]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
9d43cf64 38#define NVME_Q_DEPTH 1024
b60503ba
MW
39#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
40#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 41
adf68f21
CH
42/*
43 * We handle AEN commands ourselves and don't even let the
44 * block layer know about them.
45 */
f866fc42 46#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 47
58ffacb5
MW
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0);
50
8ffaadf7
JD
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0644);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
87ad72a5
CH
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 59
1c63dc66
CH
60struct nvme_dev;
61struct nvme_queue;
b3fffdef 62
a0fa9647 63static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 64static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 65
1c63dc66
CH
66/*
67 * Represents an NVM Express device. Each nvme_dev is a PCI function.
68 */
69struct nvme_dev {
1c63dc66
CH
70 struct nvme_queue **queues;
71 struct blk_mq_tag_set tagset;
72 struct blk_mq_tag_set admin_tagset;
73 u32 __iomem *dbs;
74 struct device *dev;
75 struct dma_pool *prp_page_pool;
76 struct dma_pool *prp_small_pool;
77 unsigned queue_count;
78 unsigned online_queues;
79 unsigned max_qid;
80 int q_depth;
81 u32 db_stride;
1c63dc66 82 void __iomem *bar;
97f6ef64 83 unsigned long bar_mapped_size;
5c8809e6 84 struct work_struct remove_work;
77bf25ea 85 struct mutex shutdown_lock;
1c63dc66 86 bool subsystem;
1c63dc66
CH
87 void __iomem *cmb;
88 dma_addr_t cmb_dma_addr;
89 u64 cmb_size;
90 u32 cmbsz;
202021c1 91 u32 cmbloc;
1c63dc66 92 struct nvme_ctrl ctrl;
db3cbfff 93 struct completion ioq_wait;
87ad72a5
CH
94
95 /* shadow doorbell buffer support: */
f9f38e33
HK
96 u32 *dbbuf_dbs;
97 dma_addr_t dbbuf_dbs_dma_addr;
98 u32 *dbbuf_eis;
99 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
100
101 /* host memory buffer support: */
102 u64 host_mem_size;
103 u32 nr_host_mem_descs;
104 struct nvme_host_mem_buf_desc *host_mem_descs;
105 void **host_mem_desc_bufs;
4d115420 106};
1fa6aead 107
f9f38e33
HK
108static inline unsigned int sq_idx(unsigned int qid, u32 stride)
109{
110 return qid * 2 * stride;
111}
112
113static inline unsigned int cq_idx(unsigned int qid, u32 stride)
114{
115 return (qid * 2 + 1) * stride;
116}
117
1c63dc66
CH
118static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
119{
120 return container_of(ctrl, struct nvme_dev, ctrl);
121}
122
b60503ba
MW
123/*
124 * An NVM Express queue. Each device has at least two (one for admin
125 * commands and one for I/O commands).
126 */
127struct nvme_queue {
128 struct device *q_dmadev;
091b6092 129 struct nvme_dev *dev;
b60503ba
MW
130 spinlock_t q_lock;
131 struct nvme_command *sq_cmds;
8ffaadf7 132 struct nvme_command __iomem *sq_cmds_io;
b60503ba 133 volatile struct nvme_completion *cqes;
42483228 134 struct blk_mq_tags **tags;
b60503ba
MW
135 dma_addr_t sq_dma_addr;
136 dma_addr_t cq_dma_addr;
b60503ba
MW
137 u32 __iomem *q_db;
138 u16 q_depth;
6222d172 139 s16 cq_vector;
b60503ba
MW
140 u16 sq_tail;
141 u16 cq_head;
c30341dc 142 u16 qid;
e9539f47
MW
143 u8 cq_phase;
144 u8 cqe_seen;
f9f38e33
HK
145 u32 *dbbuf_sq_db;
146 u32 *dbbuf_cq_db;
147 u32 *dbbuf_sq_ei;
148 u32 *dbbuf_cq_ei;
b60503ba
MW
149};
150
71bd150c
CH
151/*
152 * The nvme_iod describes the data in an I/O, including the list of PRP
153 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 154 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
155 * allocated to store the PRP list.
156 */
157struct nvme_iod {
d49187e9 158 struct nvme_request req;
f4800d6d
CH
159 struct nvme_queue *nvmeq;
160 int aborted;
71bd150c 161 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
162 int nents; /* Used in scatterlist */
163 int length; /* Of data, in bytes */
164 dma_addr_t first_dma;
bf684057 165 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
166 struct scatterlist *sg;
167 struct scatterlist inline_sg[0];
b60503ba
MW
168};
169
170/*
171 * Check we didin't inadvertently grow the command struct
172 */
173static inline void _nvme_check_size(void)
174{
175 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
176 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 180 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 181 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 182 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
183 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
184 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 185 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 186 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
187 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
188}
189
190static inline unsigned int nvme_dbbuf_size(u32 stride)
191{
192 return ((num_possible_cpus() + 1) * 8 * stride);
193}
194
195static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
196{
197 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
198
199 if (dev->dbbuf_dbs)
200 return 0;
201
202 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
203 &dev->dbbuf_dbs_dma_addr,
204 GFP_KERNEL);
205 if (!dev->dbbuf_dbs)
206 return -ENOMEM;
207 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
208 &dev->dbbuf_eis_dma_addr,
209 GFP_KERNEL);
210 if (!dev->dbbuf_eis) {
211 dma_free_coherent(dev->dev, mem_size,
212 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
213 dev->dbbuf_dbs = NULL;
214 return -ENOMEM;
215 }
216
217 return 0;
218}
219
220static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
221{
222 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
223
224 if (dev->dbbuf_dbs) {
225 dma_free_coherent(dev->dev, mem_size,
226 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
227 dev->dbbuf_dbs = NULL;
228 }
229 if (dev->dbbuf_eis) {
230 dma_free_coherent(dev->dev, mem_size,
231 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
232 dev->dbbuf_eis = NULL;
233 }
234}
235
236static void nvme_dbbuf_init(struct nvme_dev *dev,
237 struct nvme_queue *nvmeq, int qid)
238{
239 if (!dev->dbbuf_dbs || !qid)
240 return;
241
242 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
243 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
244 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
245 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
246}
247
248static void nvme_dbbuf_set(struct nvme_dev *dev)
249{
250 struct nvme_command c;
251
252 if (!dev->dbbuf_dbs)
253 return;
254
255 memset(&c, 0, sizeof(c));
256 c.dbbuf.opcode = nvme_admin_dbbuf;
257 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
258 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
259
260 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 261 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
262 /* Free memory and continue on */
263 nvme_dbbuf_dma_free(dev);
264 }
265}
266
267static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
268{
269 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
270}
271
272/* Update dbbuf and return true if an MMIO is required */
273static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
274 volatile u32 *dbbuf_ei)
275{
276 if (dbbuf_db) {
277 u16 old_value;
278
279 /*
280 * Ensure that the queue is written before updating
281 * the doorbell in memory
282 */
283 wmb();
284
285 old_value = *dbbuf_db;
286 *dbbuf_db = value;
287
288 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
289 return false;
290 }
291
292 return true;
b60503ba
MW
293}
294
ac3dd5bd
JA
295/*
296 * Max size of iod being embedded in the request payload
297 */
298#define NVME_INT_PAGES 2
5fd4ce1b 299#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
300
301/*
302 * Will slightly overestimate the number of pages needed. This is OK
303 * as it only leads to a small amount of wasted memory for the lifetime of
304 * the I/O.
