]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: x86 emulator: Use opcode::execute for INS/OUTS from/to port in DX
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
e495606d 21
edf88417 22#include <linux/kvm_host.h>
6aa8b732 23#include <linux/module.h>
9d8f549d 24#include <linux/kernel.h>
6aa8b732
AK
25#include <linux/mm.h>
26#include <linux/highmem.h>
e8edc6e0 27#include <linux/sched.h>
c7addb90 28#include <linux/moduleparam.h>
229456fc 29#include <linux/ftrace_event.h>
5a0e3ad6 30#include <linux/slab.h>
cafd6659 31#include <linux/tboot.h>
5fdbf976 32#include "kvm_cache_regs.h"
35920a35 33#include "x86.h"
e495606d 34
6aa8b732 35#include <asm/io.h>
3b3be0d1 36#include <asm/desc.h>
13673a90 37#include <asm/vmx.h>
6210e37b 38#include <asm/virtext.h>
a0861c02 39#include <asm/mce.h>
2acf923e
DC
40#include <asm/i387.h>
41#include <asm/xcr.h>
d7cd9796 42#include <asm/perf_event.h>
6aa8b732 43
229456fc
MT
44#include "trace.h"
45
4ecac3fd 46#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
47#define __ex_clear(x, reg) \
48 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 49
6aa8b732
AK
50MODULE_AUTHOR("Qumranet");
51MODULE_LICENSE("GPL");
52
4462d21a 53static int __read_mostly enable_vpid = 1;
736caefe 54module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 55
4462d21a 56static int __read_mostly flexpriority_enabled = 1;
736caefe 57module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 58
4462d21a 59static int __read_mostly enable_ept = 1;
736caefe 60module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 61
3a624e29
NK
62static int __read_mostly enable_unrestricted_guest = 1;
63module_param_named(unrestricted_guest,
64 enable_unrestricted_guest, bool, S_IRUGO);
65
4462d21a 66static int __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 67module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 68
b923e62e
DX
69static int __read_mostly vmm_exclusive = 1;
70module_param(vmm_exclusive, bool, S_IRUGO);
71
443381a8
AL
72static int __read_mostly yield_on_hlt = 1;
73module_param(yield_on_hlt, bool, S_IRUGO);
74
58fbbf26
KT
75static int __read_mostly fasteoi = 1;
76module_param(fasteoi, bool, S_IRUGO);
77
801d3424
NHE
78/*
79 * If nested=1, nested virtualization is supported, i.e., guests may use
80 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
81 * use VMX instructions.
82 */
83static int __read_mostly nested = 0;
84module_param(nested, bool, S_IRUGO);
85
cdc0e244
AK
86#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
87 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
88#define KVM_GUEST_CR0_MASK \
89 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
90#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 91 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
92#define KVM_VM_CR0_ALWAYS_ON \
93 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
94#define KVM_CR4_GUEST_OWNED_BITS \
95 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
96 | X86_CR4_OSXMMEXCPT)
97
cdc0e244
AK
98#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
99#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
100
78ac8b47
AK
101#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
102
4b8d54f9
ZE
103/*
104 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
105 * ple_gap: upper bound on the amount of time between two successive
106 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 107 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
108 * ple_window: upper bound on the amount of time a guest is allowed to execute
109 * in a PAUSE loop. Tests indicate that most spinlocks are held for
110 * less than 2^12 cycles
111 * Time is measured based on a counter that runs at the same rate as the TSC,
112 * refer SDM volume 3b section 21.6.13 & 22.1.3.
113 */
00c25bce 114#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
115#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
116static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
117module_param(ple_gap, int, S_IRUGO);
118
119static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
120module_param(ple_window, int, S_IRUGO);
121
8bf00a52 122#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 123#define VMCS02_POOL_SIZE 1
61d2ef2c 124
a2fa3e9f
GH
125struct vmcs {
126 u32 revision_id;
127 u32 abort;
128 char data[0];
129};
130
d462b819
NHE
131/*
132 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
133 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
134 * loaded on this CPU (so we can clear them if the CPU goes down).
135 */
136struct loaded_vmcs {
137 struct vmcs *vmcs;
138 int cpu;
139 int launched;
140 struct list_head loaded_vmcss_on_cpu_link;
141};
142
26bb0981
AK
143struct shared_msr_entry {
144 unsigned index;
145 u64 data;
d5696725 146 u64 mask;
26bb0981
AK
147};
148
a9d30f33
NHE
149/*
150 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
151 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
152 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
153 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
154 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
155 * More than one of these structures may exist, if L1 runs multiple L2 guests.
156 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
157 * underlying hardware which will be used to run L2.
158 * This structure is packed to ensure that its layout is identical across
159 * machines (necessary for live migration).
160 * If there are changes in this struct, VMCS12_REVISION must be changed.
161 */
22bd0358 162typedef u64 natural_width;
a9d30f33
NHE
163struct __packed vmcs12 {
164 /* According to the Intel spec, a VMCS region must start with the
165 * following two fields. Then follow implementation-specific data.
166 */
167 u32 revision_id;
168 u32 abort;
22bd0358 169
27d6c865
NHE
170 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
171 u32 padding[7]; /* room for future expansion */
172
22bd0358
NHE
173 u64 io_bitmap_a;
174 u64 io_bitmap_b;
175 u64 msr_bitmap;
176 u64 vm_exit_msr_store_addr;
177 u64 vm_exit_msr_load_addr;
178 u64 vm_entry_msr_load_addr;
179 u64 tsc_offset;
180 u64 virtual_apic_page_addr;
181 u64 apic_access_addr;
182 u64 ept_pointer;
183 u64 guest_physical_address;
184 u64 vmcs_link_pointer;
185 u64 guest_ia32_debugctl;
186 u64 guest_ia32_pat;
187 u64 guest_ia32_efer;
188 u64 guest_ia32_perf_global_ctrl;
189 u64 guest_pdptr0;
190 u64 guest_pdptr1;
191 u64 guest_pdptr2;
192 u64 guest_pdptr3;
193 u64 host_ia32_pat;
194 u64 host_ia32_efer;
195 u64 host_ia32_perf_global_ctrl;
196 u64 padding64[8]; /* room for future expansion */
197 /*
198 * To allow migration of L1 (complete with its L2 guests) between
199 * machines of different natural widths (32 or 64 bit), we cannot have
200 * unsigned long fields with no explict size. We use u64 (aliased
201 * natural_width) instead. Luckily, x86 is little-endian.
202 */
203 natural_width cr0_guest_host_mask;
204 natural_width cr4_guest_host_mask;
205 natural_width cr0_read_shadow;
206 natural_width cr4_read_shadow;
207 natural_width cr3_target_value0;
208 natural_width cr3_target_value1;
209 natural_width cr3_target_value2;
210 natural_width cr3_target_value3;
211 natural_width exit_qualification;
212 natural_width guest_linear_address;
213 natural_width guest_cr0;
214 natural_width guest_cr3;
215 natural_width guest_cr4;
216 natural_width guest_es_base;
217 natural_width guest_cs_base;
218 natural_width guest_ss_base;
219 natural_width guest_ds_base;
220 natural_width guest_fs_base;
221 natural_width guest_gs_base;
222 natural_width guest_ldtr_base;
223 natural_width guest_tr_base;
224 natural_width guest_gdtr_base;
225 natural_width guest_idtr_base;
226 natural_width guest_dr7;
227 natural_width guest_rsp;
228 natural_width guest_rip;
229 natural_width guest_rflags;
230 natural_width guest_pending_dbg_exceptions;
231 natural_width guest_sysenter_esp;
232 natural_width guest_sysenter_eip;
233 natural_width host_cr0;
234 natural_width host_cr3;
235 natural_width host_cr4;
236 natural_width host_fs_base;
237 natural_width host_gs_base;
238 natural_width host_tr_base;
239 natural_width host_gdtr_base;
240 natural_width host_idtr_base;
241 natural_width host_ia32_sysenter_esp;
242 natural_width host_ia32_sysenter_eip;
243 natural_width host_rsp;
244 natural_width host_rip;
245 natural_width paddingl[8]; /* room for future expansion */
246 u32 pin_based_vm_exec_control;
247 u32 cpu_based_vm_exec_control;
248 u32 exception_bitmap;
249 u32 page_fault_error_code_mask;
250 u32 page_fault_error_code_match;
251 u32 cr3_target_count;
252 u32 vm_exit_controls;
253 u32 vm_exit_msr_store_count;
254 u32 vm_exit_msr_load_count;
255 u32 vm_entry_controls;
256 u32 vm_entry_msr_load_count;
257 u32 vm_entry_intr_info_field;
258 u32 vm_entry_exception_error_code;
259 u32 vm_entry_instruction_len;
260 u32 tpr_threshold;
261 u32 secondary_vm_exec_control;
262 u32 vm_instruction_error;
263 u32 vm_exit_reason;
264 u32 vm_exit_intr_info;
265 u32 vm_exit_intr_error_code;
266 u32 idt_vectoring_info_field;
267 u32 idt_vectoring_error_code;
268 u32 vm_exit_instruction_len;
269 u32 vmx_instruction_info;
270 u32 guest_es_limit;
271 u32 guest_cs_limit;
272 u32 guest_ss_limit;
273 u32 guest_ds_limit;
274 u32 guest_fs_limit;
275 u32 guest_gs_limit;
276 u32 guest_ldtr_limit;
277 u32 guest_tr_limit;
278 u32 guest_gdtr_limit;
279 u32 guest_idtr_limit;
280 u32 guest_es_ar_bytes;
281 u32 guest_cs_ar_bytes;
282 u32 guest_ss_ar_bytes;
283 u32 guest_ds_ar_bytes;
284 u32 guest_fs_ar_bytes;
285 u32 guest_gs_ar_bytes;
286 u32 guest_ldtr_ar_bytes;
287 u32 guest_tr_ar_bytes;
288 u32 guest_interruptibility_info;
289 u32 guest_activity_state;
290 u32 guest_sysenter_cs;
291 u32 host_ia32_sysenter_cs;
292 u32 padding32[8]; /* room for future expansion */
293 u16 virtual_processor_id;
294 u16 guest_es_selector;
295 u16 guest_cs_selector;
296 u16 guest_ss_selector;
297 u16 guest_ds_selector;
298 u16 guest_fs_selector;
299 u16 guest_gs_selector;
300 u16 guest_ldtr_selector;
301 u16 guest_tr_selector;
302 u16 host_es_selector;
303 u16 host_cs_selector;
304 u16 host_ss_selector;
305 u16 host_ds_selector;
306 u16 host_fs_selector;
307 u16 host_gs_selector;
308 u16 host_tr_selector;
a9d30f33
NHE
309};
310
311/*
312 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
313 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
314 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
315 */
316#define VMCS12_REVISION 0x11e57ed0
317
318/*
319 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
320 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
321 * current implementation, 4K are reserved to avoid future complications.
322 */
323#define VMCS12_SIZE 0x1000
324
ff2f6fe9
NHE
325/* Used to remember the last vmcs02 used for some recently used vmcs12s */
326struct vmcs02_list {
327 struct list_head list;
328 gpa_t vmptr;
329 struct loaded_vmcs vmcs02;
330};
331
ec378aee
NHE
332/*
333 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
334 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
335 */
336struct nested_vmx {
337 /* Has the level1 guest done vmxon? */
338 bool vmxon;
a9d30f33
NHE
339
340 /* The guest-physical address of the current VMCS L1 keeps for L2 */
341 gpa_t current_vmptr;
342 /* The host-usable pointer to the above */
343 struct page *current_vmcs12_page;
344 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
345
346 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
347 struct list_head vmcs02_pool;
348 int vmcs02_num;
fe3ef05c 349 u64 vmcs01_tsc_offset;
644d711a
NHE
350 /* L2 must run next, and mustn't decide to exit to L1. */
351 bool nested_run_pending;
fe3ef05c
NHE
352 /*
353 * Guest pages referred to in vmcs02 with host-physical pointers, so
354 * we must keep them pinned while L2 runs.
355 */
356 struct page *apic_access_page;
ec378aee
NHE
357};
358
a2fa3e9f 359struct vcpu_vmx {
fb3f0f51 360 struct kvm_vcpu vcpu;
313dbd49 361 unsigned long host_rsp;
29bd8a78 362 u8 fail;
69c73028 363 u8 cpl;
9d58b931 364 bool nmi_known_unmasked;
51aa01d1 365 u32 exit_intr_info;
1155f76a 366 u32 idt_vectoring_info;
6de12732 367 ulong rflags;
26bb0981 368 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
369 int nmsrs;
370 int save_nmsrs;
a2fa3e9f 371#ifdef CONFIG_X86_64
44ea2b17
AK
372 u64 msr_host_kernel_gs_base;
373 u64 msr_guest_kernel_gs_base;
a2fa3e9f 374#endif
d462b819
NHE
375 /*
376 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
377 * non-nested (L1) guest, it always points to vmcs01. For a nested
378 * guest (L2), it points to a different VMCS.
