]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
fs/fcntl: use copy_to/from_user() for u64 types
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
9d43cf64 38#define NVME_Q_DEPTH 1024
d31af0a3 39#define NVME_AQ_DEPTH 256
b60503ba
MW
40#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 42
adf68f21
CH
43/*
44 * We handle AEN commands ourselves and don't even let the
45 * block layer know about them.
46 */
f866fc42 47#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 48
58ffacb5
MW
49static int use_threaded_interrupts;
50module_param(use_threaded_interrupts, int, 0);
51
8ffaadf7
JD
52static bool use_cmb_sqes = true;
53module_param(use_cmb_sqes, bool, 0644);
54MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
87ad72a5
CH
56static unsigned int max_host_mem_size_mb = 128;
57module_param(max_host_mem_size_mb, uint, 0444);
58MODULE_PARM_DESC(max_host_mem_size_mb,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
1c63dc66
CH
61struct nvme_dev;
62struct nvme_queue;
b3fffdef 63
a0fa9647 64static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 65static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 66
1c63dc66
CH
67/*
68 * Represents an NVM Express device. Each nvme_dev is a PCI function.
69 */
70struct nvme_dev {
1c63dc66
CH
71 struct nvme_queue **queues;
72 struct blk_mq_tag_set tagset;
73 struct blk_mq_tag_set admin_tagset;
74 u32 __iomem *dbs;
75 struct device *dev;
76 struct dma_pool *prp_page_pool;
77 struct dma_pool *prp_small_pool;
78 unsigned queue_count;
79 unsigned online_queues;
80 unsigned max_qid;
81 int q_depth;
82 u32 db_stride;
1c63dc66 83 void __iomem *bar;
97f6ef64 84 unsigned long bar_mapped_size;
5c8809e6 85 struct work_struct remove_work;
77bf25ea 86 struct mutex shutdown_lock;
1c63dc66 87 bool subsystem;
1c63dc66
CH
88 void __iomem *cmb;
89 dma_addr_t cmb_dma_addr;
90 u64 cmb_size;
91 u32 cmbsz;
202021c1 92 u32 cmbloc;
1c63dc66 93 struct nvme_ctrl ctrl;
db3cbfff 94 struct completion ioq_wait;
87ad72a5
CH
95
96 /* shadow doorbell buffer support: */
f9f38e33
HK
97 u32 *dbbuf_dbs;
98 dma_addr_t dbbuf_dbs_dma_addr;
99 u32 *dbbuf_eis;
100 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
101
102 /* host memory buffer support: */
103 u64 host_mem_size;
104 u32 nr_host_mem_descs;
105 struct nvme_host_mem_buf_desc *host_mem_descs;
106 void **host_mem_desc_bufs;
4d115420 107};
1fa6aead 108
f9f38e33
HK
109static inline unsigned int sq_idx(unsigned int qid, u32 stride)
110{
111 return qid * 2 * stride;
112}
113
114static inline unsigned int cq_idx(unsigned int qid, u32 stride)
115{
116 return (qid * 2 + 1) * stride;
117}
118
1c63dc66
CH
119static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
120{
121 return container_of(ctrl, struct nvme_dev, ctrl);
122}
123
b60503ba
MW
124/*
125 * An NVM Express queue. Each device has at least two (one for admin
126 * commands and one for I/O commands).
127 */
128struct nvme_queue {
129 struct device *q_dmadev;
091b6092 130 struct nvme_dev *dev;
b60503ba
MW
131 spinlock_t q_lock;
132 struct nvme_command *sq_cmds;
8ffaadf7 133 struct nvme_command __iomem *sq_cmds_io;
b60503ba 134 volatile struct nvme_completion *cqes;
42483228 135 struct blk_mq_tags **tags;
b60503ba
MW
136 dma_addr_t sq_dma_addr;
137 dma_addr_t cq_dma_addr;
b60503ba
MW
138 u32 __iomem *q_db;
139 u16 q_depth;
6222d172 140 s16 cq_vector;
b60503ba
MW
141 u16 sq_tail;
142 u16 cq_head;
c30341dc 143 u16 qid;
e9539f47
MW
144 u8 cq_phase;
145 u8 cqe_seen;
f9f38e33
HK
146 u32 *dbbuf_sq_db;
147 u32 *dbbuf_cq_db;
148 u32 *dbbuf_sq_ei;
149 u32 *dbbuf_cq_ei;
b60503ba
MW
150};
151
71bd150c
CH
152/*
153 * The nvme_iod describes the data in an I/O, including the list of PRP
154 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 155 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
156 * allocated to store the PRP list.
157 */
158struct nvme_iod {
d49187e9 159 struct nvme_request req;
f4800d6d
CH
160 struct nvme_queue *nvmeq;
161 int aborted;
71bd150c 162 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
163 int nents; /* Used in scatterlist */
164 int length; /* Of data, in bytes */
165 dma_addr_t first_dma;
bf684057 166 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
167 struct scatterlist *sg;
168 struct scatterlist inline_sg[0];
b60503ba
MW
169};
170
171/*
172 * Check we didin't inadvertently grow the command struct
173 */
174static inline void _nvme_check_size(void)
175{
176 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
180 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 181 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 182 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 183 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
184 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
185 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 186 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 187 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
188 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
189}
190
191static inline unsigned int nvme_dbbuf_size(u32 stride)
192{
193 return ((num_possible_cpus() + 1) * 8 * stride);
194}
195
196static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
197{
198 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
199
200 if (dev->dbbuf_dbs)
201 return 0;
202
203 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
204 &dev->dbbuf_dbs_dma_addr,
205 GFP_KERNEL);
206 if (!dev->dbbuf_dbs)
207 return -ENOMEM;
208 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
209 &dev->dbbuf_eis_dma_addr,
210 GFP_KERNEL);
211 if (!dev->dbbuf_eis) {
212 dma_free_coherent(dev->dev, mem_size,
213 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
214 dev->dbbuf_dbs = NULL;
215 return -ENOMEM;
216 }
217
218 return 0;
219}
220
221static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
222{
223 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
224
225 if (dev->dbbuf_dbs) {
226 dma_free_coherent(dev->dev, mem_size,
227 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
228 dev->dbbuf_dbs = NULL;
229 }
230 if (dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
233 dev->dbbuf_eis = NULL;
234 }
235}
236
237static void nvme_dbbuf_init(struct nvme_dev *dev,
238 struct nvme_queue *nvmeq, int qid)
239{
240 if (!dev->dbbuf_dbs || !qid)
241 return;
242
243 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
244 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
245 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
246 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
247}
248
249static void nvme_dbbuf_set(struct nvme_dev *dev)
250{
251 struct nvme_command c;
252
253 if (!dev->dbbuf_dbs)
254 return;
255
256 memset(&c, 0, sizeof(c));
257 c.dbbuf.opcode = nvme_admin_dbbuf;
258 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
259 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
260
261 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 262 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
263 /* Free memory and continue on */
264 nvme_dbbuf_dma_free(dev);
265 }
266}
267
268static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
269{
270 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
271}
272
273/* Update dbbuf and return true if an MMIO is required */
274static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
275 volatile u32 *dbbuf_ei)
276{
277 if (dbbuf_db) {
278 u16 old_value;
279
280 /*
281 * Ensure that the queue is written before updating
282 * the doorbell in memory
283 */
284 wmb();
285
286 old_value = *dbbuf_db;
287 *dbbuf_db = value;
288
289 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
290 return false;
291 }
292
293 return true;
b60503ba
MW
294}
295
ac3dd5bd
JA
296/*
297 * Max size of iod being embedded in the request payload
298 */
299#define NVME_INT_PAGES 2
5fd4ce1b 300#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
301
302/*
303 * Will slightly overestimate the number of pages needed. This is OK
304 * as it only leads to a small amount of wasted memory for the lifetime of
305 * the I/O.