305 */
306static int nvme_npages(unsigned size, struct nvme_dev *dev)
307{
5fd4ce1b
CH
308 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
309 dev->ctrl.page_size);
ac3dd5bd
JA
310 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
311}
312
f4800d6d
CH
313static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
314 unsigned int size, unsigned int nseg)
ac3dd5bd 315{
f4800d6d
CH
316 return sizeof(__le64 *) * nvme_npages(size, dev) +
317 sizeof(struct scatterlist) * nseg;
318}
ac3dd5bd 319
f4800d6d
CH
320static unsigned int nvme_cmd_size(struct nvme_dev *dev)
321{
322 return sizeof(struct nvme_iod) +
323 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
324}
325
a4aea562
MB
326static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
327 unsigned int hctx_idx)
e85248e5 328{
a4aea562
MB
329 struct nvme_dev *dev = data;
330 struct nvme_queue *nvmeq = dev->queues[0];
331
42483228
KB
332 WARN_ON(hctx_idx != 0);
333 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
334 WARN_ON(nvmeq->tags);
335
a4aea562 336 hctx->driver_data = nvmeq;
42483228 337 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 338 return 0;
e85248e5
MW
339}
340
4af0e21c
KB
341static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
342{
343 struct nvme_queue *nvmeq = hctx->driver_data;
344
345 nvmeq->tags = NULL;
346}
347
a4aea562
MB
348static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
349 unsigned int hctx_idx)
b60503ba 350{
a4aea562 351 struct nvme_dev *dev = data;
42483228 352 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 353
42483228
KB
354 if (!nvmeq->tags)
355 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 356
42483228 357 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
358 hctx->driver_data = nvmeq;
359 return 0;
b60503ba
MW
360}
361
d6296d39
CH
362static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
363 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 364{
d6296d39 365 struct nvme_dev *dev = set->driver_data;
f4800d6d 366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
367 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
368 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
369
370 BUG_ON(!nvmeq);
f4800d6d 371 iod->nvmeq = nvmeq;
a4aea562
MB
372 return 0;
373}
374
dca51e78
CH
375static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
376{
377 struct nvme_dev *dev = set->driver_data;
378
379 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
380}
381
b60503ba 382/**
adf68f21 383 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
384 * @nvmeq: The queue to use
385 * @cmd: The command to send
386 *
387 * Safe to use from interrupt context
388 */
e3f879bf
SB
389static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
390 struct nvme_command *cmd)
b60503ba 391{
a4aea562
MB
392 u16 tail = nvmeq->sq_tail;
393
8ffaadf7
JD
394 if (nvmeq->sq_cmds_io)
395 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
396 else
397 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
398
b60503ba
MW
399 if (++tail == nvmeq->q_depth)
400 tail = 0;
f9f38e33
HK
401 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
402 nvmeq->dbbuf_sq_ei))
403 writel(tail, nvmeq->q_db);
b60503ba 404 nvmeq->sq_tail = tail;
b60503ba
MW
405}
406
f4800d6d 407static __le64 **iod_list(struct request *req)
b60503ba 408{
f4800d6d 409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 410 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
411}
412
fc17b653 413static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 414{
f4800d6d 415 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 416 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 417 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 418
f4800d6d
CH
419 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
420 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
421 if (!iod->sg)
fc17b653 422 return BLK_STS_RESOURCE;
f4800d6d
CH
423 } else {
424 iod->sg = iod->inline_sg;
ac3dd5bd
JA
425 }
426
f4800d6d
CH
427 iod->aborted = 0;
428 iod->npages = -1;
429 iod->nents = 0;
430 iod->length = size;
f80ec966 431
fc17b653 432 return BLK_STS_OK;
ac3dd5bd
JA
433}
434
f4800d6d 435static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 436{
f4800d6d 437 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 438 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 439 int i;
f4800d6d 440 __le64 **list = iod_list(req);
eca18b23
MW
441 dma_addr_t prp_dma = iod->first_dma;
442
443 if (iod->npages == 0)
444 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
445 for (i = 0; i < iod->npages; i++) {
446 __le64 *prp_list = list[i];
447 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
448 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
449 prp_dma = next_prp_dma;
450 }
ac3dd5bd 451
f4800d6d
CH
452 if (iod->sg != iod->inline_sg)
453 kfree(iod->sg);
b4ff9c8d
KB
454}
455
52b68d7e 456#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
457static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
458{
459 if (be32_to_cpu(pi->ref_tag) == v)
460 pi->ref_tag = cpu_to_be32(p);
461}
462
463static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
464{
465 if (be32_to_cpu(pi->ref_tag) == p)
466 pi->ref_tag = cpu_to_be32(v);
467}
468
469/**
470 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
471 *
472 * The virtual start sector is the one that was originally submitted by the
473 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
474 * start sector may be different. Remap protection information to match the
475 * physical LBA on writes, and back to the original seed on reads.
476 *
477 * Type 0 and 3 do not have a ref tag, so no remapping required.
478 */
479static void nvme_dif_remap(struct request *req,
480 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
481{
482 struct nvme_ns *ns = req->rq_disk->private_data;
483 struct bio_integrity_payload *bip;
484 struct t10_pi_tuple *pi;
485 void *p, *pmap;
486 u32 i, nlb, ts, phys, virt;
487
488 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
489 return;
490
491 bip = bio_integrity(req->bio);
492 if (!bip)
493 return;
494
495 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
496
497 p = pmap;
498 virt = bip_get_seed(bip);
499 phys = nvme_block_nr(ns, blk_rq_pos(req));
500 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 501 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
502
503 for (i = 0; i < nlb; i++, virt++, phys++) {
504 pi = (struct t10_pi_tuple *)p;
505 dif_swap(phys, virt, pi);
506 p += ts;
507 }
508 kunmap_atomic(pmap);
509}
52b68d7e
KB
510#else /* CONFIG_BLK_DEV_INTEGRITY */
511static void nvme_dif_remap(struct request *req,
512 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
513{
514}
515static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
516{
517}
518static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
519{
520}
52b68d7e
KB
521#endif
522
b131c61d 523static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 524{
f4800d6d 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 526 struct dma_pool *pool;
b131c61d 527 int length = blk_rq_payload_bytes(req);
eca18b23 528 struct scatterlist *sg = iod->sg;
ff22b54f
MW
529 int dma_len = sg_dma_len(sg);
530 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 531 u32 page_size = dev->ctrl.page_size;
f137e0f1 532 int offset = dma_addr & (page_size - 1);
e025344c 533 __le64 *prp_list;
f4800d6d 534 __le64 **list = iod_list(req);
e025344c 535 dma_addr_t prp_dma;
eca18b23 536 int nprps, i;
ff22b54f 537
1d090624 538 length -= (page_size - offset);
ff22b54f 539 if (length <= 0)
69d2b571 540 return true;
ff22b54f 541
1d090624 542 dma_len -= (page_size - offset);
ff22b54f 543 if (dma_len) {
1d090624 544 dma_addr += (page_size - offset);
ff22b54f
MW
545 } else {
546 sg = sg_next(sg);
547 dma_addr = sg_dma_address(sg);
548 dma_len = sg_dma_len(sg);
549 }
550
1d090624 551 if (length <= page_size) {
edd10d33 552 iod->first_dma = dma_addr;
69d2b571 553 return true;
e025344c
SMM
554 }
555
1d090624 556 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
557 if (nprps <= (256 / 8)) {
558 pool = dev->prp_small_pool;
eca18b23 559 iod->npages = 0;
99802a7a
MW
560 } else {
561 pool = dev->prp_page_pool;
eca18b23 562 iod->npages = 1;
99802a7a
MW
563 }
564
69d2b571 565 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 566 if (!prp_list) {
edd10d33 567 iod->first_dma = dma_addr;
eca18b23 568 iod->npages = -1;
69d2b571 569 return false;
b77954cb 570 }
eca18b23
MW
571 list[0] = prp_list;
572 iod->first_dma = prp_dma;
e025344c
SMM
573 i = 0;
574 for (;;) {
1d090624 575 if (i == page_size >> 3) {
e025344c 576 __le64 *old_prp_list = prp_list;
69d2b571 577 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 578 if (!prp_list)
69d2b571 579 return false;
eca18b23 580 list[iod->npages++] = prp_list;
7523d834
MW
581 prp_list[0] = old_prp_list[i - 1];
582 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
583 i = 1;
e025344c
SMM
584 }
585 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
586 dma_len -= page_size;
587 dma_addr += page_size;
588 length -= page_size;
e025344c
SMM
589 if (length <= 0)
590 break;
591 if (dma_len > 0)
592 continue;
593 BUG_ON(dma_len < 0);
594 sg = sg_next(sg);
595 dma_addr = sg_dma_address(sg);
596 dma_len = sg_dma_len(sg);
ff22b54f
MW
597 }
598
69d2b571 599 return true;
ff22b54f
MW
600}
601
fc17b653 602static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 603 struct nvme_command *cmnd)
d29ec824 604{
f4800d6d 605 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
606 struct request_queue *q = req->q;
607 enum dma_data_direction dma_dir = rq_data_dir(req) ?
608 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 609 blk_status_t ret = BLK_STS_IOERR;
d29ec824 610
f9d03f96 611 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
612 iod->nents = blk_rq_map_sg(q, req, iod->sg);
613 if (!iod->nents)
614 goto out;
d29ec824 615
fc17b653 616 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
617 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
618 DMA_ATTR_NO_WARN))
ba1ca37e 619 goto out;
d29ec824 620
b131c61d 621 if (!nvme_setup_prps(dev, req))
ba1ca37e 622 goto out_unmap;
0e5e4f0e 623
fc17b653 624 ret = BLK_STS_IOERR;
ba1ca37e
CH
625 if (blk_integrity_rq(req)) {
626 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
627 goto out_unmap;
0e5e4f0e 628
bf684057
CH
629 sg_init_table(&iod->meta_sg, 1);
630 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 631 goto out_unmap;
0e5e4f0e 632
ba1ca37e
CH
633 if (rq_data_dir(req))
634 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 635
bf684057 636 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 637 goto out_unmap;
d29ec824 638 }
00df5cb4 639
eb793e2c
CH
640 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
641 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 642 if (blk_integrity_rq(req))
bf684057 643 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 644 return BLK_STS_OK;
00df5cb4 645
ba1ca37e
CH
646out_unmap:
647 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
648out:
649 return ret;
00df5cb4
MW
650}
651
f4800d6d 652static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 653{
f4800d6d 654 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
655 enum dma_data_direction dma_dir = rq_data_dir(req) ?
656 DMA_TO_DEVICE : DMA_FROM_DEVICE;
657
658 if (iod->nents) {
659 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
660 if (blk_integrity_rq(req)) {
661 if (!rq_data_dir(req))
662 nvme_dif_remap(req, nvme_dif_complete);
bf684057 663 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 664 }
e19b127f 665 }
e1e5e564 666
f9d03f96 667 nvme_cleanup_cmd(req);
f4800d6d 668 nvme_free_iod(dev, req);
d4f6c3ab 669}
b60503ba 670
d29ec824
CH
671/*
672 * NOTE: ns is NULL when called on the admin queue.
