *
3369 * Description:
3370 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3371 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3372 * are not copied, and copying such parts is the caller's responsibility.
3373 * Also, pages which the original bios are pointing to are not copied
3374 * and the cloned bios just point same pages.
3375 * So cloned bios must be completed before original bios, which means
3376 * the caller must complete @rq before @rq_src.
3377 */
3378int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3379 struct bio_set *bs, gfp_t gfp_mask,
3380 int (*bio_ctr)(struct bio *, struct bio *, void *),
3381 void *data)
3382{
3383 struct bio *bio, *bio_src;
3384
3385 if (!bs)
3386 bs = fs_bio_set;
3387
3388 __rq_for_each_bio(bio_src, rq_src) {
3389 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3390 if (!bio)
3391 goto free_and_out;
3392
3393 if (bio_ctr && bio_ctr(bio, bio_src, data))
3394 goto free_and_out;
3395
3396 if (rq->bio) {
3397 rq->biotail->bi_next = bio;
3398 rq->biotail = bio;
3399 } else
3400 rq->bio = rq->biotail = bio;
3401 }
3402
3403 __blk_rq_prep_clone(rq, rq_src);
3404
3405 return 0;
3406
3407free_and_out:
3408 if (bio)
3409 bio_put(bio);
3410 blk_rq_unprep_clone(rq);
3411
3412 return -ENOMEM;
b0fd271d
KU
3413}
3414EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3415
59c3d45e 3416int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3417{
3418 return queue_work(kblockd_workqueue, work);
3419}
1da177e4
LT
3420EXPORT_SYMBOL(kblockd_schedule_work);
3421
ee63cfa7
JA
3422int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3423{
3424 return queue_work_on(cpu, kblockd_workqueue, work);
3425}
3426EXPORT_SYMBOL(kblockd_schedule_work_on);
3427
818cd1cb
JA
3428int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3429 unsigned long delay)
3430{
3431 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3432}
3433EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3434
59c3d45e
JA
3435int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3436 unsigned long delay)
e43473b7
VG
3437{
3438 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3439}
3440EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3441
8ab14595
JA
3442int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3443 unsigned long delay)
3444{
3445 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3446}
3447EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3448
75df7136
SJ
3449/**
3450 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3451 * @plug: The &struct blk_plug that needs to be initialized
3452 *
3453 * Description:
3454 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3455 * pending I/O should the task end up blocking between blk_start_plug() and
3456 * blk_finish_plug(). This is important from a performance perspective, but
3457 * also ensures that we don't deadlock. For instance, if the task is blocking
3458 * for a memory allocation, memory reclaim could end up wanting to free a
3459 * page belonging to that request that is currently residing in our private
3460 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3461 * this kind of deadlock.
3462 */
73c10101
JA
3463void blk_start_plug(struct blk_plug *plug)
3464{
3465 struct task_struct *tsk = current;
3466
dd6cf3e1
SL
3467 /*
3468 * If this is a nested plug, don't actually assign it.
3469 */
3470 if (tsk->plug)
3471 return;
3472
73c10101 3473 INIT_LIST_HEAD(&plug->list);
320ae51f 3474 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3475 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3476 /*
dd6cf3e1
SL
3477 * Store ordering should not be needed here, since a potential
3478 * preempt will imply a full memory barrier
73c10101 3479 */
dd6cf3e1 3480 tsk->plug = plug;
73c10101
JA
3481}
3482EXPORT_SYMBOL(blk_start_plug);
3483
3484static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3485{
3486 struct request *rqa = container_of(a, struct request, queuelist);
3487 struct request *rqb = container_of(b, struct request, queuelist);
3488
975927b9
JM
3489 return !(rqa->q < rqb->q ||
3490 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3491}
3492
49cac01e
JA
3493/*
3494 * If 'from_schedule' is true, then postpone the dispatch of requests
3495 * until a safe kblockd context. We due this to avoid accidental big
3496 * additional stack usage in driver dispatch, in places where the originally
3497 * plugger did not intend it.