379 */
380 struct loaded_vmcs vmcs01;
381 struct loaded_vmcs *loaded_vmcs;
382 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
383 struct msr_autoload {
384 unsigned nr;
385 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
386 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
387 } msr_autoload;
a2fa3e9f
GH
388 struct {
389 int loaded;
390 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
391 int gs_ldt_reload_needed;
392 int fs_reload_needed;
d77c26fc 393 } host_state;
9c8cba37 394 struct {
7ffd92c5 395 int vm86_active;
78ac8b47 396 ulong save_rflags;
7ffd92c5
AK
397 struct kvm_save_segment {
398 u16 selector;
399 unsigned long base;
400 u32 limit;
401 u32 ar;
402 } tr, es, ds, fs, gs;
9c8cba37 403 } rmode;
2fb92db1
AK
404 struct {
405 u32 bitmask; /* 4 bits per segment (1 bit per field) */
406 struct kvm_save_segment seg[8];
407 } segment_cache;
2384d2b3 408 int vpid;
04fa4d32 409 bool emulation_required;
3b86cd99
JK
410
411 /* Support for vnmi-less CPUs */
412 int soft_vnmi_blocked;
413 ktime_t entry_time;
414 s64 vnmi_blocked_time;
a0861c02 415 u32 exit_reason;
4e47c7a6
SY
416
417 bool rdtscp_enabled;
ec378aee
NHE
418
419 /* Support for a guest hypervisor (nested VMX) */
420 struct nested_vmx nested;
a2fa3e9f
GH
421};
422
2fb92db1
AK
423enum segment_cache_field {
424 SEG_FIELD_SEL = 0,
425 SEG_FIELD_BASE = 1,
426 SEG_FIELD_LIMIT = 2,
427 SEG_FIELD_AR = 3,
428
429 SEG_FIELD_NR = 4
430};
431
a2fa3e9f
GH
432static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
433{
fb3f0f51 434 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
435}
436
22bd0358
NHE
437#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
438#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
439#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
440 [number##_HIGH] = VMCS12_OFFSET(name)+4
441
442static unsigned short vmcs_field_to_offset_table[] = {
443 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
444 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
445 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
446 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
447 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
448 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
449 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
450 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
451 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
452 FIELD(HOST_ES_SELECTOR, host_es_selector),
453 FIELD(HOST_CS_SELECTOR, host_cs_selector),
454 FIELD(HOST_SS_SELECTOR, host_ss_selector),
455 FIELD(HOST_DS_SELECTOR, host_ds_selector),
456 FIELD(HOST_FS_SELECTOR, host_fs_selector),
457 FIELD(HOST_GS_SELECTOR, host_gs_selector),
458 FIELD(HOST_TR_SELECTOR, host_tr_selector),
459 FIELD64(IO_BITMAP_A, io_bitmap_a),
460 FIELD64(IO_BITMAP_B, io_bitmap_b),
461 FIELD64(MSR_BITMAP, msr_bitmap),
462 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
463 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
464 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
465 FIELD64(TSC_OFFSET, tsc_offset),
466 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
467 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
468 FIELD64(EPT_POINTER, ept_pointer),
469 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
470 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
471 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
472 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
473 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
474 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
475 FIELD64(GUEST_PDPTR0, guest_pdptr0),
476 FIELD64(GUEST_PDPTR1, guest_pdptr1),
477 FIELD64(GUEST_PDPTR2, guest_pdptr2),
478 FIELD64(GUEST_PDPTR3, guest_pdptr3),
479 FIELD64(HOST_IA32_PAT, host_ia32_pat),
480 FIELD64(HOST_IA32_EFER, host_ia32_efer),
481 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
482 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
483 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
484 FIELD(EXCEPTION_BITMAP, exception_bitmap),
485 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
486 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
487 FIELD(CR3_TARGET_COUNT, cr3_target_count),
488 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
489 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
490 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
491 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
492 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
493 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
494 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
495 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
496 FIELD(TPR_THRESHOLD, tpr_threshold),
497 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
498 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
499 FIELD(VM_EXIT_REASON, vm_exit_reason),
500 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
501 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
502 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
503 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
504 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
505 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
506 FIELD(GUEST_ES_LIMIT, guest_es_limit),
507 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
508 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
509 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
510 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
511 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
512 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
513 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
514 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
515 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
516 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
517 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
518 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
519 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
520 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
521 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
522 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
523 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
524 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
525 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
526 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
527 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
528 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
529 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
530 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
531 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
532 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
533 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
534 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
535 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
536 FIELD(EXIT_QUALIFICATION, exit_qualification),
537 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
538 FIELD(GUEST_CR0, guest_cr0),
539 FIELD(GUEST_CR3, guest_cr3),
540 FIELD(GUEST_CR4, guest_cr4),
541 FIELD(GUEST_ES_BASE, guest_es_base),
542 FIELD(GUEST_CS_BASE, guest_cs_base),
543 FIELD(GUEST_SS_BASE, guest_ss_base),
544 FIELD(GUEST_DS_BASE, guest_ds_base),
545 FIELD(GUEST_FS_BASE, guest_fs_base),
546 FIELD(GUEST_GS_BASE, guest_gs_base),
547 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
548 FIELD(GUEST_TR_BASE, guest_tr_base),
549 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
550 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
551 FIELD(GUEST_DR7, guest_dr7),
552 FIELD(GUEST_RSP, guest_rsp),
553 FIELD(GUEST_RIP, guest_rip),
554 FIELD(GUEST_RFLAGS, guest_rflags),
555 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
556 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
557 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
558 FIELD(HOST_CR0, host_cr0),
559 FIELD(HOST_CR3, host_cr3),
560 FIELD(HOST_CR4, host_cr4),
561 FIELD(HOST_FS_BASE, host_fs_base),
562 FIELD(HOST_GS_BASE, host_gs_base),
563 FIELD(HOST_TR_BASE, host_tr_base),
564 FIELD(HOST_GDTR_BASE, host_gdtr_base),
565 FIELD(HOST_IDTR_BASE, host_idtr_base),
566 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
567 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
568 FIELD(HOST_RSP, host_rsp),
569 FIELD(HOST_RIP, host_rip),
570};
571static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
572
573static inline short vmcs_field_to_offset(unsigned long field)
574{
575 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
576 return -1;
577 return vmcs_field_to_offset_table[field];
578}
579
a9d30f33
NHE
580static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
581{
582 return to_vmx(vcpu)->nested.current_vmcs12;
583}
584
585static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
586{
587 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
588 if (is_error_page(page)) {
589 kvm_release_page_clean(page);
590 return NULL;
591 }
592 return page;
593}
594
595static void nested_release_page(struct page *page)
596{
597 kvm_release_page_dirty(page);
598}
599
600static void nested_release_page_clean(struct page *page)
601{
602 kvm_release_page_clean(page);
603}
604
4e1096d2 605static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
606static void kvm_cpu_vmxon(u64 addr);
607static void kvm_cpu_vmxoff(void);
aff48baa 608static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 609static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 610
6aa8b732
AK
611static DEFINE_PER_CPU(struct vmcs *, vmxarea);
612static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
613/*
614 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
615 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
616 */
617static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 618static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 619
3e7c73e9
AK
620static unsigned long *vmx_io_bitmap_a;
621static unsigned long *vmx_io_bitmap_b;
5897297b
AK
622static unsigned long *vmx_msr_bitmap_legacy;
623static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 624
110312c8 625static bool cpu_has_load_ia32_efer;
8bf00a52 626static bool cpu_has_load_perf_global_ctrl;
110312c8 627
2384d2b3
SY
628static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
629static DEFINE_SPINLOCK(vmx_vpid_lock);
630
1c3d14fe 631static struct vmcs_config {
6aa8b732
AK
632 int size;
633 int order;
634 u32 revision_id;
1c3d14fe
YS
635 u32 pin_based_exec_ctrl;
636 u32 cpu_based_exec_ctrl;
f78e0e2e 637 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
638 u32 vmexit_ctrl;
639 u32 vmentry_ctrl;
640} vmcs_config;
6aa8b732 641
efff9e53 642static struct vmx_capability {
d56f546d
SY
643 u32 ept;
644 u32 vpid;
645} vmx_capability;
646
6aa8b732
AK
647#define VMX_SEGMENT_FIELD(seg) \
648 [VCPU_SREG_##seg] = { \
649 .selector = GUEST_##seg##_SELECTOR, \
650 .base = GUEST_##seg##_BASE, \
651 .limit = GUEST_##seg##_LIMIT, \
652 .ar_bytes = GUEST_##seg##_AR_BYTES, \
653 }
654
655static struct kvm_vmx_segment_field {
656 unsigned selector;
657 unsigned base;
658 unsigned limit;
659 unsigned ar_bytes;
660} kvm_vmx_segment_fields[] = {
661 VMX_SEGMENT_FIELD(CS),
662 VMX_SEGMENT_FIELD(DS),
663 VMX_SEGMENT_FIELD(ES),
664 VMX_SEGMENT_FIELD(FS),
665 VMX_SEGMENT_FIELD(GS),
666 VMX_SEGMENT_FIELD(SS),
667 VMX_SEGMENT_FIELD(TR),
668 VMX_SEGMENT_FIELD(LDTR),
669};
670
26bb0981
AK
671static u64 host_efer;
672
6de4f3ad
AK
673static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
674
4d56c8a7 675/*
8c06585d 676 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
677 * away by decrementing the array size.
678 */
6aa8b732 679static const u32 vmx_msr_index[] = {
05b3e0c2 680#ifdef CONFIG_X86_64
44ea2b17 681 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 682#endif
8c06585d 683 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 684};
9d8f549d 685#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 686
31299944 687static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
688{
689 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
690 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 691 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
692}
693
31299944 694static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
695{
696 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
697 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 698 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
699}
700
31299944 701static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
702{
703 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
704 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 705 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
706}
707
31299944 708static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
709{
710 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
711 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
712}
713
31299944 714static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
715{
716 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
717 INTR_INFO_VALID_MASK)) ==
718 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
719}
720
31299944 721static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 722{
04547156 723 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
724}
725
31299944 726static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 727{
04547156 728 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
729}
730
31299944 731static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 732{
04547156 733 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
734}
735
31299944 736static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 737{
04547156
SY
738 return vmcs_config.cpu_based_exec_ctrl &
739 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
740}
741
774ead3a 742static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 743{
04547156
SY
744 return vmcs_config.cpu_based_2nd_exec_ctrl &
745 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
746}
747
748static inline bool cpu_has_vmx_flexpriority(void)
749{
750 return cpu_has_vmx_tpr_shadow() &&
751 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
752}
753
e799794e
MT
754static inline bool cpu_has_vmx_ept_execute_only(void)
755{
31299944 756 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
757}
758
759static inline bool cpu_has_vmx_eptp_uncacheable(void)
760{
31299944 761 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
762}
763
764static inline bool cpu_has_vmx_eptp_writeback(void)
765{
31299944 766 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
767}
768
769static inline bool cpu_has_vmx_ept_2m_page(void)
770{
31299944 771 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
772}
773
878403b7
SY
774static inline bool cpu_has_vmx_ept_1g_page(void)
775{
31299944 776 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
777}
778
4bc9b982
SY
779static inline bool cpu_has_vmx_ept_4levels(void)
780{
781 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
782}
783
31299944 784static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 785{
31299944 786 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
787}
788
31299944 789static inline bool cpu_has_vmx_invept_context(void)
d56f546d 790{
31299944 791 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
792}
793
31299944 794static inline bool cpu_has_vmx_invept_global(void)
d56f546d 795{
31299944 796 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
797}
798
518c8aee
GJ
799static inline bool cpu_has_vmx_invvpid_single(void)
800{
801 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
802}
803
b9d762fa
GJ
804static inline bool cpu_has_vmx_invvpid_global(void)
805{
806 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
807}
808
31299944 809static inline bool cpu_has_vmx_ept(void)
d56f546d 810{
04547156
SY
811 return vmcs_config.cpu_based_2nd_exec_ctrl &
812 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
813}
814
31299944 815static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
816{
817 return vmcs_config.cpu_based_2nd_exec_ctrl &
818 SECONDARY_EXEC_UNRESTRICTED_GUEST;
819}
820
31299944 821static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
822{
823 return vmcs_config.cpu_based_2nd_exec_ctrl &
824 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
825}
826
31299944 827static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 828{
6d3e435e 829 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
830}
831
31299944 832static inline bool cpu_has_vmx_vpid(void)
2384d2b3 833{
04547156
SY
834 return vmcs_config.cpu_based_2nd_exec_ctrl &
835 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
836}
837
31299944 838static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
839{
840 return vmcs_config.cpu_based_2nd_exec_ctrl &
841 SECONDARY_EXEC_RDTSCP;
842}
843
31299944 844static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
845{
846 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
847}
848
f5f48ee1
SY
849static inline bool cpu_has_vmx_wbinvd_exit(void)
850{
851 return vmcs_config.cpu_based_2nd_exec_ctrl &
852 SECONDARY_EXEC_WBINVD_EXITING;
853}
854
04547156
SY
855static inline bool report_flexpriority(void)
856{
857 return flexpriority_enabled;
858}
859
fe3ef05c
NHE
860static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
861{
862 return vmcs12->cpu_based_vm_exec_control & bit;
863}
864
865static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
866{
867 return (vmcs12->cpu_based_vm_exec_control &
868 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
869 (vmcs12->secondary_vm_exec_control & bit);
870}
871
644d711a
NHE
872static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
873 struct kvm_vcpu *vcpu)
874{
875 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
876}
877
878static inline bool is_exception(u32 intr_info)
879{
880 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
881 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
882}
883
884static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
885static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
886 struct vmcs12 *vmcs12,
887 u32 reason, unsigned long qualification);
888
8b9cf98c 889static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
890{
891 int i;
892
a2fa3e9f 893 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 894 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
895 return i;
896 return -1;
897}
898
2384d2b3
SY
899static inline void __invvpid(int ext, u16 vpid, gva_t gva)
900{
901 struct {
902 u64 vpid : 16;
903 u64 rsvd : 48;
904 u64 gva;
905 } operand = { vpid, 0, gva };
906
4ecac3fd 907 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
908 /* CF==1 or ZF==1 --> rc = -1 */
909 "; ja 1f ; ud2 ; 1:"
910 : : "a"(&operand), "c"(ext) : "cc", "memory");
911}
912
1439442c
SY
913static inline void __invept(int ext, u64 eptp, gpa_t gpa)
914{
915 struct {
916 u64 eptp, gpa;
917 } operand = {eptp, gpa};
918
4ecac3fd 919 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
920 /* CF==1 or ZF==1 --> rc = -1 */
921 "; ja 1f ; ud2 ; 1:\n"
922 : : "a" (&operand), "c" (ext) : "cc", "memory");
923}
924
26bb0981 925static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
926{
927 int i;
928
8b9cf98c 929 i = __find_msr_index(vmx, msr);
a75beee6 930 if (i >= 0)
a2fa3e9f 931 return &vmx->guest_msrs[i];
8b6d44c7 932 return NULL;
7725f0ba
AK
933}
934
6aa8b732
AK
935static void vmcs_clear(struct vmcs *vmcs)
936{
937 u64 phys_addr = __pa(vmcs);
938 u8 error;
939
4ecac3fd 940 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 941 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
942 : "cc", "memory");
943 if (error)
944 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
945 vmcs, phys_addr);
946}
947
d462b819
NHE
948static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
949{
950 vmcs_clear(loaded_vmcs->vmcs);
951 loaded_vmcs->cpu = -1;
952 loaded_vmcs->launched = 0;
953}
954
7725b894
DX
955static void vmcs_load(struct vmcs *vmcs)
956{
957 u64 phys_addr = __pa(vmcs);
958 u8 error;
959
960 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 961 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
962 : "cc", "memory");
963 if (error)
2844d849 964 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
965 vmcs, phys_addr);
966}
967
d462b819 968static void __loaded_vmcs_clear(void *arg)
6aa8b732 969{
d462b819 970 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 971 int cpu = raw_smp_processor_id();
6aa8b732 972
d462b819
NHE
973 if (loaded_vmcs->cpu != cpu)
974 return; /* vcpu migration can race with cpu offline */
975 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 976 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
977 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
978 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
979}
980
d462b819 981static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 982{
d462b819
NHE
983 if (loaded_vmcs->cpu != -1)
984 smp_call_function_single(
985 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
986}
987
1760dd49 988static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
989{
990 if (vmx->vpid == 0)
991 return;
992
518c8aee
GJ
993 if (cpu_has_vmx_invvpid_single())
994 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
995}
996
b9d762fa
GJ
997static inline void vpid_sync_vcpu_global(void)
998{
999 if (cpu_has_vmx_invvpid_global())
1000 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1001}
1002
1003static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1004{
1005 if (cpu_has_vmx_invvpid_single())
1760dd49 1006 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1007 else
1008 vpid_sync_vcpu_global();
1009}
1010
1439442c
SY
1011static inline void ept_sync_global(void)
1012{
1013 if (cpu_has_vmx_invept_global())
1014 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1015}
1016
1017static inline void ept_sync_context(u64 eptp)
1018{
089d034e 1019 if (enable_ept) {
1439442c
SY
1020 if (cpu_has_vmx_invept_context())
1021 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1022 else
1023 ept_sync_global();
1024 }
1025}
1026
1027static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1028{
089d034e 1029 if (enable_ept) {
1439442c
SY
1030 if (cpu_has_vmx_invept_individual_addr())
1031 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1032 eptp, gpa);
1033 else
1034 ept_sync_context(eptp);
1035 }
1036}
1037
96304217 1038static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1039{
5e520e62 1040 unsigned long value;
6aa8b732 1041
5e520e62
AK
1042 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1043 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1044 return value;
1045}
1046
96304217 1047static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1048{
1049 return vmcs_readl(field);
1050}
1051
96304217 1052static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1053{
1054 return vmcs_readl(field);
1055}
1056
96304217 1057static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1058{
05b3e0c2 1059#ifdef CONFIG_X86_64
6aa8b732
AK
1060 return vmcs_readl(field);
1061#else
1062 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1063#endif
1064}
1065
e52de1b8
AK
1066static noinline void vmwrite_error(unsigned long field, unsigned long value)
1067{
1068 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1069 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1070 dump_stack();
1071}
1072
6aa8b732
AK
1073static void vmcs_writel(unsigned long field, unsigned long value)
1074{
1075 u8 error;
1076
4ecac3fd 1077 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1078 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1079 if (unlikely(error))
1080 vmwrite_error(field, value);
6aa8b732
AK
1081}
1082
1083static void vmcs_write16(unsigned long field, u16 value)
1084{
1085 vmcs_writel(field, value);
1086}
1087
1088static void vmcs_write32(unsigned long field, u32 value)
1089{
1090 vmcs_writel(field, value);
1091}
1092
1093static void vmcs_write64(unsigned long field, u64 value)
1094{
6aa8b732 1095 vmcs_writel(field, value);
7682f2d0 1096#ifndef CONFIG_X86_64
6aa8b732
AK
1097 asm volatile ("");
1098 vmcs_writel(field+1, value >> 32);
1099#endif
1100}
1101
2ab455cc
AL
1102static void vmcs_clear_bits(unsigned long field, u32 mask)
1103{
1104 vmcs_writel(field, vmcs_readl(field) & ~mask);
1105}
1106
1107static void vmcs_set_bits(unsigned long field, u32 mask)
1108{
1109 vmcs_writel(field, vmcs_readl(field) | mask);
1110}
1111
2fb92db1
AK
1112static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1113{
1114 vmx->segment_cache.bitmask = 0;
1115}
1116
1117static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1118 unsigned field)
1119{
1120 bool ret;
1121 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1122
1123 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1124 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1125 vmx->segment_cache.bitmask = 0;
1126 }
1127 ret = vmx->segment_cache.bitmask & mask;
1128 vmx->segment_cache.bitmask |= mask;
1129 return ret;
1130}
1131
1132static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1133{
1134 u16 *p = &vmx->segment_cache.seg[seg].selector;
1135
1136 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1137 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1138 return *p;
1139}
1140
1141static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1142{
1143 ulong *p = &vmx->segment_cache.seg[seg].base;
1144
1145 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1146 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1147 return *p;
1148}
1149
1150static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1151{
1152 u32 *p = &vmx->segment_cache.seg[seg].limit;
1153
1154 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1155 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1156 return *p;
1157}
1158
1159static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1160{
1161 u32 *p = &vmx->segment_cache.seg[seg].ar;
1162
1163 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1164 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1165 return *p;
1166}
1167
abd3f2d6
AK
1168static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1169{
1170 u32 eb;
1171
fd7373cc
JK
1172 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1173 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1174 if ((vcpu->guest_debug &
1175 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1176 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1177 eb |= 1u << BP_VECTOR;
7ffd92c5 1178 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1179 eb = ~0;
089d034e 1180 if (enable_ept)
1439442c 1181 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1182 if (vcpu->fpu_active)
1183 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1184
1185 /* When we are running a nested L2 guest and L1 specified for it a
1186 * certain exception bitmap, we must trap the same exceptions and pass
1187 * them to L1. When running L2, we will only handle the exceptions
1188 * specified above if L1 did not want them.