673 */
fc17b653 674static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 675 const struct blk_mq_queue_data *bd)
edd10d33 676{
a4aea562
MB
677 struct nvme_ns *ns = hctx->queue->queuedata;
678 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 679 struct nvme_dev *dev = nvmeq->dev;
a4aea562 680 struct request *req = bd->rq;
ba1ca37e 681 struct nvme_command cmnd;
ebe6d874 682 blk_status_t ret;
e1e5e564 683
f9d03f96 684 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 685 if (ret)
f4800d6d 686 return ret;
a4aea562 687
b131c61d 688 ret = nvme_init_iod(req, dev);
fc17b653 689 if (ret)
f9d03f96 690 goto out_free_cmd;
a4aea562 691
fc17b653 692 if (blk_rq_nr_phys_segments(req)) {
b131c61d 693 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
694 if (ret)
695 goto out_cleanup_iod;
696 }
a4aea562 697
aae239e1 698 blk_mq_start_request(req);
a4aea562 699
ba1ca37e 700 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 701 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 702 ret = BLK_STS_IOERR;
ae1fba20 703 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 704 goto out_cleanup_iod;
ae1fba20 705 }
ba1ca37e 706 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
707 nvme_process_cq(nvmeq);
708 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 709 return BLK_STS_OK;
f9d03f96 710out_cleanup_iod:
f4800d6d 711 nvme_free_iod(dev, req);
f9d03f96
CH
712out_free_cmd:
713 nvme_cleanup_cmd(req);
ba1ca37e 714 return ret;
b60503ba 715}
e1e5e564 716
77f02a7a 717static void nvme_pci_complete_rq(struct request *req)
eee417b0 718{
f4800d6d 719 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 720
77f02a7a
CH
721 nvme_unmap_data(iod->nvmeq->dev, req);
722 nvme_complete_rq(req);
b60503ba
MW
723}
724
d783e0bd
MR
725/* We read the CQE phase first to check if the rest of the entry is valid */
726static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
727 u16 phase)
728{
729 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
730}
731
eb281c82 732static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 733{
eb281c82 734 u16 head = nvmeq->cq_head;
adf68f21 735
eb281c82
SG
736 if (likely(nvmeq->cq_vector >= 0)) {
737 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
738 nvmeq->dbbuf_cq_ei))
739 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
740 }
741}
aae239e1 742
83a12fb7
SG
743static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
744 struct nvme_completion *cqe)
745{
746 struct request *req;
adf68f21 747
83a12fb7
SG
748 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
749 dev_warn(nvmeq->dev->ctrl.device,
750 "invalid id %d completed on queue %d\n",
751 cqe->command_id, le16_to_cpu(cqe->sq_id));
752 return;
b60503ba
MW
753 }
754
83a12fb7
SG
755 /*
756 * AEN requests are special as they don't time out and can
757 * survive any kind of queue freeze and often don't respond to
758 * aborts. We don't even bother to allocate a struct request
759 * for them but rather special case them here.
760 */
761 if (unlikely(nvmeq->qid == 0 &&
762 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763 nvme_complete_async_event(&nvmeq->dev->ctrl,
764 cqe->status, &cqe->result);
a0fa9647 765 return;
83a12fb7 766 }
b60503ba 767
83a12fb7
SG
768 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
769 nvme_end_request(req, cqe->status, cqe->result);
770}
b60503ba 771
920d13a8
SG
772static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
773 struct nvme_completion *cqe)
b60503ba 774{
920d13a8
SG
775 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
776 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 777
920d13a8
SG
778 if (++nvmeq->cq_head == nvmeq->q_depth) {
779 nvmeq->cq_head = 0;
780 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 781 }
920d13a8 782 return true;
b60503ba 783 }
920d13a8 784 return false;
a0fa9647
JA
785}
786
787static void nvme_process_cq(struct nvme_queue *nvmeq)
788{
920d13a8
SG
789 struct nvme_completion cqe;
790 int consumed = 0;
b60503ba 791
920d13a8
SG
792 while (nvme_read_cqe(nvmeq, &cqe)) {
793 nvme_handle_cqe(nvmeq, &cqe);
794 consumed++;
920d13a8 795 }
eb281c82 796
920d13a8
SG
797 if (consumed) {
798 nvme_ring_cq_doorbell(nvmeq);
799 nvmeq->cqe_seen = 1;
800 }
b60503ba
MW
801}
802
803static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
804{
805 irqreturn_t result;
806 struct nvme_queue *nvmeq = data;
807 spin_lock(&nvmeq->q_lock);
e9539f47
MW
808 nvme_process_cq(nvmeq);
809 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
810 nvmeq->cqe_seen = 0;
58ffacb5
MW
811 spin_unlock(&nvmeq->q_lock);
812 return result;
813}
814
815static irqreturn_t nvme_irq_check(int irq, void *data)
816{
817 struct nvme_queue *nvmeq = data;
d783e0bd
MR
818 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
819 return IRQ_WAKE_THREAD;
820 return IRQ_NONE;
58ffacb5
MW
821}
822
7776db1c 823static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 824{
442e19b7
SG
825 struct nvme_completion cqe;
826 int found = 0, consumed = 0;
a0fa9647 827
442e19b7
SG
828 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
829 return 0;
a0fa9647 830
442e19b7
SG
831 spin_lock_irq(&nvmeq->q_lock);
832 while (nvme_read_cqe(nvmeq, &cqe)) {
833 nvme_handle_cqe(nvmeq, &cqe);
834 consumed++;
835
836 if (tag == cqe.command_id) {
837 found = 1;
838 break;
839 }
840 }
841
842 if (consumed)
843 nvme_ring_cq_doorbell(nvmeq);
844 spin_unlock_irq(&nvmeq->q_lock);
845
846 return found;
a0fa9647
JA
847}
848
7776db1c
KB
849static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
850{
851 struct nvme_queue *nvmeq = hctx->driver_data;
852
853 return __nvme_poll(nvmeq, tag);
854}
855
f866fc42 856static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 857{
f866fc42 858 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 859 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 860 struct nvme_command c;
b60503ba 861
a4aea562
MB
862 memset(&c, 0, sizeof(c));
863 c.common.opcode = nvme_admin_async_event;
f866fc42 864 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 865
9396dec9 866 spin_lock_irq(&nvmeq->q_lock);
f866fc42 867 __nvme_submit_cmd(nvmeq, &c);
9396dec9 868 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
869}
870
b60503ba 871static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 872{
b60503ba
MW
873 struct nvme_command c;
874
875 memset(&c, 0, sizeof(c));
876 c.delete_queue.opcode = opcode;
877 c.delete_queue.qid = cpu_to_le16(id);
878
1c63dc66 879 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
880}
881
b60503ba
MW
882static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
883 struct nvme_queue *nvmeq)
884{
b60503ba
MW
885 struct nvme_command c;
886 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
887
d29ec824
CH
888 /*
889 * Note: we (ab)use the fact the the prp fields survive if no data
890 * is attached to the request.
891 */
b60503ba
MW
892 memset(&c, 0, sizeof(c));
893 c.create_cq.opcode = nvme_admin_create_cq;
894 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
895 c.create_cq.cqid = cpu_to_le16(qid);
896 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
897 c.create_cq.cq_flags = cpu_to_le16(flags);
898 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
899
1c63dc66 900 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
901}
902
903static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
904 struct nvme_queue *nvmeq)
905{
b60503ba 906 struct nvme_command c;
81c1cd98 907 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 908
d29ec824
CH
909 /*
910 * Note: we (ab)use the fact the the prp fields survive if no data
911 * is attached to the request.
912 */
b60503ba
MW
913 memset(&c, 0, sizeof(c));
914 c.create_sq.opcode = nvme_admin_create_sq;
915 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
916 c.create_sq.sqid = cpu_to_le16(qid);
917 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
918 c.create_sq.sq_flags = cpu_to_le16(flags);
919 c.create_sq.cqid = cpu_to_le16(qid);
920
1c63dc66 921 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
922}
923
924static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
925{
926 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
927}
928
929static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
930{
931 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
932}
933
2a842aca 934static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 935{
f4800d6d
CH
936 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
937 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 938
27fa9bc5
CH
939 dev_warn(nvmeq->dev->ctrl.device,
940 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 941 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 942 blk_mq_free_request(req);
bc5fc7e4
MW
943}
944
b2a0eb1a
KB
945static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
946{
947
948 /* If true, indicates loss of adapter communication, possibly by a
949 * NVMe Subsystem reset.
950 */
951 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
952
953 /* If there is a reset ongoing, we shouldn't reset again. */
954 if (dev->ctrl.state == NVME_CTRL_RESETTING)
955 return false;
956
957 /* We shouldn't reset unless the controller is on fatal error state
958 * _or_ if we lost the communication with it.
959 */
960 if (!(csts & NVME_CSTS_CFS) && !nssro)
961 return false;
962
963 /* If PCI error recovery process is happening, we cannot reset or
964 * the recovery mechanism will surely fail.
965 */
966 if (pci_channel_offline(to_pci_dev(dev->dev)))
967 return false;
968
969 return true;
970}
971
972static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
973{
974 /* Read a config register to help see what died. */
975 u16 pci_status;
976 int result;
977
978 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
979 &pci_status);
980 if (result == PCIBIOS_SUCCESSFUL)
981 dev_warn(dev->ctrl.device,
982 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
983 csts, pci_status);
984 else
985 dev_warn(dev->ctrl.device,
986 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
987 csts, result);
988}
989
31c7c7d2 990static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 991{
f4800d6d
CH
992 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
993 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 994 struct nvme_dev *dev = nvmeq->dev;
a4aea562 995 struct request *abort_req;
a4aea562 996 struct nvme_command cmd;
b2a0eb1a
KB
997 u32 csts = readl(dev->bar + NVME_REG_CSTS);
998
999 /*
1000 * Reset immediately if the controller is failed
1001 */
1002 if (nvme_should_reset(dev, csts)) {
1003 nvme_warn_reset(dev, csts);
1004 nvme_dev_disable(dev, false);
d86c4d8e 1005 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1006 return BLK_EH_HANDLED;
1007 }
c30341dc 1008
7776db1c
KB
1009 /*
1010 * Did we miss an interrupt?
