]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: s390: announce SYNC_MMU
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
e495606d 21
edf88417 22#include <linux/kvm_host.h>
6aa8b732 23#include <linux/module.h>
9d8f549d 24#include <linux/kernel.h>
6aa8b732
AK
25#include <linux/mm.h>
26#include <linux/highmem.h>
e8edc6e0 27#include <linux/sched.h>
c7addb90 28#include <linux/moduleparam.h>
229456fc 29#include <linux/ftrace_event.h>
5a0e3ad6 30#include <linux/slab.h>
cafd6659 31#include <linux/tboot.h>
5fdbf976 32#include "kvm_cache_regs.h"
35920a35 33#include "x86.h"
e495606d 34
6aa8b732 35#include <asm/io.h>
3b3be0d1 36#include <asm/desc.h>
13673a90 37#include <asm/vmx.h>
6210e37b 38#include <asm/virtext.h>
a0861c02 39#include <asm/mce.h>
2acf923e
DC
40#include <asm/i387.h>
41#include <asm/xcr.h>
6aa8b732 42
229456fc
MT
43#include "trace.h"
44
4ecac3fd 45#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
46#define __ex_clear(x, reg) \
47 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 48
6aa8b732
AK
49MODULE_AUTHOR("Qumranet");
50MODULE_LICENSE("GPL");
51
4462d21a 52static int __read_mostly enable_vpid = 1;
736caefe 53module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 54
4462d21a 55static int __read_mostly flexpriority_enabled = 1;
736caefe 56module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 57
4462d21a 58static int __read_mostly enable_ept = 1;
736caefe 59module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 60
3a624e29
NK
61static int __read_mostly enable_unrestricted_guest = 1;
62module_param_named(unrestricted_guest,
63 enable_unrestricted_guest, bool, S_IRUGO);
64
4462d21a 65static int __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 66module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 67
b923e62e
DX
68static int __read_mostly vmm_exclusive = 1;
69module_param(vmm_exclusive, bool, S_IRUGO);
70
443381a8
AL
71static int __read_mostly yield_on_hlt = 1;
72module_param(yield_on_hlt, bool, S_IRUGO);
73
58fbbf26
KT
74static int __read_mostly fasteoi = 1;
75module_param(fasteoi, bool, S_IRUGO);
76
801d3424
NHE
77/*
78 * If nested=1, nested virtualization is supported, i.e., guests may use
79 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
80 * use VMX instructions.
81 */
82static int __read_mostly nested = 0;
83module_param(nested, bool, S_IRUGO);
84
cdc0e244
AK
85#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
86 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
87#define KVM_GUEST_CR0_MASK \
88 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
89#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 90 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
91#define KVM_VM_CR0_ALWAYS_ON \
92 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
93#define KVM_CR4_GUEST_OWNED_BITS \
94 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
95 | X86_CR4_OSXMMEXCPT)
96
cdc0e244
AK
97#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
98#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
99
78ac8b47
AK
100#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
101
4b8d54f9
ZE
102/*
103 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
104 * ple_gap: upper bound on the amount of time between two successive
105 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 106 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
107 * ple_window: upper bound on the amount of time a guest is allowed to execute
108 * in a PAUSE loop. Tests indicate that most spinlocks are held for
109 * less than 2^12 cycles
110 * Time is measured based on a counter that runs at the same rate as the TSC,
111 * refer SDM volume 3b section 21.6.13 & 22.1.3.
112 */
00c25bce 113#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
114#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
115static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
116module_param(ple_gap, int, S_IRUGO);
117
118static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
119module_param(ple_window, int, S_IRUGO);
120
61d2ef2c 121#define NR_AUTOLOAD_MSRS 1
ff2f6fe9 122#define VMCS02_POOL_SIZE 1
61d2ef2c 123
a2fa3e9f
GH
124struct vmcs {
125 u32 revision_id;
126 u32 abort;
127 char data[0];
128};
129
d462b819
NHE
130/*
131 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
132 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
133 * loaded on this CPU (so we can clear them if the CPU goes down).
134 */
135struct loaded_vmcs {
136 struct vmcs *vmcs;
137 int cpu;
138 int launched;
139 struct list_head loaded_vmcss_on_cpu_link;
140};
141
26bb0981
AK
142struct shared_msr_entry {
143 unsigned index;
144 u64 data;
d5696725 145 u64 mask;
26bb0981
AK
146};
147
a9d30f33
NHE
148/*
149 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
150 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
151 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
152 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
153 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
154 * More than one of these structures may exist, if L1 runs multiple L2 guests.
155 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
156 * underlying hardware which will be used to run L2.
157 * This structure is packed to ensure that its layout is identical across
158 * machines (necessary for live migration).
159 * If there are changes in this struct, VMCS12_REVISION must be changed.
160 */
22bd0358 161typedef u64 natural_width;
a9d30f33
NHE
162struct __packed vmcs12 {
163 /* According to the Intel spec, a VMCS region must start with the
164 * following two fields. Then follow implementation-specific data.
165 */
166 u32 revision_id;
167 u32 abort;
22bd0358 168
27d6c865
NHE
169 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
170 u32 padding[7]; /* room for future expansion */
171
22bd0358
NHE
172 u64 io_bitmap_a;
173 u64 io_bitmap_b;
174 u64 msr_bitmap;
175 u64 vm_exit_msr_store_addr;
176 u64 vm_exit_msr_load_addr;
177 u64 vm_entry_msr_load_addr;
178 u64 tsc_offset;
179 u64 virtual_apic_page_addr;
180 u64 apic_access_addr;
181 u64 ept_pointer;
182 u64 guest_physical_address;
183 u64 vmcs_link_pointer;
184 u64 guest_ia32_debugctl;
185 u64 guest_ia32_pat;
186 u64 guest_ia32_efer;
187 u64 guest_ia32_perf_global_ctrl;
188 u64 guest_pdptr0;
189 u64 guest_pdptr1;
190 u64 guest_pdptr2;
191 u64 guest_pdptr3;
192 u64 host_ia32_pat;
193 u64 host_ia32_efer;
194 u64 host_ia32_perf_global_ctrl;
195 u64 padding64[8]; /* room for future expansion */
196 /*
197 * To allow migration of L1 (complete with its L2 guests) between
198 * machines of different natural widths (32 or 64 bit), we cannot have
199 * unsigned long fields with no explict size. We use u64 (aliased
200 * natural_width) instead. Luckily, x86 is little-endian.
201 */
202 natural_width cr0_guest_host_mask;
203 natural_width cr4_guest_host_mask;
204 natural_width cr0_read_shadow;
205 natural_width cr4_read_shadow;
206 natural_width cr3_target_value0;
207 natural_width cr3_target_value1;
208 natural_width cr3_target_value2;
209 natural_width cr3_target_value3;
210 natural_width exit_qualification;
211 natural_width guest_linear_address;
212 natural_width guest_cr0;
213 natural_width guest_cr3;
214 natural_width guest_cr4;
215 natural_width guest_es_base;
216 natural_width guest_cs_base;
217 natural_width guest_ss_base;
218 natural_width guest_ds_base;
219 natural_width guest_fs_base;
220 natural_width guest_gs_base;
221 natural_width guest_ldtr_base;
222 natural_width guest_tr_base;
223 natural_width guest_gdtr_base;
224 natural_width guest_idtr_base;
225 natural_width guest_dr7;
226 natural_width guest_rsp;
227 natural_width guest_rip;
228 natural_width guest_rflags;
229 natural_width guest_pending_dbg_exceptions;
230 natural_width guest_sysenter_esp;
231 natural_width guest_sysenter_eip;
232 natural_width host_cr0;
233 natural_width host_cr3;
234 natural_width host_cr4;
235 natural_width host_fs_base;
236 natural_width host_gs_base;
237 natural_width host_tr_base;
238 natural_width host_gdtr_base;
239 natural_width host_idtr_base;
240 natural_width host_ia32_sysenter_esp;
241 natural_width host_ia32_sysenter_eip;
242 natural_width host_rsp;
243 natural_width host_rip;
244 natural_width paddingl[8]; /* room for future expansion */
245 u32 pin_based_vm_exec_control;
246 u32 cpu_based_vm_exec_control;
247 u32 exception_bitmap;
248 u32 page_fault_error_code_mask;
249 u32 page_fault_error_code_match;
250 u32 cr3_target_count;
251 u32 vm_exit_controls;
252 u32 vm_exit_msr_store_count;
253 u32 vm_exit_msr_load_count;
254 u32 vm_entry_controls;
255 u32 vm_entry_msr_load_count;
256 u32 vm_entry_intr_info_field;
257 u32 vm_entry_exception_error_code;
258 u32 vm_entry_instruction_len;
259 u32 tpr_threshold;
260 u32 secondary_vm_exec_control;
261 u32 vm_instruction_error;
262 u32 vm_exit_reason;
263 u32 vm_exit_intr_info;
264 u32 vm_exit_intr_error_code;
265 u32 idt_vectoring_info_field;
266 u32 idt_vectoring_error_code;
267 u32 vm_exit_instruction_len;
268 u32 vmx_instruction_info;
269 u32 guest_es_limit;
270 u32 guest_cs_limit;
271 u32 guest_ss_limit;
272 u32 guest_ds_limit;
273 u32 guest_fs_limit;
274 u32 guest_gs_limit;
275 u32 guest_ldtr_limit;
276 u32 guest_tr_limit;
277 u32 guest_gdtr_limit;
278 u32 guest_idtr_limit;
279 u32 guest_es_ar_bytes;
280 u32 guest_cs_ar_bytes;
281 u32 guest_ss_ar_bytes;
282 u32 guest_ds_ar_bytes;
283 u32 guest_fs_ar_bytes;
284 u32 guest_gs_ar_bytes;
285 u32 guest_ldtr_ar_bytes;
286 u32 guest_tr_ar_bytes;
287 u32 guest_interruptibility_info;
288 u32 guest_activity_state;
289 u32 guest_sysenter_cs;
290 u32 host_ia32_sysenter_cs;
291 u32 padding32[8]; /* room for future expansion */
292 u16 virtual_processor_id;
293 u16 guest_es_selector;
294 u16 guest_cs_selector;
295 u16 guest_ss_selector;
296 u16 guest_ds_selector;
297 u16 guest_fs_selector;
298 u16 guest_gs_selector;
299 u16 guest_ldtr_selector;
300 u16 guest_tr_selector;
301 u16 host_es_selector;
302 u16 host_cs_selector;
303 u16 host_ss_selector;
304 u16 host_ds_selector;
305 u16 host_fs_selector;
306 u16 host_gs_selector;
307 u16 host_tr_selector;
a9d30f33
NHE
308};
309
310/*
311 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
312 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
313 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
314 */
315#define VMCS12_REVISION 0x11e57ed0
316
317/*
318 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
319 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
320 * current implementation, 4K are reserved to avoid future complications.
321 */
322#define VMCS12_SIZE 0x1000
323
ff2f6fe9
NHE
324/* Used to remember the last vmcs02 used for some recently used vmcs12s */
325struct vmcs02_list {
326 struct list_head list;
327 gpa_t vmptr;
328 struct loaded_vmcs vmcs02;
329};
330
ec378aee
NHE
331/*
332 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
333 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
334 */
335struct nested_vmx {
336 /* Has the level1 guest done vmxon? */
337 bool vmxon;
a9d30f33
NHE
338
339 /* The guest-physical address of the current VMCS L1 keeps for L2 */
340 gpa_t current_vmptr;
341 /* The host-usable pointer to the above */
342 struct page *current_vmcs12_page;
343 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
344
345 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
346 struct list_head vmcs02_pool;
347 int vmcs02_num;
fe3ef05c 348 u64 vmcs01_tsc_offset;
644d711a
NHE
349 /* L2 must run next, and mustn't decide to exit to L1. */
350 bool nested_run_pending;
fe3ef05c
NHE
351 /*
352 * Guest pages referred to in vmcs02 with host-physical pointers, so
353 * we must keep them pinned while L2 runs.
354 */
355 struct page *apic_access_page;
ec378aee
NHE
356};
357
a2fa3e9f 358struct vcpu_vmx {
fb3f0f51 359 struct kvm_vcpu vcpu;
313dbd49 360 unsigned long host_rsp;
29bd8a78 361 u8 fail;
69c73028 362 u8 cpl;
9d58b931 363 bool nmi_known_unmasked;
51aa01d1 364 u32 exit_intr_info;
1155f76a 365 u32 idt_vectoring_info;
6de12732 366 ulong rflags;
26bb0981 367 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
368 int nmsrs;
369 int save_nmsrs;
a2fa3e9f 370#ifdef CONFIG_X86_64
44ea2b17
AK
371 u64 msr_host_kernel_gs_base;
372 u64 msr_guest_kernel_gs_base;
a2fa3e9f 373#endif
d462b819
NHE
374 /*
375 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
376 * non-nested (L1) guest, it always points to vmcs01. For a nested
377 * guest (L2), it points to a different VMCS.
378 */
379 struct loaded_vmcs vmcs01;
380 struct loaded_vmcs *loaded_vmcs;
381 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
382 struct msr_autoload {
383 unsigned nr;
384 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
385 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
386 } msr_autoload;
a2fa3e9f
GH
387 struct {
388 int loaded;
389 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
390 int gs_ldt_reload_needed;
391 int fs_reload_needed;
d77c26fc 392 } host_state;
9c8cba37 393 struct {
7ffd92c5 394 int vm86_active;
78ac8b47 395 ulong save_rflags;
7ffd92c5
AK
396 struct kvm_save_segment {
397 u16 selector;
398 unsigned long base;
399 u32 limit;
400 u32 ar;
401 } tr, es, ds, fs, gs;
9c8cba37 402 } rmode;
2fb92db1
AK
403 struct {
404 u32 bitmask; /* 4 bits per segment (1 bit per field) */
405 struct kvm_save_segment seg[8];
406 } segment_cache;
2384d2b3 407 int vpid;
04fa4d32 408 bool emulation_required;
3b86cd99
JK
409
410 /* Support for vnmi-less CPUs */
411 int soft_vnmi_blocked;
412 ktime_t entry_time;
413 s64 vnmi_blocked_time;
a0861c02 414 u32 exit_reason;
4e47c7a6
SY
415
416 bool rdtscp_enabled;
ec378aee
NHE
417
418 /* Support for a guest hypervisor (nested VMX) */
419 struct nested_vmx nested;
a2fa3e9f
GH
420};
421
2fb92db1
AK
422enum segment_cache_field {
423 SEG_FIELD_SEL = 0,
424 SEG_FIELD_BASE = 1,
425 SEG_FIELD_LIMIT = 2,
426 SEG_FIELD_AR = 3,
427
428 SEG_FIELD_NR = 4
429};
430
a2fa3e9f
GH
431static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
432{
fb3f0f51 433 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
434}
435
22bd0358
NHE
436#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
437#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
438#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
439 [number##_HIGH] = VMCS12_OFFSET(name)+4
440
441static unsigned short vmcs_field_to_offset_table[] = {
442 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
443 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
444 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
445 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
446 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
447 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
448 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
449 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
450 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
451 FIELD(HOST_ES_SELECTOR, host_es_selector),
452 FIELD(HOST_CS_SELECTOR, host_cs_selector),
453 FIELD(HOST_SS_SELECTOR, host_ss_selector),
454 FIELD(HOST_DS_SELECTOR, host_ds_selector),
455 FIELD(HOST_FS_SELECTOR, host_fs_selector),
456 FIELD(HOST_GS_SELECTOR, host_gs_selector),
457 FIELD(HOST_TR_SELECTOR, host_tr_selector),
458 FIELD64(IO_BITMAP_A, io_bitmap_a),
459 FIELD64(IO_BITMAP_B, io_bitmap_b),
460 FIELD64(MSR_BITMAP, msr_bitmap),
461 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
462 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
463 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
464 FIELD64(TSC_OFFSET, tsc_offset),
465 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
466 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
467 FIELD64(EPT_POINTER, ept_pointer),
468 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
469 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
470 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
471 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
472 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
473 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
474 FIELD64(GUEST_PDPTR0, guest_pdptr0),
475 FIELD64(GUEST_PDPTR1, guest_pdptr1),
476 FIELD64(GUEST_PDPTR2, guest_pdptr2),
477 FIELD64(GUEST_PDPTR3, guest_pdptr3),
478 FIELD64(HOST_IA32_PAT, host_ia32_pat),
479 FIELD64(HOST_IA32_EFER, host_ia32_efer),
480 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
481 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
482 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
483 FIELD(EXCEPTION_BITMAP, exception_bitmap),
484 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
485 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
486 FIELD(CR3_TARGET_COUNT, cr3_target_count),
487 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
488 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
489 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
490 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
491 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
492 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
493 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
494 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
495 FIELD(TPR_THRESHOLD, tpr_threshold),
496 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
497 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
498 FIELD(VM_EXIT_REASON, vm_exit_reason),
499 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
500 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
501 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
502 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
503 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
504 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
505 FIELD(GUEST_ES_LIMIT, guest_es_limit),
506 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
507 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
508 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
509 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
510 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
511 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
512 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
513 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
514 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
515 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
516 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
517 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
518 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
519 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
520 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
521 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
522 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
523 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
524 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
525 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
526 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
527 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
528 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
529 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
530 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
531 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
532 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
533 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
534 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
535 FIELD(EXIT_QUALIFICATION, exit_qualification),
536 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
537 FIELD(GUEST_CR0, guest_cr0),
538 FIELD(GUEST_CR3, guest_cr3),
539 FIELD(GUEST_CR4, guest_cr4),
540 FIELD(GUEST_ES_BASE, guest_es_base),
541 FIELD(GUEST_CS_BASE, guest_cs_base),
542 FIELD(GUEST_SS_BASE, guest_ss_base),
543 FIELD(GUEST_DS_BASE, guest_ds_base),
544 FIELD(GUEST_FS_BASE, guest_fs_base),
545 FIELD(GUEST_GS_BASE, guest_gs_base),
546 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
547 FIELD(GUEST_TR_BASE, guest_tr_base),
548 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
549 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
550 FIELD(GUEST_DR7, guest_dr7),
551 FIELD(GUEST_RSP, guest_rsp),
552 FIELD(GUEST_RIP, guest_rip),
553 FIELD(GUEST_RFLAGS, guest_rflags),
554 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
555 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
556 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
557 FIELD(HOST_CR0, host_cr0),
558 FIELD(HOST_CR3, host_cr3),
559 FIELD(HOST_CR4, host_cr4),
560 FIELD(HOST_FS_BASE, host_fs_base),
561 FIELD(HOST_GS_BASE, host_gs_base),
562 FIELD(HOST_TR_BASE, host_tr_base),
563 FIELD(HOST_GDTR_BASE, host_gdtr_base),
564 FIELD(HOST_IDTR_BASE, host_idtr_base),
565 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
566 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
567 FIELD(HOST_RSP, host_rsp),
568 FIELD(HOST_RIP, host_rip),
569};
570static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
571
572static inline short vmcs_field_to_offset(unsigned long field)
573{
574 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
575 return -1;
576 return vmcs_field_to_offset_table[field];
577}
578
a9d30f33
NHE
579static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
580{
581 return to_vmx(vcpu)->nested.current_vmcs12;
582}
583
584static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
585{
586 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
587 if (is_error_page(page)) {
588 kvm_release_page_clean(page);
589 return NULL;
590 }
591 return page;
592}
593
594static void nested_release_page(struct page *page)
595{
596 kvm_release_page_dirty(page);
597}
598
599static void nested_release_page_clean(struct page *page)
600{
601 kvm_release_page_clean(page);
602}
603
4e1096d2 604static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
605static void kvm_cpu_vmxon(u64 addr);
606static void kvm_cpu_vmxoff(void);
aff48baa 607static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 608static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 609
6aa8b732
AK
610static DEFINE_PER_CPU(struct vmcs *, vmxarea);
611static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
612/*
613 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
614 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
615 */
616static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 617static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 618
3e7c73e9
AK
619static unsigned long *vmx_io_bitmap_a;
620static unsigned long *vmx_io_bitmap_b;
5897297b
AK
621static unsigned long *vmx_msr_bitmap_legacy;
622static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 623
110312c8
AK
624static bool cpu_has_load_ia32_efer;
625
2384d2b3
SY
626static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
627static DEFINE_SPINLOCK(vmx_vpid_lock);
628
1c3d14fe 629static struct vmcs_config {
6aa8b732
AK
630 int size;
631 int order;
632 u32 revision_id;
1c3d14fe
YS
633 u32 pin_based_exec_ctrl;
634 u32 cpu_based_exec_ctrl;
f78e0e2e 635 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
636 u32 vmexit_ctrl;
637 u32 vmentry_ctrl;
638} vmcs_config;
6aa8b732 639
efff9e53 640static struct vmx_capability {
d56f546d
SY
641 u32 ept;
642 u32 vpid;
643} vmx_capability;
644
6aa8b732
AK
645#define VMX_SEGMENT_FIELD(seg) \
646 [VCPU_SREG_##seg] = { \
647 .selector = GUEST_##seg##_SELECTOR, \
648 .base = GUEST_##seg##_BASE, \
649 .limit = GUEST_##seg##_LIMIT, \
650 .ar_bytes = GUEST_##seg##_AR_BYTES, \
651 }
652
653static struct kvm_vmx_segment_field {
654 unsigned selector;
655 unsigned base;
656 unsigned limit;
657 unsigned ar_bytes;
658} kvm_vmx_segment_fields[] = {
659 VMX_SEGMENT_FIELD(CS),
660 VMX_SEGMENT_FIELD(DS),
661 VMX_SEGMENT_FIELD(ES),
662 VMX_SEGMENT_FIELD(FS),
663 VMX_SEGMENT_FIELD(GS),
664 VMX_SEGMENT_FIELD(SS),
665 VMX_SEGMENT_FIELD(TR),
666 VMX_SEGMENT_FIELD(LDTR),
667};
668
26bb0981
AK
669static u64 host_efer;
670
6de4f3ad
AK
671static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
672
4d56c8a7 673/*
8c06585d 674 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
675 * away by decrementing the array size.
