]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme: move nr_reconnects to nvme_ctrl
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
42f61420 20#include <linux/cpu.h>
fd63e9ce 21#include <linux/delay.h>
ff5350a8 22#include <linux/dmi.h>
b60503ba
MW
23#include <linux/errno.h>
24#include <linux/fs.h>
25#include <linux/genhd.h>
4cc09e2d 26#include <linux/hdreg.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kernel.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
77bf25ea 36#include <linux/mutex.h>
b60503ba 37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
c3bfe717 39#include <linux/ptrace.h>
b60503ba
MW
40#include <linux/sched.h>
41#include <linux/slab.h>
e1e5e564 42#include <linux/t10-pi.h>
2d55cd5f 43#include <linux/timer.h>
b60503ba 44#include <linux/types.h>
2f8e2c87 45#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 46#include <asm/unaligned.h>
a98e58e5 47#include <linux/sed-opal.h>
797a796a 48
f11bb3e2
CH
49#include "nvme.h"
50
9d43cf64 51#define NVME_Q_DEPTH 1024
d31af0a3 52#define NVME_AQ_DEPTH 256
b60503ba
MW
53#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 55
adf68f21
CH
56/*
57 * We handle AEN commands ourselves and don't even let the
58 * block layer know about them.
59 */
f866fc42 60#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 61
58ffacb5
MW
62static int use_threaded_interrupts;
63module_param(use_threaded_interrupts, int, 0);
64
8ffaadf7
JD
65static bool use_cmb_sqes = true;
66module_param(use_cmb_sqes, bool, 0644);
67MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
87ad72a5
CH
69static unsigned int max_host_mem_size_mb = 128;
70module_param(max_host_mem_size_mb, uint, 0444);
71MODULE_PARM_DESC(max_host_mem_size_mb,
72 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
73
1c63dc66
CH
74struct nvme_dev;
75struct nvme_queue;
b3fffdef 76
4cc06521 77static int nvme_reset(struct nvme_dev *dev);
a0fa9647 78static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 79static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 80
1c63dc66
CH
81/*
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
83 */
84struct nvme_dev {
1c63dc66
CH
85 struct nvme_queue **queues;
86 struct blk_mq_tag_set tagset;
87 struct blk_mq_tag_set admin_tagset;
88 u32 __iomem *dbs;
89 struct device *dev;
90 struct dma_pool *prp_page_pool;
91 struct dma_pool *prp_small_pool;
92 unsigned queue_count;
93 unsigned online_queues;
94 unsigned max_qid;
95 int q_depth;
96 u32 db_stride;
1c63dc66 97 void __iomem *bar;
1c63dc66 98 struct work_struct reset_work;
5c8809e6 99 struct work_struct remove_work;
2d55cd5f 100 struct timer_list watchdog_timer;
77bf25ea 101 struct mutex shutdown_lock;
1c63dc66 102 bool subsystem;
1c63dc66
CH
103 void __iomem *cmb;
104 dma_addr_t cmb_dma_addr;
105 u64 cmb_size;
106 u32 cmbsz;
202021c1 107 u32 cmbloc;
1c63dc66 108 struct nvme_ctrl ctrl;
db3cbfff 109 struct completion ioq_wait;
87ad72a5
CH
110
111 /* shadow doorbell buffer support: */
f9f38e33
HK
112 u32 *dbbuf_dbs;
113 dma_addr_t dbbuf_dbs_dma_addr;
114 u32 *dbbuf_eis;
115 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
116
117 /* host memory buffer support: */
118 u64 host_mem_size;
119 u32 nr_host_mem_descs;
120 struct nvme_host_mem_buf_desc *host_mem_descs;
121 void **host_mem_desc_bufs;
4d115420 122};
1fa6aead 123
f9f38e33
HK
124static inline unsigned int sq_idx(unsigned int qid, u32 stride)
125{
126 return qid * 2 * stride;
127}
128
129static inline unsigned int cq_idx(unsigned int qid, u32 stride)
130{
131 return (qid * 2 + 1) * stride;
132}
133
1c63dc66
CH
134static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
135{
136 return container_of(ctrl, struct nvme_dev, ctrl);
137}
138
b60503ba
MW
139/*
140 * An NVM Express queue. Each device has at least two (one for admin
141 * commands and one for I/O commands).
142 */
143struct nvme_queue {
144 struct device *q_dmadev;
091b6092 145 struct nvme_dev *dev;
b60503ba
MW
146 spinlock_t q_lock;
147 struct nvme_command *sq_cmds;
8ffaadf7 148 struct nvme_command __iomem *sq_cmds_io;
b60503ba 149 volatile struct nvme_completion *cqes;
42483228 150 struct blk_mq_tags **tags;
b60503ba
MW
151 dma_addr_t sq_dma_addr;
152 dma_addr_t cq_dma_addr;
b60503ba
MW
153 u32 __iomem *q_db;
154 u16 q_depth;
6222d172 155 s16 cq_vector;
b60503ba
MW
156 u16 sq_tail;
157 u16 cq_head;
c30341dc 158 u16 qid;
e9539f47
MW
159 u8 cq_phase;
160 u8 cqe_seen;
f9f38e33
HK
161 u32 *dbbuf_sq_db;
162 u32 *dbbuf_cq_db;
163 u32 *dbbuf_sq_ei;
164 u32 *dbbuf_cq_ei;
b60503ba
MW
165};
166
71bd150c
CH
167/*
168 * The nvme_iod describes the data in an I/O, including the list of PRP
169 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 170 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
171 * allocated to store the PRP list.
172 */
173struct nvme_iod {
d49187e9 174 struct nvme_request req;
f4800d6d
CH
175 struct nvme_queue *nvmeq;
176 int aborted;
71bd150c 177 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
178 int nents; /* Used in scatterlist */
179 int length; /* Of data, in bytes */
180 dma_addr_t first_dma;
bf684057 181 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
182 struct scatterlist *sg;
183 struct scatterlist inline_sg[0];
b60503ba
MW
184};
185
186/*
187 * Check we didin't inadvertently grow the command struct
188 */
189static inline void _nvme_check_size(void)
190{
191 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
194 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 196 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 197 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
198 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
200 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
201 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 202 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
203 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
204}
205
206static inline unsigned int nvme_dbbuf_size(u32 stride)
207{
208 return ((num_possible_cpus() + 1) * 8 * stride);
209}
210
211static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
212{
213 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
214
215 if (dev->dbbuf_dbs)
216 return 0;
217
218 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
219 &dev->dbbuf_dbs_dma_addr,
220 GFP_KERNEL);
221 if (!dev->dbbuf_dbs)
222 return -ENOMEM;
223 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
224 &dev->dbbuf_eis_dma_addr,
225 GFP_KERNEL);
226 if (!dev->dbbuf_eis) {
227 dma_free_coherent(dev->dev, mem_size,
228 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
229 dev->dbbuf_dbs = NULL;
230 return -ENOMEM;
231 }
232
233 return 0;
234}
235
236static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
237{
238 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
239
240 if (dev->dbbuf_dbs) {
241 dma_free_coherent(dev->dev, mem_size,
242 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
243 dev->dbbuf_dbs = NULL;
244 }
245 if (dev->dbbuf_eis) {
246 dma_free_coherent(dev->dev, mem_size,
247 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
248 dev->dbbuf_eis = NULL;
249 }
250}
251
252static void nvme_dbbuf_init(struct nvme_dev *dev,
253 struct nvme_queue *nvmeq, int qid)
254{
255 if (!dev->dbbuf_dbs || !qid)
256 return;
257
258 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
259 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
260 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
261 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
262}
263
264static void nvme_dbbuf_set(struct nvme_dev *dev)
265{
266 struct nvme_command c;
267
268 if (!dev->dbbuf_dbs)
269 return;
270
271 memset(&c, 0, sizeof(c));
272 c.dbbuf.opcode = nvme_admin_dbbuf;
273 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
274 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
275
276 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 277 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
278 /* Free memory and continue on */
279 nvme_dbbuf_dma_free(dev);
280 }
281}
282
283static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
284{
285 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
286}
287
288/* Update dbbuf and return true if an MMIO is required */
289static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
290 volatile u32 *dbbuf_ei)
291{
292 if (dbbuf_db) {
293 u16 old_value;
294
295 /*
296 * Ensure that the queue is written before updating
297 * the doorbell in memory
298 */
299 wmb();
300
301 old_value = *dbbuf_db;
302 *dbbuf_db = value;
303
304 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
305 return false;
306 }
307
308 return true;
b60503ba
MW
309}
310
ac3dd5bd
JA
311/*
312 * Max size of iod being embedded in the request payload
313 */
314#define NVME_INT_PAGES 2
5fd4ce1b 315#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
316
317/*
318 * Will slightly overestimate the number of pages needed. This is OK
319 * as it only leads to a small amount of wasted memory for the lifetime of
320 * the I/O.