1189 */
1190 if (is_guest_mode(vcpu))
1191 eb |= get_vmcs12(vcpu)->exception_bitmap;
1192
abd3f2d6
AK
1193 vmcs_write32(EXCEPTION_BITMAP, eb);
1194}
1195
8bf00a52
GN
1196static void clear_atomic_switch_msr_special(unsigned long entry,
1197 unsigned long exit)
1198{
1199 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1200 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1201}
1202
61d2ef2c
AK
1203static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1204{
1205 unsigned i;
1206 struct msr_autoload *m = &vmx->msr_autoload;
1207
8bf00a52
GN
1208 switch (msr) {
1209 case MSR_EFER:
1210 if (cpu_has_load_ia32_efer) {
1211 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1212 VM_EXIT_LOAD_IA32_EFER);
1213 return;
1214 }
1215 break;
1216 case MSR_CORE_PERF_GLOBAL_CTRL:
1217 if (cpu_has_load_perf_global_ctrl) {
1218 clear_atomic_switch_msr_special(
1219 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1220 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1221 return;
1222 }
1223 break;
110312c8
AK
1224 }
1225
61d2ef2c
AK
1226 for (i = 0; i < m->nr; ++i)
1227 if (m->guest[i].index == msr)
1228 break;
1229
1230 if (i == m->nr)
1231 return;
1232 --m->nr;
1233 m->guest[i] = m->guest[m->nr];
1234 m->host[i] = m->host[m->nr];
1235 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1236 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1237}
1238
8bf00a52
GN
1239static void add_atomic_switch_msr_special(unsigned long entry,
1240 unsigned long exit, unsigned long guest_val_vmcs,
1241 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1242{
1243 vmcs_write64(guest_val_vmcs, guest_val);
1244 vmcs_write64(host_val_vmcs, host_val);
1245 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1246 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1247}
1248
61d2ef2c
AK
1249static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1250 u64 guest_val, u64 host_val)
1251{
1252 unsigned i;
1253 struct msr_autoload *m = &vmx->msr_autoload;
1254
8bf00a52
GN
1255 switch (msr) {
1256 case MSR_EFER:
1257 if (cpu_has_load_ia32_efer) {
1258 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1259 VM_EXIT_LOAD_IA32_EFER,
1260 GUEST_IA32_EFER,
1261 HOST_IA32_EFER,
1262 guest_val, host_val);
1263 return;
1264 }
1265 break;
1266 case MSR_CORE_PERF_GLOBAL_CTRL:
1267 if (cpu_has_load_perf_global_ctrl) {
1268 add_atomic_switch_msr_special(
1269 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1270 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1271 GUEST_IA32_PERF_GLOBAL_CTRL,
1272 HOST_IA32_PERF_GLOBAL_CTRL,
1273 guest_val, host_val);
1274 return;
1275 }
1276 break;
110312c8
AK
1277 }
1278
61d2ef2c
AK
1279 for (i = 0; i < m->nr; ++i)
1280 if (m->guest[i].index == msr)
1281 break;
1282
e7fc6f93
GN
1283 if (i == NR_AUTOLOAD_MSRS) {
1284 printk_once(KERN_WARNING"Not enough mst switch entries. "
1285 "Can't add msr %x\n", msr);
1286 return;
1287 } else if (i == m->nr) {
61d2ef2c
AK
1288 ++m->nr;
1289 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1290 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1291 }
1292
1293 m->guest[i].index = msr;
1294 m->guest[i].value = guest_val;
1295 m->host[i].index = msr;
1296 m->host[i].value = host_val;
1297}
1298
33ed6329
AK
1299static void reload_tss(void)
1300{
33ed6329
AK
1301 /*
1302 * VT restores TR but not its size. Useless.
1303 */
d359192f 1304 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1305 struct desc_struct *descs;
33ed6329 1306
d359192f 1307 descs = (void *)gdt->address;
33ed6329
AK
1308 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1309 load_TR_desc();
33ed6329
AK
1310}
1311
92c0d900 1312static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1313{
3a34a881 1314 u64 guest_efer;
51c6cf66
AK
1315 u64 ignore_bits;
1316
f6801dff 1317 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1318
51c6cf66
AK
1319 /*
1320 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1321 * outside long mode
1322 */
1323 ignore_bits = EFER_NX | EFER_SCE;
1324#ifdef CONFIG_X86_64
1325 ignore_bits |= EFER_LMA | EFER_LME;
1326 /* SCE is meaningful only in long mode on Intel */
1327 if (guest_efer & EFER_LMA)
1328 ignore_bits &= ~(u64)EFER_SCE;
1329#endif
51c6cf66
AK
1330 guest_efer &= ~ignore_bits;
1331 guest_efer |= host_efer & ignore_bits;
26bb0981 1332 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1333 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1334
1335 clear_atomic_switch_msr(vmx, MSR_EFER);
1336 /* On ept, can't emulate nx, and must switch nx atomically */
1337 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1338 guest_efer = vmx->vcpu.arch.efer;
1339 if (!(guest_efer & EFER_LMA))
1340 guest_efer &= ~EFER_LME;
1341 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1342 return false;
1343 }
1344
26bb0981 1345 return true;
51c6cf66
AK
1346}
1347
2d49ec72
GN
1348static unsigned long segment_base(u16 selector)
1349{
d359192f 1350 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1351 struct desc_struct *d;
1352 unsigned long table_base;
1353 unsigned long v;
1354
1355 if (!(selector & ~3))
1356 return 0;
1357
d359192f 1358 table_base = gdt->address;
2d49ec72
GN
1359
1360 if (selector & 4) { /* from ldt */
1361 u16 ldt_selector = kvm_read_ldt();
1362
1363 if (!(ldt_selector & ~3))
1364 return 0;
1365
1366 table_base = segment_base(ldt_selector);
1367 }
1368 d = (struct desc_struct *)(table_base + (selector & ~7));
1369 v = get_desc_base(d);
1370#ifdef CONFIG_X86_64
1371 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1372 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1373#endif
1374 return v;
1375}
1376
1377static inline unsigned long kvm_read_tr_base(void)
1378{
1379 u16 tr;
1380 asm("str %0" : "=g"(tr));
1381 return segment_base(tr);
1382}
1383
04d2cc77 1384static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1385{
04d2cc77 1386 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1387 int i;
04d2cc77 1388
a2fa3e9f 1389 if (vmx->host_state.loaded)
33ed6329
AK
1390 return;
1391
a2fa3e9f 1392 vmx->host_state.loaded = 1;
33ed6329
AK
1393 /*
1394 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1395 * allow segment selectors with cpl > 0 or ti == 1.
1396 */
d6e88aec 1397 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1398 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1399 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1400 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1401 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1402 vmx->host_state.fs_reload_needed = 0;
1403 } else {
33ed6329 1404 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1405 vmx->host_state.fs_reload_needed = 1;
33ed6329 1406 }
9581d442 1407 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1408 if (!(vmx->host_state.gs_sel & 7))
1409 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1410 else {
1411 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1412 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1413 }
1414
1415#ifdef CONFIG_X86_64
1416 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1417 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1418#else
a2fa3e9f
GH
1419 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1420 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1421#endif
707c0874
AK
1422
1423#ifdef CONFIG_X86_64
c8770e7b
AK
1424 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1425 if (is_long_mode(&vmx->vcpu))
44ea2b17 1426 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1427#endif
26bb0981
AK
1428 for (i = 0; i < vmx->save_nmsrs; ++i)
1429 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1430 vmx->guest_msrs[i].data,
1431 vmx->guest_msrs[i].mask);
33ed6329
AK
1432}
1433
a9b21b62 1434static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1435{
a2fa3e9f 1436 if (!vmx->host_state.loaded)
33ed6329
AK
1437 return;
1438
e1beb1d3 1439 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1440 vmx->host_state.loaded = 0;
c8770e7b
AK
1441#ifdef CONFIG_X86_64
1442 if (is_long_mode(&vmx->vcpu))
1443 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1444#endif
152d3f2f 1445 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1446 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1447#ifdef CONFIG_X86_64
9581d442 1448 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1449#else
1450 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1451#endif
33ed6329 1452 }
0a77fe4c
AK
1453 if (vmx->host_state.fs_reload_needed)
1454 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1455 reload_tss();
44ea2b17 1456#ifdef CONFIG_X86_64
c8770e7b 1457 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1458#endif
1c11e713
AK
1459 if (current_thread_info()->status & TS_USEDFPU)
1460 clts();
3444d7da 1461 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1462}
1463
a9b21b62
AK
1464static void vmx_load_host_state(struct vcpu_vmx *vmx)
1465{
1466 preempt_disable();
1467 __vmx_load_host_state(vmx);
1468 preempt_enable();
1469}
1470
6aa8b732
AK
1471/*
1472 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1473 * vcpu mutex is already taken.
1474 */
15ad7146 1475static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1476{
a2fa3e9f 1477 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1478 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1479
4610c9cc
DX
1480 if (!vmm_exclusive)
1481 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1482 else if (vmx->loaded_vmcs->cpu != cpu)
1483 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1484
d462b819
NHE
1485 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1486 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1487 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1488 }
1489
d462b819 1490 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1491 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1492 unsigned long sysenter_esp;
1493
a8eeb04a 1494 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1495 local_irq_disable();
d462b819
NHE
1496 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1497 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1498 local_irq_enable();
1499
6aa8b732
AK
1500 /*
1501 * Linux uses per-cpu TSS and GDT, so set these when switching
1502 * processors.
1503 */
d6e88aec 1504 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1505 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1506
1507 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1508 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1509 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1510 }
6aa8b732
AK
1511}
1512
1513static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1514{
a9b21b62 1515 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1516 if (!vmm_exclusive) {
d462b819
NHE
1517 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1518 vcpu->cpu = -1;
4610c9cc
DX
1519 kvm_cpu_vmxoff();
1520 }
6aa8b732
AK
1521}
1522
5fd86fcf
AK
1523static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1524{
81231c69
AK
1525 ulong cr0;
1526
5fd86fcf
AK
1527 if (vcpu->fpu_active)
1528 return;
1529 vcpu->fpu_active = 1;
81231c69
AK
1530 cr0 = vmcs_readl(GUEST_CR0);
1531 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1532 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1533 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1534 update_exception_bitmap(vcpu);
edcafe3c 1535 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1536 if (is_guest_mode(vcpu))
1537 vcpu->arch.cr0_guest_owned_bits &=
1538 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1539 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1540}
1541
edcafe3c
AK
1542static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1543
fe3ef05c
NHE
1544/*
1545 * Return the cr0 value that a nested guest would read. This is a combination
1546 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1547 * its hypervisor (cr0_read_shadow).
1548 */
1549static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1550{
1551 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1552 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1553}
1554static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1555{
1556 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1557 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1558}
1559
5fd86fcf
AK
1560static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1561{
36cf24e0
NHE
1562 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1563 * set this *before* calling this function.
1564 */
edcafe3c 1565 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1566 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1567 update_exception_bitmap(vcpu);
edcafe3c
AK
1568 vcpu->arch.cr0_guest_owned_bits = 0;
1569 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1570 if (is_guest_mode(vcpu)) {
1571 /*
1572 * L1's specified read shadow might not contain the TS bit,
1573 * so now that we turned on shadowing of this bit, we need to
1574 * set this bit of the shadow. Like in nested_vmx_run we need
1575 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1576 * up-to-date here because we just decached cr0.TS (and we'll
1577 * only update vmcs12->guest_cr0 on nested exit).
1578 */
1579 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1580 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1581 (vcpu->arch.cr0 & X86_CR0_TS);
1582 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1583 } else
1584 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1585}
1586
6aa8b732
AK
1587static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1588{
78ac8b47 1589 unsigned long rflags, save_rflags;
345dcaa8 1590
6de12732
AK
1591 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1592 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1593 rflags = vmcs_readl(GUEST_RFLAGS);
1594 if (to_vmx(vcpu)->rmode.vm86_active) {
1595 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1596 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1597 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1598 }
1599 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1600 }
6de12732 1601 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1602}
1603
1604static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1605{
6de12732 1606 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1607 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1608 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1609 if (to_vmx(vcpu)->rmode.vm86_active) {
1610 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1611 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1612 }
6aa8b732
AK
1613 vmcs_writel(GUEST_RFLAGS, rflags);
1614}
1615
2809f5d2
GC
1616static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1617{
1618 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1619 int ret = 0;
1620
1621 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1622 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1623 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1624 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1625
1626 return ret & mask;
1627}
1628
1629static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1630{
1631 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1632 u32 interruptibility = interruptibility_old;
1633
1634 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1635
48005f64 1636 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1637 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1638 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1639 interruptibility |= GUEST_INTR_STATE_STI;
1640
1641 if ((interruptibility != interruptibility_old))
1642 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1643}
1644
6aa8b732
AK
1645static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1646{
1647 unsigned long rip;
6aa8b732 1648
5fdbf976 1649 rip = kvm_rip_read(vcpu);
6aa8b732 1650 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1651 kvm_rip_write(vcpu, rip);
6aa8b732 1652
2809f5d2
GC
1653 /* skipping an emulated instruction also counts */
1654 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1655}
1656
443381a8
AL
1657static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1658{
1659 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1660 * explicitly skip the instruction because if the HLT state is set, then
1661 * the instruction is already executing and RIP has already been
1662 * advanced. */
1663 if (!yield_on_hlt &&
1664 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1665 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1666}
1667
0b6ac343
NHE
1668/*
1669 * KVM wants to inject page-faults which it got to the guest. This function
1670 * checks whether in a nested guest, we need to inject them to L1 or L2.