676 */
6aa8b732 677static const u32 vmx_msr_index[] = {
05b3e0c2 678#ifdef CONFIG_X86_64
44ea2b17 679 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 680#endif
8c06585d 681 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 682};
9d8f549d 683#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 684
31299944 685static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
686{
687 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
688 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 689 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
690}
691
31299944 692static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
693{
694 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 696 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
697}
698
31299944 699static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
700{
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 703 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
704}
705
31299944 706static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
707{
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
709 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
710}
711
31299944 712static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
713{
714 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
715 INTR_INFO_VALID_MASK)) ==
716 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
717}
718
31299944 719static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 720{
04547156 721 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
722}
723
31299944 724static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 725{
04547156 726 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
727}
728
31299944 729static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 730{
04547156 731 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
732}
733
31299944 734static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 735{
04547156
SY
736 return vmcs_config.cpu_based_exec_ctrl &
737 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
738}
739
774ead3a 740static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 741{
04547156
SY
742 return vmcs_config.cpu_based_2nd_exec_ctrl &
743 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
744}
745
746static inline bool cpu_has_vmx_flexpriority(void)
747{
748 return cpu_has_vmx_tpr_shadow() &&
749 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
750}
751
e799794e
MT
752static inline bool cpu_has_vmx_ept_execute_only(void)
753{
31299944 754 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
755}
756
757static inline bool cpu_has_vmx_eptp_uncacheable(void)
758{
31299944 759 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
760}
761
762static inline bool cpu_has_vmx_eptp_writeback(void)
763{
31299944 764 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
765}
766
767static inline bool cpu_has_vmx_ept_2m_page(void)
768{
31299944 769 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
770}
771
878403b7
SY
772static inline bool cpu_has_vmx_ept_1g_page(void)
773{
31299944 774 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
775}
776
4bc9b982
SY
777static inline bool cpu_has_vmx_ept_4levels(void)
778{
779 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
780}
781
31299944 782static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 783{
31299944 784 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
785}
786
31299944 787static inline bool cpu_has_vmx_invept_context(void)
d56f546d 788{
31299944 789 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
790}
791
31299944 792static inline bool cpu_has_vmx_invept_global(void)
d56f546d 793{
31299944 794 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
795}
796
518c8aee
GJ
797static inline bool cpu_has_vmx_invvpid_single(void)
798{
799 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
800}
801
b9d762fa
GJ
802static inline bool cpu_has_vmx_invvpid_global(void)
803{
804 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
805}
806
31299944 807static inline bool cpu_has_vmx_ept(void)
d56f546d 808{
04547156
SY
809 return vmcs_config.cpu_based_2nd_exec_ctrl &
810 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
811}
812
31299944 813static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
814{
815 return vmcs_config.cpu_based_2nd_exec_ctrl &
816 SECONDARY_EXEC_UNRESTRICTED_GUEST;
817}
818
31299944 819static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
820{
821 return vmcs_config.cpu_based_2nd_exec_ctrl &
822 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
823}
824
31299944 825static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 826{
6d3e435e 827 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
828}
829
31299944 830static inline bool cpu_has_vmx_vpid(void)
2384d2b3 831{
04547156
SY
832 return vmcs_config.cpu_based_2nd_exec_ctrl &
833 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
834}
835
31299944 836static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
837{
838 return vmcs_config.cpu_based_2nd_exec_ctrl &
839 SECONDARY_EXEC_RDTSCP;
840}
841
31299944 842static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
843{
844 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
845}
846
f5f48ee1
SY
847static inline bool cpu_has_vmx_wbinvd_exit(void)
848{
849 return vmcs_config.cpu_based_2nd_exec_ctrl &
850 SECONDARY_EXEC_WBINVD_EXITING;
851}
852
04547156
SY
853static inline bool report_flexpriority(void)
854{
855 return flexpriority_enabled;
856}
857
fe3ef05c
NHE
858static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
859{
860 return vmcs12->cpu_based_vm_exec_control & bit;
861}
862
863static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
864{
865 return (vmcs12->cpu_based_vm_exec_control &
866 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
867 (vmcs12->secondary_vm_exec_control & bit);
868}
869
644d711a
NHE
870static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
871 struct kvm_vcpu *vcpu)
872{
873 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
874}
875
876static inline bool is_exception(u32 intr_info)
877{
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
880}
881
882static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
883static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
884 struct vmcs12 *vmcs12,
885 u32 reason, unsigned long qualification);
886
8b9cf98c 887static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
888{
889 int i;
890
a2fa3e9f 891 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 892 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
893 return i;
894 return -1;
895}
896
2384d2b3
SY
897static inline void __invvpid(int ext, u16 vpid, gva_t gva)
898{
899 struct {
900 u64 vpid : 16;
901 u64 rsvd : 48;
902 u64 gva;
903 } operand = { vpid, 0, gva };
904
4ecac3fd 905 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
906 /* CF==1 or ZF==1 --> rc = -1 */
907 "; ja 1f ; ud2 ; 1:"
908 : : "a"(&operand), "c"(ext) : "cc", "memory");
909}
910
1439442c
SY
911static inline void __invept(int ext, u64 eptp, gpa_t gpa)
912{
913 struct {
914 u64 eptp, gpa;
915 } operand = {eptp, gpa};
916
4ecac3fd 917 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
918 /* CF==1 or ZF==1 --> rc = -1 */
919 "; ja 1f ; ud2 ; 1:\n"
920 : : "a" (&operand), "c" (ext) : "cc", "memory");
921}
922
26bb0981 923static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
924{
925 int i;
926
8b9cf98c 927 i = __find_msr_index(vmx, msr);
a75beee6 928 if (i >= 0)
a2fa3e9f 929 return &vmx->guest_msrs[i];
8b6d44c7 930 return NULL;
7725f0ba
AK
931}
932
6aa8b732
AK
933static void vmcs_clear(struct vmcs *vmcs)
934{
935 u64 phys_addr = __pa(vmcs);
936 u8 error;
937
4ecac3fd 938 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 939 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
940 : "cc", "memory");
941 if (error)
942 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
943 vmcs, phys_addr);
944}
945
d462b819
NHE
946static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
947{
948 vmcs_clear(loaded_vmcs->vmcs);
949 loaded_vmcs->cpu = -1;
950 loaded_vmcs->launched = 0;
951}
952
7725b894
DX
953static void vmcs_load(struct vmcs *vmcs)
954{
955 u64 phys_addr = __pa(vmcs);
956 u8 error;
957
958 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 959 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
960 : "cc", "memory");
961 if (error)
2844d849 962 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
963 vmcs, phys_addr);
964}
965
d462b819 966static void __loaded_vmcs_clear(void *arg)
6aa8b732 967{
d462b819 968 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 969 int cpu = raw_smp_processor_id();
6aa8b732 970
d462b819
NHE
971 if (loaded_vmcs->cpu != cpu)
972 return; /* vcpu migration can race with cpu offline */
973 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 974 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
975 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
976 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
977}
978
d462b819 979static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 980{
d462b819
NHE
981 if (loaded_vmcs->cpu != -1)
982 smp_call_function_single(
983 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
984}
985
1760dd49 986static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
987{
988 if (vmx->vpid == 0)
989 return;
990
518c8aee
GJ
991 if (cpu_has_vmx_invvpid_single())
992 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
993}
994
b9d762fa
GJ
995static inline void vpid_sync_vcpu_global(void)
996{
997 if (cpu_has_vmx_invvpid_global())
998 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
999}
1000
1001static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1002{
1003 if (cpu_has_vmx_invvpid_single())
1760dd49 1004 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1005 else
1006 vpid_sync_vcpu_global();
1007}
1008
1439442c
SY
1009static inline void ept_sync_global(void)
1010{
1011 if (cpu_has_vmx_invept_global())
1012 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1013}
1014
1015static inline void ept_sync_context(u64 eptp)
1016{
089d034e 1017 if (enable_ept) {
1439442c
SY
1018 if (cpu_has_vmx_invept_context())
1019 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1020 else
1021 ept_sync_global();
1022 }
1023}
1024
1025static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1026{
089d034e 1027 if (enable_ept) {
1439442c
SY
1028 if (cpu_has_vmx_invept_individual_addr())
1029 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1030 eptp, gpa);
1031 else
1032 ept_sync_context(eptp);
1033 }
1034}
1035
96304217 1036static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1037{
5e520e62 1038 unsigned long value;
6aa8b732 1039
5e520e62
AK
1040 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1041 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1042 return value;
1043}
1044
96304217 1045static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1046{
1047 return vmcs_readl(field);
1048}
1049
96304217 1050static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1051{
1052 return vmcs_readl(field);
1053}
1054
96304217 1055static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1056{
05b3e0c2 1057#ifdef CONFIG_X86_64
6aa8b732
AK
1058 return vmcs_readl(field);
1059#else
1060 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1061#endif
1062}
1063
e52de1b8
AK
1064static noinline void vmwrite_error(unsigned long field, unsigned long value)
1065{
1066 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1067 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1068 dump_stack();
1069}
1070
6aa8b732
AK
1071static void vmcs_writel(unsigned long field, unsigned long value)
1072{
1073 u8 error;
1074
4ecac3fd 1075 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1076 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1077 if (unlikely(error))
1078 vmwrite_error(field, value);
6aa8b732
AK
1079}
1080
1081static void vmcs_write16(unsigned long field, u16 value)
1082{
1083 vmcs_writel(field, value);
1084}
1085
1086static void vmcs_write32(unsigned long field, u32 value)
1087{
1088 vmcs_writel(field, value);
1089}
1090
1091static void vmcs_write64(unsigned long field, u64 value)
1092{
6aa8b732 1093 vmcs_writel(field, value);
7682f2d0 1094#ifndef CONFIG_X86_64
6aa8b732
AK
1095 asm volatile ("");
1096 vmcs_writel(field+1, value >> 32);
1097#endif
1098}
1099
2ab455cc
AL
1100static void vmcs_clear_bits(unsigned long field, u32 mask)
1101{
1102 vmcs_writel(field, vmcs_readl(field) & ~mask);
1103}
1104
1105static void vmcs_set_bits(unsigned long field, u32 mask)
1106{
1107 vmcs_writel(field, vmcs_readl(field) | mask);
1108}
1109
2fb92db1
AK
1110static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1111{
1112 vmx->segment_cache.bitmask = 0;
1113}
1114
1115static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1116 unsigned field)
1117{
1118 bool ret;
1119 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1120
1121 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1122 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1123 vmx->segment_cache.bitmask = 0;
1124 }
1125 ret = vmx->segment_cache.bitmask & mask;
1126 vmx->segment_cache.bitmask |= mask;
1127 return ret;
1128}
1129
1130static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1131{
1132 u16 *p = &vmx->segment_cache.seg[seg].selector;
1133
1134 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1135 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1136 return *p;
1137}
1138
1139static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1140{
1141 ulong *p = &vmx->segment_cache.seg[seg].base;
1142
1143 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1144 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1145 return *p;
1146}
1147
1148static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1149{
1150 u32 *p = &vmx->segment_cache.seg[seg].limit;
1151
1152 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1153 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1154 return *p;
1155}
1156
1157static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1158{
1159 u32 *p = &vmx->segment_cache.seg[seg].ar;
1160
1161 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1162 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1163 return *p;
1164}
1165
abd3f2d6
AK
1166static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1167{
1168 u32 eb;
1169
fd7373cc
JK
1170 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1171 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1172 if ((vcpu->guest_debug &
1173 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1174 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1175 eb |= 1u << BP_VECTOR;
7ffd92c5 1176 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1177 eb = ~0;
089d034e 1178 if (enable_ept)
1439442c 1179 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1180 if (vcpu->fpu_active)
1181 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1182
1183 /* When we are running a nested L2 guest and L1 specified for it a
1184 * certain exception bitmap, we must trap the same exceptions and pass
1185 * them to L1. When running L2, we will only handle the exceptions
1186 * specified above if L1 did not want them.
1187 */
1188 if (is_guest_mode(vcpu))
1189 eb |= get_vmcs12(vcpu)->exception_bitmap;
1190
abd3f2d6
AK
1191 vmcs_write32(EXCEPTION_BITMAP, eb);
1192}
1193
61d2ef2c
AK
1194static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1195{
1196 unsigned i;
1197 struct msr_autoload *m = &vmx->msr_autoload;
1198
110312c8
AK
1199 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1200 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1201 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1202 return;
1203 }
1204
61d2ef2c
AK
1205 for (i = 0; i < m->nr; ++i)
1206 if (m->guest[i].index == msr)
1207 break;
1208
1209 if (i == m->nr)
1210 return;
1211 --m->nr;
1212 m->guest[i] = m->guest[m->nr];
1213 m->host[i] = m->host[m->nr];
1214 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1215 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1216}
1217
1218static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1219 u64 guest_val, u64 host_val)
1220{
1221 unsigned i;
1222 struct msr_autoload *m = &vmx->msr_autoload;
1223
110312c8
AK
1224 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
1225 vmcs_write64(GUEST_IA32_EFER, guest_val);
1226 vmcs_write64(HOST_IA32_EFER, host_val);
1227 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
1228 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
1229 return;
1230 }
1231
61d2ef2c
AK
1232 for (i = 0; i < m->nr; ++i)
1233 if (m->guest[i].index == msr)
1234 break;
1235
1236 if (i == m->nr) {
1237 ++m->nr;
1238 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1239 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1240 }
1241
1242 m->guest[i].index = msr;
1243 m->guest[i].value = guest_val;
1244 m->host[i].index = msr;
1245 m->host[i].value = host_val;
1246}
1247
33ed6329
AK
1248static void reload_tss(void)
1249{
33ed6329
AK
1250 /*
1251 * VT restores TR but not its size. Useless.
1252 */
d359192f 1253 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1254 struct desc_struct *descs;
33ed6329 1255
d359192f 1256 descs = (void *)gdt->address;
33ed6329
AK
1257 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1258 load_TR_desc();
33ed6329
AK
1259}
1260
92c0d900 1261static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1262{
3a34a881 1263 u64 guest_efer;
51c6cf66
AK
1264 u64 ignore_bits;
1265
f6801dff 1266 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1267
51c6cf66
AK
1268 /*
1269 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1270 * outside long mode
1271 */
1272 ignore_bits = EFER_NX | EFER_SCE;
1273#ifdef CONFIG_X86_64
1274 ignore_bits |= EFER_LMA | EFER_LME;
1275 /* SCE is meaningful only in long mode on Intel */
1276 if (guest_efer & EFER_LMA)
1277 ignore_bits &= ~(u64)EFER_SCE;
1278#endif
51c6cf66
AK
1279 guest_efer &= ~ignore_bits;
1280 guest_efer |= host_efer & ignore_bits;
26bb0981 1281 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1282 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1283
1284 clear_atomic_switch_msr(vmx, MSR_EFER);
1285 /* On ept, can't emulate nx, and must switch nx atomically */
1286 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1287 guest_efer = vmx->vcpu.arch.efer;
1288 if (!(guest_efer & EFER_LMA))
1289 guest_efer &= ~EFER_LME;
1290 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1291 return false;
1292 }
1293
26bb0981 1294 return true;
51c6cf66
AK
1295}
1296
2d49ec72
GN
1297static unsigned long segment_base(u16 selector)
1298{
d359192f 1299 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1300 struct desc_struct *d;
1301 unsigned long table_base;
1302 unsigned long v;
1303
1304 if (!(selector & ~3))
1305 return 0;
1306
d359192f 1307 table_base = gdt->address;
2d49ec72
GN
1308
1309 if (selector & 4) { /* from ldt */
1310 u16 ldt_selector = kvm_read_ldt();
1311
1312 if (!(ldt_selector & ~3))
1313 return 0;
1314
1315 table_base = segment_base(ldt_selector);
1316 }
1317 d = (struct desc_struct *)(table_base + (selector & ~7));
1318 v = get_desc_base(d);
1319#ifdef CONFIG_X86_64
1320 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1321 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1322#endif
1323 return v;
1324}
1325
1326static inline unsigned long kvm_read_tr_base(void)
1327{
1328 u16 tr;
1329 asm("str %0" : "=g"(tr));
1330 return segment_base(tr);
1331}
1332
04d2cc77 1333static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1334{
04d2cc77 1335 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1336 int i;
04d2cc77 1337
a2fa3e9f 1338 if (vmx->host_state.loaded)
33ed6329
AK
1339 return;
1340
a2fa3e9f 1341 vmx->host_state.loaded = 1;
33ed6329
AK
1342 /*
1343 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1344 * allow segment selectors with cpl > 0 or ti == 1.
1345 */
d6e88aec 1346 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1347 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1348 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1349 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1350 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1351 vmx->host_state.fs_reload_needed = 0;
1352 } else {
33ed6329 1353 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1354 vmx->host_state.fs_reload_needed = 1;
33ed6329 1355 }
9581d442 1356 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1357 if (!(vmx->host_state.gs_sel & 7))
1358 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1359 else {
1360 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1361 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1362 }
1363
1364#ifdef CONFIG_X86_64
1365 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1366 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1367#else
a2fa3e9f
GH
1368 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1369 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1370#endif
707c0874
AK
1371
1372#ifdef CONFIG_X86_64
c8770e7b
AK
1373 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1374 if (is_long_mode(&vmx->vcpu))
44ea2b17 1375 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1376#endif
26bb0981
AK
1377 for (i = 0; i < vmx->save_nmsrs; ++i)
1378 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1379 vmx->guest_msrs[i].data,
1380 vmx->guest_msrs[i].mask);
33ed6329
AK
1381}
1382
a9b21b62 1383static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1384{
a2fa3e9f 1385 if (!vmx->host_state.loaded)
33ed6329
AK
1386 return;
1387
e1beb1d3 1388 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1389 vmx->host_state.loaded = 0;
c8770e7b
AK
1390#ifdef CONFIG_X86_64
1391 if (is_long_mode(&vmx->vcpu))
1392 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1393#endif
152d3f2f 1394 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1395 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1396#ifdef CONFIG_X86_64
9581d442 1397 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1398#else
1399 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1400#endif
33ed6329 1401 }
0a77fe4c
AK
1402 if (vmx->host_state.fs_reload_needed)
1403 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1404 reload_tss();
44ea2b17 1405#ifdef CONFIG_X86_64
c8770e7b 1406 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1407#endif
1c11e713
AK
1408 if (current_thread_info()->status & TS_USEDFPU)
1409 clts();
3444d7da 1410 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1411}
1412
a9b21b62
AK
1413static void vmx_load_host_state(struct vcpu_vmx *vmx)
1414{
1415 preempt_disable();
1416 __vmx_load_host_state(vmx);
1417 preempt_enable();
1418}
1419
6aa8b732
AK
1420/*
1421 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1422 * vcpu mutex is already taken.
1423 */
15ad7146 1424static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1425{
a2fa3e9f 1426 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1427 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1428
4610c9cc
DX
1429 if (!vmm_exclusive)
1430 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1431 else if (vmx->loaded_vmcs->cpu != cpu)
1432 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1433
d462b819
NHE
1434 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1435 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1436 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1437 }
1438
d462b819 1439 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1440 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1441 unsigned long sysenter_esp;
1442
a8eeb04a 1443 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1444 local_irq_disable();
d462b819
NHE
1445 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1446 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1447 local_irq_enable();
1448
6aa8b732
AK
1449 /*
1450 * Linux uses per-cpu TSS and GDT, so set these when switching
1451 * processors.
1452 */
d6e88aec 1453 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1454 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1455
1456 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1457 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1458 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1459 }
6aa8b732
AK
1460}
1461
1462static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1463{
a9b21b62 1464 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1465 if (!vmm_exclusive) {
d462b819
NHE
1466 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1467 vcpu->cpu = -1;
4610c9cc
DX
1468 kvm_cpu_vmxoff();
1469 }
6aa8b732
AK
1470}
1471
5fd86fcf
AK
1472static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1473{
81231c69
AK
1474 ulong cr0;
1475
5fd86fcf
AK
1476 if (vcpu->fpu_active)
1477 return;
1478 vcpu->fpu_active = 1;
81231c69
AK
1479 cr0 = vmcs_readl(GUEST_CR0);
1480 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1481 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1482 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1483 update_exception_bitmap(vcpu);
edcafe3c 1484 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1485 if (is_guest_mode(vcpu))
1486 vcpu->arch.cr0_guest_owned_bits &=
1487 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1488 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1489}
1490
edcafe3c
AK
1491static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1492
fe3ef05c
NHE
1493/*
1494 * Return the cr0 value that a nested guest would read. This is a combination
1495 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1496 * its hypervisor (cr0_read_shadow).
1497 */
1498static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1499{
1500 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1501 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1502}
1503static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1504{
1505 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1506 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1507}
1508
5fd86fcf
AK
1509static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1510{
36cf24e0
NHE
1511 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1512 * set this *before* calling this function.
1513 */
edcafe3c 1514 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1515 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1516 update_exception_bitmap(vcpu);
edcafe3c
AK
1517 vcpu->arch.cr0_guest_owned_bits = 0;
1518 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1519 if (is_guest_mode(vcpu)) {
1520 /*
1521 * L1's specified read shadow might not contain the TS bit,
1522 * so now that we turned on shadowing of this bit, we need to
1523 * set this bit of the shadow. Like in nested_vmx_run we need
1524 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1525 * up-to-date here because we just decached cr0.TS (and we'll
1526 * only update vmcs12->guest_cr0 on nested exit).
1527 */
1528 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1529 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1530 (vcpu->arch.cr0 & X86_CR0_TS);
1531 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1532 } else
1533 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1534}
1535
6aa8b732
AK
1536static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1537{
78ac8b47 1538 unsigned long rflags, save_rflags;
345dcaa8 1539
6de12732
AK
1540 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1541 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1542 rflags = vmcs_readl(GUEST_RFLAGS);
1543 if (to_vmx(vcpu)->rmode.vm86_active) {
1544 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1545 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1546 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1547 }
1548 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1549 }
6de12732 1550 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1551}
1552
1553static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1554{
6de12732 1555 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1556 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1557 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1558 if (to_vmx(vcpu)->rmode.vm86_active) {
1559 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1560 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1561 }
6aa8b732
AK
1562 vmcs_writel(GUEST_RFLAGS, rflags);
1563}
1564
2809f5d2
GC
1565static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1566{
1567 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1568 int ret = 0;
1569
1570 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1571 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1572 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1573 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1574
1575 return ret & mask;
1576}
1577
1578static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1579{
1580 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1581 u32 interruptibility = interruptibility_old;
1582
1583 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1584
48005f64 1585 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1586 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1587 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1588 interruptibility |= GUEST_INTR_STATE_STI;
1589
1590 if ((interruptibility != interruptibility_old))
1591 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1592}
1593
6aa8b732
AK
1594static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1595{
1596 unsigned long rip;
6aa8b732 1597
5fdbf976 1598 rip = kvm_rip_read(vcpu);
6aa8b732 1599 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1600 kvm_rip_write(vcpu, rip);
6aa8b732 1601
2809f5d2
GC
1602 /* skipping an emulated instruction also counts */
1603 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1604}
1605
443381a8
AL
1606static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1607{
1608 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1609 * explicitly skip the instruction because if the HLT state is set, then
1610 * the instruction is already executing and RIP has already been
1611 * advanced. */
1612 if (!yield_on_hlt &&
1613 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1614 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1615}
1616
0b6ac343
NHE
1617/*
1618 * KVM wants to inject page-faults which it got to the guest. This function
1619 * checks whether in a nested guest, we need to inject them to L1 or L2.
1620 * This function assumes it is called with the exit reason in vmcs02 being
1621 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1622 * is running).
1623 */
1624static int nested_pf_handled(struct kvm_vcpu *vcpu)
1625{
1626 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1627
1628 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1629 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1630 return 0;
1631
1632 nested_vmx_vmexit(vcpu);
1633 return 1;
1634}
1635
298101da 1636static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1637 bool has_error_code, u32 error_code,
1638 bool reinject)
298101da 1639{
77ab6db0 1640 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1641 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1642
0b6ac343
NHE
1643 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1644 nested_pf_handled(vcpu))
1645 return;
1646
8ab2d2e2 1647 if (has_error_code) {
77ab6db0 1648 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1649 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1650 }
77ab6db0 1651
7ffd92c5 1652 if (vmx->rmode.vm86_active) {
71f9833b
SH
1653 int inc_eip = 0;
1654 if (kvm_exception_is_soft(nr))
1655 inc_eip = vcpu->arch.event_exit_inst_len;
1656 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1657 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1658 return;
1659 }
1660
66fd3f7f
GN
1661 if (kvm_exception_is_soft(nr)) {
1662 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1663 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1664 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1665 } else
1666 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1667
1668 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
443381a8 1669 vmx_clear_hlt(vcpu);
298101da
AK
1670}
1671
4e47c7a6
SY
1672static bool vmx_rdtscp_supported(void)
1673{
1674 return cpu_has_vmx_rdtscp();
1675}
1676
a75beee6
ED
1677/*
1678 * Swap MSR entry in host/guest MSR entry array.
1679 */
8b9cf98c 1680static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1681{
26bb0981 1682 struct shared_msr_entry tmp;
a2fa3e9f
GH
1683
1684 tmp = vmx->guest_msrs[to];
1685 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1686 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1687}
1688
e38aea3e
AK
1689/*
1690 * Set up the vmcs to automatically save and restore system
1691 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1692 * mode, as fiddling with msrs is very expensive.
1693 */
8b9cf98c 1694static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1695{
26bb0981 1696 int save_nmsrs, index;
5897297b 1697 unsigned long *msr_bitmap;
e38aea3e 1698
33f9c505 1699 vmx_load_host_state(vmx);
a75beee6
ED
1700 save_nmsrs = 0;
1701#ifdef CONFIG_X86_64
8b9cf98c 1702 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1703 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1704 if (index >= 0)
8b9cf98c
RR
1705 move_msr_up(vmx, index, save_nmsrs++);
1706 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1707 if (index >= 0)
8b9cf98c
RR
1708 move_msr_up(vmx, index, save_nmsrs++);
1709 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1710 if (index >= 0)
8b9cf98c 1711 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1712 index = __find_msr_index(vmx, MSR_TSC_AUX);
1713 if (index >= 0 && vmx->rdtscp_enabled)
1714 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1715 /*
8c06585d 1716 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1717 * if efer.sce is enabled.
1718 */
8c06585d 1719 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1720 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1721 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1722 }
1723#endif
92c0d900
AK
1724 index = __find_msr_index(vmx, MSR_EFER);
1725 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1726 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1727
26bb0981 1728 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1729
1730 if (cpu_has_vmx_msr_bitmap()) {
1731 if (is_long_mode(&vmx->vcpu))
1732 msr_bitmap = vmx_msr_bitmap_longmode;
1733 else
1734 msr_bitmap = vmx_msr_bitmap_legacy;
1735
1736 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1737 }
e38aea3e
AK
1738}
1739
6aa8b732
AK
1740/*
1741 * reads and returns guest's timestamp counter "register"
1742 * guest_tsc = host_tsc + tsc_offset -- 21.3
1743 */
1744static u64 guest_read_tsc(void)
1745{
1746 u64 host_tsc, tsc_offset;
1747
1748 rdtscll(host_tsc);
1749 tsc_offset = vmcs_read64(TSC_OFFSET);
1750 return host_tsc + tsc_offset;
1751}
1752
d5c1785d
NHE
1753/*
1754 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1755 * counter, even if a nested guest (L2) is currently running.
1756 */
1757u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1758{
1759 u64 host_tsc, tsc_offset;
1760
1761 rdtscll(host_tsc);
1762 tsc_offset = is_guest_mode(vcpu) ?
1763 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1764 vmcs_read64(TSC_OFFSET);
1765 return host_tsc + tsc_offset;
1766}
1767
4051b188
JR
1768/*
1769 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1770 * ioctl. In this case the call-back should update internal vmx state to make
1771 * the changes effective.
1772 */
1773static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1774{
1775 /* Nothing to do here */
1776}
1777
6aa8b732 1778/*
99e3e30a 1779 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1780 */
99e3e30a 1781static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1782{
27fc51b2 1783 if (is_guest_mode(vcpu)) {
7991825b 1784 /*
27fc51b2
NHE
1785 * We're here if L1 chose not to trap WRMSR to TSC. According
1786 * to the spec, this should set L1's TSC; The offset that L1
1787 * set for L2 remains unchanged, and still needs to be added
1788 * to the newly set TSC to get L2's TSC.