1011 */
1012 if (__nvme_poll(nvmeq, req->tag)) {
1013 dev_warn(dev->ctrl.device,
1014 "I/O %d QID %d timeout, completion polled\n",
1015 req->tag, nvmeq->qid);
1016 return BLK_EH_HANDLED;
1017 }
1018
31c7c7d2 1019 /*
fd634f41
CH
1020 * Shutdown immediately if controller times out while starting. The
1021 * reset work will see the pci device disabled when it gets the forced
1022 * cancellation error. All outstanding requests are completed on
1023 * shutdown, so we return BLK_EH_HANDLED.
1024 */
bb8d261e 1025 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1026 dev_warn(dev->ctrl.device,
fd634f41
CH
1027 "I/O %d QID %d timeout, disable controller\n",
1028 req->tag, nvmeq->qid);
a5cdb68c 1029 nvme_dev_disable(dev, false);
27fa9bc5 1030 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1031 return BLK_EH_HANDLED;
c30341dc
KB
1032 }
1033
fd634f41
CH
1034 /*
1035 * Shutdown the controller immediately and schedule a reset if the
1036 * command was already aborted once before and still hasn't been
1037 * returned to the driver, or if this is the admin queue.
31c7c7d2 1038 */
f4800d6d 1039 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1040 dev_warn(dev->ctrl.device,
e1569a16
KB
1041 "I/O %d QID %d timeout, reset controller\n",
1042 req->tag, nvmeq->qid);
a5cdb68c 1043 nvme_dev_disable(dev, false);
d86c4d8e 1044 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1045
e1569a16
KB
1046 /*
1047 * Mark the request as handled, since the inline shutdown
1048 * forces all outstanding requests to complete.
1049 */
27fa9bc5 1050 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1051 return BLK_EH_HANDLED;
c30341dc 1052 }
c30341dc 1053
e7a2a87d 1054 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1055 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1056 return BLK_EH_RESET_TIMER;
6bf25d16 1057 }
7bf7d778 1058 iod->aborted = 1;
a4aea562 1059
c30341dc
KB
1060 memset(&cmd, 0, sizeof(cmd));
1061 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1062 cmd.abort.cid = req->tag;
c30341dc 1063 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1064
1b3c47c1
SG
1065 dev_warn(nvmeq->dev->ctrl.device,
1066 "I/O %d QID %d timeout, aborting\n",
1067 req->tag, nvmeq->qid);
e7a2a87d
CH
1068
1069 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1070 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1071 if (IS_ERR(abort_req)) {
1072 atomic_inc(&dev->ctrl.abort_limit);
1073 return BLK_EH_RESET_TIMER;
1074 }
1075
1076 abort_req->timeout = ADMIN_TIMEOUT;
1077 abort_req->end_io_data = NULL;
1078 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1079
31c7c7d2
CH
1080 /*
1081 * The aborted req will be completed on receiving the abort req.
1082 * We enable the timer again. If hit twice, it'll cause a device reset,
1083 * as the device then is in a faulty state.
1084 */
1085 return BLK_EH_RESET_TIMER;
c30341dc
KB
1086}
1087
a4aea562
MB
1088static void nvme_free_queue(struct nvme_queue *nvmeq)
1089{
9e866774
MW
1090 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1091 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1092 if (nvmeq->sq_cmds)
1093 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1094 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1095 kfree(nvmeq);
1096}
1097
a1a5ef99 1098static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1099{
1100 int i;
1101
a1a5ef99 1102 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1103 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1104 dev->queue_count--;
a4aea562 1105 dev->queues[i] = NULL;
f435c282 1106 nvme_free_queue(nvmeq);
121c7ad4 1107 }
22404274
KB
1108}
1109
4d115420
KB
1110/**
1111 * nvme_suspend_queue - put queue into suspended state
1112 * @nvmeq - queue to suspend
4d115420
KB
1113 */
1114static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1115{
2b25d981 1116 int vector;
b60503ba 1117
a09115b2 1118 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1119 if (nvmeq->cq_vector == -1) {
1120 spin_unlock_irq(&nvmeq->q_lock);
1121 return 1;
1122 }
0ff199cb 1123 vector = nvmeq->cq_vector;
42f61420 1124 nvmeq->dev->online_queues--;
2b25d981 1125 nvmeq->cq_vector = -1;
a09115b2
MW
1126 spin_unlock_irq(&nvmeq->q_lock);
1127
1c63dc66 1128 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1129 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1130
0ff199cb 1131 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1132
4d115420
KB
1133 return 0;
1134}
b60503ba 1135
a5cdb68c 1136static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1137{
a5cdb68c 1138 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1139
1140 if (!nvmeq)
1141 return;
1142 if (nvme_suspend_queue(nvmeq))
1143 return;
1144
a5cdb68c
KB
1145 if (shutdown)
1146 nvme_shutdown_ctrl(&dev->ctrl);
1147 else
1148 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1149 dev->bar + NVME_REG_CAP));
07836e65
KB
1150
1151 spin_lock_irq(&nvmeq->q_lock);
1152 nvme_process_cq(nvmeq);
1153 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1154}
1155
8ffaadf7
JD
1156static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1157 int entry_size)
1158{
1159 int q_depth = dev->q_depth;
5fd4ce1b
CH
1160 unsigned q_size_aligned = roundup(q_depth * entry_size,
1161 dev->ctrl.page_size);
8ffaadf7
JD
1162
1163 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1164 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1165 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1166 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1167
1168 /*
1169 * Ensure the reduced q_depth is above some threshold where it
1170 * would be better to map queues in system memory with the
1171 * original depth
1172 */
1173 if (q_depth < 64)
1174 return -ENOMEM;
1175 }
1176
1177 return q_depth;
1178}
1179
1180static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1181 int qid, int depth)
1182{
1183 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1184 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1185 dev->ctrl.page_size);
8ffaadf7
JD
1186 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1187 nvmeq->sq_cmds_io = dev->cmb + offset;
1188 } else {
1189 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1190 &nvmeq->sq_dma_addr, GFP_KERNEL);
1191 if (!nvmeq->sq_cmds)
1192 return -ENOMEM;
1193 }
1194
1195 return 0;
1196}
1197
b60503ba 1198static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1199 int depth, int node)
b60503ba 1200{
d3af3ecd
SL
1201 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1202 node);
b60503ba
MW
1203 if (!nvmeq)
1204 return NULL;
1205
e75ec752 1206 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1207 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1208 if (!nvmeq->cqes)
1209 goto free_nvmeq;
b60503ba 1210
8ffaadf7 1211 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1212 goto free_cqdma;
1213
e75ec752 1214 nvmeq->q_dmadev = dev->dev;
091b6092 1215 nvmeq->dev = dev;
b60503ba
MW
1216 spin_lock_init(&nvmeq->q_lock);
1217 nvmeq->cq_head = 0;
82123460 1218 nvmeq->cq_phase = 1;
b80d5ccc 1219 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1220 nvmeq->q_depth = depth;
c30341dc 1221 nvmeq->qid = qid;
758dd7fd 1222 nvmeq->cq_vector = -1;
a4aea562 1223 dev->queues[qid] = nvmeq;
36a7e993
JD
1224 dev->queue_count++;
1225
b60503ba
MW
1226 return nvmeq;
1227
1228 free_cqdma:
e75ec752 1229 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1230 nvmeq->cq_dma_addr);
1231 free_nvmeq:
1232 kfree(nvmeq);
1233 return NULL;
1234}
1235
dca51e78 1236static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1237{
0ff199cb
CH
1238 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1239 int nr = nvmeq->dev->ctrl.instance;
1240
1241 if (use_threaded_interrupts) {
1242 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1243 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1244 } else {
1245 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1246 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1247 }
3001082c
MW
1248}
1249
22404274 1250static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1251{
22404274 1252 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1253
7be50e93 1254 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1255 nvmeq->sq_tail = 0;
1256 nvmeq->cq_head = 0;
1257 nvmeq->cq_phase = 1;
b80d5ccc 1258 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1259 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1260 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1261 dev->online_queues++;
7be50e93 1262 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1263}
1264
1265static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1266{
1267 struct nvme_dev *dev = nvmeq->dev;
1268 int result;
3f85d50b 1269
2b25d981 1270 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1271 result = adapter_alloc_cq(dev, qid, nvmeq);
1272 if (result < 0)
22404274 1273 return result;
b60503ba
MW
1274
1275 result = adapter_alloc_sq(dev, qid, nvmeq);
1276 if (result < 0)
1277 goto release_cq;
1278
dca51e78 1279 result = queue_request_irq(nvmeq);
b60503ba
MW
1280 if (result < 0)
1281 goto release_sq;
1282
22404274 1283 nvme_init_queue(nvmeq, qid);
22404274 1284 return result;
b60503ba
MW
1285
1286 release_sq:
1287 adapter_delete_sq(dev, qid);
1288 release_cq:
1289 adapter_delete_cq(dev, qid);
22404274 1290 return result;
b60503ba
MW
1291}
1292
f363b089 1293static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1294 .queue_rq = nvme_queue_rq,
77f02a7a 1295 .complete = nvme_pci_complete_rq,
a4aea562 1296 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1297 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1298 .init_request = nvme_init_request,
a4aea562
MB
1299 .timeout = nvme_timeout,
1300};
1301
f363b089 1302static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1303 .queue_rq = nvme_queue_rq,
77f02a7a 1304 .complete = nvme_pci_complete_rq,
a4aea562
MB
1305 .init_hctx = nvme_init_hctx,
1306 .init_request = nvme_init_request,
dca51e78 1307 .map_queues = nvme_pci_map_queues,
a4aea562 1308 .timeout = nvme_timeout,
a0fa9647 1309 .poll = nvme_poll,
a4aea562
MB
1310};
1311
ea191d2f
KB
1312static void nvme_dev_remove_admin(struct nvme_dev *dev)
1313{
1c63dc66 1314 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1315 /*
1316 * If the controller was reset during removal, it's possible
1317 * user requests may be waiting on a stopped queue. Start the
1318 * queue to flush these to completion.