1671 * This function assumes it is called with the exit reason in vmcs02 being
1672 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1673 * is running).
1674 */
1675static int nested_pf_handled(struct kvm_vcpu *vcpu)
1676{
1677 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1678
1679 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1680 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1681 return 0;
1682
1683 nested_vmx_vmexit(vcpu);
1684 return 1;
1685}
1686
298101da 1687static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1688 bool has_error_code, u32 error_code,
1689 bool reinject)
298101da 1690{
77ab6db0 1691 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1692 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1693
0b6ac343
NHE
1694 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1695 nested_pf_handled(vcpu))
1696 return;
1697
8ab2d2e2 1698 if (has_error_code) {
77ab6db0 1699 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1700 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1701 }
77ab6db0 1702
7ffd92c5 1703 if (vmx->rmode.vm86_active) {
71f9833b
SH
1704 int inc_eip = 0;
1705 if (kvm_exception_is_soft(nr))
1706 inc_eip = vcpu->arch.event_exit_inst_len;
1707 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1709 return;
1710 }
1711
66fd3f7f
GN
1712 if (kvm_exception_is_soft(nr)) {
1713 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1714 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1715 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1716 } else
1717 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1718
1719 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
443381a8 1720 vmx_clear_hlt(vcpu);
298101da
AK
1721}
1722
4e47c7a6
SY
1723static bool vmx_rdtscp_supported(void)
1724{
1725 return cpu_has_vmx_rdtscp();
1726}
1727
a75beee6
ED
1728/*
1729 * Swap MSR entry in host/guest MSR entry array.
1730 */
8b9cf98c 1731static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1732{
26bb0981 1733 struct shared_msr_entry tmp;
a2fa3e9f
GH
1734
1735 tmp = vmx->guest_msrs[to];
1736 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1737 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1738}
1739
e38aea3e
AK
1740/*
1741 * Set up the vmcs to automatically save and restore system
1742 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1743 * mode, as fiddling with msrs is very expensive.
1744 */
8b9cf98c 1745static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1746{
26bb0981 1747 int save_nmsrs, index;
5897297b 1748 unsigned long *msr_bitmap;
e38aea3e 1749
a75beee6
ED
1750 save_nmsrs = 0;
1751#ifdef CONFIG_X86_64
8b9cf98c 1752 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1753 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1754 if (index >= 0)
8b9cf98c
RR
1755 move_msr_up(vmx, index, save_nmsrs++);
1756 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1757 if (index >= 0)
8b9cf98c
RR
1758 move_msr_up(vmx, index, save_nmsrs++);
1759 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1760 if (index >= 0)
8b9cf98c 1761 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1762 index = __find_msr_index(vmx, MSR_TSC_AUX);
1763 if (index >= 0 && vmx->rdtscp_enabled)
1764 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1765 /*
8c06585d 1766 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1767 * if efer.sce is enabled.
1768 */
8c06585d 1769 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1770 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1771 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1772 }
1773#endif
92c0d900
AK
1774 index = __find_msr_index(vmx, MSR_EFER);
1775 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1776 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1777
26bb0981 1778 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1779
1780 if (cpu_has_vmx_msr_bitmap()) {
1781 if (is_long_mode(&vmx->vcpu))
1782 msr_bitmap = vmx_msr_bitmap_longmode;
1783 else
1784 msr_bitmap = vmx_msr_bitmap_legacy;
1785
1786 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1787 }
e38aea3e
AK
1788}
1789
6aa8b732
AK
1790/*
1791 * reads and returns guest's timestamp counter "register"
1792 * guest_tsc = host_tsc + tsc_offset -- 21.3
1793 */
1794static u64 guest_read_tsc(void)
1795{
1796 u64 host_tsc, tsc_offset;
1797
1798 rdtscll(host_tsc);
1799 tsc_offset = vmcs_read64(TSC_OFFSET);
1800 return host_tsc + tsc_offset;
1801}
1802
d5c1785d
NHE
1803/*
1804 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1805 * counter, even if a nested guest (L2) is currently running.
1806 */
1807u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1808{
1809 u64 host_tsc, tsc_offset;
1810
1811 rdtscll(host_tsc);
1812 tsc_offset = is_guest_mode(vcpu) ?
1813 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1814 vmcs_read64(TSC_OFFSET);
1815 return host_tsc + tsc_offset;
1816}
1817
4051b188
JR
1818/*
1819 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1820 * ioctl. In this case the call-back should update internal vmx state to make
1821 * the changes effective.
1822 */
1823static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1824{
1825 /* Nothing to do here */
1826}
1827
6aa8b732 1828/*
99e3e30a 1829 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1830 */
99e3e30a 1831static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1832{
27fc51b2 1833 if (is_guest_mode(vcpu)) {
7991825b 1834 /*
27fc51b2
NHE
1835 * We're here if L1 chose not to trap WRMSR to TSC. According
1836 * to the spec, this should set L1's TSC; The offset that L1
1837 * set for L2 remains unchanged, and still needs to be added
1838 * to the newly set TSC to get L2's TSC.
7991825b 1839 */
27fc51b2
NHE
1840 struct vmcs12 *vmcs12;
1841 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1842 /* recalculate vmcs02.TSC_OFFSET: */
1843 vmcs12 = get_vmcs12(vcpu);
1844 vmcs_write64(TSC_OFFSET, offset +
1845 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1846 vmcs12->tsc_offset : 0));
1847 } else {
1848 vmcs_write64(TSC_OFFSET, offset);
1849 }
6aa8b732
AK
1850}
1851
e48672fa
ZA
1852static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1853{
1854 u64 offset = vmcs_read64(TSC_OFFSET);
1855 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1856 if (is_guest_mode(vcpu)) {
1857 /* Even when running L2, the adjustment needs to apply to L1 */
1858 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1859 }
e48672fa
ZA
1860}
1861
857e4099
JR
1862static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1863{
1864 return target_tsc - native_read_tsc();
1865}
1866
801d3424
NHE
1867static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1868{
1869 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1870 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1871}
1872
1873/*
1874 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1875 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1876 * all guests if the "nested" module option is off, and can also be disabled
1877 * for a single guest by disabling its VMX cpuid bit.
1878 */
1879static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1880{
1881 return nested && guest_cpuid_has_vmx(vcpu);
1882}
1883
b87a51ae
NHE
1884/*
1885 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1886 * returned for the various VMX controls MSRs when nested VMX is enabled.
1887 * The same values should also be used to verify that vmcs12 control fields are
1888 * valid during nested entry from L1 to L2.
1889 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1890 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1891 * bit in the high half is on if the corresponding bit in the control field
1892 * may be on. See also vmx_control_verify().
1893 * TODO: allow these variables to be modified (downgraded) by module options
1894 * or other means.
1895 */
1896static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1897static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1898static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1899static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1900static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1901static __init void nested_vmx_setup_ctls_msrs(void)
1902{
1903 /*
1904 * Note that as a general rule, the high half of the MSRs (bits in
1905 * the control fields which may be 1) should be initialized by the
1906 * intersection of the underlying hardware's MSR (i.e., features which
1907 * can be supported) and the list of features we want to expose -
1908 * because they are known to be properly supported in our code.
1909 * Also, usually, the low half of the MSRs (bits which must be 1) can
1910 * be set to 0, meaning that L1 may turn off any of these bits. The
1911 * reason is that if one of these bits is necessary, it will appear
1912 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1913 * fields of vmcs01 and vmcs02, will turn these bits off - and
1914 * nested_vmx_exit_handled() will not pass related exits to L1.
1915 * These rules have exceptions below.
1916 */
1917
1918 /* pin-based controls */
1919 /*
1920 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1921 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1922 */
1923 nested_vmx_pinbased_ctls_low = 0x16 ;
1924 nested_vmx_pinbased_ctls_high = 0x16 |
1925 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1926 PIN_BASED_VIRTUAL_NMIS;
1927
1928 /* exit controls */
1929 nested_vmx_exit_ctls_low = 0;
b6f1250e 1930 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1931#ifdef CONFIG_X86_64
1932 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1933#else
1934 nested_vmx_exit_ctls_high = 0;
1935#endif
1936
1937 /* entry controls */
1938 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1939 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1940 nested_vmx_entry_ctls_low = 0;
1941 nested_vmx_entry_ctls_high &=
1942 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1943
1944 /* cpu-based controls */
1945 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1946 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1947 nested_vmx_procbased_ctls_low = 0;
1948 nested_vmx_procbased_ctls_high &=
1949 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1950 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1951 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1952 CPU_BASED_CR3_STORE_EXITING |
1953#ifdef CONFIG_X86_64
1954 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1955#endif
1956 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1957 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1958 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1959 /*
1960 * We can allow some features even when not supported by the
1961 * hardware. For example, L1 can specify an MSR bitmap - and we
1962 * can use it to avoid exits to L1 - even when L0 runs L2
1963 * without MSR bitmaps.
1964 */
1965 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1966
1967 /* secondary cpu-based controls */
1968 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1969 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1970 nested_vmx_secondary_ctls_low = 0;
1971 nested_vmx_secondary_ctls_high &=
1972 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1973}
1974
1975static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1976{
1977 /*
1978 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1979 */
1980 return ((control & high) | low) == control;
1981}
1982
1983static inline u64 vmx_control_msr(u32 low, u32 high)
1984{
1985 return low | ((u64)high << 32);
1986}
1987
1988/*
1989 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1990 * also let it use VMX-specific MSRs.
1991 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1992 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1993 * like all other MSRs).
1994 */
1995static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1996{
1997 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1998 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1999 /*
2000 * According to the spec, processors which do not support VMX
2001 * should throw a #GP(0) when VMX capability MSRs are read.
2002 */
2003 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2004 return 1;
2005 }
2006
2007 switch (msr_index) {
2008 case MSR_IA32_FEATURE_CONTROL:
2009 *pdata = 0;
2010 break;
2011 case MSR_IA32_VMX_BASIC:
2012 /*
2013 * This MSR reports some information about VMX support. We
2014 * should return information about the VMX we emulate for the
2015 * guest, and the VMCS structure we give it - not about the
2016 * VMX support of the underlying hardware.
2017 */
2018 *pdata = VMCS12_REVISION |
2019 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2020 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2021 break;
2022 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2023 case MSR_IA32_VMX_PINBASED_CTLS:
2024 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2025 nested_vmx_pinbased_ctls_high);
2026 break;
2027 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2028 case MSR_IA32_VMX_PROCBASED_CTLS:
2029 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2030 nested_vmx_procbased_ctls_high);
2031 break;
2032 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2033 case MSR_IA32_VMX_EXIT_CTLS:
2034 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2035 nested_vmx_exit_ctls_high);
2036 break;
2037 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2038 case MSR_IA32_VMX_ENTRY_CTLS:
2039 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2040 nested_vmx_entry_ctls_high);
2041 break;
2042 case MSR_IA32_VMX_MISC:
2043 *pdata = 0;
2044 break;
2045 /*
2046 * These MSRs specify bits which the guest must keep fixed (on or off)
2047 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2048 * We picked the standard core2 setting.
2049 */
2050#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2051#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2052 case MSR_IA32_VMX_CR0_FIXED0:
2053 *pdata = VMXON_CR0_ALWAYSON;
2054 break;
2055 case MSR_IA32_VMX_CR0_FIXED1:
2056 *pdata = -1ULL;
2057 break;
2058 case MSR_IA32_VMX_CR4_FIXED0:
2059 *pdata = VMXON_CR4_ALWAYSON;
2060 break;
2061 case MSR_IA32_VMX_CR4_FIXED1:
2062 *pdata = -1ULL;
2063 break;
2064 case MSR_IA32_VMX_VMCS_ENUM:
2065 *pdata = 0x1f;
2066 break;
2067 case MSR_IA32_VMX_PROCBASED_CTLS2:
2068 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2069 nested_vmx_secondary_ctls_high);
2070 break;
2071 case MSR_IA32_VMX_EPT_VPID_CAP:
2072 /* Currently, no nested ept or nested vpid */
2073 *pdata = 0;
2074 break;
2075 default:
2076 return 0;
2077 }
2078
2079 return 1;
2080}
2081
2082static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2083{
2084 if (!nested_vmx_allowed(vcpu))
2085 return 0;
2086
2087 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2088 /* TODO: the right thing. */
2089 return 1;
2090 /*
2091 * No need to treat VMX capability MSRs specially: If we don't handle
2092 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2093 */
2094 return 0;
2095}
2096
6aa8b732
AK
2097/*
2098 * Reads an msr value (of 'msr_index') into 'pdata'.
2099 * Returns 0 on success, non-0 otherwise.
2100 * Assumes vcpu_load() was already called.
2101 */
2102static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2103{
2104 u64 data;
26bb0981 2105 struct shared_msr_entry *msr;
6aa8b732
AK
2106
2107 if (!pdata) {
2108 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2109 return -EINVAL;
2110 }
2111
2112 switch (msr_index) {
05b3e0c2 2113#ifdef CONFIG_X86_64
6aa8b732
AK
2114 case MSR_FS_BASE:
2115 data = vmcs_readl(GUEST_FS_BASE);
2116 break;
2117 case MSR_GS_BASE:
2118 data = vmcs_readl(GUEST_GS_BASE);
2119 break;
44ea2b17
AK
2120 case MSR_KERNEL_GS_BASE:
2121 vmx_load_host_state(to_vmx(vcpu));
2122 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2123 break;
26bb0981 2124#endif
6aa8b732 2125 case MSR_EFER:
3bab1f5d 2126 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2127 case MSR_IA32_TSC:
6aa8b732
AK
2128 data = guest_read_tsc();
2129 break;
2130 case MSR_IA32_SYSENTER_CS:
2131 data = vmcs_read32(GUEST_SYSENTER_CS);
2132 break;
2133 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2134 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2135 break;
2136 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2137 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2138 break;
4e47c7a6
SY
2139 case MSR_TSC_AUX:
2140 if (!to_vmx(vcpu)->rdtscp_enabled)
2141 return 1;
2142 /* Otherwise falls through */
6aa8b732 2143 default:
b87a51ae
NHE
2144 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2145 return 0;
8b9cf98c 2146 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2147 if (msr) {
2148 data = msr->data;
2149 break;
6aa8b732 2150 }
3bab1f5d 2151 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2152 }
2153
2154 *pdata = data;
2155 return 0;
2156}
2157
2158/*
2159 * Writes msr value into into the appropriate "register".
2160 * Returns 0 on success, non-0 otherwise.
2161 * Assumes vcpu_load() was already called.
