]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: nVMX: Exiting from L2 to L1
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
e495606d 21
edf88417 22#include <linux/kvm_host.h>
6aa8b732 23#include <linux/module.h>
9d8f549d 24#include <linux/kernel.h>
6aa8b732
AK
25#include <linux/mm.h>
26#include <linux/highmem.h>
e8edc6e0 27#include <linux/sched.h>
c7addb90 28#include <linux/moduleparam.h>
229456fc 29#include <linux/ftrace_event.h>
5a0e3ad6 30#include <linux/slab.h>
cafd6659 31#include <linux/tboot.h>
5fdbf976 32#include "kvm_cache_regs.h"
35920a35 33#include "x86.h"
e495606d 34
6aa8b732 35#include <asm/io.h>
3b3be0d1 36#include <asm/desc.h>
13673a90 37#include <asm/vmx.h>
6210e37b 38#include <asm/virtext.h>
a0861c02 39#include <asm/mce.h>
2acf923e
DC
40#include <asm/i387.h>
41#include <asm/xcr.h>
6aa8b732 42
229456fc
MT
43#include "trace.h"
44
4ecac3fd 45#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
46#define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 48
6aa8b732
AK
49MODULE_AUTHOR("Qumranet");
50MODULE_LICENSE("GPL");
51
4462d21a 52static int __read_mostly bypass_guest_pf = 1;
c1f8bc04 53module_param(bypass_guest_pf, bool, S_IRUGO);
c7addb90 54
4462d21a 55static int __read_mostly enable_vpid = 1;
736caefe 56module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 57
4462d21a 58static int __read_mostly flexpriority_enabled = 1;
736caefe 59module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 60
4462d21a 61static int __read_mostly enable_ept = 1;
736caefe 62module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 63
3a624e29
NK
64static int __read_mostly enable_unrestricted_guest = 1;
65module_param_named(unrestricted_guest,
66 enable_unrestricted_guest, bool, S_IRUGO);
67
4462d21a 68static int __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 69module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 70
b923e62e
DX
71static int __read_mostly vmm_exclusive = 1;
72module_param(vmm_exclusive, bool, S_IRUGO);
73
443381a8
AL
74static int __read_mostly yield_on_hlt = 1;
75module_param(yield_on_hlt, bool, S_IRUGO);
76
801d3424
NHE
77/*
78 * If nested=1, nested virtualization is supported, i.e., guests may use
79 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80 * use VMX instructions.
81 */
82static int __read_mostly nested = 0;
83module_param(nested, bool, S_IRUGO);
84
cdc0e244
AK
85#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
86 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87#define KVM_GUEST_CR0_MASK \
88 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 90 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
91#define KVM_VM_CR0_ALWAYS_ON \
92 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
93#define KVM_CR4_GUEST_OWNED_BITS \
94 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT)
96
cdc0e244
AK
97#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99
78ac8b47
AK
100#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
101
4b8d54f9
ZE
102/*
103 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104 * ple_gap: upper bound on the amount of time between two successive
105 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 106 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
107 * ple_window: upper bound on the amount of time a guest is allowed to execute
108 * in a PAUSE loop. Tests indicate that most spinlocks are held for
109 * less than 2^12 cycles
110 * Time is measured based on a counter that runs at the same rate as the TSC,
111 * refer SDM volume 3b section 21.6.13 & 22.1.3.
112 */
00c25bce 113#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
114#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116module_param(ple_gap, int, S_IRUGO);
117
118static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119module_param(ple_window, int, S_IRUGO);
120
61d2ef2c 121#define NR_AUTOLOAD_MSRS 1
ff2f6fe9 122#define VMCS02_POOL_SIZE 1
61d2ef2c 123
a2fa3e9f
GH
124struct vmcs {
125 u32 revision_id;
126 u32 abort;
127 char data[0];
128};
129
d462b819
NHE
130/*
131 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
132 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
133 * loaded on this CPU (so we can clear them if the CPU goes down).
134 */
135struct loaded_vmcs {
136 struct vmcs *vmcs;
137 int cpu;
138 int launched;
139 struct list_head loaded_vmcss_on_cpu_link;
140};
141
26bb0981
AK
142struct shared_msr_entry {
143 unsigned index;
144 u64 data;
d5696725 145 u64 mask;
26bb0981
AK
146};
147
a9d30f33
NHE
148/*
149 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
150 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
151 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
152 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
153 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
154 * More than one of these structures may exist, if L1 runs multiple L2 guests.
155 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
156 * underlying hardware which will be used to run L2.
157 * This structure is packed to ensure that its layout is identical across
158 * machines (necessary for live migration).
159 * If there are changes in this struct, VMCS12_REVISION must be changed.
160 */
22bd0358 161typedef u64 natural_width;
a9d30f33
NHE
162struct __packed vmcs12 {
163 /* According to the Intel spec, a VMCS region must start with the
164 * following two fields. Then follow implementation-specific data.
165 */
166 u32 revision_id;
167 u32 abort;
22bd0358 168
27d6c865
NHE
169 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
170 u32 padding[7]; /* room for future expansion */
171
22bd0358
NHE
172 u64 io_bitmap_a;
173 u64 io_bitmap_b;
174 u64 msr_bitmap;
175 u64 vm_exit_msr_store_addr;
176 u64 vm_exit_msr_load_addr;
177 u64 vm_entry_msr_load_addr;
178 u64 tsc_offset;
179 u64 virtual_apic_page_addr;
180 u64 apic_access_addr;
181 u64 ept_pointer;
182 u64 guest_physical_address;
183 u64 vmcs_link_pointer;
184 u64 guest_ia32_debugctl;
185 u64 guest_ia32_pat;
186 u64 guest_ia32_efer;
187 u64 guest_ia32_perf_global_ctrl;
188 u64 guest_pdptr0;
189 u64 guest_pdptr1;
190 u64 guest_pdptr2;
191 u64 guest_pdptr3;
192 u64 host_ia32_pat;
193 u64 host_ia32_efer;
194 u64 host_ia32_perf_global_ctrl;
195 u64 padding64[8]; /* room for future expansion */
196 /*
197 * To allow migration of L1 (complete with its L2 guests) between
198 * machines of different natural widths (32 or 64 bit), we cannot have
199 * unsigned long fields with no explict size. We use u64 (aliased
200 * natural_width) instead. Luckily, x86 is little-endian.
201 */
202 natural_width cr0_guest_host_mask;
203 natural_width cr4_guest_host_mask;
204 natural_width cr0_read_shadow;
205 natural_width cr4_read_shadow;
206 natural_width cr3_target_value0;
207 natural_width cr3_target_value1;
208 natural_width cr3_target_value2;
209 natural_width cr3_target_value3;
210 natural_width exit_qualification;
211 natural_width guest_linear_address;
212 natural_width guest_cr0;
213 natural_width guest_cr3;
214 natural_width guest_cr4;
215 natural_width guest_es_base;
216 natural_width guest_cs_base;
217 natural_width guest_ss_base;
218 natural_width guest_ds_base;
219 natural_width guest_fs_base;
220 natural_width guest_gs_base;
221 natural_width guest_ldtr_base;
222 natural_width guest_tr_base;
223 natural_width guest_gdtr_base;
224 natural_width guest_idtr_base;
225 natural_width guest_dr7;
226 natural_width guest_rsp;
227 natural_width guest_rip;
228 natural_width guest_rflags;
229 natural_width guest_pending_dbg_exceptions;
230 natural_width guest_sysenter_esp;
231 natural_width guest_sysenter_eip;
232 natural_width host_cr0;
233 natural_width host_cr3;
234 natural_width host_cr4;
235 natural_width host_fs_base;
236 natural_width host_gs_base;
237 natural_width host_tr_base;
238 natural_width host_gdtr_base;
239 natural_width host_idtr_base;
240 natural_width host_ia32_sysenter_esp;
241 natural_width host_ia32_sysenter_eip;
242 natural_width host_rsp;
243 natural_width host_rip;
244 natural_width paddingl[8]; /* room for future expansion */
245 u32 pin_based_vm_exec_control;
246 u32 cpu_based_vm_exec_control;
247 u32 exception_bitmap;
248 u32 page_fault_error_code_mask;
249 u32 page_fault_error_code_match;
250 u32 cr3_target_count;
251 u32 vm_exit_controls;
252 u32 vm_exit_msr_store_count;
253 u32 vm_exit_msr_load_count;
254 u32 vm_entry_controls;
255 u32 vm_entry_msr_load_count;
256 u32 vm_entry_intr_info_field;
257 u32 vm_entry_exception_error_code;
258 u32 vm_entry_instruction_len;
259 u32 tpr_threshold;
260 u32 secondary_vm_exec_control;
261 u32 vm_instruction_error;
262 u32 vm_exit_reason;
263 u32 vm_exit_intr_info;
264 u32 vm_exit_intr_error_code;
265 u32 idt_vectoring_info_field;
266 u32 idt_vectoring_error_code;
267 u32 vm_exit_instruction_len;
268 u32 vmx_instruction_info;
269 u32 guest_es_limit;
270 u32 guest_cs_limit;
271 u32 guest_ss_limit;
272 u32 guest_ds_limit;
273 u32 guest_fs_limit;
274 u32 guest_gs_limit;
275 u32 guest_ldtr_limit;
276 u32 guest_tr_limit;
277 u32 guest_gdtr_limit;
278 u32 guest_idtr_limit;
279 u32 guest_es_ar_bytes;
280 u32 guest_cs_ar_bytes;
281 u32 guest_ss_ar_bytes;
282 u32 guest_ds_ar_bytes;
283 u32 guest_fs_ar_bytes;
284 u32 guest_gs_ar_bytes;
285 u32 guest_ldtr_ar_bytes;
286 u32 guest_tr_ar_bytes;
287 u32 guest_interruptibility_info;
288 u32 guest_activity_state;
289 u32 guest_sysenter_cs;
290 u32 host_ia32_sysenter_cs;
291 u32 padding32[8]; /* room for future expansion */
292 u16 virtual_processor_id;
293 u16 guest_es_selector;
294 u16 guest_cs_selector;
295 u16 guest_ss_selector;
296 u16 guest_ds_selector;
297 u16 guest_fs_selector;
298 u16 guest_gs_selector;
299 u16 guest_ldtr_selector;
300 u16 guest_tr_selector;
301 u16 host_es_selector;
302 u16 host_cs_selector;
303 u16 host_ss_selector;
304 u16 host_ds_selector;
305 u16 host_fs_selector;
306 u16 host_gs_selector;
307 u16 host_tr_selector;
a9d30f33
NHE
308};
309
310/*
311 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
312 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
313 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
314 */
315#define VMCS12_REVISION 0x11e57ed0
316
317/*
318 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
319 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
320 * current implementation, 4K are reserved to avoid future complications.
321 */
322#define VMCS12_SIZE 0x1000
323
ff2f6fe9
NHE
324/* Used to remember the last vmcs02 used for some recently used vmcs12s */
325struct vmcs02_list {
326 struct list_head list;
327 gpa_t vmptr;
328 struct loaded_vmcs vmcs02;
329};
330
ec378aee
NHE
331/*
332 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
333 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
334 */
335struct nested_vmx {
336 /* Has the level1 guest done vmxon? */
337 bool vmxon;
a9d30f33
NHE
338
339 /* The guest-physical address of the current VMCS L1 keeps for L2 */
340 gpa_t current_vmptr;
341 /* The host-usable pointer to the above */
342 struct page *current_vmcs12_page;
343 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
344
345 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
346 struct list_head vmcs02_pool;
347 int vmcs02_num;
fe3ef05c
NHE
348 u64 vmcs01_tsc_offset;
349 /*
350 * Guest pages referred to in vmcs02 with host-physical pointers, so
351 * we must keep them pinned while L2 runs.
352 */
353 struct page *apic_access_page;
ec378aee
NHE
354};
355
a2fa3e9f 356struct vcpu_vmx {
fb3f0f51 357 struct kvm_vcpu vcpu;
313dbd49 358 unsigned long host_rsp;
29bd8a78 359 u8 fail;
69c73028 360 u8 cpl;
9d58b931 361 bool nmi_known_unmasked;
51aa01d1 362 u32 exit_intr_info;
1155f76a 363 u32 idt_vectoring_info;
6de12732 364 ulong rflags;
26bb0981 365 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
366 int nmsrs;
367 int save_nmsrs;
a2fa3e9f 368#ifdef CONFIG_X86_64
44ea2b17
AK
369 u64 msr_host_kernel_gs_base;
370 u64 msr_guest_kernel_gs_base;
a2fa3e9f 371#endif
d462b819
NHE
372 /*
373 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
374 * non-nested (L1) guest, it always points to vmcs01. For a nested
375 * guest (L2), it points to a different VMCS.
376 */
377 struct loaded_vmcs vmcs01;
378 struct loaded_vmcs *loaded_vmcs;
379 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
380 struct msr_autoload {
381 unsigned nr;
382 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
383 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
384 } msr_autoload;
a2fa3e9f
GH
385 struct {
386 int loaded;
387 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
388 int gs_ldt_reload_needed;
389 int fs_reload_needed;
d77c26fc 390 } host_state;
9c8cba37 391 struct {
7ffd92c5 392 int vm86_active;
78ac8b47 393 ulong save_rflags;
7ffd92c5
AK
394 struct kvm_save_segment {
395 u16 selector;
396 unsigned long base;
397 u32 limit;
398 u32 ar;
399 } tr, es, ds, fs, gs;
9c8cba37 400 } rmode;
2fb92db1
AK
401 struct {
402 u32 bitmask; /* 4 bits per segment (1 bit per field) */
403 struct kvm_save_segment seg[8];
404 } segment_cache;
2384d2b3 405 int vpid;
04fa4d32 406 bool emulation_required;
3b86cd99
JK
407
408 /* Support for vnmi-less CPUs */
409 int soft_vnmi_blocked;
410 ktime_t entry_time;
411 s64 vnmi_blocked_time;
a0861c02 412 u32 exit_reason;
4e47c7a6
SY
413
414 bool rdtscp_enabled;
ec378aee
NHE
415
416 /* Support for a guest hypervisor (nested VMX) */
417 struct nested_vmx nested;
a2fa3e9f
GH
418};
419
2fb92db1
AK
420enum segment_cache_field {
421 SEG_FIELD_SEL = 0,
422 SEG_FIELD_BASE = 1,
423 SEG_FIELD_LIMIT = 2,
424 SEG_FIELD_AR = 3,
425
426 SEG_FIELD_NR = 4
427};
428
a2fa3e9f
GH
429static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
430{
fb3f0f51 431 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
432}
433
22bd0358
NHE
434#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
435#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
436#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
437 [number##_HIGH] = VMCS12_OFFSET(name)+4
438
439static unsigned short vmcs_field_to_offset_table[] = {
440 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
441 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
442 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
443 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
444 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
445 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
446 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
447 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
448 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
449 FIELD(HOST_ES_SELECTOR, host_es_selector),
450 FIELD(HOST_CS_SELECTOR, host_cs_selector),
451 FIELD(HOST_SS_SELECTOR, host_ss_selector),
452 FIELD(HOST_DS_SELECTOR, host_ds_selector),
453 FIELD(HOST_FS_SELECTOR, host_fs_selector),
454 FIELD(HOST_GS_SELECTOR, host_gs_selector),
455 FIELD(HOST_TR_SELECTOR, host_tr_selector),
456 FIELD64(IO_BITMAP_A, io_bitmap_a),
457 FIELD64(IO_BITMAP_B, io_bitmap_b),
458 FIELD64(MSR_BITMAP, msr_bitmap),
459 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
460 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
461 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
462 FIELD64(TSC_OFFSET, tsc_offset),
463 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
464 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
465 FIELD64(EPT_POINTER, ept_pointer),
466 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
467 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
468 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
469 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
470 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
471 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
472 FIELD64(GUEST_PDPTR0, guest_pdptr0),
473 FIELD64(GUEST_PDPTR1, guest_pdptr1),
474 FIELD64(GUEST_PDPTR2, guest_pdptr2),
475 FIELD64(GUEST_PDPTR3, guest_pdptr3),
476 FIELD64(HOST_IA32_PAT, host_ia32_pat),
477 FIELD64(HOST_IA32_EFER, host_ia32_efer),
478 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
479 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
480 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
481 FIELD(EXCEPTION_BITMAP, exception_bitmap),
482 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
483 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
484 FIELD(CR3_TARGET_COUNT, cr3_target_count),
485 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
486 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
487 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
488 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
489 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
490 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
491 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
492 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
493 FIELD(TPR_THRESHOLD, tpr_threshold),
494 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
495 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
496 FIELD(VM_EXIT_REASON, vm_exit_reason),
497 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
498 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
499 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
500 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
501 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
502 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
503 FIELD(GUEST_ES_LIMIT, guest_es_limit),
504 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
505 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
506 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
507 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
508 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
509 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
510 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
511 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
512 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
513 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
514 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
515 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
516 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
517 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
518 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
519 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
520 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
521 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
522 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
523 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
524 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
525 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
526 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
527 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
528 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
529 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
530 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
531 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
532 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
533 FIELD(EXIT_QUALIFICATION, exit_qualification),
534 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
535 FIELD(GUEST_CR0, guest_cr0),
536 FIELD(GUEST_CR3, guest_cr3),
537 FIELD(GUEST_CR4, guest_cr4),
538 FIELD(GUEST_ES_BASE, guest_es_base),
539 FIELD(GUEST_CS_BASE, guest_cs_base),
540 FIELD(GUEST_SS_BASE, guest_ss_base),
541 FIELD(GUEST_DS_BASE, guest_ds_base),
542 FIELD(GUEST_FS_BASE, guest_fs_base),
543 FIELD(GUEST_GS_BASE, guest_gs_base),
544 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
545 FIELD(GUEST_TR_BASE, guest_tr_base),
546 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
547 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
548 FIELD(GUEST_DR7, guest_dr7),
549 FIELD(GUEST_RSP, guest_rsp),
550 FIELD(GUEST_RIP, guest_rip),
551 FIELD(GUEST_RFLAGS, guest_rflags),
552 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
553 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
554 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
555 FIELD(HOST_CR0, host_cr0),
556 FIELD(HOST_CR3, host_cr3),
557 FIELD(HOST_CR4, host_cr4),
558 FIELD(HOST_FS_BASE, host_fs_base),
559 FIELD(HOST_GS_BASE, host_gs_base),
560 FIELD(HOST_TR_BASE, host_tr_base),
561 FIELD(HOST_GDTR_BASE, host_gdtr_base),
562 FIELD(HOST_IDTR_BASE, host_idtr_base),
563 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
564 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
565 FIELD(HOST_RSP, host_rsp),
566 FIELD(HOST_RIP, host_rip),
567};
568static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
569
570static inline short vmcs_field_to_offset(unsigned long field)
571{
572 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
573 return -1;
574 return vmcs_field_to_offset_table[field];
575}
576
a9d30f33
NHE
577static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
578{
579 return to_vmx(vcpu)->nested.current_vmcs12;
580}
581
582static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
583{
584 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
585 if (is_error_page(page)) {
586 kvm_release_page_clean(page);
587 return NULL;
588 }
589 return page;
590}
591
592static void nested_release_page(struct page *page)
593{
594 kvm_release_page_dirty(page);
595}
596
597static void nested_release_page_clean(struct page *page)
598{
599 kvm_release_page_clean(page);
600}
601
4e1096d2 602static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
603static void kvm_cpu_vmxon(u64 addr);
604static void kvm_cpu_vmxoff(void);
aff48baa 605static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 606static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 607
6aa8b732
AK
608static DEFINE_PER_CPU(struct vmcs *, vmxarea);
609static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
610/*
611 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
612 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
613 */
614static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 615static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 616
3e7c73e9
AK
617static unsigned long *vmx_io_bitmap_a;
618static unsigned long *vmx_io_bitmap_b;
5897297b
AK
619static unsigned long *vmx_msr_bitmap_legacy;
620static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 621
110312c8
AK
622static bool cpu_has_load_ia32_efer;
623
2384d2b3
SY
624static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
625static DEFINE_SPINLOCK(vmx_vpid_lock);
626
1c3d14fe 627static struct vmcs_config {
6aa8b732
AK
628 int size;
629 int order;
630 u32 revision_id;
1c3d14fe
YS
631 u32 pin_based_exec_ctrl;
632 u32 cpu_based_exec_ctrl;
f78e0e2e 633 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
634 u32 vmexit_ctrl;
635 u32 vmentry_ctrl;
636} vmcs_config;
6aa8b732 637
efff9e53 638static struct vmx_capability {
d56f546d
SY
639 u32 ept;
640 u32 vpid;
641} vmx_capability;
642
6aa8b732
AK
643#define VMX_SEGMENT_FIELD(seg) \
644 [VCPU_SREG_##seg] = { \
645 .selector = GUEST_##seg##_SELECTOR, \
646 .base = GUEST_##seg##_BASE, \
647 .limit = GUEST_##seg##_LIMIT, \
648 .ar_bytes = GUEST_##seg##_AR_BYTES, \
649 }
650
651static struct kvm_vmx_segment_field {
652 unsigned selector;
653 unsigned base;
654 unsigned limit;
655 unsigned ar_bytes;
656} kvm_vmx_segment_fields[] = {
657 VMX_SEGMENT_FIELD(CS),
658 VMX_SEGMENT_FIELD(DS),
659 VMX_SEGMENT_FIELD(ES),
660 VMX_SEGMENT_FIELD(FS),
661 VMX_SEGMENT_FIELD(GS),
662 VMX_SEGMENT_FIELD(SS),
663 VMX_SEGMENT_FIELD(TR),
664 VMX_SEGMENT_FIELD(LDTR),
665};
666
26bb0981
AK
667static u64 host_efer;
668
6de4f3ad
AK
669static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
670
4d56c8a7 671/*
8c06585d 672 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
673 * away by decrementing the array size.