3498 */
f6603783 3499static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3500 bool from_schedule)
99e22598 3501 __releases(q->queue_lock)
94b5eb28 3502{
2fff8a92
BVA
3503 lockdep_assert_held(q->queue_lock);
3504
49cac01e 3505 trace_block_unplug(q, depth, !from_schedule);
99e22598 3506
70460571 3507 if (from_schedule)
24ecfbe2 3508 blk_run_queue_async(q);
70460571 3509 else
24ecfbe2 3510 __blk_run_queue(q);
70460571 3511 spin_unlock(q->queue_lock);
94b5eb28
JA
3512}
3513
74018dc3 3514static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3515{
3516 LIST_HEAD(callbacks);
3517
2a7d5559
SL
3518 while (!list_empty(&plug->cb_list)) {
3519 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3520
2a7d5559
SL
3521 while (!list_empty(&callbacks)) {
3522 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3523 struct blk_plug_cb,
3524 list);
2a7d5559 3525 list_del(&cb->list);
74018dc3 3526 cb->callback(cb, from_schedule);
2a7d5559 3527 }
048c9374
N
3528 }
3529}
3530
9cbb1750
N
3531struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3532 int size)
3533{
3534 struct blk_plug *plug = current->plug;
3535 struct blk_plug_cb *cb;
3536
3537 if (!plug)
3538 return NULL;
3539
3540 list_for_each_entry(cb, &plug->cb_list, list)
3541 if (cb->callback == unplug && cb->data == data)
3542 return cb;
3543
3544 /* Not currently on the callback list */
3545 BUG_ON(size < sizeof(*cb));
3546 cb = kzalloc(size, GFP_ATOMIC);
3547 if (cb) {
3548 cb->data = data;
3549 cb->callback = unplug;
3550 list_add(&cb->list, &plug->cb_list);
3551 }
3552 return cb;
3553}
3554EXPORT_SYMBOL(blk_check_plugged);
3555
49cac01e 3556void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3557{
3558 struct request_queue *q;
3559 unsigned long flags;
3560 struct request *rq;
109b8129 3561 LIST_HEAD(list);
94b5eb28 3562 unsigned int depth;
73c10101 3563
74018dc3 3564 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3565
3566 if (!list_empty(&plug->mq_list))
3567 blk_mq_flush_plug_list(plug, from_schedule);
3568
73c10101
JA
3569 if (list_empty(&plug->list))
3570 return;
3571
109b8129
N
3572 list_splice_init(&plug->list, &list);
3573
422765c2 3574 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3575
3576 q = NULL;
94b5eb28 3577 depth = 0;
18811272
JA
3578
3579 /*
3580 * Save and disable interrupts here, to avoid doing it for every
3581 * queue lock we have to take.
3582 */
73c10101 3583 local_irq_save(flags);
109b8129
N
3584 while (!list_empty(&list)) {
3585 rq = list_entry_rq(list.next);
73c10101 3586 list_del_init(&rq->queuelist);
73c10101
JA
3587 BUG_ON(!rq->q);
3588 if (rq->q != q) {
99e22598
JA
3589 /*
3590 * This drops the queue lock
3591 */
3592 if (q)
49cac01e 3593 queue_unplugged(q, depth, from_schedule);
73c10101 3594 q = rq->q;
94b5eb28 3595 depth = 0;
73c10101
JA
3596 spin_lock(q->queue_lock);
3597 }
8ba61435
TH
3598
3599 /*
3600 * Short-circuit if @q is dead
3601 */
3f3299d5 3602 if (unlikely(blk_queue_dying(q))) {
2a842aca 3603 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3604 continue;
3605 }
3606
73c10101
JA
3607 /*
3608 * rq is already accounted, so use raw insert
3609 */
f73f44eb 3610 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3611 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3612 else
3613 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3614
3615 depth++;
73c10101
JA
3616 }
3617
99e22598
JA
3618 /*
3619 * This drops the queue lock
3620 */
3621 if (q)
49cac01e 3622 queue_unplugged(q, depth, from_schedule);
73c10101 3623
73c10101
JA
3624 local_irq_restore(flags);
3625}
73c10101
JA
3626
3627void blk_finish_plug(struct blk_plug *plug)
3628{
dd6cf3e1
SL
3629 if (plug != current->plug)
3630 return;
f6603783 3631 blk_flush_plug_list(plug, false);
73c10101 3632
dd6cf3e1 3633 current->plug = NULL;
73c10101 3634}
88b996cd 3635EXPORT_SYMBOL(blk_finish_plug);
73c10101 3636
47fafbc7 3637#ifdef CONFIG_PM
6c954667
LM
3638/**
3639 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3640 * @q: the queue of the device
3641 * @dev: the device the queue belongs to
3642 *
3643 * Description:
3644 * Initialize runtime-PM-related fields for @q and start auto suspend for
3645 * @dev. Drivers that want to take advantage of request-based runtime PM
3646 * should call this function after @dev has been initialized, and its
3647 * request queue @q has been allocated, and runtime PM for it can not happen
3648 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3649 * cases, driver should call this function before any I/O has taken place.