2162 */
2163static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2164{
a2fa3e9f 2165 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2166 struct shared_msr_entry *msr;
2cc51560
ED
2167 int ret = 0;
2168
6aa8b732 2169 switch (msr_index) {
3bab1f5d 2170 case MSR_EFER:
2cc51560 2171 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2172 break;
16175a79 2173#ifdef CONFIG_X86_64
6aa8b732 2174 case MSR_FS_BASE:
2fb92db1 2175 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2176 vmcs_writel(GUEST_FS_BASE, data);
2177 break;
2178 case MSR_GS_BASE:
2fb92db1 2179 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2180 vmcs_writel(GUEST_GS_BASE, data);
2181 break;
44ea2b17
AK
2182 case MSR_KERNEL_GS_BASE:
2183 vmx_load_host_state(vmx);
2184 vmx->msr_guest_kernel_gs_base = data;
2185 break;
6aa8b732
AK
2186#endif
2187 case MSR_IA32_SYSENTER_CS:
2188 vmcs_write32(GUEST_SYSENTER_CS, data);
2189 break;
2190 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2191 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2192 break;
2193 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2194 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2195 break;
af24a4e4 2196 case MSR_IA32_TSC:
99e3e30a 2197 kvm_write_tsc(vcpu, data);
6aa8b732 2198 break;
468d472f
SY
2199 case MSR_IA32_CR_PAT:
2200 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2201 vmcs_write64(GUEST_IA32_PAT, data);
2202 vcpu->arch.pat = data;
2203 break;
2204 }
4e47c7a6
SY
2205 ret = kvm_set_msr_common(vcpu, msr_index, data);
2206 break;
2207 case MSR_TSC_AUX:
2208 if (!vmx->rdtscp_enabled)
2209 return 1;
2210 /* Check reserved bit, higher 32 bits should be zero */
2211 if ((data >> 32) != 0)
2212 return 1;
2213 /* Otherwise falls through */
6aa8b732 2214 default:
b87a51ae
NHE
2215 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2216 break;
8b9cf98c 2217 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2218 if (msr) {
2219 msr->data = data;
2220 break;
6aa8b732 2221 }
2cc51560 2222 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2223 }
2224
2cc51560 2225 return ret;
6aa8b732
AK
2226}
2227
5fdbf976 2228static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2229{
5fdbf976
MT
2230 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2231 switch (reg) {
2232 case VCPU_REGS_RSP:
2233 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2234 break;
2235 case VCPU_REGS_RIP:
2236 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2237 break;
6de4f3ad
AK
2238 case VCPU_EXREG_PDPTR:
2239 if (enable_ept)
2240 ept_save_pdptrs(vcpu);
2241 break;
5fdbf976
MT
2242 default:
2243 break;
2244 }
6aa8b732
AK
2245}
2246
355be0b9 2247static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2248{
ae675ef0
JK
2249 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2250 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2251 else
2252 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2253
abd3f2d6 2254 update_exception_bitmap(vcpu);
6aa8b732
AK
2255}
2256
2257static __init int cpu_has_kvm_support(void)
2258{
6210e37b 2259 return cpu_has_vmx();
6aa8b732
AK
2260}
2261
2262static __init int vmx_disabled_by_bios(void)
2263{
2264 u64 msr;
2265
2266 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2267 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2268 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2269 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2270 && tboot_enabled())
2271 return 1;
23f3e991 2272 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2273 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2274 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2275 && !tboot_enabled()) {
2276 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2277 "activate TXT before enabling KVM\n");
cafd6659 2278 return 1;
f9335afe 2279 }
23f3e991
JC
2280 /* launched w/o TXT and VMX disabled */
2281 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2282 && !tboot_enabled())
2283 return 1;
cafd6659
SW
2284 }
2285
2286 return 0;
6aa8b732
AK
2287}
2288
7725b894
DX
2289static void kvm_cpu_vmxon(u64 addr)
2290{
2291 asm volatile (ASM_VMX_VMXON_RAX
2292 : : "a"(&addr), "m"(addr)
2293 : "memory", "cc");
2294}
2295
10474ae8 2296static int hardware_enable(void *garbage)
6aa8b732
AK
2297{
2298 int cpu = raw_smp_processor_id();
2299 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2300 u64 old, test_bits;
6aa8b732 2301
10474ae8
AG
2302 if (read_cr4() & X86_CR4_VMXE)
2303 return -EBUSY;
2304
d462b819 2305 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2306 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2307
2308 test_bits = FEATURE_CONTROL_LOCKED;
2309 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2310 if (tboot_enabled())
2311 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2312
2313 if ((old & test_bits) != test_bits) {
6aa8b732 2314 /* enable and lock */
cafd6659
SW
2315 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2316 }
66aee91a 2317 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2318
4610c9cc
DX
2319 if (vmm_exclusive) {
2320 kvm_cpu_vmxon(phys_addr);
2321 ept_sync_global();
2322 }
10474ae8 2323
3444d7da
AK
2324 store_gdt(&__get_cpu_var(host_gdt));
2325
10474ae8 2326 return 0;
6aa8b732
AK
2327}
2328
d462b819 2329static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2330{
2331 int cpu = raw_smp_processor_id();
d462b819 2332 struct loaded_vmcs *v, *n;
543e4243 2333
d462b819
NHE
2334 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2335 loaded_vmcss_on_cpu_link)
2336 __loaded_vmcs_clear(v);
543e4243
AK
2337}
2338
710ff4a8
EH
2339
2340/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2341 * tricks.
2342 */
2343static void kvm_cpu_vmxoff(void)
6aa8b732 2344{
4ecac3fd 2345 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2346}
2347
710ff4a8
EH
2348static void hardware_disable(void *garbage)
2349{
4610c9cc 2350 if (vmm_exclusive) {
d462b819 2351 vmclear_local_loaded_vmcss();
4610c9cc
DX
2352 kvm_cpu_vmxoff();
2353 }
7725b894 2354 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2355}
2356
1c3d14fe 2357static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2358 u32 msr, u32 *result)
1c3d14fe
YS
2359{
2360 u32 vmx_msr_low, vmx_msr_high;
2361 u32 ctl = ctl_min | ctl_opt;
2362
2363 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2364
2365 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2366 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2367
2368 /* Ensure minimum (required) set of control bits are supported. */
2369 if (ctl_min & ~ctl)
002c7f7c 2370 return -EIO;
1c3d14fe
YS
2371
2372 *result = ctl;
2373 return 0;
2374}
2375
110312c8
AK
2376static __init bool allow_1_setting(u32 msr, u32 ctl)
2377{
2378 u32 vmx_msr_low, vmx_msr_high;
2379
2380 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2381 return vmx_msr_high & ctl;
2382}
2383
002c7f7c 2384static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2385{
2386 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2387 u32 min, opt, min2, opt2;
1c3d14fe
YS
2388 u32 _pin_based_exec_control = 0;
2389 u32 _cpu_based_exec_control = 0;
f78e0e2e 2390 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2391 u32 _vmexit_control = 0;
2392 u32 _vmentry_control = 0;
2393
2394 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2395 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2396 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2397 &_pin_based_exec_control) < 0)
002c7f7c 2398 return -EIO;
1c3d14fe 2399
443381a8 2400 min =
1c3d14fe
YS
2401#ifdef CONFIG_X86_64
2402 CPU_BASED_CR8_LOAD_EXITING |
2403 CPU_BASED_CR8_STORE_EXITING |
2404#endif
d56f546d
SY
2405 CPU_BASED_CR3_LOAD_EXITING |
2406 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2407 CPU_BASED_USE_IO_BITMAPS |
2408 CPU_BASED_MOV_DR_EXITING |
a7052897 2409 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2410 CPU_BASED_MWAIT_EXITING |
2411 CPU_BASED_MONITOR_EXITING |
a7052897 2412 CPU_BASED_INVLPG_EXITING;
443381a8
AL
2413
2414 if (yield_on_hlt)
2415 min |= CPU_BASED_HLT_EXITING;
2416
f78e0e2e 2417 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2418 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2419 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2420 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2421 &_cpu_based_exec_control) < 0)
002c7f7c 2422 return -EIO;
6e5d865c
YS
2423#ifdef CONFIG_X86_64
2424 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2425 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2426 ~CPU_BASED_CR8_STORE_EXITING;
2427#endif
f78e0e2e 2428 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2429 min2 = 0;
2430 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2431 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2432 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2433 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2434 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2435 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2436 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2437 if (adjust_vmx_controls(min2, opt2,
2438 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2439 &_cpu_based_2nd_exec_control) < 0)
2440 return -EIO;
2441 }
2442#ifndef CONFIG_X86_64
2443 if (!(_cpu_based_2nd_exec_control &
2444 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2445 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2446#endif
d56f546d 2447 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2448 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2449 enabled */
5fff7d27
GN
2450 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2451 CPU_BASED_CR3_STORE_EXITING |
2452 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2453 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2454 vmx_capability.ept, vmx_capability.vpid);
2455 }
1c3d14fe
YS
2456
2457 min = 0;
2458#ifdef CONFIG_X86_64
2459 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2460#endif
468d472f 2461 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2462 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2463 &_vmexit_control) < 0)
002c7f7c 2464 return -EIO;
1c3d14fe 2465
468d472f
SY
2466 min = 0;
2467 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2468 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 &_vmentry_control) < 0)
002c7f7c 2470 return -EIO;
6aa8b732 2471
c68876fd 2472 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2473
2474 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2475 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2476 return -EIO;
1c3d14fe
YS
2477
2478#ifdef CONFIG_X86_64
2479 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2480 if (vmx_msr_high & (1u<<16))
002c7f7c 2481 return -EIO;
1c3d14fe
YS
2482#endif
2483
2484 /* Require Write-Back (WB) memory type for VMCS accesses. */
2485 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2486 return -EIO;
1c3d14fe 2487
002c7f7c
YS
2488 vmcs_conf->size = vmx_msr_high & 0x1fff;
2489 vmcs_conf->order = get_order(vmcs_config.size);
2490 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2491
002c7f7c
YS
2492 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2493 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2494 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2495 vmcs_conf->vmexit_ctrl = _vmexit_control;
2496 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2497
110312c8
AK
2498 cpu_has_load_ia32_efer =
2499 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2500 VM_ENTRY_LOAD_IA32_EFER)
2501 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2502 VM_EXIT_LOAD_IA32_EFER);
2503
8bf00a52
GN
2504 cpu_has_load_perf_global_ctrl =
2505 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2506 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2507 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2508 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2509
2510 /*
2511 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2512 * but due to arrata below it can't be used. Workaround is to use
2513 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2514 *
2515 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2516 *
2517 * AAK155 (model 26)
2518 * AAP115 (model 30)
2519 * AAT100 (model 37)
2520 * BC86,AAY89,BD102 (model 44)
2521 * BA97 (model 46)
2522 *
2523 */
2524 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2525 switch (boot_cpu_data.x86_model) {
2526 case 26:
2527 case 30:
2528 case 37:
2529 case 44:
2530 case 46:
2531 cpu_has_load_perf_global_ctrl = false;
2532 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2533 "does not work properly. Using workaround\n");
2534 break;
2535 default:
2536 break;
2537 }
2538 }
2539
1c3d14fe 2540 return 0;
c68876fd 2541}
6aa8b732
AK
2542
2543static struct vmcs *alloc_vmcs_cpu(int cpu)
2544{
2545 int node = cpu_to_node(cpu);
2546 struct page *pages;
2547 struct vmcs *vmcs;
2548
6484eb3e 2549 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2550 if (!pages)
2551 return NULL;
2552 vmcs = page_address(pages);
1c3d14fe
YS
2553 memset(vmcs, 0, vmcs_config.size);
2554 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2555 return vmcs;
2556}
2557
2558static struct vmcs *alloc_vmcs(void)
2559{
d3b2c338 2560 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2561}
2562
2563static void free_vmcs(struct vmcs *vmcs)
2564{
1c3d14fe 2565 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2566}
2567
d462b819
NHE
2568/*
2569 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2570 */
2571static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2572{
2573 if (!loaded_vmcs->vmcs)
2574 return;
2575 loaded_vmcs_clear(loaded_vmcs);
2576 free_vmcs(loaded_vmcs->vmcs);
2577 loaded_vmcs->vmcs = NULL;
2578}
2579
39959588 2580static void free_kvm_area(void)
6aa8b732
AK
2581{
2582 int cpu;
2583
3230bb47 2584 for_each_possible_cpu(cpu) {
6aa8b732 2585 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2586 per_cpu(vmxarea, cpu) = NULL;
2587 }
6aa8b732
AK
2588}
2589
6aa8b732
AK
2590static __init int alloc_kvm_area(void)
2591{
2592 int cpu;
2593
3230bb47 2594 for_each_possible_cpu(cpu) {
6aa8b732
AK
2595 struct vmcs *vmcs;
2596
2597 vmcs = alloc_vmcs_cpu(cpu);
2598 if (!vmcs) {
2599 free_kvm_area();
2600 return -ENOMEM;
2601 }
2602
2603 per_cpu(vmxarea, cpu) = vmcs;
2604 }
2605 return 0;
2606}
2607
2608static __init int hardware_setup(void)
2609{
002c7f7c
YS
2610 if (setup_vmcs_config(&vmcs_config) < 0)
2611 return -EIO;
50a37eb4
JR
2612
2613 if (boot_cpu_has(X86_FEATURE_NX))
2614 kvm_enable_efer_bits(EFER_NX);
2615
93ba03c2
SY
2616 if (!cpu_has_vmx_vpid())
2617 enable_vpid = 0;
2618
4bc9b982
SY
2619 if (!cpu_has_vmx_ept() ||
2620 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2621 enable_ept = 0;
3a624e29
NK
2622 enable_unrestricted_guest = 0;
2623 }
2624
2625 if (!cpu_has_vmx_unrestricted_guest())
2626 enable_unrestricted_guest = 0;
93ba03c2
SY
2627
2628 if (!cpu_has_vmx_flexpriority())
2629 flexpriority_enabled = 0;
2630
95ba8273
GN
2631 if (!cpu_has_vmx_tpr_shadow())
2632 kvm_x86_ops->update_cr8_intercept = NULL;
2633
54dee993
MT
2634 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2635 kvm_disable_largepages();
2636
4b8d54f9
ZE
2637 if (!cpu_has_vmx_ple())
2638 ple_gap = 0;
2639
b87a51ae
NHE
2640 if (nested)
2641 nested_vmx_setup_ctls_msrs();
2642
6aa8b732
AK
2643 return alloc_kvm_area();
2644}
2645
2646static __exit void hardware_unsetup(void)
2647{
2648 free_kvm_area();
2649}
2650
6aa8b732
AK
2651static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2652{
2653 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2654
6af11b9e 2655 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2656 vmcs_write16(sf->selector, save->selector);
2657 vmcs_writel(sf->base, save->base);
2658 vmcs_write32(sf->limit, save->limit);
2659 vmcs_write32(sf->ar_bytes, save->ar);
2660 } else {
2661 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2662 << AR_DPL_SHIFT;
2663 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2664 }
2665}
2666
2667static void enter_pmode(struct kvm_vcpu *vcpu)
2668{
2669 unsigned long flags;
a89a8fb9 2670 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2671
a89a8fb9 2672 vmx->emulation_required = 1;
7ffd92c5 2673 vmx->rmode.vm86_active = 0;
6aa8b732 2674
2fb92db1
AK
2675 vmx_segment_cache_clear(vmx);
2676
d0ba64f9 2677 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2678 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2679 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2680 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2681
2682 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2683 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2684 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2685 vmcs_writel(GUEST_RFLAGS, flags);
2686
66aee91a
RR
2687 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2688 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2689
2690 update_exception_bitmap(vcpu);
2691
a89a8fb9
MG
2692 if (emulate_invalid_guest_state)
2693 return;
2694
7ffd92c5
AK
2695 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2696 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2697 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2698 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2699
2fb92db1
AK
2700 vmx_segment_cache_clear(vmx);
2701
6aa8b732
AK
2702 vmcs_write16(GUEST_SS_SELECTOR, 0);
2703 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2704
2705 vmcs_write16(GUEST_CS_SELECTOR,
2706 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2707 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2708}
2709
d77c26fc 2710static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2711{
bfc6d222 2712 if (!kvm->arch.tss_addr) {
bc6678a3 2713 struct kvm_memslots *slots;
28a37544 2714 struct kvm_memory_slot *slot;
bc6678a3
MT
2715 gfn_t base_gfn;
2716
90d83dc3 2717 slots = kvm_memslots(kvm);
28a37544
XG
2718 slot = id_to_memslot(slots, 0);
2719 base_gfn = slot->base_gfn + slot->npages - 3;
2720
cbc94022
IE
2721 return base_gfn << PAGE_SHIFT;
2722 }
bfc6d222 2723 return kvm->arch.tss_addr;
6aa8b732
AK
2724}
2725
2726static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2727{
2728 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2729
2730 save->selector = vmcs_read16(sf->selector);
2731 save->base = vmcs_readl(sf->base);
2732 save->limit = vmcs_read32(sf->limit);
2733 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2734 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2735 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2736 vmcs_write32(sf->limit, 0xffff);
2737 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2738 if (save->base & 0xf)
2739 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2740 " aligned when entering protected mode (seg=%d)",
2741 seg);
6aa8b732
AK
2742}
2743
2744static void enter_rmode(struct kvm_vcpu *vcpu)
2745{
2746 unsigned long flags;
a89a8fb9 2747 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2748
3a624e29
NK
2749 if (enable_unrestricted_guest)
2750 return;
2751
a89a8fb9 2752 vmx->emulation_required = 1;
7ffd92c5 2753 vmx->rmode.vm86_active = 1;
6aa8b732 2754
776e58ea
GN
2755 /*
2756 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2757 * vcpu. Call it here with phys address pointing 16M below 4G.
