]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: blk_init_allocated_queue() set q->fq as NULL in the fail case
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4ddd56b0 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
4e9b6f20 336 cancel_work_sync(&q->timeout_work);
f04c1fe7
ML
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
aba7afc5 342 cancel_delayed_work_sync(&q->requeue_work);
21c6e939 343 queue_for_each_hw_ctx(q, hctx, i)
9f993737 344 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
1da177e4
LT
348}
349EXPORT_SYMBOL(blk_sync_queue);
350
c9254f2d
BVA
351/**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358int blk_set_preempt_only(struct request_queue *q)
359{
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368}
369EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371void blk_clear_preempt_only(struct request_queue *q)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
3a0a5299 377 wake_up_all(&q->mq_freeze_wq);
c9254f2d
BVA
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
c246e80d
BVA
382/**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393inline void __blk_run_queue_uncond(struct request_queue *q)
394{
2fff8a92 395 lockdep_assert_held(q->queue_lock);
332ebbf7 396 WARN_ON_ONCE(q->mq_ops);
2fff8a92 397
c246e80d
BVA
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
24faf6f6
BVA
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
c246e80d 409 q->request_fn(q);
24faf6f6 410 q->request_fn_active--;
c246e80d 411}
a7928c15 412EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 413
1da177e4 414/**
80a4b58e 415 * __blk_run_queue - run a single device queue
1da177e4 416 * @q: The queue to run
80a4b58e
JA
417 *
418 * Description:
2fff8a92 419 * See @blk_run_queue.
1da177e4 420 */
24ecfbe2 421void __blk_run_queue(struct request_queue *q)
1da177e4 422{
2fff8a92 423 lockdep_assert_held(q->queue_lock);
332ebbf7 424 WARN_ON_ONCE(q->mq_ops);
2fff8a92 425
a538cd03
TH
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
c246e80d 429 __blk_run_queue_uncond(q);
75ad23bc
NP
430}
431EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 432
24ecfbe2
CH
433/**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
445 */
446void blk_run_queue_async(struct request_queue *q)
447{
2fff8a92 448 lockdep_assert_held(q->queue_lock);
332ebbf7 449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 450
70460571 451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 453}
c21e6beb 454EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 455
75ad23bc
NP
456/**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
80a4b58e
JA
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 462 * May be used to restart queueing when a request has completed.
75ad23bc
NP
463 */
464void blk_run_queue(struct request_queue *q)
465{
466 unsigned long flags;
467
332ebbf7
BVA
468 WARN_ON_ONCE(q->mq_ops);
469
75ad23bc 470 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 471 __blk_run_queue(q);
1da177e4
LT
472 spin_unlock_irqrestore(q->queue_lock, flags);
473}
474EXPORT_SYMBOL(blk_run_queue);
475
165125e1 476void blk_put_queue(struct request_queue *q)
483f4afc
AV
477{
478 kobject_put(&q->kobj);
479}
d86e0e83 480EXPORT_SYMBOL(blk_put_queue);
483f4afc 481
e3c78ca5 482/**
807592a4 483 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 484 * @q: queue to drain
c9a929dd 485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 486 *
c9a929dd
TH
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 490 */
807592a4
BVA
491static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
e3c78ca5 494{
458f27a9
AH
495 int i;
496
807592a4 497 lockdep_assert_held(q->queue_lock);
332ebbf7 498 WARN_ON_ONCE(q->mq_ops);
807592a4 499
e3c78ca5 500 while (true) {
481a7d64 501 bool drain = false;
e3c78ca5 502
b855b04a
TH
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
5efd6113 510 blkcg_drain_queue(q);
e3c78ca5 511
4eabc941
TH
512 /*
513 * This function might be called on a queue which failed
b855b04a
TH
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
4eabc941 518 */
b855b04a 519 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 520 __blk_run_queue(q);
c9a929dd 521
8a5ecdd4 522 drain |= q->nr_rqs_elvpriv;
24faf6f6 523 drain |= q->request_fn_active;
481a7d64
TH
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
e97c293c 531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
8a5ecdd4 534 drain |= q->nr_rqs[i];
481a7d64 535 drain |= q->in_flight[i];
7c94e1c1
ML
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
538 }
539 }
e3c78ca5 540
481a7d64 541 if (!drain)
e3c78ca5 542 break;
807592a4
BVA
543
544 spin_unlock_irq(q->queue_lock);
545
e3c78ca5 546 msleep(10);
807592a4
BVA
547
548 spin_lock_irq(q->queue_lock);
e3c78ca5 549 }
458f27a9
AH
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
a051661c
TH
557 struct request_list *rl;
558
a051661c
TH
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
458f27a9 562 }
e3c78ca5
TH
563}
564
454be724
ML
565void blk_drain_queue(struct request_queue *q)
566{
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570}
571
d732580b
TH
572/**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 578 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
d732580b
TH
581 */
582void blk_queue_bypass_start(struct request_queue *q)
583{
332ebbf7
BVA
584 WARN_ON_ONCE(q->mq_ops);
585
d732580b 586 spin_lock_irq(q->queue_lock);
776687bc 587 q->bypass_depth++;
d732580b
TH
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
776687bc
TH
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
807592a4
BVA
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
b82d4b19
TH
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
d732580b
TH
604}
605EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607/**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
615 */
616void blk_queue_bypass_end(struct request_queue *q)
617{
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623}
624EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
aed3ea94
JA
626void blk_set_queue_dying(struct request_queue *q)
627{
1b856086
BVA
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
aed3ea94 631
d3cfb2a0
ML
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
aed3ea94
JA
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
bbfc3c5d 644 spin_lock_irq(q->queue_lock);
aed3ea94
JA
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
34d9715a
ML
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
aed3ea94
JA
649 }
650 }
bbfc3c5d 651 spin_unlock_irq(q->queue_lock);
aed3ea94 652 }
055f6e18
ML
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
656}
657EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
c9a929dd
TH
659/**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
c246e80d
BVA
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 665 */
6728cb0e 666void blk_cleanup_queue(struct request_queue *q)
483f4afc 667{
c9a929dd 668 spinlock_t *lock = q->queue_lock;
e3335de9 669
3f3299d5 670 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 671 mutex_lock(&q->sysfs_lock);
aed3ea94 672 blk_set_queue_dying(q);
c9a929dd 673 spin_lock_irq(lock);
6ecf23af 674
80fd9979 675 /*
3f3299d5 676 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
6ecf23af
TH
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
c9a929dd
TH
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 689 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
c246e80d
BVA
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
3ef28e83 697 blk_freeze_queue(q);
9c1051aa 698 spin_lock_irq(lock);
c246e80d 699 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 700 spin_unlock_irq(lock);
c9a929dd 701
5e4415a1
ML
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts
707 */
708 if (q->mq_ops)
709 blk_mq_quiesce_queue(q);
710
5a48fc14
DW
711 /* for synchronous bio-based driver finish in-flight integrity i/o */
712 blk_flush_integrity();
713
c9a929dd 714 /* @q won't process any more request, flush async actions */
dc3b17cc 715 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
716 blk_sync_queue(q);
717
45a9c9d9
BVA
718 if (q->mq_ops)
719 blk_mq_free_queue(q);
3ef28e83 720 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 721
5e5cfac0
AH
722 spin_lock_irq(lock);
723 if (q->queue_lock != &q->__queue_lock)
724 q->queue_lock = &q->__queue_lock;
725 spin_unlock_irq(lock);
726
c9a929dd 727 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
728 blk_put_queue(q);
729}
1da177e4
LT
730EXPORT_SYMBOL(blk_cleanup_queue);
731
271508db 732/* Allocate memory local to the request queue */
6d247d7f 733static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 734{
6d247d7f
CH
735 struct request_queue *q = data;
736
737 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
738}
739
6d247d7f 740static void free_request_simple(void *element, void *data)
271508db
DR
741{
742 kmem_cache_free(request_cachep, element);
743}
744
6d247d7f
CH
745static void *alloc_request_size(gfp_t gfp_mask, void *data)
746{
747 struct request_queue *q = data;
748 struct request *rq;
749
750 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
751 q->node);
752 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
753 kfree(rq);
754 rq = NULL;
755 }
756 return rq;
757}
758
759static void free_request_size(void *element, void *data)
760{
761 struct request_queue *q = data;
762
763 if (q->exit_rq_fn)
764 q->exit_rq_fn(q, element);
765 kfree(element);
766}
767
5b788ce3
TH
768int blk_init_rl(struct request_list *rl, struct request_queue *q,
769 gfp_t gfp_mask)
1da177e4 770{
85acb3ba 771 if (unlikely(rl->rq_pool) || q->mq_ops)
1abec4fd
MS
772 return 0;
773
5b788ce3 774 rl->q = q;
1faa16d2
JA
775 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
776 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
777 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
778 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 779
6d247d7f
CH
780 if (q->cmd_size) {
781 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
782 alloc_request_size, free_request_size,
783 q, gfp_mask, q->node);
784 } else {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_simple, free_request_simple,
787 q, gfp_mask, q->node);
788 }
1da177e4
LT
789 if (!rl->rq_pool)
790 return -ENOMEM;
791
b425e504
BVA
792 if (rl != &q->root_rl)
793 WARN_ON_ONCE(!blk_get_queue(q));
794
1da177e4
LT
795 return 0;
796}
797
b425e504 798void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 799{
b425e504 800 if (rl->rq_pool) {
5b788ce3 801 mempool_destroy(rl->rq_pool);
b425e504
BVA
802 if (rl != &q->root_rl)
803 blk_put_queue(q);
804 }
5b788ce3
TH
805}
806
165125e1 807struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 808{
c304a51b 809 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
810}
811EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 812
3a0a5299
BVA
813/**
814 * blk_queue_enter() - try to increase q->q_usage_counter
815 * @q: request queue pointer
816 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
817 */
9a95e4ef 818int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 819{
3a0a5299
BVA
820 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
821
3ef28e83 822 while (true) {
3a0a5299 823 bool success = false;
3ef28e83 824
1f8c7019 825 rcu_read_lock();
3a0a5299
BVA
826 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
827 /*
828 * The code that sets the PREEMPT_ONLY flag is
829 * responsible for ensuring that that flag is globally
830 * visible before the queue is unfrozen.
831 */
832 if (preempt || !blk_queue_preempt_only(q)) {
833 success = true;
834 } else {
835 percpu_ref_put(&q->q_usage_counter);
836 }
837 }
1f8c7019 838 rcu_read_unlock();
3a0a5299
BVA
839
840 if (success)
3ef28e83
DW
841 return 0;
842
3a0a5299 843 if (flags & BLK_MQ_REQ_NOWAIT)
3ef28e83
DW
844 return -EBUSY;
845
5ed61d3f 846 /*
1671d522 847 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 848 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
849 * .q_usage_counter and reading .mq_freeze_depth or
850 * queue dying flag, otherwise the following wait may
851 * never return if the two reads are reordered.
5ed61d3f
ML
852 */
853 smp_rmb();
854
e650f3d6
AJ
855 wait_event(q->mq_freeze_wq,
856 (atomic_read(&q->mq_freeze_depth) == 0 &&
857 (preempt || !blk_queue_preempt_only(q))) ||
858 blk_queue_dying(q));
3ef28e83
DW
859 if (blk_queue_dying(q))
860 return -ENODEV;
3ef28e83
DW
861 }
862}
863
864void blk_queue_exit(struct request_queue *q)
865{
866 percpu_ref_put(&q->q_usage_counter);
867}
868
869static void blk_queue_usage_counter_release(struct percpu_ref *ref)
870{
871 struct request_queue *q =
872 container_of(ref, struct request_queue, q_usage_counter);
873
874 wake_up_all(&q->mq_freeze_wq);
875}
876
bca237a5 877static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 878{
bca237a5 879 struct request_queue *q = from_timer(q, t, timeout);
287922eb
CH
880
881 kblockd_schedule_work(&q->timeout_work);
882}
883
165125e1 884struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 885{
165125e1 886 struct request_queue *q;
1946089a 887
8324aa91 888 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 889 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
890 if (!q)
891 return NULL;
892
00380a40 893 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 894 if (q->id < 0)
3d2936f4 895 goto fail_q;
a73f730d 896
93b27e72 897 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
898 if (!q->bio_split)
899 goto fail_id;
900
d03f6cdc
JK
901 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
902 if (!q->backing_dev_info)
903 goto fail_split;
904
a83b576c
JA
905 q->stats = blk_alloc_queue_stats();
906 if (!q->stats)
907 goto fail_stats;
908
dc3b17cc 909 q->backing_dev_info->ra_pages =
09cbfeaf 910 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
911 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
912 q->backing_dev_info->name = "block";
5151412d 913 q->node = node_id;
0989a025 914
bca237a5
KC
915 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
916 laptop_mode_timer_fn, 0);
917 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
4e9b6f20 918 INIT_WORK(&q->timeout_work, NULL);
b855b04a 919 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 920 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 921 INIT_LIST_HEAD(&q->icq_list);
4eef3049 922#ifdef CONFIG_BLK_CGROUP
e8989fae 923 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 924#endif
3cca6dc1 925 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 926
8324aa91 927 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 928
5acb3cc2
WL
929#ifdef CONFIG_BLK_DEV_IO_TRACE
930 mutex_init(&q->blk_trace_mutex);
931#endif
483f4afc 932 mutex_init(&q->sysfs_lock);
e7e72bf6 933 spin_lock_init(&q->__queue_lock);
483f4afc 934
c94a96ac
VG
935 /*
936 * By default initialize queue_lock to internal lock and driver can
937 * override it later if need be.
938 */
939 q->queue_lock = &q->__queue_lock;
940
b82d4b19
TH
941 /*
942 * A queue starts its life with bypass turned on to avoid
943 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
944 * init. The initial bypass will be finished when the queue is
945 * registered by blk_register_queue().
b82d4b19
TH
946 */
947 q->bypass_depth = 1;
948 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
949
320ae51f
JA
950 init_waitqueue_head(&q->mq_freeze_wq);
951
3ef28e83
DW
952 /*
953 * Init percpu_ref in atomic mode so that it's faster to shutdown.
954 * See blk_register_queue() for details.