3650 *
3651 * This function takes care of setting up using auto suspend for the device,
3652 * the autosuspend delay is set to -1 to make runtime suspend impossible
3653 * until an updated value is either set by user or by driver. Drivers do
3654 * not need to touch other autosuspend settings.
3655 *
3656 * The block layer runtime PM is request based, so only works for drivers
3657 * that use request as their IO unit instead of those directly use bio's.
3658 */
3659void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3660{
99a6d169
ML
3661 /* Don't enable runtime PM for blk-mq until it is ready */
3662 if (q->mq_ops) {
3663 pm_runtime_disable(dev);
765e40b6 3664 return;
99a6d169 3665 }
765e40b6 3666
6c954667
LM
3667 q->dev = dev;
3668 q->rpm_status = RPM_ACTIVE;
3669 pm_runtime_set_autosuspend_delay(q->dev, -1);
3670 pm_runtime_use_autosuspend(q->dev);
3671}
3672EXPORT_SYMBOL(blk_pm_runtime_init);
3673
3674/**
3675 * blk_pre_runtime_suspend - Pre runtime suspend check
3676 * @q: the queue of the device
3677 *
3678 * Description:
3679 * This function will check if runtime suspend is allowed for the device
3680 * by examining if there are any requests pending in the queue. If there
3681 * are requests pending, the device can not be runtime suspended; otherwise,
3682 * the queue's status will be updated to SUSPENDING and the driver can
3683 * proceed to suspend the device.
3684 *
3685 * For the not allowed case, we mark last busy for the device so that
3686 * runtime PM core will try to autosuspend it some time later.
3687 *
3688 * This function should be called near the start of the device's
3689 * runtime_suspend callback.
3690 *
3691 * Return:
3692 * 0 - OK to runtime suspend the device
3693 * -EBUSY - Device should not be runtime suspended
3694 */
3695int blk_pre_runtime_suspend(struct request_queue *q)
3696{
3697 int ret = 0;
3698
4fd41a85
KX
3699 if (!q->dev)
3700 return ret;
3701
6c954667
LM
3702 spin_lock_irq(q->queue_lock);
3703 if (q->nr_pending) {
3704 ret = -EBUSY;
3705 pm_runtime_mark_last_busy(q->dev);
3706 } else {
3707 q->rpm_status = RPM_SUSPENDING;
3708 }
3709 spin_unlock_irq(q->queue_lock);
3710 return ret;
3711}
3712EXPORT_SYMBOL(blk_pre_runtime_suspend);
3713
3714/**
3715 * blk_post_runtime_suspend - Post runtime suspend processing
3716 * @q: the queue of the device
3717 * @err: return value of the device's runtime_suspend function
3718 *
3719 * Description:
3720 * Update the queue's runtime status according to the return value of the
3721 * device's runtime suspend function and mark last busy for the device so
3722 * that PM core will try to auto suspend the device at a later time.
3723 *
3724 * This function should be called near the end of the device's
3725 * runtime_suspend callback.