306 */
307static int nvme_npages(unsigned size, struct nvme_dev *dev)
308{
5fd4ce1b
CH
309 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
310 dev->ctrl.page_size);
ac3dd5bd
JA
311 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
312}
313
f4800d6d
CH
314static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
315 unsigned int size, unsigned int nseg)
ac3dd5bd 316{
f4800d6d
CH
317 return sizeof(__le64 *) * nvme_npages(size, dev) +
318 sizeof(struct scatterlist) * nseg;
319}
ac3dd5bd 320
f4800d6d
CH
321static unsigned int nvme_cmd_size(struct nvme_dev *dev)
322{
323 return sizeof(struct nvme_iod) +
324 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
325}
326
a4aea562
MB
327static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
328 unsigned int hctx_idx)
e85248e5 329{
a4aea562
MB
330 struct nvme_dev *dev = data;
331 struct nvme_queue *nvmeq = dev->queues[0];
332
42483228
KB
333 WARN_ON(hctx_idx != 0);
334 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
335 WARN_ON(nvmeq->tags);
336
a4aea562 337 hctx->driver_data = nvmeq;
42483228 338 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 339 return 0;
e85248e5
MW
340}
341
4af0e21c
KB
342static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
343{
344 struct nvme_queue *nvmeq = hctx->driver_data;
345
346 nvmeq->tags = NULL;
347}
348
a4aea562
MB
349static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
350 unsigned int hctx_idx)
b60503ba 351{
a4aea562 352 struct nvme_dev *dev = data;
42483228 353 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 354
42483228
KB
355 if (!nvmeq->tags)
356 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 357
42483228 358 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
359 hctx->driver_data = nvmeq;
360 return 0;
b60503ba
MW
361}
362
d6296d39
CH
363static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
364 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 365{
d6296d39 366 struct nvme_dev *dev = set->driver_data;
f4800d6d 367 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
368 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
369 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
370
371 BUG_ON(!nvmeq);
f4800d6d 372 iod->nvmeq = nvmeq;
a4aea562
MB
373 return 0;
374}
375
dca51e78
CH
376static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
377{
378 struct nvme_dev *dev = set->driver_data;
379
380 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
381}
382
b60503ba 383/**
adf68f21 384 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
385 * @nvmeq: The queue to use
386 * @cmd: The command to send
387 *
388 * Safe to use from interrupt context
389 */
e3f879bf
SB
390static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391 struct nvme_command *cmd)
b60503ba 392{
a4aea562
MB
393 u16 tail = nvmeq->sq_tail;
394
8ffaadf7
JD
395 if (nvmeq->sq_cmds_io)
396 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
397 else
398 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
399
b60503ba
MW
400 if (++tail == nvmeq->q_depth)
401 tail = 0;
f9f38e33
HK
402 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
403 nvmeq->dbbuf_sq_ei))
404 writel(tail, nvmeq->q_db);
b60503ba 405 nvmeq->sq_tail = tail;
b60503ba
MW
406}
407
f4800d6d 408static __le64 **iod_list(struct request *req)
b60503ba 409{
f4800d6d 410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 411 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
412}
413
fc17b653 414static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 415{
f4800d6d 416 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 417 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 418 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 419
f4800d6d
CH
420 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
421 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
422 if (!iod->sg)
fc17b653 423 return BLK_STS_RESOURCE;
f4800d6d
CH
424 } else {
425 iod->sg = iod->inline_sg;
ac3dd5bd
JA
426 }
427
f4800d6d
CH
428 iod->aborted = 0;
429 iod->npages = -1;
430 iod->nents = 0;
431 iod->length = size;
f80ec966 432
fc17b653 433 return BLK_STS_OK;
ac3dd5bd
JA
434}
435
f4800d6d 436static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 437{
f4800d6d 438 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 439 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 440 int i;
f4800d6d 441 __le64 **list = iod_list(req);
eca18b23
MW
442 dma_addr_t prp_dma = iod->first_dma;
443
444 if (iod->npages == 0)
445 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
446 for (i = 0; i < iod->npages; i++) {
447 __le64 *prp_list = list[i];
448 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
449 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
450 prp_dma = next_prp_dma;
451 }
ac3dd5bd 452
f4800d6d
CH
453 if (iod->sg != iod->inline_sg)
454 kfree(iod->sg);
b4ff9c8d
KB
455}
456
52b68d7e 457#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
458static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
459{
460 if (be32_to_cpu(pi->ref_tag) == v)
461 pi->ref_tag = cpu_to_be32(p);
462}
463
464static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
465{
466 if (be32_to_cpu(pi->ref_tag) == p)
467 pi->ref_tag = cpu_to_be32(v);
468}
469
470/**
471 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
472 *
473 * The virtual start sector is the one that was originally submitted by the
474 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
475 * start sector may be different. Remap protection information to match the
476 * physical LBA on writes, and back to the original seed on reads.
477 *
478 * Type 0 and 3 do not have a ref tag, so no remapping required.
479 */
480static void nvme_dif_remap(struct request *req,
481 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
482{
483 struct nvme_ns *ns = req->rq_disk->private_data;
484 struct bio_integrity_payload *bip;
485 struct t10_pi_tuple *pi;
486 void *p, *pmap;
487 u32 i, nlb, ts, phys, virt;
488
489 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
490 return;
491
492 bip = bio_integrity(req->bio);
493 if (!bip)
494 return;
495
496 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
497
498 p = pmap;
499 virt = bip_get_seed(bip);
500 phys = nvme_block_nr(ns, blk_rq_pos(req));
501 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 502 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
503
504 for (i = 0; i < nlb; i++, virt++, phys++) {
505 pi = (struct t10_pi_tuple *)p;
506 dif_swap(phys, virt, pi);
507 p += ts;
508 }
509 kunmap_atomic(pmap);
510}
52b68d7e
KB
511#else /* CONFIG_BLK_DEV_INTEGRITY */
512static void nvme_dif_remap(struct request *req,
513 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
514{
515}
516static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
517{
518}
519static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
520{
521}
52b68d7e
KB
522#endif
523
b131c61d 524static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 525{
f4800d6d 526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 527 struct dma_pool *pool;
b131c61d 528 int length = blk_rq_payload_bytes(req);
eca18b23 529 struct scatterlist *sg = iod->sg;
ff22b54f
MW
530 int dma_len = sg_dma_len(sg);
531 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 532 u32 page_size = dev->ctrl.page_size;
f137e0f1 533 int offset = dma_addr & (page_size - 1);
e025344c 534 __le64 *prp_list;
f4800d6d 535 __le64 **list = iod_list(req);
e025344c 536 dma_addr_t prp_dma;
eca18b23 537 int nprps, i;
ff22b54f 538
1d090624 539 length -= (page_size - offset);
ff22b54f 540 if (length <= 0)
69d2b571 541 return true;
ff22b54f 542
1d090624 543 dma_len -= (page_size - offset);
ff22b54f 544 if (dma_len) {
1d090624 545 dma_addr += (page_size - offset);
ff22b54f
MW
546 } else {
547 sg = sg_next(sg);
548 dma_addr = sg_dma_address(sg);
549 dma_len = sg_dma_len(sg);
550 }
551
1d090624 552 if (length <= page_size) {
edd10d33 553 iod->first_dma = dma_addr;
69d2b571 554 return true;
e025344c
SMM
555 }
556
1d090624 557 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
558 if (nprps <= (256 / 8)) {
559 pool = dev->prp_small_pool;
eca18b23 560 iod->npages = 0;
99802a7a
MW
561 } else {
562 pool = dev->prp_page_pool;
eca18b23 563 iod->npages = 1;
99802a7a
MW
564 }
565
69d2b571 566 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 567 if (!prp_list) {
edd10d33 568 iod->first_dma = dma_addr;
eca18b23 569 iod->npages = -1;
69d2b571 570 return false;
b77954cb 571 }
eca18b23
MW
572 list[0] = prp_list;
573 iod->first_dma = prp_dma;
e025344c
SMM
574 i = 0;
575 for (;;) {
1d090624 576 if (i == page_size >> 3) {
e025344c 577 __le64 *old_prp_list = prp_list;
69d2b571 578 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 579 if (!prp_list)
69d2b571 580 return false;
eca18b23 581 list[iod->npages++] = prp_list;
7523d834
MW
582 prp_list[0] = old_prp_list[i - 1];
583 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
584 i = 1;
e025344c
SMM
585 }
586 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
587 dma_len -= page_size;
588 dma_addr += page_size;
589 length -= page_size;
e025344c
SMM
590 if (length <= 0)
591 break;
592 if (dma_len > 0)
593 continue;
594 BUG_ON(dma_len < 0);
595 sg = sg_next(sg);
596 dma_addr = sg_dma_address(sg);
597 dma_len = sg_dma_len(sg);
ff22b54f
MW
598 }
599
69d2b571 600 return true;
ff22b54f
MW
601}
602
fc17b653 603static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 604 struct nvme_command *cmnd)
d29ec824 605{
f4800d6d 606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
607 struct request_queue *q = req->q;
608 enum dma_data_direction dma_dir = rq_data_dir(req) ?
609 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 610 blk_status_t ret = BLK_STS_IOERR;
d29ec824 611
f9d03f96 612 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
613 iod->nents = blk_rq_map_sg(q, req, iod->sg);
614 if (!iod->nents)
615 goto out;
d29ec824 616
fc17b653 617 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
618 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
619 DMA_ATTR_NO_WARN))
ba1ca37e 620 goto out;
d29ec824 621
b131c61d 622 if (!nvme_setup_prps(dev, req))
ba1ca37e 623 goto out_unmap;
0e5e4f0e 624
fc17b653 625 ret = BLK_STS_IOERR;
ba1ca37e
CH
626 if (blk_integrity_rq(req)) {
627 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
628 goto out_unmap;
0e5e4f0e 629
bf684057
CH
630 sg_init_table(&iod->meta_sg, 1);
631 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 632 goto out_unmap;
0e5e4f0e 633
ba1ca37e
CH
634 if (rq_data_dir(req))
635 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 636
bf684057 637 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 638 goto out_unmap;
d29ec824 639 }
00df5cb4 640
eb793e2c
CH
641 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
642 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 643 if (blk_integrity_rq(req))
bf684057 644 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 645 return BLK_STS_OK;
00df5cb4 646
ba1ca37e
CH
647out_unmap:
648 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
649out:
650 return ret;
00df5cb4
MW
651}
652
f4800d6d 653static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 654{
f4800d6d 655 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
656 enum dma_data_direction dma_dir = rq_data_dir(req) ?