955 */
956 if (percpu_ref_init(&q->q_usage_counter,
957 blk_queue_usage_counter_release,
958 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 959 goto fail_bdi;
f51b802c 960
3ef28e83
DW
961 if (blkcg_init_queue(q))
962 goto fail_ref;
963
1da177e4 964 return q;
a73f730d 965
3ef28e83
DW
966fail_ref:
967 percpu_ref_exit(&q->q_usage_counter);
fff4996b 968fail_bdi:
a83b576c
JA
969 blk_free_queue_stats(q->stats);
970fail_stats:
d03f6cdc 971 bdi_put(q->backing_dev_info);
54efd50b
KO
972fail_split:
973 bioset_free(q->bio_split);
a73f730d
TH
974fail_id:
975 ida_simple_remove(&blk_queue_ida, q->id);
976fail_q:
977 kmem_cache_free(blk_requestq_cachep, q);
978 return NULL;
1da177e4 979}
1946089a 980EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
981
982/**
983 * blk_init_queue - prepare a request queue for use with a block device
984 * @rfn: The function to be called to process requests that have been
985 * placed on the queue.
986 * @lock: Request queue spin lock
987 *
988 * Description:
989 * If a block device wishes to use the standard request handling procedures,
990 * which sorts requests and coalesces adjacent requests, then it must
991 * call blk_init_queue(). The function @rfn will be called when there
992 * are requests on the queue that need to be processed. If the device
993 * supports plugging, then @rfn may not be called immediately when requests
994 * are available on the queue, but may be called at some time later instead.
995 * Plugged queues are generally unplugged when a buffer belonging to one
996 * of the requests on the queue is needed, or due to memory pressure.
997 *
998 * @rfn is not required, or even expected, to remove all requests off the
999 * queue, but only as many as it can handle at a time. If it does leave
1000 * requests on the queue, it is responsible for arranging that the requests
1001 * get dealt with eventually.
1002 *
1003 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1004 * request queue; this lock will be taken also from interrupt context, so irq
1005 * disabling is needed for it.
1da177e4 1006 *
710027a4 1007 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
1008 * it didn't succeed.
1009 *
1010 * Note:
1011 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1012 * when the block device is deactivated (such as at module unload).
1013 **/
1946089a 1014
165125e1 1015struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1016{
c304a51b 1017 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
1018}
1019EXPORT_SYMBOL(blk_init_queue);
1020
165125e1 1021struct request_queue *
1946089a
CL
1022blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1023{
5ea708d1 1024 struct request_queue *q;
1da177e4 1025
5ea708d1
CH
1026 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1027 if (!q)
c86d1b8a
MS
1028 return NULL;
1029
5ea708d1
CH
1030 q->request_fn = rfn;
1031 if (lock)
1032 q->queue_lock = lock;
1033 if (blk_init_allocated_queue(q) < 0) {
1034 blk_cleanup_queue(q);
1035 return NULL;
1036 }
18741986 1037
7982e90c 1038 return q;
01effb0d
MS
1039}
1040EXPORT_SYMBOL(blk_init_queue_node);
1041
dece1635 1042static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 1043
1da177e4 1044
5ea708d1
CH
1045int blk_init_allocated_queue(struct request_queue *q)
1046{
332ebbf7
BVA
1047 WARN_ON_ONCE(q->mq_ops);
1048
6d247d7f 1049 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 1050 if (!q->fq)
5ea708d1 1051 return -ENOMEM;
7982e90c 1052
6d247d7f
CH
1053 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1054 goto out_free_flush_queue;
7982e90c 1055
a051661c 1056 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 1057 goto out_exit_flush_rq;
1da177e4 1058
287922eb 1059 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 1060 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 1061
f3b144aa
JA
1062 /*
1063 * This also sets hw/phys segments, boundary and size
1064 */
c20e8de2 1065 blk_queue_make_request(q, blk_queue_bio);
1da177e4 1066
44ec9542
AS
1067 q->sg_reserved_size = INT_MAX;
1068
eb1c160b
TS
1069 /* Protect q->elevator from elevator_change */
1070 mutex_lock(&q->sysfs_lock);
1071
b82d4b19 1072 /* init elevator */
eb1c160b
TS
1073 if (elevator_init(q, NULL)) {
1074 mutex_unlock(&q->sysfs_lock);
6d247d7f 1075 goto out_exit_flush_rq;
eb1c160b
TS
1076 }
1077
1078 mutex_unlock(&q->sysfs_lock);
5ea708d1 1079 return 0;
eb1c160b 1080
6d247d7f
CH
1081out_exit_flush_rq:
1082 if (q->exit_rq_fn)
1083 q->exit_rq_fn(q, q->fq->flush_rq);
1084out_free_flush_queue:
ba483388 1085 blk_free_flush_queue(q->fq);
001b077d 1086 q->fq = NULL;
5ea708d1 1087 return -ENOMEM;
1da177e4 1088}
5151412d 1089EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1090
09ac46c4 1091bool blk_get_queue(struct request_queue *q)
1da177e4 1092{
3f3299d5 1093 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1094 __blk_get_queue(q);
1095 return true;
1da177e4
LT
1096 }
1097
09ac46c4 1098 return false;
1da177e4 1099}
d86e0e83 1100EXPORT_SYMBOL(blk_get_queue);
1da177e4 1101
5b788ce3 1102static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1103{
e8064021 1104 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1105 elv_put_request(rl->q, rq);
f1f8cc94 1106 if (rq->elv.icq)
11a3122f 1107 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1108 }
1109
5b788ce3 1110 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1111}
1112
1da177e4
LT
1113/*
1114 * ioc_batching returns true if the ioc is a valid batching request and
1115 * should be given priority access to a request.
1116 */
165125e1 1117static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1118{
1119 if (!ioc)
1120 return 0;
1121
1122 /*
1123 * Make sure the process is able to allocate at least 1 request
1124 * even if the batch times out, otherwise we could theoretically
1125 * lose wakeups.
1126 */
1127 return ioc->nr_batch_requests == q->nr_batching ||
1128 (ioc->nr_batch_requests > 0
1129 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1130}
1131
1132/*
1133 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1134 * will cause the process to be a "batcher" on all queues in the system. This
1135 * is the behaviour we want though - once it gets a wakeup it should be given
1136 * a nice run.
1137 */
165125e1 1138static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1139{
1140 if (!ioc || ioc_batching(q, ioc))
1141 return;
1142
1143 ioc->nr_batch_requests = q->nr_batching;
1144 ioc->last_waited = jiffies;
1145}
1146
5b788ce3 1147static void __freed_request(struct request_list *rl, int sync)
1da177e4 1148{
5b788ce3 1149 struct request_queue *q = rl->q;
1da177e4 1150
d40f75a0
TH
1151 if (rl->count[sync] < queue_congestion_off_threshold(q))
1152 blk_clear_congested(rl, sync);
1da177e4 1153
1faa16d2
JA
1154 if (rl->count[sync] + 1 <= q->nr_requests) {
1155 if (waitqueue_active(&rl->wait[sync]))
1156 wake_up(&rl->wait[sync]);
1da177e4 1157
5b788ce3 1158 blk_clear_rl_full(rl, sync);
1da177e4
LT
1159 }
1160}
1161
1162/*
1163 * A request has just been released. Account for it, update the full and
1164 * congestion status, wake up any waiters. Called under q->queue_lock.
1165 */
e8064021
CH
1166static void freed_request(struct request_list *rl, bool sync,
1167 req_flags_t rq_flags)
1da177e4 1168{
5b788ce3 1169 struct request_queue *q = rl->q;
1da177e4 1170
8a5ecdd4 1171 q->nr_rqs[sync]--;
1faa16d2 1172 rl->count[sync]--;
e8064021 1173 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1174 q->nr_rqs_elvpriv--;
1da177e4 1175
5b788ce3 1176 __freed_request(rl, sync);
1da177e4 1177
1faa16d2 1178 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1179 __freed_request(rl, sync ^ 1);
1da177e4
LT
1180}
1181
e3a2b3f9
JA
1182int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1183{
1184 struct request_list *rl;
d40f75a0 1185 int on_thresh, off_thresh;
e3a2b3f9 1186
332ebbf7
BVA
1187 WARN_ON_ONCE(q->mq_ops);
1188
e3a2b3f9
JA
1189 spin_lock_irq(q->queue_lock);
1190 q->nr_requests = nr;
1191 blk_queue_congestion_threshold(q);
d40f75a0
TH
1192 on_thresh = queue_congestion_on_threshold(q);
1193 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1194
d40f75a0
TH
1195 blk_queue_for_each_rl(rl, q) {
1196 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1197 blk_set_congested(rl, BLK_RW_SYNC);
1198 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1199 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1200
d40f75a0
TH
1201 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1202 blk_set_congested(rl, BLK_RW_ASYNC);
1203 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1204 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1205
e3a2b3f9
JA
1206 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1207 blk_set_rl_full(rl, BLK_RW_SYNC);
1208 } else {
1209 blk_clear_rl_full(rl, BLK_RW_SYNC);
1210 wake_up(&rl->wait[BLK_RW_SYNC]);
1211 }
1212
1213 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1214 blk_set_rl_full(rl, BLK_RW_ASYNC);
1215 } else {
1216 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1217 wake_up(&rl->wait[BLK_RW_ASYNC]);
1218 }
1219 }
1220
1221 spin_unlock_irq(q->queue_lock);
1222 return 0;
1223}
1224
da8303c6 1225/**
a06e05e6 1226 * __get_request - get a free request
5b788ce3 1227 * @rl: request list to allocate from
ef295ecf 1228 * @op: operation and flags
da8303c6 1229 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1230 * @flags: BLQ_MQ_REQ_* flags
da8303c6
TH
1231 *
1232 * Get a free request from @q. This function may fail under memory
1233 * pressure or if @q is dead.
1234 *
da3dae54 1235 * Must be called with @q->queue_lock held and,
a492f075
JL
1236 * Returns ERR_PTR on failure, with @q->queue_lock held.
1237 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1238 */
ef295ecf 1239static struct request *__get_request(struct request_list *rl, unsigned int op,
9a95e4ef 1240 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1241{
5b788ce3 1242 struct request_queue *q = rl->q;
b679281a 1243 struct request *rq;
7f4b35d1
TH
1244 struct elevator_type *et = q->elevator->type;
1245 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1246 struct io_cq *icq = NULL;
ef295ecf 1247 const bool is_sync = op_is_sync(op);
75eb6c37 1248 int may_queue;
6a15674d
BVA
1249 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1250 __GFP_DIRECT_RECLAIM;
e8064021 1251 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1252
2fff8a92
BVA
1253 lockdep_assert_held(q->queue_lock);
1254
3f3299d5 1255 if (unlikely(blk_queue_dying(q)))
a492f075 1256 return ERR_PTR(-ENODEV);
da8303c6 1257
ef295ecf 1258 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1259 if (may_queue == ELV_MQUEUE_NO)
1260 goto rq_starved;
1261
1faa16d2
JA
1262 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1263 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1264 /*
1265 * The queue will fill after this allocation, so set
1266 * it as full, and mark this process as "batching".
1267 * This process will be allowed to complete a batch of
1268 * requests, others will be blocked.
1269 */
5b788ce3 1270 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1271 ioc_set_batching(q, ioc);
5b788ce3 1272 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1273 } else {
1274 if (may_queue != ELV_MQUEUE_MUST
1275 && !ioc_batching(q, ioc)) {
1276 /*
1277 * The queue is full and the allocating
1278 * process is not a "batcher", and not
1279 * exempted by the IO scheduler
1280 */
a492f075 1281 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1282 }
1283 }
1da177e4 1284 }
d40f75a0 1285 blk_set_congested(rl, is_sync);
1da177e4
LT
1286 }
1287
082cf69e
JA
1288 /*
1289 * Only allow batching queuers to allocate up to 50% over the defined
1290 * limit of requests, otherwise we could have thousands of requests
1291 * allocated with any setting of ->nr_requests
1292 */
1faa16d2 1293 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1294 return ERR_PTR(-ENOMEM);
fd782a4a 1295
8a5ecdd4 1296 q->nr_rqs[is_sync]++;
1faa16d2
JA
1297 rl->count[is_sync]++;
1298 rl->starved[is_sync] = 0;
cb98fc8b 1299
f1f8cc94
TH
1300 /*
1301 * Decide whether the new request will be managed by elevator. If
e8064021 1302 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1303 * prevent the current elevator from being destroyed until the new
1304 * request is freed. This guarantees icq's won't be destroyed and
1305 * makes creating new ones safe.
1306 *
e6f7f93d
CH
1307 * Flush requests do not use the elevator so skip initialization.
1308 * This allows a request to share the flush and elevator data.
1309 *
f1f8cc94
TH
1310 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1311 * it will be created after releasing queue_lock.
1312 */
e6f7f93d 1313 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1314 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1315 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1316 if (et->icq_cache && ioc)
1317 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1318 }
cb98fc8b 1319
f253b86b 1320 if (blk_queue_io_stat(q))
e8064021 1321 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1322 spin_unlock_irq(q->queue_lock);
1323
29e2b09a 1324 /* allocate and init request */
5b788ce3 1325 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1326 if (!rq)
b679281a 1327 goto fail_alloc;
1da177e4 1328
29e2b09a 1329 blk_rq_init(q, rq);
a051661c 1330 blk_rq_set_rl(rq, rl);
ef295ecf 1331 rq->cmd_flags = op;
e8064021 1332 rq->rq_flags = rq_flags;
1b6d65a0
BVA
1333 if (flags & BLK_MQ_REQ_PREEMPT)
1334 rq->rq_flags |= RQF_PREEMPT;
29e2b09a 1335
aaf7c680 1336 /* init elvpriv */
e8064021 1337 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1338 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1339 if (ioc)
1340 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1341 if (!icq)
1342 goto fail_elvpriv;
29e2b09a 1343 }
aaf7c680
TH
1344
1345 rq->elv.icq = icq;
1346 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1347 goto fail_elvpriv;
1348
1349 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1350 if (icq)
1351 get_io_context(icq->ioc);
1352 }
aaf7c680 1353out:
88ee5ef1
JA
1354 /*
1355 * ioc may be NULL here, and ioc_batching will be false. That's
1356 * OK, if the queue is under the request limit then requests need
1357 * not count toward the nr_batch_requests limit. There will always
1358 * be some limit enforced by BLK_BATCH_TIME.