674 */
6aa8b732 675static const u32 vmx_msr_index[] = {
05b3e0c2 676#ifdef CONFIG_X86_64
44ea2b17 677 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 678#endif
8c06585d 679 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 680};
9d8f549d 681#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 682
31299944 683static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
684{
685 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
686 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 687 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
688}
689
31299944 690static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
691{
692 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
693 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 694 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
695}
696
31299944 697static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
698{
699 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
700 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 701 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
702}
703
31299944 704static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
705{
706 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
707 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
708}
709
31299944 710static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
711{
712 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
713 INTR_INFO_VALID_MASK)) ==
714 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
715}
716
31299944 717static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 718{
04547156 719 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
720}
721
31299944 722static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 723{
04547156 724 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
725}
726
31299944 727static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 728{
04547156 729 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
730}
731
31299944 732static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 733{
04547156
SY
734 return vmcs_config.cpu_based_exec_ctrl &
735 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
736}
737
774ead3a 738static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 739{
04547156
SY
740 return vmcs_config.cpu_based_2nd_exec_ctrl &
741 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
742}
743
744static inline bool cpu_has_vmx_flexpriority(void)
745{
746 return cpu_has_vmx_tpr_shadow() &&
747 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
748}
749
e799794e
MT
750static inline bool cpu_has_vmx_ept_execute_only(void)
751{
31299944 752 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
753}
754
755static inline bool cpu_has_vmx_eptp_uncacheable(void)
756{
31299944 757 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
758}
759
760static inline bool cpu_has_vmx_eptp_writeback(void)
761{
31299944 762 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
763}
764
765static inline bool cpu_has_vmx_ept_2m_page(void)
766{
31299944 767 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
768}
769
878403b7
SY
770static inline bool cpu_has_vmx_ept_1g_page(void)
771{
31299944 772 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
773}
774
4bc9b982
SY
775static inline bool cpu_has_vmx_ept_4levels(void)
776{
777 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
778}
779
31299944 780static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 781{
31299944 782 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
783}
784
31299944 785static inline bool cpu_has_vmx_invept_context(void)
d56f546d 786{
31299944 787 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
788}
789
31299944 790static inline bool cpu_has_vmx_invept_global(void)
d56f546d 791{
31299944 792 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
793}
794
518c8aee
GJ
795static inline bool cpu_has_vmx_invvpid_single(void)
796{
797 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
798}
799
b9d762fa
GJ
800static inline bool cpu_has_vmx_invvpid_global(void)
801{
802 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
803}
804
31299944 805static inline bool cpu_has_vmx_ept(void)
d56f546d 806{
04547156
SY
807 return vmcs_config.cpu_based_2nd_exec_ctrl &
808 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
809}
810
31299944 811static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
812{
813 return vmcs_config.cpu_based_2nd_exec_ctrl &
814 SECONDARY_EXEC_UNRESTRICTED_GUEST;
815}
816
31299944 817static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
818{
819 return vmcs_config.cpu_based_2nd_exec_ctrl &
820 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
821}
822
31299944 823static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 824{
6d3e435e 825 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
826}
827
31299944 828static inline bool cpu_has_vmx_vpid(void)
2384d2b3 829{
04547156
SY
830 return vmcs_config.cpu_based_2nd_exec_ctrl &
831 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
832}
833
31299944 834static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
835{
836 return vmcs_config.cpu_based_2nd_exec_ctrl &
837 SECONDARY_EXEC_RDTSCP;
838}
839
31299944 840static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
841{
842 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
843}
844
f5f48ee1
SY
845static inline bool cpu_has_vmx_wbinvd_exit(void)
846{
847 return vmcs_config.cpu_based_2nd_exec_ctrl &
848 SECONDARY_EXEC_WBINVD_EXITING;
849}
850
04547156
SY
851static inline bool report_flexpriority(void)
852{
853 return flexpriority_enabled;
854}
855
fe3ef05c
NHE
856static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
857{
858 return vmcs12->cpu_based_vm_exec_control & bit;
859}
860
861static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
862{
863 return (vmcs12->cpu_based_vm_exec_control &
864 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
865 (vmcs12->secondary_vm_exec_control & bit);
866}
867
8b9cf98c 868static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
869{
870 int i;
871
a2fa3e9f 872 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 873 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
874 return i;
875 return -1;
876}
877
2384d2b3
SY
878static inline void __invvpid(int ext, u16 vpid, gva_t gva)
879{
880 struct {
881 u64 vpid : 16;
882 u64 rsvd : 48;
883 u64 gva;
884 } operand = { vpid, 0, gva };
885
4ecac3fd 886 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
887 /* CF==1 or ZF==1 --> rc = -1 */
888 "; ja 1f ; ud2 ; 1:"
889 : : "a"(&operand), "c"(ext) : "cc", "memory");
890}
891
1439442c
SY
892static inline void __invept(int ext, u64 eptp, gpa_t gpa)
893{
894 struct {
895 u64 eptp, gpa;
896 } operand = {eptp, gpa};
897
4ecac3fd 898 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
899 /* CF==1 or ZF==1 --> rc = -1 */
900 "; ja 1f ; ud2 ; 1:\n"
901 : : "a" (&operand), "c" (ext) : "cc", "memory");
902}
903
26bb0981 904static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
905{
906 int i;
907
8b9cf98c 908 i = __find_msr_index(vmx, msr);
a75beee6 909 if (i >= 0)
a2fa3e9f 910 return &vmx->guest_msrs[i];
8b6d44c7 911 return NULL;
7725f0ba
AK
912}
913
6aa8b732
AK
914static void vmcs_clear(struct vmcs *vmcs)
915{
916 u64 phys_addr = __pa(vmcs);
917 u8 error;
918
4ecac3fd 919 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 920 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
921 : "cc", "memory");
922 if (error)
923 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
924 vmcs, phys_addr);
925}
926
d462b819
NHE
927static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
928{
929 vmcs_clear(loaded_vmcs->vmcs);
930 loaded_vmcs->cpu = -1;
931 loaded_vmcs->launched = 0;
932}
933
7725b894
DX
934static void vmcs_load(struct vmcs *vmcs)
935{
936 u64 phys_addr = __pa(vmcs);
937 u8 error;
938
939 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 940 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
941 : "cc", "memory");
942 if (error)
943 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
944 vmcs, phys_addr);
945}
946
d462b819 947static void __loaded_vmcs_clear(void *arg)
6aa8b732 948{
d462b819 949 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 950 int cpu = raw_smp_processor_id();
6aa8b732 951
d462b819
NHE
952 if (loaded_vmcs->cpu != cpu)
953 return; /* vcpu migration can race with cpu offline */
954 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 955 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
956 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
957 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
958}
959
d462b819 960static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 961{
d462b819
NHE
962 if (loaded_vmcs->cpu != -1)
963 smp_call_function_single(
964 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
965}
966
1760dd49 967static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
968{
969 if (vmx->vpid == 0)
970 return;
971
518c8aee
GJ
972 if (cpu_has_vmx_invvpid_single())
973 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
974}
975
b9d762fa
GJ
976static inline void vpid_sync_vcpu_global(void)
977{
978 if (cpu_has_vmx_invvpid_global())
979 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
980}
981
982static inline void vpid_sync_context(struct vcpu_vmx *vmx)
983{
984 if (cpu_has_vmx_invvpid_single())
1760dd49 985 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
986 else
987 vpid_sync_vcpu_global();
988}
989
1439442c
SY
990static inline void ept_sync_global(void)
991{
992 if (cpu_has_vmx_invept_global())
993 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
994}
995
996static inline void ept_sync_context(u64 eptp)
997{
089d034e 998 if (enable_ept) {
1439442c
SY
999 if (cpu_has_vmx_invept_context())
1000 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1001 else
1002 ept_sync_global();
1003 }
1004}
1005
1006static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1007{
089d034e 1008 if (enable_ept) {
1439442c
SY
1009 if (cpu_has_vmx_invept_individual_addr())
1010 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1011 eptp, gpa);
1012 else
1013 ept_sync_context(eptp);
1014 }
1015}
1016
96304217 1017static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1018{
5e520e62 1019 unsigned long value;
6aa8b732 1020
5e520e62
AK
1021 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1022 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1023 return value;
1024}
1025
96304217 1026static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1027{
1028 return vmcs_readl(field);
1029}
1030
96304217 1031static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1032{
1033 return vmcs_readl(field);
1034}
1035
96304217 1036static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1037{
05b3e0c2 1038#ifdef CONFIG_X86_64
6aa8b732
AK
1039 return vmcs_readl(field);
1040#else
1041 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1042#endif
1043}
1044
e52de1b8
AK
1045static noinline void vmwrite_error(unsigned long field, unsigned long value)
1046{
1047 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1048 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1049 dump_stack();
1050}
1051
6aa8b732
AK
1052static void vmcs_writel(unsigned long field, unsigned long value)
1053{
1054 u8 error;
1055
4ecac3fd 1056 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1057 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1058 if (unlikely(error))
1059 vmwrite_error(field, value);
6aa8b732
AK
1060}
1061
1062static void vmcs_write16(unsigned long field, u16 value)
1063{
1064 vmcs_writel(field, value);
1065}
1066
1067static void vmcs_write32(unsigned long field, u32 value)
1068{
1069 vmcs_writel(field, value);
1070}
1071
1072static void vmcs_write64(unsigned long field, u64 value)
1073{
6aa8b732 1074 vmcs_writel(field, value);
7682f2d0 1075#ifndef CONFIG_X86_64
6aa8b732
AK
1076 asm volatile ("");
1077 vmcs_writel(field+1, value >> 32);
1078#endif
1079}
1080
2ab455cc
AL
1081static void vmcs_clear_bits(unsigned long field, u32 mask)
1082{
1083 vmcs_writel(field, vmcs_readl(field) & ~mask);
1084}
1085
1086static void vmcs_set_bits(unsigned long field, u32 mask)
1087{
1088 vmcs_writel(field, vmcs_readl(field) | mask);
1089}
1090
2fb92db1
AK
1091static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1092{
1093 vmx->segment_cache.bitmask = 0;
1094}
1095
1096static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1097 unsigned field)
1098{
1099 bool ret;
1100 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1101
1102 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1103 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1104 vmx->segment_cache.bitmask = 0;
1105 }
1106 ret = vmx->segment_cache.bitmask & mask;
1107 vmx->segment_cache.bitmask |= mask;
1108 return ret;
1109}
1110
1111static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1112{
1113 u16 *p = &vmx->segment_cache.seg[seg].selector;
1114
1115 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1116 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1117 return *p;
1118}
1119
1120static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1121{
1122 ulong *p = &vmx->segment_cache.seg[seg].base;
1123
1124 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1125 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1126 return *p;
1127}
1128
1129static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1130{
1131 u32 *p = &vmx->segment_cache.seg[seg].limit;
1132
1133 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1134 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1135 return *p;
1136}
1137
1138static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1139{
1140 u32 *p = &vmx->segment_cache.seg[seg].ar;
1141
1142 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1143 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1144 return *p;
1145}
1146
abd3f2d6
AK
1147static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1148{
1149 u32 eb;
1150
fd7373cc
JK
1151 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1152 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1153 if ((vcpu->guest_debug &
1154 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1155 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1156 eb |= 1u << BP_VECTOR;
7ffd92c5 1157 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1158 eb = ~0;
089d034e 1159 if (enable_ept)
1439442c 1160 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1161 if (vcpu->fpu_active)
1162 eb &= ~(1u << NM_VECTOR);
abd3f2d6
AK
1163 vmcs_write32(EXCEPTION_BITMAP, eb);
1164}
1165
61d2ef2c
AK
1166static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1167{
1168 unsigned i;
1169 struct msr_autoload *m = &vmx->msr_autoload;
1170
110312c8
AK
1171 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1172 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1173 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1174 return;
1175 }
1176
61d2ef2c
AK
1177 for (i = 0; i < m->nr; ++i)
1178 if (m->guest[i].index == msr)
1179 break;
1180
1181 if (i == m->nr)
1182 return;
1183 --m->nr;
1184 m->guest[i] = m->guest[m->nr];
1185 m->host[i] = m->host[m->nr];
1186 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1187 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1188}
1189
1190static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1191 u64 guest_val, u64 host_val)
1192{
1193 unsigned i;
1194 struct msr_autoload *m = &vmx->msr_autoload;
1195
110312c8
AK
1196 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1197 vmcs_write64(GUEST_IA32_EFER, guest_val);
1198 vmcs_write64(HOST_IA32_EFER, host_val);
1199 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1200 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1201 return;
1202 }
1203
61d2ef2c
AK
1204 for (i = 0; i < m->nr; ++i)
1205 if (m->guest[i].index == msr)
1206 break;
1207
1208 if (i == m->nr) {
1209 ++m->nr;
1210 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1211 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1212 }
1213
1214 m->guest[i].index = msr;
1215 m->guest[i].value = guest_val;
1216 m->host[i].index = msr;
1217 m->host[i].value = host_val;
1218}
1219
33ed6329
AK
1220static void reload_tss(void)
1221{
33ed6329
AK
1222 /*
1223 * VT restores TR but not its size. Useless.
1224 */
d359192f 1225 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1226 struct desc_struct *descs;
33ed6329 1227
d359192f 1228 descs = (void *)gdt->address;
33ed6329
AK
1229 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1230 load_TR_desc();
33ed6329
AK
1231}
1232
92c0d900 1233static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1234{
3a34a881 1235 u64 guest_efer;
51c6cf66
AK
1236 u64 ignore_bits;
1237
f6801dff 1238 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1239
51c6cf66
AK
1240 /*
1241 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1242 * outside long mode
1243 */
1244 ignore_bits = EFER_NX | EFER_SCE;
1245#ifdef CONFIG_X86_64
1246 ignore_bits |= EFER_LMA | EFER_LME;
1247 /* SCE is meaningful only in long mode on Intel */
1248 if (guest_efer & EFER_LMA)
1249 ignore_bits &= ~(u64)EFER_SCE;
1250#endif
51c6cf66
AK
1251 guest_efer &= ~ignore_bits;
1252 guest_efer |= host_efer & ignore_bits;
26bb0981 1253 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1254 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1255
1256 clear_atomic_switch_msr(vmx, MSR_EFER);
1257 /* On ept, can't emulate nx, and must switch nx atomically */
1258 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1259 guest_efer = vmx->vcpu.arch.efer;
1260 if (!(guest_efer & EFER_LMA))
1261 guest_efer &= ~EFER_LME;
1262 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1263 return false;
1264 }
1265
26bb0981 1266 return true;
51c6cf66
AK
1267}
1268
2d49ec72
GN
1269static unsigned long segment_base(u16 selector)
1270{
d359192f 1271 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1272 struct desc_struct *d;
1273 unsigned long table_base;
1274 unsigned long v;
1275
1276 if (!(selector & ~3))
1277 return 0;
1278
d359192f 1279 table_base = gdt->address;
2d49ec72
GN
1280
1281 if (selector & 4) { /* from ldt */
1282 u16 ldt_selector = kvm_read_ldt();
1283
1284 if (!(ldt_selector & ~3))
1285 return 0;
1286
1287 table_base = segment_base(ldt_selector);
1288 }
1289 d = (struct desc_struct *)(table_base + (selector & ~7));
1290 v = get_desc_base(d);
1291#ifdef CONFIG_X86_64
1292 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1293 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1294#endif
1295 return v;
1296}
1297
1298static inline unsigned long kvm_read_tr_base(void)
1299{
1300 u16 tr;
1301 asm("str %0" : "=g"(tr));
1302 return segment_base(tr);
1303}
1304
04d2cc77 1305static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1306{
04d2cc77 1307 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1308 int i;
04d2cc77 1309
a2fa3e9f 1310 if (vmx->host_state.loaded)
33ed6329
AK
1311 return;
1312
a2fa3e9f 1313 vmx->host_state.loaded = 1;
33ed6329
AK
1314 /*
1315 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1316 * allow segment selectors with cpl > 0 or ti == 1.
1317 */
d6e88aec 1318 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1319 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1320 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1321 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1322 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1323 vmx->host_state.fs_reload_needed = 0;
1324 } else {
33ed6329 1325 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1326 vmx->host_state.fs_reload_needed = 1;
33ed6329 1327 }
9581d442 1328 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1329 if (!(vmx->host_state.gs_sel & 7))
1330 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1331 else {
1332 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1333 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1334 }
1335
1336#ifdef CONFIG_X86_64
1337 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1338 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1339#else
a2fa3e9f
GH
1340 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1341 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1342#endif
707c0874
AK
1343
1344#ifdef CONFIG_X86_64
c8770e7b
AK
1345 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1346 if (is_long_mode(&vmx->vcpu))
44ea2b17 1347 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1348#endif
26bb0981
AK
1349 for (i = 0; i < vmx->save_nmsrs; ++i)
1350 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1351 vmx->guest_msrs[i].data,
1352 vmx->guest_msrs[i].mask);
33ed6329
AK
1353}
1354
a9b21b62 1355static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1356{
a2fa3e9f 1357 if (!vmx->host_state.loaded)
33ed6329
AK
1358 return;
1359
e1beb1d3 1360 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1361 vmx->host_state.loaded = 0;
c8770e7b
AK
1362#ifdef CONFIG_X86_64
1363 if (is_long_mode(&vmx->vcpu))
1364 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1365#endif
152d3f2f 1366 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1367 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1368#ifdef CONFIG_X86_64
9581d442 1369 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1370#else
1371 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1372#endif
33ed6329 1373 }
0a77fe4c
AK
1374 if (vmx->host_state.fs_reload_needed)
1375 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1376 reload_tss();
44ea2b17 1377#ifdef CONFIG_X86_64
c8770e7b 1378 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1379#endif
1c11e713
AK
1380 if (current_thread_info()->status & TS_USEDFPU)
1381 clts();
3444d7da 1382 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1383}
1384
a9b21b62
AK
1385static void vmx_load_host_state(struct vcpu_vmx *vmx)
1386{
1387 preempt_disable();
1388 __vmx_load_host_state(vmx);
1389 preempt_enable();
1390}
1391
6aa8b732
AK
1392/*
1393 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1394 * vcpu mutex is already taken.
1395 */
15ad7146 1396static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1397{
a2fa3e9f 1398 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1399 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1400
4610c9cc
DX
1401 if (!vmm_exclusive)
1402 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1403 else if (vmx->loaded_vmcs->cpu != cpu)
1404 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1405
d462b819
NHE
1406 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1407 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1408 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1409 }
1410
d462b819 1411 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1412 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1413 unsigned long sysenter_esp;
1414
a8eeb04a 1415 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1416 local_irq_disable();
d462b819
NHE
1417 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1418 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1419 local_irq_enable();
1420
6aa8b732
AK
1421 /*
1422 * Linux uses per-cpu TSS and GDT, so set these when switching
1423 * processors.
1424 */
d6e88aec 1425 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1426 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1427
1428 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1429 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1430 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1431 }
6aa8b732
AK
1432}
1433
1434static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1435{
a9b21b62 1436 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1437 if (!vmm_exclusive) {
d462b819
NHE
1438 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1439 vcpu->cpu = -1;
4610c9cc
DX
1440 kvm_cpu_vmxoff();
1441 }
6aa8b732
AK
1442}
1443
5fd86fcf
AK
1444static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1445{
81231c69
AK
1446 ulong cr0;
1447
5fd86fcf
AK
1448 if (vcpu->fpu_active)
1449 return;
1450 vcpu->fpu_active = 1;
81231c69
AK
1451 cr0 = vmcs_readl(GUEST_CR0);
1452 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1453 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1454 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1455 update_exception_bitmap(vcpu);
edcafe3c
AK
1456 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1457 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1458}
1459
edcafe3c
AK
1460static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1461
fe3ef05c
NHE
1462/*
1463 * Return the cr0 value that a nested guest would read. This is a combination
1464 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1465 * its hypervisor (cr0_read_shadow).
1466 */
1467static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1468{
1469 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1470 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1471}
1472static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1473{
1474 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1475 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1476}
1477
5fd86fcf
AK
1478static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1479{
edcafe3c 1480 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1481 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1482 update_exception_bitmap(vcpu);
edcafe3c
AK
1483 vcpu->arch.cr0_guest_owned_bits = 0;
1484 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1485 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1486}
1487
6aa8b732
AK
1488static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1489{
78ac8b47 1490 unsigned long rflags, save_rflags;
345dcaa8 1491
6de12732
AK
1492 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1493 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1494 rflags = vmcs_readl(GUEST_RFLAGS);
1495 if (to_vmx(vcpu)->rmode.vm86_active) {
1496 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1497 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1498 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1499 }
1500 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1501 }
6de12732 1502 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1503}
1504
1505static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1506{
6de12732 1507 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1508 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1509 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1510 if (to_vmx(vcpu)->rmode.vm86_active) {
1511 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1512 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1513 }
6aa8b732
AK
1514 vmcs_writel(GUEST_RFLAGS, rflags);
1515}
1516
2809f5d2
GC
1517static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1518{
1519 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1520 int ret = 0;
1521
1522 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1523 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1524 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1525 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1526
1527 return ret & mask;
1528}
1529
1530static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1531{
1532 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1533 u32 interruptibility = interruptibility_old;
1534
1535 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1536
48005f64 1537 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1538 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1539 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1540 interruptibility |= GUEST_INTR_STATE_STI;
1541
1542 if ((interruptibility != interruptibility_old))
1543 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1544}
1545
6aa8b732
AK
1546static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1547{
1548 unsigned long rip;
6aa8b732 1549
5fdbf976 1550 rip = kvm_rip_read(vcpu);
6aa8b732 1551 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1552 kvm_rip_write(vcpu, rip);
6aa8b732 1553
2809f5d2
GC
1554 /* skipping an emulated instruction also counts */
1555 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1556}
1557
443381a8
AL
1558static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1559{
1560 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1561 * explicitly skip the instruction because if the HLT state is set, then
1562 * the instruction is already executing and RIP has already been
1563 * advanced. */
1564 if (!yield_on_hlt &&
1565 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1566 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1567}
1568
298101da 1569static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1570 bool has_error_code, u32 error_code,
1571 bool reinject)
298101da 1572{
77ab6db0 1573 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1574 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1575
8ab2d2e2 1576 if (has_error_code) {
77ab6db0 1577 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1578 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1579 }
77ab6db0 1580
7ffd92c5 1581 if (vmx->rmode.vm86_active) {
71f9833b
SH
1582 int inc_eip = 0;
1583 if (kvm_exception_is_soft(nr))
1584 inc_eip = vcpu->arch.event_exit_inst_len;
1585 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1586 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1587 return;
1588 }
1589
66fd3f7f
GN
1590 if (kvm_exception_is_soft(nr)) {
1591 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1592 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1593 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1594 } else
1595 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1596
1597 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
443381a8 1598 vmx_clear_hlt(vcpu);
298101da
AK
1599}
1600
4e47c7a6
SY
1601static bool vmx_rdtscp_supported(void)
1602{
1603 return cpu_has_vmx_rdtscp();
1604}
1605
a75beee6
ED
1606/*
1607 * Swap MSR entry in host/guest MSR entry array.
1608 */
8b9cf98c 1609static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1610{
26bb0981 1611 struct shared_msr_entry tmp;
a2fa3e9f
GH
1612
1613 tmp = vmx->guest_msrs[to];
1614 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1615 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1616}
1617
e38aea3e
AK
1618/*
1619 * Set up the vmcs to automatically save and restore system
1620 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1621 * mode, as fiddling with msrs is very expensive.
1622 */
8b9cf98c 1623static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1624{
26bb0981 1625 int save_nmsrs, index;
5897297b 1626 unsigned long *msr_bitmap;
e38aea3e 1627
33f9c505 1628 vmx_load_host_state(vmx);
a75beee6
ED
1629 save_nmsrs = 0;
1630#ifdef CONFIG_X86_64
8b9cf98c 1631 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1632 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1633 if (index >= 0)
8b9cf98c
RR
1634 move_msr_up(vmx, index, save_nmsrs++);
1635 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1636 if (index >= 0)
8b9cf98c
RR
1637 move_msr_up(vmx, index, save_nmsrs++);
1638 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1639 if (index >= 0)
8b9cf98c 1640 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1641 index = __find_msr_index(vmx, MSR_TSC_AUX);
1642 if (index >= 0 && vmx->rdtscp_enabled)
1643 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1644 /*
8c06585d 1645 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1646 * if efer.sce is enabled.
1647 */
8c06585d 1648 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1649 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1650 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1651 }
1652#endif
92c0d900
AK
1653 index = __find_msr_index(vmx, MSR_EFER);
1654 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1655 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1656
26bb0981 1657 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1658
1659 if (cpu_has_vmx_msr_bitmap()) {
1660 if (is_long_mode(&vmx->vcpu))
1661 msr_bitmap = vmx_msr_bitmap_longmode;
1662 else
1663 msr_bitmap = vmx_msr_bitmap_legacy;
1664
1665 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1666 }
e38aea3e
AK
1667}
1668
6aa8b732
AK
1669/*
1670 * reads and returns guest's timestamp counter "register"
1671 * guest_tsc = host_tsc + tsc_offset -- 21.3
1672 */
1673static u64 guest_read_tsc(void)
1674{
1675 u64 host_tsc, tsc_offset;
1676
1677 rdtscll(host_tsc);
1678 tsc_offset = vmcs_read64(TSC_OFFSET);
1679 return host_tsc + tsc_offset;
1680}
1681
4051b188
JR
1682/*
1683 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1684 * ioctl. In this case the call-back should update internal vmx state to make
1685 * the changes effective.