321 */
322static int nvme_npages(unsigned size, struct nvme_dev *dev)
323{
5fd4ce1b
CH
324 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
325 dev->ctrl.page_size);
ac3dd5bd
JA
326 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
327}
328
f4800d6d
CH
329static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
330 unsigned int size, unsigned int nseg)
ac3dd5bd 331{
f4800d6d
CH
332 return sizeof(__le64 *) * nvme_npages(size, dev) +
333 sizeof(struct scatterlist) * nseg;
334}
ac3dd5bd 335
f4800d6d
CH
336static unsigned int nvme_cmd_size(struct nvme_dev *dev)
337{
338 return sizeof(struct nvme_iod) +
339 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
340}
341
a4aea562
MB
342static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
343 unsigned int hctx_idx)
e85248e5 344{
a4aea562
MB
345 struct nvme_dev *dev = data;
346 struct nvme_queue *nvmeq = dev->queues[0];
347
42483228
KB
348 WARN_ON(hctx_idx != 0);
349 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
350 WARN_ON(nvmeq->tags);
351
a4aea562 352 hctx->driver_data = nvmeq;
42483228 353 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 354 return 0;
e85248e5
MW
355}
356
4af0e21c
KB
357static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
358{
359 struct nvme_queue *nvmeq = hctx->driver_data;
360
361 nvmeq->tags = NULL;
362}
363
d6296d39
CH
364static int nvme_admin_init_request(struct blk_mq_tag_set *set,
365 struct request *req, unsigned int hctx_idx,
366 unsigned int numa_node)
22404274 367{
d6296d39 368 struct nvme_dev *dev = set->driver_data;
f4800d6d 369 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
370 struct nvme_queue *nvmeq = dev->queues[0];
371
372 BUG_ON(!nvmeq);
f4800d6d 373 iod->nvmeq = nvmeq;
a4aea562 374 return 0;
22404274
KB
375}
376
a4aea562
MB
377static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
378 unsigned int hctx_idx)
b60503ba 379{
a4aea562 380 struct nvme_dev *dev = data;
42483228 381 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 382
42483228
KB
383 if (!nvmeq->tags)
384 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 385
42483228 386 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
387 hctx->driver_data = nvmeq;
388 return 0;
b60503ba
MW
389}
390
d6296d39
CH
391static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
392 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 393{
d6296d39 394 struct nvme_dev *dev = set->driver_data;
f4800d6d 395 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
396 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
397
398 BUG_ON(!nvmeq);
f4800d6d 399 iod->nvmeq = nvmeq;
a4aea562
MB
400 return 0;
401}
402
dca51e78
CH
403static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
404{
405 struct nvme_dev *dev = set->driver_data;
406
407 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
408}
409
b60503ba 410/**
adf68f21 411 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
412 * @nvmeq: The queue to use
413 * @cmd: The command to send
414 *
415 * Safe to use from interrupt context
416 */
e3f879bf
SB
417static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
418 struct nvme_command *cmd)
b60503ba 419{
a4aea562
MB
420 u16 tail = nvmeq->sq_tail;
421
8ffaadf7
JD
422 if (nvmeq->sq_cmds_io)
423 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
424 else
425 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
426
b60503ba
MW
427 if (++tail == nvmeq->q_depth)
428 tail = 0;
f9f38e33
HK
429 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
430 nvmeq->dbbuf_sq_ei))
431 writel(tail, nvmeq->q_db);
b60503ba 432 nvmeq->sq_tail = tail;
b60503ba
MW
433}
434
f4800d6d 435static __le64 **iod_list(struct request *req)
b60503ba 436{
f4800d6d 437 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 438 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
439}
440
fc17b653 441static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 442{
f4800d6d 443 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 444 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 445 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 446
f4800d6d
CH
447 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
448 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
449 if (!iod->sg)
fc17b653 450 return BLK_STS_RESOURCE;
f4800d6d
CH
451 } else {
452 iod->sg = iod->inline_sg;
ac3dd5bd
JA
453 }
454
f4800d6d
CH
455 iod->aborted = 0;
456 iod->npages = -1;
457 iod->nents = 0;
458 iod->length = size;
f80ec966 459
fc17b653 460 return BLK_STS_OK;
ac3dd5bd
JA
461}
462
f4800d6d 463static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 464{
f4800d6d 465 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 466 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 467 int i;
f4800d6d 468 __le64 **list = iod_list(req);
eca18b23
MW
469 dma_addr_t prp_dma = iod->first_dma;
470
471 if (iod->npages == 0)
472 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
473 for (i = 0; i < iod->npages; i++) {
474 __le64 *prp_list = list[i];
475 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
476 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
477 prp_dma = next_prp_dma;
478 }
ac3dd5bd 479
f4800d6d
CH
480 if (iod->sg != iod->inline_sg)
481 kfree(iod->sg);
b4ff9c8d
KB
482}
483
52b68d7e 484#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
485static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
486{
487 if (be32_to_cpu(pi->ref_tag) == v)
488 pi->ref_tag = cpu_to_be32(p);
489}
490
491static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
492{
493 if (be32_to_cpu(pi->ref_tag) == p)
494 pi->ref_tag = cpu_to_be32(v);
495}
496
497/**
498 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
499 *
500 * The virtual start sector is the one that was originally submitted by the
501 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
502 * start sector may be different. Remap protection information to match the
503 * physical LBA on writes, and back to the original seed on reads.
504 *
505 * Type 0 and 3 do not have a ref tag, so no remapping required.
506 */
507static void nvme_dif_remap(struct request *req,
508 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
509{
510 struct nvme_ns *ns = req->rq_disk->private_data;
511 struct bio_integrity_payload *bip;
512 struct t10_pi_tuple *pi;
513 void *p, *pmap;
514 u32 i, nlb, ts, phys, virt;
515
516 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
517 return;
518
519 bip = bio_integrity(req->bio);
520 if (!bip)
521 return;
522
523 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
524
525 p = pmap;
526 virt = bip_get_seed(bip);
527 phys = nvme_block_nr(ns, blk_rq_pos(req));
528 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 529 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
530
531 for (i = 0; i < nlb; i++, virt++, phys++) {
532 pi = (struct t10_pi_tuple *)p;
533 dif_swap(phys, virt, pi);
534 p += ts;
535 }
536 kunmap_atomic(pmap);
537}
52b68d7e
KB
538#else /* CONFIG_BLK_DEV_INTEGRITY */
539static void nvme_dif_remap(struct request *req,
540 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
541{
542}
543static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
544{
545}
546static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
547{
548}
52b68d7e
KB
549#endif
550
b131c61d 551static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 552{
f4800d6d 553 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 554 struct dma_pool *pool;
b131c61d 555 int length = blk_rq_payload_bytes(req);
eca18b23 556 struct scatterlist *sg = iod->sg;
ff22b54f
MW
557 int dma_len = sg_dma_len(sg);
558 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 559 u32 page_size = dev->ctrl.page_size;
f137e0f1 560 int offset = dma_addr & (page_size - 1);
e025344c 561 __le64 *prp_list;
f4800d6d 562 __le64 **list = iod_list(req);
e025344c 563 dma_addr_t prp_dma;
eca18b23 564 int nprps, i;
ff22b54f 565
1d090624 566 length -= (page_size - offset);
ff22b54f 567 if (length <= 0)
69d2b571 568 return true;
ff22b54f 569
1d090624 570 dma_len -= (page_size - offset);
ff22b54f 571 if (dma_len) {
1d090624 572 dma_addr += (page_size - offset);
ff22b54f
MW
573 } else {
574 sg = sg_next(sg);
575 dma_addr = sg_dma_address(sg);
576 dma_len = sg_dma_len(sg);
577 }
578
1d090624 579 if (length <= page_size) {
edd10d33 580 iod->first_dma = dma_addr;
69d2b571 581 return true;
e025344c
SMM
582 }
583
1d090624 584 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
585 if (nprps <= (256 / 8)) {
586 pool = dev->prp_small_pool;
eca18b23 587 iod->npages = 0;
99802a7a
MW
588 } else {
589 pool = dev->prp_page_pool;
eca18b23 590 iod->npages = 1;
99802a7a
MW
591 }
592
69d2b571 593 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 594 if (!prp_list) {
edd10d33 595 iod->first_dma = dma_addr;
eca18b23 596 iod->npages = -1;
69d2b571 597 return false;
b77954cb 598 }
eca18b23
MW
599 list[0] = prp_list;
600 iod->first_dma = prp_dma;
e025344c
SMM
601 i = 0;
602 for (;;) {
1d090624 603 if (i == page_size >> 3) {
e025344c 604 __le64 *old_prp_list = prp_list;
69d2b571 605 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 606 if (!prp_list)
69d2b571 607 return false;
eca18b23 608 list[iod->npages++] = prp_list;
7523d834
MW
609 prp_list[0] = old_prp_list[i - 1];
610 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
611 i = 1;
e025344c
SMM
612 }
613 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
614 dma_len -= page_size;
615 dma_addr += page_size;
616 length -= page_size;
e025344c
SMM
617 if (length <= 0)
618 break;
619 if (dma_len > 0)
620 continue;
621 BUG_ON(dma_len < 0);
622 sg = sg_next(sg);
623 dma_addr = sg_dma_address(sg);
624 dma_len = sg_dma_len(sg);
ff22b54f
MW
625 }
626
69d2b571 627 return true;
ff22b54f
MW
628}
629
fc17b653 630static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 631 struct nvme_command *cmnd)
d29ec824 632{
f4800d6d 633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
634 struct request_queue *q = req->q;
635 enum dma_data_direction dma_dir = rq_data_dir(req) ?
636 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 637 blk_status_t ret = BLK_STS_IOERR;
d29ec824 638
f9d03f96 639 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
640 iod->nents = blk_rq_map_sg(q, req, iod->sg);
641 if (!iod->nents)
642 goto out;
d29ec824 643
fc17b653 644 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
645 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
646 DMA_ATTR_NO_WARN))
ba1ca37e 647 goto out;
d29ec824 648
b131c61d 649 if (!nvme_setup_prps(dev, req))
ba1ca37e 650 goto out_unmap;
0e5e4f0e 651
fc17b653 652 ret = BLK_STS_IOERR;
ba1ca37e
CH
653 if (blk_integrity_rq(req)) {
654 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
655 goto out_unmap;
0e5e4f0e 656
bf684057
CH
657 sg_init_table(&iod->meta_sg, 1);
658 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 659 goto out_unmap;
0e5e4f0e 660
ba1ca37e
CH
661 if (rq_data_dir(req))
662 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 663
bf684057 664 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 665 goto out_unmap;
d29ec824 666 }
00df5cb4 667
eb793e2c
CH
668 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
669 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 670 if (blk_integrity_rq(req))
bf684057 671 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 672 return BLK_STS_OK;
00df5cb4 673
ba1ca37e
CH
674out_unmap:
675 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
676out:
677 return ret;
00df5cb4
MW
678}
679
f4800d6d 680static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 681{
f4800d6d 682 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
683 enum dma_data_direction dma_dir = rq_data_dir(req) ?