1359 */
1da177e4
LT
1360 if (ioc_batching(q, ioc))
1361 ioc->nr_batch_requests--;
6728cb0e 1362
e6a40b09 1363 trace_block_getrq(q, bio, op);
1da177e4 1364 return rq;
b679281a 1365
aaf7c680
TH
1366fail_elvpriv:
1367 /*
1368 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1369 * and may fail indefinitely under memory pressure and thus
1370 * shouldn't stall IO. Treat this request as !elvpriv. This will
1371 * disturb iosched and blkcg but weird is bettern than dead.
1372 */
7b2b10e0 1373 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1374 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1375
e8064021 1376 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1377 rq->elv.icq = NULL;
1378
1379 spin_lock_irq(q->queue_lock);
8a5ecdd4 1380 q->nr_rqs_elvpriv--;
aaf7c680
TH
1381 spin_unlock_irq(q->queue_lock);
1382 goto out;
1383
b679281a
TH
1384fail_alloc:
1385 /*
1386 * Allocation failed presumably due to memory. Undo anything we
1387 * might have messed up.
1388 *
1389 * Allocating task should really be put onto the front of the wait
1390 * queue, but this is pretty rare.
1391 */
1392 spin_lock_irq(q->queue_lock);
e8064021 1393 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1394
1395 /*
1396 * in the very unlikely event that allocation failed and no
1397 * requests for this direction was pending, mark us starved so that
1398 * freeing of a request in the other direction will notice
1399 * us. another possible fix would be to split the rq mempool into
1400 * READ and WRITE
1401 */
1402rq_starved:
1403 if (unlikely(rl->count[is_sync] == 0))
1404 rl->starved[is_sync] = 1;
a492f075 1405 return ERR_PTR(-ENOMEM);
1da177e4
LT
1406}
1407
da8303c6 1408/**
a06e05e6 1409 * get_request - get a free request
da8303c6 1410 * @q: request_queue to allocate request from
ef295ecf 1411 * @op: operation and flags
da8303c6 1412 * @bio: bio to allocate request for (can be %NULL)
6a15674d 1413 * @flags: BLK_MQ_REQ_* flags.
da8303c6 1414 *
d0164adc
MG
1415 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1416 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1417 *
da3dae54 1418 * Must be called with @q->queue_lock held and,
a492f075
JL
1419 * Returns ERR_PTR on failure, with @q->queue_lock held.
1420 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1421 */
ef295ecf 1422static struct request *get_request(struct request_queue *q, unsigned int op,
9a95e4ef 1423 struct bio *bio, blk_mq_req_flags_t flags)
1da177e4 1424{
ef295ecf 1425 const bool is_sync = op_is_sync(op);
a06e05e6 1426 DEFINE_WAIT(wait);
a051661c 1427 struct request_list *rl;
1da177e4 1428 struct request *rq;
a051661c 1429
2fff8a92 1430 lockdep_assert_held(q->queue_lock);
332ebbf7 1431 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1432
a051661c 1433 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1434retry:
6a15674d 1435 rq = __get_request(rl, op, bio, flags);
a492f075 1436 if (!IS_ERR(rq))
a06e05e6 1437 return rq;
1da177e4 1438
03a07c92
GR
1439 if (op & REQ_NOWAIT) {
1440 blk_put_rl(rl);
1441 return ERR_PTR(-EAGAIN);
1442 }
1443
6a15674d 1444 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1445 blk_put_rl(rl);
a492f075 1446 return rq;
a051661c 1447 }
1da177e4 1448
a06e05e6
TH
1449 /* wait on @rl and retry */
1450 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1451 TASK_UNINTERRUPTIBLE);
1da177e4 1452
e6a40b09 1453 trace_block_sleeprq(q, bio, op);
1da177e4 1454
a06e05e6
TH
1455 spin_unlock_irq(q->queue_lock);
1456 io_schedule();
d6344532 1457
a06e05e6
TH
1458 /*
1459 * After sleeping, we become a "batching" process and will be able
1460 * to allocate at least one request, and up to a big batch of them
1461 * for a small period time. See ioc_batching, ioc_set_batching
1462 */
a06e05e6 1463 ioc_set_batching(q, current->io_context);
05caf8db 1464
a06e05e6
TH
1465 spin_lock_irq(q->queue_lock);
1466 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1467
a06e05e6 1468 goto retry;
1da177e4
LT
1469}
1470
6a15674d 1471/* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
cd6ce148 1472static struct request *blk_old_get_request(struct request_queue *q,
9a95e4ef 1473 unsigned int op, blk_mq_req_flags_t flags)
1da177e4
LT
1474{
1475 struct request *rq;
6a15674d
BVA
1476 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1477 __GFP_DIRECT_RECLAIM;
055f6e18 1478 int ret = 0;
1da177e4 1479
332ebbf7
BVA
1480 WARN_ON_ONCE(q->mq_ops);
1481
7f4b35d1
TH
1482 /* create ioc upfront */
1483 create_io_context(gfp_mask, q->node);
1484
3a0a5299 1485 ret = blk_queue_enter(q, flags);
055f6e18
ML
1486 if (ret)
1487 return ERR_PTR(ret);
d6344532 1488 spin_lock_irq(q->queue_lock);
6a15674d 1489 rq = get_request(q, op, NULL, flags);
0c4de0f3 1490 if (IS_ERR(rq)) {
da8303c6 1491 spin_unlock_irq(q->queue_lock);
055f6e18 1492 blk_queue_exit(q);
0c4de0f3
CH
1493 return rq;
1494 }
1da177e4 1495
0c4de0f3
CH
1496 /* q->queue_lock is unlocked at this point */
1497 rq->__data_len = 0;
1498 rq->__sector = (sector_t) -1;
1499 rq->bio = rq->biotail = NULL;
1da177e4
LT
1500 return rq;
1501}
320ae51f 1502
6a15674d
BVA
1503/**
1504 * blk_get_request_flags - allocate a request
1505 * @q: request queue to allocate a request for
1506 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1507 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1508 */
1509struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
9a95e4ef 1510 blk_mq_req_flags_t flags)
320ae51f 1511{
d280bab3
BVA
1512 struct request *req;
1513
6a15674d 1514 WARN_ON_ONCE(op & REQ_NOWAIT);
1b6d65a0 1515 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
6a15674d 1516
d280bab3 1517 if (q->mq_ops) {
6a15674d 1518 req = blk_mq_alloc_request(q, op, flags);
d280bab3
BVA
1519 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1520 q->mq_ops->initialize_rq_fn(req);
1521 } else {
6a15674d 1522 req = blk_old_get_request(q, op, flags);
d280bab3
BVA
1523 if (!IS_ERR(req) && q->initialize_rq_fn)
1524 q->initialize_rq_fn(req);
1525 }
1526
1527 return req;
320ae51f 1528}
6a15674d
BVA
1529EXPORT_SYMBOL(blk_get_request_flags);
1530
1531struct request *blk_get_request(struct request_queue *q, unsigned int op,
1532 gfp_t gfp_mask)
1533{
1534 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1535 0 : BLK_MQ_REQ_NOWAIT);
1536}
1da177e4
LT
1537EXPORT_SYMBOL(blk_get_request);
1538
1539/**
1540 * blk_requeue_request - put a request back on queue
1541 * @q: request queue where request should be inserted
1542 * @rq: request to be inserted
1543 *
1544 * Description:
1545 * Drivers often keep queueing requests until the hardware cannot accept
1546 * more, when that condition happens we need to put the request back
1547 * on the queue. Must be called with queue lock held.
1548 */
165125e1 1549void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1550{
2fff8a92 1551 lockdep_assert_held(q->queue_lock);
332ebbf7 1552 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1553
242f9dcb
JA
1554 blk_delete_timer(rq);
1555 blk_clear_rq_complete(rq);
5f3ea37c 1556 trace_block_rq_requeue(q, rq);
87760e5e 1557 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1558
e8064021 1559 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1560 blk_queue_end_tag(q, rq);
1561
ba396a6c
JB
1562 BUG_ON(blk_queued_rq(rq));
1563
1da177e4
LT
1564 elv_requeue_request(q, rq);
1565}
1da177e4
LT
1566EXPORT_SYMBOL(blk_requeue_request);
1567
73c10101
JA
1568static void add_acct_request(struct request_queue *q, struct request *rq,
1569 int where)
1570{
320ae51f 1571 blk_account_io_start(rq, true);
7eaceacc 1572 __elv_add_request(q, rq, where);
73c10101
JA
1573}
1574
d62e26b3 1575static void part_round_stats_single(struct request_queue *q, int cpu,
b8d62b3a
JA
1576 struct hd_struct *part, unsigned long now,
1577 unsigned int inflight)
074a7aca 1578{
b8d62b3a 1579 if (inflight) {
074a7aca 1580 __part_stat_add(cpu, part, time_in_queue,
b8d62b3a 1581 inflight * (now - part->stamp));
074a7aca
TH
1582 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1583 }
1584 part->stamp = now;
1585}
1586
1587/**
496aa8a9 1588 * part_round_stats() - Round off the performance stats on a struct disk_stats.
d62e26b3 1589 * @q: target block queue
496aa8a9
RD
1590 * @cpu: cpu number for stats access
1591 * @part: target partition
1da177e4
LT
1592 *
1593 * The average IO queue length and utilisation statistics are maintained
1594 * by observing the current state of the queue length and the amount of
1595 * time it has been in this state for.
1596 *
1597 * Normally, that accounting is done on IO completion, but that can result
1598 * in more than a second's worth of IO being accounted for within any one
1599 * second, leading to >100% utilisation. To deal with that, we call this
1600 * function to do a round-off before returning the results when reading
1601 * /proc/diskstats. This accounts immediately for all queue usage up to
1602 * the current jiffies and restarts the counters again.
1603 */
d62e26b3 1604void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
6f2576af 1605{
b8d62b3a 1606 struct hd_struct *part2 = NULL;
6f2576af 1607 unsigned long now = jiffies;
b8d62b3a
JA
1608 unsigned int inflight[2];
1609 int stats = 0;
1610
1611 if (part->stamp != now)
1612 stats |= 1;
1613
1614 if (part->partno) {
1615 part2 = &part_to_disk(part)->part0;
1616 if (part2->stamp != now)
1617 stats |= 2;
1618 }
1619
1620 if (!stats)
1621 return;
1622
1623 part_in_flight(q, part, inflight);
6f2576af 1624
b8d62b3a
JA
1625 if (stats & 2)
1626 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1627 if (stats & 1)
1628 part_round_stats_single(q, cpu, part, now, inflight[0]);
6f2576af 1629}
074a7aca 1630EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1631
47fafbc7 1632#ifdef CONFIG_PM
c8158819
LM
1633static void blk_pm_put_request(struct request *rq)
1634{
e8064021 1635 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1636 pm_runtime_mark_last_busy(rq->q->dev);
1637}
1638#else
1639static inline void blk_pm_put_request(struct request *rq) {}
1640#endif
1641
165125e1 1642void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1643{
e8064021
CH
1644 req_flags_t rq_flags = req->rq_flags;
1645
1da177e4
LT
1646 if (unlikely(!q))
1647 return;
1da177e4 1648
6f5ba581
CH
1649 if (q->mq_ops) {
1650 blk_mq_free_request(req);
1651 return;
1652 }
1653
2fff8a92
BVA
1654 lockdep_assert_held(q->queue_lock);
1655
c8158819
LM
1656 blk_pm_put_request(req);
1657
8922e16c
TH
1658 elv_completed_request(q, req);
1659
1cd96c24
BH
1660 /* this is a bio leak */
1661 WARN_ON(req->bio != NULL);
1662
87760e5e
JA
1663 wbt_done(q->rq_wb, &req->issue_stat);
1664
1da177e4
LT
1665 /*
1666 * Request may not have originated from ll_rw_blk. if not,
1667 * it didn't come out of our reserved rq pools
1668 */
e8064021 1669 if (rq_flags & RQF_ALLOCED) {
a051661c 1670 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1671 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1672
1da177e4 1673 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1674 BUG_ON(ELV_ON_HASH(req));
1da177e4 1675
a051661c 1676 blk_free_request(rl, req);
e8064021 1677 freed_request(rl, sync, rq_flags);
a051661c 1678 blk_put_rl(rl);
055f6e18 1679 blk_queue_exit(q);
1da177e4
LT
1680 }
1681}
6e39b69e
MC
1682EXPORT_SYMBOL_GPL(__blk_put_request);
1683
1da177e4
LT
1684void blk_put_request(struct request *req)
1685{
165125e1 1686 struct request_queue *q = req->q;
8922e16c 1687
320ae51f
JA
1688 if (q->mq_ops)
1689 blk_mq_free_request(req);
1690 else {
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(q->queue_lock, flags);
1694 __blk_put_request(q, req);
1695 spin_unlock_irqrestore(q->queue_lock, flags);
1696 }
1da177e4 1697}
1da177e4
LT
1698EXPORT_SYMBOL(blk_put_request);
1699
320ae51f
JA
1700bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1701 struct bio *bio)
73c10101 1702{
1eff9d32 1703 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1704
73c10101
JA
1705 if (!ll_back_merge_fn(q, req, bio))
1706 return false;
1707
8c1cf6bb 1708 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1709
1710 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1711 blk_rq_set_mixed_merge(req);
1712
1713 req->biotail->bi_next = bio;
1714 req->biotail = bio;
4f024f37 1715 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1716 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1717
320ae51f 1718 blk_account_io_start(req, false);
73c10101
JA
1719 return true;
1720}
1721
320ae51f
JA
1722bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1723 struct bio *bio)
73c10101 1724{
1eff9d32 1725 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1726
73c10101
JA
1727 if (!ll_front_merge_fn(q, req, bio))
1728 return false;
1729
8c1cf6bb 1730 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1731
1732 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1733 blk_rq_set_mixed_merge(req);
1734
73c10101
JA
1735 bio->bi_next = req->bio;
1736 req->bio = bio;
1737
4f024f37
KO
1738 req->__sector = bio->bi_iter.bi_sector;
1739 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1740 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1741
320ae51f 1742 blk_account_io_start(req, false);
73c10101
JA
1743 return true;
1744}
1745
1e739730
CH
1746bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1747 struct bio *bio)
1748{
1749 unsigned short segments = blk_rq_nr_discard_segments(req);
1750
1751 if (segments >= queue_max_discard_segments(q))
1752 goto no_merge;
1753 if (blk_rq_sectors(req) + bio_sectors(bio) >
1754 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1755 goto no_merge;
1756
1757 req->biotail->bi_next = bio;
1758 req->biotail = bio;
1759 req->__data_len += bio->bi_iter.bi_size;
1760 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1761 req->nr_phys_segments = segments + 1;
1762
1763 blk_account_io_start(req, false);
1764 return true;
1765no_merge:
1766 req_set_nomerge(q, req);
1767 return false;
1768}
1769
bd87b589 1770/**
320ae51f 1771 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1772 * @q: request_queue new bio is being queued at
1773 * @bio: new bio being queued
1774 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1775 * @same_queue_rq: pointer to &struct request that gets filled in when
1776 * another request associated with @q is found on the plug list
1777 * (optional, may be %NULL)
bd87b589
TH
1778 *
1779 * Determine whether @bio being queued on @q can be merged with a request
1780 * on %current's plugged list. Returns %true if merge was successful,
1781 * otherwise %false.