1686 */
1687static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1688{
1689 /* Nothing to do here */
1690}
1691
6aa8b732 1692/*
99e3e30a 1693 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1694 */
99e3e30a 1695static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1696{
f4e1b3c8 1697 vmcs_write64(TSC_OFFSET, offset);
6aa8b732
AK
1698}
1699
e48672fa
ZA
1700static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1701{
1702 u64 offset = vmcs_read64(TSC_OFFSET);
1703 vmcs_write64(TSC_OFFSET, offset + adjustment);
1704}
1705
857e4099
JR
1706static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1707{
1708 return target_tsc - native_read_tsc();
1709}
1710
801d3424
NHE
1711static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1712{
1713 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1714 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1715}
1716
1717/*
1718 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1719 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1720 * all guests if the "nested" module option is off, and can also be disabled
1721 * for a single guest by disabling its VMX cpuid bit.
1722 */
1723static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1724{
1725 return nested && guest_cpuid_has_vmx(vcpu);
1726}
1727
b87a51ae
NHE
1728/*
1729 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1730 * returned for the various VMX controls MSRs when nested VMX is enabled.
1731 * The same values should also be used to verify that vmcs12 control fields are
1732 * valid during nested entry from L1 to L2.
1733 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1734 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1735 * bit in the high half is on if the corresponding bit in the control field
1736 * may be on. See also vmx_control_verify().
1737 * TODO: allow these variables to be modified (downgraded) by module options
1738 * or other means.
1739 */
1740static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1741static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1742static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1743static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1744static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1745static __init void nested_vmx_setup_ctls_msrs(void)
1746{
1747 /*
1748 * Note that as a general rule, the high half of the MSRs (bits in
1749 * the control fields which may be 1) should be initialized by the
1750 * intersection of the underlying hardware's MSR (i.e., features which
1751 * can be supported) and the list of features we want to expose -
1752 * because they are known to be properly supported in our code.
1753 * Also, usually, the low half of the MSRs (bits which must be 1) can
1754 * be set to 0, meaning that L1 may turn off any of these bits. The
1755 * reason is that if one of these bits is necessary, it will appear
1756 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1757 * fields of vmcs01 and vmcs02, will turn these bits off - and
1758 * nested_vmx_exit_handled() will not pass related exits to L1.
1759 * These rules have exceptions below.
1760 */
1761
1762 /* pin-based controls */
1763 /*
1764 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1765 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1766 */
1767 nested_vmx_pinbased_ctls_low = 0x16 ;
1768 nested_vmx_pinbased_ctls_high = 0x16 |
1769 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1770 PIN_BASED_VIRTUAL_NMIS;
1771
1772 /* exit controls */
1773 nested_vmx_exit_ctls_low = 0;
1774#ifdef CONFIG_X86_64
1775 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1776#else
1777 nested_vmx_exit_ctls_high = 0;
1778#endif
1779
1780 /* entry controls */
1781 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1782 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1783 nested_vmx_entry_ctls_low = 0;
1784 nested_vmx_entry_ctls_high &=
1785 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1786
1787 /* cpu-based controls */
1788 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1789 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1790 nested_vmx_procbased_ctls_low = 0;
1791 nested_vmx_procbased_ctls_high &=
1792 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1793 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1794 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1795 CPU_BASED_CR3_STORE_EXITING |
1796#ifdef CONFIG_X86_64
1797 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1798#endif
1799 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1800 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1801 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1802 /*
1803 * We can allow some features even when not supported by the
1804 * hardware. For example, L1 can specify an MSR bitmap - and we
1805 * can use it to avoid exits to L1 - even when L0 runs L2
1806 * without MSR bitmaps.
1807 */
1808 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1809
1810 /* secondary cpu-based controls */
1811 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1812 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1813 nested_vmx_secondary_ctls_low = 0;
1814 nested_vmx_secondary_ctls_high &=
1815 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1816}
1817
1818static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1819{
1820 /*
1821 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1822 */
1823 return ((control & high) | low) == control;
1824}
1825
1826static inline u64 vmx_control_msr(u32 low, u32 high)
1827{
1828 return low | ((u64)high << 32);
1829}
1830
1831/*
1832 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1833 * also let it use VMX-specific MSRs.
1834 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1835 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1836 * like all other MSRs).
1837 */
1838static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1839{
1840 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1841 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1842 /*
1843 * According to the spec, processors which do not support VMX
1844 * should throw a #GP(0) when VMX capability MSRs are read.
1845 */
1846 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1847 return 1;
1848 }
1849
1850 switch (msr_index) {
1851 case MSR_IA32_FEATURE_CONTROL:
1852 *pdata = 0;
1853 break;
1854 case MSR_IA32_VMX_BASIC:
1855 /*
1856 * This MSR reports some information about VMX support. We
1857 * should return information about the VMX we emulate for the
1858 * guest, and the VMCS structure we give it - not about the
1859 * VMX support of the underlying hardware.
1860 */
1861 *pdata = VMCS12_REVISION |
1862 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1863 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1864 break;
1865 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1866 case MSR_IA32_VMX_PINBASED_CTLS:
1867 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1868 nested_vmx_pinbased_ctls_high);
1869 break;
1870 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1871 case MSR_IA32_VMX_PROCBASED_CTLS:
1872 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1873 nested_vmx_procbased_ctls_high);
1874 break;
1875 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1876 case MSR_IA32_VMX_EXIT_CTLS:
1877 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1878 nested_vmx_exit_ctls_high);
1879 break;
1880 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1881 case MSR_IA32_VMX_ENTRY_CTLS:
1882 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1883 nested_vmx_entry_ctls_high);
1884 break;
1885 case MSR_IA32_VMX_MISC:
1886 *pdata = 0;
1887 break;
1888 /*
1889 * These MSRs specify bits which the guest must keep fixed (on or off)
1890 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1891 * We picked the standard core2 setting.
1892 */
1893#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
1894#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
1895 case MSR_IA32_VMX_CR0_FIXED0:
1896 *pdata = VMXON_CR0_ALWAYSON;
1897 break;
1898 case MSR_IA32_VMX_CR0_FIXED1:
1899 *pdata = -1ULL;
1900 break;
1901 case MSR_IA32_VMX_CR4_FIXED0:
1902 *pdata = VMXON_CR4_ALWAYSON;
1903 break;
1904 case MSR_IA32_VMX_CR4_FIXED1:
1905 *pdata = -1ULL;
1906 break;
1907 case MSR_IA32_VMX_VMCS_ENUM:
1908 *pdata = 0x1f;
1909 break;
1910 case MSR_IA32_VMX_PROCBASED_CTLS2:
1911 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
1912 nested_vmx_secondary_ctls_high);
1913 break;
1914 case MSR_IA32_VMX_EPT_VPID_CAP:
1915 /* Currently, no nested ept or nested vpid */
1916 *pdata = 0;
1917 break;
1918 default:
1919 return 0;
1920 }
1921
1922 return 1;
1923}
1924
1925static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1926{
1927 if (!nested_vmx_allowed(vcpu))
1928 return 0;
1929
1930 if (msr_index == MSR_IA32_FEATURE_CONTROL)
1931 /* TODO: the right thing. */
1932 return 1;
1933 /*
1934 * No need to treat VMX capability MSRs specially: If we don't handle
1935 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
1936 */
1937 return 0;
1938}
1939
6aa8b732
AK
1940/*
1941 * Reads an msr value (of 'msr_index') into 'pdata'.
1942 * Returns 0 on success, non-0 otherwise.
1943 * Assumes vcpu_load() was already called.
1944 */
1945static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1946{
1947 u64 data;
26bb0981 1948 struct shared_msr_entry *msr;
6aa8b732
AK
1949
1950 if (!pdata) {
1951 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1952 return -EINVAL;
1953 }
1954
1955 switch (msr_index) {
05b3e0c2 1956#ifdef CONFIG_X86_64
6aa8b732
AK
1957 case MSR_FS_BASE:
1958 data = vmcs_readl(GUEST_FS_BASE);
1959 break;
1960 case MSR_GS_BASE:
1961 data = vmcs_readl(GUEST_GS_BASE);
1962 break;
44ea2b17
AK
1963 case MSR_KERNEL_GS_BASE:
1964 vmx_load_host_state(to_vmx(vcpu));
1965 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1966 break;
26bb0981 1967#endif
6aa8b732 1968 case MSR_EFER:
3bab1f5d 1969 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 1970 case MSR_IA32_TSC:
6aa8b732
AK
1971 data = guest_read_tsc();
1972 break;
1973 case MSR_IA32_SYSENTER_CS:
1974 data = vmcs_read32(GUEST_SYSENTER_CS);
1975 break;
1976 case MSR_IA32_SYSENTER_EIP:
f5b42c33 1977 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
1978 break;
1979 case MSR_IA32_SYSENTER_ESP:
f5b42c33 1980 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 1981 break;
4e47c7a6
SY
1982 case MSR_TSC_AUX:
1983 if (!to_vmx(vcpu)->rdtscp_enabled)
1984 return 1;
1985 /* Otherwise falls through */
6aa8b732 1986 default:
26bb0981 1987 vmx_load_host_state(to_vmx(vcpu));
b87a51ae
NHE
1988 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
1989 return 0;
8b9cf98c 1990 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d 1991 if (msr) {
542423b0 1992 vmx_load_host_state(to_vmx(vcpu));
3bab1f5d
AK
1993 data = msr->data;
1994 break;
6aa8b732 1995 }
3bab1f5d 1996 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
1997 }
1998
1999 *pdata = data;
2000 return 0;
2001}
2002
2003/*
2004 * Writes msr value into into the appropriate "register".
2005 * Returns 0 on success, non-0 otherwise.
2006 * Assumes vcpu_load() was already called.
2007 */
2008static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2009{
a2fa3e9f 2010 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2011 struct shared_msr_entry *msr;
2cc51560
ED
2012 int ret = 0;
2013
6aa8b732 2014 switch (msr_index) {
3bab1f5d 2015 case MSR_EFER:
a9b21b62 2016 vmx_load_host_state(vmx);
2cc51560 2017 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2018 break;
16175a79 2019#ifdef CONFIG_X86_64
6aa8b732 2020 case MSR_FS_BASE:
2fb92db1 2021 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2022 vmcs_writel(GUEST_FS_BASE, data);
2023 break;
2024 case MSR_GS_BASE:
2fb92db1 2025 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2026 vmcs_writel(GUEST_GS_BASE, data);
2027 break;
44ea2b17
AK
2028 case MSR_KERNEL_GS_BASE:
2029 vmx_load_host_state(vmx);
2030 vmx->msr_guest_kernel_gs_base = data;
2031 break;
6aa8b732
AK
2032#endif
2033 case MSR_IA32_SYSENTER_CS:
2034 vmcs_write32(GUEST_SYSENTER_CS, data);
2035 break;
2036 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2037 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2038 break;
2039 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2040 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2041 break;
af24a4e4 2042 case MSR_IA32_TSC:
99e3e30a 2043 kvm_write_tsc(vcpu, data);
6aa8b732 2044 break;
468d472f
SY
2045 case MSR_IA32_CR_PAT:
2046 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2047 vmcs_write64(GUEST_IA32_PAT, data);
2048 vcpu->arch.pat = data;
2049 break;
2050 }
4e47c7a6
SY
2051 ret = kvm_set_msr_common(vcpu, msr_index, data);
2052 break;
2053 case MSR_TSC_AUX:
2054 if (!vmx->rdtscp_enabled)
2055 return 1;
2056 /* Check reserved bit, higher 32 bits should be zero */
2057 if ((data >> 32) != 0)
2058 return 1;
2059 /* Otherwise falls through */
6aa8b732 2060 default:
b87a51ae
NHE
2061 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2062 break;
8b9cf98c 2063 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2064 if (msr) {
542423b0 2065 vmx_load_host_state(vmx);
3bab1f5d
AK
2066 msr->data = data;
2067 break;
6aa8b732 2068 }
2cc51560 2069 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2070 }
2071
2cc51560 2072 return ret;
6aa8b732
AK
2073}
2074
5fdbf976 2075static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2076{
5fdbf976
MT
2077 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2078 switch (reg) {
2079 case VCPU_REGS_RSP:
2080 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2081 break;
2082 case VCPU_REGS_RIP:
2083 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2084 break;
6de4f3ad
AK
2085 case VCPU_EXREG_PDPTR:
2086 if (enable_ept)
2087 ept_save_pdptrs(vcpu);
2088 break;
5fdbf976
MT
2089 default:
2090 break;
2091 }
6aa8b732
AK
2092}
2093
355be0b9 2094static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2095{
ae675ef0
JK
2096 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2097 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2098 else
2099 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2100
abd3f2d6 2101 update_exception_bitmap(vcpu);
6aa8b732
AK
2102}
2103
2104static __init int cpu_has_kvm_support(void)
2105{
6210e37b 2106 return cpu_has_vmx();
6aa8b732
AK
2107}
2108
2109static __init int vmx_disabled_by_bios(void)
2110{
2111 u64 msr;
2112
2113 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2114 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2115 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2116 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2117 && tboot_enabled())
2118 return 1;
23f3e991 2119 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2120 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2121 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2122 && !tboot_enabled()) {
2123 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2124 "activate TXT before enabling KVM\n");
cafd6659 2125 return 1;
f9335afe 2126 }
23f3e991
JC
2127 /* launched w/o TXT and VMX disabled */
2128 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2129 && !tboot_enabled())
2130 return 1;
cafd6659
SW
2131 }
2132
2133 return 0;
6aa8b732
AK
2134}
2135
7725b894
DX
2136static void kvm_cpu_vmxon(u64 addr)
2137{
2138 asm volatile (ASM_VMX_VMXON_RAX
2139 : : "a"(&addr), "m"(addr)
2140 : "memory", "cc");
2141}
2142
10474ae8 2143static int hardware_enable(void *garbage)
6aa8b732
AK
2144{
2145 int cpu = raw_smp_processor_id();
2146 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2147 u64 old, test_bits;
6aa8b732 2148
10474ae8
AG
2149 if (read_cr4() & X86_CR4_VMXE)
2150 return -EBUSY;
2151
d462b819 2152 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2153 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2154
2155 test_bits = FEATURE_CONTROL_LOCKED;
2156 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2157 if (tboot_enabled())
2158 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2159
2160 if ((old & test_bits) != test_bits) {
6aa8b732 2161 /* enable and lock */
cafd6659
SW
2162 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2163 }
66aee91a 2164 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2165
4610c9cc
DX
2166 if (vmm_exclusive) {
2167 kvm_cpu_vmxon(phys_addr);
2168 ept_sync_global();
2169 }
10474ae8 2170
3444d7da
AK
2171 store_gdt(&__get_cpu_var(host_gdt));
2172
10474ae8 2173 return 0;
6aa8b732
AK
2174}
2175
d462b819 2176static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2177{
2178 int cpu = raw_smp_processor_id();
d462b819 2179 struct loaded_vmcs *v, *n;
543e4243 2180
d462b819
NHE
2181 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2182 loaded_vmcss_on_cpu_link)
2183 __loaded_vmcs_clear(v);
543e4243
AK
2184}
2185
710ff4a8
EH
2186
2187/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2188 * tricks.
2189 */
2190static void kvm_cpu_vmxoff(void)
6aa8b732 2191{
4ecac3fd 2192 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2193}
2194
710ff4a8
EH
2195static void hardware_disable(void *garbage)
2196{
4610c9cc 2197 if (vmm_exclusive) {
d462b819 2198 vmclear_local_loaded_vmcss();
4610c9cc
DX
2199 kvm_cpu_vmxoff();
2200 }
7725b894 2201 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2202}
2203
1c3d14fe 2204static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2205 u32 msr, u32 *result)
1c3d14fe
YS
2206{
2207 u32 vmx_msr_low, vmx_msr_high;
2208 u32 ctl = ctl_min | ctl_opt;
2209
2210 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2211
2212 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2213 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2214
2215 /* Ensure minimum (required) set of control bits are supported. */
2216 if (ctl_min & ~ctl)
002c7f7c 2217 return -EIO;
1c3d14fe
YS
2218
2219 *result = ctl;
2220 return 0;
2221}
2222
110312c8
AK
2223static __init bool allow_1_setting(u32 msr, u32 ctl)
2224{
2225 u32 vmx_msr_low, vmx_msr_high;
2226
2227 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2228 return vmx_msr_high & ctl;
2229}
2230
002c7f7c 2231static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2232{
2233 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2234 u32 min, opt, min2, opt2;
1c3d14fe
YS
2235 u32 _pin_based_exec_control = 0;
2236 u32 _cpu_based_exec_control = 0;
f78e0e2e 2237 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2238 u32 _vmexit_control = 0;
2239 u32 _vmentry_control = 0;
2240
2241 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2242 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2243 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2244 &_pin_based_exec_control) < 0)
002c7f7c 2245 return -EIO;
1c3d14fe 2246
443381a8 2247 min =
1c3d14fe
YS
2248#ifdef CONFIG_X86_64
2249 CPU_BASED_CR8_LOAD_EXITING |
2250 CPU_BASED_CR8_STORE_EXITING |
2251#endif
d56f546d
SY
2252 CPU_BASED_CR3_LOAD_EXITING |
2253 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2254 CPU_BASED_USE_IO_BITMAPS |
2255 CPU_BASED_MOV_DR_EXITING |
a7052897 2256 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2257 CPU_BASED_MWAIT_EXITING |
2258 CPU_BASED_MONITOR_EXITING |
a7052897 2259 CPU_BASED_INVLPG_EXITING;
443381a8
AL
2260
2261 if (yield_on_hlt)
2262 min |= CPU_BASED_HLT_EXITING;
2263
f78e0e2e 2264 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2265 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2266 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2267 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2268 &_cpu_based_exec_control) < 0)
002c7f7c 2269 return -EIO;
6e5d865c
YS
2270#ifdef CONFIG_X86_64
2271 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2272 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2273 ~CPU_BASED_CR8_STORE_EXITING;
2274#endif
f78e0e2e 2275 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2276 min2 = 0;
2277 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2278 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2279 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2280 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2281 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2282 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2283 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2284 if (adjust_vmx_controls(min2, opt2,
2285 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2286 &_cpu_based_2nd_exec_control) < 0)
2287 return -EIO;
2288 }
2289#ifndef CONFIG_X86_64
2290 if (!(_cpu_based_2nd_exec_control &
2291 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2292 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2293#endif
d56f546d 2294 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2295 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2296 enabled */
5fff7d27
GN
2297 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2298 CPU_BASED_CR3_STORE_EXITING |
2299 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2300 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2301 vmx_capability.ept, vmx_capability.vpid);
2302 }
1c3d14fe
YS
2303
2304 min = 0;
2305#ifdef CONFIG_X86_64
2306 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2307#endif
468d472f 2308 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2309 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2310 &_vmexit_control) < 0)
002c7f7c 2311 return -EIO;
1c3d14fe 2312
468d472f
SY
2313 min = 0;
2314 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2315 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2316 &_vmentry_control) < 0)
002c7f7c 2317 return -EIO;
6aa8b732 2318
c68876fd 2319 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2320
2321 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2322 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2323 return -EIO;
1c3d14fe
YS
2324
2325#ifdef CONFIG_X86_64
2326 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2327 if (vmx_msr_high & (1u<<16))
002c7f7c 2328 return -EIO;
1c3d14fe
YS
2329#endif
2330
2331 /* Require Write-Back (WB) memory type for VMCS accesses. */
2332 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2333 return -EIO;
1c3d14fe 2334
002c7f7c
YS
2335 vmcs_conf->size = vmx_msr_high & 0x1fff;
2336 vmcs_conf->order = get_order(vmcs_config.size);
2337 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2338
002c7f7c
YS
2339 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2340 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2341 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2342 vmcs_conf->vmexit_ctrl = _vmexit_control;
2343 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2344
110312c8
AK
2345 cpu_has_load_ia32_efer =
2346 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2347 VM_ENTRY_LOAD_IA32_EFER)
2348 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2349 VM_EXIT_LOAD_IA32_EFER);
2350
1c3d14fe 2351 return 0;
c68876fd 2352}
6aa8b732
AK
2353
2354static struct vmcs *alloc_vmcs_cpu(int cpu)
2355{
2356 int node = cpu_to_node(cpu);
2357 struct page *pages;
2358 struct vmcs *vmcs;
2359
6484eb3e 2360 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2361 if (!pages)
2362 return NULL;
2363 vmcs = page_address(pages);
1c3d14fe
YS
2364 memset(vmcs, 0, vmcs_config.size);
2365 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2366 return vmcs;
2367}
2368
2369static struct vmcs *alloc_vmcs(void)
2370{
d3b2c338 2371 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2372}
2373
2374static void free_vmcs(struct vmcs *vmcs)
2375{
1c3d14fe 2376 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2377}
2378
d462b819
NHE
2379/*
2380 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2381 */
2382static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2383{
2384 if (!loaded_vmcs->vmcs)
2385 return;
2386 loaded_vmcs_clear(loaded_vmcs);
2387 free_vmcs(loaded_vmcs->vmcs);
2388 loaded_vmcs->vmcs = NULL;
2389}
2390
39959588 2391static void free_kvm_area(void)
6aa8b732
AK
2392{
2393 int cpu;
2394
3230bb47 2395 for_each_possible_cpu(cpu) {
6aa8b732 2396 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2397 per_cpu(vmxarea, cpu) = NULL;
2398 }
6aa8b732
AK
2399}
2400
6aa8b732
AK
2401static __init int alloc_kvm_area(void)
2402{
2403 int cpu;
2404
3230bb47 2405 for_each_possible_cpu(cpu) {
6aa8b732
AK
2406 struct vmcs *vmcs;
2407
2408 vmcs = alloc_vmcs_cpu(cpu);
2409 if (!vmcs) {
2410 free_kvm_area();
2411 return -ENOMEM;
2412 }
2413
2414 per_cpu(vmxarea, cpu) = vmcs;
2415 }
2416 return 0;
2417}
2418
2419static __init int hardware_setup(void)
2420{
002c7f7c
YS
2421 if (setup_vmcs_config(&vmcs_config) < 0)
2422 return -EIO;
50a37eb4
JR
2423
2424 if (boot_cpu_has(X86_FEATURE_NX))
2425 kvm_enable_efer_bits(EFER_NX);
2426
93ba03c2
SY
2427 if (!cpu_has_vmx_vpid())
2428 enable_vpid = 0;
2429
4bc9b982
SY
2430 if (!cpu_has_vmx_ept() ||
2431 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2432 enable_ept = 0;
3a624e29
NK
2433 enable_unrestricted_guest = 0;
2434 }
2435
2436 if (!cpu_has_vmx_unrestricted_guest())
2437 enable_unrestricted_guest = 0;
93ba03c2
SY
2438
2439 if (!cpu_has_vmx_flexpriority())
2440 flexpriority_enabled = 0;
2441
95ba8273
GN
2442 if (!cpu_has_vmx_tpr_shadow())
2443 kvm_x86_ops->update_cr8_intercept = NULL;
2444
54dee993
MT
2445 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2446 kvm_disable_largepages();
2447
4b8d54f9
ZE
2448 if (!cpu_has_vmx_ple())
2449 ple_gap = 0;
2450
b87a51ae
NHE
2451 if (nested)
2452 nested_vmx_setup_ctls_msrs();
2453
6aa8b732
AK
2454 return alloc_kvm_area();
2455}
2456
2457static __exit void hardware_unsetup(void)
2458{
2459 free_kvm_area();
2460}
2461
6aa8b732
AK
2462static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2463{
2464 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2465
6af11b9e 2466 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2467 vmcs_write16(sf->selector, save->selector);
2468 vmcs_writel(sf->base, save->base);
2469 vmcs_write32(sf->limit, save->limit);
2470 vmcs_write32(sf->ar_bytes, save->ar);
2471 } else {
2472 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2473 << AR_DPL_SHIFT;
2474 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2475 }
2476}
2477
2478static void enter_pmode(struct kvm_vcpu *vcpu)
2479{
2480 unsigned long flags;
a89a8fb9 2481 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2482
a89a8fb9 2483 vmx->emulation_required = 1;
7ffd92c5 2484 vmx->rmode.vm86_active = 0;
6aa8b732 2485
2fb92db1
AK
2486 vmx_segment_cache_clear(vmx);
2487
d0ba64f9 2488 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2489 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2490 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2491 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2492
2493 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2494 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2495 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2496 vmcs_writel(GUEST_RFLAGS, flags);
2497
66aee91a
RR
2498 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2499 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2500
2501 update_exception_bitmap(vcpu);
2502
a89a8fb9
MG
2503 if (emulate_invalid_guest_state)
2504 return;
2505
7ffd92c5
AK
2506 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2507 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2508 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2509 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2510
2fb92db1
AK
2511 vmx_segment_cache_clear(vmx);
2512
6aa8b732
AK
2513 vmcs_write16(GUEST_SS_SELECTOR, 0);
2514 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2515
2516 vmcs_write16(GUEST_CS_SELECTOR,
2517 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2518 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2519}
2520
d77c26fc 2521static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2522{
bfc6d222 2523 if (!kvm->arch.tss_addr) {
bc6678a3
MT
2524 struct kvm_memslots *slots;
2525 gfn_t base_gfn;
2526
90d83dc3 2527 slots = kvm_memslots(kvm);
f495c6e5 2528 base_gfn = slots->memslots[0].base_gfn +
46a26bf5 2529 kvm->memslots->memslots[0].npages - 3;
cbc94022
IE
2530 return base_gfn << PAGE_SHIFT;
2531 }
bfc6d222 2532 return kvm->arch.tss_addr;
6aa8b732
AK
2533}
2534
2535static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2536{
2537 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2538
2539 save->selector = vmcs_read16(sf->selector);
2540 save->base = vmcs_readl(sf->base);
2541 save->limit = vmcs_read32(sf->limit);
2542 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2543 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2544 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2545 vmcs_write32(sf->limit, 0xffff);
2546 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2547 if (save->base & 0xf)
2548 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2549 " aligned when entering protected mode (seg=%d)",
2550 seg);
6aa8b732
AK
2551}
2552
2553static void enter_rmode(struct kvm_vcpu *vcpu)
2554{
2555 unsigned long flags;
a89a8fb9 2556 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2557
3a624e29
NK
2558 if (enable_unrestricted_guest)
2559 return;
2560
a89a8fb9 2561 vmx->emulation_required = 1;
7ffd92c5 2562 vmx->rmode.vm86_active = 1;
6aa8b732 2563
776e58ea
GN
2564 /*
2565 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2566 * vcpu. Call it here with phys address pointing 16M below 4G.