684 DMA_TO_DEVICE : DMA_FROM_DEVICE;
685
686 if (iod->nents) {
687 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
688 if (blk_integrity_rq(req)) {
689 if (!rq_data_dir(req))
690 nvme_dif_remap(req, nvme_dif_complete);
bf684057 691 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 692 }
e19b127f 693 }
e1e5e564 694
f9d03f96 695 nvme_cleanup_cmd(req);
f4800d6d 696 nvme_free_iod(dev, req);
d4f6c3ab 697}
b60503ba 698
d29ec824
CH
699/*
700 * NOTE: ns is NULL when called on the admin queue.
701 */
fc17b653 702static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 703 const struct blk_mq_queue_data *bd)
edd10d33 704{
a4aea562
MB
705 struct nvme_ns *ns = hctx->queue->queuedata;
706 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 707 struct nvme_dev *dev = nvmeq->dev;
a4aea562 708 struct request *req = bd->rq;
ba1ca37e 709 struct nvme_command cmnd;
fc17b653 710 blk_status_t ret = BLK_STS_OK;
edd10d33 711
e1e5e564
KB
712 /*
713 * If formated with metadata, require the block layer provide a buffer
714 * unless this namespace is formated such that the metadata can be
715 * stripped/generated by the controller with PRACT=1.
716 */
d29ec824 717 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364 718 if (!(ns->pi_type && ns->ms == 8) &&
fc17b653
CH
719 !blk_rq_is_passthrough(req))
720 return BLK_STS_NOTSUPP;
e1e5e564
KB
721 }
722
f9d03f96 723 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 724 if (ret)
f4800d6d 725 return ret;
a4aea562 726
b131c61d 727 ret = nvme_init_iod(req, dev);
fc17b653 728 if (ret)
f9d03f96 729 goto out_free_cmd;
a4aea562 730
fc17b653 731 if (blk_rq_nr_phys_segments(req)) {
b131c61d 732 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
733 if (ret)
734 goto out_cleanup_iod;
735 }
a4aea562 736
aae239e1 737 blk_mq_start_request(req);
a4aea562 738
ba1ca37e 739 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 740 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 741 ret = BLK_STS_IOERR;
ae1fba20 742 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 743 goto out_cleanup_iod;
ae1fba20 744 }
ba1ca37e 745 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
746 nvme_process_cq(nvmeq);
747 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 748 return BLK_STS_OK;
f9d03f96 749out_cleanup_iod:
f4800d6d 750 nvme_free_iod(dev, req);
f9d03f96
CH
751out_free_cmd:
752 nvme_cleanup_cmd(req);
ba1ca37e 753 return ret;
b60503ba 754}
e1e5e564 755
77f02a7a 756static void nvme_pci_complete_rq(struct request *req)
eee417b0 757{
f4800d6d 758 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 759
77f02a7a
CH
760 nvme_unmap_data(iod->nvmeq->dev, req);
761 nvme_complete_rq(req);
b60503ba
MW
762}
763
d783e0bd
MR
764/* We read the CQE phase first to check if the rest of the entry is valid */
765static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
766 u16 phase)
767{
768 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
769}
770
a0fa9647 771static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 772{
82123460 773 u16 head, phase;
b60503ba 774
b60503ba 775 head = nvmeq->cq_head;
82123460 776 phase = nvmeq->cq_phase;
b60503ba 777
d783e0bd 778 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 779 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 780 struct request *req;
adf68f21 781
b60503ba
MW
782 if (++head == nvmeq->q_depth) {
783 head = 0;
82123460 784 phase = !phase;
b60503ba 785 }
adf68f21 786
a0fa9647
JA
787 if (tag && *tag == cqe.command_id)
788 *tag = -1;
adf68f21 789
aae239e1 790 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 791 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
792 "invalid id %d completed on queue %d\n",
793 cqe.command_id, le16_to_cpu(cqe.sq_id));
794 continue;
795 }
796
adf68f21
CH
797 /*
798 * AEN requests are special as they don't time out and can
799 * survive any kind of queue freeze and often don't respond to
800 * aborts. We don't even bother to allocate a struct request
801 * for them but rather special case them here.
802 */
803 if (unlikely(nvmeq->qid == 0 &&
804 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
805 nvme_complete_async_event(&nvmeq->dev->ctrl,
806 cqe.status, &cqe.result);
adf68f21
CH
807 continue;
808 }
809
eee417b0 810 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
27fa9bc5 811 nvme_end_request(req, cqe.status, cqe.result);
b60503ba
MW
812 }
813
82123460 814 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 815 return;
b60503ba 816
604e8c8d 817 if (likely(nvmeq->cq_vector >= 0))
f9f38e33
HK
818 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
819 nvmeq->dbbuf_cq_ei))
820 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 821 nvmeq->cq_head = head;
82123460 822 nvmeq->cq_phase = phase;
b60503ba 823
e9539f47 824 nvmeq->cqe_seen = 1;
a0fa9647
JA
825}
826
827static void nvme_process_cq(struct nvme_queue *nvmeq)
828{
829 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
830}
831
832static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
833{
834 irqreturn_t result;
835 struct nvme_queue *nvmeq = data;
836 spin_lock(&nvmeq->q_lock);
e9539f47
MW
837 nvme_process_cq(nvmeq);
838 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
839 nvmeq->cqe_seen = 0;
58ffacb5
MW
840 spin_unlock(&nvmeq->q_lock);
841 return result;
842}
843
844static irqreturn_t nvme_irq_check(int irq, void *data)
845{
846 struct nvme_queue *nvmeq = data;
d783e0bd
MR
847 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
848 return IRQ_WAKE_THREAD;
849 return IRQ_NONE;
58ffacb5
MW
850}
851
7776db1c 852static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 853{
d783e0bd 854 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
855 spin_lock_irq(&nvmeq->q_lock);
856 __nvme_process_cq(nvmeq, &tag);
857 spin_unlock_irq(&nvmeq->q_lock);
858
859 if (tag == -1)
860 return 1;
861 }
862
863 return 0;
864}
865
7776db1c
KB
866static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
867{
868 struct nvme_queue *nvmeq = hctx->driver_data;
869
870 return __nvme_poll(nvmeq, tag);
871}
872
f866fc42 873static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 874{
f866fc42 875 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 876 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 877 struct nvme_command c;
b60503ba 878
a4aea562
MB
879 memset(&c, 0, sizeof(c));
880 c.common.opcode = nvme_admin_async_event;
f866fc42 881 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 882
9396dec9 883 spin_lock_irq(&nvmeq->q_lock);
f866fc42 884 __nvme_submit_cmd(nvmeq, &c);
9396dec9 885 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
886}
887
b60503ba 888static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 889{
b60503ba
MW
890 struct nvme_command c;
891
892 memset(&c, 0, sizeof(c));
893 c.delete_queue.opcode = opcode;
894 c.delete_queue.qid = cpu_to_le16(id);
895
1c63dc66 896 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
897}
898
b60503ba
MW
899static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
900 struct nvme_queue *nvmeq)
901{
b60503ba
MW
902 struct nvme_command c;
903 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
904
d29ec824
CH
905 /*
906 * Note: we (ab)use the fact the the prp fields survive if no data
907 * is attached to the request.
908 */
b60503ba
MW
909 memset(&c, 0, sizeof(c));
910 c.create_cq.opcode = nvme_admin_create_cq;
911 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
912 c.create_cq.cqid = cpu_to_le16(qid);
913 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
914 c.create_cq.cq_flags = cpu_to_le16(flags);
915 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
916
1c63dc66 917 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
918}
919
920static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
921 struct nvme_queue *nvmeq)
922{
b60503ba 923 struct nvme_command c;
81c1cd98 924 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 925
d29ec824
CH
926 /*
927 * Note: we (ab)use the fact the the prp fields survive if no data
928 * is attached to the request.
929 */
b60503ba
MW
930 memset(&c, 0, sizeof(c));
931 c.create_sq.opcode = nvme_admin_create_sq;
932 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
933 c.create_sq.sqid = cpu_to_le16(qid);
934 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
935 c.create_sq.sq_flags = cpu_to_le16(flags);
936 c.create_sq.cqid = cpu_to_le16(qid);
937
1c63dc66 938 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
939}
940
941static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
942{
943 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
944}
945
946static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
947{
948 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
949}
950
2a842aca 951static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 952{
f4800d6d
CH
953 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
954 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 955
27fa9bc5
CH
956 dev_warn(nvmeq->dev->ctrl.device,
957 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 958 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 959 blk_mq_free_request(req);
bc5fc7e4
MW
960}
961
31c7c7d2 962static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 963{
f4800d6d
CH
964 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
965 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 966 struct nvme_dev *dev = nvmeq->dev;
a4aea562 967 struct request *abort_req;
a4aea562 968 struct nvme_command cmd;
c30341dc 969
7776db1c
KB
970 /*
971 * Did we miss an interrupt?
972 */
973 if (__nvme_poll(nvmeq, req->tag)) {
974 dev_warn(dev->ctrl.device,
975 "I/O %d QID %d timeout, completion polled\n",
976 req->tag, nvmeq->qid);
977 return BLK_EH_HANDLED;
978 }
979
31c7c7d2 980 /*
fd634f41
CH
981 * Shutdown immediately if controller times out while starting. The
982 * reset work will see the pci device disabled when it gets the forced
983 * cancellation error. All outstanding requests are completed on
984 * shutdown, so we return BLK_EH_HANDLED.