1319 */
1320 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1321 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1322 blk_mq_free_tag_set(&dev->admin_tagset);
1323 }
1324}
1325
a4aea562
MB
1326static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1327{
1c63dc66 1328 if (!dev->ctrl.admin_q) {
a4aea562
MB
1329 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1330 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1331
1332 /*
1333 * Subtract one to leave an empty queue entry for 'Full Queue'
1334 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1335 */
1336 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1337 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1338 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1339 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1340 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1341 dev->admin_tagset.driver_data = dev;
1342
1343 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1344 return -ENOMEM;
1345
1c63dc66
CH
1346 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1347 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1348 blk_mq_free_tag_set(&dev->admin_tagset);
1349 return -ENOMEM;
1350 }
1c63dc66 1351 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1352 nvme_dev_remove_admin(dev);
1c63dc66 1353 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1354 return -ENODEV;
1355 }
0fb59cbc 1356 } else
25646264 1357 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1358
1359 return 0;
1360}
1361
97f6ef64
XY
1362static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1363{
1364 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1365}
1366
1367static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1368{
1369 struct pci_dev *pdev = to_pci_dev(dev->dev);
1370
1371 if (size <= dev->bar_mapped_size)
1372 return 0;
1373 if (size > pci_resource_len(pdev, 0))
1374 return -ENOMEM;
1375 if (dev->bar)
1376 iounmap(dev->bar);
1377 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1378 if (!dev->bar) {
1379 dev->bar_mapped_size = 0;
1380 return -ENOMEM;
1381 }
1382 dev->bar_mapped_size = size;
1383 dev->dbs = dev->bar + NVME_REG_DBS;
1384
1385 return 0;
1386}
1387
8d85fce7 1388static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1389{
ba47e386 1390 int result;
b60503ba 1391 u32 aqa;
7a67cbea 1392 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1393 struct nvme_queue *nvmeq;
1394
97f6ef64
XY
1395 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1396 if (result < 0)
1397 return result;
1398
8ef2074d 1399 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1400 NVME_CAP_NSSRC(cap) : 0;
1401
7a67cbea
CH
1402 if (dev->subsystem &&
1403 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1404 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1405
5fd4ce1b 1406 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1407 if (result < 0)
1408 return result;
b60503ba 1409
a4aea562 1410 nvmeq = dev->queues[0];
cd638946 1411 if (!nvmeq) {
d3af3ecd
SL
1412 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1413 dev_to_node(dev->dev));
cd638946
KB
1414 if (!nvmeq)
1415 return -ENOMEM;
cd638946 1416 }
b60503ba
MW
1417
1418 aqa = nvmeq->q_depth - 1;
1419 aqa |= aqa << 16;
1420
7a67cbea
CH
1421 writel(aqa, dev->bar + NVME_REG_AQA);
1422 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1423 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1424
5fd4ce1b 1425 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1426 if (result)
d4875622 1427 return result;
a4aea562 1428
2b25d981 1429 nvmeq->cq_vector = 0;
dca51e78 1430 result = queue_request_irq(nvmeq);
758dd7fd
JD
1431 if (result) {
1432 nvmeq->cq_vector = -1;
d4875622 1433 return result;
758dd7fd 1434 }
025c557a 1435
b60503ba
MW
1436 return result;
1437}
1438
749941f2 1439static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1440{
949928c1 1441 unsigned i, max;
749941f2 1442 int ret = 0;
42f61420 1443
749941f2 1444 for (i = dev->queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1445 /* vector == qid - 1, match nvme_create_queue */
1446 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1447 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1448 ret = -ENOMEM;
42f61420 1449 break;
749941f2
CH
1450 }
1451 }
42f61420 1452
949928c1
KB
1453 max = min(dev->max_qid, dev->queue_count - 1);
1454 for (i = dev->online_queues; i <= max; i++) {
749941f2 1455 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1456 if (ret)
42f61420 1457 break;
27e8166c 1458 }
749941f2
CH
1459
1460 /*
1461 * Ignore failing Create SQ/CQ commands, we can continue with less
1462 * than the desired aount of queues, and even a controller without
1463 * I/O queues an still be used to issue admin commands. This might
1464 * be useful to upgrade a buggy firmware for example.
1465 */
1466 return ret >= 0 ? 0 : ret;
b60503ba
MW
1467}
1468
202021c1
SB
1469static ssize_t nvme_cmb_show(struct device *dev,
1470 struct device_attribute *attr,
1471 char *buf)
1472{
1473 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1474
c965809c 1475 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1476 ndev->cmbloc, ndev->cmbsz);
1477}
1478static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1479
8ffaadf7
JD
1480static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1481{
1482 u64 szu, size, offset;
8ffaadf7
JD
1483 resource_size_t bar_size;
1484 struct pci_dev *pdev = to_pci_dev(dev->dev);
1485 void __iomem *cmb;
1486 dma_addr_t dma_addr;
1487
7a67cbea 1488 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1489 if (!(NVME_CMB_SZ(dev->cmbsz)))
1490 return NULL;
202021c1 1491 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1492
202021c1
SB
1493 if (!use_cmb_sqes)
1494 return NULL;
8ffaadf7
JD
1495
1496 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1497 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1498 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1499 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1500
1501 if (offset > bar_size)
1502 return NULL;
1503
1504 /*
1505 * Controllers may support a CMB size larger than their BAR,
1506 * for example, due to being behind a bridge. Reduce the CMB to
1507 * the reported size of the BAR
1508 */
1509 if (size > bar_size - offset)
1510 size = bar_size - offset;
1511
202021c1 1512 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1513 cmb = ioremap_wc(dma_addr, size);
1514 if (!cmb)
1515 return NULL;
1516
1517 dev->cmb_dma_addr = dma_addr;
1518 dev->cmb_size = size;
1519 return cmb;
1520}
1521
1522static inline void nvme_release_cmb(struct nvme_dev *dev)
1523{
1524 if (dev->cmb) {
1525 iounmap(dev->cmb);
1526 dev->cmb = NULL;
f63572df
JD
1527 if (dev->cmbsz) {
1528 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1529 &dev_attr_cmb.attr, NULL);
1530 dev->cmbsz = 0;
1531 }
8ffaadf7
JD
1532 }
1533}
1534
87ad72a5
CH
1535static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1536{
1537 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1538 struct nvme_command c;
1539 u64 dma_addr;
1540 int ret;
1541
1542 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1543 DMA_TO_DEVICE);
1544 if (dma_mapping_error(dev->dev, dma_addr))
1545 return -ENOMEM;
1546
1547 memset(&c, 0, sizeof(c));
1548 c.features.opcode = nvme_admin_set_features;
1549 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1550 c.features.dword11 = cpu_to_le32(bits);
1551 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1552 ilog2(dev->ctrl.page_size));
1553 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1554 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1555 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1556
1557 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1558 if (ret) {
1559 dev_warn(dev->ctrl.device,
1560 "failed to set host mem (err %d, flags %#x).\n",
1561 ret, bits);
1562 }
1563 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1564 return ret;
1565}
1566
1567static void nvme_free_host_mem(struct nvme_dev *dev)
1568{
1569 int i;
1570
1571 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1572 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1573 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1574
1575 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1576 le64_to_cpu(desc->addr));
1577 }
1578
1579 kfree(dev->host_mem_desc_bufs);
1580 dev->host_mem_desc_bufs = NULL;
1581 kfree(dev->host_mem_descs);
1582 dev->host_mem_descs = NULL;
1583}
1584
1585static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
9d713c2b 1586{
87ad72a5
CH
1587 struct nvme_host_mem_buf_desc *descs;
1588 u32 chunk_size, max_entries, i = 0;
1589 void **bufs;
1590 u64 size, tmp;
1591
1592 /* start big and work our way down */
1593 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1594retry:
1595 tmp = (preferred + chunk_size - 1);
1596 do_div(tmp, chunk_size);
1597 max_entries = tmp;
1598 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1599 if (!descs)
1600 goto out;
1601
1602 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1603 if (!bufs)
1604 goto out_free_descs;
1605
1606 for (size = 0; size < preferred; size += chunk_size) {
1607 u32 len = min_t(u64, chunk_size, preferred - size);
1608 dma_addr_t dma_addr;
1609
1610 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1611 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1612 if (!bufs[i])
1613 break;
1614
1615 descs[i].addr = cpu_to_le64(dma_addr);
1616 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1617 i++;
1618 }
1619
1620 if (!size || (min && size < min)) {
1621 dev_warn(dev->ctrl.device,
1622 "failed to allocate host memory buffer.\n");
1623 goto out_free_bufs;
1624 }
1625
1626 dev_info(dev->ctrl.device,
1627 "allocated %lld MiB host memory buffer.\n",
1628 size >> ilog2(SZ_1M));
1629 dev->nr_host_mem_descs = i;
1630 dev->host_mem_size = size;
1631 dev->host_mem_descs = descs;
1632 dev->host_mem_desc_bufs = bufs;
1633 return 0;
1634
1635out_free_bufs:
1636 while (--i >= 0) {
1637 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1638
1639 dma_free_coherent(dev->dev, size, bufs[i],
1640 le64_to_cpu(descs[i].addr));
1641 }
1642
1643 kfree(bufs);
1644out_free_descs:
1645 kfree(descs);
1646out:
1647 /* try a smaller chunk size if we failed early */
1648 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1649 chunk_size /= 2;
1650 goto retry;
1651 }
1652 dev->host_mem_descs = NULL;
1653 return -ENOMEM;
1654}
1655
1656static void nvme_setup_host_mem(struct nvme_dev *dev)
1657{
1658 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1659 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1660 u64 min = (u64)dev->ctrl.hmmin * 4096;
1661 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1662
1663 preferred = min(preferred, max);
1664 if (min > max) {
1665 dev_warn(dev->ctrl.device,
1666 "min host memory (%lld MiB) above limit (%d MiB).\n",
1667 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1668 nvme_free_host_mem(dev);
1669 return;
1670 }
1671
1672 /*
1673 * If we already have a buffer allocated check if we can reuse it.