2758 */
2759 if (!vcpu->kvm->arch.tss_addr) {
2760 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2761 "called before entering vcpu\n");
2762 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2763 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2764 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2765 }
2766
2fb92db1
AK
2767 vmx_segment_cache_clear(vmx);
2768
d0ba64f9 2769 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2770 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2771 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2772
7ffd92c5 2773 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2774 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2775
7ffd92c5 2776 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2777 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2778
2779 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2780 vmx->rmode.save_rflags = flags;
6aa8b732 2781
053de044 2782 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2783
2784 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2785 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2786 update_exception_bitmap(vcpu);
2787
a89a8fb9
MG
2788 if (emulate_invalid_guest_state)
2789 goto continue_rmode;
2790
6aa8b732
AK
2791 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2792 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2793 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2794
2795 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2796 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2797 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2798 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2799 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2800
7ffd92c5
AK
2801 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2802 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2803 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2804 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2805
a89a8fb9 2806continue_rmode:
8668a3c4 2807 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2808}
2809
401d10de
AS
2810static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2811{
2812 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2813 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2814
2815 if (!msr)
2816 return;
401d10de 2817
44ea2b17
AK
2818 /*
2819 * Force kernel_gs_base reloading before EFER changes, as control
2820 * of this msr depends on is_long_mode().
2821 */
2822 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2823 vcpu->arch.efer = efer;
401d10de
AS
2824 if (efer & EFER_LMA) {
2825 vmcs_write32(VM_ENTRY_CONTROLS,
2826 vmcs_read32(VM_ENTRY_CONTROLS) |
2827 VM_ENTRY_IA32E_MODE);
2828 msr->data = efer;
2829 } else {
2830 vmcs_write32(VM_ENTRY_CONTROLS,
2831 vmcs_read32(VM_ENTRY_CONTROLS) &
2832 ~VM_ENTRY_IA32E_MODE);
2833
2834 msr->data = efer & ~EFER_LME;
2835 }
2836 setup_msrs(vmx);
2837}
2838
05b3e0c2 2839#ifdef CONFIG_X86_64
6aa8b732
AK
2840
2841static void enter_lmode(struct kvm_vcpu *vcpu)
2842{
2843 u32 guest_tr_ar;
2844
2fb92db1
AK
2845 vmx_segment_cache_clear(to_vmx(vcpu));
2846
6aa8b732
AK
2847 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2848 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2849 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2850 __func__);
6aa8b732
AK
2851 vmcs_write32(GUEST_TR_AR_BYTES,
2852 (guest_tr_ar & ~AR_TYPE_MASK)
2853 | AR_TYPE_BUSY_64_TSS);
2854 }
da38f438 2855 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2856}
2857
2858static void exit_lmode(struct kvm_vcpu *vcpu)
2859{
6aa8b732
AK
2860 vmcs_write32(VM_ENTRY_CONTROLS,
2861 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2862 & ~VM_ENTRY_IA32E_MODE);
da38f438 2863 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2864}
2865
2866#endif
2867
2384d2b3
SY
2868static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2869{
b9d762fa 2870 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2871 if (enable_ept) {
2872 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2873 return;
4e1096d2 2874 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2875 }
2384d2b3
SY
2876}
2877
e8467fda
AK
2878static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2879{
2880 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2881
2882 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2883 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2884}
2885
aff48baa
AK
2886static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2887{
2888 if (enable_ept && is_paging(vcpu))
2889 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2890 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2891}
2892
25c4c276 2893static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2894{
fc78f519
AK
2895 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2896
2897 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2898 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2899}
2900
1439442c
SY
2901static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2902{
6de4f3ad
AK
2903 if (!test_bit(VCPU_EXREG_PDPTR,
2904 (unsigned long *)&vcpu->arch.regs_dirty))
2905 return;
2906
1439442c 2907 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2908 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2909 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2910 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2911 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2912 }
2913}
2914
8f5d549f
AK
2915static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2916{
2917 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2918 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2919 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2920 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2921 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2922 }
6de4f3ad
AK
2923
2924 __set_bit(VCPU_EXREG_PDPTR,
2925 (unsigned long *)&vcpu->arch.regs_avail);
2926 __set_bit(VCPU_EXREG_PDPTR,
2927 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2928}
2929
5e1746d6 2930static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2931
2932static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2933 unsigned long cr0,
2934 struct kvm_vcpu *vcpu)
2935{
5233dd51
MT
2936 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2937 vmx_decache_cr3(vcpu);
1439442c
SY
2938 if (!(cr0 & X86_CR0_PG)) {
2939 /* From paging/starting to nonpaging */
2940 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2941 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2942 (CPU_BASED_CR3_LOAD_EXITING |
2943 CPU_BASED_CR3_STORE_EXITING));
2944 vcpu->arch.cr0 = cr0;
fc78f519 2945 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2946 } else if (!is_paging(vcpu)) {
2947 /* From nonpaging to paging */
2948 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2949 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2950 ~(CPU_BASED_CR3_LOAD_EXITING |
2951 CPU_BASED_CR3_STORE_EXITING));
2952 vcpu->arch.cr0 = cr0;
fc78f519 2953 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2954 }
95eb84a7
SY
2955
2956 if (!(cr0 & X86_CR0_WP))
2957 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2958}
2959
6aa8b732
AK
2960static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2961{
7ffd92c5 2962 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2963 unsigned long hw_cr0;
2964
2965 if (enable_unrestricted_guest)
2966 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2967 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2968 else
2969 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2970
7ffd92c5 2971 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2972 enter_pmode(vcpu);
2973
7ffd92c5 2974 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2975 enter_rmode(vcpu);
2976
05b3e0c2 2977#ifdef CONFIG_X86_64
f6801dff 2978 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2979 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2980 enter_lmode(vcpu);
707d92fa 2981 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2982 exit_lmode(vcpu);
2983 }
2984#endif
2985
089d034e 2986 if (enable_ept)
1439442c
SY
2987 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2988
02daab21 2989 if (!vcpu->fpu_active)
81231c69 2990 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 2991
6aa8b732 2992 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 2993 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 2994 vcpu->arch.cr0 = cr0;
69c73028 2995 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
2996}
2997
1439442c
SY
2998static u64 construct_eptp(unsigned long root_hpa)
2999{
3000 u64 eptp;
3001
3002 /* TODO write the value reading from MSR */
3003 eptp = VMX_EPT_DEFAULT_MT |
3004 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3005 eptp |= (root_hpa & PAGE_MASK);
3006
3007 return eptp;
3008}
3009
6aa8b732
AK
3010static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3011{
1439442c
SY
3012 unsigned long guest_cr3;
3013 u64 eptp;
3014
3015 guest_cr3 = cr3;
089d034e 3016 if (enable_ept) {
1439442c
SY
3017 eptp = construct_eptp(cr3);
3018 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3019 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3020 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3021 ept_load_pdptrs(vcpu);
1439442c
SY
3022 }
3023
2384d2b3 3024 vmx_flush_tlb(vcpu);
1439442c 3025 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3026}
3027
5e1746d6 3028static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3029{
7ffd92c5 3030 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3031 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3032
5e1746d6
NHE
3033 if (cr4 & X86_CR4_VMXE) {
3034 /*
3035 * To use VMXON (and later other VMX instructions), a guest
3036 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3037 * So basically the check on whether to allow nested VMX
3038 * is here.
3039 */
3040 if (!nested_vmx_allowed(vcpu))
3041 return 1;
3042 } else if (to_vmx(vcpu)->nested.vmxon)
3043 return 1;
3044
ad312c7c 3045 vcpu->arch.cr4 = cr4;
bc23008b
AK
3046 if (enable_ept) {
3047 if (!is_paging(vcpu)) {
3048 hw_cr4 &= ~X86_CR4_PAE;
3049 hw_cr4 |= X86_CR4_PSE;
3050 } else if (!(cr4 & X86_CR4_PAE)) {
3051 hw_cr4 &= ~X86_CR4_PAE;
3052 }
3053 }
1439442c
SY
3054
3055 vmcs_writel(CR4_READ_SHADOW, cr4);
3056 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3057 return 0;
6aa8b732
AK
3058}
3059
6aa8b732
AK
3060static void vmx_get_segment(struct kvm_vcpu *vcpu,
3061 struct kvm_segment *var, int seg)
3062{
a9179499 3063 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 3064 struct kvm_save_segment *save;
6aa8b732
AK
3065 u32 ar;
3066
a9179499
AK
3067 if (vmx->rmode.vm86_active
3068 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3069 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3070 || seg == VCPU_SREG_GS)
3071 && !emulate_invalid_guest_state) {
3072 switch (seg) {
3073 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3074 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3075 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3076 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3077 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3078 default: BUG();
3079 }
3080 var->selector = save->selector;
3081 var->base = save->base;
3082 var->limit = save->limit;
3083 ar = save->ar;
3084 if (seg == VCPU_SREG_TR
2fb92db1 3085 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3086 goto use_saved_rmode_seg;
3087 }
2fb92db1
AK
3088 var->base = vmx_read_guest_seg_base(vmx, seg);
3089 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3090 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3091 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3092use_saved_rmode_seg:
9fd4a3b7 3093 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3094 ar = 0;
3095 var->type = ar & 15;
3096 var->s = (ar >> 4) & 1;
3097 var->dpl = (ar >> 5) & 3;
3098 var->present = (ar >> 7) & 1;
3099 var->avl = (ar >> 12) & 1;
3100 var->l = (ar >> 13) & 1;
3101 var->db = (ar >> 14) & 1;
3102 var->g = (ar >> 15) & 1;
3103 var->unusable = (ar >> 16) & 1;
3104}
3105
a9179499
AK
3106static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3107{
a9179499
AK
3108 struct kvm_segment s;
3109
3110 if (to_vmx(vcpu)->rmode.vm86_active) {
3111 vmx_get_segment(vcpu, &s, seg);
3112 return s.base;
3113 }
2fb92db1 3114 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3115}
3116
69c73028 3117static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3118{
3eeb3288 3119 if (!is_protmode(vcpu))
2e4d2653
IE
3120 return 0;
3121
f4c63e5d
AK
3122 if (!is_long_mode(vcpu)
3123 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3124 return 3;
3125
2fb92db1 3126 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3127}
3128
69c73028
AK
3129static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3130{
3131 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3132 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3133 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3134 }
3135 return to_vmx(vcpu)->cpl;
3136}
3137
3138
653e3108 3139static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3140{
6aa8b732
AK
3141 u32 ar;
3142
653e3108 3143 if (var->unusable)
6aa8b732
AK
3144 ar = 1 << 16;
3145 else {
3146 ar = var->type & 15;
3147 ar |= (var->s & 1) << 4;
3148 ar |= (var->dpl & 3) << 5;
3149 ar |= (var->present & 1) << 7;
3150 ar |= (var->avl & 1) << 12;
3151 ar |= (var->l & 1) << 13;
3152 ar |= (var->db & 1) << 14;
3153 ar |= (var->g & 1) << 15;
3154 }
f7fbf1fd
UL
3155 if (ar == 0) /* a 0 value means unusable */
3156 ar = AR_UNUSABLE_MASK;
653e3108
AK
3157
3158 return ar;
3159}
3160
3161static void vmx_set_segment(struct kvm_vcpu *vcpu,
3162 struct kvm_segment *var, int seg)
3163{
7ffd92c5 3164 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3165 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3166 u32 ar;
3167
2fb92db1
AK
3168 vmx_segment_cache_clear(vmx);
3169
7ffd92c5 3170 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3171 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3172 vmx->rmode.tr.selector = var->selector;
3173 vmx->rmode.tr.base = var->base;
3174 vmx->rmode.tr.limit = var->limit;
3175 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3176 return;
3177 }
3178 vmcs_writel(sf->base, var->base);
3179 vmcs_write32(sf->limit, var->limit);
3180 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3181 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3182 /*
3183 * Hack real-mode segments into vm86 compatibility.
3184 */
3185 if (var->base == 0xffff0000 && var->selector == 0xf000)
3186 vmcs_writel(sf->base, 0xf0000);
3187 ar = 0xf3;
3188 } else
3189 ar = vmx_segment_access_rights(var);
3a624e29
NK
3190
3191 /*
3192 * Fix the "Accessed" bit in AR field of segment registers for older
3193 * qemu binaries.
3194 * IA32 arch specifies that at the time of processor reset the
3195 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3196 * is setting it to 0 in the usedland code. This causes invalid guest
3197 * state vmexit when "unrestricted guest" mode is turned on.
3198 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3199 * tree. Newer qemu binaries with that qemu fix would not need this
3200 * kvm hack.