657 DMA_TO_DEVICE : DMA_FROM_DEVICE;
658
659 if (iod->nents) {
660 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
661 if (blk_integrity_rq(req)) {
662 if (!rq_data_dir(req))
663 nvme_dif_remap(req, nvme_dif_complete);
bf684057 664 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 665 }
e19b127f 666 }
e1e5e564 667
f9d03f96 668 nvme_cleanup_cmd(req);
f4800d6d 669 nvme_free_iod(dev, req);
d4f6c3ab 670}
b60503ba 671
d29ec824
CH
672/*
673 * NOTE: ns is NULL when called on the admin queue.
674 */
fc17b653 675static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 676 const struct blk_mq_queue_data *bd)
edd10d33 677{
a4aea562
MB
678 struct nvme_ns *ns = hctx->queue->queuedata;
679 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 680 struct nvme_dev *dev = nvmeq->dev;
a4aea562 681 struct request *req = bd->rq;
ba1ca37e 682 struct nvme_command cmnd;
ebe6d874 683 blk_status_t ret;
e1e5e564 684
f9d03f96 685 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 686 if (ret)
f4800d6d 687 return ret;
a4aea562 688
b131c61d 689 ret = nvme_init_iod(req, dev);
fc17b653 690 if (ret)
f9d03f96 691 goto out_free_cmd;
a4aea562 692
fc17b653 693 if (blk_rq_nr_phys_segments(req)) {
b131c61d 694 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
695 if (ret)
696 goto out_cleanup_iod;
697 }
a4aea562 698
aae239e1 699 blk_mq_start_request(req);
a4aea562 700
ba1ca37e 701 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 702 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 703 ret = BLK_STS_IOERR;
ae1fba20 704 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 705 goto out_cleanup_iod;
ae1fba20 706 }
ba1ca37e 707 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
708 nvme_process_cq(nvmeq);
709 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 710 return BLK_STS_OK;
f9d03f96 711out_cleanup_iod:
f4800d6d 712 nvme_free_iod(dev, req);
f9d03f96
CH
713out_free_cmd:
714 nvme_cleanup_cmd(req);
ba1ca37e 715 return ret;
b60503ba 716}
e1e5e564 717
77f02a7a 718static void nvme_pci_complete_rq(struct request *req)
eee417b0 719{
f4800d6d 720 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 721
77f02a7a
CH
722 nvme_unmap_data(iod->nvmeq->dev, req);
723 nvme_complete_rq(req);
b60503ba
MW
724}
725
d783e0bd
MR
726/* We read the CQE phase first to check if the rest of the entry is valid */
727static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728 u16 phase)
729{
730 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731}
732
a0fa9647 733static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 734{
82123460 735 u16 head, phase;
b60503ba 736
b60503ba 737 head = nvmeq->cq_head;
82123460 738 phase = nvmeq->cq_phase;
b60503ba 739
d783e0bd 740 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 741 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 742 struct request *req;
adf68f21 743
b60503ba
MW
744 if (++head == nvmeq->q_depth) {
745 head = 0;
82123460 746 phase = !phase;
b60503ba 747 }
adf68f21 748
a0fa9647
JA
749 if (tag && *tag == cqe.command_id)
750 *tag = -1;
adf68f21 751
aae239e1 752 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 753 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
754 "invalid id %d completed on queue %d\n",
755 cqe.command_id, le16_to_cpu(cqe.sq_id));
756 continue;
757 }
758
adf68f21
CH
759 /*
760 * AEN requests are special as they don't time out and can
761 * survive any kind of queue freeze and often don't respond to
762 * aborts. We don't even bother to allocate a struct request
763 * for them but rather special case them here.
764 */
765 if (unlikely(nvmeq->qid == 0 &&
766 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
7bf58533
CH
767 nvme_complete_async_event(&nvmeq->dev->ctrl,
768 cqe.status, &cqe.result);
adf68f21
CH
769 continue;
770 }
771
eee417b0 772 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
27fa9bc5 773 nvme_end_request(req, cqe.status, cqe.result);
b60503ba
MW
774 }
775
82123460 776 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 777 return;
b60503ba 778
604e8c8d 779 if (likely(nvmeq->cq_vector >= 0))
f9f38e33
HK
780 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
781 nvmeq->dbbuf_cq_ei))
782 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 783 nvmeq->cq_head = head;
82123460 784 nvmeq->cq_phase = phase;
b60503ba 785
e9539f47 786 nvmeq->cqe_seen = 1;
a0fa9647
JA
787}
788
789static void nvme_process_cq(struct nvme_queue *nvmeq)
790{
791 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
792}
793
794static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
795{
796 irqreturn_t result;
797 struct nvme_queue *nvmeq = data;
798 spin_lock(&nvmeq->q_lock);
e9539f47
MW
799 nvme_process_cq(nvmeq);
800 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
801 nvmeq->cqe_seen = 0;
58ffacb5
MW
802 spin_unlock(&nvmeq->q_lock);
803 return result;
804}
805
806static irqreturn_t nvme_irq_check(int irq, void *data)
807{
808 struct nvme_queue *nvmeq = data;
d783e0bd
MR
809 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
810 return IRQ_WAKE_THREAD;
811 return IRQ_NONE;
58ffacb5
MW
812}
813
7776db1c 814static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 815{
d783e0bd 816 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
817 spin_lock_irq(&nvmeq->q_lock);
818 __nvme_process_cq(nvmeq, &tag);
819 spin_unlock_irq(&nvmeq->q_lock);
820
821 if (tag == -1)
822 return 1;
823 }
824
825 return 0;
826}
827
7776db1c
KB
828static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
829{
830 struct nvme_queue *nvmeq = hctx->driver_data;
831
832 return __nvme_poll(nvmeq, tag);
833}
834
f866fc42 835static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 836{
f866fc42 837 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 838 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 839 struct nvme_command c;
b60503ba 840
a4aea562
MB
841 memset(&c, 0, sizeof(c));
842 c.common.opcode = nvme_admin_async_event;
f866fc42 843 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 844
9396dec9 845 spin_lock_irq(&nvmeq->q_lock);
f866fc42 846 __nvme_submit_cmd(nvmeq, &c);
9396dec9 847 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
848}
849
b60503ba 850static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 851{
b60503ba
MW
852 struct nvme_command c;
853
854 memset(&c, 0, sizeof(c));
855 c.delete_queue.opcode = opcode;
856 c.delete_queue.qid = cpu_to_le16(id);
857
1c63dc66 858 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
859}
860
b60503ba
MW
861static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
862 struct nvme_queue *nvmeq)
863{
b60503ba
MW
864 struct nvme_command c;
865 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
866
d29ec824
CH
867 /*
868 * Note: we (ab)use the fact the the prp fields survive if no data
869 * is attached to the request.
870 */
b60503ba
MW
871 memset(&c, 0, sizeof(c));
872 c.create_cq.opcode = nvme_admin_create_cq;
873 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
874 c.create_cq.cqid = cpu_to_le16(qid);
875 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
876 c.create_cq.cq_flags = cpu_to_le16(flags);
877 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
878
1c63dc66 879 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
880}
881
882static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
883 struct nvme_queue *nvmeq)
884{
b60503ba 885 struct nvme_command c;
81c1cd98 886 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 887
d29ec824
CH
888 /*
889 * Note: we (ab)use the fact the the prp fields survive if no data
890 * is attached to the request.
891 */
b60503ba
MW
892 memset(&c, 0, sizeof(c));
893 c.create_sq.opcode = nvme_admin_create_sq;
894 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
895 c.create_sq.sqid = cpu_to_le16(qid);
896 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
897 c.create_sq.sq_flags = cpu_to_le16(flags);
898 c.create_sq.cqid = cpu_to_le16(qid);
899
1c63dc66 900 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
901}
902
903static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
904{
905 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
906}
907
908static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
909{
910 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
911}
912
2a842aca 913static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 914{
f4800d6d
CH
915 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
916 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 917
27fa9bc5
CH
918 dev_warn(nvmeq->dev->ctrl.device,
919 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 920 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 921 blk_mq_free_request(req);
bc5fc7e4
MW
922}
923
b2a0eb1a
KB
924static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
925{
926
927 /* If true, indicates loss of adapter communication, possibly by a
928 * NVMe Subsystem reset.
929 */
930 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
931
932 /* If there is a reset ongoing, we shouldn't reset again. */
933 if (dev->ctrl.state == NVME_CTRL_RESETTING)
934 return false;
935
936 /* We shouldn't reset unless the controller is on fatal error state
937 * _or_ if we lost the communication with it.
938 */
939 if (!(csts & NVME_CSTS_CFS) && !nssro)
940 return false;
941
942 /* If PCI error recovery process is happening, we cannot reset or
943 * the recovery mechanism will surely fail.
944 */
945 if (pci_channel_offline(to_pci_dev(dev->dev)))
946 return false;
947
948 return true;
949}
950
951static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
952{
953 /* Read a config register to help see what died. */
954 u16 pci_status;
955 int result;
956
957 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
958 &pci_status);
959 if (result == PCIBIOS_SUCCESSFUL)
960 dev_warn(dev->ctrl.device,
961 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
962 csts, pci_status);
963 else
964 dev_warn(dev->ctrl.device,
965 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
966 csts, result);
967}
968
31c7c7d2 969static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 970{
f4800d6d
CH
971 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
972 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 973 struct nvme_dev *dev = nvmeq->dev;
a4aea562 974 struct request *abort_req;
a4aea562 975 struct nvme_command cmd;
b2a0eb1a
KB
976 u32 csts = readl(dev->bar + NVME_REG_CSTS);
977
978 /*
979 * Reset immediately if the controller is failed
980 */
981 if (nvme_should_reset(dev, csts)) {
982 nvme_warn_reset(dev, csts);
983 nvme_dev_disable(dev, false);
d86c4d8e 984 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
985 return BLK_EH_HANDLED;
986 }
c30341dc 987
7776db1c
KB
988 /*
989 * Did we miss an interrupt?