7991825b 1789 */
27fc51b2
NHE
1790 struct vmcs12 *vmcs12;
1791 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1792 /* recalculate vmcs02.TSC_OFFSET: */
1793 vmcs12 = get_vmcs12(vcpu);
1794 vmcs_write64(TSC_OFFSET, offset +
1795 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1796 vmcs12->tsc_offset : 0));
1797 } else {
1798 vmcs_write64(TSC_OFFSET, offset);
1799 }
6aa8b732
AK
1800}
1801
e48672fa
ZA
1802static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1803{
1804 u64 offset = vmcs_read64(TSC_OFFSET);
1805 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1806 if (is_guest_mode(vcpu)) {
1807 /* Even when running L2, the adjustment needs to apply to L1 */
1808 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1809 }
e48672fa
ZA
1810}
1811
857e4099
JR
1812static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1813{
1814 return target_tsc - native_read_tsc();
1815}
1816
801d3424
NHE
1817static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1818{
1819 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1820 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1821}
1822
1823/*
1824 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1825 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1826 * all guests if the "nested" module option is off, and can also be disabled
1827 * for a single guest by disabling its VMX cpuid bit.
1828 */
1829static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1830{
1831 return nested && guest_cpuid_has_vmx(vcpu);
1832}
1833
b87a51ae
NHE
1834/*
1835 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1836 * returned for the various VMX controls MSRs when nested VMX is enabled.
1837 * The same values should also be used to verify that vmcs12 control fields are
1838 * valid during nested entry from L1 to L2.
1839 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1840 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1841 * bit in the high half is on if the corresponding bit in the control field
1842 * may be on. See also vmx_control_verify().
1843 * TODO: allow these variables to be modified (downgraded) by module options
1844 * or other means.
1845 */
1846static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1847static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1848static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1849static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1850static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1851static __init void nested_vmx_setup_ctls_msrs(void)
1852{
1853 /*
1854 * Note that as a general rule, the high half of the MSRs (bits in
1855 * the control fields which may be 1) should be initialized by the
1856 * intersection of the underlying hardware's MSR (i.e., features which
1857 * can be supported) and the list of features we want to expose -
1858 * because they are known to be properly supported in our code.
1859 * Also, usually, the low half of the MSRs (bits which must be 1) can
1860 * be set to 0, meaning that L1 may turn off any of these bits. The
1861 * reason is that if one of these bits is necessary, it will appear
1862 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1863 * fields of vmcs01 and vmcs02, will turn these bits off - and
1864 * nested_vmx_exit_handled() will not pass related exits to L1.
1865 * These rules have exceptions below.
1866 */
1867
1868 /* pin-based controls */
1869 /*
1870 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1871 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1872 */
1873 nested_vmx_pinbased_ctls_low = 0x16 ;
1874 nested_vmx_pinbased_ctls_high = 0x16 |
1875 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1876 PIN_BASED_VIRTUAL_NMIS;
1877
1878 /* exit controls */
1879 nested_vmx_exit_ctls_low = 0;
b6f1250e 1880 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1881#ifdef CONFIG_X86_64
1882 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1883#else
1884 nested_vmx_exit_ctls_high = 0;
1885#endif
1886
1887 /* entry controls */
1888 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1889 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1890 nested_vmx_entry_ctls_low = 0;
1891 nested_vmx_entry_ctls_high &=
1892 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1893
1894 /* cpu-based controls */
1895 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1896 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1897 nested_vmx_procbased_ctls_low = 0;
1898 nested_vmx_procbased_ctls_high &=
1899 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1900 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1901 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1902 CPU_BASED_CR3_STORE_EXITING |
1903#ifdef CONFIG_X86_64
1904 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1905#endif
1906 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1907 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1908 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1909 /*
1910 * We can allow some features even when not supported by the
1911 * hardware. For example, L1 can specify an MSR bitmap - and we
1912 * can use it to avoid exits to L1 - even when L0 runs L2
1913 * without MSR bitmaps.
1914 */
1915 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1916
1917 /* secondary cpu-based controls */
1918 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1919 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1920 nested_vmx_secondary_ctls_low = 0;
1921 nested_vmx_secondary_ctls_high &=
1922 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1923}
1924
1925static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1926{
1927 /*
1928 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1929 */
1930 return ((control & high) | low) == control;
1931}
1932
1933static inline u64 vmx_control_msr(u32 low, u32 high)
1934{
1935 return low | ((u64)high << 32);
1936}
1937
1938/*
1939 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1940 * also let it use VMX-specific MSRs.
1941 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1942 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1943 * like all other MSRs).
1944 */
1945static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1946{
1947 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1948 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1949 /*
1950 * According to the spec, processors which do not support VMX
1951 * should throw a #GP(0) when VMX capability MSRs are read.
1952 */
1953 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1954 return 1;
1955 }
1956
1957 switch (msr_index) {
1958 case MSR_IA32_FEATURE_CONTROL:
1959 *pdata = 0;
1960 break;
1961 case MSR_IA32_VMX_BASIC:
1962 /*
1963 * This MSR reports some information about VMX support. We
1964 * should return information about the VMX we emulate for the
1965 * guest, and the VMCS structure we give it - not about the
1966 * VMX support of the underlying hardware.
1967 */
1968 *pdata = VMCS12_REVISION |
1969 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
1970 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
1971 break;
1972 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1973 case MSR_IA32_VMX_PINBASED_CTLS:
1974 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
1975 nested_vmx_pinbased_ctls_high);
1976 break;
1977 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1978 case MSR_IA32_VMX_PROCBASED_CTLS:
1979 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
1980 nested_vmx_procbased_ctls_high);
1981 break;
1982 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1983 case MSR_IA32_VMX_EXIT_CTLS:
1984 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
1985 nested_vmx_exit_ctls_high);
1986 break;
1987 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1988 case MSR_IA32_VMX_ENTRY_CTLS:
1989 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
1990 nested_vmx_entry_ctls_high);
1991 break;
1992 case MSR_IA32_VMX_MISC:
1993 *pdata = 0;
1994 break;
1995 /*
1996 * These MSRs specify bits which the guest must keep fixed (on or off)
1997 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
1998 * We picked the standard core2 setting.
1999 */
2000#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2001#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2002 case MSR_IA32_VMX_CR0_FIXED0:
2003 *pdata = VMXON_CR0_ALWAYSON;
2004 break;
2005 case MSR_IA32_VMX_CR0_FIXED1:
2006 *pdata = -1ULL;
2007 break;
2008 case MSR_IA32_VMX_CR4_FIXED0:
2009 *pdata = VMXON_CR4_ALWAYSON;
2010 break;
2011 case MSR_IA32_VMX_CR4_FIXED1:
2012 *pdata = -1ULL;
2013 break;
2014 case MSR_IA32_VMX_VMCS_ENUM:
2015 *pdata = 0x1f;
2016 break;
2017 case MSR_IA32_VMX_PROCBASED_CTLS2:
2018 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2019 nested_vmx_secondary_ctls_high);
2020 break;
2021 case MSR_IA32_VMX_EPT_VPID_CAP:
2022 /* Currently, no nested ept or nested vpid */
2023 *pdata = 0;
2024 break;
2025 default:
2026 return 0;
2027 }
2028
2029 return 1;
2030}
2031
2032static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2033{
2034 if (!nested_vmx_allowed(vcpu))
2035 return 0;
2036
2037 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2038 /* TODO: the right thing. */
2039 return 1;
2040 /*
2041 * No need to treat VMX capability MSRs specially: If we don't handle
2042 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2043 */
2044 return 0;
2045}
2046
6aa8b732
AK
2047/*
2048 * Reads an msr value (of 'msr_index') into 'pdata'.
2049 * Returns 0 on success, non-0 otherwise.
2050 * Assumes vcpu_load() was already called.
2051 */
2052static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2053{
2054 u64 data;
26bb0981 2055 struct shared_msr_entry *msr;
6aa8b732
AK
2056
2057 if (!pdata) {
2058 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2059 return -EINVAL;
2060 }
2061
2062 switch (msr_index) {
05b3e0c2 2063#ifdef CONFIG_X86_64
6aa8b732
AK
2064 case MSR_FS_BASE:
2065 data = vmcs_readl(GUEST_FS_BASE);
2066 break;
2067 case MSR_GS_BASE:
2068 data = vmcs_readl(GUEST_GS_BASE);
2069 break;
44ea2b17
AK
2070 case MSR_KERNEL_GS_BASE:
2071 vmx_load_host_state(to_vmx(vcpu));
2072 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2073 break;
26bb0981 2074#endif
6aa8b732 2075 case MSR_EFER:
3bab1f5d 2076 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2077 case MSR_IA32_TSC:
6aa8b732
AK
2078 data = guest_read_tsc();
2079 break;
2080 case MSR_IA32_SYSENTER_CS:
2081 data = vmcs_read32(GUEST_SYSENTER_CS);
2082 break;
2083 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2084 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2085 break;
2086 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2087 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2088 break;
4e47c7a6
SY
2089 case MSR_TSC_AUX:
2090 if (!to_vmx(vcpu)->rdtscp_enabled)
2091 return 1;
2092 /* Otherwise falls through */
6aa8b732 2093 default:
26bb0981 2094 vmx_load_host_state(to_vmx(vcpu));
b87a51ae
NHE
2095 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2096 return 0;
8b9cf98c 2097 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d 2098 if (msr) {
542423b0 2099 vmx_load_host_state(to_vmx(vcpu));
3bab1f5d
AK
2100 data = msr->data;
2101 break;
6aa8b732 2102 }
3bab1f5d 2103 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2104 }
2105
2106 *pdata = data;
2107 return 0;
2108}
2109
2110/*
2111 * Writes msr value into into the appropriate "register".
2112 * Returns 0 on success, non-0 otherwise.
2113 * Assumes vcpu_load() was already called.
2114 */
2115static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2116{
a2fa3e9f 2117 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2118 struct shared_msr_entry *msr;
2cc51560
ED
2119 int ret = 0;
2120
6aa8b732 2121 switch (msr_index) {
3bab1f5d 2122 case MSR_EFER:
a9b21b62 2123 vmx_load_host_state(vmx);
2cc51560 2124 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2125 break;
16175a79 2126#ifdef CONFIG_X86_64
6aa8b732 2127 case MSR_FS_BASE:
2fb92db1 2128 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2129 vmcs_writel(GUEST_FS_BASE, data);
2130 break;
2131 case MSR_GS_BASE:
2fb92db1 2132 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2133 vmcs_writel(GUEST_GS_BASE, data);
2134 break;
44ea2b17
AK
2135 case MSR_KERNEL_GS_BASE:
2136 vmx_load_host_state(vmx);
2137 vmx->msr_guest_kernel_gs_base = data;
2138 break;
6aa8b732
AK
2139#endif
2140 case MSR_IA32_SYSENTER_CS:
2141 vmcs_write32(GUEST_SYSENTER_CS, data);
2142 break;
2143 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2144 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2145 break;
2146 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2147 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2148 break;
af24a4e4 2149 case MSR_IA32_TSC:
99e3e30a 2150 kvm_write_tsc(vcpu, data);
6aa8b732 2151 break;
468d472f
SY
2152 case MSR_IA32_CR_PAT:
2153 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2154 vmcs_write64(GUEST_IA32_PAT, data);
2155 vcpu->arch.pat = data;
2156 break;
2157 }
4e47c7a6
SY
2158 ret = kvm_set_msr_common(vcpu, msr_index, data);
2159 break;
2160 case MSR_TSC_AUX:
2161 if (!vmx->rdtscp_enabled)
2162 return 1;
2163 /* Check reserved bit, higher 32 bits should be zero */
2164 if ((data >> 32) != 0)
2165 return 1;
2166 /* Otherwise falls through */
6aa8b732 2167 default:
b87a51ae
NHE
2168 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2169 break;
8b9cf98c 2170 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2171 if (msr) {
542423b0 2172 vmx_load_host_state(vmx);
3bab1f5d
AK
2173 msr->data = data;
2174 break;
6aa8b732 2175 }
2cc51560 2176 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2177 }
2178
2cc51560 2179 return ret;
6aa8b732
AK
2180}
2181
5fdbf976 2182static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2183{
5fdbf976
MT
2184 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2185 switch (reg) {
2186 case VCPU_REGS_RSP:
2187 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2188 break;
2189 case VCPU_REGS_RIP:
2190 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2191 break;
6de4f3ad
AK
2192 case VCPU_EXREG_PDPTR:
2193 if (enable_ept)
2194 ept_save_pdptrs(vcpu);
2195 break;
5fdbf976
MT
2196 default:
2197 break;
2198 }
6aa8b732
AK
2199}
2200
355be0b9 2201static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2202{
ae675ef0
JK
2203 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2204 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2205 else
2206 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2207
abd3f2d6 2208 update_exception_bitmap(vcpu);
6aa8b732
AK
2209}
2210
2211static __init int cpu_has_kvm_support(void)
2212{
6210e37b 2213 return cpu_has_vmx();
6aa8b732
AK
2214}
2215
2216static __init int vmx_disabled_by_bios(void)
2217{
2218 u64 msr;
2219
2220 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2221 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2222 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2223 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2224 && tboot_enabled())
2225 return 1;
23f3e991 2226 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2227 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2228 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2229 && !tboot_enabled()) {
2230 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2231 "activate TXT before enabling KVM\n");
cafd6659 2232 return 1;
f9335afe 2233 }
23f3e991
JC
2234 /* launched w/o TXT and VMX disabled */
2235 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2236 && !tboot_enabled())
2237 return 1;
cafd6659
SW
2238 }
2239
2240 return 0;
6aa8b732
AK
2241}
2242
7725b894
DX
2243static void kvm_cpu_vmxon(u64 addr)
2244{
2245 asm volatile (ASM_VMX_VMXON_RAX
2246 : : "a"(&addr), "m"(addr)
2247 : "memory", "cc");
2248}
2249
10474ae8 2250static int hardware_enable(void *garbage)
6aa8b732
AK
2251{
2252 int cpu = raw_smp_processor_id();
2253 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2254 u64 old, test_bits;
6aa8b732 2255
10474ae8
AG
2256 if (read_cr4() & X86_CR4_VMXE)
2257 return -EBUSY;
2258
d462b819 2259 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2260 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2261
2262 test_bits = FEATURE_CONTROL_LOCKED;
2263 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2264 if (tboot_enabled())
2265 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2266
2267 if ((old & test_bits) != test_bits) {
6aa8b732 2268 /* enable and lock */
cafd6659
SW
2269 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2270 }
66aee91a 2271 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2272
4610c9cc
DX
2273 if (vmm_exclusive) {
2274 kvm_cpu_vmxon(phys_addr);
2275 ept_sync_global();
2276 }
10474ae8 2277
3444d7da
AK
2278 store_gdt(&__get_cpu_var(host_gdt));
2279
10474ae8 2280 return 0;
6aa8b732
AK
2281}
2282
d462b819 2283static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2284{
2285 int cpu = raw_smp_processor_id();
d462b819 2286 struct loaded_vmcs *v, *n;
543e4243 2287
d462b819
NHE
2288 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2289 loaded_vmcss_on_cpu_link)
2290 __loaded_vmcs_clear(v);
543e4243
AK
2291}
2292
710ff4a8
EH
2293
2294/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2295 * tricks.
2296 */
2297static void kvm_cpu_vmxoff(void)
6aa8b732 2298{
4ecac3fd 2299 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2300}
2301
710ff4a8
EH
2302static void hardware_disable(void *garbage)
2303{
4610c9cc 2304 if (vmm_exclusive) {
d462b819 2305 vmclear_local_loaded_vmcss();
4610c9cc
DX
2306 kvm_cpu_vmxoff();
2307 }
7725b894 2308 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2309}
2310
1c3d14fe 2311static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2312 u32 msr, u32 *result)
1c3d14fe
YS
2313{
2314 u32 vmx_msr_low, vmx_msr_high;
2315 u32 ctl = ctl_min | ctl_opt;
2316
2317 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2318
2319 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2320 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2321
2322 /* Ensure minimum (required) set of control bits are supported. */
2323 if (ctl_min & ~ctl)
002c7f7c 2324 return -EIO;
1c3d14fe
YS
2325
2326 *result = ctl;
2327 return 0;
2328}
2329
110312c8
AK
2330static __init bool allow_1_setting(u32 msr, u32 ctl)
2331{
2332 u32 vmx_msr_low, vmx_msr_high;
2333
2334 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2335 return vmx_msr_high & ctl;
2336}
2337
002c7f7c 2338static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2339{
2340 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2341 u32 min, opt, min2, opt2;
1c3d14fe
YS
2342 u32 _pin_based_exec_control = 0;
2343 u32 _cpu_based_exec_control = 0;
f78e0e2e 2344 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2345 u32 _vmexit_control = 0;
2346 u32 _vmentry_control = 0;
2347
2348 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2349 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2350 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2351 &_pin_based_exec_control) < 0)
002c7f7c 2352 return -EIO;
1c3d14fe 2353
443381a8 2354 min =
1c3d14fe
YS
2355#ifdef CONFIG_X86_64
2356 CPU_BASED_CR8_LOAD_EXITING |
2357 CPU_BASED_CR8_STORE_EXITING |
2358#endif
d56f546d
SY
2359 CPU_BASED_CR3_LOAD_EXITING |
2360 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2361 CPU_BASED_USE_IO_BITMAPS |
2362 CPU_BASED_MOV_DR_EXITING |
a7052897 2363 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2364 CPU_BASED_MWAIT_EXITING |
2365 CPU_BASED_MONITOR_EXITING |
a7052897 2366 CPU_BASED_INVLPG_EXITING;
443381a8
AL
2367
2368 if (yield_on_hlt)
2369 min |= CPU_BASED_HLT_EXITING;
2370
f78e0e2e 2371 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2372 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2373 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2374 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2375 &_cpu_based_exec_control) < 0)
002c7f7c 2376 return -EIO;
6e5d865c
YS
2377#ifdef CONFIG_X86_64
2378 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2379 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2380 ~CPU_BASED_CR8_STORE_EXITING;
2381#endif
f78e0e2e 2382 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2383 min2 = 0;
2384 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2385 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2386 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2387 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2388 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2389 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2390 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2391 if (adjust_vmx_controls(min2, opt2,
2392 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2393 &_cpu_based_2nd_exec_control) < 0)
2394 return -EIO;
2395 }
2396#ifndef CONFIG_X86_64
2397 if (!(_cpu_based_2nd_exec_control &
2398 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2399 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2400#endif
d56f546d 2401 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2402 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2403 enabled */
5fff7d27
GN
2404 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2405 CPU_BASED_CR3_STORE_EXITING |
2406 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2407 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2408 vmx_capability.ept, vmx_capability.vpid);
2409 }
1c3d14fe
YS
2410
2411 min = 0;
2412#ifdef CONFIG_X86_64
2413 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2414#endif
468d472f 2415 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2416 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2417 &_vmexit_control) < 0)
002c7f7c 2418 return -EIO;
1c3d14fe 2419
468d472f
SY
2420 min = 0;
2421 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2422 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2423 &_vmentry_control) < 0)
002c7f7c 2424 return -EIO;
6aa8b732 2425
c68876fd 2426 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2427
2428 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2429 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2430 return -EIO;
1c3d14fe
YS
2431
2432#ifdef CONFIG_X86_64
2433 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2434 if (vmx_msr_high & (1u<<16))
002c7f7c 2435 return -EIO;
1c3d14fe
YS
2436#endif
2437
2438 /* Require Write-Back (WB) memory type for VMCS accesses. */
2439 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2440 return -EIO;
1c3d14fe 2441
002c7f7c
YS
2442 vmcs_conf->size = vmx_msr_high & 0x1fff;
2443 vmcs_conf->order = get_order(vmcs_config.size);
2444 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2445
002c7f7c
YS
2446 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2447 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2448 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2449 vmcs_conf->vmexit_ctrl = _vmexit_control;
2450 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2451
110312c8
AK
2452 cpu_has_load_ia32_efer =
2453 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2454 VM_ENTRY_LOAD_IA32_EFER)
2455 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2456 VM_EXIT_LOAD_IA32_EFER);
2457
1c3d14fe 2458 return 0;
c68876fd 2459}
6aa8b732
AK
2460
2461static struct vmcs *alloc_vmcs_cpu(int cpu)
2462{
2463 int node = cpu_to_node(cpu);
2464 struct page *pages;
2465 struct vmcs *vmcs;
2466
6484eb3e 2467 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2468 if (!pages)
2469 return NULL;
2470 vmcs = page_address(pages);
1c3d14fe
YS
2471 memset(vmcs, 0, vmcs_config.size);
2472 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2473 return vmcs;
2474}
2475
2476static struct vmcs *alloc_vmcs(void)
2477{
d3b2c338 2478 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2479}
2480
2481static void free_vmcs(struct vmcs *vmcs)
2482{
1c3d14fe 2483 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2484}
2485
d462b819
NHE
2486/*
2487 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2488 */
2489static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2490{
2491 if (!loaded_vmcs->vmcs)
2492 return;
2493 loaded_vmcs_clear(loaded_vmcs);
2494 free_vmcs(loaded_vmcs->vmcs);
2495 loaded_vmcs->vmcs = NULL;
2496}
2497
39959588 2498static void free_kvm_area(void)
6aa8b732
AK
2499{
2500 int cpu;
2501
3230bb47 2502 for_each_possible_cpu(cpu) {
6aa8b732 2503 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2504 per_cpu(vmxarea, cpu) = NULL;
2505 }
6aa8b732
AK
2506}
2507
6aa8b732
AK
2508static __init int alloc_kvm_area(void)
2509{
2510 int cpu;
2511
3230bb47 2512 for_each_possible_cpu(cpu) {
6aa8b732
AK
2513 struct vmcs *vmcs;
2514
2515 vmcs = alloc_vmcs_cpu(cpu);
2516 if (!vmcs) {
2517 free_kvm_area();
2518 return -ENOMEM;
2519 }
2520
2521 per_cpu(vmxarea, cpu) = vmcs;
2522 }
2523 return 0;
2524}
2525
2526static __init int hardware_setup(void)
2527{
002c7f7c
YS
2528 if (setup_vmcs_config(&vmcs_config) < 0)
2529 return -EIO;
50a37eb4
JR
2530
2531 if (boot_cpu_has(X86_FEATURE_NX))
2532 kvm_enable_efer_bits(EFER_NX);
2533
93ba03c2
SY
2534 if (!cpu_has_vmx_vpid())
2535 enable_vpid = 0;
2536
4bc9b982
SY
2537 if (!cpu_has_vmx_ept() ||
2538 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2539 enable_ept = 0;
3a624e29
NK
2540 enable_unrestricted_guest = 0;
2541 }
2542
2543 if (!cpu_has_vmx_unrestricted_guest())
2544 enable_unrestricted_guest = 0;
93ba03c2
SY
2545
2546 if (!cpu_has_vmx_flexpriority())
2547 flexpriority_enabled = 0;
2548
95ba8273
GN
2549 if (!cpu_has_vmx_tpr_shadow())
2550 kvm_x86_ops->update_cr8_intercept = NULL;
2551
54dee993
MT
2552 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2553 kvm_disable_largepages();
2554
4b8d54f9
ZE
2555 if (!cpu_has_vmx_ple())
2556 ple_gap = 0;
2557
b87a51ae
NHE
2558 if (nested)
2559 nested_vmx_setup_ctls_msrs();
2560
6aa8b732
AK
2561 return alloc_kvm_area();
2562}
2563
2564static __exit void hardware_unsetup(void)
2565{
2566 free_kvm_area();
2567}
2568
6aa8b732
AK
2569static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2570{
2571 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2572
6af11b9e 2573 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2574 vmcs_write16(sf->selector, save->selector);
2575 vmcs_writel(sf->base, save->base);
2576 vmcs_write32(sf->limit, save->limit);
2577 vmcs_write32(sf->ar_bytes, save->ar);
2578 } else {
2579 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2580 << AR_DPL_SHIFT;
2581 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2582 }
2583}
2584
2585static void enter_pmode(struct kvm_vcpu *vcpu)
2586{
2587 unsigned long flags;
a89a8fb9 2588 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2589
a89a8fb9 2590 vmx->emulation_required = 1;
7ffd92c5 2591 vmx->rmode.vm86_active = 0;
6aa8b732 2592
2fb92db1
AK
2593 vmx_segment_cache_clear(vmx);
2594
d0ba64f9 2595 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2596 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2597 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2598 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2599
2600 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2601 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2602 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2603 vmcs_writel(GUEST_RFLAGS, flags);
2604
66aee91a
RR
2605 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2606 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2607
2608 update_exception_bitmap(vcpu);
2609
a89a8fb9
MG
2610 if (emulate_invalid_guest_state)
2611 return;
2612
7ffd92c5
AK
2613 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2614 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2615 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2616 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2617
2fb92db1
AK
2618 vmx_segment_cache_clear(vmx);
2619
6aa8b732
AK
2620 vmcs_write16(GUEST_SS_SELECTOR, 0);
2621 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2622
2623 vmcs_write16(GUEST_CS_SELECTOR,
2624 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2625 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2626}
2627
d77c26fc 2628static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2629{
bfc6d222 2630 if (!kvm->arch.tss_addr) {
bc6678a3
MT
2631 struct kvm_memslots *slots;
2632 gfn_t base_gfn;
2633
90d83dc3 2634 slots = kvm_memslots(kvm);
f495c6e5 2635 base_gfn = slots->memslots[0].base_gfn +
46a26bf5 2636 kvm->memslots->memslots[0].npages - 3;
cbc94022
IE
2637 return base_gfn << PAGE_SHIFT;
2638 }
bfc6d222 2639 return kvm->arch.tss_addr;
6aa8b732
AK
2640}
2641
2642static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2643{
2644 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2645
2646 save->selector = vmcs_read16(sf->selector);
2647 save->base = vmcs_readl(sf->base);
2648 save->limit = vmcs_read32(sf->limit);
2649 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2650 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2651 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2652 vmcs_write32(sf->limit, 0xffff);
2653 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2654 if (save->base & 0xf)
2655 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2656 " aligned when entering protected mode (seg=%d)",
2657 seg);
6aa8b732
AK
2658}
2659
2660static void enter_rmode(struct kvm_vcpu *vcpu)
2661{
2662 unsigned long flags;
a89a8fb9 2663 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2664
3a624e29
NK
2665 if (enable_unrestricted_guest)
2666 return;
2667
a89a8fb9 2668 vmx->emulation_required = 1;
7ffd92c5 2669 vmx->rmode.vm86_active = 1;
6aa8b732 2670
776e58ea
GN
2671 /*
2672 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2673 * vcpu. Call it here with phys address pointing 16M below 4G.