3201 */
3202 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3203 ar |= 0x1; /* Accessed */
3204
6aa8b732 3205 vmcs_write32(sf->ar_bytes, ar);
69c73028 3206 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3207}
3208
6aa8b732
AK
3209static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3210{
2fb92db1 3211 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3212
3213 *db = (ar >> 14) & 1;
3214 *l = (ar >> 13) & 1;
3215}
3216
89a27f4d 3217static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3218{
89a27f4d
GN
3219 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3220 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3221}
3222
89a27f4d 3223static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3224{
89a27f4d
GN
3225 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3226 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3227}
3228
89a27f4d 3229static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3230{
89a27f4d
GN
3231 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3232 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3233}
3234
89a27f4d 3235static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3236{
89a27f4d
GN
3237 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3238 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3239}
3240
648dfaa7
MG
3241static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3242{
3243 struct kvm_segment var;
3244 u32 ar;
3245
3246 vmx_get_segment(vcpu, &var, seg);
3247 ar = vmx_segment_access_rights(&var);
3248
3249 if (var.base != (var.selector << 4))
3250 return false;
3251 if (var.limit != 0xffff)
3252 return false;
3253 if (ar != 0xf3)
3254 return false;
3255
3256 return true;
3257}
3258
3259static bool code_segment_valid(struct kvm_vcpu *vcpu)
3260{
3261 struct kvm_segment cs;
3262 unsigned int cs_rpl;
3263
3264 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3265 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3266
1872a3f4
AK
3267 if (cs.unusable)
3268 return false;
648dfaa7
MG
3269 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3270 return false;
3271 if (!cs.s)
3272 return false;
1872a3f4 3273 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3274 if (cs.dpl > cs_rpl)
3275 return false;
1872a3f4 3276 } else {
648dfaa7
MG
3277 if (cs.dpl != cs_rpl)
3278 return false;
3279 }
3280 if (!cs.present)
3281 return false;
3282
3283 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3284 return true;
3285}
3286
3287static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3288{
3289 struct kvm_segment ss;
3290 unsigned int ss_rpl;
3291
3292 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3293 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3294
1872a3f4
AK
3295 if (ss.unusable)
3296 return true;
3297 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3298 return false;
3299 if (!ss.s)
3300 return false;
3301 if (ss.dpl != ss_rpl) /* DPL != RPL */
3302 return false;
3303 if (!ss.present)
3304 return false;
3305
3306 return true;
3307}
3308
3309static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3310{
3311 struct kvm_segment var;
3312 unsigned int rpl;
3313
3314 vmx_get_segment(vcpu, &var, seg);
3315 rpl = var.selector & SELECTOR_RPL_MASK;
3316
1872a3f4
AK
3317 if (var.unusable)
3318 return true;
648dfaa7
MG
3319 if (!var.s)
3320 return false;
3321 if (!var.present)
3322 return false;
3323 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3324 if (var.dpl < rpl) /* DPL < RPL */
3325 return false;
3326 }
3327
3328 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3329 * rights flags
3330 */
3331 return true;
3332}
3333
3334static bool tr_valid(struct kvm_vcpu *vcpu)
3335{
3336 struct kvm_segment tr;
3337
3338 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3339
1872a3f4
AK
3340 if (tr.unusable)
3341 return false;
648dfaa7
MG
3342 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3343 return false;
1872a3f4 3344 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3345 return false;
3346 if (!tr.present)
3347 return false;
3348
3349 return true;
3350}
3351
3352static bool ldtr_valid(struct kvm_vcpu *vcpu)
3353{
3354 struct kvm_segment ldtr;
3355
3356 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3357
1872a3f4
AK
3358 if (ldtr.unusable)
3359 return true;
648dfaa7
MG
3360 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3361 return false;
3362 if (ldtr.type != 2)
3363 return false;
3364 if (!ldtr.present)
3365 return false;
3366
3367 return true;
3368}
3369
3370static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3371{
3372 struct kvm_segment cs, ss;
3373
3374 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3375 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3376
3377 return ((cs.selector & SELECTOR_RPL_MASK) ==
3378 (ss.selector & SELECTOR_RPL_MASK));
3379}
3380
3381/*
3382 * Check if guest state is valid. Returns true if valid, false if
3383 * not.
3384 * We assume that registers are always usable
3385 */
3386static bool guest_state_valid(struct kvm_vcpu *vcpu)
3387{
3388 /* real mode guest state checks */
3eeb3288 3389 if (!is_protmode(vcpu)) {
648dfaa7
MG
3390 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3391 return false;
3392 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3393 return false;
3394 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3395 return false;
3396 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3397 return false;
3398 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3399 return false;
3400 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3401 return false;
3402 } else {
3403 /* protected mode guest state checks */
3404 if (!cs_ss_rpl_check(vcpu))
3405 return false;
3406 if (!code_segment_valid(vcpu))
3407 return false;
3408 if (!stack_segment_valid(vcpu))
3409 return false;
3410 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3411 return false;
3412 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3413 return false;
3414 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3415 return false;
3416 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3417 return false;
3418 if (!tr_valid(vcpu))
3419 return false;
3420 if (!ldtr_valid(vcpu))
3421 return false;
3422 }
3423 /* TODO:
3424 * - Add checks on RIP
3425 * - Add checks on RFLAGS
3426 */
3427
3428 return true;
3429}
3430
d77c26fc 3431static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3432{
40dcaa9f 3433 gfn_t fn;
195aefde 3434 u16 data = 0;
40dcaa9f 3435 int r, idx, ret = 0;
6aa8b732 3436
40dcaa9f
XG
3437 idx = srcu_read_lock(&kvm->srcu);
3438 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3439 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3440 if (r < 0)
10589a46 3441 goto out;
195aefde 3442 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3443 r = kvm_write_guest_page(kvm, fn++, &data,
3444 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3445 if (r < 0)
10589a46 3446 goto out;
195aefde
IE
3447 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3448 if (r < 0)
10589a46 3449 goto out;
195aefde
IE
3450 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3451 if (r < 0)
10589a46 3452 goto out;
195aefde 3453 data = ~0;
10589a46
MT
3454 r = kvm_write_guest_page(kvm, fn, &data,
3455 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3456 sizeof(u8));
195aefde 3457 if (r < 0)
10589a46
MT
3458 goto out;
3459
3460 ret = 1;
3461out:
40dcaa9f 3462 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3463 return ret;
6aa8b732
AK
3464}
3465
b7ebfb05
SY
3466static int init_rmode_identity_map(struct kvm *kvm)
3467{
40dcaa9f 3468 int i, idx, r, ret;
b7ebfb05
SY
3469 pfn_t identity_map_pfn;
3470 u32 tmp;
3471
089d034e 3472 if (!enable_ept)
b7ebfb05
SY
3473 return 1;
3474 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3475 printk(KERN_ERR "EPT: identity-mapping pagetable "
3476 "haven't been allocated!\n");
3477 return 0;
3478 }
3479 if (likely(kvm->arch.ept_identity_pagetable_done))
3480 return 1;
3481 ret = 0;
b927a3ce 3482 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3483 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3484 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3485 if (r < 0)
3486 goto out;
3487 /* Set up identity-mapping pagetable for EPT in real mode */
3488 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3489 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3490 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3491 r = kvm_write_guest_page(kvm, identity_map_pfn,
3492 &tmp, i * sizeof(tmp), sizeof(tmp));
3493 if (r < 0)
3494 goto out;
3495 }
3496 kvm->arch.ept_identity_pagetable_done = true;
3497 ret = 1;
3498out:
40dcaa9f 3499 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3500 return ret;
3501}
3502
6aa8b732
AK
3503static void seg_setup(int seg)
3504{
3505 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3506 unsigned int ar;
6aa8b732
AK
3507
3508 vmcs_write16(sf->selector, 0);
3509 vmcs_writel(sf->base, 0);
3510 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3511 if (enable_unrestricted_guest) {
3512 ar = 0x93;
3513 if (seg == VCPU_SREG_CS)
3514 ar |= 0x08; /* code segment */
3515 } else
3516 ar = 0xf3;
3517
3518 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3519}
3520
f78e0e2e
SY
3521static int alloc_apic_access_page(struct kvm *kvm)
3522{
3523 struct kvm_userspace_memory_region kvm_userspace_mem;
3524 int r = 0;
3525
79fac95e 3526 mutex_lock(&kvm->slots_lock);
bfc6d222 3527 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3528 goto out;
3529 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3530 kvm_userspace_mem.flags = 0;
3531 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3532 kvm_userspace_mem.memory_size = PAGE_SIZE;
3533 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3534 if (r)
3535 goto out;
72dc67a6 3536
bfc6d222 3537 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3538out:
79fac95e 3539 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3540 return r;
3541}
3542
b7ebfb05
SY
3543static int alloc_identity_pagetable(struct kvm *kvm)
3544{
3545 struct kvm_userspace_memory_region kvm_userspace_mem;
3546 int r = 0;
3547
79fac95e 3548 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3549 if (kvm->arch.ept_identity_pagetable)
3550 goto out;
3551 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3552 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3553 kvm_userspace_mem.guest_phys_addr =
3554 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3555 kvm_userspace_mem.memory_size = PAGE_SIZE;
3556 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3557 if (r)
3558 goto out;
3559
b7ebfb05 3560 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3561 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3562out:
79fac95e 3563 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3564 return r;
3565}
3566
2384d2b3
SY
3567static void allocate_vpid(struct vcpu_vmx *vmx)
3568{
3569 int vpid;
3570
3571 vmx->vpid = 0;
919818ab 3572 if (!enable_vpid)
2384d2b3
SY
3573 return;
3574 spin_lock(&vmx_vpid_lock);
3575 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3576 if (vpid < VMX_NR_VPIDS) {
3577 vmx->vpid = vpid;
3578 __set_bit(vpid, vmx_vpid_bitmap);
3579 }
3580 spin_unlock(&vmx_vpid_lock);
3581}
3582
cdbecfc3
LJ
3583static void free_vpid(struct vcpu_vmx *vmx)
3584{
3585 if (!enable_vpid)
3586 return;
3587 spin_lock(&vmx_vpid_lock);
3588 if (vmx->vpid != 0)
3589 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3590 spin_unlock(&vmx_vpid_lock);
3591}
3592
5897297b 3593static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3594{
3e7c73e9 3595 int f = sizeof(unsigned long);
25c5f225
SY
3596
3597 if (!cpu_has_vmx_msr_bitmap())
3598 return;
3599
3600 /*
3601 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3602 * have the write-low and read-high bitmap offsets the wrong way round.
3603 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3604 */
25c5f225 3605 if (msr <= 0x1fff) {
3e7c73e9
AK
3606 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3607 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3608 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3609 msr &= 0x1fff;
3e7c73e9
AK
3610 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3611 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3612 }
25c5f225
SY
3613}
3614
5897297b
AK
3615static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3616{
3617 if (!longmode_only)
3618 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3619 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3620}
3621
a3a8ff8e
NHE
3622/*
3623 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3624 * will not change in the lifetime of the guest.
3625 * Note that host-state that does change is set elsewhere. E.g., host-state
3626 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3627 */
3628static void vmx_set_constant_host_state(void)
3629{
3630 u32 low32, high32;
3631 unsigned long tmpl;
3632 struct desc_ptr dt;
3633
3634 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3635 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3636 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3637
3638 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3639 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3640 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3641 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3642 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3643
3644 native_store_idt(&dt);
3645 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3646
3647 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3648 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3649
3650 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3651 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3652 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3653 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3654
3655 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3656 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3657 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3658 }
3659}
3660
bf8179a0
NHE
3661static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3662{
3663 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3664 if (enable_ept)
3665 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3666 if (is_guest_mode(&vmx->vcpu))
3667 vmx->vcpu.arch.cr4_guest_owned_bits &=
3668 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3669 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3670}
3671
3672static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3673{
3674 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3675 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3676 exec_control &= ~CPU_BASED_TPR_SHADOW;
3677#ifdef CONFIG_X86_64
3678 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3679 CPU_BASED_CR8_LOAD_EXITING;
3680#endif
3681 }
3682 if (!enable_ept)
3683 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3684 CPU_BASED_CR3_LOAD_EXITING |
3685 CPU_BASED_INVLPG_EXITING;
3686 return exec_control;
3687}
3688
3689static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3690{
3691 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3692 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3693 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3694 if (vmx->vpid == 0)
3695 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3696 if (!enable_ept) {
3697 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3698 enable_unrestricted_guest = 0;
3699 }
3700 if (!enable_unrestricted_guest)
3701 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3702 if (!ple_gap)
3703 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3704 return exec_control;
3705}
3706
ce88decf
XG
3707static void ept_set_mmio_spte_mask(void)
3708{
3709 /*
3710 * EPT Misconfigurations can be generated if the value of bits 2:0
3711 * of an EPT paging-structure entry is 110b (write/execute).
3712 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3713 * spte.
3714 */
3715 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3716}
3717
6aa8b732
AK
3718/*
3719 * Sets up the vmcs for emulated real mode.
3720 */
8b9cf98c 3721static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3722{
2e4ce7f5 3723#ifdef CONFIG_X86_64
6aa8b732 3724 unsigned long a;
2e4ce7f5 3725#endif
6aa8b732 3726 int i;
6aa8b732 3727
6aa8b732 3728 /* I/O */
3e7c73e9
AK
3729 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3730 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3731
25c5f225 3732 if (cpu_has_vmx_msr_bitmap())
5897297b 3733 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3734
6aa8b732
AK
3735 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3736
6aa8b732 3737 /* Control */
1c3d14fe
YS
3738 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3739 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3740
bf8179a0 3741 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3742
83ff3b9d 3743 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3744 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3745 vmx_secondary_exec_control(vmx));
83ff3b9d 3746 }
f78e0e2e 3747
4b8d54f9
ZE
3748 if (ple_gap) {
3749 vmcs_write32(PLE_GAP, ple_gap);
3750 vmcs_write32(PLE_WINDOW, ple_window);
3751 }
3752
c3707958
XG
3753 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3754 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3755 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3756
9581d442
AK
3757 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3758 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3759 vmx_set_constant_host_state();
05b3e0c2 3760#ifdef CONFIG_X86_64
6aa8b732
AK
3761 rdmsrl(MSR_FS_BASE, a);
3762 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3763 rdmsrl(MSR_GS_BASE, a);
3764 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3765#else
3766 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3767 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3768#endif
3769
2cc51560
ED
3770 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3771 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3772 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3773 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3774 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3775
468d472f 3776 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3777 u32 msr_low, msr_high;
3778 u64 host_pat;
468d472f
SY
3779 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3780 host_pat = msr_low | ((u64) msr_high << 32);
3781 /* Write the default value follow host pat */
3782 vmcs_write64(GUEST_IA32_PAT, host_pat);
3783 /* Keep arch.pat sync with GUEST_IA32_PAT */
3784 vmx->vcpu.arch.pat = host_pat;
3785 }
3786
6aa8b732
AK
3787 for (i = 0; i < NR_VMX_MSR; ++i) {
3788 u32 index = vmx_msr_index[i];
3789 u32 data_low, data_high;
a2fa3e9f 3790 int j = vmx->nmsrs;
6aa8b732
AK
3791
3792 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3793 continue;
432bd6cb
AK
3794 if (wrmsr_safe(index, data_low, data_high) < 0)
3795 continue;
26bb0981
AK
3796 vmx->guest_msrs[j].index = i;
3797 vmx->guest_msrs[j].data = 0;
d5696725 3798 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3799 ++vmx->nmsrs;
6aa8b732 3800 }
6aa8b732 3801
1c3d14fe 3802 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3803
3804 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3805 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3806
e00c8cf2 3807 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3808 set_cr4_guest_host_mask(vmx);
e00c8cf2 3809
99e3e30a 3810 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3811
e00c8cf2
AK
3812 return 0;
3813}
3814
3815static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3816{
3817 struct vcpu_vmx *vmx = to_vmx(vcpu);
3818 u64 msr;
4b9d3a04 3819 int ret;
e00c8cf2 3820
5fdbf976 3821 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3822
7ffd92c5 3823 vmx->rmode.vm86_active = 0;
e00c8cf2 3824
3b86cd99
JK
3825 vmx->soft_vnmi_blocked = 0;
3826
ad312c7c 3827 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3828 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3829 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3830 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3831 msr |= MSR_IA32_APICBASE_BSP;
3832 kvm_set_apic_base(&vmx->vcpu, msr);
3833
10ab25cd
JK
3834 ret = fx_init(&vmx->vcpu);
3835 if (ret != 0)
3836 goto out;
e00c8cf2 3837
2fb92db1
AK
3838 vmx_segment_cache_clear(vmx);
3839
5706be0d 3840 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3841 /*
3842 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3843 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3844 */
c5af89b6 3845 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3846 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3847 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3848 } else {
ad312c7c
ZX
3849 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3850 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3851 }
e00c8cf2
AK
3852
3853 seg_setup(VCPU_SREG_DS);
3854 seg_setup(VCPU_SREG_ES);
3855 seg_setup(VCPU_SREG_FS);
3856 seg_setup(VCPU_SREG_GS);
3857 seg_setup(VCPU_SREG_SS);
3858
3859 vmcs_write16(GUEST_TR_SELECTOR, 0);
3860 vmcs_writel(GUEST_TR_BASE, 0);
3861 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3862 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3863
3864 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3865 vmcs_writel(GUEST_LDTR_BASE, 0);
3866 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3867 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3868
3869 vmcs_write32(GUEST_SYSENTER_CS, 0);
3870 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3871 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3872
3873 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3874 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3875 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3876 else
5fdbf976
MT
3877 kvm_rip_write(vcpu, 0);
3878 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3879
e00c8cf2
AK
3880 vmcs_writel(GUEST_DR7, 0x400);
3881
3882 vmcs_writel(GUEST_GDTR_BASE, 0);
3883 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3884
3885 vmcs_writel(GUEST_IDTR_BASE, 0);
3886 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3887
443381a8 3888 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3889 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3890 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3891
e00c8cf2
AK
3892 /* Special registers */
3893 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3894
3895 setup_msrs(vmx);
3896
6aa8b732
AK
3897 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3898
f78e0e2e
SY
3899 if (cpu_has_vmx_tpr_shadow()) {
3900 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3901 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3902 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3903 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3904 vmcs_write32(TPR_THRESHOLD, 0);
3905 }
3906
3907 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3908 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3909 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3910
2384d2b3
SY
3911 if (vmx->vpid != 0)
3912 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3913
fa40052c 3914 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 3915 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 3916 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3917 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3918 vmx_fpu_activate(&vmx->vcpu);
3919 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3920
b9d762fa 3921 vpid_sync_context(vmx);
2384d2b3 3922
3200f405 3923 ret = 0;
6aa8b732 3924
a89a8fb9
MG
3925 /* HACK: Don't enable emulation on guest boot/reset */
3926 vmx->emulation_required = 0;
3927
6aa8b732
AK
3928out:
3929 return ret;
3930}
3931
b6f1250e
NHE
3932/*
3933 * In nested virtualization, check if L1 asked to exit on external interrupts.