1782 *
07c2bd37
TH
1783 * Plugging coalesces IOs from the same issuer for the same purpose without
1784 * going through @q->queue_lock. As such it's more of an issuing mechanism
1785 * than scheduling, and the request, while may have elvpriv data, is not
1786 * added on the elevator at this point. In addition, we don't have
1787 * reliable access to the elevator outside queue lock. Only check basic
1788 * merging parameters without querying the elevator.
da41a589
RE
1789 *
1790 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1791 */
320ae51f 1792bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1793 unsigned int *request_count,
1794 struct request **same_queue_rq)
73c10101
JA
1795{
1796 struct blk_plug *plug;
1797 struct request *rq;
92f399c7 1798 struct list_head *plug_list;
73c10101 1799
bd87b589 1800 plug = current->plug;
73c10101 1801 if (!plug)
34fe7c05 1802 return false;
56ebdaf2 1803 *request_count = 0;
73c10101 1804
92f399c7
SL
1805 if (q->mq_ops)
1806 plug_list = &plug->mq_list;
1807 else
1808 plug_list = &plug->list;
1809
1810 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1811 bool merged = false;
73c10101 1812
5b3f341f 1813 if (rq->q == q) {
1b2e19f1 1814 (*request_count)++;
5b3f341f
SL
1815 /*
1816 * Only blk-mq multiple hardware queues case checks the
1817 * rq in the same queue, there should be only one such
1818 * rq in a queue
1819 **/
1820 if (same_queue_rq)
1821 *same_queue_rq = rq;
1822 }
56ebdaf2 1823
07c2bd37 1824 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1825 continue;
1826
34fe7c05
CH
1827 switch (blk_try_merge(rq, bio)) {
1828 case ELEVATOR_BACK_MERGE:
1829 merged = bio_attempt_back_merge(q, rq, bio);
1830 break;
1831 case ELEVATOR_FRONT_MERGE:
1832 merged = bio_attempt_front_merge(q, rq, bio);
1833 break;
1e739730
CH
1834 case ELEVATOR_DISCARD_MERGE:
1835 merged = bio_attempt_discard_merge(q, rq, bio);
1836 break;
34fe7c05
CH
1837 default:
1838 break;
73c10101 1839 }
34fe7c05
CH
1840
1841 if (merged)
1842 return true;
73c10101 1843 }
34fe7c05
CH
1844
1845 return false;
73c10101
JA
1846}
1847
0809e3ac
JM
1848unsigned int blk_plug_queued_count(struct request_queue *q)
1849{
1850 struct blk_plug *plug;
1851 struct request *rq;
1852 struct list_head *plug_list;
1853 unsigned int ret = 0;
1854
1855 plug = current->plug;
1856 if (!plug)
1857 goto out;
1858
1859 if (q->mq_ops)
1860 plug_list = &plug->mq_list;
1861 else
1862 plug_list = &plug->list;
1863
1864 list_for_each_entry(rq, plug_list, queuelist) {
1865 if (rq->q == q)
1866 ret++;
1867 }
1868out:
1869 return ret;
1870}
1871
da8d7f07 1872void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1873{
0be0dee6
BVA
1874 struct io_context *ioc = rq_ioc(bio);
1875
1eff9d32 1876 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1877 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1878
4f024f37 1879 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1880 if (ioprio_valid(bio_prio(bio)))
1881 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1882 else if (ioc)
1883 req->ioprio = ioc->ioprio;
1884 else
1885 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1886 req->write_hint = bio->bi_write_hint;
bc1c56fd 1887 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1888}
da8d7f07 1889EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1890
dece1635 1891static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1892{
73c10101 1893 struct blk_plug *plug;
34fe7c05 1894 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1895 struct request *req, *free;
56ebdaf2 1896 unsigned int request_count = 0;
87760e5e 1897 unsigned int wb_acct;
1da177e4 1898
1da177e4
LT
1899 /*
1900 * low level driver can indicate that it wants pages above a
1901 * certain limit bounced to low memory (ie for highmem, or even
1902 * ISA dma in theory)
1903 */
1904 blk_queue_bounce(q, &bio);
1905
af67c31f 1906 blk_queue_split(q, &bio);
23688bf4 1907
e23947bd 1908 if (!bio_integrity_prep(bio))
dece1635 1909 return BLK_QC_T_NONE;
ffecfd1a 1910
f73f44eb 1911 if (op_is_flush(bio->bi_opf)) {
73c10101 1912 spin_lock_irq(q->queue_lock);
ae1b1539 1913 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1914 goto get_rq;
1915 }
1916
73c10101
JA
1917 /*
1918 * Check if we can merge with the plugged list before grabbing
1919 * any locks.
1920 */
0809e3ac
JM
1921 if (!blk_queue_nomerges(q)) {
1922 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1923 return BLK_QC_T_NONE;
0809e3ac
JM
1924 } else
1925 request_count = blk_plug_queued_count(q);
1da177e4 1926
73c10101 1927 spin_lock_irq(q->queue_lock);
2056a782 1928
34fe7c05
CH
1929 switch (elv_merge(q, &req, bio)) {
1930 case ELEVATOR_BACK_MERGE:
1931 if (!bio_attempt_back_merge(q, req, bio))
1932 break;
1933 elv_bio_merged(q, req, bio);
1934 free = attempt_back_merge(q, req);
1935 if (free)
1936 __blk_put_request(q, free);
1937 else
1938 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1939 goto out_unlock;
1940 case ELEVATOR_FRONT_MERGE:
1941 if (!bio_attempt_front_merge(q, req, bio))
1942 break;
1943 elv_bio_merged(q, req, bio);
1944 free = attempt_front_merge(q, req);
1945 if (free)
1946 __blk_put_request(q, free);
1947 else
1948 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1949 goto out_unlock;
1950 default:
1951 break;
1da177e4
LT
1952 }
1953
450991bc 1954get_rq:
87760e5e
JA
1955 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1956
1da177e4 1957 /*
450991bc 1958 * Grab a free request. This is might sleep but can not fail.
d6344532 1959 * Returns with the queue unlocked.
450991bc 1960 */
055f6e18 1961 blk_queue_enter_live(q);
6a15674d 1962 req = get_request(q, bio->bi_opf, bio, 0);
a492f075 1963 if (IS_ERR(req)) {
055f6e18 1964 blk_queue_exit(q);
87760e5e 1965 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1966 if (PTR_ERR(req) == -ENOMEM)
1967 bio->bi_status = BLK_STS_RESOURCE;
1968 else
1969 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1970 bio_endio(bio);
da8303c6
TH
1971 goto out_unlock;
1972 }
d6344532 1973
87760e5e
JA
1974 wbt_track(&req->issue_stat, wb_acct);
1975
450991bc
NP
1976 /*
1977 * After dropping the lock and possibly sleeping here, our request
1978 * may now be mergeable after it had proven unmergeable (above).
1979 * We don't worry about that case for efficiency. It won't happen
1980 * often, and the elevators are able to handle it.
1da177e4 1981 */
da8d7f07 1982 blk_init_request_from_bio(req, bio);
1da177e4 1983
9562ad9a 1984 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1985 req->cpu = raw_smp_processor_id();
73c10101
JA
1986
1987 plug = current->plug;
721a9602 1988 if (plug) {
dc6d36c9
JA
1989 /*
1990 * If this is the first request added after a plug, fire
7aef2e78 1991 * of a plug trace.
0a6219a9
ML
1992 *
1993 * @request_count may become stale because of schedule
1994 * out, so check plug list again.
dc6d36c9 1995 */
0a6219a9 1996 if (!request_count || list_empty(&plug->list))
dc6d36c9 1997 trace_block_plug(q);
3540d5e8 1998 else {
50d24c34
SL
1999 struct request *last = list_entry_rq(plug->list.prev);
2000 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2001 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 2002 blk_flush_plug_list(plug, false);
019ceb7d
SL
2003 trace_block_plug(q);
2004 }
73c10101 2005 }
73c10101 2006 list_add_tail(&req->queuelist, &plug->list);
320ae51f 2007 blk_account_io_start(req, true);
73c10101
JA
2008 } else {
2009 spin_lock_irq(q->queue_lock);
2010 add_acct_request(q, req, where);
24ecfbe2 2011 __blk_run_queue(q);
73c10101
JA
2012out_unlock:
2013 spin_unlock_irq(q->queue_lock);
2014 }
dece1635
JA
2015
2016 return BLK_QC_T_NONE;
1da177e4
LT
2017}
2018
1da177e4
LT
2019static void handle_bad_sector(struct bio *bio)
2020{
2021 char b[BDEVNAME_SIZE];
2022
2023 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 2024 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
74d46992 2025 bio_devname(bio, b), bio->bi_opf,
f73a1c7d 2026 (unsigned long long)bio_end_sector(bio),
74d46992 2027 (long long)get_capacity(bio->bi_disk));
1da177e4
LT
2028}
2029
c17bb495
AM
2030#ifdef CONFIG_FAIL_MAKE_REQUEST
2031
2032static DECLARE_FAULT_ATTR(fail_make_request);
2033
2034static int __init setup_fail_make_request(char *str)
2035{
2036 return setup_fault_attr(&fail_make_request, str);
2037}
2038__setup("fail_make_request=", setup_fail_make_request);
2039
b2c9cd37 2040static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 2041{
b2c9cd37 2042 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
2043}
2044
2045static int __init fail_make_request_debugfs(void)
2046{
dd48c085
AM
2047 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2048 NULL, &fail_make_request);
2049
21f9fcd8 2050 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
2051}
2052
2053late_initcall(fail_make_request_debugfs);
2054
2055#else /* CONFIG_FAIL_MAKE_REQUEST */
2056
b2c9cd37
AM
2057static inline bool should_fail_request(struct hd_struct *part,
2058 unsigned int bytes)
c17bb495 2059{
b2c9cd37 2060 return false;
c17bb495
AM
2061}
2062
2063#endif /* CONFIG_FAIL_MAKE_REQUEST */
2064
74d46992
CH
2065/*
2066 * Remap block n of partition p to block n+start(p) of the disk.
2067 */
2068static inline int blk_partition_remap(struct bio *bio)
2069{
2070 struct hd_struct *p;
2071 int ret = 0;
2072
2073 /*
2074 * Zone reset does not include bi_size so bio_sectors() is always 0.
2075 * Include a test for the reset op code and perform the remap if needed.
2076 */
2077 if (!bio->bi_partno ||
2078 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2079 return 0;
2080
2081 rcu_read_lock();
2082 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2083 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2084 bio->bi_iter.bi_sector += p->start_sect;
2085 bio->bi_partno = 0;
2086 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2087 bio->bi_iter.bi_sector - p->start_sect);
2088 } else {
2089 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2090 ret = -EIO;
2091 }
2092 rcu_read_unlock();
2093
2094 return ret;
2095}
2096
c07e2b41
JA
2097/*
2098 * Check whether this bio extends beyond the end of the device.
2099 */
2100static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2101{
2102 sector_t maxsector;
2103
2104 if (!nr_sectors)
2105 return 0;
2106
2107 /* Test device or partition size, when known. */
74d46992 2108 maxsector = get_capacity(bio->bi_disk);
c07e2b41 2109 if (maxsector) {
4f024f37 2110 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
2111
2112 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2113 /*
2114 * This may well happen - the kernel calls bread()
2115 * without checking the size of the device, e.g., when
2116 * mounting a device.
2117 */
2118 handle_bad_sector(bio);
2119 return 1;
2120 }
2121 }
2122
2123 return 0;
2124}
2125
27a84d54
CH
2126static noinline_for_stack bool
2127generic_make_request_checks(struct bio *bio)
1da177e4 2128{
165125e1 2129 struct request_queue *q;
5a7bbad2 2130 int nr_sectors = bio_sectors(bio);
4e4cbee9 2131 blk_status_t status = BLK_STS_IOERR;
5a7bbad2 2132 char b[BDEVNAME_SIZE];
1da177e4
LT
2133
2134 might_sleep();
1da177e4 2135
c07e2b41
JA
2136 if (bio_check_eod(bio, nr_sectors))
2137 goto end_io;
1da177e4 2138
74d46992 2139 q = bio->bi_disk->queue;
5a7bbad2
CH
2140 if (unlikely(!q)) {
2141 printk(KERN_ERR
2142 "generic_make_request: Trying to access "
2143 "nonexistent block-device %s (%Lu)\n",
74d46992 2144 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
5a7bbad2
CH
2145 goto end_io;
2146 }
c17bb495 2147
03a07c92
GR
2148 /*
2149 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2150 * if queue is not a request based queue.
2151 */
2152
2153 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2154 goto not_supported;
2155
74d46992 2156 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
5a7bbad2 2157 goto end_io;
2056a782 2158
74d46992
CH
2159 if (blk_partition_remap(bio))
2160 goto end_io;
2056a782 2161
5a7bbad2
CH
2162 if (bio_check_eod(bio, nr_sectors))
2163 goto end_io;
1e87901e 2164
5a7bbad2
CH
2165 /*
2166 * Filter flush bio's early so that make_request based
2167 * drivers without flush support don't have to worry
2168 * about them.