2567 */
2568 if (!vcpu->kvm->arch.tss_addr) {
2569 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2570 "called before entering vcpu\n");
2571 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2572 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2573 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2574 }
2575
2fb92db1
AK
2576 vmx_segment_cache_clear(vmx);
2577
d0ba64f9 2578 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2579 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2580 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2581
7ffd92c5 2582 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2583 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2584
7ffd92c5 2585 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2586 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2587
2588 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2589 vmx->rmode.save_rflags = flags;
6aa8b732 2590
053de044 2591 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2592
2593 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2594 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2595 update_exception_bitmap(vcpu);
2596
a89a8fb9
MG
2597 if (emulate_invalid_guest_state)
2598 goto continue_rmode;
2599
6aa8b732
AK
2600 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2601 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2602 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2603
2604 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2605 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2606 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2607 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2608 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2609
7ffd92c5
AK
2610 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2611 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2612 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2613 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2614
a89a8fb9 2615continue_rmode:
8668a3c4 2616 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2617}
2618
401d10de
AS
2619static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2620{
2621 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2622 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2623
2624 if (!msr)
2625 return;
401d10de 2626
44ea2b17
AK
2627 /*
2628 * Force kernel_gs_base reloading before EFER changes, as control
2629 * of this msr depends on is_long_mode().
2630 */
2631 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2632 vcpu->arch.efer = efer;
401d10de
AS
2633 if (efer & EFER_LMA) {
2634 vmcs_write32(VM_ENTRY_CONTROLS,
2635 vmcs_read32(VM_ENTRY_CONTROLS) |
2636 VM_ENTRY_IA32E_MODE);
2637 msr->data = efer;
2638 } else {
2639 vmcs_write32(VM_ENTRY_CONTROLS,
2640 vmcs_read32(VM_ENTRY_CONTROLS) &
2641 ~VM_ENTRY_IA32E_MODE);
2642
2643 msr->data = efer & ~EFER_LME;
2644 }
2645 setup_msrs(vmx);
2646}
2647
05b3e0c2 2648#ifdef CONFIG_X86_64
6aa8b732
AK
2649
2650static void enter_lmode(struct kvm_vcpu *vcpu)
2651{
2652 u32 guest_tr_ar;
2653
2fb92db1
AK
2654 vmx_segment_cache_clear(to_vmx(vcpu));
2655
6aa8b732
AK
2656 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2657 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2658 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
b8688d51 2659 __func__);
6aa8b732
AK
2660 vmcs_write32(GUEST_TR_AR_BYTES,
2661 (guest_tr_ar & ~AR_TYPE_MASK)
2662 | AR_TYPE_BUSY_64_TSS);
2663 }
da38f438 2664 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2665}
2666
2667static void exit_lmode(struct kvm_vcpu *vcpu)
2668{
6aa8b732
AK
2669 vmcs_write32(VM_ENTRY_CONTROLS,
2670 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2671 & ~VM_ENTRY_IA32E_MODE);
da38f438 2672 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2673}
2674
2675#endif
2676
2384d2b3
SY
2677static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2678{
b9d762fa 2679 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2680 if (enable_ept) {
2681 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2682 return;
4e1096d2 2683 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2684 }
2384d2b3
SY
2685}
2686
e8467fda
AK
2687static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2688{
2689 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2690
2691 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2692 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2693}
2694
aff48baa
AK
2695static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2696{
2697 if (enable_ept && is_paging(vcpu))
2698 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2699 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2700}
2701
25c4c276 2702static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2703{
fc78f519
AK
2704 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2705
2706 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2707 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2708}
2709
1439442c
SY
2710static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2711{
6de4f3ad
AK
2712 if (!test_bit(VCPU_EXREG_PDPTR,
2713 (unsigned long *)&vcpu->arch.regs_dirty))
2714 return;
2715
1439442c 2716 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2717 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2718 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2719 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2720 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2721 }
2722}
2723
8f5d549f
AK
2724static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2725{
2726 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2727 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2728 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2729 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2730 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2731 }
6de4f3ad
AK
2732
2733 __set_bit(VCPU_EXREG_PDPTR,
2734 (unsigned long *)&vcpu->arch.regs_avail);
2735 __set_bit(VCPU_EXREG_PDPTR,
2736 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2737}
2738
5e1746d6 2739static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2740
2741static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2742 unsigned long cr0,
2743 struct kvm_vcpu *vcpu)
2744{
5233dd51
MT
2745 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2746 vmx_decache_cr3(vcpu);
1439442c
SY
2747 if (!(cr0 & X86_CR0_PG)) {
2748 /* From paging/starting to nonpaging */
2749 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2750 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2751 (CPU_BASED_CR3_LOAD_EXITING |
2752 CPU_BASED_CR3_STORE_EXITING));
2753 vcpu->arch.cr0 = cr0;
fc78f519 2754 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2755 } else if (!is_paging(vcpu)) {
2756 /* From nonpaging to paging */
2757 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2758 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2759 ~(CPU_BASED_CR3_LOAD_EXITING |
2760 CPU_BASED_CR3_STORE_EXITING));
2761 vcpu->arch.cr0 = cr0;
fc78f519 2762 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2763 }
95eb84a7
SY
2764
2765 if (!(cr0 & X86_CR0_WP))
2766 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2767}
2768
6aa8b732
AK
2769static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2770{
7ffd92c5 2771 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2772 unsigned long hw_cr0;
2773
2774 if (enable_unrestricted_guest)
2775 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2776 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2777 else
2778 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2779
7ffd92c5 2780 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2781 enter_pmode(vcpu);
2782
7ffd92c5 2783 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2784 enter_rmode(vcpu);
2785
05b3e0c2 2786#ifdef CONFIG_X86_64
f6801dff 2787 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2788 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2789 enter_lmode(vcpu);
707d92fa 2790 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2791 exit_lmode(vcpu);
2792 }
2793#endif
2794
089d034e 2795 if (enable_ept)
1439442c
SY
2796 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2797
02daab21 2798 if (!vcpu->fpu_active)
81231c69 2799 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 2800
6aa8b732 2801 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 2802 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 2803 vcpu->arch.cr0 = cr0;
69c73028 2804 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
2805}
2806
1439442c
SY
2807static u64 construct_eptp(unsigned long root_hpa)
2808{
2809 u64 eptp;
2810
2811 /* TODO write the value reading from MSR */
2812 eptp = VMX_EPT_DEFAULT_MT |
2813 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2814 eptp |= (root_hpa & PAGE_MASK);
2815
2816 return eptp;
2817}
2818
6aa8b732
AK
2819static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2820{
1439442c
SY
2821 unsigned long guest_cr3;
2822 u64 eptp;
2823
2824 guest_cr3 = cr3;
089d034e 2825 if (enable_ept) {
1439442c
SY
2826 eptp = construct_eptp(cr3);
2827 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 2828 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 2829 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 2830 ept_load_pdptrs(vcpu);
1439442c
SY
2831 }
2832
2384d2b3 2833 vmx_flush_tlb(vcpu);
1439442c 2834 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
2835}
2836
5e1746d6 2837static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 2838{
7ffd92c5 2839 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
2840 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2841
5e1746d6
NHE
2842 if (cr4 & X86_CR4_VMXE) {
2843 /*
2844 * To use VMXON (and later other VMX instructions), a guest
2845 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2846 * So basically the check on whether to allow nested VMX
2847 * is here.
2848 */
2849 if (!nested_vmx_allowed(vcpu))
2850 return 1;
2851 } else if (to_vmx(vcpu)->nested.vmxon)
2852 return 1;
2853
ad312c7c 2854 vcpu->arch.cr4 = cr4;
bc23008b
AK
2855 if (enable_ept) {
2856 if (!is_paging(vcpu)) {
2857 hw_cr4 &= ~X86_CR4_PAE;
2858 hw_cr4 |= X86_CR4_PSE;
2859 } else if (!(cr4 & X86_CR4_PAE)) {
2860 hw_cr4 &= ~X86_CR4_PAE;
2861 }
2862 }
1439442c
SY
2863
2864 vmcs_writel(CR4_READ_SHADOW, cr4);
2865 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 2866 return 0;
6aa8b732
AK
2867}
2868
6aa8b732
AK
2869static void vmx_get_segment(struct kvm_vcpu *vcpu,
2870 struct kvm_segment *var, int seg)
2871{
a9179499 2872 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 2873 struct kvm_save_segment *save;
6aa8b732
AK
2874 u32 ar;
2875
a9179499
AK
2876 if (vmx->rmode.vm86_active
2877 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2878 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2879 || seg == VCPU_SREG_GS)
2880 && !emulate_invalid_guest_state) {
2881 switch (seg) {
2882 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2883 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2884 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2885 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2886 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2887 default: BUG();
2888 }
2889 var->selector = save->selector;
2890 var->base = save->base;
2891 var->limit = save->limit;
2892 ar = save->ar;
2893 if (seg == VCPU_SREG_TR
2fb92db1 2894 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
2895 goto use_saved_rmode_seg;
2896 }
2fb92db1
AK
2897 var->base = vmx_read_guest_seg_base(vmx, seg);
2898 var->limit = vmx_read_guest_seg_limit(vmx, seg);
2899 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2900 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 2901use_saved_rmode_seg:
9fd4a3b7 2902 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
2903 ar = 0;
2904 var->type = ar & 15;
2905 var->s = (ar >> 4) & 1;
2906 var->dpl = (ar >> 5) & 3;
2907 var->present = (ar >> 7) & 1;
2908 var->avl = (ar >> 12) & 1;
2909 var->l = (ar >> 13) & 1;
2910 var->db = (ar >> 14) & 1;
2911 var->g = (ar >> 15) & 1;
2912 var->unusable = (ar >> 16) & 1;
2913}
2914
a9179499
AK
2915static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2916{
a9179499
AK
2917 struct kvm_segment s;
2918
2919 if (to_vmx(vcpu)->rmode.vm86_active) {
2920 vmx_get_segment(vcpu, &s, seg);
2921 return s.base;
2922 }
2fb92db1 2923 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
2924}
2925
69c73028 2926static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 2927{
3eeb3288 2928 if (!is_protmode(vcpu))
2e4d2653
IE
2929 return 0;
2930
f4c63e5d
AK
2931 if (!is_long_mode(vcpu)
2932 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
2933 return 3;
2934
2fb92db1 2935 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
2936}
2937
69c73028
AK
2938static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2939{
2940 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
2941 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2942 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
2943 }
2944 return to_vmx(vcpu)->cpl;
2945}
2946
2947
653e3108 2948static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 2949{
6aa8b732
AK
2950 u32 ar;
2951
653e3108 2952 if (var->unusable)
6aa8b732
AK
2953 ar = 1 << 16;
2954 else {
2955 ar = var->type & 15;
2956 ar |= (var->s & 1) << 4;
2957 ar |= (var->dpl & 3) << 5;
2958 ar |= (var->present & 1) << 7;
2959 ar |= (var->avl & 1) << 12;
2960 ar |= (var->l & 1) << 13;
2961 ar |= (var->db & 1) << 14;
2962 ar |= (var->g & 1) << 15;
2963 }
f7fbf1fd
UL
2964 if (ar == 0) /* a 0 value means unusable */
2965 ar = AR_UNUSABLE_MASK;
653e3108
AK
2966
2967 return ar;
2968}
2969
2970static void vmx_set_segment(struct kvm_vcpu *vcpu,
2971 struct kvm_segment *var, int seg)
2972{
7ffd92c5 2973 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
2974 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2975 u32 ar;
2976
2fb92db1
AK
2977 vmx_segment_cache_clear(vmx);
2978
7ffd92c5 2979 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 2980 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
2981 vmx->rmode.tr.selector = var->selector;
2982 vmx->rmode.tr.base = var->base;
2983 vmx->rmode.tr.limit = var->limit;
2984 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
2985 return;
2986 }
2987 vmcs_writel(sf->base, var->base);
2988 vmcs_write32(sf->limit, var->limit);
2989 vmcs_write16(sf->selector, var->selector);
7ffd92c5 2990 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
2991 /*
2992 * Hack real-mode segments into vm86 compatibility.
2993 */
2994 if (var->base == 0xffff0000 && var->selector == 0xf000)
2995 vmcs_writel(sf->base, 0xf0000);
2996 ar = 0xf3;
2997 } else
2998 ar = vmx_segment_access_rights(var);
3a624e29
NK
2999
3000 /*
3001 * Fix the "Accessed" bit in AR field of segment registers for older
3002 * qemu binaries.
3003 * IA32 arch specifies that at the time of processor reset the
3004 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3005 * is setting it to 0 in the usedland code. This causes invalid guest
3006 * state vmexit when "unrestricted guest" mode is turned on.
3007 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3008 * tree. Newer qemu binaries with that qemu fix would not need this
3009 * kvm hack.
3010 */
3011 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3012 ar |= 0x1; /* Accessed */
3013
6aa8b732 3014 vmcs_write32(sf->ar_bytes, ar);
69c73028 3015 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3016}
3017
6aa8b732
AK
3018static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3019{
2fb92db1 3020 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3021
3022 *db = (ar >> 14) & 1;
3023 *l = (ar >> 13) & 1;
3024}
3025
89a27f4d 3026static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3027{
89a27f4d
GN
3028 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3029 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3030}
3031
89a27f4d 3032static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3033{
89a27f4d
GN
3034 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3035 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3036}
3037
89a27f4d 3038static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3039{
89a27f4d
GN
3040 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3041 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3042}
3043
89a27f4d 3044static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3045{
89a27f4d
GN
3046 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3047 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3048}
3049
648dfaa7
MG
3050static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3051{
3052 struct kvm_segment var;
3053 u32 ar;
3054
3055 vmx_get_segment(vcpu, &var, seg);
3056 ar = vmx_segment_access_rights(&var);
3057
3058 if (var.base != (var.selector << 4))
3059 return false;
3060 if (var.limit != 0xffff)
3061 return false;
3062 if (ar != 0xf3)
3063 return false;
3064
3065 return true;
3066}
3067
3068static bool code_segment_valid(struct kvm_vcpu *vcpu)
3069{
3070 struct kvm_segment cs;
3071 unsigned int cs_rpl;
3072
3073 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3074 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3075
1872a3f4
AK
3076 if (cs.unusable)
3077 return false;
648dfaa7
MG
3078 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3079 return false;
3080 if (!cs.s)
3081 return false;
1872a3f4 3082 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3083 if (cs.dpl > cs_rpl)
3084 return false;
1872a3f4 3085 } else {
648dfaa7
MG
3086 if (cs.dpl != cs_rpl)
3087 return false;
3088 }
3089 if (!cs.present)
3090 return false;
3091
3092 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3093 return true;
3094}
3095
3096static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3097{
3098 struct kvm_segment ss;
3099 unsigned int ss_rpl;
3100
3101 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3102 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3103
1872a3f4
AK
3104 if (ss.unusable)
3105 return true;
3106 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3107 return false;
3108 if (!ss.s)
3109 return false;
3110 if (ss.dpl != ss_rpl) /* DPL != RPL */
3111 return false;
3112 if (!ss.present)
3113 return false;
3114
3115 return true;
3116}
3117
3118static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3119{
3120 struct kvm_segment var;
3121 unsigned int rpl;
3122
3123 vmx_get_segment(vcpu, &var, seg);
3124 rpl = var.selector & SELECTOR_RPL_MASK;
3125
1872a3f4
AK
3126 if (var.unusable)
3127 return true;
648dfaa7
MG
3128 if (!var.s)
3129 return false;
3130 if (!var.present)
3131 return false;
3132 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3133 if (var.dpl < rpl) /* DPL < RPL */
3134 return false;
3135 }
3136
3137 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3138 * rights flags
3139 */
3140 return true;
3141}
3142
3143static bool tr_valid(struct kvm_vcpu *vcpu)
3144{
3145 struct kvm_segment tr;
3146
3147 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3148
1872a3f4
AK
3149 if (tr.unusable)
3150 return false;
648dfaa7
MG
3151 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3152 return false;
1872a3f4 3153 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3154 return false;
3155 if (!tr.present)
3156 return false;
3157
3158 return true;
3159}
3160
3161static bool ldtr_valid(struct kvm_vcpu *vcpu)
3162{
3163 struct kvm_segment ldtr;
3164
3165 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3166
1872a3f4
AK
3167 if (ldtr.unusable)
3168 return true;
648dfaa7
MG
3169 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3170 return false;
3171 if (ldtr.type != 2)
3172 return false;
3173 if (!ldtr.present)
3174 return false;
3175
3176 return true;
3177}
3178
3179static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3180{
3181 struct kvm_segment cs, ss;
3182
3183 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3184 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3185
3186 return ((cs.selector & SELECTOR_RPL_MASK) ==
3187 (ss.selector & SELECTOR_RPL_MASK));
3188}
3189
3190/*
3191 * Check if guest state is valid. Returns true if valid, false if
3192 * not.
3193 * We assume that registers are always usable
3194 */
3195static bool guest_state_valid(struct kvm_vcpu *vcpu)
3196{
3197 /* real mode guest state checks */
3eeb3288 3198 if (!is_protmode(vcpu)) {
648dfaa7
MG
3199 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3200 return false;
3201 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3202 return false;
3203 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3204 return false;
3205 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3206 return false;
3207 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3208 return false;
3209 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3210 return false;
3211 } else {
3212 /* protected mode guest state checks */
3213 if (!cs_ss_rpl_check(vcpu))
3214 return false;
3215 if (!code_segment_valid(vcpu))
3216 return false;
3217 if (!stack_segment_valid(vcpu))
3218 return false;
3219 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3220 return false;
3221 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3222 return false;
3223 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3224 return false;
3225 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3226 return false;
3227 if (!tr_valid(vcpu))
3228 return false;
3229 if (!ldtr_valid(vcpu))
3230 return false;
3231 }
3232 /* TODO:
3233 * - Add checks on RIP
3234 * - Add checks on RFLAGS
3235 */
3236
3237 return true;
3238}
3239
d77c26fc 3240static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3241{
40dcaa9f 3242 gfn_t fn;
195aefde 3243 u16 data = 0;
40dcaa9f 3244 int r, idx, ret = 0;
6aa8b732 3245
40dcaa9f
XG
3246 idx = srcu_read_lock(&kvm->srcu);
3247 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3248 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3249 if (r < 0)
10589a46 3250 goto out;
195aefde 3251 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3252 r = kvm_write_guest_page(kvm, fn++, &data,
3253 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3254 if (r < 0)
10589a46 3255 goto out;
195aefde
IE
3256 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3257 if (r < 0)
10589a46 3258 goto out;
195aefde
IE
3259 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3260 if (r < 0)
10589a46 3261 goto out;
195aefde 3262 data = ~0;
10589a46
MT
3263 r = kvm_write_guest_page(kvm, fn, &data,
3264 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3265 sizeof(u8));
195aefde 3266 if (r < 0)
10589a46
MT
3267 goto out;
3268
3269 ret = 1;
3270out:
40dcaa9f 3271 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3272 return ret;
6aa8b732
AK
3273}
3274
b7ebfb05
SY
3275static int init_rmode_identity_map(struct kvm *kvm)
3276{
40dcaa9f 3277 int i, idx, r, ret;
b7ebfb05
SY
3278 pfn_t identity_map_pfn;
3279 u32 tmp;
3280
089d034e 3281 if (!enable_ept)
b7ebfb05
SY
3282 return 1;
3283 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3284 printk(KERN_ERR "EPT: identity-mapping pagetable "
3285 "haven't been allocated!\n");
3286 return 0;
3287 }
3288 if (likely(kvm->arch.ept_identity_pagetable_done))
3289 return 1;
3290 ret = 0;
b927a3ce 3291 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3292 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3293 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3294 if (r < 0)
3295 goto out;
3296 /* Set up identity-mapping pagetable for EPT in real mode */
3297 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3298 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3299 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3300 r = kvm_write_guest_page(kvm, identity_map_pfn,
3301 &tmp, i * sizeof(tmp), sizeof(tmp));
3302 if (r < 0)
3303 goto out;
3304 }
3305 kvm->arch.ept_identity_pagetable_done = true;
3306 ret = 1;
3307out:
40dcaa9f 3308 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3309 return ret;
3310}
3311
6aa8b732
AK
3312static void seg_setup(int seg)
3313{
3314 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3315 unsigned int ar;
6aa8b732
AK
3316
3317 vmcs_write16(sf->selector, 0);
3318 vmcs_writel(sf->base, 0);
3319 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3320 if (enable_unrestricted_guest) {
3321 ar = 0x93;
3322 if (seg == VCPU_SREG_CS)
3323 ar |= 0x08; /* code segment */
3324 } else
3325 ar = 0xf3;
3326
3327 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3328}
3329
f78e0e2e
SY
3330static int alloc_apic_access_page(struct kvm *kvm)
3331{
3332 struct kvm_userspace_memory_region kvm_userspace_mem;
3333 int r = 0;
3334
79fac95e 3335 mutex_lock(&kvm->slots_lock);
bfc6d222 3336 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3337 goto out;
3338 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3339 kvm_userspace_mem.flags = 0;
3340 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3341 kvm_userspace_mem.memory_size = PAGE_SIZE;
3342 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3343 if (r)
3344 goto out;
72dc67a6 3345
bfc6d222 3346 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3347out:
79fac95e 3348 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3349 return r;
3350}
3351
b7ebfb05
SY
3352static int alloc_identity_pagetable(struct kvm *kvm)
3353{
3354 struct kvm_userspace_memory_region kvm_userspace_mem;
3355 int r = 0;
3356
79fac95e 3357 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3358 if (kvm->arch.ept_identity_pagetable)
3359 goto out;
3360 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3361 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3362 kvm_userspace_mem.guest_phys_addr =
3363 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3364 kvm_userspace_mem.memory_size = PAGE_SIZE;
3365 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3366 if (r)
3367 goto out;
3368
b7ebfb05 3369 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3370 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3371out:
79fac95e 3372 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3373 return r;
3374}
3375
2384d2b3
SY
3376static void allocate_vpid(struct vcpu_vmx *vmx)
3377{
3378 int vpid;
3379
3380 vmx->vpid = 0;
919818ab 3381 if (!enable_vpid)
2384d2b3
SY
3382 return;
3383 spin_lock(&vmx_vpid_lock);
3384 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3385 if (vpid < VMX_NR_VPIDS) {
3386 vmx->vpid = vpid;
3387 __set_bit(vpid, vmx_vpid_bitmap);
3388 }
3389 spin_unlock(&vmx_vpid_lock);
3390}
3391
cdbecfc3
LJ
3392static void free_vpid(struct vcpu_vmx *vmx)
3393{
3394 if (!enable_vpid)
3395 return;
3396 spin_lock(&vmx_vpid_lock);
3397 if (vmx->vpid != 0)
3398 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3399 spin_unlock(&vmx_vpid_lock);
3400}
3401
5897297b 3402static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3403{
3e7c73e9 3404 int f = sizeof(unsigned long);
25c5f225
SY
3405
3406 if (!cpu_has_vmx_msr_bitmap())
3407 return;
3408
3409 /*
3410 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3411 * have the write-low and read-high bitmap offsets the wrong way round.