985 */
bb8d261e 986 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 987 dev_warn(dev->ctrl.device,
fd634f41
CH
988 "I/O %d QID %d timeout, disable controller\n",
989 req->tag, nvmeq->qid);
a5cdb68c 990 nvme_dev_disable(dev, false);
27fa9bc5 991 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 992 return BLK_EH_HANDLED;
c30341dc
KB
993 }
994
fd634f41
CH
995 /*
996 * Shutdown the controller immediately and schedule a reset if the
997 * command was already aborted once before and still hasn't been
998 * returned to the driver, or if this is the admin queue.
31c7c7d2 999 */
f4800d6d 1000 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1001 dev_warn(dev->ctrl.device,
e1569a16
KB
1002 "I/O %d QID %d timeout, reset controller\n",
1003 req->tag, nvmeq->qid);
a5cdb68c 1004 nvme_dev_disable(dev, false);
c5f6ce97 1005 nvme_reset(dev);
c30341dc 1006
e1569a16
KB
1007 /*
1008 * Mark the request as handled, since the inline shutdown
1009 * forces all outstanding requests to complete.
1010 */
27fa9bc5 1011 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1012 return BLK_EH_HANDLED;
c30341dc 1013 }
c30341dc 1014
e7a2a87d 1015 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1016 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1017 return BLK_EH_RESET_TIMER;
6bf25d16 1018 }
7bf7d778 1019 iod->aborted = 1;
a4aea562 1020
c30341dc
KB
1021 memset(&cmd, 0, sizeof(cmd));
1022 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1023 cmd.abort.cid = req->tag;
c30341dc 1024 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1025
1b3c47c1
SG
1026 dev_warn(nvmeq->dev->ctrl.device,
1027 "I/O %d QID %d timeout, aborting\n",
1028 req->tag, nvmeq->qid);
e7a2a87d
CH
1029
1030 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1031 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1032 if (IS_ERR(abort_req)) {
1033 atomic_inc(&dev->ctrl.abort_limit);
1034 return BLK_EH_RESET_TIMER;
1035 }
1036
1037 abort_req->timeout = ADMIN_TIMEOUT;
1038 abort_req->end_io_data = NULL;
1039 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1040
31c7c7d2
CH
1041 /*
1042 * The aborted req will be completed on receiving the abort req.
1043 * We enable the timer again. If hit twice, it'll cause a device reset,
1044 * as the device then is in a faulty state.
1045 */
1046 return BLK_EH_RESET_TIMER;
c30341dc
KB
1047}
1048
a4aea562
MB
1049static void nvme_free_queue(struct nvme_queue *nvmeq)
1050{
9e866774
MW
1051 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1052 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1053 if (nvmeq->sq_cmds)
1054 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1055 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1056 kfree(nvmeq);
1057}
1058
a1a5ef99 1059static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1060{
1061 int i;
1062
a1a5ef99 1063 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1064 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1065 dev->queue_count--;
a4aea562 1066 dev->queues[i] = NULL;
f435c282 1067 nvme_free_queue(nvmeq);
121c7ad4 1068 }
22404274
KB
1069}
1070
4d115420
KB
1071/**
1072 * nvme_suspend_queue - put queue into suspended state
1073 * @nvmeq - queue to suspend
4d115420
KB
1074 */
1075static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1076{
2b25d981 1077 int vector;
b60503ba 1078
a09115b2 1079 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1080 if (nvmeq->cq_vector == -1) {
1081 spin_unlock_irq(&nvmeq->q_lock);
1082 return 1;
1083 }
0ff199cb 1084 vector = nvmeq->cq_vector;
42f61420 1085 nvmeq->dev->online_queues--;
2b25d981 1086 nvmeq->cq_vector = -1;
a09115b2
MW
1087 spin_unlock_irq(&nvmeq->q_lock);
1088
1c63dc66 1089 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1090 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1091
0ff199cb 1092 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1093
4d115420
KB
1094 return 0;
1095}
b60503ba 1096
a5cdb68c 1097static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1098{
a5cdb68c 1099 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1100
1101 if (!nvmeq)
1102 return;
1103 if (nvme_suspend_queue(nvmeq))
1104 return;
1105
a5cdb68c
KB
1106 if (shutdown)
1107 nvme_shutdown_ctrl(&dev->ctrl);
1108 else
1109 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1110 dev->bar + NVME_REG_CAP));
07836e65
KB
1111
1112 spin_lock_irq(&nvmeq->q_lock);
1113 nvme_process_cq(nvmeq);
1114 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1115}
1116
8ffaadf7
JD
1117static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1118 int entry_size)
1119{
1120 int q_depth = dev->q_depth;
5fd4ce1b
CH
1121 unsigned q_size_aligned = roundup(q_depth * entry_size,
1122 dev->ctrl.page_size);
8ffaadf7
JD
1123
1124 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1125 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1126 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1127 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1128
1129 /*
1130 * Ensure the reduced q_depth is above some threshold where it
1131 * would be better to map queues in system memory with the
1132 * original depth
1133 */
1134 if (q_depth < 64)
1135 return -ENOMEM;
1136 }
1137
1138 return q_depth;
1139}
1140
1141static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1142 int qid, int depth)
1143{
1144 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1145 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1146 dev->ctrl.page_size);
8ffaadf7
JD
1147 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1148 nvmeq->sq_cmds_io = dev->cmb + offset;
1149 } else {
1150 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1151 &nvmeq->sq_dma_addr, GFP_KERNEL);
1152 if (!nvmeq->sq_cmds)
1153 return -ENOMEM;
1154 }
1155
1156 return 0;
1157}
1158
b60503ba 1159static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1160 int depth, int node)
b60503ba 1161{
d3af3ecd
SL
1162 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1163 node);
b60503ba
MW
1164 if (!nvmeq)
1165 return NULL;
1166
e75ec752 1167 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1168 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1169 if (!nvmeq->cqes)
1170 goto free_nvmeq;
b60503ba 1171
8ffaadf7 1172 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1173 goto free_cqdma;
1174
e75ec752 1175 nvmeq->q_dmadev = dev->dev;
091b6092 1176 nvmeq->dev = dev;
b60503ba
MW
1177 spin_lock_init(&nvmeq->q_lock);
1178 nvmeq->cq_head = 0;
82123460 1179 nvmeq->cq_phase = 1;
b80d5ccc 1180 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1181 nvmeq->q_depth = depth;
c30341dc 1182 nvmeq->qid = qid;
758dd7fd 1183 nvmeq->cq_vector = -1;
a4aea562 1184 dev->queues[qid] = nvmeq;
36a7e993
JD
1185 dev->queue_count++;
1186
b60503ba
MW
1187 return nvmeq;
1188
1189 free_cqdma:
e75ec752 1190 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1191 nvmeq->cq_dma_addr);
1192 free_nvmeq:
1193 kfree(nvmeq);
1194 return NULL;
1195}
1196
dca51e78 1197static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1198{
0ff199cb
CH
1199 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1200 int nr = nvmeq->dev->ctrl.instance;
1201
1202 if (use_threaded_interrupts) {
1203 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1204 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1205 } else {
1206 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1207 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1208 }
3001082c
MW
1209}
1210
22404274 1211static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1212{
22404274 1213 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1214
7be50e93 1215 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1216 nvmeq->sq_tail = 0;
1217 nvmeq->cq_head = 0;
1218 nvmeq->cq_phase = 1;
b80d5ccc 1219 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1220 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1221 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1222 dev->online_queues++;
7be50e93 1223 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1224}
1225
1226static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1227{
1228 struct nvme_dev *dev = nvmeq->dev;
1229 int result;
3f85d50b 1230
2b25d981 1231 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1232 result = adapter_alloc_cq(dev, qid, nvmeq);
1233 if (result < 0)
22404274 1234 return result;
b60503ba
MW
1235
1236 result = adapter_alloc_sq(dev, qid, nvmeq);
1237 if (result < 0)
1238 goto release_cq;
1239
dca51e78 1240 result = queue_request_irq(nvmeq);
b60503ba
MW
1241 if (result < 0)
1242 goto release_sq;
1243
22404274 1244 nvme_init_queue(nvmeq, qid);
22404274 1245 return result;
b60503ba
MW
1246
1247 release_sq:
1248 adapter_delete_sq(dev, qid);
1249 release_cq:
1250 adapter_delete_cq(dev, qid);
22404274 1251 return result;
b60503ba
MW
1252}
1253
f363b089 1254static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1255 .queue_rq = nvme_queue_rq,
77f02a7a 1256 .complete = nvme_pci_complete_rq,
a4aea562 1257 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1258 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1259 .init_request = nvme_admin_init_request,
1260 .timeout = nvme_timeout,
1261};
1262
f363b089 1263static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1264 .queue_rq = nvme_queue_rq,
77f02a7a 1265 .complete = nvme_pci_complete_rq,
a4aea562
MB
1266 .init_hctx = nvme_init_hctx,
1267 .init_request = nvme_init_request,
dca51e78 1268 .map_queues = nvme_pci_map_queues,
a4aea562 1269 .timeout = nvme_timeout,
a0fa9647 1270 .poll = nvme_poll,
a4aea562
MB
1271};
1272
ea191d2f
KB
1273static void nvme_dev_remove_admin(struct nvme_dev *dev)
1274{
1c63dc66 1275 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1276 /*
1277 * If the controller was reset during removal, it's possible
1278 * user requests may be waiting on a stopped queue. Start the
1279 * queue to flush these to completion.