2169 */
f3a8ab7d 2170 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2171 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2172 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2173 if (!nr_sectors) {
4e4cbee9 2174 status = BLK_STS_OK;
51fd77bd
JA
2175 goto end_io;
2176 }
5a7bbad2 2177 }
5ddfe969 2178
288dab8a
CH
2179 switch (bio_op(bio)) {
2180 case REQ_OP_DISCARD:
2181 if (!blk_queue_discard(q))
2182 goto not_supported;
2183 break;
2184 case REQ_OP_SECURE_ERASE:
2185 if (!blk_queue_secure_erase(q))
2186 goto not_supported;
2187 break;
2188 case REQ_OP_WRITE_SAME:
74d46992 2189 if (!q->limits.max_write_same_sectors)
288dab8a 2190 goto not_supported;
58886785 2191 break;
2d253440
ST
2192 case REQ_OP_ZONE_REPORT:
2193 case REQ_OP_ZONE_RESET:
74d46992 2194 if (!blk_queue_is_zoned(q))
2d253440 2195 goto not_supported;
288dab8a 2196 break;
a6f0788e 2197 case REQ_OP_WRITE_ZEROES:
74d46992 2198 if (!q->limits.max_write_zeroes_sectors)
a6f0788e
CK
2199 goto not_supported;
2200 break;
288dab8a
CH
2201 default:
2202 break;
5a7bbad2 2203 }
01edede4 2204
7f4b35d1
TH
2205 /*
2206 * Various block parts want %current->io_context and lazy ioc
2207 * allocation ends up trading a lot of pain for a small amount of
2208 * memory. Just allocate it upfront. This may fail and block
2209 * layer knows how to live with it.
2210 */
2211 create_io_context(GFP_ATOMIC, q->node);
2212
ae118896
TH
2213 if (!blkcg_bio_issue_check(q, bio))
2214 return false;
27a84d54 2215
fbbaf700
N
2216 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2217 trace_block_bio_queue(q, bio);
2218 /* Now that enqueuing has been traced, we need to trace
2219 * completion as well.
2220 */
2221 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2222 }
27a84d54 2223 return true;
a7384677 2224
288dab8a 2225not_supported:
4e4cbee9 2226 status = BLK_STS_NOTSUPP;
a7384677 2227end_io:
4e4cbee9 2228 bio->bi_status = status;
4246a0b6 2229 bio_endio(bio);
27a84d54 2230 return false;
1da177e4
LT
2231}
2232
27a84d54
CH
2233/**
2234 * generic_make_request - hand a buffer to its device driver for I/O
2235 * @bio: The bio describing the location in memory and on the device.
2236 *
2237 * generic_make_request() is used to make I/O requests of block
2238 * devices. It is passed a &struct bio, which describes the I/O that needs
2239 * to be done.
2240 *
2241 * generic_make_request() does not return any status. The
2242 * success/failure status of the request, along with notification of
2243 * completion, is delivered asynchronously through the bio->bi_end_io
2244 * function described (one day) else where.
2245 *
2246 * The caller of generic_make_request must make sure that bi_io_vec
2247 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2248 * set to describe the device address, and the
2249 * bi_end_io and optionally bi_private are set to describe how
2250 * completion notification should be signaled.
2251 *
2252 * generic_make_request and the drivers it calls may use bi_next if this
2253 * bio happens to be merged with someone else, and may resubmit the bio to
2254 * a lower device by calling into generic_make_request recursively, which
2255 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2256 */
dece1635 2257blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2258{
f5fe1b51
N
2259 /*
2260 * bio_list_on_stack[0] contains bios submitted by the current
2261 * make_request_fn.
2262 * bio_list_on_stack[1] contains bios that were submitted before
2263 * the current make_request_fn, but that haven't been processed
2264 * yet.
2265 */
2266 struct bio_list bio_list_on_stack[2];
dece1635 2267 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2268
27a84d54 2269 if (!generic_make_request_checks(bio))
dece1635 2270 goto out;
27a84d54
CH
2271
2272 /*
2273 * We only want one ->make_request_fn to be active at a time, else
2274 * stack usage with stacked devices could be a problem. So use
2275 * current->bio_list to keep a list of requests submited by a
2276 * make_request_fn function. current->bio_list is also used as a
2277 * flag to say if generic_make_request is currently active in this
2278 * task or not. If it is NULL, then no make_request is active. If
2279 * it is non-NULL, then a make_request is active, and new requests
2280 * should be added at the tail
2281 */
bddd87c7 2282 if (current->bio_list) {
f5fe1b51 2283 bio_list_add(&current->bio_list[0], bio);
dece1635 2284 goto out;
d89d8796 2285 }
27a84d54 2286
d89d8796
NB
2287 /* following loop may be a bit non-obvious, and so deserves some
2288 * explanation.
2289 * Before entering the loop, bio->bi_next is NULL (as all callers
2290 * ensure that) so we have a list with a single bio.
2291 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2292 * we assign bio_list to a pointer to the bio_list_on_stack,
2293 * thus initialising the bio_list of new bios to be
27a84d54 2294 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2295 * through a recursive call to generic_make_request. If it
2296 * did, we find a non-NULL value in bio_list and re-enter the loop
2297 * from the top. In this case we really did just take the bio
bddd87c7 2298 * of the top of the list (no pretending) and so remove it from
27a84d54 2299 * bio_list, and call into ->make_request() again.
d89d8796
NB
2300 */
2301 BUG_ON(bio->bi_next);
f5fe1b51
N
2302 bio_list_init(&bio_list_on_stack[0]);
2303 current->bio_list = bio_list_on_stack;
d89d8796 2304 do {
74d46992 2305 struct request_queue *q = bio->bi_disk->queue;
9a95e4ef 2306 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
3a0a5299 2307 BLK_MQ_REQ_NOWAIT : 0;
27a84d54 2308
3a0a5299 2309 if (likely(blk_queue_enter(q, flags) == 0)) {
79bd9959
N
2310 struct bio_list lower, same;
2311
2312 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2313 bio_list_on_stack[1] = bio_list_on_stack[0];
2314 bio_list_init(&bio_list_on_stack[0]);
dece1635 2315 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2316
2317 blk_queue_exit(q);
27a84d54 2318
79bd9959
N
2319 /* sort new bios into those for a lower level
2320 * and those for the same level
2321 */
2322 bio_list_init(&lower);
2323 bio_list_init(&same);
f5fe1b51 2324 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
74d46992 2325 if (q == bio->bi_disk->queue)
79bd9959
N
2326 bio_list_add(&same, bio);
2327 else
2328 bio_list_add(&lower, bio);
2329 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2330 bio_list_merge(&bio_list_on_stack[0], &lower);
2331 bio_list_merge(&bio_list_on_stack[0], &same);
2332 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2333 } else {
03a07c92
GR
2334 if (unlikely(!blk_queue_dying(q) &&
2335 (bio->bi_opf & REQ_NOWAIT)))
2336 bio_wouldblock_error(bio);
2337 else
2338 bio_io_error(bio);
3ef28e83 2339 }
f5fe1b51 2340 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2341 } while (bio);
bddd87c7 2342 current->bio_list = NULL; /* deactivate */
dece1635
JA
2343
2344out:
2345 return ret;
d89d8796 2346}
1da177e4
LT
2347EXPORT_SYMBOL(generic_make_request);
2348
f421e1d9
CH
2349/**
2350 * direct_make_request - hand a buffer directly to its device driver for I/O
2351 * @bio: The bio describing the location in memory and on the device.
2352 *
2353 * This function behaves like generic_make_request(), but does not protect
2354 * against recursion. Must only be used if the called driver is known
2355 * to not call generic_make_request (or direct_make_request) again from
2356 * its make_request function. (Calling direct_make_request again from
2357 * a workqueue is perfectly fine as that doesn't recurse).
2358 */
2359blk_qc_t direct_make_request(struct bio *bio)
2360{
2361 struct request_queue *q = bio->bi_disk->queue;
2362 bool nowait = bio->bi_opf & REQ_NOWAIT;
2363 blk_qc_t ret;
2364
2365 if (!generic_make_request_checks(bio))
2366 return BLK_QC_T_NONE;
2367
3a0a5299 2368 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
f421e1d9
CH
2369 if (nowait && !blk_queue_dying(q))
2370 bio->bi_status = BLK_STS_AGAIN;
2371 else
2372 bio->bi_status = BLK_STS_IOERR;
2373 bio_endio(bio);
2374 return BLK_QC_T_NONE;
2375 }
2376
2377 ret = q->make_request_fn(q, bio);
2378 blk_queue_exit(q);
2379 return ret;
2380}
2381EXPORT_SYMBOL_GPL(direct_make_request);
2382
1da177e4 2383/**
710027a4 2384 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2385 * @bio: The &struct bio which describes the I/O
2386 *
2387 * submit_bio() is very similar in purpose to generic_make_request(), and
2388 * uses that function to do most of the work. Both are fairly rough
710027a4 2389 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2390 *
2391 */
4e49ea4a 2392blk_qc_t submit_bio(struct bio *bio)
1da177e4 2393{
bf2de6f5
JA
2394 /*
2395 * If it's a regular read/write or a barrier with data attached,
2396 * go through the normal accounting stuff before submission.
2397 */
e2a60da7 2398 if (bio_has_data(bio)) {
4363ac7c
MP
2399 unsigned int count;
2400
95fe6c1a 2401 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
6b257c46 2402 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
4363ac7c
MP
2403 else
2404 count = bio_sectors(bio);
2405
a8ebb056 2406 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2407 count_vm_events(PGPGOUT, count);
2408 } else {
4f024f37 2409 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2410 count_vm_events(PGPGIN, count);
2411 }
2412
2413 if (unlikely(block_dump)) {
2414 char b[BDEVNAME_SIZE];
8dcbdc74 2415 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2416 current->comm, task_pid_nr(current),
a8ebb056 2417 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2418 (unsigned long long)bio->bi_iter.bi_sector,
74d46992 2419 bio_devname(bio, b), count);
bf2de6f5 2420 }
1da177e4
LT
2421 }
2422
dece1635 2423 return generic_make_request(bio);
1da177e4 2424}
1da177e4
LT
2425EXPORT_SYMBOL(submit_bio);
2426
ea435e1b
CH
2427bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2428{
2429 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2430 return false;
2431
2432 if (current->plug)
2433 blk_flush_plug_list(current->plug, false);
2434 return q->poll_fn(q, cookie);
2435}
2436EXPORT_SYMBOL_GPL(blk_poll);
2437
82124d60 2438/**
bf4e6b4e
HR
2439 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2440 * for new the queue limits
82124d60
KU
2441 * @q: the queue
2442 * @rq: the request being checked
2443 *
2444 * Description:
2445 * @rq may have been made based on weaker limitations of upper-level queues
2446 * in request stacking drivers, and it may violate the limitation of @q.
2447 * Since the block layer and the underlying device driver trust @rq
2448 * after it is inserted to @q, it should be checked against @q before
2449 * the insertion using this generic function.
2450 *
82124d60 2451 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2452 * limits when retrying requests on other queues. Those requests need
2453 * to be checked against the new queue limits again during dispatch.
82124d60 2454 */
bf4e6b4e
HR
2455static int blk_cloned_rq_check_limits(struct request_queue *q,
2456 struct request *rq)
82124d60 2457{
8fe0d473 2458 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2459 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2460 return -EIO;
2461 }
2462
2463 /*
2464 * queue's settings related to segment counting like q->bounce_pfn
2465 * may differ from that of other stacking queues.
2466 * Recalculate it to check the request correctly on this queue's
2467 * limitation.
2468 */
2469 blk_recalc_rq_segments(rq);
8a78362c 2470 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2471 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2472 return -EIO;
2473 }
2474
2475 return 0;
2476}
82124d60
KU
2477
2478/**
2479 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2480 * @q: the queue to submit the request
2481 * @rq: the request being queued
2482 */
2a842aca 2483blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2484{
2485 unsigned long flags;
4853abaa 2486 int where = ELEVATOR_INSERT_BACK;
82124d60 2487
bf4e6b4e 2488 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2489 return BLK_STS_IOERR;
82124d60 2490
b2c9cd37
AM
2491 if (rq->rq_disk &&
2492 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2493 return BLK_STS_IOERR;
82124d60 2494
7fb4898e
KB
2495 if (q->mq_ops) {
2496 if (blk_queue_io_stat(q))
2497 blk_account_io_start(rq, true);
157f377b
JA
2498 /*
2499 * Since we have a scheduler attached on the top device,
2500 * bypass a potential scheduler on the bottom device for
2501 * insert.
2502 */
b0850297 2503 blk_mq_request_bypass_insert(rq, true);
2a842aca 2504 return BLK_STS_OK;
7fb4898e
KB
2505 }
2506
82124d60 2507 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2508 if (unlikely(blk_queue_dying(q))) {
8ba61435 2509 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2510 return BLK_STS_IOERR;
8ba61435 2511 }
82124d60
KU
2512
2513 /*
2514 * Submitting request must be dequeued before calling this function
2515 * because it will be linked to another request_queue
2516 */
2517 BUG_ON(blk_queued_rq(rq));
2518
f73f44eb 2519 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2520 where = ELEVATOR_INSERT_FLUSH;
2521
2522 add_acct_request(q, rq, where);
e67b77c7
JM
2523 if (where == ELEVATOR_INSERT_FLUSH)
2524 __blk_run_queue(q);
82124d60
KU
2525 spin_unlock_irqrestore(q->queue_lock, flags);
2526
2a842aca 2527 return BLK_STS_OK;
82124d60
KU
2528}
2529EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2530
80a761fd
TH
2531/**
2532 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2533 * @rq: request to examine
2534 *
2535 * Description:
2536 * A request could be merge of IOs which require different failure
2537 * handling. This function determines the number of bytes which
2538 * can be failed from the beginning of the request without
2539 * crossing into area which need to be retried further.
2540 *
2541 * Return:
2542 * The number of bytes to fail.