3412 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3413 */
25c5f225 3414 if (msr <= 0x1fff) {
3e7c73e9
AK
3415 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3416 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3417 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3418 msr &= 0x1fff;
3e7c73e9
AK
3419 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3420 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3421 }
25c5f225
SY
3422}
3423
5897297b
AK
3424static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3425{
3426 if (!longmode_only)
3427 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3428 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3429}
3430
a3a8ff8e
NHE
3431/*
3432 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3433 * will not change in the lifetime of the guest.
3434 * Note that host-state that does change is set elsewhere. E.g., host-state
3435 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3436 */
3437static void vmx_set_constant_host_state(void)
3438{
3439 u32 low32, high32;
3440 unsigned long tmpl;
3441 struct desc_ptr dt;
3442
3443 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3444 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3445 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3446
3447 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3448 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3449 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3450 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3451 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3452
3453 native_store_idt(&dt);
3454 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3455
3456 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3457 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3458
3459 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3460 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3461 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3462 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3463
3464 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3465 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3466 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3467 }
3468}
3469
bf8179a0
NHE
3470static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3471{
3472 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3473 if (enable_ept)
3474 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3475 if (is_guest_mode(&vmx->vcpu))
3476 vmx->vcpu.arch.cr4_guest_owned_bits &=
3477 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3478 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3479}
3480
3481static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3482{
3483 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3484 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3485 exec_control &= ~CPU_BASED_TPR_SHADOW;
3486#ifdef CONFIG_X86_64
3487 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3488 CPU_BASED_CR8_LOAD_EXITING;
3489#endif
3490 }
3491 if (!enable_ept)
3492 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3493 CPU_BASED_CR3_LOAD_EXITING |
3494 CPU_BASED_INVLPG_EXITING;
3495 return exec_control;
3496}
3497
3498static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3499{
3500 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3501 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3502 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3503 if (vmx->vpid == 0)
3504 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3505 if (!enable_ept) {
3506 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3507 enable_unrestricted_guest = 0;
3508 }
3509 if (!enable_unrestricted_guest)
3510 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3511 if (!ple_gap)
3512 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3513 return exec_control;
3514}
3515
6aa8b732
AK
3516/*
3517 * Sets up the vmcs for emulated real mode.
3518 */
8b9cf98c 3519static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3520{
6aa8b732 3521 unsigned long a;
6aa8b732 3522 int i;
6aa8b732 3523
6aa8b732 3524 /* I/O */
3e7c73e9
AK
3525 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3526 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3527
25c5f225 3528 if (cpu_has_vmx_msr_bitmap())
5897297b 3529 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3530
6aa8b732
AK
3531 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3532
6aa8b732 3533 /* Control */
1c3d14fe
YS
3534 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3535 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3536
bf8179a0 3537 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3538
83ff3b9d 3539 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3540 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3541 vmx_secondary_exec_control(vmx));
83ff3b9d 3542 }
f78e0e2e 3543
4b8d54f9
ZE
3544 if (ple_gap) {
3545 vmcs_write32(PLE_GAP, ple_gap);
3546 vmcs_write32(PLE_WINDOW, ple_window);
3547 }
3548
c7addb90
AK
3549 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
3550 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
6aa8b732
AK
3551 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3552
9581d442
AK
3553 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3554 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3555 vmx_set_constant_host_state();
05b3e0c2 3556#ifdef CONFIG_X86_64
6aa8b732
AK
3557 rdmsrl(MSR_FS_BASE, a);
3558 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3559 rdmsrl(MSR_GS_BASE, a);
3560 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3561#else
3562 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3563 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3564#endif
3565
2cc51560
ED
3566 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3567 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3568 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3569 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3570 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3571
468d472f 3572 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3573 u32 msr_low, msr_high;
3574 u64 host_pat;
468d472f
SY
3575 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3576 host_pat = msr_low | ((u64) msr_high << 32);
3577 /* Write the default value follow host pat */
3578 vmcs_write64(GUEST_IA32_PAT, host_pat);
3579 /* Keep arch.pat sync with GUEST_IA32_PAT */
3580 vmx->vcpu.arch.pat = host_pat;
3581 }
3582
6aa8b732
AK
3583 for (i = 0; i < NR_VMX_MSR; ++i) {
3584 u32 index = vmx_msr_index[i];
3585 u32 data_low, data_high;
a2fa3e9f 3586 int j = vmx->nmsrs;
6aa8b732
AK
3587
3588 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3589 continue;
432bd6cb
AK
3590 if (wrmsr_safe(index, data_low, data_high) < 0)
3591 continue;
26bb0981
AK
3592 vmx->guest_msrs[j].index = i;
3593 vmx->guest_msrs[j].data = 0;
d5696725 3594 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3595 ++vmx->nmsrs;
6aa8b732 3596 }
6aa8b732 3597
1c3d14fe 3598 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3599
3600 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3601 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3602
e00c8cf2 3603 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3604 set_cr4_guest_host_mask(vmx);
e00c8cf2 3605
99e3e30a 3606 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3607
e00c8cf2
AK
3608 return 0;
3609}
3610
3611static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3612{
3613 struct vcpu_vmx *vmx = to_vmx(vcpu);
3614 u64 msr;
4b9d3a04 3615 int ret;
e00c8cf2 3616
5fdbf976 3617 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3618
7ffd92c5 3619 vmx->rmode.vm86_active = 0;
e00c8cf2 3620
3b86cd99
JK
3621 vmx->soft_vnmi_blocked = 0;
3622
ad312c7c 3623 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3624 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3625 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3626 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3627 msr |= MSR_IA32_APICBASE_BSP;
3628 kvm_set_apic_base(&vmx->vcpu, msr);
3629
10ab25cd
JK
3630 ret = fx_init(&vmx->vcpu);
3631 if (ret != 0)
3632 goto out;
e00c8cf2 3633
2fb92db1
AK
3634 vmx_segment_cache_clear(vmx);
3635
5706be0d 3636 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3637 /*
3638 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3639 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3640 */
c5af89b6 3641 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3642 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3643 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3644 } else {
ad312c7c
ZX
3645 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3646 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3647 }
e00c8cf2
AK
3648
3649 seg_setup(VCPU_SREG_DS);
3650 seg_setup(VCPU_SREG_ES);
3651 seg_setup(VCPU_SREG_FS);
3652 seg_setup(VCPU_SREG_GS);
3653 seg_setup(VCPU_SREG_SS);
3654
3655 vmcs_write16(GUEST_TR_SELECTOR, 0);
3656 vmcs_writel(GUEST_TR_BASE, 0);
3657 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3658 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3659
3660 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3661 vmcs_writel(GUEST_LDTR_BASE, 0);
3662 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3663 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3664
3665 vmcs_write32(GUEST_SYSENTER_CS, 0);
3666 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3667 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3668
3669 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3670 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3671 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3672 else
5fdbf976
MT
3673 kvm_rip_write(vcpu, 0);
3674 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3675
e00c8cf2
AK
3676 vmcs_writel(GUEST_DR7, 0x400);
3677
3678 vmcs_writel(GUEST_GDTR_BASE, 0);
3679 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3680
3681 vmcs_writel(GUEST_IDTR_BASE, 0);
3682 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3683
443381a8 3684 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3685 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3686 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3687
e00c8cf2
AK
3688 /* Special registers */
3689 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3690
3691 setup_msrs(vmx);
3692
6aa8b732
AK
3693 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3694
f78e0e2e
SY
3695 if (cpu_has_vmx_tpr_shadow()) {
3696 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3697 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3698 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3699 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3700 vmcs_write32(TPR_THRESHOLD, 0);
3701 }
3702
3703 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3704 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3705 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3706
2384d2b3
SY
3707 if (vmx->vpid != 0)
3708 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3709
fa40052c 3710 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 3711 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 3712 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3713 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3714 vmx_fpu_activate(&vmx->vcpu);
3715 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3716
b9d762fa 3717 vpid_sync_context(vmx);
2384d2b3 3718
3200f405 3719 ret = 0;
6aa8b732 3720
a89a8fb9
MG
3721 /* HACK: Don't enable emulation on guest boot/reset */
3722 vmx->emulation_required = 0;
3723
6aa8b732
AK
3724out:
3725 return ret;
3726}
3727
3b86cd99
JK
3728static void enable_irq_window(struct kvm_vcpu *vcpu)
3729{
3730 u32 cpu_based_vm_exec_control;
3731
3732 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3733 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3734 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3735}
3736
3737static void enable_nmi_window(struct kvm_vcpu *vcpu)
3738{
3739 u32 cpu_based_vm_exec_control;
3740
3741 if (!cpu_has_virtual_nmis()) {
3742 enable_irq_window(vcpu);
3743 return;
3744 }
3745
30bd0c4c
AK
3746 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3747 enable_irq_window(vcpu);
3748 return;
3749 }
3b86cd99
JK
3750 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3751 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3752 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3753}
3754
66fd3f7f 3755static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3756{
9c8cba37 3757 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3758 uint32_t intr;
3759 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3760
229456fc 3761 trace_kvm_inj_virq(irq);
2714d1d3 3762
fa89a817 3763 ++vcpu->stat.irq_injections;
7ffd92c5 3764 if (vmx->rmode.vm86_active) {
71f9833b
SH
3765 int inc_eip = 0;
3766 if (vcpu->arch.interrupt.soft)
3767 inc_eip = vcpu->arch.event_exit_inst_len;
3768 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 3769 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
3770 return;
3771 }
66fd3f7f
GN
3772 intr = irq | INTR_INFO_VALID_MASK;
3773 if (vcpu->arch.interrupt.soft) {
3774 intr |= INTR_TYPE_SOFT_INTR;
3775 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3776 vmx->vcpu.arch.event_exit_inst_len);
3777 } else
3778 intr |= INTR_TYPE_EXT_INTR;
3779 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
443381a8 3780 vmx_clear_hlt(vcpu);
85f455f7
ED
3781}
3782
f08864b4
SY
3783static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3784{
66a5a347
JK
3785 struct vcpu_vmx *vmx = to_vmx(vcpu);
3786
3b86cd99
JK
3787 if (!cpu_has_virtual_nmis()) {
3788 /*
3789 * Tracking the NMI-blocked state in software is built upon
3790 * finding the next open IRQ window. This, in turn, depends on
3791 * well-behaving guests: They have to keep IRQs disabled at
3792 * least as long as the NMI handler runs. Otherwise we may
3793 * cause NMI nesting, maybe breaking the guest. But as this is
3794 * highly unlikely, we can live with the residual risk.
3795 */
3796 vmx->soft_vnmi_blocked = 1;
3797 vmx->vnmi_blocked_time = 0;
3798 }
3799
487b391d 3800 ++vcpu->stat.nmi_injections;
9d58b931 3801 vmx->nmi_known_unmasked = false;
7ffd92c5 3802 if (vmx->rmode.vm86_active) {
71f9833b 3803 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 3804 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
3805 return;
3806 }
f08864b4
SY
3807 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3808 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
443381a8 3809 vmx_clear_hlt(vcpu);
f08864b4
SY
3810}
3811
c4282df9 3812static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 3813{
3b86cd99 3814 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 3815 return 0;
33f089ca 3816
c4282df9 3817 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
3818 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3819 | GUEST_INTR_STATE_NMI));
33f089ca
JK
3820}
3821
3cfc3092
JK
3822static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3823{
3824 if (!cpu_has_virtual_nmis())
3825 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
3826 if (to_vmx(vcpu)->nmi_known_unmasked)
3827 return false;
c332c83a 3828 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
3829}
3830
3831static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3832{
3833 struct vcpu_vmx *vmx = to_vmx(vcpu);
3834
3835 if (!cpu_has_virtual_nmis()) {
3836 if (vmx->soft_vnmi_blocked != masked) {
3837 vmx->soft_vnmi_blocked = masked;
3838 vmx->vnmi_blocked_time = 0;
3839 }
3840 } else {
9d58b931 3841 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
3842 if (masked)
3843 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3844 GUEST_INTR_STATE_NMI);
3845 else
3846 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3847 GUEST_INTR_STATE_NMI);
3848 }
3849}
3850
78646121
GN
3851static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3852{
c4282df9
GN
3853 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
3854 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
3855 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
3856}
3857
cbc94022
IE
3858static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
3859{
3860 int ret;
3861 struct kvm_userspace_memory_region tss_mem = {
6fe63979 3862 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
3863 .guest_phys_addr = addr,
3864 .memory_size = PAGE_SIZE * 3,
3865 .flags = 0,
3866 };
3867
3868 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3869 if (ret)
3870 return ret;
bfc6d222 3871 kvm->arch.tss_addr = addr;
93ea5388
GN
3872 if (!init_rmode_tss(kvm))
3873 return -ENOMEM;
3874
cbc94022
IE
3875 return 0;
3876}
3877
6aa8b732
AK
3878static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3879 int vec, u32 err_code)
3880{
b3f37707
NK
3881 /*
3882 * Instruction with address size override prefix opcode 0x67
3883 * Cause the #SS fault with 0 error code in VM86 mode.
3884 */
3885 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 3886 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 3887 return 1;
77ab6db0
JK
3888 /*
3889 * Forward all other exceptions that are valid in real mode.
3890 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3891 * the required debugging infrastructure rework.
3892 */
3893 switch (vec) {
77ab6db0 3894 case DB_VECTOR:
d0bfb940
JK
3895 if (vcpu->guest_debug &
3896 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3897 return 0;
3898 kvm_queue_exception(vcpu, vec);
3899 return 1;
77ab6db0 3900 case BP_VECTOR:
c573cd22
JK
3901 /*
3902 * Update instruction length as we may reinject the exception
3903 * from user space while in guest debugging mode.
3904 */
3905 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3906 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
3907 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3908 return 0;
3909 /* fall through */
3910 case DE_VECTOR:
77ab6db0
JK
3911 case OF_VECTOR:
3912 case BR_VECTOR:
3913 case UD_VECTOR:
3914 case DF_VECTOR:
3915 case SS_VECTOR:
3916 case GP_VECTOR:
3917 case MF_VECTOR:
3918 kvm_queue_exception(vcpu, vec);
3919 return 1;
3920 }
6aa8b732
AK
3921 return 0;
3922}
3923
a0861c02
AK
3924/*
3925 * Trigger machine check on the host. We assume all the MSRs are already set up
3926 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3927 * We pass a fake environment to the machine check handler because we want
3928 * the guest to be always treated like user space, no matter what context
3929 * it used internally.
3930 */
3931static void kvm_machine_check(void)
3932{
3933#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3934 struct pt_regs regs = {
3935 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3936 .flags = X86_EFLAGS_IF,
3937 };
3938
3939 do_machine_check(&regs, 0);
3940#endif
3941}
3942
851ba692 3943static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
3944{
3945 /* already handled by vcpu_run */
3946 return 1;
3947}
3948
851ba692 3949static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 3950{
1155f76a 3951 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 3952 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 3953 u32 intr_info, ex_no, error_code;
42dbaa5a 3954 unsigned long cr2, rip, dr6;
6aa8b732
AK
3955 u32 vect_info;
3956 enum emulation_result er;
3957
1155f76a 3958 vect_info = vmx->idt_vectoring_info;
88786475 3959 intr_info = vmx->exit_intr_info;
6aa8b732 3960
a0861c02 3961 if (is_machine_check(intr_info))
851ba692 3962 return handle_machine_check(vcpu);
a0861c02 3963
6aa8b732 3964 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
3965 !is_page_fault(intr_info)) {
3966 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3967 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3968 vcpu->run->internal.ndata = 2;
3969 vcpu->run->internal.data[0] = vect_info;
3970 vcpu->run->internal.data[1] = intr_info;
3971 return 0;
3972 }
6aa8b732 3973
e4a41889 3974 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 3975 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
3976
3977 if (is_no_device(intr_info)) {
5fd86fcf 3978 vmx_fpu_activate(vcpu);
2ab455cc
AL
3979 return 1;
3980 }
3981
7aa81cc0 3982 if (is_invalid_opcode(intr_info)) {
51d8b661 3983 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 3984 if (er != EMULATE_DONE)
7ee5d940 3985 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
3986 return 1;
3987 }
3988
6aa8b732 3989 error_code = 0;
2e11384c 3990 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
3991 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3992 if (is_page_fault(intr_info)) {
1439442c 3993 /* EPT won't cause page fault directly */
089d034e 3994 if (enable_ept)
1439442c 3995 BUG();
6aa8b732 3996 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
3997 trace_kvm_page_fault(cr2, error_code);
3998
3298b75c 3999 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4000 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4001 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4002 }
4003
7ffd92c5 4004 if (vmx->rmode.vm86_active &&
6aa8b732 4005 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4006 error_code)) {
ad312c7c
ZX
4007 if (vcpu->arch.halt_request) {
4008 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4009 return kvm_emulate_halt(vcpu);
4010 }
6aa8b732 4011 return 1;
72d6e5a0 4012 }
6aa8b732 4013
d0bfb940 4014 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4015 switch (ex_no) {
4016 case DB_VECTOR:
4017 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4018 if (!(vcpu->guest_debug &
4019 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4020 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4021 kvm_queue_exception(vcpu, DB_VECTOR);
4022 return 1;
4023 }
4024 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4025 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4026 /* fall through */
4027 case BP_VECTOR:
c573cd22
JK
4028 /*
4029 * Update instruction length as we may reinject #BP from
4030 * user space while in guest debugging mode. Reading it for
4031 * #DB as well causes no harm, it is not used in that case.
4032 */
4033 vmx->vcpu.arch.event_exit_inst_len =
4034 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4035 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4036 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4037 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4038 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4039 break;
4040 default:
d0bfb940
JK
4041 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4042 kvm_run->ex.exception = ex_no;
4043 kvm_run->ex.error_code = error_code;
42dbaa5a 4044 break;
6aa8b732 4045 }
6aa8b732
AK
4046 return 0;
4047}
4048
851ba692 4049static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4050{
1165f5fe 4051 ++vcpu->stat.irq_exits;
6aa8b732
AK
4052 return 1;
4053}
4054
851ba692 4055static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4056{
851ba692 4057 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4058 return 0;
4059}
6aa8b732 4060
851ba692 4061static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4062{
bfdaab09 4063 unsigned long exit_qualification;
34c33d16 4064 int size, in, string;
039576c0 4065 unsigned port;
6aa8b732 4066
bfdaab09 4067 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4068 string = (exit_qualification & 16) != 0;
cf8f70bf 4069 in = (exit_qualification & 8) != 0;
e70669ab 4070
cf8f70bf 4071 ++vcpu->stat.io_exits;
e70669ab 4072
cf8f70bf 4073 if (string || in)
51d8b661 4074 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4075
cf8f70bf
GN
4076 port = exit_qualification >> 16;
4077 size = (exit_qualification & 7) + 1;
e93f36bc 4078 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4079
4080 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4081}
4082
102d8325
IM
4083static void
4084vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4085{
4086 /*
4087 * Patch in the VMCALL instruction:
4088 */
4089 hypercall[0] = 0x0f;
4090 hypercall[1] = 0x01;
4091 hypercall[2] = 0xc1;
102d8325
IM
4092}
4093
851ba692 4094static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4095{
229456fc 4096 unsigned long exit_qualification, val;
6aa8b732
AK
4097 int cr;
4098 int reg;
49a9b07e 4099 int err;
6aa8b732 4100
bfdaab09 4101 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4102 cr = exit_qualification & 15;
4103 reg = (exit_qualification >> 8) & 15;
4104 switch ((exit_qualification >> 4) & 3) {
4105 case 0: /* mov to cr */
229456fc
MT
4106 val = kvm_register_read(vcpu, reg);
4107 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4108 switch (cr) {
4109 case 0:
49a9b07e 4110 err = kvm_set_cr0(vcpu, val);
db8fcefa 4111 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4112 return 1;
4113 case 3:
2390218b 4114 err = kvm_set_cr3(vcpu, val);
db8fcefa 4115 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4116 return 1;
4117 case 4:
a83b29c6 4118 err = kvm_set_cr4(vcpu, val);
db8fcefa 4119 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4120 return 1;
0a5fff19
GN
4121 case 8: {
4122 u8 cr8_prev = kvm_get_cr8(vcpu);
4123 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4124 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4125 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4126 if (irqchip_in_kernel(vcpu->kvm))
4127 return 1;
4128 if (cr8_prev <= cr8)
4129 return 1;
851ba692 4130 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4131 return 0;
4132 }
6aa8b732
AK
4133 };
4134 break;
25c4c276 4135 case 2: /* clts */
edcafe3c 4136 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 4137 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4138 skip_emulated_instruction(vcpu);
6b52d186 4139 vmx_fpu_activate(vcpu);
25c4c276 4140 return 1;
6aa8b732
AK
4141 case 1: /*mov from cr*/
4142 switch (cr) {
4143 case 3:
9f8fe504
AK
4144 val = kvm_read_cr3(vcpu);
4145 kvm_register_write(vcpu, reg, val);
4146 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4147 skip_emulated_instruction(vcpu);
4148 return 1;
4149 case 8:
229456fc
MT
4150 val = kvm_get_cr8(vcpu);
4151 kvm_register_write(vcpu, reg, val);
4152 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4153 skip_emulated_instruction(vcpu);
4154 return 1;
4155 }
4156 break;
4157 case 3: /* lmsw */
a1f83a74 4158 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4159 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4160 kvm_lmsw(vcpu, val);
6aa8b732
AK
4161
4162 skip_emulated_instruction(vcpu);
4163 return 1;
4164 default:
4165 break;
4166 }
851ba692 4167 vcpu->run->exit_reason = 0;
f0242478 4168 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4169 (int)(exit_qualification >> 4) & 3, cr);
4170 return 0;
4171}
4172
851ba692 4173static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4174{
bfdaab09 4175 unsigned long exit_qualification;
6aa8b732
AK
4176 int dr, reg;
4177
f2483415 4178 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4179 if (!kvm_require_cpl(vcpu, 0))
4180 return 1;
42dbaa5a
JK
4181 dr = vmcs_readl(GUEST_DR7);
4182 if (dr & DR7_GD) {
4183 /*
4184 * As the vm-exit takes precedence over the debug trap, we
4185 * need to emulate the latter, either for the host or the
4186 * guest debugging itself.