990 */
991 if (__nvme_poll(nvmeq, req->tag)) {
992 dev_warn(dev->ctrl.device,
993 "I/O %d QID %d timeout, completion polled\n",
994 req->tag, nvmeq->qid);
995 return BLK_EH_HANDLED;
996 }
997
31c7c7d2 998 /*
fd634f41
CH
999 * Shutdown immediately if controller times out while starting. The
1000 * reset work will see the pci device disabled when it gets the forced
1001 * cancellation error. All outstanding requests are completed on
1002 * shutdown, so we return BLK_EH_HANDLED.
1003 */
bb8d261e 1004 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1005 dev_warn(dev->ctrl.device,
fd634f41
CH
1006 "I/O %d QID %d timeout, disable controller\n",
1007 req->tag, nvmeq->qid);
a5cdb68c 1008 nvme_dev_disable(dev, false);
27fa9bc5 1009 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1010 return BLK_EH_HANDLED;
c30341dc
KB
1011 }
1012
fd634f41
CH
1013 /*
1014 * Shutdown the controller immediately and schedule a reset if the
1015 * command was already aborted once before and still hasn't been
1016 * returned to the driver, or if this is the admin queue.
31c7c7d2 1017 */
f4800d6d 1018 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1019 dev_warn(dev->ctrl.device,
e1569a16
KB
1020 "I/O %d QID %d timeout, reset controller\n",
1021 req->tag, nvmeq->qid);
a5cdb68c 1022 nvme_dev_disable(dev, false);
d86c4d8e 1023 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1024
e1569a16
KB
1025 /*
1026 * Mark the request as handled, since the inline shutdown
1027 * forces all outstanding requests to complete.
1028 */
27fa9bc5 1029 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1030 return BLK_EH_HANDLED;
c30341dc 1031 }
c30341dc 1032
e7a2a87d 1033 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1034 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1035 return BLK_EH_RESET_TIMER;
6bf25d16 1036 }
7bf7d778 1037 iod->aborted = 1;
a4aea562 1038
c30341dc
KB
1039 memset(&cmd, 0, sizeof(cmd));
1040 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1041 cmd.abort.cid = req->tag;
c30341dc 1042 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1043
1b3c47c1
SG
1044 dev_warn(nvmeq->dev->ctrl.device,
1045 "I/O %d QID %d timeout, aborting\n",
1046 req->tag, nvmeq->qid);
e7a2a87d
CH
1047
1048 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1049 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1050 if (IS_ERR(abort_req)) {
1051 atomic_inc(&dev->ctrl.abort_limit);
1052 return BLK_EH_RESET_TIMER;
1053 }
1054
1055 abort_req->timeout = ADMIN_TIMEOUT;
1056 abort_req->end_io_data = NULL;
1057 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1058
31c7c7d2
CH
1059 /*
1060 * The aborted req will be completed on receiving the abort req.
1061 * We enable the timer again. If hit twice, it'll cause a device reset,
1062 * as the device then is in a faulty state.
1063 */
1064 return BLK_EH_RESET_TIMER;
c30341dc
KB
1065}
1066
a4aea562
MB
1067static void nvme_free_queue(struct nvme_queue *nvmeq)
1068{
9e866774
MW
1069 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1070 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1071 if (nvmeq->sq_cmds)
1072 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1073 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1074 kfree(nvmeq);
1075}
1076
a1a5ef99 1077static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1078{
1079 int i;
1080
a1a5ef99 1081 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1082 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1083 dev->queue_count--;
a4aea562 1084 dev->queues[i] = NULL;
f435c282 1085 nvme_free_queue(nvmeq);
121c7ad4 1086 }
22404274
KB
1087}
1088
4d115420
KB
1089/**
1090 * nvme_suspend_queue - put queue into suspended state
1091 * @nvmeq - queue to suspend
4d115420
KB
1092 */
1093static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1094{
2b25d981 1095 int vector;
b60503ba 1096
a09115b2 1097 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1098 if (nvmeq->cq_vector == -1) {
1099 spin_unlock_irq(&nvmeq->q_lock);
1100 return 1;
1101 }
0ff199cb 1102 vector = nvmeq->cq_vector;
42f61420 1103 nvmeq->dev->online_queues--;
2b25d981 1104 nvmeq->cq_vector = -1;
a09115b2
MW
1105 spin_unlock_irq(&nvmeq->q_lock);
1106
1c63dc66 1107 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1108 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1109
0ff199cb 1110 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1111
4d115420
KB
1112 return 0;
1113}
b60503ba 1114
a5cdb68c 1115static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1116{
a5cdb68c 1117 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1118
1119 if (!nvmeq)
1120 return;
1121 if (nvme_suspend_queue(nvmeq))
1122 return;
1123
a5cdb68c
KB
1124 if (shutdown)
1125 nvme_shutdown_ctrl(&dev->ctrl);
1126 else
1127 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1128 dev->bar + NVME_REG_CAP));
07836e65
KB
1129
1130 spin_lock_irq(&nvmeq->q_lock);
1131 nvme_process_cq(nvmeq);
1132 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1133}
1134
8ffaadf7
JD
1135static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1136 int entry_size)
1137{
1138 int q_depth = dev->q_depth;
5fd4ce1b
CH
1139 unsigned q_size_aligned = roundup(q_depth * entry_size,
1140 dev->ctrl.page_size);
8ffaadf7
JD
1141
1142 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1143 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1144 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1145 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1146
1147 /*
1148 * Ensure the reduced q_depth is above some threshold where it
1149 * would be better to map queues in system memory with the
1150 * original depth
1151 */
1152 if (q_depth < 64)
1153 return -ENOMEM;
1154 }
1155
1156 return q_depth;
1157}
1158
1159static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1160 int qid, int depth)
1161{
1162 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1163 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1164 dev->ctrl.page_size);
8ffaadf7
JD
1165 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1166 nvmeq->sq_cmds_io = dev->cmb + offset;
1167 } else {
1168 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1169 &nvmeq->sq_dma_addr, GFP_KERNEL);
1170 if (!nvmeq->sq_cmds)
1171 return -ENOMEM;
1172 }
1173
1174 return 0;
1175}
1176
b60503ba 1177static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1178 int depth, int node)
b60503ba 1179{
d3af3ecd
SL
1180 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1181 node);
b60503ba
MW
1182 if (!nvmeq)
1183 return NULL;
1184
e75ec752 1185 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1186 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1187 if (!nvmeq->cqes)
1188 goto free_nvmeq;
b60503ba 1189
8ffaadf7 1190 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1191 goto free_cqdma;
1192
e75ec752 1193 nvmeq->q_dmadev = dev->dev;
091b6092 1194 nvmeq->dev = dev;
b60503ba
MW
1195 spin_lock_init(&nvmeq->q_lock);
1196 nvmeq->cq_head = 0;
82123460 1197 nvmeq->cq_phase = 1;
b80d5ccc 1198 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1199 nvmeq->q_depth = depth;
c30341dc 1200 nvmeq->qid = qid;
758dd7fd 1201 nvmeq->cq_vector = -1;
a4aea562 1202 dev->queues[qid] = nvmeq;
36a7e993
JD
1203 dev->queue_count++;
1204
b60503ba
MW
1205 return nvmeq;
1206
1207 free_cqdma:
e75ec752 1208 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1209 nvmeq->cq_dma_addr);
1210 free_nvmeq:
1211 kfree(nvmeq);
1212 return NULL;
1213}
1214
dca51e78 1215static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1216{
0ff199cb
CH
1217 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1218 int nr = nvmeq->dev->ctrl.instance;
1219
1220 if (use_threaded_interrupts) {
1221 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1222 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1223 } else {
1224 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1225 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1226 }
3001082c
MW
1227}
1228
22404274 1229static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1230{
22404274 1231 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1232
7be50e93 1233 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1234 nvmeq->sq_tail = 0;
1235 nvmeq->cq_head = 0;
1236 nvmeq->cq_phase = 1;
b80d5ccc 1237 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1238 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1239 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1240 dev->online_queues++;
7be50e93 1241 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1242}
1243
1244static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1245{
1246 struct nvme_dev *dev = nvmeq->dev;
1247 int result;
3f85d50b 1248
2b25d981 1249 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1250 result = adapter_alloc_cq(dev, qid, nvmeq);
1251 if (result < 0)
22404274 1252 return result;
b60503ba
MW
1253
1254 result = adapter_alloc_sq(dev, qid, nvmeq);
1255 if (result < 0)
1256 goto release_cq;
1257
dca51e78 1258 result = queue_request_irq(nvmeq);
b60503ba
MW
1259 if (result < 0)
1260 goto release_sq;
1261
22404274 1262 nvme_init_queue(nvmeq, qid);
22404274 1263 return result;
b60503ba
MW
1264
1265 release_sq:
1266 adapter_delete_sq(dev, qid);
1267 release_cq:
1268 adapter_delete_cq(dev, qid);
22404274 1269 return result;
b60503ba
MW
1270}
1271
f363b089 1272static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1273 .queue_rq = nvme_queue_rq,
77f02a7a 1274 .complete = nvme_pci_complete_rq,
a4aea562 1275 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1276 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1277 .init_request = nvme_init_request,
a4aea562
MB
1278 .timeout = nvme_timeout,
1279};
1280
f363b089 1281static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1282 .queue_rq = nvme_queue_rq,
77f02a7a 1283 .complete = nvme_pci_complete_rq,
a4aea562
MB
1284 .init_hctx = nvme_init_hctx,
1285 .init_request = nvme_init_request,
dca51e78 1286 .map_queues = nvme_pci_map_queues,
a4aea562 1287 .timeout = nvme_timeout,
a0fa9647 1288 .poll = nvme_poll,
a4aea562
MB
1289};
1290
ea191d2f
KB
1291static void nvme_dev_remove_admin(struct nvme_dev *dev)
1292{
1c63dc66 1293 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1294 /*
1295 * If the controller was reset during removal, it's possible
1296 * user requests may be waiting on a stopped queue. Start the
1297 * queue to flush these to completion.