80a761fd
TH
2543 */
2544unsigned int blk_rq_err_bytes(const struct request *rq)
2545{
2546 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2547 unsigned int bytes = 0;
2548 struct bio *bio;
2549
e8064021 2550 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2551 return blk_rq_bytes(rq);
2552
2553 /*
2554 * Currently the only 'mixing' which can happen is between
2555 * different fastfail types. We can safely fail portions
2556 * which have all the failfast bits that the first one has -
2557 * the ones which are at least as eager to fail as the first
2558 * one.
2559 */
2560 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2561 if ((bio->bi_opf & ff) != ff)
80a761fd 2562 break;
4f024f37 2563 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2564 }
2565
2566 /* this could lead to infinite loop */
2567 BUG_ON(blk_rq_bytes(rq) && !bytes);
2568 return bytes;
2569}
2570EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2571
320ae51f 2572void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2573{
c2553b58 2574 if (blk_do_io_stat(req)) {
bc58ba94
JA
2575 const int rw = rq_data_dir(req);
2576 struct hd_struct *part;
2577 int cpu;
2578
2579 cpu = part_stat_lock();
09e099d4 2580 part = req->part;
bc58ba94
JA
2581 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2582 part_stat_unlock();
2583 }
2584}
2585
320ae51f 2586void blk_account_io_done(struct request *req)
bc58ba94 2587{
bc58ba94 2588 /*
dd4c133f
TH
2589 * Account IO completion. flush_rq isn't accounted as a
2590 * normal IO on queueing nor completion. Accounting the
2591 * containing request is enough.
bc58ba94 2592 */
e8064021 2593 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2594 unsigned long duration = jiffies - req->start_time;
2595 const int rw = rq_data_dir(req);
2596 struct hd_struct *part;
2597 int cpu;
2598
2599 cpu = part_stat_lock();
09e099d4 2600 part = req->part;
bc58ba94
JA
2601
2602 part_stat_inc(cpu, part, ios[rw]);
2603 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
2604 part_round_stats(req->q, cpu, part);
2605 part_dec_in_flight(req->q, part, rw);
bc58ba94 2606
6c23a968 2607 hd_struct_put(part);
bc58ba94
JA
2608 part_stat_unlock();
2609 }
2610}
2611
47fafbc7 2612#ifdef CONFIG_PM
c8158819
LM
2613/*
2614 * Don't process normal requests when queue is suspended
2615 * or in the process of suspending/resuming
2616 */
e4f36b24 2617static bool blk_pm_allow_request(struct request *rq)
c8158819 2618{
e4f36b24
CH
2619 switch (rq->q->rpm_status) {
2620 case RPM_RESUMING:
2621 case RPM_SUSPENDING:
2622 return rq->rq_flags & RQF_PM;
2623 case RPM_SUSPENDED:
2624 return false;
2625 }
2626
2627 return true;
c8158819
LM
2628}
2629#else
e4f36b24 2630static bool blk_pm_allow_request(struct request *rq)
c8158819 2631{
e4f36b24 2632 return true;
c8158819
LM
2633}
2634#endif
2635
320ae51f
JA
2636void blk_account_io_start(struct request *rq, bool new_io)
2637{
2638 struct hd_struct *part;
2639 int rw = rq_data_dir(rq);
2640 int cpu;
2641
2642 if (!blk_do_io_stat(rq))
2643 return;
2644
2645 cpu = part_stat_lock();
2646
2647 if (!new_io) {
2648 part = rq->part;
2649 part_stat_inc(cpu, part, merges[rw]);
2650 } else {
2651 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2652 if (!hd_struct_try_get(part)) {
2653 /*
2654 * The partition is already being removed,
2655 * the request will be accounted on the disk only
2656 *
2657 * We take a reference on disk->part0 although that
2658 * partition will never be deleted, so we can treat
2659 * it as any other partition.
2660 */
2661 part = &rq->rq_disk->part0;
2662 hd_struct_get(part);
2663 }
d62e26b3
JA
2664 part_round_stats(rq->q, cpu, part);
2665 part_inc_in_flight(rq->q, part, rw);
320ae51f
JA
2666 rq->part = part;
2667 }
2668
2669 part_stat_unlock();
2670}
2671
9c988374
CH
2672static struct request *elv_next_request(struct request_queue *q)
2673{
2674 struct request *rq;
2675 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2676
2677 WARN_ON_ONCE(q->mq_ops);
2678
2679 while (1) {
e4f36b24
CH
2680 list_for_each_entry(rq, &q->queue_head, queuelist) {
2681 if (blk_pm_allow_request(rq))
2682 return rq;
2683
2684 if (rq->rq_flags & RQF_SOFTBARRIER)
2685 break;
9c988374
CH
2686 }
2687
2688 /*
2689 * Flush request is running and flush request isn't queueable
2690 * in the drive, we can hold the queue till flush request is
2691 * finished. Even we don't do this, driver can't dispatch next
2692 * requests and will requeue them. And this can improve
2693 * throughput too. For example, we have request flush1, write1,
2694 * flush 2. flush1 is dispatched, then queue is hold, write1
2695 * isn't inserted to queue. After flush1 is finished, flush2
2696 * will be dispatched. Since disk cache is already clean,
2697 * flush2 will be finished very soon, so looks like flush2 is
2698 * folded to flush1.
2699 * Since the queue is hold, a flag is set to indicate the queue
2700 * should be restarted later. Please see flush_end_io() for
2701 * details.
2702 */
2703 if (fq->flush_pending_idx != fq->flush_running_idx &&
2704 !queue_flush_queueable(q)) {
2705 fq->flush_queue_delayed = 1;
2706 return NULL;
2707 }
2708 if (unlikely(blk_queue_bypass(q)) ||
2709 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2710 return NULL;
2711 }
2712}
2713
3bcddeac 2714/**
9934c8c0
TH
2715 * blk_peek_request - peek at the top of a request queue
2716 * @q: request queue to peek at
2717 *
2718 * Description:
2719 * Return the request at the top of @q. The returned request
2720 * should be started using blk_start_request() before LLD starts
2721 * processing it.
2722 *
2723 * Return:
2724 * Pointer to the request at the top of @q if available. Null
2725 * otherwise.
9934c8c0
TH
2726 */
2727struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2728{
2729 struct request *rq;
2730 int ret;
2731
2fff8a92 2732 lockdep_assert_held(q->queue_lock);
332ebbf7 2733 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2734
9c988374 2735 while ((rq = elv_next_request(q)) != NULL) {
e8064021 2736 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2737 /*
2738 * This is the first time the device driver
2739 * sees this request (possibly after
2740 * requeueing). Notify IO scheduler.
2741 */
e8064021 2742 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2743 elv_activate_rq(q, rq);
2744
2745 /*
2746 * just mark as started even if we don't start
2747 * it, a request that has been delayed should
2748 * not be passed by new incoming requests
2749 */
e8064021 2750 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2751 trace_block_rq_issue(q, rq);
2752 }
2753
2754 if (!q->boundary_rq || q->boundary_rq == rq) {
2755 q->end_sector = rq_end_sector(rq);
2756 q->boundary_rq = NULL;
2757 }
2758
e8064021 2759 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2760 break;
2761
2e46e8b2 2762 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2763 /*
2764 * make sure space for the drain appears we
2765 * know we can do this because max_hw_segments
2766 * has been adjusted to be one fewer than the
2767 * device can handle
2768 */
2769 rq->nr_phys_segments++;
2770 }
2771
2772 if (!q->prep_rq_fn)
2773 break;
2774
2775 ret = q->prep_rq_fn(q, rq);
2776 if (ret == BLKPREP_OK) {
2777 break;
2778 } else if (ret == BLKPREP_DEFER) {
2779 /*
2780 * the request may have been (partially) prepped.
2781 * we need to keep this request in the front to
e8064021 2782 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2783 * prevent other fs requests from passing this one.
2784 */
2e46e8b2 2785 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2786 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2787 /*
2788 * remove the space for the drain we added
2789 * so that we don't add it again
2790 */
2791 --rq->nr_phys_segments;
2792 }
2793
2794 rq = NULL;
2795 break;
0fb5b1fb 2796 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2797 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2798 /*
2799 * Mark this request as started so we don't trigger
2800 * any debug logic in the end I/O path.
2801 */
2802 blk_start_request(rq);
2a842aca
CH
2803 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2804 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2805 } else {
2806 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2807 break;
2808 }
2809 }
2810
2811 return rq;
2812}
9934c8c0 2813EXPORT_SYMBOL(blk_peek_request);
158dbda0 2814
5034435c 2815static void blk_dequeue_request(struct request *rq)
158dbda0 2816{
9934c8c0
TH
2817 struct request_queue *q = rq->q;
2818
158dbda0
TH
2819 BUG_ON(list_empty(&rq->queuelist));
2820 BUG_ON(ELV_ON_HASH(rq));
2821
2822 list_del_init(&rq->queuelist);
2823
2824 /*
2825 * the time frame between a request being removed from the lists
2826 * and to it is freed is accounted as io that is in progress at
2827 * the driver side.
2828 */
9195291e 2829 if (blk_account_rq(rq)) {
0a7ae2ff 2830 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2831 set_io_start_time_ns(rq);
2832 }
158dbda0
TH
2833}
2834
9934c8c0
TH
2835/**
2836 * blk_start_request - start request processing on the driver
2837 * @req: request to dequeue
2838 *
2839 * Description:
2840 * Dequeue @req and start timeout timer on it. This hands off the
2841 * request to the driver.
9934c8c0
TH
2842 */
2843void blk_start_request(struct request *req)
2844{
2fff8a92 2845 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2846 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2847
9934c8c0
TH
2848 blk_dequeue_request(req);
2849
cf43e6be 2850 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2851 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2852 req->rq_flags |= RQF_STATS;
87760e5e 2853 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2854 }
2855
4912aa6c 2856 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2857 blk_add_timer(req);
2858}
2859EXPORT_SYMBOL(blk_start_request);
2860
2861/**
2862 * blk_fetch_request - fetch a request from a request queue
2863 * @q: request queue to fetch a request from
2864 *
2865 * Description:
2866 * Return the request at the top of @q. The request is started on
2867 * return and LLD can start processing it immediately.
2868 *
2869 * Return:
2870 * Pointer to the request at the top of @q if available. Null
2871 * otherwise.
9934c8c0
TH
2872 */
2873struct request *blk_fetch_request(struct request_queue *q)
2874{
2875 struct request *rq;
2876
2fff8a92 2877 lockdep_assert_held(q->queue_lock);
332ebbf7 2878 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2879
9934c8c0
TH
2880 rq = blk_peek_request(q);
2881 if (rq)
2882 blk_start_request(rq);
2883 return rq;
2884}
2885EXPORT_SYMBOL(blk_fetch_request);
2886
ef71de8b
CH
2887/*
2888 * Steal bios from a request and add them to a bio list.
2889 * The request must not have been partially completed before.
2890 */
2891void blk_steal_bios(struct bio_list *list, struct request *rq)
2892{
2893 if (rq->bio) {
2894 if (list->tail)
2895 list->tail->bi_next = rq->bio;
2896 else
2897 list->head = rq->bio;
2898 list->tail = rq->biotail;
2899
2900 rq->bio = NULL;
2901 rq->biotail = NULL;
2902 }
2903
2904 rq->__data_len = 0;
2905}
2906EXPORT_SYMBOL_GPL(blk_steal_bios);
2907
3bcddeac 2908/**
2e60e022 2909 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2910 * @req: the request being processed
2a842aca 2911 * @error: block status code
8ebf9756 2912 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2913 *
2914 * Description:
8ebf9756
RD
2915 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2916 * the request structure even if @req doesn't have leftover.
2917 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2918 *
2919 * This special helper function is only for request stacking drivers
2920 * (e.g. request-based dm) so that they can handle partial completion.
2921 * Actual device drivers should use blk_end_request instead.
2922 *
2923 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2924 * %false return from this function.
3bcddeac
KU
2925 *
2926 * Return:
2e60e022
TH
2927 * %false - this request doesn't have any more data
2928 * %true - this request has more data
3bcddeac 2929 **/
2a842aca
CH
2930bool blk_update_request(struct request *req, blk_status_t error,
2931 unsigned int nr_bytes)
1da177e4 2932{
f79ea416 2933 int total_bytes;
1da177e4 2934
2a842aca 2935 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2936
2e60e022
TH
2937 if (!req->bio)
2938 return false;
2939
2a842aca
CH
2940 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2941 !(req->rq_flags & RQF_QUIET)))
2942 print_req_error(req, error);
1da177e4 2943
bc58ba94 2944 blk_account_io_completion(req, nr_bytes);
d72d904a 2945
f79ea416
KO
2946 total_bytes = 0;
2947 while (req->bio) {
2948 struct bio *bio = req->bio;
4f024f37 2949 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2950
4f024f37 2951 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2952 req->bio = bio->bi_next;
1da177e4 2953
fbbaf700
N
2954 /* Completion has already been traced */
2955 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2956 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2957
f79ea416
KO
2958 total_bytes += bio_bytes;
2959 nr_bytes -= bio_bytes;
1da177e4 2960
f79ea416
KO
2961 if (!nr_bytes)
2962 break;
1da177e4
LT
2963 }
2964
2965 /*
2966 * completely done
2967 */
2e60e022
TH
2968 if (!req->bio) {
2969 /*
2970 * Reset counters so that the request stacking driver
2971 * can find how many bytes remain in the request
2972 * later.
2973 */
a2dec7b3 2974 req->__data_len = 0;
2e60e022
TH
2975 return false;
2976 }
1da177e4 2977
a2dec7b3 2978 req->__data_len -= total_bytes;
2e46e8b2
TH
2979
2980 /* update sector only for requests with clear definition of sector */
57292b58 2981 if (!blk_rq_is_passthrough(req))
a2dec7b3 2982 req->__sector += total_bytes >> 9;
2e46e8b2 2983
80a761fd 2984 /* mixed attributes always follow the first bio */
e8064021 2985 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2986 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2987 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2988 }
2989
ed6565e7
CH
2990 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2991 /*
2992 * If total number of sectors is less than the first segment
2993 * size, something has gone terribly wrong.