1674 */
1675 if (dev->host_mem_descs) {
1676 if (dev->host_mem_size >= min)
1677 enable_bits |= NVME_HOST_MEM_RETURN;
1678 else
1679 nvme_free_host_mem(dev);
1680 }
1681
1682 if (!dev->host_mem_descs) {
1683 if (nvme_alloc_host_mem(dev, min, preferred))
1684 return;
1685 }
1686
1687 if (nvme_set_host_mem(dev, enable_bits))
1688 nvme_free_host_mem(dev);
9d713c2b
KB
1689}
1690
8d85fce7 1691static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1692{
a4aea562 1693 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1694 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1695 int result, nr_io_queues;
1696 unsigned long size;
b60503ba 1697
425a17cb 1698 nr_io_queues = num_present_cpus();
9a0be7ab
CH
1699 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1700 if (result < 0)
1b23484b 1701 return result;
9a0be7ab 1702
f5fa90dc 1703 if (nr_io_queues == 0)
a5229050 1704 return 0;
b60503ba 1705
8ffaadf7
JD
1706 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1707 result = nvme_cmb_qdepth(dev, nr_io_queues,
1708 sizeof(struct nvme_command));
1709 if (result > 0)
1710 dev->q_depth = result;
1711 else
1712 nvme_release_cmb(dev);
1713 }
1714
97f6ef64
XY
1715 do {
1716 size = db_bar_size(dev, nr_io_queues);
1717 result = nvme_remap_bar(dev, size);
1718 if (!result)
1719 break;
1720 if (!--nr_io_queues)
1721 return -ENOMEM;
1722 } while (1);
1723 adminq->q_db = dev->dbs;
f1938f6e 1724
9d713c2b 1725 /* Deregister the admin queue's interrupt */
0ff199cb 1726 pci_free_irq(pdev, 0, adminq);
9d713c2b 1727
e32efbfc
JA
1728 /*
1729 * If we enable msix early due to not intx, disable it again before
1730 * setting up the full range we need.
1731 */
dca51e78
CH
1732 pci_free_irq_vectors(pdev);
1733 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1734 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1735 if (nr_io_queues <= 0)
1736 return -EIO;
1737 dev->max_qid = nr_io_queues;
fa08a396 1738
063a8096
MW
1739 /*
1740 * Should investigate if there's a performance win from allocating
1741 * more queues than interrupt vectors; it might allow the submission
1742 * path to scale better, even if the receive path is limited by the
1743 * number of interrupts.
1744 */
063a8096 1745
dca51e78 1746 result = queue_request_irq(adminq);
758dd7fd
JD
1747 if (result) {
1748 adminq->cq_vector = -1;
d4875622 1749 return result;
758dd7fd 1750 }
749941f2 1751 return nvme_create_io_queues(dev);
b60503ba
MW
1752}
1753
2a842aca 1754static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1755{
db3cbfff 1756 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1757
db3cbfff
KB
1758 blk_mq_free_request(req);
1759 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1760}
1761
2a842aca 1762static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1763{
db3cbfff 1764 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1765
db3cbfff
KB
1766 if (!error) {
1767 unsigned long flags;
1768
2e39e0f6
ML
1769 /*
1770 * We might be called with the AQ q_lock held
1771 * and the I/O queue q_lock should always
1772 * nest inside the AQ one.
1773 */
1774 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1775 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1776 nvme_process_cq(nvmeq);
1777 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1778 }
db3cbfff
KB
1779
1780 nvme_del_queue_end(req, error);
a5768aa8
KB
1781}
1782
db3cbfff 1783static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1784{
db3cbfff
KB
1785 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1786 struct request *req;
1787 struct nvme_command cmd;
bda4e0fb 1788
db3cbfff
KB
1789 memset(&cmd, 0, sizeof(cmd));
1790 cmd.delete_queue.opcode = opcode;
1791 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1792
eb71f435 1793 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1794 if (IS_ERR(req))
1795 return PTR_ERR(req);
bda4e0fb 1796
db3cbfff
KB
1797 req->timeout = ADMIN_TIMEOUT;
1798 req->end_io_data = nvmeq;
1799
1800 blk_execute_rq_nowait(q, NULL, req, false,
1801 opcode == nvme_admin_delete_cq ?
1802 nvme_del_cq_end : nvme_del_queue_end);
1803 return 0;
bda4e0fb
KB
1804}
1805
70659060 1806static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1807{
70659060 1808 int pass;
db3cbfff
KB
1809 unsigned long timeout;
1810 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1811
db3cbfff 1812 for (pass = 0; pass < 2; pass++) {
014a0d60 1813 int sent = 0, i = queues;
db3cbfff
KB
1814
1815 reinit_completion(&dev->ioq_wait);
1816 retry:
1817 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1818 for (; i > 0; i--, sent++)
1819 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1820 break;
c21377f8 1821
db3cbfff
KB
1822 while (sent--) {
1823 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1824 if (timeout == 0)
1825 return;
1826 if (i)
1827 goto retry;
1828 }
1829 opcode = nvme_admin_delete_cq;
1830 }
a5768aa8
KB
1831}
1832
422ef0c7
MW
1833/*
1834 * Return: error value if an error occurred setting up the queues or calling
1835 * Identify Device. 0 if these succeeded, even if adding some of the
1836 * namespaces failed. At the moment, these failures are silent. TBD which
1837 * failures should be reported.
1838 */
8d85fce7 1839static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1840{
5bae7f73 1841 if (!dev->ctrl.tagset) {
ffe7704d
KB
1842 dev->tagset.ops = &nvme_mq_ops;
1843 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1844 dev->tagset.timeout = NVME_IO_TIMEOUT;
1845 dev->tagset.numa_node = dev_to_node(dev->dev);
1846 dev->tagset.queue_depth =
a4aea562 1847 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1848 dev->tagset.cmd_size = nvme_cmd_size(dev);
1849 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1850 dev->tagset.driver_data = dev;
b60503ba 1851
ffe7704d
KB
1852 if (blk_mq_alloc_tag_set(&dev->tagset))
1853 return 0;
5bae7f73 1854 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1855
1856 nvme_dbbuf_set(dev);
949928c1
KB
1857 } else {
1858 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1859
1860 /* Free previously allocated queues that are no longer usable */
1861 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1862 }
949928c1 1863
e1e5e564 1864 return 0;
b60503ba
MW
1865}
1866
b00a726a 1867static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1868{
42f61420 1869 u64 cap;
b00a726a 1870 int result = -ENOMEM;
e75ec752 1871 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1872
1873 if (pci_enable_device_mem(pdev))
1874 return result;
1875
0877cb0d 1876 pci_set_master(pdev);
0877cb0d 1877
e75ec752
CH
1878 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1879 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1880 goto disable;
0877cb0d 1881
7a67cbea 1882 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1883 result = -ENODEV;
b00a726a 1884 goto disable;
0e53d180 1885 }
e32efbfc
JA
1886
1887 /*
a5229050
KB
1888 * Some devices and/or platforms don't advertise or work with INTx
1889 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1890 * adjust this later.
e32efbfc 1891 */
dca51e78
CH
1892 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1893 if (result < 0)
1894 return result;
e32efbfc 1895
7a67cbea
CH
1896 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1897
42f61420
KB
1898 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1899 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1900 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1901
1902 /*
1903 * Temporary fix for the Apple controller found in the MacBook8,1 and
1904 * some MacBook7,1 to avoid controller resets and data loss.