1298 */
1299 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1300 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1301 blk_mq_free_tag_set(&dev->admin_tagset);
1302 }
1303}
1304
a4aea562
MB
1305static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1306{
1c63dc66 1307 if (!dev->ctrl.admin_q) {
a4aea562
MB
1308 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1309 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1310
1311 /*
1312 * Subtract one to leave an empty queue entry for 'Full Queue'
1313 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1314 */
1315 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1316 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1317 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1318 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1319 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1320 dev->admin_tagset.driver_data = dev;
1321
1322 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1323 return -ENOMEM;
1324
1c63dc66
CH
1325 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1326 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1327 blk_mq_free_tag_set(&dev->admin_tagset);
1328 return -ENOMEM;
1329 }
1c63dc66 1330 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1331 nvme_dev_remove_admin(dev);
1c63dc66 1332 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1333 return -ENODEV;
1334 }
0fb59cbc 1335 } else
25646264 1336 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1337
1338 return 0;
1339}
1340
97f6ef64
XY
1341static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1342{
1343 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1344}
1345
1346static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1347{
1348 struct pci_dev *pdev = to_pci_dev(dev->dev);
1349
1350 if (size <= dev->bar_mapped_size)
1351 return 0;
1352 if (size > pci_resource_len(pdev, 0))
1353 return -ENOMEM;
1354 if (dev->bar)
1355 iounmap(dev->bar);
1356 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1357 if (!dev->bar) {
1358 dev->bar_mapped_size = 0;
1359 return -ENOMEM;
1360 }
1361 dev->bar_mapped_size = size;
1362 dev->dbs = dev->bar + NVME_REG_DBS;
1363
1364 return 0;
1365}
1366
8d85fce7 1367static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1368{
ba47e386 1369 int result;
b60503ba 1370 u32 aqa;
7a67cbea 1371 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1372 struct nvme_queue *nvmeq;
1373
97f6ef64
XY
1374 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1375 if (result < 0)
1376 return result;
1377
8ef2074d 1378 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1379 NVME_CAP_NSSRC(cap) : 0;
1380
7a67cbea
CH
1381 if (dev->subsystem &&
1382 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1383 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1384
5fd4ce1b 1385 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1386 if (result < 0)
1387 return result;
b60503ba 1388
a4aea562 1389 nvmeq = dev->queues[0];
cd638946 1390 if (!nvmeq) {
d3af3ecd
SL
1391 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1392 dev_to_node(dev->dev));
cd638946
KB
1393 if (!nvmeq)
1394 return -ENOMEM;
cd638946 1395 }
b60503ba
MW
1396
1397 aqa = nvmeq->q_depth - 1;
1398 aqa |= aqa << 16;
1399
7a67cbea
CH
1400 writel(aqa, dev->bar + NVME_REG_AQA);
1401 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1402 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1403
5fd4ce1b 1404 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1405 if (result)
d4875622 1406 return result;
a4aea562 1407
2b25d981 1408 nvmeq->cq_vector = 0;
dca51e78 1409 result = queue_request_irq(nvmeq);
758dd7fd
JD
1410 if (result) {
1411 nvmeq->cq_vector = -1;
d4875622 1412 return result;
758dd7fd 1413 }
025c557a 1414
b60503ba
MW
1415 return result;
1416}
1417
749941f2 1418static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1419{
949928c1 1420 unsigned i, max;
749941f2 1421 int ret = 0;
42f61420 1422
749941f2 1423 for (i = dev->queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1424 /* vector == qid - 1, match nvme_create_queue */
1425 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1426 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1427 ret = -ENOMEM;
42f61420 1428 break;
749941f2
CH
1429 }
1430 }
42f61420 1431
949928c1
KB
1432 max = min(dev->max_qid, dev->queue_count - 1);
1433 for (i = dev->online_queues; i <= max; i++) {
749941f2 1434 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1435 if (ret)
42f61420 1436 break;
27e8166c 1437 }
749941f2
CH
1438
1439 /*
1440 * Ignore failing Create SQ/CQ commands, we can continue with less
1441 * than the desired aount of queues, and even a controller without
1442 * I/O queues an still be used to issue admin commands. This might
1443 * be useful to upgrade a buggy firmware for example.
1444 */
1445 return ret >= 0 ? 0 : ret;
b60503ba
MW
1446}
1447
202021c1
SB
1448static ssize_t nvme_cmb_show(struct device *dev,
1449 struct device_attribute *attr,
1450 char *buf)
1451{
1452 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1453
c965809c 1454 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1455 ndev->cmbloc, ndev->cmbsz);
1456}
1457static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1458
8ffaadf7
JD
1459static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1460{
1461 u64 szu, size, offset;
8ffaadf7
JD
1462 resource_size_t bar_size;
1463 struct pci_dev *pdev = to_pci_dev(dev->dev);
1464 void __iomem *cmb;
1465 dma_addr_t dma_addr;
1466
7a67cbea 1467 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1468 if (!(NVME_CMB_SZ(dev->cmbsz)))
1469 return NULL;
202021c1 1470 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1471
202021c1
SB
1472 if (!use_cmb_sqes)
1473 return NULL;
8ffaadf7
JD
1474
1475 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1476 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1477 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1478 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1479
1480 if (offset > bar_size)
1481 return NULL;
1482
1483 /*
1484 * Controllers may support a CMB size larger than their BAR,
1485 * for example, due to being behind a bridge. Reduce the CMB to
1486 * the reported size of the BAR
1487 */
1488 if (size > bar_size - offset)
1489 size = bar_size - offset;
1490
202021c1 1491 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1492 cmb = ioremap_wc(dma_addr, size);
1493 if (!cmb)
1494 return NULL;
1495
1496 dev->cmb_dma_addr = dma_addr;
1497 dev->cmb_size = size;
1498 return cmb;
1499}
1500
1501static inline void nvme_release_cmb(struct nvme_dev *dev)
1502{
1503 if (dev->cmb) {
1504 iounmap(dev->cmb);
1505 dev->cmb = NULL;
f63572df
JD
1506 if (dev->cmbsz) {
1507 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1508 &dev_attr_cmb.attr, NULL);
1509 dev->cmbsz = 0;
1510 }
8ffaadf7
JD
1511 }
1512}
1513
87ad72a5
CH
1514static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1515{
1516 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1517 struct nvme_command c;
1518 u64 dma_addr;
1519 int ret;
1520
1521 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1522 DMA_TO_DEVICE);
1523 if (dma_mapping_error(dev->dev, dma_addr))
1524 return -ENOMEM;
1525
1526 memset(&c, 0, sizeof(c));
1527 c.features.opcode = nvme_admin_set_features;
1528 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1529 c.features.dword11 = cpu_to_le32(bits);
1530 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1531 ilog2(dev->ctrl.page_size));
1532 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1533 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1534 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1535
1536 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1537 if (ret) {
1538 dev_warn(dev->ctrl.device,
1539 "failed to set host mem (err %d, flags %#x).\n",
1540 ret, bits);
1541 }
1542 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1543 return ret;
1544}
1545
1546static void nvme_free_host_mem(struct nvme_dev *dev)
1547{
1548 int i;
1549
1550 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1551 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1552 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1553
1554 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1555 le64_to_cpu(desc->addr));
1556 }
1557
1558 kfree(dev->host_mem_desc_bufs);
1559 dev->host_mem_desc_bufs = NULL;
1560 kfree(dev->host_mem_descs);
1561 dev->host_mem_descs = NULL;
1562}
1563
1564static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1565{
1566 struct nvme_host_mem_buf_desc *descs;
1567 u32 chunk_size, max_entries, i = 0;
1568 void **bufs;
1569 u64 size, tmp;
1570
1571 /* start big and work our way down */
1572 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1573retry:
1574 tmp = (preferred + chunk_size - 1);
1575 do_div(tmp, chunk_size);
1576 max_entries = tmp;
1577 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1578 if (!descs)
1579 goto out;
1580
1581 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1582 if (!bufs)
1583 goto out_free_descs;
1584
1585 for (size = 0; size < preferred; size += chunk_size) {
1586 u32 len = min_t(u64, chunk_size, preferred - size);
1587 dma_addr_t dma_addr;
1588
1589 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1590 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1591 if (!bufs[i])
1592 break;
1593
1594 descs[i].addr = cpu_to_le64(dma_addr);
1595 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1596 i++;
1597 }
1598
1599 if (!size || (min && size < min)) {
1600 dev_warn(dev->ctrl.device,
1601 "failed to allocate host memory buffer.\n");
1602 goto out_free_bufs;
1603 }
1604
1605 dev_info(dev->ctrl.device,
1606 "allocated %lld MiB host memory buffer.\n",
1607 size >> ilog2(SZ_1M));
1608 dev->nr_host_mem_descs = i;
1609 dev->host_mem_size = size;
1610 dev->host_mem_descs = descs;
1611 dev->host_mem_desc_bufs = bufs;
1612 return 0;
1613
1614out_free_bufs:
1615 while (--i >= 0) {
1616 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1617
1618 dma_free_coherent(dev->dev, size, bufs[i],
1619 le64_to_cpu(descs[i].addr));
1620 }
1621
1622 kfree(bufs);
1623out_free_descs:
1624 kfree(descs);
1625out:
1626 /* try a smaller chunk size if we failed early */
1627 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1628 chunk_size /= 2;
1629 goto retry;
1630 }
1631 dev->host_mem_descs = NULL;
1632 return -ENOMEM;
1633}
1634
1635static void nvme_setup_host_mem(struct nvme_dev *dev)
1636{
1637 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1638 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1639 u64 min = (u64)dev->ctrl.hmmin * 4096;
1640 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1641
1642 preferred = min(preferred, max);
1643 if (min > max) {
1644 dev_warn(dev->ctrl.device,
1645 "min host memory (%lld MiB) above limit (%d MiB).\n",
1646 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1647 nvme_free_host_mem(dev);
1648 return;
1649 }
1650
1651 /*
1652 * If we already have a buffer allocated check if we can reuse it.