2994 */
2995 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2996 blk_dump_rq_flags(req, "request botched");
2997 req->__data_len = blk_rq_cur_bytes(req);
2998 }
2e46e8b2 2999
ed6565e7
CH
3000 /* recalculate the number of segments */
3001 blk_recalc_rq_segments(req);
3002 }
2e46e8b2 3003
2e60e022 3004 return true;
1da177e4 3005}
2e60e022 3006EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 3007
2a842aca 3008static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
3009 unsigned int nr_bytes,
3010 unsigned int bidi_bytes)
5efccd17 3011{
2e60e022
TH
3012 if (blk_update_request(rq, error, nr_bytes))
3013 return true;
5efccd17 3014
2e60e022
TH
3015 /* Bidi request must be completed as a whole */
3016 if (unlikely(blk_bidi_rq(rq)) &&
3017 blk_update_request(rq->next_rq, error, bidi_bytes))
3018 return true;
5efccd17 3019
e2e1a148
JA
3020 if (blk_queue_add_random(rq->q))
3021 add_disk_randomness(rq->rq_disk);
2e60e022
TH
3022
3023 return false;
1da177e4
LT
3024}
3025
28018c24
JB
3026/**
3027 * blk_unprep_request - unprepare a request
3028 * @req: the request
3029 *
3030 * This function makes a request ready for complete resubmission (or
3031 * completion). It happens only after all error handling is complete,
3032 * so represents the appropriate moment to deallocate any resources
3033 * that were allocated to the request in the prep_rq_fn. The queue
3034 * lock is held when calling this.
3035 */
3036void blk_unprep_request(struct request *req)
3037{
3038 struct request_queue *q = req->q;
3039
e8064021 3040 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
3041 if (q->unprep_rq_fn)
3042 q->unprep_rq_fn(q, req);
3043}
3044EXPORT_SYMBOL_GPL(blk_unprep_request);
3045
2a842aca 3046void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 3047{
cf43e6be
JA
3048 struct request_queue *q = req->q;
3049
2fff8a92 3050 lockdep_assert_held(req->q->queue_lock);
332ebbf7 3051 WARN_ON_ONCE(q->mq_ops);
2fff8a92 3052
cf43e6be 3053 if (req->rq_flags & RQF_STATS)
34dbad5d 3054 blk_stat_add(req);
cf43e6be 3055
e8064021 3056 if (req->rq_flags & RQF_QUEUED)
cf43e6be 3057 blk_queue_end_tag(q, req);
b8286239 3058
ba396a6c 3059 BUG_ON(blk_queued_rq(req));
1da177e4 3060
57292b58 3061 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 3062 laptop_io_completion(req->q->backing_dev_info);
1da177e4 3063
e78042e5
MA
3064 blk_delete_timer(req);
3065
e8064021 3066 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
3067 blk_unprep_request(req);
3068
bc58ba94 3069 blk_account_io_done(req);
b8286239 3070
87760e5e
JA
3071 if (req->end_io) {
3072 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 3073 req->end_io(req, error);
87760e5e 3074 } else {
b8286239
KU
3075 if (blk_bidi_rq(req))
3076 __blk_put_request(req->next_rq->q, req->next_rq);
3077
cf43e6be 3078 __blk_put_request(q, req);
b8286239 3079 }
1da177e4 3080}
12120077 3081EXPORT_SYMBOL(blk_finish_request);
1da177e4 3082
3b11313a 3083/**
2e60e022
TH
3084 * blk_end_bidi_request - Complete a bidi request
3085 * @rq: the request to complete
2a842aca 3086 * @error: block status code
2e60e022
TH
3087 * @nr_bytes: number of bytes to complete @rq
3088 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
3089 *
3090 * Description:
e3a04fe3 3091 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
3092 * Drivers that supports bidi can safely call this member for any
3093 * type of request, bidi or uni. In the later case @bidi_bytes is
3094 * just ignored.
336cdb40
KU
3095 *
3096 * Return:
2e60e022
TH
3097 * %false - we are done with this request
3098 * %true - still buffers pending for this request
a0cd1285 3099 **/
2a842aca 3100static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
3101 unsigned int nr_bytes, unsigned int bidi_bytes)
3102{
336cdb40 3103 struct request_queue *q = rq->q;
2e60e022 3104 unsigned long flags;
32fab448 3105
332ebbf7
BVA
3106 WARN_ON_ONCE(q->mq_ops);
3107
2e60e022
TH
3108 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3109 return true;
32fab448 3110
336cdb40 3111 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 3112 blk_finish_request(rq, error);
336cdb40
KU
3113 spin_unlock_irqrestore(q->queue_lock, flags);
3114
2e60e022 3115 return false;
32fab448
KU
3116}
3117
336cdb40 3118/**
2e60e022
TH
3119 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3120 * @rq: the request to complete
2a842aca 3121 * @error: block status code
e3a04fe3
KU
3122 * @nr_bytes: number of bytes to complete @rq
3123 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
3124 *
3125 * Description:
2e60e022
TH
3126 * Identical to blk_end_bidi_request() except that queue lock is
3127 * assumed to be locked on entry and remains so on return.
336cdb40
KU
3128 *
3129 * Return:
2e60e022
TH
3130 * %false - we are done with this request
3131 * %true - still buffers pending for this request
336cdb40 3132 **/
2a842aca 3133static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 3134 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 3135{
2fff8a92 3136 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3137 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3138
2e60e022
TH
3139 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3140 return true;
336cdb40 3141
2e60e022 3142 blk_finish_request(rq, error);
336cdb40 3143
2e60e022 3144 return false;
336cdb40 3145}
e19a3ab0
KU
3146
3147/**
3148 * blk_end_request - Helper function for drivers to complete the request.
3149 * @rq: the request being processed
2a842aca 3150 * @error: block status code
e19a3ab0
KU
3151 * @nr_bytes: number of bytes to complete
3152 *
3153 * Description:
3154 * Ends I/O on a number of bytes attached to @rq.
3155 * If @rq has leftover, sets it up for the next range of segments.
3156 *
3157 * Return:
b1f74493
FT
3158 * %false - we are done with this request
3159 * %true - still buffers pending for this request
e19a3ab0 3160 **/
2a842aca
CH
3161bool blk_end_request(struct request *rq, blk_status_t error,
3162 unsigned int nr_bytes)
e19a3ab0 3163{
332ebbf7 3164 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 3165 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 3166}
56ad1740 3167EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
3168
3169/**
b1f74493
FT
3170 * blk_end_request_all - Helper function for drives to finish the request.
3171 * @rq: the request to finish
2a842aca 3172 * @error: block status code
336cdb40
KU
3173 *
3174 * Description:
b1f74493
FT
3175 * Completely finish @rq.
3176 */
2a842aca 3177void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 3178{
b1f74493
FT
3179 bool pending;
3180 unsigned int bidi_bytes = 0;
336cdb40 3181
b1f74493
FT
3182 if (unlikely(blk_bidi_rq(rq)))
3183 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 3184
b1f74493
FT
3185 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3186 BUG_ON(pending);
3187}
56ad1740 3188EXPORT_SYMBOL(blk_end_request_all);
336cdb40 3189
e3a04fe3 3190/**
b1f74493
FT
3191 * __blk_end_request - Helper function for drivers to complete the request.
3192 * @rq: the request being processed
2a842aca 3193 * @error: block status code
b1f74493 3194 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
3195 *
3196 * Description:
b1f74493 3197 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
3198 *
3199 * Return:
b1f74493
FT
3200 * %false - we are done with this request
3201 * %true - still buffers pending for this request
e3a04fe3 3202 **/
2a842aca
CH
3203bool __blk_end_request(struct request *rq, blk_status_t error,
3204 unsigned int nr_bytes)
e3a04fe3 3205{
2fff8a92 3206 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3207 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3208
b1f74493 3209 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 3210}
56ad1740 3211EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 3212
32fab448 3213/**
b1f74493
FT
3214 * __blk_end_request_all - Helper function for drives to finish the request.
3215 * @rq: the request to finish
2a842aca 3216 * @error: block status code
32fab448
KU
3217 *
3218 * Description:
b1f74493 3219 * Completely finish @rq. Must be called with queue lock held.
32fab448 3220 */
2a842aca 3221void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3222{
b1f74493
FT
3223 bool pending;
3224 unsigned int bidi_bytes = 0;
3225
2fff8a92 3226 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3227 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3228
b1f74493
FT
3229 if (unlikely(blk_bidi_rq(rq)))
3230 bidi_bytes = blk_rq_bytes(rq->next_rq);
3231
3232 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3233 BUG_ON(pending);
32fab448 3234}
56ad1740 3235EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3236
e19a3ab0 3237/**
b1f74493
FT
3238 * __blk_end_request_cur - Helper function to finish the current request chunk.
3239 * @rq: the request to finish the current chunk for
2a842aca 3240 * @error: block status code
e19a3ab0
KU
3241 *
3242 * Description:
b1f74493
FT
3243 * Complete the current consecutively mapped chunk from @rq. Must
3244 * be called with queue lock held.
e19a3ab0
KU
3245 *
3246 * Return:
b1f74493
FT
3247 * %false - we are done with this request
3248 * %true - still buffers pending for this request
3249 */
2a842aca 3250bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3251{
b1f74493 3252 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3253}
56ad1740 3254EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3255
86db1e29
JA
3256void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3257 struct bio *bio)
1da177e4 3258{
b4f42e28 3259 if (bio_has_data(bio))
fb2dce86 3260 rq->nr_phys_segments = bio_phys_segments(q, bio);
acf1bbe8
JA
3261 else if (bio_op(bio) == REQ_OP_DISCARD)
3262 rq->nr_phys_segments = 1;
b4f42e28 3263
4f024f37 3264 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3265 rq->bio = rq->biotail = bio;
1da177e4 3266
74d46992
CH
3267 if (bio->bi_disk)
3268 rq->rq_disk = bio->bi_disk;
66846572 3269}
1da177e4 3270
2d4dc890
IL
3271#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3272/**
3273 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3274 * @rq: the request to be flushed
3275 *
3276 * Description:
3277 * Flush all pages in @rq.
3278 */
3279void rq_flush_dcache_pages(struct request *rq)
3280{
3281 struct req_iterator iter;
7988613b 3282 struct bio_vec bvec;
2d4dc890
IL
3283
3284 rq_for_each_segment(bvec, rq, iter)
7988613b 3285 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3286}
3287EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3288#endif
3289
ef9e3fac
KU
3290/**
3291 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3292 * @q : the queue of the device being checked
3293 *
3294 * Description:
3295 * Check if underlying low-level drivers of a device are busy.
3296 * If the drivers want to export their busy state, they must set own
3297 * exporting function using blk_queue_lld_busy() first.
3298 *
3299 * Basically, this function is used only by request stacking drivers
3300 * to stop dispatching requests to underlying devices when underlying
3301 * devices are busy. This behavior helps more I/O merging on the queue
3302 * of the request stacking driver and prevents I/O throughput regression
3303 * on burst I/O load.
3304 *
3305 * Return:
3306 * 0 - Not busy (The request stacking driver should dispatch request)
3307 * 1 - Busy (The request stacking driver should stop dispatching request)
3308 */
3309int blk_lld_busy(struct request_queue *q)
3310{
3311 if (q->lld_busy_fn)
3312 return q->lld_busy_fn(q);
3313
3314 return 0;
3315}
3316EXPORT_SYMBOL_GPL(blk_lld_busy);
3317
78d8e58a
MS
3318/**
3319 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3320 * @rq: the clone request to be cleaned up
3321 *
3322 * Description:
3323 * Free all bios in @rq for a cloned request.
3324 */
3325void blk_rq_unprep_clone(struct request *rq)
3326{
3327 struct bio *bio;
3328
3329 while ((bio = rq->bio) != NULL) {
3330 rq->bio = bio->bi_next;
3331
3332 bio_put(bio);
3333 }
3334}
3335EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3336
3337/*
3338 * Copy attributes of the original request to the clone request.
3339 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3340 */
3341static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3342{
3343 dst->cpu = src->cpu;
b0fd271d
KU
3344 dst->__sector = blk_rq_pos(src);
3345 dst->__data_len = blk_rq_bytes(src);
710108e0
BVA
3346 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3347 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3348 dst->special_vec = src->special_vec;
3349 }
b0fd271d
KU
3350 dst->nr_phys_segments = src->nr_phys_segments;
3351 dst->ioprio = src->ioprio;
3352 dst->extra_len = src->extra_len;
78d8e58a
MS
3353}
3354
3355/**
3356 * blk_rq_prep_clone - Helper function to setup clone request
3357 * @rq: the request to be setup
3358 * @rq_src: original request to be cloned
3359 * @bs: bio_set that bios for clone are allocated from
3360 * @gfp_mask: memory allocation mask for bio
3361 * @bio_ctr: setup function to be called for each clone bio.
3362 * Returns %0 for success, non %0 for failure.
3363 * @data: private data to be passed to @bio_ctr
3364 *
3365 * Description:
3366 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3367 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3368 * are not copied, and copying such parts is the caller's responsibility.
3369 * Also, pages which the original bios are pointing to are not copied
3370 * and the cloned bios just point same pages.
3371 * So cloned bios must be completed before original bios, which means
3372 * the caller must complete @rq before @rq_src.
3373 */
3374int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3375 struct bio_set *bs, gfp_t gfp_mask,
3376 int (*bio_ctr)(struct bio *, struct bio *, void *),
3377 void *data)
3378{
3379 struct bio *bio, *bio_src;
3380
3381 if (!bs)
3382 bs = fs_bio_set;
3383
3384 __rq_for_each_bio(bio_src, rq_src) {
3385 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3386 if (!bio)
3387 goto free_and_out;
3388
3389 if (bio_ctr && bio_ctr(bio, bio_src, data))
3390 goto free_and_out;
3391
3392 if (rq->bio) {
3393 rq->biotail->bi_next = bio;
3394 rq->biotail = bio;
3395 } else
3396 rq->bio = rq->biotail = bio;
3397 }
3398
3399 __blk_rq_prep_clone(rq, rq_src);
3400
3401 return 0;
3402
3403free_and_out:
3404 if (bio)
3405 bio_put(bio);
3406 blk_rq_unprep_clone(rq);
3407
3408 return -ENOMEM;
b0fd271d
KU
3409}
3410EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3411
59c3d45e 3412int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3413{
3414 return queue_work(kblockd_workqueue, work);
3415}
1da177e4
LT
3416EXPORT_SYMBOL(kblockd_schedule_work);
3417
ee63cfa7
JA
3418int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3419{
3420 return queue_work_on(cpu, kblockd_workqueue, work);
3421}
3422EXPORT_SYMBOL(kblockd_schedule_work_on);
3423
818cd1cb
JA
3424int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3425 unsigned long delay)
3426{
3427 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3428}
3429EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3430
59c3d45e
JA
3431int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3432 unsigned long delay)
e43473b7
VG
3433{
3434 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3435}
3436EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3437
8ab14595
JA
3438int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3439 unsigned long delay)
3440{
3441 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3442}
3443EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3444
75df7136
SJ
3445/**
3446 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3447 * @plug: The &struct blk_plug that needs to be initialized
3448 *
3449 * Description:
3450 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3451 * pending I/O should the task end up blocking between blk_start_plug() and
3452 * blk_finish_plug(). This is important from a performance perspective, but
3453 * also ensures that we don't deadlock. For instance, if the task is blocking
3454 * for a memory allocation, memory reclaim could end up wanting to free a
3455 * page belonging to that request that is currently residing in our private
3456 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3457 * this kind of deadlock.