2674 */
2675 if (!vcpu->kvm->arch.tss_addr) {
2676 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2677 "called before entering vcpu\n");
2678 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2679 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2680 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2681 }
2682
2fb92db1
AK
2683 vmx_segment_cache_clear(vmx);
2684
d0ba64f9 2685 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2686 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2687 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2688
7ffd92c5 2689 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2690 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2691
7ffd92c5 2692 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2693 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2694
2695 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2696 vmx->rmode.save_rflags = flags;
6aa8b732 2697
053de044 2698 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2699
2700 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2701 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2702 update_exception_bitmap(vcpu);
2703
a89a8fb9
MG
2704 if (emulate_invalid_guest_state)
2705 goto continue_rmode;
2706
6aa8b732
AK
2707 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2708 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2709 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2710
2711 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2712 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2713 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2714 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2715 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2716
7ffd92c5
AK
2717 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2718 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2719 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2720 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2721
a89a8fb9 2722continue_rmode:
8668a3c4 2723 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2724}
2725
401d10de
AS
2726static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2727{
2728 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2729 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2730
2731 if (!msr)
2732 return;
401d10de 2733
44ea2b17
AK
2734 /*
2735 * Force kernel_gs_base reloading before EFER changes, as control
2736 * of this msr depends on is_long_mode().
2737 */
2738 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2739 vcpu->arch.efer = efer;
401d10de
AS
2740 if (efer & EFER_LMA) {
2741 vmcs_write32(VM_ENTRY_CONTROLS,
2742 vmcs_read32(VM_ENTRY_CONTROLS) |
2743 VM_ENTRY_IA32E_MODE);
2744 msr->data = efer;
2745 } else {
2746 vmcs_write32(VM_ENTRY_CONTROLS,
2747 vmcs_read32(VM_ENTRY_CONTROLS) &
2748 ~VM_ENTRY_IA32E_MODE);
2749
2750 msr->data = efer & ~EFER_LME;
2751 }
2752 setup_msrs(vmx);
2753}
2754
05b3e0c2 2755#ifdef CONFIG_X86_64
6aa8b732
AK
2756
2757static void enter_lmode(struct kvm_vcpu *vcpu)
2758{
2759 u32 guest_tr_ar;
2760
2fb92db1
AK
2761 vmx_segment_cache_clear(to_vmx(vcpu));
2762
6aa8b732
AK
2763 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2764 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2765 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2766 __func__);
6aa8b732
AK
2767 vmcs_write32(GUEST_TR_AR_BYTES,
2768 (guest_tr_ar & ~AR_TYPE_MASK)
2769 | AR_TYPE_BUSY_64_TSS);
2770 }
da38f438 2771 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2772}
2773
2774static void exit_lmode(struct kvm_vcpu *vcpu)
2775{
6aa8b732
AK
2776 vmcs_write32(VM_ENTRY_CONTROLS,
2777 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2778 & ~VM_ENTRY_IA32E_MODE);
da38f438 2779 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2780}
2781
2782#endif
2783
2384d2b3
SY
2784static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2785{
b9d762fa 2786 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2787 if (enable_ept) {
2788 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2789 return;
4e1096d2 2790 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2791 }
2384d2b3
SY
2792}
2793
e8467fda
AK
2794static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2795{
2796 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2797
2798 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2799 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2800}
2801
aff48baa
AK
2802static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2803{
2804 if (enable_ept && is_paging(vcpu))
2805 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2806 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2807}
2808
25c4c276 2809static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2810{
fc78f519
AK
2811 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2812
2813 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2814 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2815}
2816
1439442c
SY
2817static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2818{
6de4f3ad
AK
2819 if (!test_bit(VCPU_EXREG_PDPTR,
2820 (unsigned long *)&vcpu->arch.regs_dirty))
2821 return;
2822
1439442c 2823 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2824 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2825 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2826 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2827 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2828 }
2829}
2830
8f5d549f
AK
2831static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2832{
2833 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2834 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2835 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2836 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2837 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2838 }
6de4f3ad
AK
2839
2840 __set_bit(VCPU_EXREG_PDPTR,
2841 (unsigned long *)&vcpu->arch.regs_avail);
2842 __set_bit(VCPU_EXREG_PDPTR,
2843 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2844}
2845
5e1746d6 2846static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2847
2848static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2849 unsigned long cr0,
2850 struct kvm_vcpu *vcpu)
2851{
5233dd51
MT
2852 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2853 vmx_decache_cr3(vcpu);
1439442c
SY
2854 if (!(cr0 & X86_CR0_PG)) {
2855 /* From paging/starting to nonpaging */
2856 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2857 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2858 (CPU_BASED_CR3_LOAD_EXITING |
2859 CPU_BASED_CR3_STORE_EXITING));
2860 vcpu->arch.cr0 = cr0;
fc78f519 2861 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2862 } else if (!is_paging(vcpu)) {
2863 /* From nonpaging to paging */
2864 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2865 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2866 ~(CPU_BASED_CR3_LOAD_EXITING |
2867 CPU_BASED_CR3_STORE_EXITING));
2868 vcpu->arch.cr0 = cr0;
fc78f519 2869 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2870 }
95eb84a7
SY
2871
2872 if (!(cr0 & X86_CR0_WP))
2873 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2874}
2875
6aa8b732
AK
2876static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2877{
7ffd92c5 2878 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2879 unsigned long hw_cr0;
2880
2881 if (enable_unrestricted_guest)
2882 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2883 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2884 else
2885 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2886
7ffd92c5 2887 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2888 enter_pmode(vcpu);
2889
7ffd92c5 2890 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2891 enter_rmode(vcpu);
2892
05b3e0c2 2893#ifdef CONFIG_X86_64
f6801dff 2894 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2895 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2896 enter_lmode(vcpu);
707d92fa 2897 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2898 exit_lmode(vcpu);
2899 }
2900#endif
2901
089d034e 2902 if (enable_ept)
1439442c
SY
2903 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2904
02daab21 2905 if (!vcpu->fpu_active)
81231c69 2906 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 2907
6aa8b732 2908 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 2909 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 2910 vcpu->arch.cr0 = cr0;
69c73028 2911 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
2912}
2913
1439442c
SY
2914static u64 construct_eptp(unsigned long root_hpa)
2915{
2916 u64 eptp;
2917
2918 /* TODO write the value reading from MSR */
2919 eptp = VMX_EPT_DEFAULT_MT |
2920 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2921 eptp |= (root_hpa & PAGE_MASK);
2922
2923 return eptp;
2924}
2925
6aa8b732
AK
2926static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2927{
1439442c
SY
2928 unsigned long guest_cr3;
2929 u64 eptp;
2930
2931 guest_cr3 = cr3;
089d034e 2932 if (enable_ept) {
1439442c
SY
2933 eptp = construct_eptp(cr3);
2934 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 2935 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 2936 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 2937 ept_load_pdptrs(vcpu);
1439442c
SY
2938 }
2939
2384d2b3 2940 vmx_flush_tlb(vcpu);
1439442c 2941 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
2942}
2943
5e1746d6 2944static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 2945{
7ffd92c5 2946 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
2947 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2948
5e1746d6
NHE
2949 if (cr4 & X86_CR4_VMXE) {
2950 /*
2951 * To use VMXON (and later other VMX instructions), a guest
2952 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2953 * So basically the check on whether to allow nested VMX
2954 * is here.
2955 */
2956 if (!nested_vmx_allowed(vcpu))
2957 return 1;
2958 } else if (to_vmx(vcpu)->nested.vmxon)
2959 return 1;
2960
ad312c7c 2961 vcpu->arch.cr4 = cr4;
bc23008b
AK
2962 if (enable_ept) {
2963 if (!is_paging(vcpu)) {
2964 hw_cr4 &= ~X86_CR4_PAE;
2965 hw_cr4 |= X86_CR4_PSE;
2966 } else if (!(cr4 & X86_CR4_PAE)) {
2967 hw_cr4 &= ~X86_CR4_PAE;
2968 }
2969 }
1439442c
SY
2970
2971 vmcs_writel(CR4_READ_SHADOW, cr4);
2972 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 2973 return 0;
6aa8b732
AK
2974}
2975
6aa8b732
AK
2976static void vmx_get_segment(struct kvm_vcpu *vcpu,
2977 struct kvm_segment *var, int seg)
2978{
a9179499 2979 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 2980 struct kvm_save_segment *save;
6aa8b732
AK
2981 u32 ar;
2982
a9179499
AK
2983 if (vmx->rmode.vm86_active
2984 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2985 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2986 || seg == VCPU_SREG_GS)
2987 && !emulate_invalid_guest_state) {
2988 switch (seg) {
2989 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2990 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2991 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2992 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2993 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2994 default: BUG();
2995 }
2996 var->selector = save->selector;
2997 var->base = save->base;
2998 var->limit = save->limit;
2999 ar = save->ar;
3000 if (seg == VCPU_SREG_TR
2fb92db1 3001 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3002 goto use_saved_rmode_seg;
3003 }
2fb92db1
AK
3004 var->base = vmx_read_guest_seg_base(vmx, seg);
3005 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3006 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3007 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3008use_saved_rmode_seg:
9fd4a3b7 3009 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3010 ar = 0;
3011 var->type = ar & 15;
3012 var->s = (ar >> 4) & 1;
3013 var->dpl = (ar >> 5) & 3;
3014 var->present = (ar >> 7) & 1;
3015 var->avl = (ar >> 12) & 1;
3016 var->l = (ar >> 13) & 1;
3017 var->db = (ar >> 14) & 1;
3018 var->g = (ar >> 15) & 1;
3019 var->unusable = (ar >> 16) & 1;
3020}
3021
a9179499
AK
3022static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3023{
a9179499
AK
3024 struct kvm_segment s;
3025
3026 if (to_vmx(vcpu)->rmode.vm86_active) {
3027 vmx_get_segment(vcpu, &s, seg);
3028 return s.base;
3029 }
2fb92db1 3030 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3031}
3032
69c73028 3033static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3034{
3eeb3288 3035 if (!is_protmode(vcpu))
2e4d2653
IE
3036 return 0;
3037
f4c63e5d
AK
3038 if (!is_long_mode(vcpu)
3039 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3040 return 3;
3041
2fb92db1 3042 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3043}
3044
69c73028
AK
3045static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3046{
3047 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3048 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3049 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3050 }
3051 return to_vmx(vcpu)->cpl;
3052}
3053
3054
653e3108 3055static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3056{
6aa8b732
AK
3057 u32 ar;
3058
653e3108 3059 if (var->unusable)
6aa8b732
AK
3060 ar = 1 << 16;
3061 else {
3062 ar = var->type & 15;
3063 ar |= (var->s & 1) << 4;
3064 ar |= (var->dpl & 3) << 5;
3065 ar |= (var->present & 1) << 7;
3066 ar |= (var->avl & 1) << 12;
3067 ar |= (var->l & 1) << 13;
3068 ar |= (var->db & 1) << 14;
3069 ar |= (var->g & 1) << 15;
3070 }
f7fbf1fd
UL
3071 if (ar == 0) /* a 0 value means unusable */
3072 ar = AR_UNUSABLE_MASK;
653e3108
AK
3073
3074 return ar;
3075}
3076
3077static void vmx_set_segment(struct kvm_vcpu *vcpu,
3078 struct kvm_segment *var, int seg)
3079{
7ffd92c5 3080 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3081 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3082 u32 ar;
3083
2fb92db1
AK
3084 vmx_segment_cache_clear(vmx);
3085
7ffd92c5 3086 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3087 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3088 vmx->rmode.tr.selector = var->selector;
3089 vmx->rmode.tr.base = var->base;
3090 vmx->rmode.tr.limit = var->limit;
3091 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3092 return;
3093 }
3094 vmcs_writel(sf->base, var->base);
3095 vmcs_write32(sf->limit, var->limit);
3096 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3097 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3098 /*
3099 * Hack real-mode segments into vm86 compatibility.
3100 */
3101 if (var->base == 0xffff0000 && var->selector == 0xf000)
3102 vmcs_writel(sf->base, 0xf0000);
3103 ar = 0xf3;
3104 } else
3105 ar = vmx_segment_access_rights(var);
3a624e29
NK
3106
3107 /*
3108 * Fix the "Accessed" bit in AR field of segment registers for older
3109 * qemu binaries.
3110 * IA32 arch specifies that at the time of processor reset the
3111 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3112 * is setting it to 0 in the usedland code. This causes invalid guest
3113 * state vmexit when "unrestricted guest" mode is turned on.
3114 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3115 * tree. Newer qemu binaries with that qemu fix would not need this
3116 * kvm hack.
3117 */
3118 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3119 ar |= 0x1; /* Accessed */
3120
6aa8b732 3121 vmcs_write32(sf->ar_bytes, ar);
69c73028 3122 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3123}
3124
6aa8b732
AK
3125static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3126{
2fb92db1 3127 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3128
3129 *db = (ar >> 14) & 1;
3130 *l = (ar >> 13) & 1;
3131}
3132
89a27f4d 3133static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3134{
89a27f4d
GN
3135 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3136 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3137}
3138
89a27f4d 3139static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3140{
89a27f4d
GN
3141 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3142 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3143}
3144
89a27f4d 3145static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3146{
89a27f4d
GN
3147 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3148 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3149}
3150
89a27f4d 3151static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3152{
89a27f4d
GN
3153 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3154 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3155}
3156
648dfaa7
MG
3157static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3158{
3159 struct kvm_segment var;
3160 u32 ar;
3161
3162 vmx_get_segment(vcpu, &var, seg);
3163 ar = vmx_segment_access_rights(&var);
3164
3165 if (var.base != (var.selector << 4))
3166 return false;
3167 if (var.limit != 0xffff)
3168 return false;
3169 if (ar != 0xf3)
3170 return false;
3171
3172 return true;
3173}
3174
3175static bool code_segment_valid(struct kvm_vcpu *vcpu)
3176{
3177 struct kvm_segment cs;
3178 unsigned int cs_rpl;
3179
3180 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3181 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3182
1872a3f4
AK
3183 if (cs.unusable)
3184 return false;
648dfaa7
MG
3185 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3186 return false;
3187 if (!cs.s)
3188 return false;
1872a3f4 3189 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3190 if (cs.dpl > cs_rpl)
3191 return false;
1872a3f4 3192 } else {
648dfaa7
MG
3193 if (cs.dpl != cs_rpl)
3194 return false;
3195 }
3196 if (!cs.present)
3197 return false;
3198
3199 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3200 return true;
3201}
3202
3203static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3204{
3205 struct kvm_segment ss;
3206 unsigned int ss_rpl;
3207
3208 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3209 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3210
1872a3f4
AK
3211 if (ss.unusable)
3212 return true;
3213 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3214 return false;
3215 if (!ss.s)
3216 return false;
3217 if (ss.dpl != ss_rpl) /* DPL != RPL */
3218 return false;
3219 if (!ss.present)
3220 return false;
3221
3222 return true;
3223}
3224
3225static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3226{
3227 struct kvm_segment var;
3228 unsigned int rpl;
3229
3230 vmx_get_segment(vcpu, &var, seg);
3231 rpl = var.selector & SELECTOR_RPL_MASK;
3232
1872a3f4
AK
3233 if (var.unusable)
3234 return true;
648dfaa7
MG
3235 if (!var.s)
3236 return false;
3237 if (!var.present)
3238 return false;
3239 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3240 if (var.dpl < rpl) /* DPL < RPL */
3241 return false;
3242 }
3243
3244 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3245 * rights flags
3246 */
3247 return true;
3248}
3249
3250static bool tr_valid(struct kvm_vcpu *vcpu)
3251{
3252 struct kvm_segment tr;
3253
3254 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3255
1872a3f4
AK
3256 if (tr.unusable)
3257 return false;
648dfaa7
MG
3258 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3259 return false;
1872a3f4 3260 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3261 return false;
3262 if (!tr.present)
3263 return false;
3264
3265 return true;
3266}
3267
3268static bool ldtr_valid(struct kvm_vcpu *vcpu)
3269{
3270 struct kvm_segment ldtr;
3271
3272 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3273
1872a3f4
AK
3274 if (ldtr.unusable)
3275 return true;
648dfaa7
MG
3276 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3277 return false;
3278 if (ldtr.type != 2)
3279 return false;
3280 if (!ldtr.present)
3281 return false;
3282
3283 return true;
3284}
3285
3286static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3287{
3288 struct kvm_segment cs, ss;
3289
3290 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3291 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3292
3293 return ((cs.selector & SELECTOR_RPL_MASK) ==
3294 (ss.selector & SELECTOR_RPL_MASK));
3295}
3296
3297/*
3298 * Check if guest state is valid. Returns true if valid, false if
3299 * not.
3300 * We assume that registers are always usable
3301 */
3302static bool guest_state_valid(struct kvm_vcpu *vcpu)
3303{
3304 /* real mode guest state checks */
3eeb3288 3305 if (!is_protmode(vcpu)) {
648dfaa7
MG
3306 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3307 return false;
3308 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3309 return false;
3310 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3311 return false;
3312 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3313 return false;
3314 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3315 return false;
3316 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3317 return false;
3318 } else {
3319 /* protected mode guest state checks */
3320 if (!cs_ss_rpl_check(vcpu))
3321 return false;
3322 if (!code_segment_valid(vcpu))
3323 return false;
3324 if (!stack_segment_valid(vcpu))
3325 return false;
3326 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3327 return false;
3328 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3329 return false;
3330 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3331 return false;
3332 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3333 return false;
3334 if (!tr_valid(vcpu))
3335 return false;
3336 if (!ldtr_valid(vcpu))
3337 return false;
3338 }
3339 /* TODO:
3340 * - Add checks on RIP
3341 * - Add checks on RFLAGS
3342 */
3343
3344 return true;
3345}
3346
d77c26fc 3347static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3348{
40dcaa9f 3349 gfn_t fn;
195aefde 3350 u16 data = 0;
40dcaa9f 3351 int r, idx, ret = 0;
6aa8b732 3352
40dcaa9f
XG
3353 idx = srcu_read_lock(&kvm->srcu);
3354 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3355 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3356 if (r < 0)
10589a46 3357 goto out;
195aefde 3358 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3359 r = kvm_write_guest_page(kvm, fn++, &data,
3360 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3361 if (r < 0)
10589a46 3362 goto out;
195aefde
IE
3363 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3364 if (r < 0)
10589a46 3365 goto out;
195aefde
IE
3366 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3367 if (r < 0)
10589a46 3368 goto out;
195aefde 3369 data = ~0;
10589a46
MT
3370 r = kvm_write_guest_page(kvm, fn, &data,
3371 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3372 sizeof(u8));
195aefde 3373 if (r < 0)
10589a46
MT
3374 goto out;
3375
3376 ret = 1;
3377out:
40dcaa9f 3378 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3379 return ret;
6aa8b732
AK
3380}
3381
b7ebfb05
SY
3382static int init_rmode_identity_map(struct kvm *kvm)
3383{
40dcaa9f 3384 int i, idx, r, ret;
b7ebfb05
SY
3385 pfn_t identity_map_pfn;
3386 u32 tmp;
3387
089d034e 3388 if (!enable_ept)
b7ebfb05
SY
3389 return 1;
3390 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3391 printk(KERN_ERR "EPT: identity-mapping pagetable "
3392 "haven't been allocated!\n");
3393 return 0;
3394 }
3395 if (likely(kvm->arch.ept_identity_pagetable_done))
3396 return 1;
3397 ret = 0;
b927a3ce 3398 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3399 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3400 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3401 if (r < 0)
3402 goto out;
3403 /* Set up identity-mapping pagetable for EPT in real mode */
3404 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3405 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3406 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3407 r = kvm_write_guest_page(kvm, identity_map_pfn,
3408 &tmp, i * sizeof(tmp), sizeof(tmp));
3409 if (r < 0)
3410 goto out;
3411 }
3412 kvm->arch.ept_identity_pagetable_done = true;
3413 ret = 1;
3414out:
40dcaa9f 3415 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3416 return ret;
3417}
3418
6aa8b732
AK
3419static void seg_setup(int seg)
3420{
3421 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3422 unsigned int ar;
6aa8b732
AK
3423
3424 vmcs_write16(sf->selector, 0);
3425 vmcs_writel(sf->base, 0);
3426 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3427 if (enable_unrestricted_guest) {
3428 ar = 0x93;
3429 if (seg == VCPU_SREG_CS)
3430 ar |= 0x08; /* code segment */
3431 } else
3432 ar = 0xf3;
3433
3434 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3435}
3436
f78e0e2e
SY
3437static int alloc_apic_access_page(struct kvm *kvm)
3438{
3439 struct kvm_userspace_memory_region kvm_userspace_mem;
3440 int r = 0;
3441
79fac95e 3442 mutex_lock(&kvm->slots_lock);
bfc6d222 3443 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3444 goto out;
3445 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3446 kvm_userspace_mem.flags = 0;
3447 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3448 kvm_userspace_mem.memory_size = PAGE_SIZE;
3449 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3450 if (r)
3451 goto out;
72dc67a6 3452
bfc6d222 3453 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3454out:
79fac95e 3455 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3456 return r;
3457}
3458
b7ebfb05
SY
3459static int alloc_identity_pagetable(struct kvm *kvm)
3460{
3461 struct kvm_userspace_memory_region kvm_userspace_mem;
3462 int r = 0;
3463
79fac95e 3464 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3465 if (kvm->arch.ept_identity_pagetable)
3466 goto out;
3467 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3468 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3469 kvm_userspace_mem.guest_phys_addr =
3470 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3471 kvm_userspace_mem.memory_size = PAGE_SIZE;
3472 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3473 if (r)
3474 goto out;
3475
b7ebfb05 3476 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3477 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3478out:
79fac95e 3479 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3480 return r;
3481}
3482
2384d2b3
SY
3483static void allocate_vpid(struct vcpu_vmx *vmx)
3484{
3485 int vpid;
3486
3487 vmx->vpid = 0;
919818ab 3488 if (!enable_vpid)
2384d2b3
SY
3489 return;
3490 spin_lock(&vmx_vpid_lock);
3491 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3492 if (vpid < VMX_NR_VPIDS) {
3493 vmx->vpid = vpid;
3494 __set_bit(vpid, vmx_vpid_bitmap);
3495 }
3496 spin_unlock(&vmx_vpid_lock);
3497}
3498
cdbecfc3
LJ
3499static void free_vpid(struct vcpu_vmx *vmx)
3500{
3501 if (!enable_vpid)
3502 return;
3503 spin_lock(&vmx_vpid_lock);
3504 if (vmx->vpid != 0)
3505 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3506 spin_unlock(&vmx_vpid_lock);
3507}
3508
5897297b 3509static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3510{
3e7c73e9 3511 int f = sizeof(unsigned long);
25c5f225
SY
3512
3513 if (!cpu_has_vmx_msr_bitmap())
3514 return;
3515
3516 /*
3517 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3518 * have the write-low and read-high bitmap offsets the wrong way round.
3519 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3520 */
25c5f225 3521 if (msr <= 0x1fff) {
3e7c73e9
AK
3522 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3523 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3524 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3525 msr &= 0x1fff;
3e7c73e9
AK
3526 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3527 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3528 }
25c5f225
SY
3529}
3530
5897297b
AK
3531static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3532{
3533 if (!longmode_only)
3534 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3535 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3536}
3537
a3a8ff8e
NHE
3538/*
3539 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3540 * will not change in the lifetime of the guest.
3541 * Note that host-state that does change is set elsewhere. E.g., host-state
3542 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3543 */
3544static void vmx_set_constant_host_state(void)
3545{
3546 u32 low32, high32;
3547 unsigned long tmpl;
3548 struct desc_ptr dt;
3549
3550 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3551 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3552 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3553
3554 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3555 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3556 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3557 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3558 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3559
3560 native_store_idt(&dt);
3561 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3562
3563 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3564 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3565
3566 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3567 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3568 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3569 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3570
3571 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3572 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3573 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3574 }
3575}
3576
bf8179a0
NHE
3577static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3578{
3579 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3580 if (enable_ept)
3581 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3582 if (is_guest_mode(&vmx->vcpu))
3583 vmx->vcpu.arch.cr4_guest_owned_bits &=
3584 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3585 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3586}
3587
3588static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3589{
3590 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3591 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3592 exec_control &= ~CPU_BASED_TPR_SHADOW;
3593#ifdef CONFIG_X86_64
3594 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3595 CPU_BASED_CR8_LOAD_EXITING;
3596#endif
3597 }
3598 if (!enable_ept)
3599 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3600 CPU_BASED_CR3_LOAD_EXITING |
3601 CPU_BASED_INVLPG_EXITING;
3602 return exec_control;
3603}
3604
3605static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3606{
3607 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3608 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3609 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3610 if (vmx->vpid == 0)
3611 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3612 if (!enable_ept) {
3613 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3614 enable_unrestricted_guest = 0;
3615 }
3616 if (!enable_unrestricted_guest)
3617 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3618 if (!ple_gap)
3619 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3620 return exec_control;
3621}
3622
ce88decf
XG
3623static void ept_set_mmio_spte_mask(void)
3624{
3625 /*
3626 * EPT Misconfigurations can be generated if the value of bits 2:0
3627 * of an EPT paging-structure entry is 110b (write/execute).