1653 */
1654 if (dev->host_mem_descs) {
1655 if (dev->host_mem_size >= min)
1656 enable_bits |= NVME_HOST_MEM_RETURN;
1657 else
1658 nvme_free_host_mem(dev);
1659 }
1660
1661 if (!dev->host_mem_descs) {
1662 if (nvme_alloc_host_mem(dev, min, preferred))
1663 return;
1664 }
1665
1666 if (nvme_set_host_mem(dev, enable_bits))
1667 nvme_free_host_mem(dev);
1668}
1669
8d85fce7 1670static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1671{
a4aea562 1672 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1673 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1674 int result, nr_io_queues;
1675 unsigned long size;
b60503ba 1676
2800b8e7 1677 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1678 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1679 if (result < 0)
1b23484b 1680 return result;
9a0be7ab 1681
f5fa90dc 1682 if (nr_io_queues == 0)
a5229050 1683 return 0;
b60503ba 1684
8ffaadf7
JD
1685 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1686 result = nvme_cmb_qdepth(dev, nr_io_queues,
1687 sizeof(struct nvme_command));
1688 if (result > 0)
1689 dev->q_depth = result;
1690 else
1691 nvme_release_cmb(dev);
1692 }
1693
97f6ef64
XY
1694 do {
1695 size = db_bar_size(dev, nr_io_queues);
1696 result = nvme_remap_bar(dev, size);
1697 if (!result)
1698 break;
1699 if (!--nr_io_queues)
1700 return -ENOMEM;
1701 } while (1);
1702 adminq->q_db = dev->dbs;
f1938f6e 1703
9d713c2b 1704 /* Deregister the admin queue's interrupt */
0ff199cb 1705 pci_free_irq(pdev, 0, adminq);
9d713c2b 1706
e32efbfc
JA
1707 /*
1708 * If we enable msix early due to not intx, disable it again before
1709 * setting up the full range we need.
1710 */
dca51e78
CH
1711 pci_free_irq_vectors(pdev);
1712 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1713 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1714 if (nr_io_queues <= 0)
1715 return -EIO;
1716 dev->max_qid = nr_io_queues;
fa08a396 1717
063a8096
MW
1718 /*
1719 * Should investigate if there's a performance win from allocating
1720 * more queues than interrupt vectors; it might allow the submission
1721 * path to scale better, even if the receive path is limited by the
1722 * number of interrupts.
1723 */
063a8096 1724
dca51e78 1725 result = queue_request_irq(adminq);
758dd7fd
JD
1726 if (result) {
1727 adminq->cq_vector = -1;
d4875622 1728 return result;
758dd7fd 1729 }
749941f2 1730 return nvme_create_io_queues(dev);
b60503ba
MW
1731}
1732
2a842aca 1733static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1734{
db3cbfff 1735 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1736
db3cbfff
KB
1737 blk_mq_free_request(req);
1738 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1739}
1740
2a842aca 1741static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1742{
db3cbfff 1743 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1744
db3cbfff
KB
1745 if (!error) {
1746 unsigned long flags;
1747
2e39e0f6
ML
1748 /*
1749 * We might be called with the AQ q_lock held
1750 * and the I/O queue q_lock should always
1751 * nest inside the AQ one.
1752 */
1753 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1754 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1755 nvme_process_cq(nvmeq);
1756 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1757 }
db3cbfff
KB
1758
1759 nvme_del_queue_end(req, error);
a5768aa8
KB
1760}
1761
db3cbfff 1762static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1763{
db3cbfff
KB
1764 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1765 struct request *req;
1766 struct nvme_command cmd;
bda4e0fb 1767
db3cbfff
KB
1768 memset(&cmd, 0, sizeof(cmd));
1769 cmd.delete_queue.opcode = opcode;
1770 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1771
eb71f435 1772 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1773 if (IS_ERR(req))
1774 return PTR_ERR(req);
bda4e0fb 1775
db3cbfff
KB
1776 req->timeout = ADMIN_TIMEOUT;
1777 req->end_io_data = nvmeq;
1778
1779 blk_execute_rq_nowait(q, NULL, req, false,
1780 opcode == nvme_admin_delete_cq ?
1781 nvme_del_cq_end : nvme_del_queue_end);
1782 return 0;
bda4e0fb
KB
1783}
1784
70659060 1785static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1786{
70659060 1787 int pass;
db3cbfff
KB
1788 unsigned long timeout;
1789 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1790
db3cbfff 1791 for (pass = 0; pass < 2; pass++) {
014a0d60 1792 int sent = 0, i = queues;
db3cbfff
KB
1793
1794 reinit_completion(&dev->ioq_wait);
1795 retry:
1796 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1797 for (; i > 0; i--, sent++)
1798 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1799 break;
c21377f8 1800
db3cbfff
KB
1801 while (sent--) {
1802 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1803 if (timeout == 0)
1804 return;
1805 if (i)
1806 goto retry;
1807 }
1808 opcode = nvme_admin_delete_cq;
1809 }
a5768aa8
KB
1810}
1811
422ef0c7
MW
1812/*
1813 * Return: error value if an error occurred setting up the queues or calling
1814 * Identify Device. 0 if these succeeded, even if adding some of the
1815 * namespaces failed. At the moment, these failures are silent. TBD which
1816 * failures should be reported.
1817 */
8d85fce7 1818static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1819{
5bae7f73 1820 if (!dev->ctrl.tagset) {
ffe7704d
KB
1821 dev->tagset.ops = &nvme_mq_ops;
1822 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1823 dev->tagset.timeout = NVME_IO_TIMEOUT;
1824 dev->tagset.numa_node = dev_to_node(dev->dev);
1825 dev->tagset.queue_depth =
a4aea562 1826 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1827 dev->tagset.cmd_size = nvme_cmd_size(dev);
1828 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1829 dev->tagset.driver_data = dev;
b60503ba 1830
ffe7704d
KB
1831 if (blk_mq_alloc_tag_set(&dev->tagset))
1832 return 0;
5bae7f73 1833 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1834
1835 nvme_dbbuf_set(dev);
949928c1
KB
1836 } else {
1837 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1838
1839 /* Free previously allocated queues that are no longer usable */
1840 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1841 }
949928c1 1842
e1e5e564 1843 return 0;
b60503ba
MW
1844}
1845
b00a726a 1846static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1847{
42f61420 1848 u64 cap;
b00a726a 1849 int result = -ENOMEM;
e75ec752 1850 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1851
1852 if (pci_enable_device_mem(pdev))
1853 return result;
1854
0877cb0d 1855 pci_set_master(pdev);
0877cb0d 1856
e75ec752
CH
1857 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1858 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1859 goto disable;
0877cb0d 1860
7a67cbea 1861 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1862 result = -ENODEV;
b00a726a 1863 goto disable;
0e53d180 1864 }
e32efbfc
JA
1865
1866 /*
a5229050
KB
1867 * Some devices and/or platforms don't advertise or work with INTx
1868 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1869 * adjust this later.
e32efbfc 1870 */
dca51e78
CH
1871 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1872 if (result < 0)
1873 return result;
e32efbfc 1874
7a67cbea
CH
1875 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1876
42f61420
KB
1877 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1878 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1879 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1880
1881 /*
1882 * Temporary fix for the Apple controller found in the MacBook8,1 and
1883 * some MacBook7,1 to avoid controller resets and data loss.