4187 */
4188 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4189 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4190 vcpu->run->debug.arch.dr7 = dr;
4191 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4192 vmcs_readl(GUEST_CS_BASE) +
4193 vmcs_readl(GUEST_RIP);
851ba692
AK
4194 vcpu->run->debug.arch.exception = DB_VECTOR;
4195 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4196 return 0;
4197 } else {
4198 vcpu->arch.dr7 &= ~DR7_GD;
4199 vcpu->arch.dr6 |= DR6_BD;
4200 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4201 kvm_queue_exception(vcpu, DB_VECTOR);
4202 return 1;
4203 }
4204 }
4205
bfdaab09 4206 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4207 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4208 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4209 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4210 unsigned long val;
4211 if (!kvm_get_dr(vcpu, dr, &val))
4212 kvm_register_write(vcpu, reg, val);
4213 } else
4214 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4215 skip_emulated_instruction(vcpu);
4216 return 1;
4217}
4218
020df079
GN
4219static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4220{
4221 vmcs_writel(GUEST_DR7, val);
4222}
4223
851ba692 4224static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4225{
06465c5a
AK
4226 kvm_emulate_cpuid(vcpu);
4227 return 1;
6aa8b732
AK
4228}
4229
851ba692 4230static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4231{
ad312c7c 4232 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4233 u64 data;
4234
4235 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4236 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4237 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4238 return 1;
4239 }
4240
229456fc 4241 trace_kvm_msr_read(ecx, data);
2714d1d3 4242
6aa8b732 4243 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4244 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4245 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4246 skip_emulated_instruction(vcpu);
4247 return 1;
4248}
4249
851ba692 4250static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4251{
ad312c7c
ZX
4252 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4253 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4254 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4255
4256 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4257 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4258 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4259 return 1;
4260 }
4261
59200273 4262 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4263 skip_emulated_instruction(vcpu);
4264 return 1;
4265}
4266
851ba692 4267static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4268{
3842d135 4269 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4270 return 1;
4271}
4272
851ba692 4273static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4274{
85f455f7
ED
4275 u32 cpu_based_vm_exec_control;
4276
4277 /* clear pending irq */
4278 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4279 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4280 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4281
3842d135
AK
4282 kvm_make_request(KVM_REQ_EVENT, vcpu);
4283
a26bf12a 4284 ++vcpu->stat.irq_window_exits;
2714d1d3 4285
c1150d8c
DL
4286 /*
4287 * If the user space waits to inject interrupts, exit as soon as
4288 * possible
4289 */
8061823a 4290 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4291 vcpu->run->request_interrupt_window &&
8061823a 4292 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4293 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4294 return 0;
4295 }
6aa8b732
AK
4296 return 1;
4297}
4298
851ba692 4299static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4300{
4301 skip_emulated_instruction(vcpu);
d3bef15f 4302 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4303}
4304
851ba692 4305static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4306{
510043da 4307 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4308 kvm_emulate_hypercall(vcpu);
4309 return 1;
c21415e8
IM
4310}
4311
ec25d5e6
GN
4312static int handle_invd(struct kvm_vcpu *vcpu)
4313{
51d8b661 4314 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4315}
4316
851ba692 4317static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4318{
f9c617f6 4319 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4320
4321 kvm_mmu_invlpg(vcpu, exit_qualification);
4322 skip_emulated_instruction(vcpu);
4323 return 1;
4324}
4325
851ba692 4326static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4327{
4328 skip_emulated_instruction(vcpu);
f5f48ee1 4329 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4330 return 1;
4331}
4332
2acf923e
DC
4333static int handle_xsetbv(struct kvm_vcpu *vcpu)
4334{
4335 u64 new_bv = kvm_read_edx_eax(vcpu);
4336 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4337
4338 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4339 skip_emulated_instruction(vcpu);
4340 return 1;
4341}
4342
851ba692 4343static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4344{
51d8b661 4345 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4346}
4347
851ba692 4348static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4349{
60637aac 4350 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4351 unsigned long exit_qualification;
e269fb21
JK
4352 bool has_error_code = false;
4353 u32 error_code = 0;
37817f29 4354 u16 tss_selector;
64a7ec06
GN
4355 int reason, type, idt_v;
4356
4357 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4358 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4359
4360 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4361
4362 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4363 if (reason == TASK_SWITCH_GATE && idt_v) {
4364 switch (type) {
4365 case INTR_TYPE_NMI_INTR:
4366 vcpu->arch.nmi_injected = false;
654f06fc 4367 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4368 break;
4369 case INTR_TYPE_EXT_INTR:
66fd3f7f 4370 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4371 kvm_clear_interrupt_queue(vcpu);
4372 break;
4373 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4374 if (vmx->idt_vectoring_info &
4375 VECTORING_INFO_DELIVER_CODE_MASK) {
4376 has_error_code = true;
4377 error_code =
4378 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4379 }
4380 /* fall through */
64a7ec06
GN
4381 case INTR_TYPE_SOFT_EXCEPTION:
4382 kvm_clear_exception_queue(vcpu);
4383 break;
4384 default:
4385 break;
4386 }
60637aac 4387 }
37817f29
IE
4388 tss_selector = exit_qualification;
4389
64a7ec06
GN
4390 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4391 type != INTR_TYPE_EXT_INTR &&
4392 type != INTR_TYPE_NMI_INTR))
4393 skip_emulated_instruction(vcpu);
4394
acb54517
GN
4395 if (kvm_task_switch(vcpu, tss_selector, reason,
4396 has_error_code, error_code) == EMULATE_FAIL) {
4397 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4398 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4399 vcpu->run->internal.ndata = 0;
42dbaa5a 4400 return 0;
acb54517 4401 }
42dbaa5a
JK
4402
4403 /* clear all local breakpoint enable flags */
4404 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4405
4406 /*
4407 * TODO: What about debug traps on tss switch?
4408 * Are we supposed to inject them and update dr6?
4409 */
4410
4411 return 1;
37817f29
IE
4412}
4413
851ba692 4414static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4415{
f9c617f6 4416 unsigned long exit_qualification;
1439442c 4417 gpa_t gpa;
1439442c 4418 int gla_validity;
1439442c 4419
f9c617f6 4420 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4421
4422 if (exit_qualification & (1 << 6)) {
4423 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4424 return -EINVAL;
1439442c
SY
4425 }
4426
4427 gla_validity = (exit_qualification >> 7) & 0x3;
4428 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4429 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4430 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4431 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4432 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4433 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4434 (long unsigned int)exit_qualification);
851ba692
AK
4435 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4436 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4437 return 0;
1439442c
SY
4438 }
4439
4440 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4441 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4442 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4443}
4444
68f89400
MT
4445static u64 ept_rsvd_mask(u64 spte, int level)
4446{
4447 int i;
4448 u64 mask = 0;
4449
4450 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4451 mask |= (1ULL << i);
4452
4453 if (level > 2)
4454 /* bits 7:3 reserved */
4455 mask |= 0xf8;
4456 else if (level == 2) {
4457 if (spte & (1ULL << 7))
4458 /* 2MB ref, bits 20:12 reserved */
4459 mask |= 0x1ff000;
4460 else
4461 /* bits 6:3 reserved */
4462 mask |= 0x78;
4463 }
4464
4465 return mask;
4466}
4467
4468static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4469 int level)
4470{
4471 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4472
4473 /* 010b (write-only) */
4474 WARN_ON((spte & 0x7) == 0x2);
4475
4476 /* 110b (write/execute) */
4477 WARN_ON((spte & 0x7) == 0x6);
4478
4479 /* 100b (execute-only) and value not supported by logical processor */
4480 if (!cpu_has_vmx_ept_execute_only())
4481 WARN_ON((spte & 0x7) == 0x4);
4482
4483 /* not 000b */
4484 if ((spte & 0x7)) {
4485 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4486
4487 if (rsvd_bits != 0) {
4488 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4489 __func__, rsvd_bits);
4490 WARN_ON(1);
4491 }
4492
4493 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4494 u64 ept_mem_type = (spte & 0x38) >> 3;
4495
4496 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4497 ept_mem_type == 7) {
4498 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4499 __func__, ept_mem_type);
4500 WARN_ON(1);
4501 }
4502 }
4503 }
4504}
4505
851ba692 4506static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4507{
4508 u64 sptes[4];
4509 int nr_sptes, i;
4510 gpa_t gpa;
4511
4512 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4513
4514 printk(KERN_ERR "EPT: Misconfiguration.\n");
4515 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4516
4517 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4518
4519 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4520 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4521
851ba692
AK
4522 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4523 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4524
4525 return 0;
4526}
4527
851ba692 4528static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4529{
4530 u32 cpu_based_vm_exec_control;
4531
4532 /* clear pending NMI */
4533 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4534 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4535 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4536 ++vcpu->stat.nmi_window_exits;
3842d135 4537 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4538
4539 return 1;
4540}
4541
80ced186 4542static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4543{
8b3079a5
AK
4544 struct vcpu_vmx *vmx = to_vmx(vcpu);
4545 enum emulation_result err = EMULATE_DONE;
80ced186 4546 int ret = 1;
49e9d557
AK
4547 u32 cpu_exec_ctrl;
4548 bool intr_window_requested;
4549
4550 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4551 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4552
4553 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4554 if (intr_window_requested
4555 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4556 return handle_interrupt_window(&vmx->vcpu);
4557
51d8b661 4558 err = emulate_instruction(vcpu, 0);
ea953ef0 4559
80ced186
MG
4560 if (err == EMULATE_DO_MMIO) {
4561 ret = 0;
4562 goto out;
4563 }
1d5a4d9b 4564
6d77dbfc
GN
4565 if (err != EMULATE_DONE)
4566 return 0;
ea953ef0
MG
4567
4568 if (signal_pending(current))
80ced186 4569 goto out;
ea953ef0
MG
4570 if (need_resched())
4571 schedule();
4572 }
4573
80ced186
MG
4574 vmx->emulation_required = 0;
4575out:
4576 return ret;
ea953ef0
MG
4577}
4578
4b8d54f9
ZE
4579/*
4580 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4581 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4582 */
9fb41ba8 4583static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4584{
4585 skip_emulated_instruction(vcpu);
4586 kvm_vcpu_on_spin(vcpu);
4587
4588 return 1;
4589}
4590
59708670
SY
4591static int handle_invalid_op(struct kvm_vcpu *vcpu)
4592{
4593 kvm_queue_exception(vcpu, UD_VECTOR);
4594 return 1;
4595}
4596
ff2f6fe9
NHE
4597/*
4598 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4599 * We could reuse a single VMCS for all the L2 guests, but we also want the
4600 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4601 * allows keeping them loaded on the processor, and in the future will allow
4602 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4603 * every entry if they never change.
4604 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4605 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4606 *
4607 * The following functions allocate and free a vmcs02 in this pool.
4608 */
4609
4610/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4611static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4612{
4613 struct vmcs02_list *item;
4614 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4615 if (item->vmptr == vmx->nested.current_vmptr) {
4616 list_move(&item->list, &vmx->nested.vmcs02_pool);
4617 return &item->vmcs02;
4618 }
4619
4620 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4621 /* Recycle the least recently used VMCS. */
4622 item = list_entry(vmx->nested.vmcs02_pool.prev,
4623 struct vmcs02_list, list);
4624 item->vmptr = vmx->nested.current_vmptr;
4625 list_move(&item->list, &vmx->nested.vmcs02_pool);
4626 return &item->vmcs02;
4627 }
4628
4629 /* Create a new VMCS */
4630 item = (struct vmcs02_list *)
4631 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4632 if (!item)
4633 return NULL;
4634 item->vmcs02.vmcs = alloc_vmcs();
4635 if (!item->vmcs02.vmcs) {
4636 kfree(item);
4637 return NULL;
4638 }
4639 loaded_vmcs_init(&item->vmcs02);
4640 item->vmptr = vmx->nested.current_vmptr;
4641 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4642 vmx->nested.vmcs02_num++;
4643 return &item->vmcs02;
4644}
4645
4646/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4647static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4648{
4649 struct vmcs02_list *item;
4650 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4651 if (item->vmptr == vmptr) {
4652 free_loaded_vmcs(&item->vmcs02);
4653 list_del(&item->list);
4654 kfree(item);
4655 vmx->nested.vmcs02_num--;
4656 return;
4657 }
4658}
4659
4660/*
4661 * Free all VMCSs saved for this vcpu, except the one pointed by
4662 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4663 * currently used, if running L2), and vmcs01 when running L2.
4664 */
4665static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4666{
4667 struct vmcs02_list *item, *n;
4668 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4669 if (vmx->loaded_vmcs != &item->vmcs02)
4670 free_loaded_vmcs(&item->vmcs02);
4671 list_del(&item->list);
4672 kfree(item);
4673 }
4674 vmx->nested.vmcs02_num = 0;
4675
4676 if (vmx->loaded_vmcs != &vmx->vmcs01)
4677 free_loaded_vmcs(&vmx->vmcs01);
4678}
4679
ec378aee
NHE
4680/*
4681 * Emulate the VMXON instruction.
4682 * Currently, we just remember that VMX is active, and do not save or even
4683 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4684 * do not currently need to store anything in that guest-allocated memory
4685 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4686 * argument is different from the VMXON pointer (which the spec says they do).
4687 */
4688static int handle_vmon(struct kvm_vcpu *vcpu)
4689{
4690 struct kvm_segment cs;
4691 struct vcpu_vmx *vmx = to_vmx(vcpu);
4692
4693 /* The Intel VMX Instruction Reference lists a bunch of bits that
4694 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4695 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4696 * Otherwise, we should fail with #UD. We test these now:
4697 */
4698 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4699 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4700 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4701 kvm_queue_exception(vcpu, UD_VECTOR);
4702 return 1;
4703 }
4704
4705 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4706 if (is_long_mode(vcpu) && !cs.l) {
4707 kvm_queue_exception(vcpu, UD_VECTOR);
4708 return 1;
4709 }
4710
4711 if (vmx_get_cpl(vcpu)) {
4712 kvm_inject_gp(vcpu, 0);
4713 return 1;
4714 }
4715
ff2f6fe9
NHE
4716 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
4717 vmx->nested.vmcs02_num = 0;
4718
ec378aee
NHE
4719 vmx->nested.vmxon = true;
4720
4721 skip_emulated_instruction(vcpu);
4722 return 1;
4723}
4724
4725/*
4726 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4727 * for running VMX instructions (except VMXON, whose prerequisites are
4728 * slightly different). It also specifies what exception to inject otherwise.
4729 */
4730static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4731{
4732 struct kvm_segment cs;
4733 struct vcpu_vmx *vmx = to_vmx(vcpu);
4734
4735 if (!vmx->nested.vmxon) {
4736 kvm_queue_exception(vcpu, UD_VECTOR);
4737 return 0;
4738 }
4739
4740 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4741 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4742 (is_long_mode(vcpu) && !cs.l)) {
4743 kvm_queue_exception(vcpu, UD_VECTOR);
4744 return 0;
4745 }
4746
4747 if (vmx_get_cpl(vcpu)) {
4748 kvm_inject_gp(vcpu, 0);
4749 return 0;
4750 }
4751
4752 return 1;
4753}
4754
4755/*
4756 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4757 * just stops using VMX.
4758 */
4759static void free_nested(struct vcpu_vmx *vmx)
4760{
4761 if (!vmx->nested.vmxon)
4762 return;
4763 vmx->nested.vmxon = false;
a9d30f33
NHE
4764 if (vmx->nested.current_vmptr != -1ull) {
4765 kunmap(vmx->nested.current_vmcs12_page);
4766 nested_release_page(vmx->nested.current_vmcs12_page);
4767 vmx->nested.current_vmptr = -1ull;
4768 vmx->nested.current_vmcs12 = NULL;
4769 }
fe3ef05c
NHE
4770 /* Unpin physical memory we referred to in current vmcs02 */
4771 if (vmx->nested.apic_access_page) {
4772 nested_release_page(vmx->nested.apic_access_page);
4773 vmx->nested.apic_access_page = 0;
4774 }
ff2f6fe9
NHE
4775
4776 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
4777}
4778
4779/* Emulate the VMXOFF instruction */
4780static int handle_vmoff(struct kvm_vcpu *vcpu)
4781{
4782 if (!nested_vmx_check_permission(vcpu))
4783 return 1;
4784 free_nested(to_vmx(vcpu));
4785 skip_emulated_instruction(vcpu);
4786 return 1;
4787}
4788
064aea77
NHE
4789/*
4790 * Decode the memory-address operand of a vmx instruction, as recorded on an
4791 * exit caused by such an instruction (run by a guest hypervisor).
4792 * On success, returns 0. When the operand is invalid, returns 1 and throws
4793 * #UD or #GP.
4794 */
4795static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
4796 unsigned long exit_qualification,
4797 u32 vmx_instruction_info, gva_t *ret)
4798{
4799 /*
4800 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4801 * Execution", on an exit, vmx_instruction_info holds most of the
4802 * addressing components of the operand. Only the displacement part
4803 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4804 * For how an actual address is calculated from all these components,
4805 * refer to Vol. 1, "Operand Addressing".
4806 */
4807 int scaling = vmx_instruction_info & 3;
4808 int addr_size = (vmx_instruction_info >> 7) & 7;
4809 bool is_reg = vmx_instruction_info & (1u << 10);
4810 int seg_reg = (vmx_instruction_info >> 15) & 7;
4811 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4812 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4813 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4814 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4815
4816 if (is_reg) {
4817 kvm_queue_exception(vcpu, UD_VECTOR);
4818 return 1;
4819 }
4820
4821 /* Addr = segment_base + offset */
4822 /* offset = base + [index * scale] + displacement */
4823 *ret = vmx_get_segment_base(vcpu, seg_reg);
4824 if (base_is_valid)
4825 *ret += kvm_register_read(vcpu, base_reg);
4826 if (index_is_valid)
4827 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
4828 *ret += exit_qualification; /* holds the displacement */
4829
4830 if (addr_size == 1) /* 32 bit */
4831 *ret &= 0xffffffff;
4832
4833 /*
4834 * TODO: throw #GP (and return 1) in various cases that the VM*
4835 * instructions require it - e.g., offset beyond segment limit,
4836 * unusable or unreadable/unwritable segment, non-canonical 64-bit
4837 * address, and so on. Currently these are not checked.
4838 */
4839 return 0;
4840}
4841
0140caea
NHE
4842/*
4843 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
4844 * set the success or error code of an emulated VMX instruction, as specified
4845 * by Vol 2B, VMX Instruction Reference, "Conventions".
4846 */
4847static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
4848{
4849 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
4850 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
4851 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
4852}
4853
4854static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
4855{
4856 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
4857 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
4858 X86_EFLAGS_SF | X86_EFLAGS_OF))
4859 | X86_EFLAGS_CF);
4860}
4861
4862static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
4863 u32 vm_instruction_error)
4864{
4865 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
4866 /*
4867 * failValid writes the error number to the current VMCS, which
4868 * can't be done there isn't a current VMCS.
4869 */
4870 nested_vmx_failInvalid(vcpu);
4871 return;
4872 }
4873 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
4874 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
4875 X86_EFLAGS_SF | X86_EFLAGS_OF))
4876 | X86_EFLAGS_ZF);
4877 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
4878}
4879
27d6c865
NHE
4880/* Emulate the VMCLEAR instruction */
4881static int handle_vmclear(struct kvm_vcpu *vcpu)
4882{
4883 struct vcpu_vmx *vmx = to_vmx(vcpu);
4884 gva_t gva;
4885 gpa_t vmptr;
4886 struct vmcs12 *vmcs12;
4887 struct page *page;
4888 struct x86_exception e;
4889
4890 if (!nested_vmx_check_permission(vcpu))
4891 return 1;
4892
4893 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4894 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
4895 return 1;
4896
4897 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
4898 sizeof(vmptr), &e)) {
4899 kvm_inject_page_fault(vcpu, &e);
4900 return 1;
4901 }
4902
4903 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
4904 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4905 skip_emulated_instruction(vcpu);
4906 return 1;
4907 }
4908
4909 if (vmptr == vmx->nested.current_vmptr) {
4910 kunmap(vmx->nested.current_vmcs12_page);
4911 nested_release_page(vmx->nested.current_vmcs12_page);
4912 vmx->nested.current_vmptr = -1ull;
4913 vmx->nested.current_vmcs12 = NULL;
4914 }
4915
4916 page = nested_get_page(vcpu, vmptr);
4917 if (page == NULL) {
4918 /*
4919 * For accurate processor emulation, VMCLEAR beyond available
4920 * physical memory should do nothing at all. However, it is
4921 * possible that a nested vmx bug, not a guest hypervisor bug,
4922 * resulted in this case, so let's shut down before doing any
4923 * more damage:
4924 */
4925 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4926 return 1;
4927 }
4928 vmcs12 = kmap(page);
4929 vmcs12->launch_state = 0;
4930 kunmap(page);
4931 nested_release_page(page);
4932
4933 nested_free_vmcs02(vmx, vmptr);
4934
4935 skip_emulated_instruction(vcpu);
4936 nested_vmx_succeed(vcpu);
4937 return 1;
4938}
4939
cd232ad0
NHE
4940static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4941
4942/* Emulate the VMLAUNCH instruction */
4943static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4944{
4945 return nested_vmx_run(vcpu, true);
4946}
4947
4948/* Emulate the VMRESUME instruction */
4949static int handle_vmresume(struct kvm_vcpu *vcpu)
4950{
4951
4952 return nested_vmx_run(vcpu, false);
4953}
4954
49f705c5
NHE
4955enum vmcs_field_type {
4956 VMCS_FIELD_TYPE_U16 = 0,
4957 VMCS_FIELD_TYPE_U64 = 1,
4958 VMCS_FIELD_TYPE_U32 = 2,
4959 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
4960};
4961
4962static inline int vmcs_field_type(unsigned long field)
4963{
4964 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
4965 return VMCS_FIELD_TYPE_U32;
4966 return (field >> 13) & 0x3 ;
4967}
4968
4969static inline int vmcs_field_readonly(unsigned long field)
4970{
4971 return (((field >> 10) & 0x3) == 1);
4972}
4973
4974/*
4975 * Read a vmcs12 field. Since these can have varying lengths and we return
4976 * one type, we chose the biggest type (u64) and zero-extend the return value
4977 * to that size. Note that the caller, handle_vmread, might need to use only
4978 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
4979 * 64-bit fields are to be returned).
4980 */
4981static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
4982 unsigned long field, u64 *ret)
4983{
4984 short offset = vmcs_field_to_offset(field);
4985 char *p;
4986
4987 if (offset < 0)
4988 return 0;
4989
4990 p = ((char *)(get_vmcs12(vcpu))) + offset;
4991
4992 switch (vmcs_field_type(field)) {
4993 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
4994 *ret = *((natural_width *)p);
4995 return 1;
4996 case VMCS_FIELD_TYPE_U16:
4997 *ret = *((u16 *)p);
4998 return 1;
4999 case VMCS_FIELD_TYPE_U32:
5000 *ret = *((u32 *)p);
5001 return 1;
5002 case VMCS_FIELD_TYPE_U64:
5003 *ret = *((u64 *)p);
5004 return 1;
5005 default:
5006 return 0; /* can never happen. */
5007 }
5008}
5009
5010/*
5011 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5012 * used before) all generate the same failure when it is missing.