1280 */
1281 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1282 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1283 blk_mq_free_tag_set(&dev->admin_tagset);
1284 }
1285}
1286
a4aea562
MB
1287static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1288{
1c63dc66 1289 if (!dev->ctrl.admin_q) {
a4aea562
MB
1290 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1291 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1292
1293 /*
1294 * Subtract one to leave an empty queue entry for 'Full Queue'
1295 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1296 */
1297 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1298 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1299 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1300 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1301 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1302 dev->admin_tagset.driver_data = dev;
1303
1304 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1305 return -ENOMEM;
1306
1c63dc66
CH
1307 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1308 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1309 blk_mq_free_tag_set(&dev->admin_tagset);
1310 return -ENOMEM;
1311 }
1c63dc66 1312 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1313 nvme_dev_remove_admin(dev);
1c63dc66 1314 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1315 return -ENODEV;
1316 }
0fb59cbc 1317 } else
25646264 1318 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1319
1320 return 0;
1321}
1322
8d85fce7 1323static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1324{
ba47e386 1325 int result;
b60503ba 1326 u32 aqa;
7a67cbea 1327 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1328 struct nvme_queue *nvmeq;
1329
8ef2074d 1330 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1331 NVME_CAP_NSSRC(cap) : 0;
1332
7a67cbea
CH
1333 if (dev->subsystem &&
1334 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1335 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1336
5fd4ce1b 1337 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1338 if (result < 0)
1339 return result;
b60503ba 1340
a4aea562 1341 nvmeq = dev->queues[0];
cd638946 1342 if (!nvmeq) {
d3af3ecd
SL
1343 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1344 dev_to_node(dev->dev));
cd638946
KB
1345 if (!nvmeq)
1346 return -ENOMEM;
cd638946 1347 }
b60503ba
MW
1348
1349 aqa = nvmeq->q_depth - 1;
1350 aqa |= aqa << 16;
1351
7a67cbea
CH
1352 writel(aqa, dev->bar + NVME_REG_AQA);
1353 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1354 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1355
5fd4ce1b 1356 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1357 if (result)
d4875622 1358 return result;
a4aea562 1359
2b25d981 1360 nvmeq->cq_vector = 0;
dca51e78 1361 result = queue_request_irq(nvmeq);
758dd7fd
JD
1362 if (result) {
1363 nvmeq->cq_vector = -1;
d4875622 1364 return result;
758dd7fd 1365 }
025c557a 1366
b60503ba
MW
1367 return result;
1368}
1369
c875a709
GP
1370static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1371{
1372
1373 /* If true, indicates loss of adapter communication, possibly by a
1374 * NVMe Subsystem reset.
1375 */
1376 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1377
1378 /* If there is a reset ongoing, we shouldn't reset again. */
82b057ca 1379 if (dev->ctrl.state == NVME_CTRL_RESETTING)
c875a709
GP
1380 return false;
1381
1382 /* We shouldn't reset unless the controller is on fatal error state
1383 * _or_ if we lost the communication with it.
1384 */
1385 if (!(csts & NVME_CSTS_CFS) && !nssro)
1386 return false;
1387
1388 /* If PCI error recovery process is happening, we cannot reset or
1389 * the recovery mechanism will surely fail.
1390 */
1391 if (pci_channel_offline(to_pci_dev(dev->dev)))
1392 return false;
1393
1394 return true;
1395}
1396
d2a61918
AL
1397static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1398{
1399 /* Read a config register to help see what died. */
1400 u16 pci_status;
1401 int result;
1402
1403 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1404 &pci_status);
1405 if (result == PCIBIOS_SUCCESSFUL)
9bdcfb10 1406 dev_warn(dev->ctrl.device,
d2a61918
AL
1407 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1408 csts, pci_status);
1409 else
9bdcfb10 1410 dev_warn(dev->ctrl.device,
d2a61918
AL
1411 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1412 csts, result);
1413}
1414
2d55cd5f 1415static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1416{
2d55cd5f
CH
1417 struct nvme_dev *dev = (struct nvme_dev *)data;
1418 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1419
c875a709
GP
1420 /* Skip controllers under certain specific conditions. */
1421 if (nvme_should_reset(dev, csts)) {
c5f6ce97 1422 if (!nvme_reset(dev))
d2a61918 1423 nvme_warn_reset(dev, csts);
2d55cd5f 1424 return;
1fa6aead 1425 }
2d55cd5f
CH
1426
1427 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1428}
1429
749941f2 1430static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1431{
949928c1 1432 unsigned i, max;
749941f2 1433 int ret = 0;
42f61420 1434
749941f2 1435 for (i = dev->queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1436 /* vector == qid - 1, match nvme_create_queue */
1437 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1438 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1439 ret = -ENOMEM;
42f61420 1440 break;
749941f2
CH
1441 }
1442 }
42f61420 1443
949928c1
KB
1444 max = min(dev->max_qid, dev->queue_count - 1);
1445 for (i = dev->online_queues; i <= max; i++) {
749941f2 1446 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1447 if (ret)
42f61420 1448 break;
27e8166c 1449 }
749941f2
CH
1450
1451 /*
1452 * Ignore failing Create SQ/CQ commands, we can continue with less
1453 * than the desired aount of queues, and even a controller without
1454 * I/O queues an still be used to issue admin commands. This might
1455 * be useful to upgrade a buggy firmware for example.
1456 */
1457 return ret >= 0 ? 0 : ret;
b60503ba
MW
1458}
1459
202021c1
SB
1460static ssize_t nvme_cmb_show(struct device *dev,
1461 struct device_attribute *attr,
1462 char *buf)
1463{
1464 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1465
c965809c 1466 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1467 ndev->cmbloc, ndev->cmbsz);
1468}
1469static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1470
8ffaadf7
JD
1471static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1472{
1473 u64 szu, size, offset;
8ffaadf7
JD
1474 resource_size_t bar_size;
1475 struct pci_dev *pdev = to_pci_dev(dev->dev);
1476 void __iomem *cmb;
1477 dma_addr_t dma_addr;
1478
7a67cbea 1479 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1480 if (!(NVME_CMB_SZ(dev->cmbsz)))
1481 return NULL;
202021c1 1482 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1483
202021c1
SB
1484 if (!use_cmb_sqes)
1485 return NULL;
8ffaadf7
JD
1486
1487 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1488 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1489 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1490 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1491
1492 if (offset > bar_size)
1493 return NULL;
1494
1495 /*
1496 * Controllers may support a CMB size larger than their BAR,
1497 * for example, due to being behind a bridge. Reduce the CMB to
1498 * the reported size of the BAR
1499 */
1500 if (size > bar_size - offset)
1501 size = bar_size - offset;
1502
202021c1 1503 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1504 cmb = ioremap_wc(dma_addr, size);
1505 if (!cmb)
1506 return NULL;
1507
1508 dev->cmb_dma_addr = dma_addr;
1509 dev->cmb_size = size;
1510 return cmb;
1511}
1512
1513static inline void nvme_release_cmb(struct nvme_dev *dev)
1514{
1515 if (dev->cmb) {
1516 iounmap(dev->cmb);
1517 dev->cmb = NULL;
f63572df
JD
1518 if (dev->cmbsz) {
1519 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1520 &dev_attr_cmb.attr, NULL);
1521 dev->cmbsz = 0;
1522 }
8ffaadf7
JD
1523 }
1524}
1525
87ad72a5
CH
1526static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1527{
1528 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1529 struct nvme_command c;
1530 u64 dma_addr;
1531 int ret;
1532
1533 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1534 DMA_TO_DEVICE);
1535 if (dma_mapping_error(dev->dev, dma_addr))
1536 return -ENOMEM;
1537
1538 memset(&c, 0, sizeof(c));
1539 c.features.opcode = nvme_admin_set_features;
1540 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1541 c.features.dword11 = cpu_to_le32(bits);
1542 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1543 ilog2(dev->ctrl.page_size));
1544 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1545 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1546 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1547
1548 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1549 if (ret) {
1550 dev_warn(dev->ctrl.device,
1551 "failed to set host mem (err %d, flags %#x).\n",
1552 ret, bits);
1553 }
1554 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1555 return ret;
1556}
1557
1558static void nvme_free_host_mem(struct nvme_dev *dev)
1559{
1560 int i;
1561
1562 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1563 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1564 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1565
1566 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1567 le64_to_cpu(desc->addr));
1568 }
1569
1570 kfree(dev->host_mem_desc_bufs);
1571 dev->host_mem_desc_bufs = NULL;
1572 kfree(dev->host_mem_descs);
1573 dev->host_mem_descs = NULL;
1574}
1575
1576static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1577{
1578 struct nvme_host_mem_buf_desc *descs;
1579 u32 chunk_size, max_entries, i = 0;
1580 void **bufs;
1581 u64 size, tmp;
1582
1583 /* start big and work our way down */
1584 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1585retry:
1586 tmp = (preferred + chunk_size - 1);
1587 do_div(tmp, chunk_size);
1588 max_entries = tmp;
1589 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1590 if (!descs)
1591 goto out;
1592
1593 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1594 if (!bufs)
1595 goto out_free_descs;
1596
1597 for (size = 0; size < preferred; size += chunk_size) {
1598 u32 len = min_t(u64, chunk_size, preferred - size);
1599 dma_addr_t dma_addr;
1600
1601 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1602 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1603 if (!bufs[i])
1604 break;
1605
1606 descs[i].addr = cpu_to_le64(dma_addr);
1607 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1608 i++;
1609 }
1610
1611 if (!size || (min && size < min)) {
1612 dev_warn(dev->ctrl.device,
1613 "failed to allocate host memory buffer.\n");
1614 goto out_free_bufs;
1615 }
1616
1617 dev_info(dev->ctrl.device,
1618 "allocated %lld MiB host memory buffer.\n",
1619 size >> ilog2(SZ_1M));
1620 dev->nr_host_mem_descs = i;
1621 dev->host_mem_size = size;
1622 dev->host_mem_descs = descs;
1623 dev->host_mem_desc_bufs = bufs;
1624 return 0;
1625
1626out_free_bufs:
1627 while (--i >= 0) {
1628 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1629
1630 dma_free_coherent(dev->dev, size, bufs[i],
1631 le64_to_cpu(descs[i].addr));
1632 }
1633
1634 kfree(bufs);
1635out_free_descs:
1636 kfree(descs);
1637out:
1638 /* try a smaller chunk size if we failed early */
1639 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1640 chunk_size /= 2;
1641 goto retry;
1642 }
1643 dev->host_mem_descs = NULL;
1644 return -ENOMEM;
1645}
1646
1647static void nvme_setup_host_mem(struct nvme_dev *dev)
1648{
1649 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1650 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1651 u64 min = (u64)dev->ctrl.hmmin * 4096;
1652 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1653
1654 preferred = min(preferred, max);
1655 if (min > max) {
1656 dev_warn(dev->ctrl.device,
1657 "min host memory (%lld MiB) above limit (%d MiB).\n",
1658 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1659 nvme_free_host_mem(dev);
1660 return;
1661 }
1662
1663 /*
1664 * If we already have a buffer allocated check if we can reuse it.