3726 */
3727void blk_post_runtime_suspend(struct request_queue *q, int err)
3728{
4fd41a85
KX
3729 if (!q->dev)
3730 return;
3731
6c954667
LM
3732 spin_lock_irq(q->queue_lock);
3733 if (!err) {
3734 q->rpm_status = RPM_SUSPENDED;
3735 } else {
3736 q->rpm_status = RPM_ACTIVE;
3737 pm_runtime_mark_last_busy(q->dev);
3738 }
3739 spin_unlock_irq(q->queue_lock);
3740}
3741EXPORT_SYMBOL(blk_post_runtime_suspend);
3742
3743/**
3744 * blk_pre_runtime_resume - Pre runtime resume processing
3745 * @q: the queue of the device
3746 *
3747 * Description:
3748 * Update the queue's runtime status to RESUMING in preparation for the
3749 * runtime resume of the device.
3750 *
3751 * This function should be called near the start of the device's
3752 * runtime_resume callback.
3753 */
3754void blk_pre_runtime_resume(struct request_queue *q)
3755{
4fd41a85
KX
3756 if (!q->dev)
3757 return;
3758
6c954667
LM
3759 spin_lock_irq(q->queue_lock);
3760 q->rpm_status = RPM_RESUMING;
3761 spin_unlock_irq(q->queue_lock);
3762}
3763EXPORT_SYMBOL(blk_pre_runtime_resume);
3764
3765/**
3766 * blk_post_runtime_resume - Post runtime resume processing
3767 * @q: the queue of the device
3768 * @err: return value of the device's runtime_resume function
3769 *
3770 * Description:
3771 * Update the queue's runtime status according to the return value of the
3772 * device's runtime_resume function. If it is successfully resumed, process
3773 * the requests that are queued into the device's queue when it is resuming
3774 * and then mark last busy and initiate autosuspend for it.
3775 *
3776 * This function should be called near the end of the device's
3777 * runtime_resume callback.
3778 */
3779void blk_post_runtime_resume(struct request_queue *q, int err)
3780{
4fd41a85
KX
3781 if (!q->dev)
3782 return;
3783
6c954667
LM
3784 spin_lock_irq(q->queue_lock);
3785 if (!err) {
3786 q->rpm_status = RPM_ACTIVE;
3787 __blk_run_queue(q);
3788 pm_runtime_mark_last_busy(q->dev);
c60855cd 3789 pm_request_autosuspend(q->dev);
6c954667
LM
3790 } else {
3791 q->rpm_status = RPM_SUSPENDED;
3792 }
3793 spin_unlock_irq(q->queue_lock);
3794}
3795EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3796
3797/**
3798 * blk_set_runtime_active - Force runtime status of the queue to be active
3799 * @q: the queue of the device
3800 *
3801 * If the device is left runtime suspended during system suspend the resume
3802 * hook typically resumes the device and corrects runtime status
3803 * accordingly. However, that does not affect the queue runtime PM status
3804 * which is still "suspended". This prevents processing requests from the
3805 * queue.
3806 *
3807 * This function can be used in driver's resume hook to correct queue
3808 * runtime PM status and re-enable peeking requests from the queue. It
3809 * should be called before first request is added to the queue.
3810 */
3811void blk_set_runtime_active(struct request_queue *q)
3812{
3813 spin_lock_irq(q->queue_lock);
3814 q->rpm_status = RPM_ACTIVE;
3815 pm_runtime_mark_last_busy(q->dev);
3816 pm_request_autosuspend(q->dev);
3817 spin_unlock_irq(q->queue_lock);
3818}
3819EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3820#endif
3821
1da177e4
LT
3822int __init blk_dev_init(void)
3823{
ef295ecf
CH
3824 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3825 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3826 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3827 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3828 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3829
89b90be2
TH
3830 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3831 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3832 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3833 if (!kblockd_workqueue)
3834 panic("Failed to create kblockd\n");
3835
3836 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3837 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3838
c2789bd4 3839 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3840 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3841
18fbda91
OS
3842#ifdef CONFIG_DEBUG_FS
3843 blk_debugfs_root = debugfs_create_dir("block", NULL);
3844#endif
3845
d38ecf93 3846 return 0;
1da177e4 3847}