5013 */
5014static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5015{
5016 struct vcpu_vmx *vmx = to_vmx(vcpu);
5017 if (vmx->nested.current_vmptr == -1ull) {
5018 nested_vmx_failInvalid(vcpu);
5019 skip_emulated_instruction(vcpu);
5020 return 0;
5021 }
5022 return 1;
5023}
5024
5025static int handle_vmread(struct kvm_vcpu *vcpu)
5026{
5027 unsigned long field;
5028 u64 field_value;
5029 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5030 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5031 gva_t gva = 0;
5032
5033 if (!nested_vmx_check_permission(vcpu) ||
5034 !nested_vmx_check_vmcs12(vcpu))
5035 return 1;
5036
5037 /* Decode instruction info and find the field to read */
5038 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5039 /* Read the field, zero-extended to a u64 field_value */
5040 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5041 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5042 skip_emulated_instruction(vcpu);
5043 return 1;
5044 }
5045 /*
5046 * Now copy part of this value to register or memory, as requested.
5047 * Note that the number of bits actually copied is 32 or 64 depending
5048 * on the guest's mode (32 or 64 bit), not on the given field's length.
5049 */
5050 if (vmx_instruction_info & (1u << 10)) {
5051 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5052 field_value);
5053 } else {
5054 if (get_vmx_mem_address(vcpu, exit_qualification,
5055 vmx_instruction_info, &gva))
5056 return 1;
5057 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5058 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5059 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5060 }
5061
5062 nested_vmx_succeed(vcpu);
5063 skip_emulated_instruction(vcpu);
5064 return 1;
5065}
5066
5067
5068static int handle_vmwrite(struct kvm_vcpu *vcpu)
5069{
5070 unsigned long field;
5071 gva_t gva;
5072 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5073 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5074 char *p;
5075 short offset;
5076 /* The value to write might be 32 or 64 bits, depending on L1's long
5077 * mode, and eventually we need to write that into a field of several
5078 * possible lengths. The code below first zero-extends the value to 64
5079 * bit (field_value), and then copies only the approriate number of
5080 * bits into the vmcs12 field.
5081 */
5082 u64 field_value = 0;
5083 struct x86_exception e;
5084
5085 if (!nested_vmx_check_permission(vcpu) ||
5086 !nested_vmx_check_vmcs12(vcpu))
5087 return 1;
5088
5089 if (vmx_instruction_info & (1u << 10))
5090 field_value = kvm_register_read(vcpu,
5091 (((vmx_instruction_info) >> 3) & 0xf));
5092 else {
5093 if (get_vmx_mem_address(vcpu, exit_qualification,
5094 vmx_instruction_info, &gva))
5095 return 1;
5096 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5097 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5098 kvm_inject_page_fault(vcpu, &e);
5099 return 1;
5100 }
5101 }
5102
5103
5104 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5105 if (vmcs_field_readonly(field)) {
5106 nested_vmx_failValid(vcpu,
5107 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5108 skip_emulated_instruction(vcpu);
5109 return 1;
5110 }
5111
5112 offset = vmcs_field_to_offset(field);
5113 if (offset < 0) {
5114 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5115 skip_emulated_instruction(vcpu);
5116 return 1;
5117 }
5118 p = ((char *) get_vmcs12(vcpu)) + offset;
5119
5120 switch (vmcs_field_type(field)) {
5121 case VMCS_FIELD_TYPE_U16:
5122 *(u16 *)p = field_value;
5123 break;
5124 case VMCS_FIELD_TYPE_U32:
5125 *(u32 *)p = field_value;
5126 break;
5127 case VMCS_FIELD_TYPE_U64:
5128 *(u64 *)p = field_value;
5129 break;
5130 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5131 *(natural_width *)p = field_value;
5132 break;
5133 default:
5134 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5135 skip_emulated_instruction(vcpu);
5136 return 1;
5137 }
5138
5139 nested_vmx_succeed(vcpu);
5140 skip_emulated_instruction(vcpu);
5141 return 1;
5142}
5143
63846663
NHE
5144/* Emulate the VMPTRLD instruction */
5145static int handle_vmptrld(struct kvm_vcpu *vcpu)
5146{
5147 struct vcpu_vmx *vmx = to_vmx(vcpu);
5148 gva_t gva;
5149 gpa_t vmptr;
5150 struct x86_exception e;
5151
5152 if (!nested_vmx_check_permission(vcpu))
5153 return 1;
5154
5155 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5156 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5157 return 1;
5158
5159 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5160 sizeof(vmptr), &e)) {
5161 kvm_inject_page_fault(vcpu, &e);
5162 return 1;
5163 }
5164
5165 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5166 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5167 skip_emulated_instruction(vcpu);
5168 return 1;
5169 }
5170
5171 if (vmx->nested.current_vmptr != vmptr) {
5172 struct vmcs12 *new_vmcs12;
5173 struct page *page;
5174 page = nested_get_page(vcpu, vmptr);
5175 if (page == NULL) {
5176 nested_vmx_failInvalid(vcpu);
5177 skip_emulated_instruction(vcpu);
5178 return 1;
5179 }
5180 new_vmcs12 = kmap(page);
5181 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5182 kunmap(page);
5183 nested_release_page_clean(page);
5184 nested_vmx_failValid(vcpu,
5185 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5186 skip_emulated_instruction(vcpu);
5187 return 1;
5188 }
5189 if (vmx->nested.current_vmptr != -1ull) {
5190 kunmap(vmx->nested.current_vmcs12_page);
5191 nested_release_page(vmx->nested.current_vmcs12_page);
5192 }
5193
5194 vmx->nested.current_vmptr = vmptr;
5195 vmx->nested.current_vmcs12 = new_vmcs12;
5196 vmx->nested.current_vmcs12_page = page;
5197 }
5198
5199 nested_vmx_succeed(vcpu);
5200 skip_emulated_instruction(vcpu);
5201 return 1;
5202}
5203
6a4d7550
NHE
5204/* Emulate the VMPTRST instruction */
5205static int handle_vmptrst(struct kvm_vcpu *vcpu)
5206{
5207 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5208 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5209 gva_t vmcs_gva;
5210 struct x86_exception e;
5211
5212 if (!nested_vmx_check_permission(vcpu))
5213 return 1;
5214
5215 if (get_vmx_mem_address(vcpu, exit_qualification,
5216 vmx_instruction_info, &vmcs_gva))
5217 return 1;
5218 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5219 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5220 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5221 sizeof(u64), &e)) {
5222 kvm_inject_page_fault(vcpu, &e);
5223 return 1;
5224 }
5225 nested_vmx_succeed(vcpu);
5226 skip_emulated_instruction(vcpu);
5227 return 1;
5228}
5229
6aa8b732
AK
5230/*
5231 * The exit handlers return 1 if the exit was handled fully and guest execution
5232 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5233 * to be done to userspace and return 0.
5234 */
851ba692 5235static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5236 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5237 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5238 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5239 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5240 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5241 [EXIT_REASON_CR_ACCESS] = handle_cr,
5242 [EXIT_REASON_DR_ACCESS] = handle_dr,
5243 [EXIT_REASON_CPUID] = handle_cpuid,
5244 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5245 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5246 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5247 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5248 [EXIT_REASON_INVD] = handle_invd,
a7052897 5249 [EXIT_REASON_INVLPG] = handle_invlpg,
c21415e8 5250 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5251 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5252 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5253 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5254 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5255 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5256 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5257 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5258 [EXIT_REASON_VMOFF] = handle_vmoff,
5259 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5260 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5261 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5262 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5263 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5264 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5265 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5266 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5267 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5268 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5269 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5270 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5271};
5272
5273static const int kvm_vmx_max_exit_handlers =
50a3485c 5274 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5275
586f9607
AK
5276static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5277{
5278 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5279 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5280}
5281
6aa8b732
AK
5282/*
5283 * The guest has exited. See if we can fix it or if we need userspace
5284 * assistance.
5285 */
851ba692 5286static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5287{
29bd8a78 5288 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5289 u32 exit_reason = vmx->exit_reason;
1155f76a 5290 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5291
aa17911e 5292 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
2714d1d3 5293
80ced186
MG
5294 /* If guest state is invalid, start emulating */
5295 if (vmx->emulation_required && emulate_invalid_guest_state)
5296 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5297
5120702e
MG
5298 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5299 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5300 vcpu->run->fail_entry.hardware_entry_failure_reason
5301 = exit_reason;
5302 return 0;
5303 }
5304
29bd8a78 5305 if (unlikely(vmx->fail)) {
851ba692
AK
5306 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5307 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5308 = vmcs_read32(VM_INSTRUCTION_ERROR);
5309 return 0;
5310 }
6aa8b732 5311
d77c26fc 5312 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5313 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5314 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5315 exit_reason != EXIT_REASON_TASK_SWITCH))
5316 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5317 "(0x%x) and exit reason is 0x%x\n",
5318 __func__, vectoring_info, exit_reason);
3b86cd99
JK
5319
5320 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
c4282df9 5321 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5322 vmx->soft_vnmi_blocked = 0;
3b86cd99 5323 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5324 vcpu->arch.nmi_pending) {
3b86cd99
JK
5325 /*
5326 * This CPU don't support us in finding the end of an
5327 * NMI-blocked window if the guest runs with IRQs
5328 * disabled. So we pull the trigger after 1 s of
5329 * futile waiting, but inform the user about this.
5330 */
5331 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5332 "state on VCPU %d after 1 s timeout\n",
5333 __func__, vcpu->vcpu_id);
5334 vmx->soft_vnmi_blocked = 0;
3b86cd99 5335 }
3b86cd99
JK
5336 }
5337
6aa8b732
AK
5338 if (exit_reason < kvm_vmx_max_exit_handlers
5339 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5340 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5341 else {
851ba692
AK
5342 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5343 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5344 }
5345 return 0;
5346}
5347
95ba8273 5348static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5349{
95ba8273 5350 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5351 vmcs_write32(TPR_THRESHOLD, 0);
5352 return;
5353 }
5354
95ba8273 5355 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5356}
5357
51aa01d1 5358static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5359{
00eba012
AK
5360 u32 exit_intr_info;
5361
5362 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5363 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5364 return;
5365
c5ca8e57 5366 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5367 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5368
5369 /* Handle machine checks before interrupts are enabled */
00eba012 5370 if (is_machine_check(exit_intr_info))
a0861c02
AK
5371 kvm_machine_check();
5372
20f65983 5373 /* We need to handle NMIs before interrupts are enabled */
00eba012 5374 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5375 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5376 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5377 asm("int $2");
ff9d07a0
ZY
5378 kvm_after_handle_nmi(&vmx->vcpu);
5379 }
51aa01d1 5380}
20f65983 5381
51aa01d1
AK
5382static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5383{
c5ca8e57 5384 u32 exit_intr_info;
51aa01d1
AK
5385 bool unblock_nmi;
5386 u8 vector;
5387 bool idtv_info_valid;
5388
5389 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5390
cf393f75 5391 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5392 if (vmx->nmi_known_unmasked)
5393 return;
c5ca8e57
AK
5394 /*
5395 * Can't use vmx->exit_intr_info since we're not sure what
5396 * the exit reason is.
5397 */
5398 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5399 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5400 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5401 /*
7b4a25cb 5402 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5403 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5404 * a guest IRET fault.
7b4a25cb
GN
5405 * SDM 3: 23.2.2 (September 2008)
5406 * Bit 12 is undefined in any of the following cases:
5407 * If the VM exit sets the valid bit in the IDT-vectoring
5408 * information field.
5409 * If the VM exit is due to a double fault.
cf393f75 5410 */
7b4a25cb
GN
5411 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5412 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5413 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5414 GUEST_INTR_STATE_NMI);
9d58b931
AK
5415 else
5416 vmx->nmi_known_unmasked =
5417 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5418 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5419 } else if (unlikely(vmx->soft_vnmi_blocked))
5420 vmx->vnmi_blocked_time +=
5421 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5422}
5423
83422e17
AK
5424static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5425 u32 idt_vectoring_info,
5426 int instr_len_field,
5427 int error_code_field)
51aa01d1 5428{
51aa01d1
AK
5429 u8 vector;
5430 int type;
5431 bool idtv_info_valid;
5432
5433 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 5434
37b96e98
GN
5435 vmx->vcpu.arch.nmi_injected = false;
5436 kvm_clear_exception_queue(&vmx->vcpu);
5437 kvm_clear_interrupt_queue(&vmx->vcpu);
5438
5439 if (!idtv_info_valid)
5440 return;
5441
3842d135
AK
5442 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5443
668f612f
AK
5444 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5445 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 5446
64a7ec06 5447 switch (type) {
37b96e98
GN
5448 case INTR_TYPE_NMI_INTR:
5449 vmx->vcpu.arch.nmi_injected = true;
668f612f 5450 /*
7b4a25cb 5451 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
5452 * Clear bit "block by NMI" before VM entry if a NMI
5453 * delivery faulted.
668f612f 5454 */
654f06fc 5455 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 5456 break;
37b96e98 5457 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 5458 vmx->vcpu.arch.event_exit_inst_len =
83422e17 5459 vmcs_read32(instr_len_field);
66fd3f7f
GN
5460 /* fall through */
5461 case INTR_TYPE_HARD_EXCEPTION:
35920a35 5462 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 5463 u32 err = vmcs_read32(error_code_field);
37b96e98 5464 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
5465 } else
5466 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 5467 break;
66fd3f7f
GN
5468 case INTR_TYPE_SOFT_INTR:
5469 vmx->vcpu.arch.event_exit_inst_len =
83422e17 5470 vmcs_read32(instr_len_field);
66fd3f7f 5471 /* fall through */
37b96e98 5472 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
5473 kvm_queue_interrupt(&vmx->vcpu, vector,
5474 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
5475 break;
5476 default:
5477 break;
f7d9238f 5478 }
cf393f75
AK
5479}
5480
83422e17
AK
5481static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
5482{
5483 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
5484 VM_EXIT_INSTRUCTION_LEN,
5485 IDT_VECTORING_ERROR_CODE);
5486}
5487
b463a6f7
AK
5488static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
5489{
5490 __vmx_complete_interrupts(to_vmx(vcpu),
5491 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5492 VM_ENTRY_INSTRUCTION_LEN,
5493 VM_ENTRY_EXCEPTION_ERROR_CODE);
5494
5495 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
5496}
5497
c801949d
AK
5498#ifdef CONFIG_X86_64
5499#define R "r"
5500#define Q "q"
5501#else
5502#define R "e"
5503#define Q "l"
5504#endif
5505
a3b5ba49 5506static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 5507{
a2fa3e9f 5508 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b
AK
5509
5510 /* Record the guest's net vcpu time for enforced NMI injections. */
5511 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
5512 vmx->entry_time = ktime_get();
5513
5514 /* Don't enter VMX if guest state is invalid, let the exit handler
5515 start emulation until we arrive back to a valid state */
5516 if (vmx->emulation_required && emulate_invalid_guest_state)
5517 return;
5518
5519 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
5520 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
5521 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
5522 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
5523
5524 /* When single-stepping over STI and MOV SS, we must clear the
5525 * corresponding interruptibility bits in the guest state. Otherwise
5526 * vmentry fails as it then expects bit 14 (BS) in pending debug
5527 * exceptions being set, but that's not correct for the guest debugging
5528 * case. */
5529 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5530 vmx_set_interrupt_shadow(vcpu, 0);
5531
d462b819 5532 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 5533 asm(
6aa8b732 5534 /* Store host registers */
c801949d 5535 "push %%"R"dx; push %%"R"bp;"
40712fae 5536 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 5537 "push %%"R"cx \n\t"
313dbd49
AK
5538 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
5539 "je 1f \n\t"
5540 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 5541 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 5542 "1: \n\t"
d3edefc0
AK
5543 /* Reload cr2 if changed */
5544 "mov %c[cr2](%0), %%"R"ax \n\t"
5545 "mov %%cr2, %%"R"dx \n\t"
5546 "cmp %%"R"ax, %%"R"dx \n\t"
5547 "je 2f \n\t"
5548 "mov %%"R"ax, %%cr2 \n\t"
5549 "2: \n\t"
6aa8b732 5550 /* Check if vmlaunch of vmresume is needed */
e08aa78a 5551 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 5552 /* Load guest registers. Don't clobber flags. */
c801949d
AK
5553 "mov %c[rax](%0), %%"R"ax \n\t"
5554 "mov %c[rbx](%0), %%"R"bx \n\t"
5555 "mov %c[rdx](%0), %%"R"dx \n\t"
5556 "mov %c[rsi](%0), %%"R"si \n\t"
5557 "mov %c[rdi](%0), %%"R"di \n\t"
5558 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 5559#ifdef CONFIG_X86_64
e08aa78a
AK
5560 "mov %c[r8](%0), %%r8 \n\t"
5561 "mov %c[r9](%0), %%r9 \n\t"
5562 "mov %c[r10](%0), %%r10 \n\t"
5563 "mov %c[r11](%0), %%r11 \n\t"
5564 "mov %c[r12](%0), %%r12 \n\t"
5565 "mov %c[r13](%0), %%r13 \n\t"
5566 "mov %c[r14](%0), %%r14 \n\t"
5567 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 5568#endif
c801949d
AK
5569 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
5570
6aa8b732 5571 /* Enter guest mode */
cd2276a7 5572 "jne .Llaunched \n\t"
4ecac3fd 5573 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 5574 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 5575 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 5576 ".Lkvm_vmx_return: "
6aa8b732 5577 /* Save guest registers, load host registers, keep flags */
40712fae
AK
5578 "mov %0, %c[wordsize](%%"R"sp) \n\t"
5579 "pop %0 \n\t"
c801949d
AK
5580 "mov %%"R"ax, %c[rax](%0) \n\t"
5581 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 5582 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
5583 "mov %%"R"dx, %c[rdx](%0) \n\t"
5584 "mov %%"R"si, %c[rsi](%0) \n\t"
5585 "mov %%"R"di, %c[rdi](%0) \n\t"
5586 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 5587#ifdef CONFIG_X86_64
e08aa78a
AK
5588 "mov %%r8, %c[r8](%0) \n\t"
5589 "mov %%r9, %c[r9](%0) \n\t"
5590 "mov %%r10, %c[r10](%0) \n\t"
5591 "mov %%r11, %c[r11](%0) \n\t"
5592 "mov %%r12, %c[r12](%0) \n\t"
5593 "mov %%r13, %c[r13](%0) \n\t"
5594 "mov %%r14, %c[r14](%0) \n\t"
5595 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 5596#endif
c801949d
AK
5597 "mov %%cr2, %%"R"ax \n\t"
5598 "mov %%"R"ax, %c[cr2](%0) \n\t"
5599
1c696d0e 5600 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
5601 "setbe %c[fail](%0) \n\t"
5602 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 5603 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 5604 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 5605 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
5606 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
5607 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
5608 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
5609 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
5610 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
5611 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
5612 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 5613#ifdef CONFIG_X86_64
ad312c7c
ZX
5614 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
5615 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
5616 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
5617 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
5618 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
5619 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
5620 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
5621 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 5622#endif
40712fae
AK
5623 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
5624 [wordsize]"i"(sizeof(ulong))
c2036300 5625 : "cc", "memory"
07d6f555 5626 , R"ax", R"bx", R"di", R"si"
c2036300 5627#ifdef CONFIG_X86_64
c2036300
LV
5628 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
5629#endif
5630 );
6aa8b732 5631
6de4f3ad 5632 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 5633 | (1 << VCPU_EXREG_RFLAGS)
69c73028 5634 | (1 << VCPU_EXREG_CPL)
aff48baa 5635 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 5636 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 5637 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
5638 vcpu->arch.regs_dirty = 0;
5639
1155f76a
AK
5640 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
5641
d77c26fc 5642 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 5643 vmx->loaded_vmcs->launched = 1;
1b6269db 5644
51aa01d1 5645 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1
AK
5646
5647 vmx_complete_atomic_exit(vmx);
5648 vmx_recover_nmi_blocking(vmx);
cf393f75 5649 vmx_complete_interrupts(vmx);
6aa8b732
AK
5650}
5651
c801949d
AK
5652#undef R
5653#undef Q
5654
6aa8b732
AK
5655static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
5656{
fb3f0f51
RR
5657 struct vcpu_vmx *vmx = to_vmx(vcpu);
5658
cdbecfc3 5659 free_vpid(vmx);
ec378aee 5660 free_nested(vmx);
d462b819 5661 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
5662 kfree(vmx->guest_msrs);
5663 kvm_vcpu_uninit(vcpu);
a4770347 5664 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
5665}
5666
fb3f0f51 5667static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 5668{
fb3f0f51 5669 int err;
c16f862d 5670 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 5671 int cpu;
6aa8b732 5672
a2fa3e9f 5673 if (!vmx)
fb3f0f51
RR
5674 return ERR_PTR(-ENOMEM);
5675
2384d2b3
SY
5676 allocate_vpid(vmx);
5677
fb3f0f51
RR
5678 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
5679 if (err)
5680 goto free_vcpu;
965b58a5 5681
a2fa3e9f 5682 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 5683 err = -ENOMEM;
fb3f0f51 5684 if (!vmx->guest_msrs) {
fb3f0f51
RR
5685 goto uninit_vcpu;
5686 }
965b58a5 5687
d462b819
NHE
5688 vmx->loaded_vmcs = &vmx->vmcs01;
5689 vmx->loaded_vmcs->vmcs = alloc_vmcs();
5690 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 5691 goto free_msrs;
d462b819
NHE
5692 if (!vmm_exclusive)
5693 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
5694 loaded_vmcs_init(vmx->loaded_vmcs);
5695 if (!vmm_exclusive)
5696 kvm_cpu_vmxoff();
a2fa3e9f 5697
15ad7146
AK
5698 cpu = get_cpu();
5699 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 5700 vmx->vcpu.cpu = cpu;
8b9cf98c 5701 err = vmx_vcpu_setup(vmx);
fb3f0f51 5702 vmx_vcpu_put(&vmx->vcpu);
15ad7146 5703 put_cpu();
fb3f0f51
RR
5704 if (err)
5705 goto free_vmcs;
5e4a0b3c 5706 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
5707 err = alloc_apic_access_page(kvm);
5708 if (err)
5e4a0b3c 5709 goto free_vmcs;
fb3f0f51 5710
b927a3ce
SY
5711 if (enable_ept) {
5712 if (!kvm->arch.ept_identity_map_addr)
5713 kvm->arch.ept_identity_map_addr =
5714 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 5715 err = -ENOMEM;
b7ebfb05
SY
5716 if (alloc_identity_pagetable(kvm) != 0)
5717 goto free_vmcs;
93ea5388
GN
5718 if (!init_rmode_identity_map(kvm))
5719 goto free_vmcs;
b927a3ce 5720 }
b7ebfb05 5721
a9d30f33
NHE
5722 vmx->nested.current_vmptr = -1ull;
5723 vmx->nested.current_vmcs12 = NULL;
5724
fb3f0f51
RR
5725 return &vmx->vcpu;
5726
5727free_vmcs:
d462b819 5728 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 5729free_msrs:
fb3f0f51
RR
5730 kfree(vmx->guest_msrs);
5731uninit_vcpu:
5732 kvm_vcpu_uninit(&vmx->vcpu);
5733free_vcpu:
cdbecfc3 5734 free_vpid(vmx);
a4770347 5735 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 5736 return ERR_PTR(err);
6aa8b732
AK
5737}
5738
002c7f7c
YS
5739static void __init vmx_check_processor_compat(void *rtn)
5740{
5741 struct vmcs_config vmcs_conf;
5742
5743 *(int *)rtn = 0;
5744 if (setup_vmcs_config(&vmcs_conf) < 0)
5745 *(int *)rtn = -EIO;
5746 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
5747 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
5748 smp_processor_id());
5749 *(int *)rtn = -EIO;
5750 }
5751}
5752
67253af5
SY
5753static int get_ept_level(void)
5754{
5755 return VMX_EPT_DEFAULT_GAW + 1;
5756}
5757
4b12f0de 5758static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 5759{
4b12f0de
SY
5760 u64 ret;
5761
522c68c4
SY
5762 /* For VT-d and EPT combination
5763 * 1. MMIO: always map as UC
5764 * 2. EPT with VT-d:
5765 * a. VT-d without snooping control feature: can't guarantee the
5766 * result, try to trust guest.