1665 */
1666 if (dev->host_mem_descs) {
1667 if (dev->host_mem_size >= min)
1668 enable_bits |= NVME_HOST_MEM_RETURN;
1669 else
1670 nvme_free_host_mem(dev);
1671 }
1672
1673 if (!dev->host_mem_descs) {
1674 if (nvme_alloc_host_mem(dev, min, preferred))
1675 return;
1676 }
1677
1678 if (nvme_set_host_mem(dev, enable_bits))
1679 nvme_free_host_mem(dev);
1680}
1681
9d713c2b
KB
1682static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1683{
b80d5ccc 1684 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1685}
1686
8d85fce7 1687static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1688{
a4aea562 1689 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1690 struct pci_dev *pdev = to_pci_dev(dev->dev);
dca51e78 1691 int result, nr_io_queues, size;
b60503ba 1692
2800b8e7 1693 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1694 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1695 if (result < 0)
1b23484b 1696 return result;
9a0be7ab 1697
f5fa90dc 1698 if (nr_io_queues == 0)
a5229050 1699 return 0;
b60503ba 1700
8ffaadf7
JD
1701 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1702 result = nvme_cmb_qdepth(dev, nr_io_queues,
1703 sizeof(struct nvme_command));
1704 if (result > 0)
1705 dev->q_depth = result;
1706 else
1707 nvme_release_cmb(dev);
1708 }
1709
9d713c2b
KB
1710 size = db_bar_size(dev, nr_io_queues);
1711 if (size > 8192) {
f1938f6e 1712 iounmap(dev->bar);
9d713c2b
KB
1713 do {
1714 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1715 if (dev->bar)
1716 break;
1717 if (!--nr_io_queues)
1718 return -ENOMEM;
1719 size = db_bar_size(dev, nr_io_queues);
1720 } while (1);
7a67cbea 1721 dev->dbs = dev->bar + 4096;
5a92e700 1722 adminq->q_db = dev->dbs;
f1938f6e
MW
1723 }
1724
9d713c2b 1725 /* Deregister the admin queue's interrupt */
0ff199cb 1726 pci_free_irq(pdev, 0, adminq);
9d713c2b 1727
e32efbfc
JA
1728 /*
1729 * If we enable msix early due to not intx, disable it again before
1730 * setting up the full range we need.
1731 */
dca51e78
CH
1732 pci_free_irq_vectors(pdev);
1733 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1734 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1735 if (nr_io_queues <= 0)
1736 return -EIO;
1737 dev->max_qid = nr_io_queues;
fa08a396 1738
063a8096
MW
1739 /*
1740 * Should investigate if there's a performance win from allocating
1741 * more queues than interrupt vectors; it might allow the submission
1742 * path to scale better, even if the receive path is limited by the
1743 * number of interrupts.
1744 */
063a8096 1745
dca51e78 1746 result = queue_request_irq(adminq);
758dd7fd
JD
1747 if (result) {
1748 adminq->cq_vector = -1;
d4875622 1749 return result;
758dd7fd 1750 }
749941f2 1751 return nvme_create_io_queues(dev);
b60503ba
MW
1752}
1753
2a842aca 1754static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1755{
db3cbfff 1756 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1757
db3cbfff
KB
1758 blk_mq_free_request(req);
1759 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1760}
1761
2a842aca 1762static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1763{
db3cbfff 1764 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1765
db3cbfff
KB
1766 if (!error) {
1767 unsigned long flags;
1768
2e39e0f6
ML
1769 /*
1770 * We might be called with the AQ q_lock held
1771 * and the I/O queue q_lock should always
1772 * nest inside the AQ one.
1773 */
1774 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1775 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1776 nvme_process_cq(nvmeq);
1777 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1778 }
db3cbfff
KB
1779
1780 nvme_del_queue_end(req, error);
a5768aa8
KB
1781}
1782
db3cbfff 1783static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1784{
db3cbfff
KB
1785 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1786 struct request *req;
1787 struct nvme_command cmd;
bda4e0fb 1788
db3cbfff
KB
1789 memset(&cmd, 0, sizeof(cmd));
1790 cmd.delete_queue.opcode = opcode;
1791 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1792
eb71f435 1793 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1794 if (IS_ERR(req))
1795 return PTR_ERR(req);
bda4e0fb 1796
db3cbfff
KB
1797 req->timeout = ADMIN_TIMEOUT;
1798 req->end_io_data = nvmeq;
1799
1800 blk_execute_rq_nowait(q, NULL, req, false,
1801 opcode == nvme_admin_delete_cq ?
1802 nvme_del_cq_end : nvme_del_queue_end);
1803 return 0;
bda4e0fb
KB
1804}
1805
70659060 1806static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1807{
70659060 1808 int pass;
db3cbfff
KB
1809 unsigned long timeout;
1810 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1811
db3cbfff 1812 for (pass = 0; pass < 2; pass++) {
014a0d60 1813 int sent = 0, i = queues;
db3cbfff
KB
1814
1815 reinit_completion(&dev->ioq_wait);
1816 retry:
1817 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1818 for (; i > 0; i--, sent++)
1819 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1820 break;
c21377f8 1821
db3cbfff
KB
1822 while (sent--) {
1823 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1824 if (timeout == 0)
1825 return;
1826 if (i)
1827 goto retry;
1828 }
1829 opcode = nvme_admin_delete_cq;
1830 }
a5768aa8
KB
1831}
1832
422ef0c7
MW
1833/*
1834 * Return: error value if an error occurred setting up the queues or calling
1835 * Identify Device. 0 if these succeeded, even if adding some of the
1836 * namespaces failed. At the moment, these failures are silent. TBD which
1837 * failures should be reported.
1838 */
8d85fce7 1839static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1840{
5bae7f73 1841 if (!dev->ctrl.tagset) {
ffe7704d
KB
1842 dev->tagset.ops = &nvme_mq_ops;
1843 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1844 dev->tagset.timeout = NVME_IO_TIMEOUT;
1845 dev->tagset.numa_node = dev_to_node(dev->dev);
1846 dev->tagset.queue_depth =
a4aea562 1847 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1848 dev->tagset.cmd_size = nvme_cmd_size(dev);
1849 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1850 dev->tagset.driver_data = dev;
b60503ba 1851
ffe7704d
KB
1852 if (blk_mq_alloc_tag_set(&dev->tagset))
1853 return 0;
5bae7f73 1854 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1855
1856 nvme_dbbuf_set(dev);
949928c1
KB
1857 } else {
1858 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1859
1860 /* Free previously allocated queues that are no longer usable */
1861 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1862 }
949928c1 1863
e1e5e564 1864 return 0;
b60503ba
MW
1865}
1866
b00a726a 1867static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1868{
42f61420 1869 u64 cap;
b00a726a 1870 int result = -ENOMEM;
e75ec752 1871 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1872
1873 if (pci_enable_device_mem(pdev))
1874 return result;
1875
0877cb0d 1876 pci_set_master(pdev);
0877cb0d 1877
e75ec752
CH
1878 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1879 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1880 goto disable;
0877cb0d 1881
7a67cbea 1882 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1883 result = -ENODEV;
b00a726a 1884 goto disable;
0e53d180 1885 }
e32efbfc
JA
1886
1887 /*
a5229050
KB
1888 * Some devices and/or platforms don't advertise or work with INTx
1889 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1890 * adjust this later.
e32efbfc 1891 */
dca51e78
CH
1892 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1893 if (result < 0)
1894 return result;
e32efbfc 1895
7a67cbea
CH
1896 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1897
42f61420
KB
1898 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1899 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1900 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1901
1902 /*
1903 * Temporary fix for the Apple controller found in the MacBook8,1 and
1904 * some MacBook7,1 to avoid controller resets and data loss.
1905 */
1906 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1907 dev->q_depth = 2;
9bdcfb10
CH
1908 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1909 "set queue depth=%u to work around controller resets\n",
1f390c1f
SG
1910 dev->q_depth);
1911 }
1912
202021c1
SB
1913 /*
1914 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1915 * populate sysfs if a CMB is implemented. Note that we add the
1916 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1917 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1918 * NULL as final argument to sysfs_add_file_to_group.