3628 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3629 * spte.
3630 */
3631 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3632}
3633
6aa8b732
AK
3634/*
3635 * Sets up the vmcs for emulated real mode.
3636 */
8b9cf98c 3637static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3638{
2e4ce7f5 3639#ifdef CONFIG_X86_64
6aa8b732 3640 unsigned long a;
2e4ce7f5 3641#endif
6aa8b732 3642 int i;
6aa8b732 3643
6aa8b732 3644 /* I/O */
3e7c73e9
AK
3645 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3646 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3647
25c5f225 3648 if (cpu_has_vmx_msr_bitmap())
5897297b 3649 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3650
6aa8b732
AK
3651 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3652
6aa8b732 3653 /* Control */
1c3d14fe
YS
3654 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3655 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3656
bf8179a0 3657 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3658
83ff3b9d 3659 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3660 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3661 vmx_secondary_exec_control(vmx));
83ff3b9d 3662 }
f78e0e2e 3663
4b8d54f9
ZE
3664 if (ple_gap) {
3665 vmcs_write32(PLE_GAP, ple_gap);
3666 vmcs_write32(PLE_WINDOW, ple_window);
3667 }
3668
c3707958
XG
3669 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3670 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3671 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3672
9581d442
AK
3673 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3674 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3675 vmx_set_constant_host_state();
05b3e0c2 3676#ifdef CONFIG_X86_64
6aa8b732
AK
3677 rdmsrl(MSR_FS_BASE, a);
3678 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3679 rdmsrl(MSR_GS_BASE, a);
3680 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3681#else
3682 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3683 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3684#endif
3685
2cc51560
ED
3686 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3687 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3688 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3689 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3690 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3691
468d472f 3692 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3693 u32 msr_low, msr_high;
3694 u64 host_pat;
468d472f
SY
3695 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3696 host_pat = msr_low | ((u64) msr_high << 32);
3697 /* Write the default value follow host pat */
3698 vmcs_write64(GUEST_IA32_PAT, host_pat);
3699 /* Keep arch.pat sync with GUEST_IA32_PAT */
3700 vmx->vcpu.arch.pat = host_pat;
3701 }
3702
6aa8b732
AK
3703 for (i = 0; i < NR_VMX_MSR; ++i) {
3704 u32 index = vmx_msr_index[i];
3705 u32 data_low, data_high;
a2fa3e9f 3706 int j = vmx->nmsrs;
6aa8b732
AK
3707
3708 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3709 continue;
432bd6cb
AK
3710 if (wrmsr_safe(index, data_low, data_high) < 0)
3711 continue;
26bb0981
AK
3712 vmx->guest_msrs[j].index = i;
3713 vmx->guest_msrs[j].data = 0;
d5696725 3714 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3715 ++vmx->nmsrs;
6aa8b732 3716 }
6aa8b732 3717
1c3d14fe 3718 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3719
3720 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3721 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3722
e00c8cf2 3723 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3724 set_cr4_guest_host_mask(vmx);
e00c8cf2 3725
99e3e30a 3726 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3727
e00c8cf2
AK
3728 return 0;
3729}
3730
3731static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3732{
3733 struct vcpu_vmx *vmx = to_vmx(vcpu);
3734 u64 msr;
4b9d3a04 3735 int ret;
e00c8cf2 3736
5fdbf976 3737 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3738
7ffd92c5 3739 vmx->rmode.vm86_active = 0;
e00c8cf2 3740
3b86cd99
JK
3741 vmx->soft_vnmi_blocked = 0;
3742
ad312c7c 3743 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3744 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3745 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3746 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3747 msr |= MSR_IA32_APICBASE_BSP;
3748 kvm_set_apic_base(&vmx->vcpu, msr);
3749
10ab25cd
JK
3750 ret = fx_init(&vmx->vcpu);
3751 if (ret != 0)
3752 goto out;
e00c8cf2 3753
2fb92db1
AK
3754 vmx_segment_cache_clear(vmx);
3755
5706be0d 3756 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3757 /*
3758 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3759 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3760 */
c5af89b6 3761 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3762 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3763 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3764 } else {
ad312c7c
ZX
3765 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3766 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3767 }
e00c8cf2
AK
3768
3769 seg_setup(VCPU_SREG_DS);
3770 seg_setup(VCPU_SREG_ES);
3771 seg_setup(VCPU_SREG_FS);
3772 seg_setup(VCPU_SREG_GS);
3773 seg_setup(VCPU_SREG_SS);
3774
3775 vmcs_write16(GUEST_TR_SELECTOR, 0);
3776 vmcs_writel(GUEST_TR_BASE, 0);
3777 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3778 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3779
3780 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3781 vmcs_writel(GUEST_LDTR_BASE, 0);
3782 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3783 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3784
3785 vmcs_write32(GUEST_SYSENTER_CS, 0);
3786 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3787 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3788
3789 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3790 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3791 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3792 else
5fdbf976
MT
3793 kvm_rip_write(vcpu, 0);
3794 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3795
e00c8cf2
AK
3796 vmcs_writel(GUEST_DR7, 0x400);
3797
3798 vmcs_writel(GUEST_GDTR_BASE, 0);
3799 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3800
3801 vmcs_writel(GUEST_IDTR_BASE, 0);
3802 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3803
443381a8 3804 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3805 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3806 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3807
e00c8cf2
AK
3808 /* Special registers */
3809 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3810
3811 setup_msrs(vmx);
3812
6aa8b732
AK
3813 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3814
f78e0e2e
SY
3815 if (cpu_has_vmx_tpr_shadow()) {
3816 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3817 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3818 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3819 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3820 vmcs_write32(TPR_THRESHOLD, 0);
3821 }
3822
3823 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3824 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3825 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3826
2384d2b3
SY
3827 if (vmx->vpid != 0)
3828 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3829
fa40052c 3830 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 3831 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 3832 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3833 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3834 vmx_fpu_activate(&vmx->vcpu);
3835 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3836
b9d762fa 3837 vpid_sync_context(vmx);
2384d2b3 3838
3200f405 3839 ret = 0;
6aa8b732 3840
a89a8fb9
MG
3841 /* HACK: Don't enable emulation on guest boot/reset */
3842 vmx->emulation_required = 0;
3843
6aa8b732
AK
3844out:
3845 return ret;
3846}
3847
b6f1250e
NHE
3848/*
3849 * In nested virtualization, check if L1 asked to exit on external interrupts.
3850 * For most existing hypervisors, this will always return true.
3851 */
3852static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3853{
3854 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3855 PIN_BASED_EXT_INTR_MASK;
3856}
3857
3b86cd99
JK
3858static void enable_irq_window(struct kvm_vcpu *vcpu)
3859{
3860 u32 cpu_based_vm_exec_control;
b6f1250e
NHE
3861 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
3862 /* We can get here when nested_run_pending caused
3863 * vmx_interrupt_allowed() to return false. In this case, do
3864 * nothing - the interrupt will be injected later.
3865 */
3866 return;
3b86cd99
JK
3867
3868 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3869 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3870 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3871}
3872
3873static void enable_nmi_window(struct kvm_vcpu *vcpu)
3874{
3875 u32 cpu_based_vm_exec_control;
3876
3877 if (!cpu_has_virtual_nmis()) {
3878 enable_irq_window(vcpu);
3879 return;
3880 }
3881
30bd0c4c
AK
3882 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3883 enable_irq_window(vcpu);
3884 return;
3885 }
3b86cd99
JK
3886 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3887 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3888 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3889}
3890
66fd3f7f 3891static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3892{
9c8cba37 3893 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3894 uint32_t intr;
3895 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3896
229456fc 3897 trace_kvm_inj_virq(irq);
2714d1d3 3898
fa89a817 3899 ++vcpu->stat.irq_injections;
7ffd92c5 3900 if (vmx->rmode.vm86_active) {
71f9833b
SH
3901 int inc_eip = 0;
3902 if (vcpu->arch.interrupt.soft)
3903 inc_eip = vcpu->arch.event_exit_inst_len;
3904 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 3905 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
3906 return;
3907 }
66fd3f7f
GN
3908 intr = irq | INTR_INFO_VALID_MASK;
3909 if (vcpu->arch.interrupt.soft) {
3910 intr |= INTR_TYPE_SOFT_INTR;
3911 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3912 vmx->vcpu.arch.event_exit_inst_len);
3913 } else
3914 intr |= INTR_TYPE_EXT_INTR;
3915 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
443381a8 3916 vmx_clear_hlt(vcpu);
85f455f7
ED
3917}
3918
f08864b4
SY
3919static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3920{
66a5a347
JK
3921 struct vcpu_vmx *vmx = to_vmx(vcpu);
3922
0b6ac343
NHE
3923 if (is_guest_mode(vcpu))
3924 return;
3925
3b86cd99
JK
3926 if (!cpu_has_virtual_nmis()) {
3927 /*
3928 * Tracking the NMI-blocked state in software is built upon
3929 * finding the next open IRQ window. This, in turn, depends on
3930 * well-behaving guests: They have to keep IRQs disabled at
3931 * least as long as the NMI handler runs. Otherwise we may
3932 * cause NMI nesting, maybe breaking the guest. But as this is
3933 * highly unlikely, we can live with the residual risk.
3934 */
3935 vmx->soft_vnmi_blocked = 1;
3936 vmx->vnmi_blocked_time = 0;
3937 }
3938
487b391d 3939 ++vcpu->stat.nmi_injections;
9d58b931 3940 vmx->nmi_known_unmasked = false;
7ffd92c5 3941 if (vmx->rmode.vm86_active) {
71f9833b 3942 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 3943 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
3944 return;
3945 }
f08864b4
SY
3946 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
3947 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
443381a8 3948 vmx_clear_hlt(vcpu);
f08864b4
SY
3949}
3950
c4282df9 3951static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 3952{
3b86cd99 3953 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 3954 return 0;
33f089ca 3955
c4282df9 3956 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
3957 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
3958 | GUEST_INTR_STATE_NMI));
33f089ca
JK
3959}
3960
3cfc3092
JK
3961static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
3962{
3963 if (!cpu_has_virtual_nmis())
3964 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
3965 if (to_vmx(vcpu)->nmi_known_unmasked)
3966 return false;
c332c83a 3967 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
3968}
3969
3970static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3971{
3972 struct vcpu_vmx *vmx = to_vmx(vcpu);
3973
3974 if (!cpu_has_virtual_nmis()) {
3975 if (vmx->soft_vnmi_blocked != masked) {
3976 vmx->soft_vnmi_blocked = masked;
3977 vmx->vnmi_blocked_time = 0;
3978 }
3979 } else {
9d58b931 3980 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
3981 if (masked)
3982 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3983 GUEST_INTR_STATE_NMI);
3984 else
3985 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3986 GUEST_INTR_STATE_NMI);
3987 }
3988}
3989
78646121
GN
3990static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
3991{
b6f1250e
NHE
3992 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3993 struct vmcs12 *vmcs12;
3994 if (to_vmx(vcpu)->nested.nested_run_pending)
3995 return 0;
3996 nested_vmx_vmexit(vcpu);
3997 vmcs12 = get_vmcs12(vcpu);
3998 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
3999 vmcs12->vm_exit_intr_info = 0;
4000 /* fall through to normal code, but now in L1, not L2 */
4001 }
4002
c4282df9
GN
4003 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4004 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4005 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4006}
4007
cbc94022
IE
4008static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4009{
4010 int ret;
4011 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4012 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4013 .guest_phys_addr = addr,
4014 .memory_size = PAGE_SIZE * 3,
4015 .flags = 0,
4016 };
4017
4018 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4019 if (ret)
4020 return ret;
bfc6d222 4021 kvm->arch.tss_addr = addr;
93ea5388
GN
4022 if (!init_rmode_tss(kvm))
4023 return -ENOMEM;
4024
cbc94022
IE
4025 return 0;
4026}
4027
6aa8b732
AK
4028static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4029 int vec, u32 err_code)
4030{
b3f37707
NK
4031 /*
4032 * Instruction with address size override prefix opcode 0x67
4033 * Cause the #SS fault with 0 error code in VM86 mode.
4034 */
4035 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4036 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4037 return 1;
77ab6db0
JK
4038 /*
4039 * Forward all other exceptions that are valid in real mode.
4040 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4041 * the required debugging infrastructure rework.
4042 */
4043 switch (vec) {
77ab6db0 4044 case DB_VECTOR:
d0bfb940
JK
4045 if (vcpu->guest_debug &
4046 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4047 return 0;
4048 kvm_queue_exception(vcpu, vec);
4049 return 1;
77ab6db0 4050 case BP_VECTOR:
c573cd22
JK
4051 /*
4052 * Update instruction length as we may reinject the exception
4053 * from user space while in guest debugging mode.
4054 */
4055 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4056 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4057 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4058 return 0;
4059 /* fall through */
4060 case DE_VECTOR:
77ab6db0
JK
4061 case OF_VECTOR:
4062 case BR_VECTOR:
4063 case UD_VECTOR:
4064 case DF_VECTOR:
4065 case SS_VECTOR:
4066 case GP_VECTOR:
4067 case MF_VECTOR:
4068 kvm_queue_exception(vcpu, vec);
4069 return 1;
4070 }
6aa8b732
AK
4071 return 0;
4072}
4073
a0861c02
AK
4074/*
4075 * Trigger machine check on the host. We assume all the MSRs are already set up
4076 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4077 * We pass a fake environment to the machine check handler because we want
4078 * the guest to be always treated like user space, no matter what context
4079 * it used internally.
4080 */
4081static void kvm_machine_check(void)
4082{
4083#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4084 struct pt_regs regs = {
4085 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4086 .flags = X86_EFLAGS_IF,
4087 };
4088
4089 do_machine_check(&regs, 0);
4090#endif
4091}
4092
851ba692 4093static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4094{
4095 /* already handled by vcpu_run */
4096 return 1;
4097}
4098
851ba692 4099static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4100{
1155f76a 4101 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4102 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4103 u32 intr_info, ex_no, error_code;
42dbaa5a 4104 unsigned long cr2, rip, dr6;
6aa8b732
AK
4105 u32 vect_info;
4106 enum emulation_result er;
4107
1155f76a 4108 vect_info = vmx->idt_vectoring_info;
88786475 4109 intr_info = vmx->exit_intr_info;
6aa8b732 4110
a0861c02 4111 if (is_machine_check(intr_info))
851ba692 4112 return handle_machine_check(vcpu);
a0861c02 4113
6aa8b732 4114 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4115 !is_page_fault(intr_info)) {
4116 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4117 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4118 vcpu->run->internal.ndata = 2;
4119 vcpu->run->internal.data[0] = vect_info;
4120 vcpu->run->internal.data[1] = intr_info;
4121 return 0;
4122 }
6aa8b732 4123
e4a41889 4124 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4125 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4126
4127 if (is_no_device(intr_info)) {
5fd86fcf 4128 vmx_fpu_activate(vcpu);
2ab455cc
AL
4129 return 1;
4130 }
4131
7aa81cc0 4132 if (is_invalid_opcode(intr_info)) {
51d8b661 4133 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4134 if (er != EMULATE_DONE)
7ee5d940 4135 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4136 return 1;
4137 }
4138
6aa8b732 4139 error_code = 0;
2e11384c 4140 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4141 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4142 if (is_page_fault(intr_info)) {
1439442c 4143 /* EPT won't cause page fault directly */
cf3ace79 4144 BUG_ON(enable_ept);
6aa8b732 4145 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4146 trace_kvm_page_fault(cr2, error_code);
4147
3298b75c 4148 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4149 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4150 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4151 }
4152
7ffd92c5 4153 if (vmx->rmode.vm86_active &&
6aa8b732 4154 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4155 error_code)) {
ad312c7c
ZX
4156 if (vcpu->arch.halt_request) {
4157 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4158 return kvm_emulate_halt(vcpu);
4159 }
6aa8b732 4160 return 1;
72d6e5a0 4161 }
6aa8b732 4162
d0bfb940 4163 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4164 switch (ex_no) {
4165 case DB_VECTOR:
4166 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4167 if (!(vcpu->guest_debug &
4168 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4169 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4170 kvm_queue_exception(vcpu, DB_VECTOR);
4171 return 1;
4172 }
4173 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4174 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4175 /* fall through */
4176 case BP_VECTOR:
c573cd22
JK
4177 /*
4178 * Update instruction length as we may reinject #BP from
4179 * user space while in guest debugging mode. Reading it for
4180 * #DB as well causes no harm, it is not used in that case.
4181 */
4182 vmx->vcpu.arch.event_exit_inst_len =
4183 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4184 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4185 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4186 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4187 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4188 break;
4189 default:
d0bfb940
JK
4190 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4191 kvm_run->ex.exception = ex_no;
4192 kvm_run->ex.error_code = error_code;
42dbaa5a 4193 break;
6aa8b732 4194 }
6aa8b732
AK
4195 return 0;
4196}
4197
851ba692 4198static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4199{
1165f5fe 4200 ++vcpu->stat.irq_exits;
6aa8b732
AK
4201 return 1;
4202}
4203
851ba692 4204static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4205{
851ba692 4206 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4207 return 0;
4208}
6aa8b732 4209
851ba692 4210static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4211{
bfdaab09 4212 unsigned long exit_qualification;
34c33d16 4213 int size, in, string;
039576c0 4214 unsigned port;
6aa8b732 4215
bfdaab09 4216 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4217 string = (exit_qualification & 16) != 0;
cf8f70bf 4218 in = (exit_qualification & 8) != 0;
e70669ab 4219
cf8f70bf 4220 ++vcpu->stat.io_exits;
e70669ab 4221
cf8f70bf 4222 if (string || in)
51d8b661 4223 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4224
cf8f70bf
GN
4225 port = exit_qualification >> 16;
4226 size = (exit_qualification & 7) + 1;
e93f36bc 4227 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4228
4229 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4230}
4231
102d8325
IM
4232static void
4233vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4234{
4235 /*
4236 * Patch in the VMCALL instruction:
4237 */
4238 hypercall[0] = 0x0f;
4239 hypercall[1] = 0x01;
4240 hypercall[2] = 0xc1;
102d8325
IM
4241}
4242
eeadf9e7
NHE
4243/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4244static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4245{
4246 if (to_vmx(vcpu)->nested.vmxon &&
4247 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4248 return 1;
4249
4250 if (is_guest_mode(vcpu)) {
4251 /*
4252 * We get here when L2 changed cr0 in a way that did not change
4253 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4254 * but did change L0 shadowed bits. This can currently happen
4255 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4256 * loading) while pretending to allow the guest to change it.
4257 */
4258 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4259 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4260 return 1;
4261 vmcs_writel(CR0_READ_SHADOW, val);
4262 return 0;
4263 } else
4264 return kvm_set_cr0(vcpu, val);
4265}
4266
4267static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4268{
4269 if (is_guest_mode(vcpu)) {
4270 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4271 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4272 return 1;
4273 vmcs_writel(CR4_READ_SHADOW, val);
4274 return 0;
4275 } else
4276 return kvm_set_cr4(vcpu, val);
4277}
4278
4279/* called to set cr0 as approriate for clts instruction exit. */
4280static void handle_clts(struct kvm_vcpu *vcpu)
4281{
4282 if (is_guest_mode(vcpu)) {
4283 /*
4284 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4285 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4286 * just pretend it's off (also in arch.cr0 for fpu_activate).
4287 */
4288 vmcs_writel(CR0_READ_SHADOW,
4289 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4290 vcpu->arch.cr0 &= ~X86_CR0_TS;
4291 } else
4292 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4293}
4294
851ba692 4295static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4296{
229456fc 4297 unsigned long exit_qualification, val;
6aa8b732
AK
4298 int cr;
4299 int reg;
49a9b07e 4300 int err;
6aa8b732 4301
bfdaab09 4302 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4303 cr = exit_qualification & 15;
4304 reg = (exit_qualification >> 8) & 15;
4305 switch ((exit_qualification >> 4) & 3) {
4306 case 0: /* mov to cr */
229456fc
MT
4307 val = kvm_register_read(vcpu, reg);
4308 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4309 switch (cr) {
4310 case 0:
eeadf9e7 4311 err = handle_set_cr0(vcpu, val);
db8fcefa 4312 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4313 return 1;
4314 case 3:
2390218b 4315 err = kvm_set_cr3(vcpu, val);
db8fcefa 4316 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4317 return 1;
4318 case 4:
eeadf9e7 4319 err = handle_set_cr4(vcpu, val);
db8fcefa 4320 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4321 return 1;
0a5fff19
GN
4322 case 8: {
4323 u8 cr8_prev = kvm_get_cr8(vcpu);
4324 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4325 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4326 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4327 if (irqchip_in_kernel(vcpu->kvm))
4328 return 1;
4329 if (cr8_prev <= cr8)
4330 return 1;
851ba692 4331 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4332 return 0;
4333 }
6aa8b732
AK
4334 };
4335 break;
25c4c276 4336 case 2: /* clts */
eeadf9e7 4337 handle_clts(vcpu);
4d4ec087 4338 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4339 skip_emulated_instruction(vcpu);
6b52d186 4340 vmx_fpu_activate(vcpu);
25c4c276 4341 return 1;
6aa8b732
AK
4342 case 1: /*mov from cr*/
4343 switch (cr) {
4344 case 3:
9f8fe504
AK
4345 val = kvm_read_cr3(vcpu);
4346 kvm_register_write(vcpu, reg, val);
4347 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4348 skip_emulated_instruction(vcpu);
4349 return 1;
4350 case 8:
229456fc
MT
4351 val = kvm_get_cr8(vcpu);
4352 kvm_register_write(vcpu, reg, val);
4353 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4354 skip_emulated_instruction(vcpu);
4355 return 1;
4356 }
4357 break;
4358 case 3: /* lmsw */
a1f83a74 4359 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4360 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4361 kvm_lmsw(vcpu, val);
6aa8b732
AK
4362
4363 skip_emulated_instruction(vcpu);
4364 return 1;
4365 default:
4366 break;
4367 }
851ba692 4368 vcpu->run->exit_reason = 0;
f0242478 4369 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4370 (int)(exit_qualification >> 4) & 3, cr);
4371 return 0;
4372}
4373
851ba692 4374static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4375{
bfdaab09 4376 unsigned long exit_qualification;
6aa8b732
AK
4377 int dr, reg;
4378
f2483415 4379 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4380 if (!kvm_require_cpl(vcpu, 0))
4381 return 1;
42dbaa5a
JK
4382 dr = vmcs_readl(GUEST_DR7);
4383 if (dr & DR7_GD) {
4384 /*
4385 * As the vm-exit takes precedence over the debug trap, we
4386 * need to emulate the latter, either for the host or the
4387 * guest debugging itself.
4388 */
4389 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4390 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4391 vcpu->run->debug.arch.dr7 = dr;
4392 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4393 vmcs_readl(GUEST_CS_BASE) +
4394 vmcs_readl(GUEST_RIP);
851ba692
AK
4395 vcpu->run->debug.arch.exception = DB_VECTOR;
4396 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4397 return 0;
4398 } else {
4399 vcpu->arch.dr7 &= ~DR7_GD;
4400 vcpu->arch.dr6 |= DR6_BD;
4401 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4402 kvm_queue_exception(vcpu, DB_VECTOR);
4403 return 1;
4404 }
4405 }
4406
bfdaab09 4407 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4408 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4409 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4410 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4411 unsigned long val;
4412 if (!kvm_get_dr(vcpu, dr, &val))
4413 kvm_register_write(vcpu, reg, val);
4414 } else
4415 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4416 skip_emulated_instruction(vcpu);
4417 return 1;
4418}
4419
020df079
GN
4420static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4421{
4422 vmcs_writel(GUEST_DR7, val);
4423}
4424
851ba692 4425static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4426{
06465c5a
AK
4427 kvm_emulate_cpuid(vcpu);
4428 return 1;
6aa8b732
AK
4429}
4430
851ba692 4431static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4432{
ad312c7c 4433 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4434 u64 data;
4435
4436 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4437 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4438 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4439 return 1;
4440 }
4441
229456fc 4442 trace_kvm_msr_read(ecx, data);
2714d1d3 4443
6aa8b732 4444 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4445 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4446 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4447 skip_emulated_instruction(vcpu);
4448 return 1;
4449}
4450
851ba692 4451static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4452{
ad312c7c
ZX
4453 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4454 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4455 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4456
4457 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4458 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4459 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4460 return 1;
4461 }
4462
59200273 4463 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4464 skip_emulated_instruction(vcpu);
4465 return 1;
4466}
4467
851ba692 4468static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4469{
3842d135 4470 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4471 return 1;
4472}
4473
851ba692 4474static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4475{
85f455f7
ED
4476 u32 cpu_based_vm_exec_control;
4477
4478 /* clear pending irq */
4479 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4480 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4481 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4482
3842d135
AK
4483 kvm_make_request(KVM_REQ_EVENT, vcpu);
4484
a26bf12a 4485 ++vcpu->stat.irq_window_exits;
2714d1d3 4486
c1150d8c
DL
4487 /*
4488 * If the user space waits to inject interrupts, exit as soon as
4489 * possible
4490 */
8061823a 4491 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4492 vcpu->run->request_interrupt_window &&
8061823a 4493 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4494 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4495 return 0;
4496 }
6aa8b732
AK
4497 return 1;
4498}
4499
851ba692 4500static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4501{
4502 skip_emulated_instruction(vcpu);
d3bef15f 4503 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4504}
4505
851ba692 4506static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4507{
510043da 4508 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4509 kvm_emulate_hypercall(vcpu);
4510 return 1;
c21415e8
IM
4511}
4512
ec25d5e6
GN
4513static int handle_invd(struct kvm_vcpu *vcpu)
4514{
51d8b661 4515 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4516}
4517
851ba692 4518static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4519{
f9c617f6 4520 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4521
4522 kvm_mmu_invlpg(vcpu, exit_qualification);
4523 skip_emulated_instruction(vcpu);
4524 return 1;
4525}
4526
851ba692 4527static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4528{
4529 skip_emulated_instruction(vcpu);
f5f48ee1 4530 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4531 return 1;
4532}
4533
2acf923e
DC
4534static int handle_xsetbv(struct kvm_vcpu *vcpu)
4535{
4536 u64 new_bv = kvm_read_edx_eax(vcpu);
4537 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4538
4539 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4540 skip_emulated_instruction(vcpu);
4541 return 1;
4542}
4543
851ba692 4544static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4545{
58fbbf26
KT
4546 if (likely(fasteoi)) {
4547 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4548 int access_type, offset;
4549
4550 access_type = exit_qualification & APIC_ACCESS_TYPE;
4551 offset = exit_qualification & APIC_ACCESS_OFFSET;
4552 /*
4553 * Sane guest uses MOV to write EOI, with written value
4554 * not cared. So make a short-circuit here by avoiding
4555 * heavy instruction emulation.