5767 * b. VT-d with snooping control feature: snooping control feature of
5768 * VT-d engine can guarantee the cache correctness. Just set it
5769 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 5770 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
5771 * consistent with host MTRR
5772 */
4b12f0de
SY
5773 if (is_mmio)
5774 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
5775 else if (vcpu->kvm->arch.iommu_domain &&
5776 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
5777 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
5778 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 5779 else
522c68c4 5780 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 5781 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
5782
5783 return ret;
64d4d521
SY
5784}
5785
f4c9e87c
AK
5786#define _ER(x) { EXIT_REASON_##x, #x }
5787
229456fc 5788static const struct trace_print_flags vmx_exit_reasons_str[] = {
f4c9e87c
AK
5789 _ER(EXCEPTION_NMI),
5790 _ER(EXTERNAL_INTERRUPT),
5791 _ER(TRIPLE_FAULT),
5792 _ER(PENDING_INTERRUPT),
5793 _ER(NMI_WINDOW),
5794 _ER(TASK_SWITCH),
5795 _ER(CPUID),
5796 _ER(HLT),
5797 _ER(INVLPG),
5798 _ER(RDPMC),
5799 _ER(RDTSC),
5800 _ER(VMCALL),
5801 _ER(VMCLEAR),
5802 _ER(VMLAUNCH),
5803 _ER(VMPTRLD),
5804 _ER(VMPTRST),
5805 _ER(VMREAD),
5806 _ER(VMRESUME),
5807 _ER(VMWRITE),
5808 _ER(VMOFF),
5809 _ER(VMON),
5810 _ER(CR_ACCESS),
5811 _ER(DR_ACCESS),
5812 _ER(IO_INSTRUCTION),
5813 _ER(MSR_READ),
5814 _ER(MSR_WRITE),
5815 _ER(MWAIT_INSTRUCTION),
5816 _ER(MONITOR_INSTRUCTION),
5817 _ER(PAUSE_INSTRUCTION),
5818 _ER(MCE_DURING_VMENTRY),
5819 _ER(TPR_BELOW_THRESHOLD),
5820 _ER(APIC_ACCESS),
5821 _ER(EPT_VIOLATION),
5822 _ER(EPT_MISCONFIG),
5823 _ER(WBINVD),
229456fc
MT
5824 { -1, NULL }
5825};
5826
f4c9e87c
AK
5827#undef _ER
5828
17cc3935 5829static int vmx_get_lpage_level(void)
344f414f 5830{
878403b7
SY
5831 if (enable_ept && !cpu_has_vmx_ept_1g_page())
5832 return PT_DIRECTORY_LEVEL;
5833 else
5834 /* For shadow and EPT supported 1GB page */
5835 return PT_PDPE_LEVEL;
344f414f
JR
5836}
5837
0e851880
SY
5838static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
5839{
4e47c7a6
SY
5840 struct kvm_cpuid_entry2 *best;
5841 struct vcpu_vmx *vmx = to_vmx(vcpu);
5842 u32 exec_control;
5843
5844 vmx->rdtscp_enabled = false;
5845 if (vmx_rdtscp_supported()) {
5846 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5847 if (exec_control & SECONDARY_EXEC_RDTSCP) {
5848 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
5849 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
5850 vmx->rdtscp_enabled = true;
5851 else {
5852 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5853 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5854 exec_control);
5855 }
5856 }
5857 }
0e851880
SY
5858}
5859
d4330ef2
JR
5860static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5861{
5862}
5863
fe3ef05c
NHE
5864/*
5865 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
5866 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
5867 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
5868 * guest in a way that will both be appropriate to L1's requests, and our
5869 * needs. In addition to modifying the active vmcs (which is vmcs02), this
5870 * function also has additional necessary side-effects, like setting various
5871 * vcpu->arch fields.
5872 */
5873static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
5874{
5875 struct vcpu_vmx *vmx = to_vmx(vcpu);
5876 u32 exec_control;
5877
5878 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
5879 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
5880 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
5881 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
5882 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
5883 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
5884 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
5885 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
5886 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
5887 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
5888 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
5889 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
5890 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
5891 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
5892 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
5893 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
5894 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
5895 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
5896 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
5897 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
5898 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
5899 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
5900 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
5901 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
5902 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
5903 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
5904 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
5905 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
5906 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
5907 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
5908 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
5909 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
5910 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
5911 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
5912 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
5913 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
5914
5915 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
5916 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5917 vmcs12->vm_entry_intr_info_field);
5918 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
5919 vmcs12->vm_entry_exception_error_code);
5920 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5921 vmcs12->vm_entry_instruction_len);
5922 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
5923 vmcs12->guest_interruptibility_info);
5924 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
5925 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
5926 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
5927 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
5928 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5929 vmcs12->guest_pending_dbg_exceptions);
5930 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
5931 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
5932
5933 vmcs_write64(VMCS_LINK_POINTER, -1ull);
5934
5935 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
5936 (vmcs_config.pin_based_exec_ctrl |
5937 vmcs12->pin_based_vm_exec_control));
5938
5939 /*
5940 * Whether page-faults are trapped is determined by a combination of
5941 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
5942 * If enable_ept, L0 doesn't care about page faults and we should
5943 * set all of these to L1's desires. However, if !enable_ept, L0 does
5944 * care about (at least some) page faults, and because it is not easy
5945 * (if at all possible?) to merge L0 and L1's desires, we simply ask
5946 * to exit on each and every L2 page fault. This is done by setting
5947 * MASK=MATCH=0 and (see below) EB.PF=1.
5948 * Note that below we don't need special code to set EB.PF beyond the
5949 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
5950 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
5951 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
5952 *
5953 * A problem with this approach (when !enable_ept) is that L1 may be
5954 * injected with more page faults than it asked for. This could have
5955 * caused problems, but in practice existing hypervisors don't care.
5956 * To fix this, we will need to emulate the PFEC checking (on the L1
5957 * page tables), using walk_addr(), when injecting PFs to L1.
5958 */
5959 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
5960 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
5961 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
5962 enable_ept ? vmcs12->page_fault_error_code_match : 0);
5963
5964 if (cpu_has_secondary_exec_ctrls()) {
5965 u32 exec_control = vmx_secondary_exec_control(vmx);
5966 if (!vmx->rdtscp_enabled)
5967 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5968 /* Take the following fields only from vmcs12 */
5969 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5970 if (nested_cpu_has(vmcs12,
5971 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
5972 exec_control |= vmcs12->secondary_vm_exec_control;
5973
5974 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
5975 /*
5976 * Translate L1 physical address to host physical
5977 * address for vmcs02. Keep the page pinned, so this
5978 * physical address remains valid. We keep a reference
5979 * to it so we can release it later.
5980 */
5981 if (vmx->nested.apic_access_page) /* shouldn't happen */
5982 nested_release_page(vmx->nested.apic_access_page);
5983 vmx->nested.apic_access_page =
5984 nested_get_page(vcpu, vmcs12->apic_access_addr);
5985 /*
5986 * If translation failed, no matter: This feature asks
5987 * to exit when accessing the given address, and if it
5988 * can never be accessed, this feature won't do
5989 * anything anyway.
5990 */
5991 if (!vmx->nested.apic_access_page)
5992 exec_control &=
5993 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5994 else
5995 vmcs_write64(APIC_ACCESS_ADDR,
5996 page_to_phys(vmx->nested.apic_access_page));
5997 }
5998
5999 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6000 }
6001
6002
6003 /*
6004 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6005 * Some constant fields are set here by vmx_set_constant_host_state().
6006 * Other fields are different per CPU, and will be set later when
6007 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6008 */
6009 vmx_set_constant_host_state();
6010
6011 /*
6012 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6013 * entry, but only if the current (host) sp changed from the value
6014 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6015 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6016 * here we just force the write to happen on entry.
6017 */
6018 vmx->host_rsp = 0;
6019
6020 exec_control = vmx_exec_control(vmx); /* L0's desires */
6021 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6022 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6023 exec_control &= ~CPU_BASED_TPR_SHADOW;
6024 exec_control |= vmcs12->cpu_based_vm_exec_control;
6025 /*
6026 * Merging of IO and MSR bitmaps not currently supported.
6027 * Rather, exit every time.
6028 */
6029 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6030 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6031 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6032
6033 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6034
6035 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6036 * bitwise-or of what L1 wants to trap for L2, and what we want to
6037 * trap. Note that CR0.TS also needs updating - we do this later.
6038 */
6039 update_exception_bitmap(vcpu);
6040 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6041 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6042
6043 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6044 vmcs_write32(VM_EXIT_CONTROLS,
6045 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6046 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6047 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6048
6049 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6050 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6051 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6052 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6053
6054
6055 set_cr4_guest_host_mask(vmx);
6056
6057 vmcs_write64(TSC_OFFSET,
6058 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6059
6060 if (enable_vpid) {
6061 /*
6062 * Trivially support vpid by letting L2s share their parent
6063 * L1's vpid. TODO: move to a more elaborate solution, giving
6064 * each L2 its own vpid and exposing the vpid feature to L1.
6065 */
6066 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6067 vmx_flush_tlb(vcpu);
6068 }
6069
6070 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6071 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6072 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6073 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6074 else
6075 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6076 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6077 vmx_set_efer(vcpu, vcpu->arch.efer);
6078
6079 /*
6080 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6081 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6082 * The CR0_READ_SHADOW is what L2 should have expected to read given
6083 * the specifications by L1; It's not enough to take
6084 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6085 * have more bits than L1 expected.
6086 */
6087 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6088 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6089
6090 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6091 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6092
6093 /* shadow page tables on either EPT or shadow page tables */
6094 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6095 kvm_mmu_reset_context(vcpu);
6096
6097 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6098 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6099}
6100
cd232ad0
NHE
6101/*
6102 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6103 * for running an L2 nested guest.
6104 */
6105static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6106{
6107 struct vmcs12 *vmcs12;
6108 struct vcpu_vmx *vmx = to_vmx(vcpu);
6109 int cpu;
6110 struct loaded_vmcs *vmcs02;
6111
6112 if (!nested_vmx_check_permission(vcpu) ||
6113 !nested_vmx_check_vmcs12(vcpu))
6114 return 1;
6115
6116 skip_emulated_instruction(vcpu);
6117 vmcs12 = get_vmcs12(vcpu);
6118
6119 vmcs02 = nested_get_current_vmcs02(vmx);
6120 if (!vmcs02)
6121 return -ENOMEM;
6122
6123 enter_guest_mode(vcpu);
6124
6125 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6126
6127 cpu = get_cpu();
6128 vmx->loaded_vmcs = vmcs02;
6129 vmx_vcpu_put(vcpu);
6130 vmx_vcpu_load(vcpu, cpu);
6131 vcpu->cpu = cpu;
6132 put_cpu();
6133
6134 vmcs12->launch_state = 1;
6135
6136 prepare_vmcs02(vcpu, vmcs12);
6137
6138 /*
6139 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6140 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6141 * returned as far as L1 is concerned. It will only return (and set
6142 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6143 */
6144 return 1;
6145}
6146
4704d0be
NHE
6147/*
6148 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6149 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6150 * This function returns the new value we should put in vmcs12.guest_cr0.
6151 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6152 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6153 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6154 * didn't trap the bit, because if L1 did, so would L0).
6155 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6156 * been modified by L2, and L1 knows it. So just leave the old value of
6157 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6158 * isn't relevant, because if L0 traps this bit it can set it to anything.
6159 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6160 * changed these bits, and therefore they need to be updated, but L0
6161 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6162 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6163 */
6164static inline unsigned long
6165vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6166{
6167 return
6168 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6169 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6170 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6171 vcpu->arch.cr0_guest_owned_bits));
6172}
6173
6174static inline unsigned long
6175vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6176{
6177 return
6178 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6179 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6180 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6181 vcpu->arch.cr4_guest_owned_bits));
6182}
6183
6184/*
6185 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6186 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6187 * and this function updates it to reflect the changes to the guest state while
6188 * L2 was running (and perhaps made some exits which were handled directly by L0
6189 * without going back to L1), and to reflect the exit reason.
6190 * Note that we do not have to copy here all VMCS fields, just those that
6191 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6192 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6193 * which already writes to vmcs12 directly.
6194 */
6195void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6196{
6197 /* update guest state fields: */
6198 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6199 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6200
6201 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6202 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6203 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6204 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6205
6206 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6207 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6208 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6209 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6210 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6211 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6212 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6213 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6214 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6215 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6216 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6217 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6218 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6219 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6220 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6221 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6222 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6223 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6224 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6225 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6226 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6227 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6228 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6229 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6230 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6231 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6232 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6233 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6234 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6235 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6236 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6237 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6238 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6239 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6240 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6241 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6242
6243 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6244 vmcs12->guest_interruptibility_info =
6245 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6246 vmcs12->guest_pending_dbg_exceptions =
6247 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6248
6249 /* TODO: These cannot have changed unless we have MSR bitmaps and
6250 * the relevant bit asks not to trap the change */
6251 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6252 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6253 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6254 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6255 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6256 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6257
6258 /* update exit information fields: */
6259
6260 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6261 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6262
6263 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6264 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6265 vmcs12->idt_vectoring_info_field =
6266 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6267 vmcs12->idt_vectoring_error_code =
6268 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6269 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6270 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6271
6272 /* clear vm-entry fields which are to be cleared on exit */
6273 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6274 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6275}
6276
6277/*
6278 * A part of what we need to when the nested L2 guest exits and we want to
6279 * run its L1 parent, is to reset L1's guest state to the host state specified
6280 * in vmcs12.
6281 * This function is to be called not only on normal nested exit, but also on
6282 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6283 * Failures During or After Loading Guest State").
6284 * This function should be called when the active VMCS is L1's (vmcs01).
6285 */
6286void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6287{
6288 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6289 vcpu->arch.efer = vmcs12->host_ia32_efer;
6290 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6291 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6292 else
6293 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6294 vmx_set_efer(vcpu, vcpu->arch.efer);
6295
6296 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6297 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6298 /*
6299 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6300 * actually changed, because it depends on the current state of
6301 * fpu_active (which may have changed).
6302 * Note that vmx_set_cr0 refers to efer set above.
6303 */
6304 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6305 /*
6306 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6307 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6308 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6309 */
6310 update_exception_bitmap(vcpu);
6311 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6312 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6313
6314 /*
6315 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6316 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6317 */
6318 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6319 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6320
6321 /* shadow page tables on either EPT or shadow page tables */
6322 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6323 kvm_mmu_reset_context(vcpu);
6324
6325 if (enable_vpid) {
6326 /*
6327 * Trivially support vpid by letting L2s share their parent
6328 * L1's vpid. TODO: move to a more elaborate solution, giving
6329 * each L2 its own vpid and exposing the vpid feature to L1.
6330 */
6331 vmx_flush_tlb(vcpu);
6332 }
6333
6334
6335 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6336 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6337 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6338 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6339 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6340 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6341 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6342 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6343 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6344 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6345 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6346 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6347 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6348 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6349 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6350
6351 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6352 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6353 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6354 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6355 vmcs12->host_ia32_perf_global_ctrl);
6356}
6357
6358/*
6359 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
6360 * and modify vmcs12 to make it see what it would expect to see there if
6361 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
6362 */
6363static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
6364{
6365 struct vcpu_vmx *vmx = to_vmx(vcpu);
6366 int cpu;
6367 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6368
6369 leave_guest_mode(vcpu);
6370 prepare_vmcs12(vcpu, vmcs12);
6371
6372 cpu = get_cpu();
6373 vmx->loaded_vmcs = &vmx->vmcs01;
6374 vmx_vcpu_put(vcpu);
6375 vmx_vcpu_load(vcpu, cpu);
6376 vcpu->cpu = cpu;
6377 put_cpu();
6378
6379 /* if no vmcs02 cache requested, remove the one we used */
6380 if (VMCS02_POOL_SIZE == 0)
6381 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
6382
6383 load_vmcs12_host_state(vcpu, vmcs12);
6384
6385 /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
6386 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6387
6388 /* This is needed for same reason as it was needed in prepare_vmcs02 */
6389 vmx->host_rsp = 0;
6390
6391 /* Unpin physical memory we referred to in vmcs02 */
6392 if (vmx->nested.apic_access_page) {
6393 nested_release_page(vmx->nested.apic_access_page);
6394 vmx->nested.apic_access_page = 0;
6395 }
6396
6397 /*
6398 * Exiting from L2 to L1, we're now back to L1 which thinks it just
6399 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
6400 * success or failure flag accordingly.
6401 */
6402 if (unlikely(vmx->fail)) {
6403 vmx->fail = 0;
6404 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
6405 } else
6406 nested_vmx_succeed(vcpu);
6407}
6408
8a76d7f2
JR
6409static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6410 struct x86_instruction_info *info,
6411 enum x86_intercept_stage stage)
6412{
6413 return X86EMUL_CONTINUE;
6414}
6415
cbdd1bea 6416static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
6417 .cpu_has_kvm_support = cpu_has_kvm_support,
6418 .disabled_by_bios = vmx_disabled_by_bios,
6419 .hardware_setup = hardware_setup,
6420 .hardware_unsetup = hardware_unsetup,
002c7f7c 6421 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
6422 .hardware_enable = hardware_enable,
6423 .hardware_disable = hardware_disable,
04547156 6424 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
6425
6426 .vcpu_create = vmx_create_vcpu,
6427 .vcpu_free = vmx_free_vcpu,
04d2cc77 6428 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 6429
04d2cc77 6430 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
6431 .vcpu_load = vmx_vcpu_load,
6432 .vcpu_put = vmx_vcpu_put,
6433
6434 .set_guest_debug = set_guest_debug,
6435 .get_msr = vmx_get_msr,
6436 .set_msr = vmx_set_msr,
6437 .get_segment_base = vmx_get_segment_base,
6438 .get_segment = vmx_get_segment,
6439 .set_segment = vmx_set_segment,
2e4d2653 6440 .get_cpl = vmx_get_cpl,
6aa8b732 6441 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 6442 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 6443 .decache_cr3 = vmx_decache_cr3,
25c4c276 6444 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 6445 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
6446 .set_cr3 = vmx_set_cr3,
6447 .set_cr4 = vmx_set_cr4,
6aa8b732 6448 .set_efer = vmx_set_efer,
6aa8b732
AK
6449 .get_idt = vmx_get_idt,
6450 .set_idt = vmx_set_idt,
6451 .get_gdt = vmx_get_gdt,
6452 .set_gdt = vmx_set_gdt,
020df079 6453 .set_dr7 = vmx_set_dr7,
5fdbf976 6454 .cache_reg = vmx_cache_reg,
6aa8b732
AK
6455 .get_rflags = vmx_get_rflags,
6456 .set_rflags = vmx_set_rflags,
ebcbab4c 6457 .fpu_activate = vmx_fpu_activate,
02daab21 6458 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
6459
6460 .tlb_flush = vmx_flush_tlb,
6aa8b732 6461
6aa8b732 6462 .run = vmx_vcpu_run,
6062d012 6463 .handle_exit = vmx_handle_exit,
6aa8b732 6464 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
6465 .set_interrupt_shadow = vmx_set_interrupt_shadow,
6466 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 6467 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 6468 .set_irq = vmx_inject_irq,
95ba8273 6469 .set_nmi = vmx_inject_nmi,
298101da 6470 .queue_exception = vmx_queue_exception,
b463a6f7 6471 .cancel_injection = vmx_cancel_injection,
78646121 6472 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 6473 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
6474 .get_nmi_mask = vmx_get_nmi_mask,
6475 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
6476 .enable_nmi_window = enable_nmi_window,
6477 .enable_irq_window = enable_irq_window,
6478 .update_cr8_intercept = update_cr8_intercept,
95ba8273 6479
cbc94022 6480 .set_tss_addr = vmx_set_tss_addr,
67253af5 6481 .get_tdp_level = get_ept_level,
4b12f0de 6482 .get_mt_mask = vmx_get_mt_mask,
229456fc 6483
586f9607 6484 .get_exit_info = vmx_get_exit_info,
229456fc 6485 .exit_reasons_str = vmx_exit_reasons_str,
586f9607 6486
17cc3935 6487 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
6488
6489 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
6490
6491 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
6492
6493 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
6494
6495 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 6496
4051b188 6497 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 6498 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 6499 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 6500 .compute_tsc_offset = vmx_compute_tsc_offset,
1c97f0a0
JR
6501
6502 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
6503
6504 .check_intercept = vmx_check_intercept,
6aa8b732
AK
6505};
6506
6507static int __init vmx_init(void)
6508{
26bb0981
AK
6509 int r, i;
6510
6511 rdmsrl_safe(MSR_EFER, &host_efer);
6512
6513 for (i = 0; i < NR_VMX_MSR; ++i)
6514 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 6515
3e7c73e9 6516 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
6517 if (!vmx_io_bitmap_a)
6518 return -ENOMEM;
6519
3e7c73e9 6520 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
6521 if (!vmx_io_bitmap_b) {
6522 r = -ENOMEM;
6523 goto out;
6524 }
6525
5897297b
AK
6526 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6527 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
6528 r = -ENOMEM;
6529 goto out1;
6530 }
6531
5897297b
AK
6532 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6533 if (!vmx_msr_bitmap_longmode) {
6534 r = -ENOMEM;
6535 goto out2;
6536 }
6537
fdef3ad1
HQ
6538 /*
6539 * Allow direct access to the PC debug port (it is often used for I/O
6540 * delays, but the vmexits simply slow things down).
6541 */
3e7c73e9
AK
6542 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6543 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 6544
3e7c73e9 6545 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 6546
5897297b
AK
6547 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6548 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 6549
2384d2b3
SY
6550 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6551
0ee75bea
AK
6552 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
6553 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 6554 if (r)
5897297b 6555 goto out3;
25c5f225 6556
5897297b
AK
6557 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6558 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6559 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6560 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6561 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6562 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 6563
089d034e 6564 if (enable_ept) {
1439442c 6565 bypass_guest_pf = 0;
534e38b4 6566 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 6567 VMX_EPT_EXECUTABLE_MASK);
5fdbcb9d
SY
6568 kvm_enable_tdp();
6569 } else
6570 kvm_disable_tdp();
1439442c 6571
c7addb90
AK
6572 if (bypass_guest_pf)
6573 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
6574
fdef3ad1
HQ
6575 return 0;
6576
5897297b
AK
6577out3:
6578 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 6579out2:
5897297b 6580 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 6581out1:
3e7c73e9 6582 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 6583out:
3e7c73e9 6584 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 6585 return r;
6aa8b732
AK
6586}
6587
6588static void __exit vmx_exit(void)
6589{
5897297b
AK
6590 free_page((unsigned long)vmx_msr_bitmap_legacy);
6591 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
6592 free_page((unsigned long)vmx_io_bitmap_b);
6593 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 6594
cb498ea2 6595 kvm_exit();
6aa8b732
AK
6596}
6597
6598module_init(vmx_init)
6599module_exit(vmx_exit)