1919 */
1920
8ef2074d 1921 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1922 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1923
202021c1
SB
1924 if (dev->cmbsz) {
1925 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1926 &dev_attr_cmb.attr, NULL))
9bdcfb10 1927 dev_warn(dev->ctrl.device,
202021c1
SB
1928 "failed to add sysfs attribute for CMB\n");
1929 }
1930 }
1931
a0a3408e
KB
1932 pci_enable_pcie_error_reporting(pdev);
1933 pci_save_state(pdev);
0877cb0d
KB
1934 return 0;
1935
1936 disable:
0877cb0d
KB
1937 pci_disable_device(pdev);
1938 return result;
1939}
1940
1941static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1942{
1943 if (dev->bar)
1944 iounmap(dev->bar);
a1f447b3 1945 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1946}
1947
1948static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1949{
e75ec752
CH
1950 struct pci_dev *pdev = to_pci_dev(dev->dev);
1951
f63572df 1952 nvme_release_cmb(dev);
dca51e78 1953 pci_free_irq_vectors(pdev);
0877cb0d 1954
a0a3408e
KB
1955 if (pci_is_enabled(pdev)) {
1956 pci_disable_pcie_error_reporting(pdev);
e75ec752 1957 pci_disable_device(pdev);
4d115420 1958 }
4d115420
KB
1959}
1960
a5cdb68c 1961static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1962{
70659060 1963 int i, queues;
302ad8cc
KB
1964 bool dead = true;
1965 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1966
2d55cd5f 1967 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1968
77bf25ea 1969 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1970 if (pci_is_enabled(pdev)) {
1971 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1972
1973 if (dev->ctrl.state == NVME_CTRL_LIVE)
1974 nvme_start_freeze(&dev->ctrl);
1975 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1976 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1977 }
c21377f8 1978
302ad8cc
KB
1979 /*
1980 * Give the controller a chance to complete all entered requests if
1981 * doing a safe shutdown.
1982 */
87ad72a5
CH
1983 if (!dead) {
1984 if (shutdown)
1985 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1986
1987 /*
1988 * If the controller is still alive tell it to stop using the
1989 * host memory buffer. In theory the shutdown / reset should
1990 * make sure that it doesn't access the host memoery anymore,
1991 * but I'd rather be safe than sorry..
1992 */
1993 if (dev->host_mem_descs)
1994 nvme_set_host_mem(dev, 0);
1995
1996 }
302ad8cc
KB
1997 nvme_stop_queues(&dev->ctrl);
1998
70659060 1999 queues = dev->online_queues - 1;
c21377f8
GKB
2000 for (i = dev->queue_count - 1; i > 0; i--)
2001 nvme_suspend_queue(dev->queues[i]);
2002
302ad8cc 2003 if (dead) {
82469c59
GKB
2004 /* A device might become IO incapable very soon during
2005 * probe, before the admin queue is configured. Thus,
2006 * queue_count can be 0 here.
2007 */
2008 if (dev->queue_count)
2009 nvme_suspend_queue(dev->queues[0]);
4d115420 2010 } else {
70659060 2011 nvme_disable_io_queues(dev, queues);
a5cdb68c 2012 nvme_disable_admin_queue(dev, shutdown);
4d115420 2013 }
b00a726a 2014 nvme_pci_disable(dev);
07836e65 2015
e1958e65
ML
2016 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2017 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2018
2019 /*
2020 * The driver will not be starting up queues again if shutting down so
2021 * must flush all entered requests to their failed completion to avoid
2022 * deadlocking blk-mq hot-cpu notifier.
2023 */
2024 if (shutdown)
2025 nvme_start_queues(&dev->ctrl);
77bf25ea 2026 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2027}
2028
091b6092
MW
2029static int nvme_setup_prp_pools(struct nvme_dev *dev)
2030{
e75ec752 2031 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2032 PAGE_SIZE, PAGE_SIZE, 0);
2033 if (!dev->prp_page_pool)
2034 return -ENOMEM;
2035
99802a7a 2036 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2037 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2038 256, 256, 0);
2039 if (!dev->prp_small_pool) {
2040 dma_pool_destroy(dev->prp_page_pool);
2041 return -ENOMEM;
2042 }
091b6092
MW
2043 return 0;
2044}
2045
2046static void nvme_release_prp_pools(struct nvme_dev *dev)
2047{
2048 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2049 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2050}
2051
1673f1f0 2052static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2053{
1673f1f0 2054 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2055
f9f38e33 2056 nvme_dbbuf_dma_free(dev);
e75ec752 2057 put_device(dev->dev);
4af0e21c
KB
2058 if (dev->tagset.tags)
2059 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2060 if (dev->ctrl.admin_q)
2061 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2062 kfree(dev->queues);
e286bcfc 2063 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2064 kfree(dev);
2065}
2066
f58944e2
KB
2067static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2068{
237045fc 2069 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2070
2071 kref_get(&dev->ctrl.kref);
69d9a99c 2072 nvme_dev_disable(dev, false);
f58944e2
KB
2073 if (!schedule_work(&dev->remove_work))
2074 nvme_put_ctrl(&dev->ctrl);
2075}
2076
fd634f41 2077static void nvme_reset_work(struct work_struct *work)
5e82e952 2078{
fd634f41 2079 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
a98e58e5 2080 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2081 int result = -ENODEV;
5e82e952 2082
82b057ca 2083 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2084 goto out;
5e82e952 2085
fd634f41
CH
2086 /*
2087 * If we're called to reset a live controller first shut it down before
2088 * moving on.
2089 */
b00a726a 2090 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2091 nvme_dev_disable(dev, false);
5e82e952 2092
b00a726a 2093 result = nvme_pci_enable(dev);
f0b50732 2094 if (result)
3cf519b5 2095 goto out;
f0b50732
KB
2096
2097 result = nvme_configure_admin_queue(dev);
2098 if (result)
f58944e2 2099 goto out;
f0b50732 2100
a4aea562 2101 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2102 result = nvme_alloc_admin_tags(dev);
2103 if (result)
f58944e2 2104 goto out;
b9afca3e 2105
ce4541f4
CH
2106 result = nvme_init_identify(&dev->ctrl);
2107 if (result)
f58944e2 2108 goto out;
ce4541f4 2109
e286bcfc
SB
2110 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2111 if (!dev->ctrl.opal_dev)
2112 dev->ctrl.opal_dev =
2113 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2114 else if (was_suspend)
2115 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2116 } else {
2117 free_opal_dev(dev->ctrl.opal_dev);
2118 dev->ctrl.opal_dev = NULL;
4f1244c8 2119 }
a98e58e5 2120
f9f38e33
HK
2121 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2122 result = nvme_dbbuf_dma_alloc(dev);
2123 if (result)
2124 dev_warn(dev->dev,
2125 "unable to allocate dma for dbbuf\n");
2126 }
2127
87ad72a5
CH
2128 if (dev->ctrl.hmpre)
2129 nvme_setup_host_mem(dev);
2130
f0b50732 2131 result = nvme_setup_io_queues(dev);
badc34d4 2132 if (result)
f58944e2 2133 goto out;
f0b50732 2134
21f033f7
KB
2135 /*
2136 * A controller that can not execute IO typically requires user
2137 * intervention to correct. For such degraded controllers, the driver
2138 * should not submit commands the user did not request, so skip
2139 * registering for asynchronous event notification on this condition.
2140 */
f866fc42
CH
2141 if (dev->online_queues > 1)
2142 nvme_queue_async_events(&dev->ctrl);
3cf519b5 2143
2d55cd5f 2144 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 2145
2659e57b
CH
2146 /*
2147 * Keep the controller around but remove all namespaces if we don't have
2148 * any working I/O queue.
2149 */
3cf519b5 2150 if (dev->online_queues < 2) {
1b3c47c1 2151 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2152 nvme_kill_queues(&dev->ctrl);
5bae7f73 2153 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2154 } else {
25646264 2155 nvme_start_queues(&dev->ctrl);
302ad8cc 2156 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2157 nvme_dev_add(dev);
302ad8cc 2158 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2159 }
2160
bb8d261e
CH
2161 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2162 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2163 goto out;
2164 }
92911a55
CH
2165
2166 if (dev->online_queues > 1)
5955be21 2167 nvme_queue_scan(&dev->ctrl);
3cf519b5 2168 return;
f0b50732 2169
3cf519b5 2170 out:
f58944e2 2171 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2172}
2173
5c8809e6 2174static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2175{
5c8809e6 2176 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2177 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2178
69d9a99c 2179 nvme_kill_queues(&dev->ctrl);
9a6b9458 2180 if (pci_get_drvdata(pdev))
921920ab 2181 device_release_driver(&pdev->dev);
1673f1f0 2182 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2183}
2184
4cc06521 2185static int nvme_reset(struct nvme_dev *dev)
9a6b9458 2186{
1c63dc66 2187 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 2188 return -ENODEV;
82b057ca
RP
2189 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
2190 return -EBUSY;
9a6327d2 2191 if (!queue_work(nvme_wq, &dev->reset_work))
846cc05f 2192 return -EBUSY;
846cc05f 2193 return 0;
9a6b9458
KB
2194}
2195
1c63dc66 2196static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2197{
1c63dc66 2198 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2199 return 0;
9ca97374
TH
2200}
2201
5fd4ce1b 2202static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2203{
5fd4ce1b
CH
2204 writel(val, to_nvme_dev(ctrl)->bar + off);
2205 return 0;
2206}
4cc06521 2207
7fd8930f
CH
2208static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2209{
2210 *val = readq(to_nvme_dev(ctrl)->bar + off);
2211 return 0;
4cc06521
KB
2212}
2213
f3ca80fc
CH
2214static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2215{
c5f6ce97
KB
2216 struct nvme_dev *dev = to_nvme_dev(ctrl);
2217 int ret = nvme_reset(dev);
2218
2219 if (!ret)
2220 flush_work(&dev->reset_work);
2221 return ret;
4cc06521 2222}
f3ca80fc 2223
1c63dc66 2224static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2225 .name = "pcie",
e439bb12 2226 .module = THIS_MODULE,
c81bfba9 2227 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2228 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2229 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2230 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 2231 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2232 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2233 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2234};
4cc06521 2235
b00a726a
KB
2236static int nvme_dev_map(struct nvme_dev *dev)
2237{
b00a726a
KB
2238 struct pci_dev *pdev = to_pci_dev(dev->dev);
2239
a1f447b3 2240 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2241 return -ENODEV;
2242
2243 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2244 if (!dev->bar)
2245 goto release;
2246
9fa196e7 2247 return 0;
b00a726a 2248 release:
9fa196e7
MG
2249 pci_release_mem_regions(pdev);
2250 return -ENODEV;
b00a726a
KB
2251}
2252
ff5350a8
AL
2253static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2254{
2255 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2256 /*
2257 * Several Samsung devices seem to drop off the PCIe bus
2258 * randomly when APST is on and uses the deepest sleep state.