1905 */
1906 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1907 dev->q_depth = 2;
9bdcfb10
CH
1908 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1909 "set queue depth=%u to work around controller resets\n",
1f390c1f
SG
1910 dev->q_depth);
1911 }
1912
202021c1
SB
1913 /*
1914 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1915 * populate sysfs if a CMB is implemented. Note that we add the
1916 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1917 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1918 * NULL as final argument to sysfs_add_file_to_group.
1919 */
1920
8ef2074d 1921 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1922 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1923
202021c1
SB
1924 if (dev->cmbsz) {
1925 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1926 &dev_attr_cmb.attr, NULL))
9bdcfb10 1927 dev_warn(dev->ctrl.device,
202021c1
SB
1928 "failed to add sysfs attribute for CMB\n");
1929 }
1930 }
1931
a0a3408e
KB
1932 pci_enable_pcie_error_reporting(pdev);
1933 pci_save_state(pdev);
0877cb0d
KB
1934 return 0;
1935
1936 disable:
0877cb0d
KB
1937 pci_disable_device(pdev);
1938 return result;
1939}
1940
1941static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1942{
1943 if (dev->bar)
1944 iounmap(dev->bar);
a1f447b3 1945 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1946}
1947
1948static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1949{
e75ec752
CH
1950 struct pci_dev *pdev = to_pci_dev(dev->dev);
1951
f63572df 1952 nvme_release_cmb(dev);
dca51e78 1953 pci_free_irq_vectors(pdev);
0877cb0d 1954
a0a3408e
KB
1955 if (pci_is_enabled(pdev)) {
1956 pci_disable_pcie_error_reporting(pdev);
e75ec752 1957 pci_disable_device(pdev);
4d115420 1958 }
4d115420
KB
1959}
1960
a5cdb68c 1961static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1962{
70659060 1963 int i, queues;
302ad8cc
KB
1964 bool dead = true;
1965 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1966
77bf25ea 1967 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1968 if (pci_is_enabled(pdev)) {
1969 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1970
ebef7368
KB
1971 if (dev->ctrl.state == NVME_CTRL_LIVE ||
1972 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
1973 nvme_start_freeze(&dev->ctrl);
1974 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1975 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1976 }
c21377f8 1977
302ad8cc
KB
1978 /*
1979 * Give the controller a chance to complete all entered requests if
1980 * doing a safe shutdown.
1981 */
87ad72a5
CH
1982 if (!dead) {
1983 if (shutdown)
1984 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1985
1986 /*
1987 * If the controller is still alive tell it to stop using the
1988 * host memory buffer. In theory the shutdown / reset should
1989 * make sure that it doesn't access the host memoery anymore,
1990 * but I'd rather be safe than sorry..
1991 */
1992 if (dev->host_mem_descs)
1993 nvme_set_host_mem(dev, 0);
1994
1995 }
302ad8cc
KB
1996 nvme_stop_queues(&dev->ctrl);
1997
70659060 1998 queues = dev->online_queues - 1;
c21377f8
GKB
1999 for (i = dev->queue_count - 1; i > 0; i--)
2000 nvme_suspend_queue(dev->queues[i]);
2001
302ad8cc 2002 if (dead) {
82469c59
GKB
2003 /* A device might become IO incapable very soon during
2004 * probe, before the admin queue is configured. Thus,
2005 * queue_count can be 0 here.
2006 */
2007 if (dev->queue_count)
2008 nvme_suspend_queue(dev->queues[0]);
4d115420 2009 } else {
70659060 2010 nvme_disable_io_queues(dev, queues);
a5cdb68c 2011 nvme_disable_admin_queue(dev, shutdown);
4d115420 2012 }
b00a726a 2013 nvme_pci_disable(dev);
07836e65 2014
e1958e65
ML
2015 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2016 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2017
2018 /*
2019 * The driver will not be starting up queues again if shutting down so
2020 * must flush all entered requests to their failed completion to avoid
2021 * deadlocking blk-mq hot-cpu notifier.
2022 */
2023 if (shutdown)
2024 nvme_start_queues(&dev->ctrl);
77bf25ea 2025 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2026}
2027
091b6092
MW
2028static int nvme_setup_prp_pools(struct nvme_dev *dev)
2029{
e75ec752 2030 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2031 PAGE_SIZE, PAGE_SIZE, 0);
2032 if (!dev->prp_page_pool)
2033 return -ENOMEM;
2034
99802a7a 2035 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2036 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2037 256, 256, 0);
2038 if (!dev->prp_small_pool) {
2039 dma_pool_destroy(dev->prp_page_pool);
2040 return -ENOMEM;
2041 }
091b6092
MW
2042 return 0;
2043}
2044
2045static void nvme_release_prp_pools(struct nvme_dev *dev)
2046{
2047 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2048 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2049}
2050
1673f1f0 2051static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2052{
1673f1f0 2053 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2054
f9f38e33 2055 nvme_dbbuf_dma_free(dev);
e75ec752 2056 put_device(dev->dev);
4af0e21c
KB
2057 if (dev->tagset.tags)
2058 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2059 if (dev->ctrl.admin_q)
2060 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2061 kfree(dev->queues);
e286bcfc 2062 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2063 kfree(dev);
2064}
2065
f58944e2
KB
2066static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2067{
237045fc 2068 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2069
2070 kref_get(&dev->ctrl.kref);
69d9a99c 2071 nvme_dev_disable(dev, false);
f58944e2
KB
2072 if (!schedule_work(&dev->remove_work))
2073 nvme_put_ctrl(&dev->ctrl);
2074}
2075
fd634f41 2076static void nvme_reset_work(struct work_struct *work)
5e82e952 2077{
d86c4d8e
CH
2078 struct nvme_dev *dev =
2079 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2080 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2081 int result = -ENODEV;
5e82e952 2082
82b057ca 2083 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2084 goto out;
5e82e952 2085
fd634f41
CH
2086 /*
2087 * If we're called to reset a live controller first shut it down before
2088 * moving on.
2089 */
b00a726a 2090 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2091 nvme_dev_disable(dev, false);
5e82e952 2092
b00a726a 2093 result = nvme_pci_enable(dev);
f0b50732 2094 if (result)
3cf519b5 2095 goto out;
f0b50732
KB
2096
2097 result = nvme_configure_admin_queue(dev);
2098 if (result)
f58944e2 2099 goto out;
f0b50732 2100
a4aea562 2101 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2102 result = nvme_alloc_admin_tags(dev);
2103 if (result)
f58944e2 2104 goto out;
b9afca3e 2105
ce4541f4
CH
2106 result = nvme_init_identify(&dev->ctrl);
2107 if (result)
f58944e2 2108 goto out;
ce4541f4 2109
e286bcfc
SB
2110 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2111 if (!dev->ctrl.opal_dev)
2112 dev->ctrl.opal_dev =
2113 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2114 else if (was_suspend)
2115 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2116 } else {
2117 free_opal_dev(dev->ctrl.opal_dev);
2118 dev->ctrl.opal_dev = NULL;
4f1244c8 2119 }
a98e58e5 2120
f9f38e33
HK
2121 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2122 result = nvme_dbbuf_dma_alloc(dev);
2123 if (result)
2124 dev_warn(dev->dev,
2125 "unable to allocate dma for dbbuf\n");
2126 }
2127
87ad72a5
CH
2128 if (dev->ctrl.hmpre)
2129 nvme_setup_host_mem(dev);
2130
f0b50732 2131 result = nvme_setup_io_queues(dev);
badc34d4 2132 if (result)
f58944e2 2133 goto out;
f0b50732 2134
21f033f7
KB
2135 /*
2136 * A controller that can not execute IO typically requires user
2137 * intervention to correct. For such degraded controllers, the driver
2138 * should not submit commands the user did not request, so skip
2139 * registering for asynchronous event notification on this condition.
2140 */
f866fc42
CH
2141 if (dev->online_queues > 1)
2142 nvme_queue_async_events(&dev->ctrl);
3cf519b5 2143
2659e57b
CH
2144 /*
2145 * Keep the controller around but remove all namespaces if we don't have
2146 * any working I/O queue.
2147 */
3cf519b5 2148 if (dev->online_queues < 2) {
1b3c47c1 2149 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2150 nvme_kill_queues(&dev->ctrl);
5bae7f73 2151 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2152 } else {
25646264 2153 nvme_start_queues(&dev->ctrl);
302ad8cc 2154 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2155 nvme_dev_add(dev);
302ad8cc 2156 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2157 }
2158
bb8d261e
CH
2159 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2160 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2161 goto out;
2162 }
92911a55
CH
2163
2164 if (dev->online_queues > 1)
5955be21 2165 nvme_queue_scan(&dev->ctrl);
3cf519b5 2166 return;
f0b50732 2167
3cf519b5 2168 out:
f58944e2 2169 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2170}
2171
5c8809e6 2172static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2173{
5c8809e6 2174 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2175 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2176
69d9a99c 2177 nvme_kill_queues(&dev->ctrl);
9a6b9458 2178 if (pci_get_drvdata(pdev))
921920ab 2179 device_release_driver(&pdev->dev);
1673f1f0 2180 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2181}
2182
1c63dc66 2183static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2184{
1c63dc66 2185 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2186 return 0;
9ca97374
TH
2187}
2188
5fd4ce1b 2189static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2190{
5fd4ce1b
CH
2191 writel(val, to_nvme_dev(ctrl)->bar + off);
2192 return 0;
2193}
4cc06521 2194
7fd8930f
CH
2195static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2196{
2197 *val = readq(to_nvme_dev(ctrl)->bar + off);
2198 return 0;
4cc06521
KB
2199}
2200
1c63dc66 2201static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2202 .name = "pcie",
e439bb12 2203 .module = THIS_MODULE,
c81bfba9 2204 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2205 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2206 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2207 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2208 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2209 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2210};
4cc06521 2211
b00a726a
KB
2212static int nvme_dev_map(struct nvme_dev *dev)
2213{
b00a726a
KB
2214 struct pci_dev *pdev = to_pci_dev(dev->dev);
2215
a1f447b3 2216 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2217 return -ENODEV;
2218
97f6ef64 2219 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2220 goto release;
2221
9fa196e7 2222 return 0;
b00a726a 2223 release:
9fa196e7
MG
2224 pci_release_mem_regions(pdev);
2225 return -ENODEV;
b00a726a
KB
2226}
2227
ff5350a8
AL
2228static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2229{
2230 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2231 /*
2232 * Several Samsung devices seem to drop off the PCIe bus
2233 * randomly when APST is on and uses the deepest sleep state.