1884 */
1885 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1886 dev->q_depth = 2;
9bdcfb10
CH
1887 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1888 "set queue depth=%u to work around controller resets\n",
1f390c1f
SG
1889 dev->q_depth);
1890 }
1891
202021c1
SB
1892 /*
1893 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1894 * populate sysfs if a CMB is implemented. Note that we add the
1895 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1896 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1897 * NULL as final argument to sysfs_add_file_to_group.
1898 */
1899
8ef2074d 1900 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1901 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1902
202021c1
SB
1903 if (dev->cmbsz) {
1904 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1905 &dev_attr_cmb.attr, NULL))
9bdcfb10 1906 dev_warn(dev->ctrl.device,
202021c1
SB
1907 "failed to add sysfs attribute for CMB\n");
1908 }
1909 }
1910
a0a3408e
KB
1911 pci_enable_pcie_error_reporting(pdev);
1912 pci_save_state(pdev);
0877cb0d
KB
1913 return 0;
1914
1915 disable:
0877cb0d
KB
1916 pci_disable_device(pdev);
1917 return result;
1918}
1919
1920static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1921{
1922 if (dev->bar)
1923 iounmap(dev->bar);
a1f447b3 1924 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1925}
1926
1927static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1928{
e75ec752
CH
1929 struct pci_dev *pdev = to_pci_dev(dev->dev);
1930
f63572df 1931 nvme_release_cmb(dev);
dca51e78 1932 pci_free_irq_vectors(pdev);
0877cb0d 1933
a0a3408e
KB
1934 if (pci_is_enabled(pdev)) {
1935 pci_disable_pcie_error_reporting(pdev);
e75ec752 1936 pci_disable_device(pdev);
4d115420 1937 }
4d115420
KB
1938}
1939
a5cdb68c 1940static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1941{
70659060 1942 int i, queues;
302ad8cc
KB
1943 bool dead = true;
1944 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1945
77bf25ea 1946 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1947 if (pci_is_enabled(pdev)) {
1948 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1949
1950 if (dev->ctrl.state == NVME_CTRL_LIVE)
1951 nvme_start_freeze(&dev->ctrl);
1952 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1953 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1954 }
c21377f8 1955
302ad8cc
KB
1956 /*
1957 * Give the controller a chance to complete all entered requests if
1958 * doing a safe shutdown.
1959 */
87ad72a5
CH
1960 if (!dead) {
1961 if (shutdown)
1962 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1963
1964 /*
1965 * If the controller is still alive tell it to stop using the
1966 * host memory buffer. In theory the shutdown / reset should
1967 * make sure that it doesn't access the host memoery anymore,
1968 * but I'd rather be safe than sorry..
1969 */
1970 if (dev->host_mem_descs)
1971 nvme_set_host_mem(dev, 0);
1972
1973 }
302ad8cc
KB
1974 nvme_stop_queues(&dev->ctrl);
1975
70659060 1976 queues = dev->online_queues - 1;
c21377f8
GKB
1977 for (i = dev->queue_count - 1; i > 0; i--)
1978 nvme_suspend_queue(dev->queues[i]);
1979
302ad8cc 1980 if (dead) {
82469c59
GKB
1981 /* A device might become IO incapable very soon during
1982 * probe, before the admin queue is configured. Thus,
1983 * queue_count can be 0 here.
1984 */
1985 if (dev->queue_count)
1986 nvme_suspend_queue(dev->queues[0]);
4d115420 1987 } else {
70659060 1988 nvme_disable_io_queues(dev, queues);
a5cdb68c 1989 nvme_disable_admin_queue(dev, shutdown);
4d115420 1990 }
b00a726a 1991 nvme_pci_disable(dev);
07836e65 1992
e1958e65
ML
1993 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1994 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
1995
1996 /*
1997 * The driver will not be starting up queues again if shutting down so
1998 * must flush all entered requests to their failed completion to avoid
1999 * deadlocking blk-mq hot-cpu notifier.
2000 */
2001 if (shutdown)
2002 nvme_start_queues(&dev->ctrl);
77bf25ea 2003 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2004}
2005
091b6092
MW
2006static int nvme_setup_prp_pools(struct nvme_dev *dev)
2007{
e75ec752 2008 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2009 PAGE_SIZE, PAGE_SIZE, 0);
2010 if (!dev->prp_page_pool)
2011 return -ENOMEM;
2012
99802a7a 2013 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2014 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2015 256, 256, 0);
2016 if (!dev->prp_small_pool) {
2017 dma_pool_destroy(dev->prp_page_pool);
2018 return -ENOMEM;
2019 }
091b6092
MW
2020 return 0;
2021}
2022
2023static void nvme_release_prp_pools(struct nvme_dev *dev)
2024{
2025 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2026 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2027}
2028
1673f1f0 2029static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2030{
1673f1f0 2031 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2032
f9f38e33 2033 nvme_dbbuf_dma_free(dev);
e75ec752 2034 put_device(dev->dev);
4af0e21c
KB
2035 if (dev->tagset.tags)
2036 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2037 if (dev->ctrl.admin_q)
2038 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2039 kfree(dev->queues);
e286bcfc 2040 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2041 kfree(dev);
2042}
2043
f58944e2
KB
2044static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2045{
237045fc 2046 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2047
2048 kref_get(&dev->ctrl.kref);
69d9a99c 2049 nvme_dev_disable(dev, false);
f58944e2
KB
2050 if (!schedule_work(&dev->remove_work))
2051 nvme_put_ctrl(&dev->ctrl);
2052}
2053
fd634f41 2054static void nvme_reset_work(struct work_struct *work)
5e82e952 2055{
d86c4d8e
CH
2056 struct nvme_dev *dev =
2057 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2058 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2059 int result = -ENODEV;
5e82e952 2060
82b057ca 2061 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2062 goto out;
5e82e952 2063
fd634f41
CH
2064 /*
2065 * If we're called to reset a live controller first shut it down before
2066 * moving on.
2067 */
b00a726a 2068 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2069 nvme_dev_disable(dev, false);
5e82e952 2070
b00a726a 2071 result = nvme_pci_enable(dev);
f0b50732 2072 if (result)
3cf519b5 2073 goto out;
f0b50732
KB
2074
2075 result = nvme_configure_admin_queue(dev);
2076 if (result)
f58944e2 2077 goto out;
f0b50732 2078
a4aea562 2079 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2080 result = nvme_alloc_admin_tags(dev);
2081 if (result)
f58944e2 2082 goto out;
b9afca3e 2083
ce4541f4
CH
2084 result = nvme_init_identify(&dev->ctrl);
2085 if (result)
f58944e2 2086 goto out;
ce4541f4 2087
e286bcfc
SB
2088 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2089 if (!dev->ctrl.opal_dev)
2090 dev->ctrl.opal_dev =
2091 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2092 else if (was_suspend)
2093 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2094 } else {
2095 free_opal_dev(dev->ctrl.opal_dev);
2096 dev->ctrl.opal_dev = NULL;
4f1244c8 2097 }
a98e58e5 2098
f9f38e33
HK
2099 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2100 result = nvme_dbbuf_dma_alloc(dev);
2101 if (result)
2102 dev_warn(dev->dev,
2103 "unable to allocate dma for dbbuf\n");
2104 }
2105
87ad72a5
CH
2106 if (dev->ctrl.hmpre)
2107 nvme_setup_host_mem(dev);
2108
f0b50732 2109 result = nvme_setup_io_queues(dev);
badc34d4 2110 if (result)
f58944e2 2111 goto out;
f0b50732 2112
21f033f7
KB
2113 /*
2114 * A controller that can not execute IO typically requires user
2115 * intervention to correct. For such degraded controllers, the driver
2116 * should not submit commands the user did not request, so skip
2117 * registering for asynchronous event notification on this condition.
2118 */
f866fc42
CH
2119 if (dev->online_queues > 1)
2120 nvme_queue_async_events(&dev->ctrl);
3cf519b5 2121
2659e57b
CH
2122 /*
2123 * Keep the controller around but remove all namespaces if we don't have
2124 * any working I/O queue.
2125 */
3cf519b5 2126 if (dev->online_queues < 2) {
1b3c47c1 2127 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2128 nvme_kill_queues(&dev->ctrl);
5bae7f73 2129 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2130 } else {
25646264 2131 nvme_start_queues(&dev->ctrl);
302ad8cc 2132 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2133 nvme_dev_add(dev);
302ad8cc 2134 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2135 }
2136
bb8d261e
CH
2137 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2138 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2139 goto out;
2140 }
92911a55
CH
2141
2142 if (dev->online_queues > 1)
5955be21 2143 nvme_queue_scan(&dev->ctrl);
3cf519b5 2144 return;
f0b50732 2145
3cf519b5 2146 out:
f58944e2 2147 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2148}
2149
5c8809e6 2150static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2151{
5c8809e6 2152 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2153 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2154
69d9a99c 2155 nvme_kill_queues(&dev->ctrl);
9a6b9458 2156 if (pci_get_drvdata(pdev))
921920ab 2157 device_release_driver(&pdev->dev);
1673f1f0 2158 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2159}
2160
1c63dc66 2161static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2162{
1c63dc66 2163 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2164 return 0;
9ca97374
TH
2165}
2166
5fd4ce1b 2167static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2168{
5fd4ce1b
CH
2169 writel(val, to_nvme_dev(ctrl)->bar + off);
2170 return 0;
2171}
4cc06521 2172
7fd8930f
CH
2173static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2174{
2175 *val = readq(to_nvme_dev(ctrl)->bar + off);
2176 return 0;
4cc06521
KB
2177}
2178
1c63dc66 2179static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2180 .name = "pcie",
e439bb12 2181 .module = THIS_MODULE,
c81bfba9 2182 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2183 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2184 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2185 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2186 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2187 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2188};
4cc06521 2189
b00a726a
KB
2190static int nvme_dev_map(struct nvme_dev *dev)
2191{
b00a726a
KB
2192 struct pci_dev *pdev = to_pci_dev(dev->dev);
2193
a1f447b3 2194 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2195 return -ENODEV;
2196
97f6ef64 2197 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2198 goto release;
2199
9fa196e7 2200 return 0;
b00a726a 2201 release:
9fa196e7
MG
2202 pci_release_mem_regions(pdev);
2203 return -ENODEV;
b00a726a
KB
2204}
2205
ff5350a8
AL
2206static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2207{
2208 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2209 /*
2210 * Several Samsung devices seem to drop off the PCIe bus
2211 * randomly when APST is on and uses the deepest sleep state.