2259 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2260 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2261 * 950 PRO 256GB", but it seems to be restricted to two Dell
2262 * laptops.
2263 */
2264 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2265 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2266 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2267 return NVME_QUIRK_NO_DEEPEST_PS;
2268 }
2269
2270 return 0;
2271}
2272
8d85fce7 2273static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2274{
a4aea562 2275 int node, result = -ENOMEM;
b60503ba 2276 struct nvme_dev *dev;
ff5350a8 2277 unsigned long quirks = id->driver_data;
b60503ba 2278
a4aea562
MB
2279 node = dev_to_node(&pdev->dev);
2280 if (node == NUMA_NO_NODE)
2fa84351 2281 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2282
2283 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2284 if (!dev)
2285 return -ENOMEM;
a4aea562
MB
2286 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2287 GFP_KERNEL, node);
b60503ba
MW
2288 if (!dev->queues)
2289 goto free;
2290
e75ec752 2291 dev->dev = get_device(&pdev->dev);
9a6b9458 2292 pci_set_drvdata(pdev, dev);
1c63dc66 2293
b00a726a
KB
2294 result = nvme_dev_map(dev);
2295 if (result)
2296 goto free;
2297
f3ca80fc 2298 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2299 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
2300 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2301 (unsigned long)dev);
77bf25ea 2302 mutex_init(&dev->shutdown_lock);
db3cbfff 2303 init_completion(&dev->ioq_wait);
b60503ba 2304
091b6092
MW
2305 result = nvme_setup_prp_pools(dev);
2306 if (result)
a96d4f5c 2307 goto put_pci;
4cc06521 2308
ff5350a8
AL
2309 quirks |= check_dell_samsung_bug(pdev);
2310
f3ca80fc 2311 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2312 quirks);
4cc06521 2313 if (result)
2e1d8448 2314 goto release_pools;
740216fc 2315
82b057ca 2316 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2317 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2318
9a6327d2 2319 queue_work(nvme_wq, &dev->reset_work);
b60503ba
MW
2320 return 0;
2321
0877cb0d 2322 release_pools:
091b6092 2323 nvme_release_prp_pools(dev);
a96d4f5c 2324 put_pci:
e75ec752 2325 put_device(dev->dev);
b00a726a 2326 nvme_dev_unmap(dev);
b60503ba
MW
2327 free:
2328 kfree(dev->queues);
b60503ba
MW
2329 kfree(dev);
2330 return result;
2331}
2332
f0d54a54
KB
2333static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2334{
a6739479 2335 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2336
a6739479 2337 if (prepare)
a5cdb68c 2338 nvme_dev_disable(dev, false);
a6739479 2339 else
c5f6ce97 2340 nvme_reset(dev);
f0d54a54
KB
2341}
2342
09ece142
KB
2343static void nvme_shutdown(struct pci_dev *pdev)
2344{
2345 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2346 nvme_dev_disable(dev, true);
09ece142
KB
2347}
2348
f58944e2
KB
2349/*
2350 * The driver's remove may be called on a device in a partially initialized
2351 * state. This function must not have any dependencies on the device state in
2352 * order to proceed.
2353 */
8d85fce7 2354static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2355{
2356 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2357
bb8d261e
CH
2358 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2359
82b057ca 2360 cancel_work_sync(&dev->reset_work);
9a6b9458 2361 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2362
6db28eda 2363 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2364 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2365 nvme_dev_disable(dev, false);
2366 }
0ff9d4e1 2367
9bf2b972 2368 flush_work(&dev->reset_work);
53029b04 2369 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2370 nvme_dev_disable(dev, true);
87ad72a5 2371 nvme_free_host_mem(dev);
a4aea562 2372 nvme_dev_remove_admin(dev);
a1a5ef99 2373 nvme_free_queues(dev, 0);
9a6b9458 2374 nvme_release_prp_pools(dev);
b00a726a 2375 nvme_dev_unmap(dev);
1673f1f0 2376 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2377}
2378
13880f5b
KB
2379static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2380{
2381 int ret = 0;
2382
2383 if (numvfs == 0) {
2384 if (pci_vfs_assigned(pdev)) {
2385 dev_warn(&pdev->dev,
2386 "Cannot disable SR-IOV VFs while assigned\n");
2387 return -EPERM;
2388 }
2389 pci_disable_sriov(pdev);
2390 return 0;
2391 }
2392
2393 ret = pci_enable_sriov(pdev, numvfs);
2394 return ret ? ret : numvfs;
2395}
2396
671a6018 2397#ifdef CONFIG_PM_SLEEP
cd638946
KB
2398static int nvme_suspend(struct device *dev)
2399{
2400 struct pci_dev *pdev = to_pci_dev(dev);
2401 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2402
a5cdb68c 2403 nvme_dev_disable(ndev, true);
cd638946
KB
2404 return 0;
2405}
2406
2407static int nvme_resume(struct device *dev)
2408{
2409 struct pci_dev *pdev = to_pci_dev(dev);
2410 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2411
c5f6ce97 2412 nvme_reset(ndev);
9a6b9458 2413 return 0;
cd638946 2414}
671a6018 2415#endif
cd638946
KB
2416
2417static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2418
a0a3408e
KB
2419static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2420 pci_channel_state_t state)
2421{
2422 struct nvme_dev *dev = pci_get_drvdata(pdev);
2423
2424 /*
2425 * A frozen channel requires a reset. When detected, this method will
2426 * shutdown the controller to quiesce. The controller will be restarted
2427 * after the slot reset through driver's slot_reset callback.
2428 */
a0a3408e
KB
2429 switch (state) {
2430 case pci_channel_io_normal:
2431 return PCI_ERS_RESULT_CAN_RECOVER;
2432 case pci_channel_io_frozen:
d011fb31
KB
2433 dev_warn(dev->ctrl.device,
2434 "frozen state error detected, reset controller\n");
a5cdb68c 2435 nvme_dev_disable(dev, false);
a0a3408e
KB
2436 return PCI_ERS_RESULT_NEED_RESET;
2437 case pci_channel_io_perm_failure:
d011fb31
KB
2438 dev_warn(dev->ctrl.device,
2439 "failure state error detected, request disconnect\n");
a0a3408e
KB
2440 return PCI_ERS_RESULT_DISCONNECT;
2441 }
2442 return PCI_ERS_RESULT_NEED_RESET;
2443}
2444
2445static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2446{
2447 struct nvme_dev *dev = pci_get_drvdata(pdev);
2448
1b3c47c1 2449 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2450 pci_restore_state(pdev);
c5f6ce97 2451 nvme_reset(dev);
a0a3408e
KB
2452 return PCI_ERS_RESULT_RECOVERED;
2453}
2454
2455static void nvme_error_resume(struct pci_dev *pdev)
2456{
2457 pci_cleanup_aer_uncorrect_error_status(pdev);
2458}
2459
1d352035 2460static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2461 .error_detected = nvme_error_detected,
b60503ba
MW
2462 .slot_reset = nvme_slot_reset,
2463 .resume = nvme_error_resume,
f0d54a54 2464 .reset_notify = nvme_reset_notify,
b60503ba
MW
2465};
2466
6eb0d698 2467static const struct pci_device_id nvme_id_table[] = {
106198ed 2468 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2469 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2470 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2471 { PCI_VDEVICE(INTEL, 0x0a53),
2472 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2473 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2474 { PCI_VDEVICE(INTEL, 0x0a54),
2475 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2476 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2477 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2478 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2479 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2480 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2481 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2482 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2483 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2484 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2485 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2486 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2487 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2488 { 0, }
2489};
2490MODULE_DEVICE_TABLE(pci, nvme_id_table);
2491
2492static struct pci_driver nvme_driver = {
2493 .name = "nvme",
2494 .id_table = nvme_id_table,
2495 .probe = nvme_probe,
8d85fce7 2496 .remove = nvme_remove,
09ece142 2497 .shutdown = nvme_shutdown,
cd638946
KB
2498 .driver = {
2499 .pm = &nvme_dev_pm_ops,
2500 },
13880f5b 2501 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2502 .err_handler = &nvme_err_handler,
2503};
2504
2505static int __init nvme_init(void)
2506{
9a6327d2 2507 return pci_register_driver(&nvme_driver);
b60503ba
MW
2508}
2509
2510static void __exit nvme_exit(void)
2511{
2512 pci_unregister_driver(&nvme_driver);
21bd78bc 2513 _nvme_check_size();
b60503ba
MW
2514}
2515
2516MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2517MODULE_LICENSE("GPL");
c78b4713 2518MODULE_VERSION("1.0");
b60503ba
MW
2519module_init(nvme_init);
2520module_exit(nvme_exit);