4556 */
4557 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4558 (offset == APIC_EOI)) {
4559 kvm_lapic_set_eoi(vcpu);
4560 skip_emulated_instruction(vcpu);
4561 return 1;
4562 }
4563 }
51d8b661 4564 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4565}
4566
851ba692 4567static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4568{
60637aac 4569 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4570 unsigned long exit_qualification;
e269fb21
JK
4571 bool has_error_code = false;
4572 u32 error_code = 0;
37817f29 4573 u16 tss_selector;
64a7ec06
GN
4574 int reason, type, idt_v;
4575
4576 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4577 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4578
4579 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4580
4581 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4582 if (reason == TASK_SWITCH_GATE && idt_v) {
4583 switch (type) {
4584 case INTR_TYPE_NMI_INTR:
4585 vcpu->arch.nmi_injected = false;
654f06fc 4586 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4587 break;
4588 case INTR_TYPE_EXT_INTR:
66fd3f7f 4589 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4590 kvm_clear_interrupt_queue(vcpu);
4591 break;
4592 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4593 if (vmx->idt_vectoring_info &
4594 VECTORING_INFO_DELIVER_CODE_MASK) {
4595 has_error_code = true;
4596 error_code =
4597 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4598 }
4599 /* fall through */
64a7ec06
GN
4600 case INTR_TYPE_SOFT_EXCEPTION:
4601 kvm_clear_exception_queue(vcpu);
4602 break;
4603 default:
4604 break;
4605 }
60637aac 4606 }
37817f29
IE
4607 tss_selector = exit_qualification;
4608
64a7ec06
GN
4609 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4610 type != INTR_TYPE_EXT_INTR &&
4611 type != INTR_TYPE_NMI_INTR))
4612 skip_emulated_instruction(vcpu);
4613
acb54517
GN
4614 if (kvm_task_switch(vcpu, tss_selector, reason,
4615 has_error_code, error_code) == EMULATE_FAIL) {
4616 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4617 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4618 vcpu->run->internal.ndata = 0;
42dbaa5a 4619 return 0;
acb54517 4620 }
42dbaa5a
JK
4621
4622 /* clear all local breakpoint enable flags */
4623 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4624
4625 /*
4626 * TODO: What about debug traps on tss switch?
4627 * Are we supposed to inject them and update dr6?
4628 */
4629
4630 return 1;
37817f29
IE
4631}
4632
851ba692 4633static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4634{
f9c617f6 4635 unsigned long exit_qualification;
1439442c 4636 gpa_t gpa;
1439442c 4637 int gla_validity;
1439442c 4638
f9c617f6 4639 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4640
4641 if (exit_qualification & (1 << 6)) {
4642 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4643 return -EINVAL;
1439442c
SY
4644 }
4645
4646 gla_validity = (exit_qualification >> 7) & 0x3;
4647 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4648 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4649 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4650 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4651 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4652 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4653 (long unsigned int)exit_qualification);
851ba692
AK
4654 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4655 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4656 return 0;
1439442c
SY
4657 }
4658
4659 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4660 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4661 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4662}
4663
68f89400
MT
4664static u64 ept_rsvd_mask(u64 spte, int level)
4665{
4666 int i;
4667 u64 mask = 0;
4668
4669 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4670 mask |= (1ULL << i);
4671
4672 if (level > 2)
4673 /* bits 7:3 reserved */
4674 mask |= 0xf8;
4675 else if (level == 2) {
4676 if (spte & (1ULL << 7))
4677 /* 2MB ref, bits 20:12 reserved */
4678 mask |= 0x1ff000;
4679 else
4680 /* bits 6:3 reserved */
4681 mask |= 0x78;
4682 }
4683
4684 return mask;
4685}
4686
4687static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4688 int level)
4689{
4690 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4691
4692 /* 010b (write-only) */
4693 WARN_ON((spte & 0x7) == 0x2);
4694
4695 /* 110b (write/execute) */
4696 WARN_ON((spte & 0x7) == 0x6);
4697
4698 /* 100b (execute-only) and value not supported by logical processor */
4699 if (!cpu_has_vmx_ept_execute_only())
4700 WARN_ON((spte & 0x7) == 0x4);
4701
4702 /* not 000b */
4703 if ((spte & 0x7)) {
4704 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4705
4706 if (rsvd_bits != 0) {
4707 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4708 __func__, rsvd_bits);
4709 WARN_ON(1);
4710 }
4711
4712 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4713 u64 ept_mem_type = (spte & 0x38) >> 3;
4714
4715 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4716 ept_mem_type == 7) {
4717 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4718 __func__, ept_mem_type);
4719 WARN_ON(1);
4720 }
4721 }
4722 }
4723}
4724
851ba692 4725static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4726{
4727 u64 sptes[4];
ce88decf 4728 int nr_sptes, i, ret;
68f89400
MT
4729 gpa_t gpa;
4730
4731 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4732
ce88decf
XG
4733 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4734 if (likely(ret == 1))
4735 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4736 EMULATE_DONE;
4737 if (unlikely(!ret))
4738 return 1;
4739
4740 /* It is the real ept misconfig */
68f89400
MT
4741 printk(KERN_ERR "EPT: Misconfiguration.\n");
4742 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4743
4744 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4745
4746 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4747 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4748
851ba692
AK
4749 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4750 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4751
4752 return 0;
4753}
4754
851ba692 4755static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4756{
4757 u32 cpu_based_vm_exec_control;
4758
4759 /* clear pending NMI */
4760 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4761 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4762 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4763 ++vcpu->stat.nmi_window_exits;
3842d135 4764 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4765
4766 return 1;
4767}
4768
80ced186 4769static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4770{
8b3079a5
AK
4771 struct vcpu_vmx *vmx = to_vmx(vcpu);
4772 enum emulation_result err = EMULATE_DONE;
80ced186 4773 int ret = 1;
49e9d557
AK
4774 u32 cpu_exec_ctrl;
4775 bool intr_window_requested;
4776
4777 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4778 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4779
4780 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4781 if (intr_window_requested
4782 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4783 return handle_interrupt_window(&vmx->vcpu);
4784
51d8b661 4785 err = emulate_instruction(vcpu, 0);
ea953ef0 4786
80ced186
MG
4787 if (err == EMULATE_DO_MMIO) {
4788 ret = 0;
4789 goto out;
4790 }
1d5a4d9b 4791
6d77dbfc
GN
4792 if (err != EMULATE_DONE)
4793 return 0;
ea953ef0
MG
4794
4795 if (signal_pending(current))
80ced186 4796 goto out;
ea953ef0
MG
4797 if (need_resched())
4798 schedule();
4799 }
4800
80ced186
MG
4801 vmx->emulation_required = 0;
4802out:
4803 return ret;
ea953ef0
MG
4804}
4805
4b8d54f9
ZE
4806/*
4807 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4808 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4809 */
9fb41ba8 4810static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4811{
4812 skip_emulated_instruction(vcpu);
4813 kvm_vcpu_on_spin(vcpu);
4814
4815 return 1;
4816}
4817
59708670
SY
4818static int handle_invalid_op(struct kvm_vcpu *vcpu)
4819{
4820 kvm_queue_exception(vcpu, UD_VECTOR);
4821 return 1;
4822}
4823
ff2f6fe9
NHE
4824/*
4825 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4826 * We could reuse a single VMCS for all the L2 guests, but we also want the
4827 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4828 * allows keeping them loaded on the processor, and in the future will allow
4829 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4830 * every entry if they never change.
4831 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4832 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4833 *
4834 * The following functions allocate and free a vmcs02 in this pool.
4835 */
4836
4837/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4838static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4839{
4840 struct vmcs02_list *item;
4841 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4842 if (item->vmptr == vmx->nested.current_vmptr) {
4843 list_move(&item->list, &vmx->nested.vmcs02_pool);
4844 return &item->vmcs02;
4845 }
4846
4847 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4848 /* Recycle the least recently used VMCS. */
4849 item = list_entry(vmx->nested.vmcs02_pool.prev,
4850 struct vmcs02_list, list);
4851 item->vmptr = vmx->nested.current_vmptr;
4852 list_move(&item->list, &vmx->nested.vmcs02_pool);
4853 return &item->vmcs02;
4854 }
4855
4856 /* Create a new VMCS */
4857 item = (struct vmcs02_list *)
4858 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4859 if (!item)
4860 return NULL;
4861 item->vmcs02.vmcs = alloc_vmcs();
4862 if (!item->vmcs02.vmcs) {
4863 kfree(item);
4864 return NULL;
4865 }
4866 loaded_vmcs_init(&item->vmcs02);
4867 item->vmptr = vmx->nested.current_vmptr;
4868 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4869 vmx->nested.vmcs02_num++;
4870 return &item->vmcs02;
4871}
4872
4873/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4874static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4875{
4876 struct vmcs02_list *item;
4877 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4878 if (item->vmptr == vmptr) {
4879 free_loaded_vmcs(&item->vmcs02);
4880 list_del(&item->list);
4881 kfree(item);
4882 vmx->nested.vmcs02_num--;
4883 return;
4884 }
4885}
4886
4887/*
4888 * Free all VMCSs saved for this vcpu, except the one pointed by
4889 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4890 * currently used, if running L2), and vmcs01 when running L2.
4891 */
4892static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4893{
4894 struct vmcs02_list *item, *n;
4895 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4896 if (vmx->loaded_vmcs != &item->vmcs02)
4897 free_loaded_vmcs(&item->vmcs02);
4898 list_del(&item->list);
4899 kfree(item);
4900 }
4901 vmx->nested.vmcs02_num = 0;
4902
4903 if (vmx->loaded_vmcs != &vmx->vmcs01)
4904 free_loaded_vmcs(&vmx->vmcs01);
4905}
4906
ec378aee
NHE
4907/*
4908 * Emulate the VMXON instruction.
4909 * Currently, we just remember that VMX is active, and do not save or even
4910 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4911 * do not currently need to store anything in that guest-allocated memory
4912 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4913 * argument is different from the VMXON pointer (which the spec says they do).
4914 */
4915static int handle_vmon(struct kvm_vcpu *vcpu)
4916{
4917 struct kvm_segment cs;
4918 struct vcpu_vmx *vmx = to_vmx(vcpu);
4919
4920 /* The Intel VMX Instruction Reference lists a bunch of bits that
4921 * are prerequisite to running VMXON, most notably cr4.VMXE must be
4922 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
4923 * Otherwise, we should fail with #UD. We test these now:
4924 */
4925 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
4926 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
4927 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4928 kvm_queue_exception(vcpu, UD_VECTOR);
4929 return 1;
4930 }
4931
4932 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4933 if (is_long_mode(vcpu) && !cs.l) {
4934 kvm_queue_exception(vcpu, UD_VECTOR);
4935 return 1;
4936 }
4937
4938 if (vmx_get_cpl(vcpu)) {
4939 kvm_inject_gp(vcpu, 0);
4940 return 1;
4941 }
4942
ff2f6fe9
NHE
4943 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
4944 vmx->nested.vmcs02_num = 0;
4945
ec378aee
NHE
4946 vmx->nested.vmxon = true;
4947
4948 skip_emulated_instruction(vcpu);
4949 return 1;
4950}
4951
4952/*
4953 * Intel's VMX Instruction Reference specifies a common set of prerequisites
4954 * for running VMX instructions (except VMXON, whose prerequisites are
4955 * slightly different). It also specifies what exception to inject otherwise.
4956 */
4957static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
4958{
4959 struct kvm_segment cs;
4960 struct vcpu_vmx *vmx = to_vmx(vcpu);
4961
4962 if (!vmx->nested.vmxon) {
4963 kvm_queue_exception(vcpu, UD_VECTOR);
4964 return 0;
4965 }
4966
4967 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4968 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
4969 (is_long_mode(vcpu) && !cs.l)) {
4970 kvm_queue_exception(vcpu, UD_VECTOR);
4971 return 0;
4972 }
4973
4974 if (vmx_get_cpl(vcpu)) {
4975 kvm_inject_gp(vcpu, 0);
4976 return 0;
4977 }
4978
4979 return 1;
4980}
4981
4982/*
4983 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
4984 * just stops using VMX.
4985 */
4986static void free_nested(struct vcpu_vmx *vmx)
4987{
4988 if (!vmx->nested.vmxon)
4989 return;
4990 vmx->nested.vmxon = false;
a9d30f33
NHE
4991 if (vmx->nested.current_vmptr != -1ull) {
4992 kunmap(vmx->nested.current_vmcs12_page);
4993 nested_release_page(vmx->nested.current_vmcs12_page);
4994 vmx->nested.current_vmptr = -1ull;
4995 vmx->nested.current_vmcs12 = NULL;
4996 }
fe3ef05c
NHE
4997 /* Unpin physical memory we referred to in current vmcs02 */
4998 if (vmx->nested.apic_access_page) {
4999 nested_release_page(vmx->nested.apic_access_page);
5000 vmx->nested.apic_access_page = 0;
5001 }
ff2f6fe9
NHE
5002
5003 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5004}
5005
5006/* Emulate the VMXOFF instruction */
5007static int handle_vmoff(struct kvm_vcpu *vcpu)
5008{
5009 if (!nested_vmx_check_permission(vcpu))
5010 return 1;
5011 free_nested(to_vmx(vcpu));
5012 skip_emulated_instruction(vcpu);
5013 return 1;
5014}
5015
064aea77
NHE
5016/*
5017 * Decode the memory-address operand of a vmx instruction, as recorded on an
5018 * exit caused by such an instruction (run by a guest hypervisor).
5019 * On success, returns 0. When the operand is invalid, returns 1 and throws
5020 * #UD or #GP.
5021 */
5022static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5023 unsigned long exit_qualification,
5024 u32 vmx_instruction_info, gva_t *ret)
5025{
5026 /*
5027 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5028 * Execution", on an exit, vmx_instruction_info holds most of the
5029 * addressing components of the operand. Only the displacement part
5030 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5031 * For how an actual address is calculated from all these components,
5032 * refer to Vol. 1, "Operand Addressing".
5033 */
5034 int scaling = vmx_instruction_info & 3;
5035 int addr_size = (vmx_instruction_info >> 7) & 7;
5036 bool is_reg = vmx_instruction_info & (1u << 10);
5037 int seg_reg = (vmx_instruction_info >> 15) & 7;
5038 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5039 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5040 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5041 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5042
5043 if (is_reg) {
5044 kvm_queue_exception(vcpu, UD_VECTOR);
5045 return 1;
5046 }
5047
5048 /* Addr = segment_base + offset */
5049 /* offset = base + [index * scale] + displacement */
5050 *ret = vmx_get_segment_base(vcpu, seg_reg);
5051 if (base_is_valid)
5052 *ret += kvm_register_read(vcpu, base_reg);
5053 if (index_is_valid)
5054 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5055 *ret += exit_qualification; /* holds the displacement */
5056
5057 if (addr_size == 1) /* 32 bit */
5058 *ret &= 0xffffffff;
5059
5060 /*
5061 * TODO: throw #GP (and return 1) in various cases that the VM*
5062 * instructions require it - e.g., offset beyond segment limit,
5063 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5064 * address, and so on. Currently these are not checked.
5065 */
5066 return 0;
5067}
5068
0140caea
NHE
5069/*
5070 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5071 * set the success or error code of an emulated VMX instruction, as specified
5072 * by Vol 2B, VMX Instruction Reference, "Conventions".
5073 */
5074static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5075{
5076 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5077 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5078 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5079}
5080
5081static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5082{
5083 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5084 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5085 X86_EFLAGS_SF | X86_EFLAGS_OF))
5086 | X86_EFLAGS_CF);
5087}
5088
5089static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5090 u32 vm_instruction_error)
5091{
5092 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5093 /*
5094 * failValid writes the error number to the current VMCS, which
5095 * can't be done there isn't a current VMCS.
5096 */
5097 nested_vmx_failInvalid(vcpu);
5098 return;
5099 }
5100 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5101 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5102 X86_EFLAGS_SF | X86_EFLAGS_OF))
5103 | X86_EFLAGS_ZF);
5104 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5105}
5106
27d6c865
NHE
5107/* Emulate the VMCLEAR instruction */
5108static int handle_vmclear(struct kvm_vcpu *vcpu)
5109{
5110 struct vcpu_vmx *vmx = to_vmx(vcpu);
5111 gva_t gva;
5112 gpa_t vmptr;
5113 struct vmcs12 *vmcs12;
5114 struct page *page;
5115 struct x86_exception e;
5116
5117 if (!nested_vmx_check_permission(vcpu))
5118 return 1;
5119
5120 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5121 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5122 return 1;
5123
5124 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5125 sizeof(vmptr), &e)) {
5126 kvm_inject_page_fault(vcpu, &e);
5127 return 1;
5128 }
5129
5130 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5131 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5132 skip_emulated_instruction(vcpu);
5133 return 1;
5134 }
5135
5136 if (vmptr == vmx->nested.current_vmptr) {
5137 kunmap(vmx->nested.current_vmcs12_page);
5138 nested_release_page(vmx->nested.current_vmcs12_page);
5139 vmx->nested.current_vmptr = -1ull;
5140 vmx->nested.current_vmcs12 = NULL;
5141 }
5142
5143 page = nested_get_page(vcpu, vmptr);
5144 if (page == NULL) {
5145 /*
5146 * For accurate processor emulation, VMCLEAR beyond available
5147 * physical memory should do nothing at all. However, it is
5148 * possible that a nested vmx bug, not a guest hypervisor bug,
5149 * resulted in this case, so let's shut down before doing any
5150 * more damage:
5151 */
5152 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5153 return 1;
5154 }
5155 vmcs12 = kmap(page);
5156 vmcs12->launch_state = 0;
5157 kunmap(page);
5158 nested_release_page(page);
5159
5160 nested_free_vmcs02(vmx, vmptr);
5161
5162 skip_emulated_instruction(vcpu);
5163 nested_vmx_succeed(vcpu);
5164 return 1;
5165}
5166
cd232ad0
NHE
5167static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5168
5169/* Emulate the VMLAUNCH instruction */
5170static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5171{
5172 return nested_vmx_run(vcpu, true);
5173}
5174
5175/* Emulate the VMRESUME instruction */
5176static int handle_vmresume(struct kvm_vcpu *vcpu)
5177{
5178
5179 return nested_vmx_run(vcpu, false);
5180}
5181
49f705c5
NHE
5182enum vmcs_field_type {
5183 VMCS_FIELD_TYPE_U16 = 0,
5184 VMCS_FIELD_TYPE_U64 = 1,
5185 VMCS_FIELD_TYPE_U32 = 2,
5186 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5187};
5188
5189static inline int vmcs_field_type(unsigned long field)
5190{
5191 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5192 return VMCS_FIELD_TYPE_U32;
5193 return (field >> 13) & 0x3 ;
5194}
5195
5196static inline int vmcs_field_readonly(unsigned long field)
5197{
5198 return (((field >> 10) & 0x3) == 1);
5199}
5200
5201/*
5202 * Read a vmcs12 field. Since these can have varying lengths and we return
5203 * one type, we chose the biggest type (u64) and zero-extend the return value
5204 * to that size. Note that the caller, handle_vmread, might need to use only
5205 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5206 * 64-bit fields are to be returned).
5207 */
5208static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5209 unsigned long field, u64 *ret)
5210{
5211 short offset = vmcs_field_to_offset(field);
5212 char *p;
5213
5214 if (offset < 0)
5215 return 0;
5216
5217 p = ((char *)(get_vmcs12(vcpu))) + offset;
5218
5219 switch (vmcs_field_type(field)) {
5220 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5221 *ret = *((natural_width *)p);
5222 return 1;
5223 case VMCS_FIELD_TYPE_U16:
5224 *ret = *((u16 *)p);
5225 return 1;
5226 case VMCS_FIELD_TYPE_U32:
5227 *ret = *((u32 *)p);
5228 return 1;
5229 case VMCS_FIELD_TYPE_U64:
5230 *ret = *((u64 *)p);
5231 return 1;
5232 default:
5233 return 0; /* can never happen. */
5234 }
5235}
5236
5237/*
5238 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5239 * used before) all generate the same failure when it is missing.
5240 */
5241static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5242{
5243 struct vcpu_vmx *vmx = to_vmx(vcpu);
5244 if (vmx->nested.current_vmptr == -1ull) {
5245 nested_vmx_failInvalid(vcpu);
5246 skip_emulated_instruction(vcpu);
5247 return 0;
5248 }
5249 return 1;
5250}
5251
5252static int handle_vmread(struct kvm_vcpu *vcpu)
5253{
5254 unsigned long field;
5255 u64 field_value;
5256 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5257 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5258 gva_t gva = 0;
5259
5260 if (!nested_vmx_check_permission(vcpu) ||
5261 !nested_vmx_check_vmcs12(vcpu))
5262 return 1;
5263
5264 /* Decode instruction info and find the field to read */
5265 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5266 /* Read the field, zero-extended to a u64 field_value */
5267 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5268 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5269 skip_emulated_instruction(vcpu);
5270 return 1;
5271 }
5272 /*
5273 * Now copy part of this value to register or memory, as requested.
5274 * Note that the number of bits actually copied is 32 or 64 depending
5275 * on the guest's mode (32 or 64 bit), not on the given field's length.
5276 */
5277 if (vmx_instruction_info & (1u << 10)) {
5278 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5279 field_value);
5280 } else {
5281 if (get_vmx_mem_address(vcpu, exit_qualification,
5282 vmx_instruction_info, &gva))
5283 return 1;
5284 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5285 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5286 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5287 }
5288
5289 nested_vmx_succeed(vcpu);
5290 skip_emulated_instruction(vcpu);
5291 return 1;
5292}
5293
5294
5295static int handle_vmwrite(struct kvm_vcpu *vcpu)
5296{
5297 unsigned long field;
5298 gva_t gva;
5299 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5300 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5301 char *p;
5302 short offset;
5303 /* The value to write might be 32 or 64 bits, depending on L1's long
5304 * mode, and eventually we need to write that into a field of several
5305 * possible lengths. The code below first zero-extends the value to 64
5306 * bit (field_value), and then copies only the approriate number of
5307 * bits into the vmcs12 field.