3458 */
73c10101
JA
3459void blk_start_plug(struct blk_plug *plug)
3460{
3461 struct task_struct *tsk = current;
3462
dd6cf3e1
SL
3463 /*
3464 * If this is a nested plug, don't actually assign it.
3465 */
3466 if (tsk->plug)
3467 return;
3468
73c10101 3469 INIT_LIST_HEAD(&plug->list);
320ae51f 3470 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3471 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3472 /*
dd6cf3e1
SL
3473 * Store ordering should not be needed here, since a potential
3474 * preempt will imply a full memory barrier
73c10101 3475 */
dd6cf3e1 3476 tsk->plug = plug;
73c10101
JA
3477}
3478EXPORT_SYMBOL(blk_start_plug);
3479
3480static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3481{
3482 struct request *rqa = container_of(a, struct request, queuelist);
3483 struct request *rqb = container_of(b, struct request, queuelist);
3484
975927b9
JM
3485 return !(rqa->q < rqb->q ||
3486 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3487}
3488
49cac01e
JA
3489/*
3490 * If 'from_schedule' is true, then postpone the dispatch of requests
3491 * until a safe kblockd context. We due this to avoid accidental big
3492 * additional stack usage in driver dispatch, in places where the originally
3493 * plugger did not intend it.
3494 */
f6603783 3495static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3496 bool from_schedule)
99e22598 3497 __releases(q->queue_lock)
94b5eb28 3498{
2fff8a92
BVA
3499 lockdep_assert_held(q->queue_lock);
3500
49cac01e 3501 trace_block_unplug(q, depth, !from_schedule);
99e22598 3502
70460571 3503 if (from_schedule)
24ecfbe2 3504 blk_run_queue_async(q);
70460571 3505 else
24ecfbe2 3506 __blk_run_queue(q);
70460571 3507 spin_unlock(q->queue_lock);
94b5eb28
JA
3508}
3509
74018dc3 3510static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3511{
3512 LIST_HEAD(callbacks);
3513
2a7d5559
SL
3514 while (!list_empty(&plug->cb_list)) {
3515 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3516
2a7d5559
SL
3517 while (!list_empty(&callbacks)) {
3518 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3519 struct blk_plug_cb,
3520 list);
2a7d5559 3521 list_del(&cb->list);
74018dc3 3522 cb->callback(cb, from_schedule);
2a7d5559 3523 }
048c9374
N
3524 }
3525}
3526
9cbb1750
N
3527struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3528 int size)
3529{
3530 struct blk_plug *plug = current->plug;
3531 struct blk_plug_cb *cb;
3532
3533 if (!plug)
3534 return NULL;
3535
3536 list_for_each_entry(cb, &plug->cb_list, list)
3537 if (cb->callback == unplug && cb->data == data)
3538 return cb;
3539
3540 /* Not currently on the callback list */
3541 BUG_ON(size < sizeof(*cb));
3542 cb = kzalloc(size, GFP_ATOMIC);
3543 if (cb) {
3544 cb->data = data;
3545 cb->callback = unplug;
3546 list_add(&cb->list, &plug->cb_list);
3547 }
3548 return cb;
3549}
3550EXPORT_SYMBOL(blk_check_plugged);
3551
49cac01e 3552void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3553{
3554 struct request_queue *q;
3555 unsigned long flags;
3556 struct request *rq;
109b8129 3557 LIST_HEAD(list);
94b5eb28 3558 unsigned int depth;
73c10101 3559
74018dc3 3560 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3561
3562 if (!list_empty(&plug->mq_list))
3563 blk_mq_flush_plug_list(plug, from_schedule);
3564
73c10101
JA
3565 if (list_empty(&plug->list))
3566 return;
3567
109b8129
N
3568 list_splice_init(&plug->list, &list);
3569
422765c2 3570 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3571
3572 q = NULL;
94b5eb28 3573 depth = 0;
18811272
JA
3574
3575 /*
3576 * Save and disable interrupts here, to avoid doing it for every
3577 * queue lock we have to take.
3578 */
73c10101 3579 local_irq_save(flags);
109b8129
N
3580 while (!list_empty(&list)) {
3581 rq = list_entry_rq(list.next);
73c10101 3582 list_del_init(&rq->queuelist);
73c10101
JA
3583 BUG_ON(!rq->q);
3584 if (rq->q != q) {
99e22598
JA
3585 /*
3586 * This drops the queue lock
3587 */
3588 if (q)
49cac01e 3589 queue_unplugged(q, depth, from_schedule);
73c10101 3590 q = rq->q;
94b5eb28 3591 depth = 0;
73c10101
JA
3592 spin_lock(q->queue_lock);
3593 }
8ba61435
TH
3594
3595 /*
3596 * Short-circuit if @q is dead
3597 */
3f3299d5 3598 if (unlikely(blk_queue_dying(q))) {
2a842aca 3599 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3600 continue;
3601 }
3602
73c10101
JA
3603 /*
3604 * rq is already accounted, so use raw insert
3605 */
f73f44eb 3606 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3607 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3608 else
3609 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3610
3611 depth++;
73c10101
JA
3612 }
3613
99e22598
JA
3614 /*
3615 * This drops the queue lock
3616 */
3617 if (q)
49cac01e 3618 queue_unplugged(q, depth, from_schedule);
73c10101 3619
73c10101
JA
3620 local_irq_restore(flags);
3621}
73c10101
JA
3622
3623void blk_finish_plug(struct blk_plug *plug)
3624{
dd6cf3e1
SL
3625 if (plug != current->plug)
3626 return;
f6603783 3627 blk_flush_plug_list(plug, false);
73c10101 3628
dd6cf3e1 3629 current->plug = NULL;
73c10101 3630}
88b996cd 3631EXPORT_SYMBOL(blk_finish_plug);
73c10101 3632
47fafbc7 3633#ifdef CONFIG_PM
6c954667
LM
3634/**
3635 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3636 * @q: the queue of the device
3637 * @dev: the device the queue belongs to
3638 *
3639 * Description:
3640 * Initialize runtime-PM-related fields for @q and start auto suspend for
3641 * @dev. Drivers that want to take advantage of request-based runtime PM
3642 * should call this function after @dev has been initialized, and its
3643 * request queue @q has been allocated, and runtime PM for it can not happen
3644 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3645 * cases, driver should call this function before any I/O has taken place.
3646 *
3647 * This function takes care of setting up using auto suspend for the device,
3648 * the autosuspend delay is set to -1 to make runtime suspend impossible
3649 * until an updated value is either set by user or by driver. Drivers do
3650 * not need to touch other autosuspend settings.
3651 *
3652 * The block layer runtime PM is request based, so only works for drivers
3653 * that use request as their IO unit instead of those directly use bio's.
3654 */
3655void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3656{
765e40b6
CH
3657 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3658 if (q->mq_ops)
3659 return;
3660
6c954667
LM
3661 q->dev = dev;
3662 q->rpm_status = RPM_ACTIVE;
3663 pm_runtime_set_autosuspend_delay(q->dev, -1);
3664 pm_runtime_use_autosuspend(q->dev);
3665}
3666EXPORT_SYMBOL(blk_pm_runtime_init);
3667
3668/**
3669 * blk_pre_runtime_suspend - Pre runtime suspend check
3670 * @q: the queue of the device
3671 *
3672 * Description:
3673 * This function will check if runtime suspend is allowed for the device
3674 * by examining if there are any requests pending in the queue. If there
3675 * are requests pending, the device can not be runtime suspended; otherwise,
3676 * the queue's status will be updated to SUSPENDING and the driver can
3677 * proceed to suspend the device.
3678 *
3679 * For the not allowed case, we mark last busy for the device so that
3680 * runtime PM core will try to autosuspend it some time later.
3681 *
3682 * This function should be called near the start of the device's
3683 * runtime_suspend callback.
3684 *
3685 * Return:
3686 * 0 - OK to runtime suspend the device
3687 * -EBUSY - Device should not be runtime suspended
3688 */
3689int blk_pre_runtime_suspend(struct request_queue *q)
3690{
3691 int ret = 0;
3692
4fd41a85
KX
3693 if (!q->dev)
3694 return ret;
3695
6c954667
LM
3696 spin_lock_irq(q->queue_lock);
3697 if (q->nr_pending) {
3698 ret = -EBUSY;
3699 pm_runtime_mark_last_busy(q->dev);
3700 } else {
3701 q->rpm_status = RPM_SUSPENDING;
3702 }
3703 spin_unlock_irq(q->queue_lock);
3704 return ret;
3705}
3706EXPORT_SYMBOL(blk_pre_runtime_suspend);
3707
3708/**
3709 * blk_post_runtime_suspend - Post runtime suspend processing
3710 * @q: the queue of the device
3711 * @err: return value of the device's runtime_suspend function
3712 *
3713 * Description:
3714 * Update the queue's runtime status according to the return value of the
3715 * device's runtime suspend function and mark last busy for the device so
3716 * that PM core will try to auto suspend the device at a later time.
3717 *
3718 * This function should be called near the end of the device's
3719 * runtime_suspend callback.
3720 */
3721void blk_post_runtime_suspend(struct request_queue *q, int err)
3722{
4fd41a85
KX
3723 if (!q->dev)
3724 return;
3725
6c954667
LM
3726 spin_lock_irq(q->queue_lock);
3727 if (!err) {
3728 q->rpm_status = RPM_SUSPENDED;
3729 } else {
3730 q->rpm_status = RPM_ACTIVE;
3731 pm_runtime_mark_last_busy(q->dev);
3732 }
3733 spin_unlock_irq(q->queue_lock);
3734}
3735EXPORT_SYMBOL(blk_post_runtime_suspend);
3736
3737/**
3738 * blk_pre_runtime_resume - Pre runtime resume processing
3739 * @q: the queue of the device
3740 *
3741 * Description:
3742 * Update the queue's runtime status to RESUMING in preparation for the
3743 * runtime resume of the device.
3744 *
3745 * This function should be called near the start of the device's
3746 * runtime_resume callback.
3747 */
3748void blk_pre_runtime_resume(struct request_queue *q)
3749{
4fd41a85
KX
3750 if (!q->dev)
3751 return;
3752
6c954667
LM
3753 spin_lock_irq(q->queue_lock);
3754 q->rpm_status = RPM_RESUMING;
3755 spin_unlock_irq(q->queue_lock);
3756}
3757EXPORT_SYMBOL(blk_pre_runtime_resume);
3758
3759/**
3760 * blk_post_runtime_resume - Post runtime resume processing
3761 * @q: the queue of the device
3762 * @err: return value of the device's runtime_resume function
3763 *
3764 * Description:
3765 * Update the queue's runtime status according to the return value of the
3766 * device's runtime_resume function. If it is successfully resumed, process
3767 * the requests that are queued into the device's queue when it is resuming
3768 * and then mark last busy and initiate autosuspend for it.
3769 *
3770 * This function should be called near the end of the device's
3771 * runtime_resume callback.
3772 */
3773void blk_post_runtime_resume(struct request_queue *q, int err)
3774{
4fd41a85
KX
3775 if (!q->dev)
3776 return;
3777
6c954667
LM
3778 spin_lock_irq(q->queue_lock);
3779 if (!err) {
3780 q->rpm_status = RPM_ACTIVE;
3781 __blk_run_queue(q);
3782 pm_runtime_mark_last_busy(q->dev);
c60855cd 3783 pm_request_autosuspend(q->dev);
6c954667
LM
3784 } else {
3785 q->rpm_status = RPM_SUSPENDED;
3786 }
3787 spin_unlock_irq(q->queue_lock);
3788}
3789EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3790
3791/**
3792 * blk_set_runtime_active - Force runtime status of the queue to be active
3793 * @q: the queue of the device
3794 *
3795 * If the device is left runtime suspended during system suspend the resume
3796 * hook typically resumes the device and corrects runtime status
3797 * accordingly. However, that does not affect the queue runtime PM status
3798 * which is still "suspended". This prevents processing requests from the
3799 * queue.
3800 *
3801 * This function can be used in driver's resume hook to correct queue
3802 * runtime PM status and re-enable peeking requests from the queue. It
3803 * should be called before first request is added to the queue.
3804 */
3805void blk_set_runtime_active(struct request_queue *q)
3806{
3807 spin_lock_irq(q->queue_lock);
3808 q->rpm_status = RPM_ACTIVE;
3809 pm_runtime_mark_last_busy(q->dev);
3810 pm_request_autosuspend(q->dev);
3811 spin_unlock_irq(q->queue_lock);
3812}
3813EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3814#endif
3815
1da177e4
LT
3816int __init blk_dev_init(void)
3817{
ef295ecf
CH
3818 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3819 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3820 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3821 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3822 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3823
89b90be2
TH
3824 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3825 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3826 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3827 if (!kblockd_workqueue)
3828 panic("Failed to create kblockd\n");
3829
3830 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3831 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3832
c2789bd4 3833 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3834 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3835
18fbda91
OS
3836#ifdef CONFIG_DEBUG_FS
3837 blk_debugfs_root = debugfs_create_dir("block", NULL);
3838#endif
3839
d38ecf93 3840 return 0;
1da177e4 3841}