2234 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2235 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2236 * 950 PRO 256GB", but it seems to be restricted to two Dell
2237 * laptops.
2238 */
2239 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2240 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2241 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2242 return NVME_QUIRK_NO_DEEPEST_PS;
2243 }
2244
2245 return 0;
2246}
2247
8d85fce7 2248static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2249{
a4aea562 2250 int node, result = -ENOMEM;
b60503ba 2251 struct nvme_dev *dev;
ff5350a8 2252 unsigned long quirks = id->driver_data;
b60503ba 2253
a4aea562
MB
2254 node = dev_to_node(&pdev->dev);
2255 if (node == NUMA_NO_NODE)
2fa84351 2256 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2257
2258 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2259 if (!dev)
2260 return -ENOMEM;
a4aea562
MB
2261 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2262 GFP_KERNEL, node);
b60503ba
MW
2263 if (!dev->queues)
2264 goto free;
2265
e75ec752 2266 dev->dev = get_device(&pdev->dev);
9a6b9458 2267 pci_set_drvdata(pdev, dev);
1c63dc66 2268
b00a726a
KB
2269 result = nvme_dev_map(dev);
2270 if (result)
2271 goto free;
2272
d86c4d8e 2273 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2274 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2275 mutex_init(&dev->shutdown_lock);
db3cbfff 2276 init_completion(&dev->ioq_wait);
b60503ba 2277
091b6092
MW
2278 result = nvme_setup_prp_pools(dev);
2279 if (result)
a96d4f5c 2280 goto put_pci;
4cc06521 2281
ff5350a8
AL
2282 quirks |= check_dell_samsung_bug(pdev);
2283
f3ca80fc 2284 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2285 quirks);
4cc06521 2286 if (result)
2e1d8448 2287 goto release_pools;
740216fc 2288
82b057ca 2289 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2290 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2291
d86c4d8e 2292 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2293 return 0;
2294
0877cb0d 2295 release_pools:
091b6092 2296 nvme_release_prp_pools(dev);
a96d4f5c 2297 put_pci:
e75ec752 2298 put_device(dev->dev);
b00a726a 2299 nvme_dev_unmap(dev);
b60503ba
MW
2300 free:
2301 kfree(dev->queues);
b60503ba
MW
2302 kfree(dev);
2303 return result;
2304}
2305
f0d54a54
KB
2306static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2307{
a6739479 2308 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2309
a6739479 2310 if (prepare)
a5cdb68c 2311 nvme_dev_disable(dev, false);
a6739479 2312 else
d86c4d8e 2313 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2314}
2315
09ece142
KB
2316static void nvme_shutdown(struct pci_dev *pdev)
2317{
2318 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2319 nvme_dev_disable(dev, true);
09ece142
KB
2320}
2321
f58944e2
KB
2322/*
2323 * The driver's remove may be called on a device in a partially initialized
2324 * state. This function must not have any dependencies on the device state in
2325 * order to proceed.
2326 */
8d85fce7 2327static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2328{
2329 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2330
bb8d261e
CH
2331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2332
d86c4d8e 2333 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2334 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2335
6db28eda 2336 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2337 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2338 nvme_dev_disable(dev, false);
2339 }
0ff9d4e1 2340
d86c4d8e 2341 flush_work(&dev->ctrl.reset_work);
53029b04 2342 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2343 nvme_dev_disable(dev, true);
87ad72a5 2344 nvme_free_host_mem(dev);
a4aea562 2345 nvme_dev_remove_admin(dev);
a1a5ef99 2346 nvme_free_queues(dev, 0);
9a6b9458 2347 nvme_release_prp_pools(dev);
b00a726a 2348 nvme_dev_unmap(dev);
1673f1f0 2349 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2350}
2351
13880f5b
KB
2352static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2353{
2354 int ret = 0;
2355
2356 if (numvfs == 0) {
2357 if (pci_vfs_assigned(pdev)) {
2358 dev_warn(&pdev->dev,
2359 "Cannot disable SR-IOV VFs while assigned\n");
2360 return -EPERM;
2361 }
2362 pci_disable_sriov(pdev);
2363 return 0;
2364 }
2365
2366 ret = pci_enable_sriov(pdev, numvfs);
2367 return ret ? ret : numvfs;
2368}
2369
671a6018 2370#ifdef CONFIG_PM_SLEEP
cd638946
KB
2371static int nvme_suspend(struct device *dev)
2372{
2373 struct pci_dev *pdev = to_pci_dev(dev);
2374 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2375
a5cdb68c 2376 nvme_dev_disable(ndev, true);
cd638946
KB
2377 return 0;
2378}
2379
2380static int nvme_resume(struct device *dev)
2381{
2382 struct pci_dev *pdev = to_pci_dev(dev);
2383 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2384
d86c4d8e 2385 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2386 return 0;
cd638946 2387}
671a6018 2388#endif
cd638946
KB
2389
2390static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2391
a0a3408e
KB
2392static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2393 pci_channel_state_t state)
2394{
2395 struct nvme_dev *dev = pci_get_drvdata(pdev);
2396
2397 /*
2398 * A frozen channel requires a reset. When detected, this method will
2399 * shutdown the controller to quiesce. The controller will be restarted
2400 * after the slot reset through driver's slot_reset callback.
2401 */
a0a3408e
KB
2402 switch (state) {
2403 case pci_channel_io_normal:
2404 return PCI_ERS_RESULT_CAN_RECOVER;
2405 case pci_channel_io_frozen:
d011fb31
KB
2406 dev_warn(dev->ctrl.device,
2407 "frozen state error detected, reset controller\n");
a5cdb68c 2408 nvme_dev_disable(dev, false);
a0a3408e
KB
2409 return PCI_ERS_RESULT_NEED_RESET;
2410 case pci_channel_io_perm_failure:
d011fb31
KB
2411 dev_warn(dev->ctrl.device,
2412 "failure state error detected, request disconnect\n");
a0a3408e
KB
2413 return PCI_ERS_RESULT_DISCONNECT;
2414 }
2415 return PCI_ERS_RESULT_NEED_RESET;
2416}
2417
2418static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2419{
2420 struct nvme_dev *dev = pci_get_drvdata(pdev);
2421
1b3c47c1 2422 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2423 pci_restore_state(pdev);
d86c4d8e 2424 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2425 return PCI_ERS_RESULT_RECOVERED;
2426}
2427
2428static void nvme_error_resume(struct pci_dev *pdev)
2429{
2430 pci_cleanup_aer_uncorrect_error_status(pdev);
2431}
2432
1d352035 2433static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2434 .error_detected = nvme_error_detected,
b60503ba
MW
2435 .slot_reset = nvme_slot_reset,
2436 .resume = nvme_error_resume,
f0d54a54 2437 .reset_notify = nvme_reset_notify,
b60503ba
MW
2438};
2439
6eb0d698 2440static const struct pci_device_id nvme_id_table[] = {
106198ed 2441 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2442 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2443 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2444 { PCI_VDEVICE(INTEL, 0x0a53),
2445 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2446 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2447 { PCI_VDEVICE(INTEL, 0x0a54),
2448 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2449 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2450 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2451 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2452 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2453 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2454 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2455 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2456 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2457 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2458 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2459 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2460 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2461 { 0, }
2462};
2463MODULE_DEVICE_TABLE(pci, nvme_id_table);
2464
2465static struct pci_driver nvme_driver = {
2466 .name = "nvme",
2467 .id_table = nvme_id_table,
2468 .probe = nvme_probe,
8d85fce7 2469 .remove = nvme_remove,
09ece142 2470 .shutdown = nvme_shutdown,
cd638946
KB
2471 .driver = {
2472 .pm = &nvme_dev_pm_ops,
2473 },
13880f5b 2474 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2475 .err_handler = &nvme_err_handler,
2476};
2477
2478static int __init nvme_init(void)
2479{
9a6327d2 2480 return pci_register_driver(&nvme_driver);
b60503ba
MW
2481}
2482
2483static void __exit nvme_exit(void)
2484{
2485 pci_unregister_driver(&nvme_driver);
21bd78bc 2486 _nvme_check_size();
b60503ba
MW
2487}
2488
2489MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2490MODULE_LICENSE("GPL");
c78b4713 2491MODULE_VERSION("1.0");
b60503ba
MW
2492module_init(nvme_init);
2493module_exit(nvme_exit);