5308 */
5309 u64 field_value = 0;
5310 struct x86_exception e;
5311
5312 if (!nested_vmx_check_permission(vcpu) ||
5313 !nested_vmx_check_vmcs12(vcpu))
5314 return 1;
5315
5316 if (vmx_instruction_info & (1u << 10))
5317 field_value = kvm_register_read(vcpu,
5318 (((vmx_instruction_info) >> 3) & 0xf));
5319 else {
5320 if (get_vmx_mem_address(vcpu, exit_qualification,
5321 vmx_instruction_info, &gva))
5322 return 1;
5323 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5324 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5325 kvm_inject_page_fault(vcpu, &e);
5326 return 1;
5327 }
5328 }
5329
5330
5331 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5332 if (vmcs_field_readonly(field)) {
5333 nested_vmx_failValid(vcpu,
5334 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5335 skip_emulated_instruction(vcpu);
5336 return 1;
5337 }
5338
5339 offset = vmcs_field_to_offset(field);
5340 if (offset < 0) {
5341 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5342 skip_emulated_instruction(vcpu);
5343 return 1;
5344 }
5345 p = ((char *) get_vmcs12(vcpu)) + offset;
5346
5347 switch (vmcs_field_type(field)) {
5348 case VMCS_FIELD_TYPE_U16:
5349 *(u16 *)p = field_value;
5350 break;
5351 case VMCS_FIELD_TYPE_U32:
5352 *(u32 *)p = field_value;
5353 break;
5354 case VMCS_FIELD_TYPE_U64:
5355 *(u64 *)p = field_value;
5356 break;
5357 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5358 *(natural_width *)p = field_value;
5359 break;
5360 default:
5361 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5362 skip_emulated_instruction(vcpu);
5363 return 1;
5364 }
5365
5366 nested_vmx_succeed(vcpu);
5367 skip_emulated_instruction(vcpu);
5368 return 1;
5369}
5370
63846663
NHE
5371/* Emulate the VMPTRLD instruction */
5372static int handle_vmptrld(struct kvm_vcpu *vcpu)
5373{
5374 struct vcpu_vmx *vmx = to_vmx(vcpu);
5375 gva_t gva;
5376 gpa_t vmptr;
5377 struct x86_exception e;
5378
5379 if (!nested_vmx_check_permission(vcpu))
5380 return 1;
5381
5382 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5383 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5384 return 1;
5385
5386 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5387 sizeof(vmptr), &e)) {
5388 kvm_inject_page_fault(vcpu, &e);
5389 return 1;
5390 }
5391
5392 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5393 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5394 skip_emulated_instruction(vcpu);
5395 return 1;
5396 }
5397
5398 if (vmx->nested.current_vmptr != vmptr) {
5399 struct vmcs12 *new_vmcs12;
5400 struct page *page;
5401 page = nested_get_page(vcpu, vmptr);
5402 if (page == NULL) {
5403 nested_vmx_failInvalid(vcpu);
5404 skip_emulated_instruction(vcpu);
5405 return 1;
5406 }
5407 new_vmcs12 = kmap(page);
5408 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5409 kunmap(page);
5410 nested_release_page_clean(page);
5411 nested_vmx_failValid(vcpu,
5412 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5413 skip_emulated_instruction(vcpu);
5414 return 1;
5415 }
5416 if (vmx->nested.current_vmptr != -1ull) {
5417 kunmap(vmx->nested.current_vmcs12_page);
5418 nested_release_page(vmx->nested.current_vmcs12_page);
5419 }
5420
5421 vmx->nested.current_vmptr = vmptr;
5422 vmx->nested.current_vmcs12 = new_vmcs12;
5423 vmx->nested.current_vmcs12_page = page;
5424 }
5425
5426 nested_vmx_succeed(vcpu);
5427 skip_emulated_instruction(vcpu);
5428 return 1;
5429}
5430
6a4d7550
NHE
5431/* Emulate the VMPTRST instruction */
5432static int handle_vmptrst(struct kvm_vcpu *vcpu)
5433{
5434 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5435 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5436 gva_t vmcs_gva;
5437 struct x86_exception e;
5438
5439 if (!nested_vmx_check_permission(vcpu))
5440 return 1;
5441
5442 if (get_vmx_mem_address(vcpu, exit_qualification,
5443 vmx_instruction_info, &vmcs_gva))
5444 return 1;
5445 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5446 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5447 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5448 sizeof(u64), &e)) {
5449 kvm_inject_page_fault(vcpu, &e);
5450 return 1;
5451 }
5452 nested_vmx_succeed(vcpu);
5453 skip_emulated_instruction(vcpu);
5454 return 1;
5455}
5456
6aa8b732
AK
5457/*
5458 * The exit handlers return 1 if the exit was handled fully and guest execution
5459 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5460 * to be done to userspace and return 0.
5461 */
851ba692 5462static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5463 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5464 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5465 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5466 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5467 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5468 [EXIT_REASON_CR_ACCESS] = handle_cr,
5469 [EXIT_REASON_DR_ACCESS] = handle_dr,
5470 [EXIT_REASON_CPUID] = handle_cpuid,
5471 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5472 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5473 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5474 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5475 [EXIT_REASON_INVD] = handle_invd,
a7052897 5476 [EXIT_REASON_INVLPG] = handle_invlpg,
c21415e8 5477 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5478 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5479 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5480 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5481 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5482 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5483 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5484 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5485 [EXIT_REASON_VMOFF] = handle_vmoff,
5486 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5487 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5488 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5489 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5490 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5491 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5492 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5493 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5494 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5495 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5496 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5497 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5498};
5499
5500static const int kvm_vmx_max_exit_handlers =
50a3485c 5501 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5502
644d711a
NHE
5503/*
5504 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5505 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5506 * disinterest in the current event (read or write a specific MSR) by using an
5507 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5508 */
5509static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5510 struct vmcs12 *vmcs12, u32 exit_reason)
5511{
5512 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5513 gpa_t bitmap;
5514
5515 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5516 return 1;
5517
5518 /*
5519 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5520 * for the four combinations of read/write and low/high MSR numbers.
5521 * First we need to figure out which of the four to use:
5522 */
5523 bitmap = vmcs12->msr_bitmap;
5524 if (exit_reason == EXIT_REASON_MSR_WRITE)
5525 bitmap += 2048;
5526 if (msr_index >= 0xc0000000) {
5527 msr_index -= 0xc0000000;
5528 bitmap += 1024;
5529 }
5530
5531 /* Then read the msr_index'th bit from this bitmap: */
5532 if (msr_index < 1024*8) {
5533 unsigned char b;
5534 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5535 return 1 & (b >> (msr_index & 7));
5536 } else
5537 return 1; /* let L1 handle the wrong parameter */
5538}
5539
5540/*
5541 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5542 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5543 * intercept (via guest_host_mask etc.) the current event.
5544 */
5545static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5546 struct vmcs12 *vmcs12)
5547{
5548 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5549 int cr = exit_qualification & 15;
5550 int reg = (exit_qualification >> 8) & 15;
5551 unsigned long val = kvm_register_read(vcpu, reg);
5552
5553 switch ((exit_qualification >> 4) & 3) {
5554 case 0: /* mov to cr */
5555 switch (cr) {
5556 case 0:
5557 if (vmcs12->cr0_guest_host_mask &
5558 (val ^ vmcs12->cr0_read_shadow))
5559 return 1;
5560 break;
5561 case 3:
5562 if ((vmcs12->cr3_target_count >= 1 &&
5563 vmcs12->cr3_target_value0 == val) ||
5564 (vmcs12->cr3_target_count >= 2 &&
5565 vmcs12->cr3_target_value1 == val) ||
5566 (vmcs12->cr3_target_count >= 3 &&
5567 vmcs12->cr3_target_value2 == val) ||
5568 (vmcs12->cr3_target_count >= 4 &&
5569 vmcs12->cr3_target_value3 == val))
5570 return 0;
5571 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5572 return 1;
5573 break;
5574 case 4:
5575 if (vmcs12->cr4_guest_host_mask &
5576 (vmcs12->cr4_read_shadow ^ val))
5577 return 1;
5578 break;
5579 case 8:
5580 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5581 return 1;
5582 break;
5583 }
5584 break;
5585 case 2: /* clts */
5586 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5587 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5588 return 1;
5589 break;
5590 case 1: /* mov from cr */
5591 switch (cr) {
5592 case 3:
5593 if (vmcs12->cpu_based_vm_exec_control &
5594 CPU_BASED_CR3_STORE_EXITING)
5595 return 1;
5596 break;
5597 case 8:
5598 if (vmcs12->cpu_based_vm_exec_control &
5599 CPU_BASED_CR8_STORE_EXITING)
5600 return 1;
5601 break;
5602 }
5603 break;
5604 case 3: /* lmsw */
5605 /*
5606 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5607 * cr0. Other attempted changes are ignored, with no exit.
5608 */
5609 if (vmcs12->cr0_guest_host_mask & 0xe &
5610 (val ^ vmcs12->cr0_read_shadow))
5611 return 1;
5612 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5613 !(vmcs12->cr0_read_shadow & 0x1) &&
5614 (val & 0x1))
5615 return 1;
5616 break;
5617 }
5618 return 0;
5619}
5620
5621/*
5622 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5623 * should handle it ourselves in L0 (and then continue L2). Only call this
5624 * when in is_guest_mode (L2).
5625 */
5626static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5627{
5628 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5629 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5630 struct vcpu_vmx *vmx = to_vmx(vcpu);
5631 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5632
5633 if (vmx->nested.nested_run_pending)
5634 return 0;
5635
5636 if (unlikely(vmx->fail)) {
bd80158a
JK
5637 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5638 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5639 return 1;
5640 }
5641
5642 switch (exit_reason) {
5643 case EXIT_REASON_EXCEPTION_NMI:
5644 if (!is_exception(intr_info))
5645 return 0;
5646 else if (is_page_fault(intr_info))
5647 return enable_ept;
5648 return vmcs12->exception_bitmap &
5649 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5650 case EXIT_REASON_EXTERNAL_INTERRUPT:
5651 return 0;
5652 case EXIT_REASON_TRIPLE_FAULT:
5653 return 1;
5654 case EXIT_REASON_PENDING_INTERRUPT:
5655 case EXIT_REASON_NMI_WINDOW:
5656 /*
5657 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5658 * (aka Interrupt Window Exiting) only when L1 turned it on,
5659 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5660 * Same for NMI Window Exiting.
5661 */
5662 return 1;
5663 case EXIT_REASON_TASK_SWITCH:
5664 return 1;
5665 case EXIT_REASON_CPUID:
5666 return 1;
5667 case EXIT_REASON_HLT:
5668 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5669 case EXIT_REASON_INVD:
5670 return 1;
5671 case EXIT_REASON_INVLPG:
5672 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5673 case EXIT_REASON_RDPMC:
5674 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5675 case EXIT_REASON_RDTSC:
5676 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5677 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5678 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5679 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5680 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5681 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5682 /*
5683 * VMX instructions trap unconditionally. This allows L1 to
5684 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5685 */
5686 return 1;
5687 case EXIT_REASON_CR_ACCESS:
5688 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5689 case EXIT_REASON_DR_ACCESS:
5690 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5691 case EXIT_REASON_IO_INSTRUCTION:
5692 /* TODO: support IO bitmaps */
5693 return 1;
5694 case EXIT_REASON_MSR_READ:
5695 case EXIT_REASON_MSR_WRITE:
5696 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5697 case EXIT_REASON_INVALID_STATE:
5698 return 1;
5699 case EXIT_REASON_MWAIT_INSTRUCTION:
5700 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5701 case EXIT_REASON_MONITOR_INSTRUCTION:
5702 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5703 case EXIT_REASON_PAUSE_INSTRUCTION:
5704 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5705 nested_cpu_has2(vmcs12,
5706 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5707 case EXIT_REASON_MCE_DURING_VMENTRY:
5708 return 0;
5709 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5710 return 1;
5711 case EXIT_REASON_APIC_ACCESS:
5712 return nested_cpu_has2(vmcs12,
5713 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5714 case EXIT_REASON_EPT_VIOLATION:
5715 case EXIT_REASON_EPT_MISCONFIG:
5716 return 0;
5717 case EXIT_REASON_WBINVD:
5718 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5719 case EXIT_REASON_XSETBV:
5720 return 1;
5721 default:
5722 return 1;
5723 }
5724}
5725
586f9607
AK
5726static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5727{
5728 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5729 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5730}
5731
6aa8b732
AK
5732/*
5733 * The guest has exited. See if we can fix it or if we need userspace
5734 * assistance.
5735 */
851ba692 5736static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5737{
29bd8a78 5738 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5739 u32 exit_reason = vmx->exit_reason;
1155f76a 5740 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5741
80ced186
MG
5742 /* If guest state is invalid, start emulating */
5743 if (vmx->emulation_required && emulate_invalid_guest_state)
5744 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5745
b6f1250e
NHE
5746 /*
5747 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5748 * we did not inject a still-pending event to L1 now because of
5749 * nested_run_pending, we need to re-enable this bit.
5750 */
5751 if (vmx->nested.nested_run_pending)
5752 kvm_make_request(KVM_REQ_EVENT, vcpu);
5753
509c75ea
NHE
5754 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5755 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5756 vmx->nested.nested_run_pending = 1;
5757 else
5758 vmx->nested.nested_run_pending = 0;
5759
5760 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5761 nested_vmx_vmexit(vcpu);
5762 return 1;
5763 }
5764
5120702e
MG
5765 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5766 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5767 vcpu->run->fail_entry.hardware_entry_failure_reason
5768 = exit_reason;
5769 return 0;
5770 }
5771
29bd8a78 5772 if (unlikely(vmx->fail)) {
851ba692
AK
5773 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5774 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5775 = vmcs_read32(VM_INSTRUCTION_ERROR);
5776 return 0;
5777 }
6aa8b732 5778
d77c26fc 5779 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5780 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5781 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5782 exit_reason != EXIT_REASON_TASK_SWITCH))
5783 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5784 "(0x%x) and exit reason is 0x%x\n",
5785 __func__, vectoring_info, exit_reason);
3b86cd99 5786
644d711a
NHE
5787 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5788 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5789 get_vmcs12(vcpu), vcpu)))) {
c4282df9 5790 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5791 vmx->soft_vnmi_blocked = 0;
3b86cd99 5792 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5793 vcpu->arch.nmi_pending) {
3b86cd99
JK
5794 /*
5795 * This CPU don't support us in finding the end of an
5796 * NMI-blocked window if the guest runs with IRQs
5797 * disabled. So we pull the trigger after 1 s of
5798 * futile waiting, but inform the user about this.
5799 */
5800 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5801 "state on VCPU %d after 1 s timeout\n",
5802 __func__, vcpu->vcpu_id);
5803 vmx->soft_vnmi_blocked = 0;
3b86cd99 5804 }
3b86cd99
JK
5805 }
5806
6aa8b732
AK
5807 if (exit_reason < kvm_vmx_max_exit_handlers
5808 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5809 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5810 else {
851ba692
AK
5811 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5812 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5813 }
5814 return 0;
5815}
5816
95ba8273 5817static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5818{
95ba8273 5819 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5820 vmcs_write32(TPR_THRESHOLD, 0);
5821 return;
5822 }
5823
95ba8273 5824 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5825}
5826
51aa01d1 5827static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5828{
00eba012
AK
5829 u32 exit_intr_info;
5830
5831 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5832 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5833 return;
5834
c5ca8e57 5835 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5836 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5837
5838 /* Handle machine checks before interrupts are enabled */
00eba012 5839 if (is_machine_check(exit_intr_info))
a0861c02
AK
5840 kvm_machine_check();
5841
20f65983 5842 /* We need to handle NMIs before interrupts are enabled */
00eba012 5843 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5844 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5845 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5846 asm("int $2");
ff9d07a0
ZY
5847 kvm_after_handle_nmi(&vmx->vcpu);
5848 }
51aa01d1 5849}
20f65983 5850
51aa01d1
AK
5851static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5852{
c5ca8e57 5853 u32 exit_intr_info;
51aa01d1
AK
5854 bool unblock_nmi;
5855 u8 vector;
5856 bool idtv_info_valid;
5857
5858 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5859
cf393f75 5860 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5861 if (vmx->nmi_known_unmasked)
5862 return;
c5ca8e57
AK
5863 /*
5864 * Can't use vmx->exit_intr_info since we're not sure what
5865 * the exit reason is.
5866 */
5867 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5868 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5869 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5870 /*
7b4a25cb 5871 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5872 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5873 * a guest IRET fault.
7b4a25cb
GN
5874 * SDM 3: 23.2.2 (September 2008)
5875 * Bit 12 is undefined in any of the following cases:
5876 * If the VM exit sets the valid bit in the IDT-vectoring
5877 * information field.
5878 * If the VM exit is due to a double fault.
cf393f75 5879 */
7b4a25cb
GN
5880 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5881 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5882 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5883 GUEST_INTR_STATE_NMI);
9d58b931
AK
5884 else
5885 vmx->nmi_known_unmasked =
5886 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5887 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5888 } else if (unlikely(vmx->soft_vnmi_blocked))
5889 vmx->vnmi_blocked_time +=
5890 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5891}
5892
83422e17
AK
5893static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5894 u32 idt_vectoring_info,
5895 int instr_len_field,
5896 int error_code_field)
51aa01d1 5897{
51aa01d1
AK
5898 u8 vector;
5899 int type;
5900 bool idtv_info_valid;
5901
5902 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 5903
37b96e98
GN
5904 vmx->vcpu.arch.nmi_injected = false;
5905 kvm_clear_exception_queue(&vmx->vcpu);
5906 kvm_clear_interrupt_queue(&vmx->vcpu);
5907
5908 if (!idtv_info_valid)
5909 return;
5910
3842d135
AK
5911 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5912
668f612f
AK
5913 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5914 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 5915
64a7ec06 5916 switch (type) {
37b96e98
GN
5917 case INTR_TYPE_NMI_INTR:
5918 vmx->vcpu.arch.nmi_injected = true;
668f612f 5919 /*
7b4a25cb 5920 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
5921 * Clear bit "block by NMI" before VM entry if a NMI
5922 * delivery faulted.
668f612f 5923 */
654f06fc 5924 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 5925 break;
37b96e98 5926 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 5927 vmx->vcpu.arch.event_exit_inst_len =
83422e17 5928 vmcs_read32(instr_len_field);
66fd3f7f
GN
5929 /* fall through */
5930 case INTR_TYPE_HARD_EXCEPTION:
35920a35 5931 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 5932 u32 err = vmcs_read32(error_code_field);
37b96e98 5933 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
5934 } else
5935 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 5936 break;
66fd3f7f
GN
5937 case INTR_TYPE_SOFT_INTR:
5938 vmx->vcpu.arch.event_exit_inst_len =
83422e17 5939 vmcs_read32(instr_len_field);
66fd3f7f 5940 /* fall through */
37b96e98 5941 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
5942 kvm_queue_interrupt(&vmx->vcpu, vector,
5943 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
5944 break;
5945 default:
5946 break;
f7d9238f 5947 }
cf393f75
AK
5948}
5949
83422e17
AK
5950static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
5951{
66c78ae4
NHE
5952 if (is_guest_mode(&vmx->vcpu))
5953 return;
83422e17
AK
5954 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
5955 VM_EXIT_INSTRUCTION_LEN,
5956 IDT_VECTORING_ERROR_CODE);
5957}
5958
b463a6f7
AK
5959static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
5960{
66c78ae4
NHE
5961 if (is_guest_mode(vcpu))
5962 return;
b463a6f7
AK
5963 __vmx_complete_interrupts(to_vmx(vcpu),
5964 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5965 VM_ENTRY_INSTRUCTION_LEN,
5966 VM_ENTRY_EXCEPTION_ERROR_CODE);
5967
5968 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
5969}
5970
c801949d
AK
5971#ifdef CONFIG_X86_64
5972#define R "r"
5973#define Q "q"
5974#else
5975#define R "e"
5976#define Q "l"
5977#endif
5978
a3b5ba49 5979static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 5980{
a2fa3e9f 5981 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 5982
66c78ae4
NHE
5983 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
5984 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5985 if (vmcs12->idt_vectoring_info_field &
5986 VECTORING_INFO_VALID_MASK) {
5987 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5988 vmcs12->idt_vectoring_info_field);
5989 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5990 vmcs12->vm_exit_instruction_len);
5991 if (vmcs12->idt_vectoring_info_field &
5992 VECTORING_INFO_DELIVER_CODE_MASK)
5993 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
5994 vmcs12->idt_vectoring_error_code);
5995 }
5996 }
5997
104f226b
AK
5998 /* Record the guest's net vcpu time for enforced NMI injections. */
5999 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6000 vmx->entry_time = ktime_get();
6001
6002 /* Don't enter VMX if guest state is invalid, let the exit handler
6003 start emulation until we arrive back to a valid state */
6004 if (vmx->emulation_required && emulate_invalid_guest_state)
6005 return;
6006
6007 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6008 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6009 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6010 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6011
6012 /* When single-stepping over STI and MOV SS, we must clear the
6013 * corresponding interruptibility bits in the guest state. Otherwise
6014 * vmentry fails as it then expects bit 14 (BS) in pending debug
6015 * exceptions being set, but that's not correct for the guest debugging
6016 * case. */
6017 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6018 vmx_set_interrupt_shadow(vcpu, 0);
6019
d462b819 6020 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6021 asm(
6aa8b732 6022 /* Store host registers */
c801949d 6023 "push %%"R"dx; push %%"R"bp;"
40712fae 6024 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6025 "push %%"R"cx \n\t"
313dbd49
AK
6026 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6027 "je 1f \n\t"
6028 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6029 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6030 "1: \n\t"
d3edefc0
AK
6031 /* Reload cr2 if changed */
6032 "mov %c[cr2](%0), %%"R"ax \n\t"
6033 "mov %%cr2, %%"R"dx \n\t"
6034 "cmp %%"R"ax, %%"R"dx \n\t"
6035 "je 2f \n\t"
6036 "mov %%"R"ax, %%cr2 \n\t"
6037 "2: \n\t"
6aa8b732 6038 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6039 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6040 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6041 "mov %c[rax](%0), %%"R"ax \n\t"
6042 "mov %c[rbx](%0), %%"R"bx \n\t"
6043 "mov %c[rdx](%0), %%"R"dx \n\t"
6044 "mov %c[rsi](%0), %%"R"si \n\t"
6045 "mov %c[rdi](%0), %%"R"di \n\t"
6046 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6047#ifdef CONFIG_X86_64
e08aa78a
AK
6048 "mov %c[r8](%0), %%r8 \n\t"
6049 "mov %c[r9](%0), %%r9 \n\t"
6050 "mov %c[r10](%0), %%r10 \n\t"
6051 "mov %c[r11](%0), %%r11 \n\t"
6052 "mov %c[r12](%0), %%r12 \n\t"
6053 "mov %c[r13](%0), %%r13 \n\t"
6054 "mov %c[r14](%0), %%r14 \n\t"
6055 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6056#endif
c801949d
AK
6057 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6058
6aa8b732 6059 /* Enter guest mode */
cd2276a7 6060 "jne .Llaunched \n\t"
4ecac3fd 6061 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6062 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6063 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6064 ".Lkvm_vmx_return: "
6aa8b732 6065 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6066 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6067 "pop %0 \n\t"
c801949d
AK
6068 "mov %%"R"ax, %c[rax](%0) \n\t"
6069 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6070 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6071 "mov %%"R"dx, %c[rdx](%0) \n\t"
6072 "mov %%"R"si, %c[rsi](%0) \n\t"
6073 "mov %%"R"di, %c[rdi](%0) \n\t"
6074 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6075#ifdef CONFIG_X86_64
e08aa78a
AK
6076 "mov %%r8, %c[r8](%0) \n\t"
6077 "mov %%r9, %c[r9](%0) \n\t"
6078 "mov %%r10, %c[r10](%0) \n\t"
6079 "mov %%r11, %c[r11](%0) \n\t"
6080 "mov %%r12, %c[r12](%0) \n\t"
6081 "mov %%r13, %c[r13](%0) \n\t"
6082 "mov %%r14, %c[r14](%0) \n\t"
6083 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6084#endif
c801949d
AK
6085 "mov %%cr2, %%"R"ax \n\t"
6086 "mov %%"R"ax, %c[cr2](%0) \n\t"
6087
1c696d0e 6088 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6089 "setbe %c[fail](%0) \n\t"
6090 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6091 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6092 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6093 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6094 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6095 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6096 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6097 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6098 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6099 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6100 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6101#ifdef CONFIG_X86_64
ad312c7c
ZX
6102 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6103 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6104 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6105 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6106 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6107 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6108 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6109 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6110#endif
40712fae
AK
6111 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6112 [wordsize]"i"(sizeof(ulong))
c2036300 6113 : "cc", "memory"
07d6f555 6114 , R"ax", R"bx", R"di", R"si"
c2036300 6115#ifdef CONFIG_X86_64
c2036300
LV
6116 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6117#endif
6118 );
6aa8b732 6119
6de4f3ad 6120 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6121 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6122 | (1 << VCPU_EXREG_CPL)
aff48baa 6123 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6124 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6125 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6126 vcpu->arch.regs_dirty = 0;
6127
1155f76a
AK
6128 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6129
66c78ae4
NHE
6130 if (is_guest_mode(vcpu)) {
6131 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6132 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6133 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6134 vmcs12->idt_vectoring_error_code =
6135 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6136 vmcs12->vm_exit_instruction_len =
6137 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6138 }
6139 }
6140
d77c26fc 6141 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 6142 vmx->loaded_vmcs->launched = 1;
1b6269db 6143
51aa01d1 6144 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6145 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6146
6147 vmx_complete_atomic_exit(vmx);
6148 vmx_recover_nmi_blocking(vmx);
cf393f75 6149 vmx_complete_interrupts(vmx);
6aa8b732
AK
6150}
6151
c801949d
AK
6152#undef R
6153#undef Q
6154
6aa8b732
AK
6155static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6156{
fb3f0f51
RR
6157 struct vcpu_vmx *vmx = to_vmx(vcpu);
6158
cdbecfc3 6159 free_vpid(vmx);
ec378aee 6160 free_nested(vmx);
d462b819 6161 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6162 kfree(vmx->guest_msrs);
6163 kvm_vcpu_uninit(vcpu);
a4770347 6164 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6165}
6166
fb3f0f51 6167static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6168{
fb3f0f51 6169 int err;
c16f862d 6170 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6171 int cpu;
6aa8b732 6172
a2fa3e9f 6173 if (!vmx)
fb3f0f51
RR
6174 return ERR_PTR(-ENOMEM);
6175
2384d2b3
SY
6176 allocate_vpid(vmx);
6177
fb3f0f51
RR
6178 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6179 if (err)
6180 goto free_vcpu;
965b58a5 6181
a2fa3e9f 6182 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6183 err = -ENOMEM;
fb3f0f51 6184 if (!vmx->guest_msrs) {
fb3f0f51
RR
6185 goto uninit_vcpu;
6186 }
965b58a5 6187
d462b819
NHE
6188 vmx->loaded_vmcs = &vmx->vmcs01;
6189 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6190 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6191 goto free_msrs;
d462b819
NHE
6192 if (!vmm_exclusive)
6193 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6194 loaded_vmcs_init(vmx->loaded_vmcs);
6195 if (!vmm_exclusive)
6196 kvm_cpu_vmxoff();
a2fa3e9f 6197
15ad7146
AK
6198 cpu = get_cpu();
6199 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6200 vmx->vcpu.cpu = cpu;
8b9cf98c 6201 err = vmx_vcpu_setup(vmx);
fb3f0f51 6202 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6203 put_cpu();
fb3f0f51
RR
6204 if (err)
6205 goto free_vmcs;
5e4a0b3c 6206 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6207 err = alloc_apic_access_page(kvm);
6208 if (err)
5e4a0b3c 6209 goto free_vmcs;
fb3f0f51 6210
b927a3ce
SY
6211 if (enable_ept) {
6212 if (!kvm->arch.ept_identity_map_addr)
6213 kvm->arch.ept_identity_map_addr =
6214 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6215 err = -ENOMEM;
b7ebfb05
SY
6216 if (alloc_identity_pagetable(kvm) != 0)
6217 goto free_vmcs;
93ea5388
GN
6218 if (!init_rmode_identity_map(kvm))
6219 goto free_vmcs;
b927a3ce 6220 }
b7ebfb05 6221
a9d30f33
NHE
6222 vmx->nested.current_vmptr = -1ull;
6223 vmx->nested.current_vmcs12 = NULL;
6224
fb3f0f51
RR
6225 return &vmx->vcpu;
6226
6227free_vmcs:
d462b819 6228 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 6229free_msrs:
fb3f0f51
RR
6230 kfree(vmx->guest_msrs);
6231uninit_vcpu:
6232 kvm_vcpu_uninit(&vmx->vcpu);
6233free_vcpu:
cdbecfc3 6234 free_vpid(vmx);
a4770347 6235 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6236 return ERR_PTR(err);
6aa8b732
AK
6237}
6238
002c7f7c
YS
6239static void __init vmx_check_processor_compat(void *rtn)
6240{
6241 struct vmcs_config vmcs_conf;
6242
6243 *(int *)rtn = 0;
6244 if (setup_vmcs_config(&vmcs_conf) < 0)
6245 *(int *)rtn = -EIO;
6246 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6247 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6248 smp_processor_id());
6249 *(int *)rtn = -EIO;
6250 }
6251}
6252
67253af5
SY
6253static int get_ept_level(void)
6254{
6255 return VMX_EPT_DEFAULT_GAW + 1;
6256}
6257
4b12f0de 6258static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6259{
4b12f0de
SY
6260 u64 ret;
6261
522c68c4
SY
6262 /* For VT-d and EPT combination
6263 * 1. MMIO: always map as UC
6264 * 2. EPT with VT-d:
6265 * a. VT-d without snooping control feature: can't guarantee the
6266 * result, try to trust guest.