2212 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2213 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2214 * 950 PRO 256GB", but it seems to be restricted to two Dell
2215 * laptops.
2216 */
2217 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2218 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2219 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2220 return NVME_QUIRK_NO_DEEPEST_PS;
2221 }
2222
2223 return 0;
2224}
2225
8d85fce7 2226static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2227{
a4aea562 2228 int node, result = -ENOMEM;
b60503ba 2229 struct nvme_dev *dev;
ff5350a8 2230 unsigned long quirks = id->driver_data;
b60503ba 2231
a4aea562
MB
2232 node = dev_to_node(&pdev->dev);
2233 if (node == NUMA_NO_NODE)
2fa84351 2234 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2235
2236 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2237 if (!dev)
2238 return -ENOMEM;
a4aea562
MB
2239 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2240 GFP_KERNEL, node);
b60503ba
MW
2241 if (!dev->queues)
2242 goto free;
2243
e75ec752 2244 dev->dev = get_device(&pdev->dev);
9a6b9458 2245 pci_set_drvdata(pdev, dev);
1c63dc66 2246
b00a726a
KB
2247 result = nvme_dev_map(dev);
2248 if (result)
2249 goto free;
2250
d86c4d8e 2251 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2252 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2253 mutex_init(&dev->shutdown_lock);
db3cbfff 2254 init_completion(&dev->ioq_wait);
b60503ba 2255
091b6092
MW
2256 result = nvme_setup_prp_pools(dev);
2257 if (result)
a96d4f5c 2258 goto put_pci;
4cc06521 2259
ff5350a8
AL
2260 quirks |= check_dell_samsung_bug(pdev);
2261
f3ca80fc 2262 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2263 quirks);
4cc06521 2264 if (result)
2e1d8448 2265 goto release_pools;
740216fc 2266
82b057ca 2267 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2268 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2269
d86c4d8e 2270 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2271 return 0;
2272
0877cb0d 2273 release_pools:
091b6092 2274 nvme_release_prp_pools(dev);
a96d4f5c 2275 put_pci:
e75ec752 2276 put_device(dev->dev);
b00a726a 2277 nvme_dev_unmap(dev);
b60503ba
MW
2278 free:
2279 kfree(dev->queues);
b60503ba
MW
2280 kfree(dev);
2281 return result;
2282}
2283
f0d54a54
KB
2284static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2285{
a6739479 2286 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2287
a6739479 2288 if (prepare)
a5cdb68c 2289 nvme_dev_disable(dev, false);
a6739479 2290 else
d86c4d8e 2291 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2292}
2293
09ece142
KB
2294static void nvme_shutdown(struct pci_dev *pdev)
2295{
2296 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2297 nvme_dev_disable(dev, true);
09ece142
KB
2298}
2299
f58944e2
KB
2300/*
2301 * The driver's remove may be called on a device in a partially initialized
2302 * state. This function must not have any dependencies on the device state in
2303 * order to proceed.
2304 */
8d85fce7 2305static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2306{
2307 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2308
bb8d261e
CH
2309 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2310
d86c4d8e 2311 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2312 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2313
6db28eda 2314 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2315 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2316 nvme_dev_disable(dev, false);
2317 }
0ff9d4e1 2318
d86c4d8e 2319 flush_work(&dev->ctrl.reset_work);
53029b04 2320 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2321 nvme_dev_disable(dev, true);
87ad72a5 2322 nvme_free_host_mem(dev);
a4aea562 2323 nvme_dev_remove_admin(dev);
a1a5ef99 2324 nvme_free_queues(dev, 0);
9a6b9458 2325 nvme_release_prp_pools(dev);
b00a726a 2326 nvme_dev_unmap(dev);
1673f1f0 2327 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2328}
2329
13880f5b
KB
2330static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2331{
2332 int ret = 0;
2333
2334 if (numvfs == 0) {
2335 if (pci_vfs_assigned(pdev)) {
2336 dev_warn(&pdev->dev,
2337 "Cannot disable SR-IOV VFs while assigned\n");
2338 return -EPERM;
2339 }
2340 pci_disable_sriov(pdev);
2341 return 0;
2342 }
2343
2344 ret = pci_enable_sriov(pdev, numvfs);
2345 return ret ? ret : numvfs;
2346}
2347
671a6018 2348#ifdef CONFIG_PM_SLEEP
cd638946
KB
2349static int nvme_suspend(struct device *dev)
2350{
2351 struct pci_dev *pdev = to_pci_dev(dev);
2352 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2353
a5cdb68c 2354 nvme_dev_disable(ndev, true);
cd638946
KB
2355 return 0;
2356}
2357
2358static int nvme_resume(struct device *dev)
2359{
2360 struct pci_dev *pdev = to_pci_dev(dev);
2361 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2362
d86c4d8e 2363 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2364 return 0;
cd638946 2365}
671a6018 2366#endif
cd638946
KB
2367
2368static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2369
a0a3408e
KB
2370static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2371 pci_channel_state_t state)
2372{
2373 struct nvme_dev *dev = pci_get_drvdata(pdev);
2374
2375 /*
2376 * A frozen channel requires a reset. When detected, this method will
2377 * shutdown the controller to quiesce. The controller will be restarted
2378 * after the slot reset through driver's slot_reset callback.
2379 */
a0a3408e
KB
2380 switch (state) {
2381 case pci_channel_io_normal:
2382 return PCI_ERS_RESULT_CAN_RECOVER;
2383 case pci_channel_io_frozen:
d011fb31
KB
2384 dev_warn(dev->ctrl.device,
2385 "frozen state error detected, reset controller\n");
a5cdb68c 2386 nvme_dev_disable(dev, false);
a0a3408e
KB
2387 return PCI_ERS_RESULT_NEED_RESET;
2388 case pci_channel_io_perm_failure:
d011fb31
KB
2389 dev_warn(dev->ctrl.device,
2390 "failure state error detected, request disconnect\n");
a0a3408e
KB
2391 return PCI_ERS_RESULT_DISCONNECT;
2392 }
2393 return PCI_ERS_RESULT_NEED_RESET;
2394}
2395
2396static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2397{
2398 struct nvme_dev *dev = pci_get_drvdata(pdev);
2399
1b3c47c1 2400 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2401 pci_restore_state(pdev);
d86c4d8e 2402 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2403 return PCI_ERS_RESULT_RECOVERED;
2404}
2405
2406static void nvme_error_resume(struct pci_dev *pdev)
2407{
2408 pci_cleanup_aer_uncorrect_error_status(pdev);
2409}
2410
1d352035 2411static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2412 .error_detected = nvme_error_detected,
b60503ba
MW
2413 .slot_reset = nvme_slot_reset,
2414 .resume = nvme_error_resume,
f0d54a54 2415 .reset_notify = nvme_reset_notify,
b60503ba
MW
2416};
2417
6eb0d698 2418static const struct pci_device_id nvme_id_table[] = {
106198ed 2419 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2420 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2421 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2422 { PCI_VDEVICE(INTEL, 0x0a53),
2423 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2424 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2425 { PCI_VDEVICE(INTEL, 0x0a54),
2426 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2427 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2428 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2429 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2430 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2431 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2432 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2433 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2434 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2435 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2436 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2437 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2438 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2439 { 0, }
2440};
2441MODULE_DEVICE_TABLE(pci, nvme_id_table);
2442
2443static struct pci_driver nvme_driver = {
2444 .name = "nvme",
2445 .id_table = nvme_id_table,
2446 .probe = nvme_probe,
8d85fce7 2447 .remove = nvme_remove,
09ece142 2448 .shutdown = nvme_shutdown,
cd638946
KB
2449 .driver = {
2450 .pm = &nvme_dev_pm_ops,
2451 },
13880f5b 2452 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2453 .err_handler = &nvme_err_handler,
2454};
2455
2456static int __init nvme_init(void)
2457{
9a6327d2 2458 return pci_register_driver(&nvme_driver);
b60503ba
MW
2459}
2460
2461static void __exit nvme_exit(void)
2462{
2463 pci_unregister_driver(&nvme_driver);
21bd78bc 2464 _nvme_check_size();
b60503ba
MW
2465}
2466
2467MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2468MODULE_LICENSE("GPL");
c78b4713 2469MODULE_VERSION("1.0");
b60503ba
MW
2470module_init(nvme_init);
2471module_exit(nvme_exit);