6267 * b. VT-d with snooping control feature: snooping control feature of
6268 * VT-d engine can guarantee the cache correctness. Just set it
6269 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6270 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6271 * consistent with host MTRR
6272 */
4b12f0de
SY
6273 if (is_mmio)
6274 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6275 else if (vcpu->kvm->arch.iommu_domain &&
6276 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6277 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6278 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6279 else
522c68c4 6280 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6281 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6282
6283 return ret;
64d4d521
SY
6284}
6285
17cc3935 6286static int vmx_get_lpage_level(void)
344f414f 6287{
878403b7
SY
6288 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6289 return PT_DIRECTORY_LEVEL;
6290 else
6291 /* For shadow and EPT supported 1GB page */
6292 return PT_PDPE_LEVEL;
344f414f
JR
6293}
6294
0e851880
SY
6295static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6296{
4e47c7a6
SY
6297 struct kvm_cpuid_entry2 *best;
6298 struct vcpu_vmx *vmx = to_vmx(vcpu);
6299 u32 exec_control;
6300
6301 vmx->rdtscp_enabled = false;
6302 if (vmx_rdtscp_supported()) {
6303 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6304 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6305 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6306 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6307 vmx->rdtscp_enabled = true;
6308 else {
6309 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6310 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6311 exec_control);
6312 }
6313 }
6314 }
0e851880
SY
6315}
6316
d4330ef2
JR
6317static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6318{
7b8050f5
NHE
6319 if (func == 1 && nested)
6320 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6321}
6322
fe3ef05c
NHE
6323/*
6324 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6325 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6326 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6327 * guest in a way that will both be appropriate to L1's requests, and our
6328 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6329 * function also has additional necessary side-effects, like setting various
6330 * vcpu->arch fields.
6331 */
6332static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6333{
6334 struct vcpu_vmx *vmx = to_vmx(vcpu);
6335 u32 exec_control;
6336
6337 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6338 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6339 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6340 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6341 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6342 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6343 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6344 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6345 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6346 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6347 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6348 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6349 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6350 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6351 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6352 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6353 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6354 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6355 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6356 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6357 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6358 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6359 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6360 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6361 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6362 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6363 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6364 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6365 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6366 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6367 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6368 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6369 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6370 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6371 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6372 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6373
6374 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6375 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6376 vmcs12->vm_entry_intr_info_field);
6377 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6378 vmcs12->vm_entry_exception_error_code);
6379 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6380 vmcs12->vm_entry_instruction_len);
6381 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6382 vmcs12->guest_interruptibility_info);
6383 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6384 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6385 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6386 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6387 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6388 vmcs12->guest_pending_dbg_exceptions);
6389 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6390 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6391
6392 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6393
6394 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6395 (vmcs_config.pin_based_exec_ctrl |
6396 vmcs12->pin_based_vm_exec_control));
6397
6398 /*
6399 * Whether page-faults are trapped is determined by a combination of
6400 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6401 * If enable_ept, L0 doesn't care about page faults and we should
6402 * set all of these to L1's desires. However, if !enable_ept, L0 does
6403 * care about (at least some) page faults, and because it is not easy
6404 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6405 * to exit on each and every L2 page fault. This is done by setting
6406 * MASK=MATCH=0 and (see below) EB.PF=1.
6407 * Note that below we don't need special code to set EB.PF beyond the
6408 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6409 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6410 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6411 *
6412 * A problem with this approach (when !enable_ept) is that L1 may be
6413 * injected with more page faults than it asked for. This could have
6414 * caused problems, but in practice existing hypervisors don't care.
6415 * To fix this, we will need to emulate the PFEC checking (on the L1
6416 * page tables), using walk_addr(), when injecting PFs to L1.
6417 */
6418 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6419 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6420 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6421 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6422
6423 if (cpu_has_secondary_exec_ctrls()) {
6424 u32 exec_control = vmx_secondary_exec_control(vmx);
6425 if (!vmx->rdtscp_enabled)
6426 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6427 /* Take the following fields only from vmcs12 */
6428 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6429 if (nested_cpu_has(vmcs12,
6430 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6431 exec_control |= vmcs12->secondary_vm_exec_control;
6432
6433 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6434 /*
6435 * Translate L1 physical address to host physical
6436 * address for vmcs02. Keep the page pinned, so this
6437 * physical address remains valid. We keep a reference
6438 * to it so we can release it later.
6439 */
6440 if (vmx->nested.apic_access_page) /* shouldn't happen */
6441 nested_release_page(vmx->nested.apic_access_page);
6442 vmx->nested.apic_access_page =
6443 nested_get_page(vcpu, vmcs12->apic_access_addr);
6444 /*
6445 * If translation failed, no matter: This feature asks
6446 * to exit when accessing the given address, and if it
6447 * can never be accessed, this feature won't do
6448 * anything anyway.
6449 */
6450 if (!vmx->nested.apic_access_page)
6451 exec_control &=
6452 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6453 else
6454 vmcs_write64(APIC_ACCESS_ADDR,
6455 page_to_phys(vmx->nested.apic_access_page));
6456 }
6457
6458 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6459 }
6460
6461
6462 /*
6463 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6464 * Some constant fields are set here by vmx_set_constant_host_state().
6465 * Other fields are different per CPU, and will be set later when
6466 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6467 */
6468 vmx_set_constant_host_state();
6469
6470 /*
6471 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6472 * entry, but only if the current (host) sp changed from the value
6473 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6474 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6475 * here we just force the write to happen on entry.
6476 */
6477 vmx->host_rsp = 0;
6478
6479 exec_control = vmx_exec_control(vmx); /* L0's desires */
6480 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6481 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6482 exec_control &= ~CPU_BASED_TPR_SHADOW;
6483 exec_control |= vmcs12->cpu_based_vm_exec_control;
6484 /*
6485 * Merging of IO and MSR bitmaps not currently supported.
6486 * Rather, exit every time.
6487 */
6488 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6489 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6490 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6491
6492 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6493
6494 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6495 * bitwise-or of what L1 wants to trap for L2, and what we want to
6496 * trap. Note that CR0.TS also needs updating - we do this later.
6497 */
6498 update_exception_bitmap(vcpu);
6499 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6500 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6501
6502 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6503 vmcs_write32(VM_EXIT_CONTROLS,
6504 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6505 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6506 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6507
6508 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6509 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6510 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6511 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6512
6513
6514 set_cr4_guest_host_mask(vmx);
6515
27fc51b2
NHE
6516 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6517 vmcs_write64(TSC_OFFSET,
6518 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6519 else
6520 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6521
6522 if (enable_vpid) {
6523 /*
6524 * Trivially support vpid by letting L2s share their parent
6525 * L1's vpid. TODO: move to a more elaborate solution, giving
6526 * each L2 its own vpid and exposing the vpid feature to L1.
6527 */
6528 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6529 vmx_flush_tlb(vcpu);
6530 }
6531
6532 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6533 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6534 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6535 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6536 else
6537 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6538 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6539 vmx_set_efer(vcpu, vcpu->arch.efer);
6540
6541 /*
6542 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6543 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6544 * The CR0_READ_SHADOW is what L2 should have expected to read given
6545 * the specifications by L1; It's not enough to take
6546 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6547 * have more bits than L1 expected.
6548 */
6549 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6550 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6551
6552 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6553 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6554
6555 /* shadow page tables on either EPT or shadow page tables */
6556 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6557 kvm_mmu_reset_context(vcpu);
6558
6559 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6560 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6561}
6562
cd232ad0
NHE
6563/*
6564 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6565 * for running an L2 nested guest.
6566 */
6567static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6568{
6569 struct vmcs12 *vmcs12;
6570 struct vcpu_vmx *vmx = to_vmx(vcpu);
6571 int cpu;
6572 struct loaded_vmcs *vmcs02;
6573
6574 if (!nested_vmx_check_permission(vcpu) ||
6575 !nested_vmx_check_vmcs12(vcpu))
6576 return 1;
6577
6578 skip_emulated_instruction(vcpu);
6579 vmcs12 = get_vmcs12(vcpu);
6580
7c177938
NHE
6581 /*
6582 * The nested entry process starts with enforcing various prerequisites
6583 * on vmcs12 as required by the Intel SDM, and act appropriately when
6584 * they fail: As the SDM explains, some conditions should cause the
6585 * instruction to fail, while others will cause the instruction to seem
6586 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6587 * To speed up the normal (success) code path, we should avoid checking
6588 * for misconfigurations which will anyway be caught by the processor
6589 * when using the merged vmcs02.
6590 */
6591 if (vmcs12->launch_state == launch) {
6592 nested_vmx_failValid(vcpu,
6593 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6594 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6595 return 1;
6596 }
6597
6598 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6599 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6600 /*TODO: Also verify bits beyond physical address width are 0*/
6601 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6602 return 1;
6603 }
6604
6605 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6606 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6607 /*TODO: Also verify bits beyond physical address width are 0*/
6608 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6609 return 1;
6610 }
6611
6612 if (vmcs12->vm_entry_msr_load_count > 0 ||
6613 vmcs12->vm_exit_msr_load_count > 0 ||
6614 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6615 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6616 __func__);
7c177938
NHE
6617 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6618 return 1;
6619 }
6620
6621 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6622 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6623 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6624 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6625 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6626 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6627 !vmx_control_verify(vmcs12->vm_exit_controls,
6628 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6629 !vmx_control_verify(vmcs12->vm_entry_controls,
6630 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6631 {
6632 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6633 return 1;
6634 }
6635
6636 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6637 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6638 nested_vmx_failValid(vcpu,
6639 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6640 return 1;
6641 }
6642
6643 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6644 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6645 nested_vmx_entry_failure(vcpu, vmcs12,
6646 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6647 return 1;
6648 }
6649 if (vmcs12->vmcs_link_pointer != -1ull) {
6650 nested_vmx_entry_failure(vcpu, vmcs12,
6651 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6652 return 1;
6653 }
6654
6655 /*
6656 * We're finally done with prerequisite checking, and can start with
6657 * the nested entry.
6658 */
6659
cd232ad0
NHE
6660 vmcs02 = nested_get_current_vmcs02(vmx);
6661 if (!vmcs02)
6662 return -ENOMEM;
6663
6664 enter_guest_mode(vcpu);
6665
6666 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6667
6668 cpu = get_cpu();
6669 vmx->loaded_vmcs = vmcs02;
6670 vmx_vcpu_put(vcpu);
6671 vmx_vcpu_load(vcpu, cpu);
6672 vcpu->cpu = cpu;
6673 put_cpu();
6674
6675 vmcs12->launch_state = 1;
6676
6677 prepare_vmcs02(vcpu, vmcs12);
6678
6679 /*
6680 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6681 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6682 * returned as far as L1 is concerned. It will only return (and set
6683 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6684 */
6685 return 1;
6686}
6687
4704d0be
NHE
6688/*
6689 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6690 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6691 * This function returns the new value we should put in vmcs12.guest_cr0.
6692 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6693 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6694 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6695 * didn't trap the bit, because if L1 did, so would L0).
6696 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6697 * been modified by L2, and L1 knows it. So just leave the old value of
6698 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6699 * isn't relevant, because if L0 traps this bit it can set it to anything.
6700 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6701 * changed these bits, and therefore they need to be updated, but L0
6702 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6703 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6704 */
6705static inline unsigned long
6706vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6707{
6708 return
6709 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6710 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6711 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6712 vcpu->arch.cr0_guest_owned_bits));
6713}
6714
6715static inline unsigned long
6716vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6717{
6718 return
6719 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6720 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6721 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6722 vcpu->arch.cr4_guest_owned_bits));
6723}
6724
6725/*
6726 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6727 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6728 * and this function updates it to reflect the changes to the guest state while
6729 * L2 was running (and perhaps made some exits which were handled directly by L0
6730 * without going back to L1), and to reflect the exit reason.
6731 * Note that we do not have to copy here all VMCS fields, just those that
6732 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6733 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6734 * which already writes to vmcs12 directly.
6735 */
6736void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6737{
6738 /* update guest state fields: */
6739 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6740 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6741
6742 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6743 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6744 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6745 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6746
6747 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6748 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6749 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6750 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6751 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6752 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6753 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6754 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6755 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6756 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6757 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6758 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6759 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6760 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6761 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6762 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6763 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6764 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6765 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6766 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6767 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6768 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6769 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6770 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6771 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6772 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6773 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6774 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6775 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6776 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6777 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6778 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6779 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6780 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6781 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6782 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6783
6784 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6785 vmcs12->guest_interruptibility_info =
6786 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6787 vmcs12->guest_pending_dbg_exceptions =
6788 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6789
6790 /* TODO: These cannot have changed unless we have MSR bitmaps and
6791 * the relevant bit asks not to trap the change */
6792 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6793 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6794 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6795 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6796 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6797 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6798
6799 /* update exit information fields: */
6800
6801 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6802 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6803
6804 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6805 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6806 vmcs12->idt_vectoring_info_field =
6807 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6808 vmcs12->idt_vectoring_error_code =
6809 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6810 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6811 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6812
6813 /* clear vm-entry fields which are to be cleared on exit */
6814 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6815 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6816}
6817
6818/*
6819 * A part of what we need to when the nested L2 guest exits and we want to
6820 * run its L1 parent, is to reset L1's guest state to the host state specified
6821 * in vmcs12.
6822 * This function is to be called not only on normal nested exit, but also on
6823 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6824 * Failures During or After Loading Guest State").
6825 * This function should be called when the active VMCS is L1's (vmcs01).
6826 */
6827void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6828{
6829 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6830 vcpu->arch.efer = vmcs12->host_ia32_efer;
6831 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6832 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6833 else
6834 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6835 vmx_set_efer(vcpu, vcpu->arch.efer);
6836
6837 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6838 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6839 /*
6840 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6841 * actually changed, because it depends on the current state of
6842 * fpu_active (which may have changed).
6843 * Note that vmx_set_cr0 refers to efer set above.
6844 */
6845 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6846 /*
6847 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6848 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6849 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6850 */
6851 update_exception_bitmap(vcpu);
6852 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6853 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6854
6855 /*
6856 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6857 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6858 */
6859 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6860 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6861
6862 /* shadow page tables on either EPT or shadow page tables */
6863 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6864 kvm_mmu_reset_context(vcpu);
6865
6866 if (enable_vpid) {
6867 /*
6868 * Trivially support vpid by letting L2s share their parent
6869 * L1's vpid. TODO: move to a more elaborate solution, giving
6870 * each L2 its own vpid and exposing the vpid feature to L1.
6871 */
6872 vmx_flush_tlb(vcpu);
6873 }
6874
6875
6876 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6877 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6878 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6879 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6880 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6881 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6882 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6883 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6884 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6885 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6886 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6887 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6888 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6889 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6890 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6891
6892 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6893 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6894 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6895 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6896 vmcs12->host_ia32_perf_global_ctrl);
6897}
6898
6899/*
6900 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
6901 * and modify vmcs12 to make it see what it would expect to see there if
6902 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
6903 */
6904static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
6905{
6906 struct vcpu_vmx *vmx = to_vmx(vcpu);
6907 int cpu;
6908 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6909
6910 leave_guest_mode(vcpu);
6911 prepare_vmcs12(vcpu, vmcs12);
6912
6913 cpu = get_cpu();
6914 vmx->loaded_vmcs = &vmx->vmcs01;
6915 vmx_vcpu_put(vcpu);
6916 vmx_vcpu_load(vcpu, cpu);
6917 vcpu->cpu = cpu;
6918 put_cpu();
6919
6920 /* if no vmcs02 cache requested, remove the one we used */
6921 if (VMCS02_POOL_SIZE == 0)
6922 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
6923
6924 load_vmcs12_host_state(vcpu, vmcs12);
6925
27fc51b2 6926 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
6927 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6928
6929 /* This is needed for same reason as it was needed in prepare_vmcs02 */
6930 vmx->host_rsp = 0;
6931
6932 /* Unpin physical memory we referred to in vmcs02 */
6933 if (vmx->nested.apic_access_page) {
6934 nested_release_page(vmx->nested.apic_access_page);
6935 vmx->nested.apic_access_page = 0;
6936 }
6937
6938 /*
6939 * Exiting from L2 to L1, we're now back to L1 which thinks it just
6940 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
6941 * success or failure flag accordingly.
6942 */
6943 if (unlikely(vmx->fail)) {
6944 vmx->fail = 0;
6945 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
6946 } else
6947 nested_vmx_succeed(vcpu);
6948}
6949
7c177938
NHE
6950/*
6951 * L1's failure to enter L2 is a subset of a normal exit, as explained in
6952 * 23.7 "VM-entry failures during or after loading guest state" (this also
6953 * lists the acceptable exit-reason and exit-qualification parameters).
6954 * It should only be called before L2 actually succeeded to run, and when
6955 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
6956 */
6957static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
6958 struct vmcs12 *vmcs12,
6959 u32 reason, unsigned long qualification)
6960{
6961 load_vmcs12_host_state(vcpu, vmcs12);
6962 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
6963 vmcs12->exit_qualification = qualification;
6964 nested_vmx_succeed(vcpu);
6965}
6966
8a76d7f2
JR
6967static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6968 struct x86_instruction_info *info,
6969 enum x86_intercept_stage stage)
6970{
6971 return X86EMUL_CONTINUE;
6972}
6973
cbdd1bea 6974static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
6975 .cpu_has_kvm_support = cpu_has_kvm_support,
6976 .disabled_by_bios = vmx_disabled_by_bios,
6977 .hardware_setup = hardware_setup,
6978 .hardware_unsetup = hardware_unsetup,
002c7f7c 6979 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
6980 .hardware_enable = hardware_enable,
6981 .hardware_disable = hardware_disable,
04547156 6982 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
6983
6984 .vcpu_create = vmx_create_vcpu,
6985 .vcpu_free = vmx_free_vcpu,
04d2cc77 6986 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 6987
04d2cc77 6988 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
6989 .vcpu_load = vmx_vcpu_load,
6990 .vcpu_put = vmx_vcpu_put,
6991
6992 .set_guest_debug = set_guest_debug,
6993 .get_msr = vmx_get_msr,
6994 .set_msr = vmx_set_msr,
6995 .get_segment_base = vmx_get_segment_base,
6996 .get_segment = vmx_get_segment,
6997 .set_segment = vmx_set_segment,
2e4d2653 6998 .get_cpl = vmx_get_cpl,
6aa8b732 6999 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7000 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7001 .decache_cr3 = vmx_decache_cr3,
25c4c276 7002 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7003 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7004 .set_cr3 = vmx_set_cr3,
7005 .set_cr4 = vmx_set_cr4,
6aa8b732 7006 .set_efer = vmx_set_efer,
6aa8b732
AK
7007 .get_idt = vmx_get_idt,
7008 .set_idt = vmx_set_idt,
7009 .get_gdt = vmx_get_gdt,
7010 .set_gdt = vmx_set_gdt,
020df079 7011 .set_dr7 = vmx_set_dr7,
5fdbf976 7012 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7013 .get_rflags = vmx_get_rflags,
7014 .set_rflags = vmx_set_rflags,
ebcbab4c 7015 .fpu_activate = vmx_fpu_activate,
02daab21 7016 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7017
7018 .tlb_flush = vmx_flush_tlb,
6aa8b732 7019
6aa8b732 7020 .run = vmx_vcpu_run,
6062d012 7021 .handle_exit = vmx_handle_exit,
6aa8b732 7022 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7023 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7024 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7025 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7026 .set_irq = vmx_inject_irq,
95ba8273 7027 .set_nmi = vmx_inject_nmi,
298101da 7028 .queue_exception = vmx_queue_exception,
b463a6f7 7029 .cancel_injection = vmx_cancel_injection,
78646121 7030 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7031 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7032 .get_nmi_mask = vmx_get_nmi_mask,
7033 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7034 .enable_nmi_window = enable_nmi_window,
7035 .enable_irq_window = enable_irq_window,
7036 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7037
cbc94022 7038 .set_tss_addr = vmx_set_tss_addr,
67253af5 7039 .get_tdp_level = get_ept_level,
4b12f0de 7040 .get_mt_mask = vmx_get_mt_mask,
229456fc 7041
586f9607 7042 .get_exit_info = vmx_get_exit_info,
586f9607 7043
17cc3935 7044 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7045
7046 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7047
7048 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
7049
7050 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7051
7052 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7053
4051b188 7054 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7055 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7056 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7057 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7058 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7059
7060 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7061
7062 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7063};
7064
7065static int __init vmx_init(void)
7066{
26bb0981
AK
7067 int r, i;
7068
7069 rdmsrl_safe(MSR_EFER, &host_efer);
7070
7071 for (i = 0; i < NR_VMX_MSR; ++i)
7072 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7073
3e7c73e9 7074 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7075 if (!vmx_io_bitmap_a)
7076 return -ENOMEM;
7077
3e7c73e9 7078 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7079 if (!vmx_io_bitmap_b) {
7080 r = -ENOMEM;
7081 goto out;
7082 }
7083
5897297b
AK
7084 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7085 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
7086 r = -ENOMEM;
7087 goto out1;
7088 }
7089
5897297b
AK
7090 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7091 if (!vmx_msr_bitmap_longmode) {
7092 r = -ENOMEM;
7093 goto out2;
7094 }
7095
fdef3ad1
HQ
7096 /*
7097 * Allow direct access to the PC debug port (it is often used for I/O
7098 * delays, but the vmexits simply slow things down).
7099 */
3e7c73e9
AK
7100 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7101 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7102
3e7c73e9 7103 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7104
5897297b
AK
7105 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7106 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7107
2384d2b3
SY
7108 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7109
0ee75bea
AK
7110 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7111 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7112 if (r)
5897297b 7113 goto out3;
25c5f225 7114
5897297b
AK
7115 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7116 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7117 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7118 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7119 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7120 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7121
089d034e 7122 if (enable_ept) {
534e38b4 7123 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 7124 VMX_EPT_EXECUTABLE_MASK);
ce88decf 7125 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7126 kvm_enable_tdp();
7127 } else
7128 kvm_disable_tdp();
1439442c 7129
fdef3ad1
HQ
7130 return 0;
7131
5897297b
AK
7132out3:
7133 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7134out2:
5897297b 7135 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7136out1:
3e7c73e9 7137 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7138out:
3e7c73e9 7139 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7140 return r;
6aa8b732
AK
7141}
7142
7143static void __exit vmx_exit(void)
7144{
5897297b
AK
7145 free_page((unsigned long)vmx_msr_bitmap_legacy);
7146 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7147 free_page((unsigned long)vmx_io_bitmap_b);
7148 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7149
cb498ea2 7150 kvm_exit();
6aa8b732
AK
7151}
7152
7153module_init(vmx_init)
7154module_exit(vmx_exit)