3934 * For most existing hypervisors, this will always return true.
3935 */
3936static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3937{
3938 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3939 PIN_BASED_EXT_INTR_MASK;
3940}
3941
3b86cd99
JK
3942static void enable_irq_window(struct kvm_vcpu *vcpu)
3943{
3944 u32 cpu_based_vm_exec_control;
d6185f20
NHE
3945 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3946 /*
3947 * We get here if vmx_interrupt_allowed() said we can't
3948 * inject to L1 now because L2 must run. Ask L2 to exit
3949 * right after entry, so we can inject to L1 more promptly.
b6f1250e 3950 */
d6185f20 3951 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 3952 return;
d6185f20 3953 }
3b86cd99
JK
3954
3955 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3956 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3957 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3958}
3959
3960static void enable_nmi_window(struct kvm_vcpu *vcpu)
3961{
3962 u32 cpu_based_vm_exec_control;
3963
3964 if (!cpu_has_virtual_nmis()) {
3965 enable_irq_window(vcpu);
3966 return;
3967 }
3968
30bd0c4c
AK
3969 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3970 enable_irq_window(vcpu);
3971 return;
3972 }
3b86cd99
JK
3973 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3974 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3975 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3976}
3977
66fd3f7f 3978static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3979{
9c8cba37 3980 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3981 uint32_t intr;
3982 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3983
229456fc 3984 trace_kvm_inj_virq(irq);
2714d1d3 3985
fa89a817 3986 ++vcpu->stat.irq_injections;
7ffd92c5 3987 if (vmx->rmode.vm86_active) {
71f9833b
SH
3988 int inc_eip = 0;
3989 if (vcpu->arch.interrupt.soft)
3990 inc_eip = vcpu->arch.event_exit_inst_len;
3991 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 3992 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
3993 return;
3994 }
66fd3f7f
GN
3995 intr = irq | INTR_INFO_VALID_MASK;
3996 if (vcpu->arch.interrupt.soft) {
3997 intr |= INTR_TYPE_SOFT_INTR;
3998 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3999 vmx->vcpu.arch.event_exit_inst_len);
4000 } else
4001 intr |= INTR_TYPE_EXT_INTR;
4002 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
443381a8 4003 vmx_clear_hlt(vcpu);
85f455f7
ED
4004}
4005
f08864b4
SY
4006static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4007{
66a5a347
JK
4008 struct vcpu_vmx *vmx = to_vmx(vcpu);
4009
0b6ac343
NHE
4010 if (is_guest_mode(vcpu))
4011 return;
4012
3b86cd99
JK
4013 if (!cpu_has_virtual_nmis()) {
4014 /*
4015 * Tracking the NMI-blocked state in software is built upon
4016 * finding the next open IRQ window. This, in turn, depends on
4017 * well-behaving guests: They have to keep IRQs disabled at
4018 * least as long as the NMI handler runs. Otherwise we may
4019 * cause NMI nesting, maybe breaking the guest. But as this is
4020 * highly unlikely, we can live with the residual risk.
4021 */
4022 vmx->soft_vnmi_blocked = 1;
4023 vmx->vnmi_blocked_time = 0;
4024 }
4025
487b391d 4026 ++vcpu->stat.nmi_injections;
9d58b931 4027 vmx->nmi_known_unmasked = false;
7ffd92c5 4028 if (vmx->rmode.vm86_active) {
71f9833b 4029 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4030 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4031 return;
4032 }
f08864b4
SY
4033 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4034 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
443381a8 4035 vmx_clear_hlt(vcpu);
f08864b4
SY
4036}
4037
c4282df9 4038static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4039{
3b86cd99 4040 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4041 return 0;
33f089ca 4042
c4282df9 4043 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4044 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4045 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4046}
4047
3cfc3092
JK
4048static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4049{
4050 if (!cpu_has_virtual_nmis())
4051 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4052 if (to_vmx(vcpu)->nmi_known_unmasked)
4053 return false;
c332c83a 4054 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4055}
4056
4057static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4058{
4059 struct vcpu_vmx *vmx = to_vmx(vcpu);
4060
4061 if (!cpu_has_virtual_nmis()) {
4062 if (vmx->soft_vnmi_blocked != masked) {
4063 vmx->soft_vnmi_blocked = masked;
4064 vmx->vnmi_blocked_time = 0;
4065 }
4066 } else {
9d58b931 4067 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4068 if (masked)
4069 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4070 GUEST_INTR_STATE_NMI);
4071 else
4072 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4073 GUEST_INTR_STATE_NMI);
4074 }
4075}
4076
78646121
GN
4077static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4078{
b6f1250e 4079 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4081 if (to_vmx(vcpu)->nested.nested_run_pending ||
4082 (vmcs12->idt_vectoring_info_field &
4083 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4084 return 0;
4085 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4086 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4087 vmcs12->vm_exit_intr_info = 0;
4088 /* fall through to normal code, but now in L1, not L2 */
4089 }
4090
c4282df9
GN
4091 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4092 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4093 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4094}
4095
cbc94022
IE
4096static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4097{
4098 int ret;
4099 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4100 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4101 .guest_phys_addr = addr,
4102 .memory_size = PAGE_SIZE * 3,
4103 .flags = 0,
4104 };
4105
4106 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4107 if (ret)
4108 return ret;
bfc6d222 4109 kvm->arch.tss_addr = addr;
93ea5388
GN
4110 if (!init_rmode_tss(kvm))
4111 return -ENOMEM;
4112
cbc94022
IE
4113 return 0;
4114}
4115
6aa8b732
AK
4116static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4117 int vec, u32 err_code)
4118{
b3f37707
NK
4119 /*
4120 * Instruction with address size override prefix opcode 0x67
4121 * Cause the #SS fault with 0 error code in VM86 mode.
4122 */
4123 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4124 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4125 return 1;
77ab6db0
JK
4126 /*
4127 * Forward all other exceptions that are valid in real mode.
4128 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4129 * the required debugging infrastructure rework.
4130 */
4131 switch (vec) {
77ab6db0 4132 case DB_VECTOR:
d0bfb940
JK
4133 if (vcpu->guest_debug &
4134 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4135 return 0;
4136 kvm_queue_exception(vcpu, vec);
4137 return 1;
77ab6db0 4138 case BP_VECTOR:
c573cd22
JK
4139 /*
4140 * Update instruction length as we may reinject the exception
4141 * from user space while in guest debugging mode.
4142 */
4143 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4144 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4145 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4146 return 0;
4147 /* fall through */
4148 case DE_VECTOR:
77ab6db0
JK
4149 case OF_VECTOR:
4150 case BR_VECTOR:
4151 case UD_VECTOR:
4152 case DF_VECTOR:
4153 case SS_VECTOR:
4154 case GP_VECTOR:
4155 case MF_VECTOR:
4156 kvm_queue_exception(vcpu, vec);
4157 return 1;
4158 }
6aa8b732
AK
4159 return 0;
4160}
4161
a0861c02
AK
4162/*
4163 * Trigger machine check on the host. We assume all the MSRs are already set up
4164 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4165 * We pass a fake environment to the machine check handler because we want
4166 * the guest to be always treated like user space, no matter what context
4167 * it used internally.
4168 */
4169static void kvm_machine_check(void)
4170{
4171#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4172 struct pt_regs regs = {
4173 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4174 .flags = X86_EFLAGS_IF,
4175 };
4176
4177 do_machine_check(&regs, 0);
4178#endif
4179}
4180
851ba692 4181static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4182{
4183 /* already handled by vcpu_run */
4184 return 1;
4185}
4186
851ba692 4187static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4188{
1155f76a 4189 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4190 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4191 u32 intr_info, ex_no, error_code;
42dbaa5a 4192 unsigned long cr2, rip, dr6;
6aa8b732
AK
4193 u32 vect_info;
4194 enum emulation_result er;
4195
1155f76a 4196 vect_info = vmx->idt_vectoring_info;
88786475 4197 intr_info = vmx->exit_intr_info;
6aa8b732 4198
a0861c02 4199 if (is_machine_check(intr_info))
851ba692 4200 return handle_machine_check(vcpu);
a0861c02 4201
6aa8b732 4202 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4203 !is_page_fault(intr_info)) {
4204 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4205 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4206 vcpu->run->internal.ndata = 2;
4207 vcpu->run->internal.data[0] = vect_info;
4208 vcpu->run->internal.data[1] = intr_info;
4209 return 0;
4210 }
6aa8b732 4211
e4a41889 4212 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4213 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4214
4215 if (is_no_device(intr_info)) {
5fd86fcf 4216 vmx_fpu_activate(vcpu);
2ab455cc
AL
4217 return 1;
4218 }
4219
7aa81cc0 4220 if (is_invalid_opcode(intr_info)) {
51d8b661 4221 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4222 if (er != EMULATE_DONE)
7ee5d940 4223 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4224 return 1;
4225 }
4226
6aa8b732 4227 error_code = 0;
2e11384c 4228 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4229 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4230 if (is_page_fault(intr_info)) {
1439442c 4231 /* EPT won't cause page fault directly */
cf3ace79 4232 BUG_ON(enable_ept);
6aa8b732 4233 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4234 trace_kvm_page_fault(cr2, error_code);
4235
3298b75c 4236 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4237 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4238 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4239 }
4240
7ffd92c5 4241 if (vmx->rmode.vm86_active &&
6aa8b732 4242 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4243 error_code)) {
ad312c7c
ZX
4244 if (vcpu->arch.halt_request) {
4245 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4246 return kvm_emulate_halt(vcpu);
4247 }
6aa8b732 4248 return 1;
72d6e5a0 4249 }
6aa8b732 4250
d0bfb940 4251 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4252 switch (ex_no) {
4253 case DB_VECTOR:
4254 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4255 if (!(vcpu->guest_debug &
4256 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4257 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4258 kvm_queue_exception(vcpu, DB_VECTOR);
4259 return 1;
4260 }
4261 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4262 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4263 /* fall through */
4264 case BP_VECTOR:
c573cd22
JK
4265 /*
4266 * Update instruction length as we may reinject #BP from
4267 * user space while in guest debugging mode. Reading it for
4268 * #DB as well causes no harm, it is not used in that case.
4269 */
4270 vmx->vcpu.arch.event_exit_inst_len =
4271 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4272 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4273 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4274 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4275 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4276 break;
4277 default:
d0bfb940
JK
4278 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4279 kvm_run->ex.exception = ex_no;
4280 kvm_run->ex.error_code = error_code;
42dbaa5a 4281 break;
6aa8b732 4282 }
6aa8b732
AK
4283 return 0;
4284}
4285
851ba692 4286static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4287{
1165f5fe 4288 ++vcpu->stat.irq_exits;
6aa8b732
AK
4289 return 1;
4290}
4291
851ba692 4292static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4293{
851ba692 4294 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4295 return 0;
4296}
6aa8b732 4297
851ba692 4298static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4299{
bfdaab09 4300 unsigned long exit_qualification;
34c33d16 4301 int size, in, string;
039576c0 4302 unsigned port;
6aa8b732 4303
bfdaab09 4304 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4305 string = (exit_qualification & 16) != 0;
cf8f70bf 4306 in = (exit_qualification & 8) != 0;
e70669ab 4307
cf8f70bf 4308 ++vcpu->stat.io_exits;
e70669ab 4309
cf8f70bf 4310 if (string || in)
51d8b661 4311 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4312
cf8f70bf
GN
4313 port = exit_qualification >> 16;
4314 size = (exit_qualification & 7) + 1;
e93f36bc 4315 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4316
4317 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4318}
4319
102d8325
IM
4320static void
4321vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4322{
4323 /*
4324 * Patch in the VMCALL instruction:
4325 */
4326 hypercall[0] = 0x0f;
4327 hypercall[1] = 0x01;
4328 hypercall[2] = 0xc1;
102d8325
IM
4329}
4330
eeadf9e7
NHE
4331/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4332static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4333{
4334 if (to_vmx(vcpu)->nested.vmxon &&
4335 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4336 return 1;
4337
4338 if (is_guest_mode(vcpu)) {
4339 /*
4340 * We get here when L2 changed cr0 in a way that did not change
4341 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4342 * but did change L0 shadowed bits. This can currently happen
4343 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4344 * loading) while pretending to allow the guest to change it.
4345 */
4346 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4347 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4348 return 1;
4349 vmcs_writel(CR0_READ_SHADOW, val);
4350 return 0;
4351 } else
4352 return kvm_set_cr0(vcpu, val);
4353}
4354
4355static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4356{
4357 if (is_guest_mode(vcpu)) {
4358 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4359 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4360 return 1;
4361 vmcs_writel(CR4_READ_SHADOW, val);
4362 return 0;
4363 } else
4364 return kvm_set_cr4(vcpu, val);
4365}
4366
4367/* called to set cr0 as approriate for clts instruction exit. */
4368static void handle_clts(struct kvm_vcpu *vcpu)
4369{
4370 if (is_guest_mode(vcpu)) {
4371 /*
4372 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4373 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4374 * just pretend it's off (also in arch.cr0 for fpu_activate).
4375 */
4376 vmcs_writel(CR0_READ_SHADOW,
4377 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4378 vcpu->arch.cr0 &= ~X86_CR0_TS;
4379 } else
4380 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4381}
4382
851ba692 4383static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4384{
229456fc 4385 unsigned long exit_qualification, val;
6aa8b732
AK
4386 int cr;
4387 int reg;
49a9b07e 4388 int err;
6aa8b732 4389
bfdaab09 4390 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4391 cr = exit_qualification & 15;
4392 reg = (exit_qualification >> 8) & 15;
4393 switch ((exit_qualification >> 4) & 3) {
4394 case 0: /* mov to cr */
229456fc
MT
4395 val = kvm_register_read(vcpu, reg);
4396 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4397 switch (cr) {
4398 case 0:
eeadf9e7 4399 err = handle_set_cr0(vcpu, val);
db8fcefa 4400 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4401 return 1;
4402 case 3:
2390218b 4403 err = kvm_set_cr3(vcpu, val);
db8fcefa 4404 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4405 return 1;
4406 case 4:
eeadf9e7 4407 err = handle_set_cr4(vcpu, val);
db8fcefa 4408 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4409 return 1;
0a5fff19
GN
4410 case 8: {
4411 u8 cr8_prev = kvm_get_cr8(vcpu);
4412 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4413 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4414 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4415 if (irqchip_in_kernel(vcpu->kvm))
4416 return 1;
4417 if (cr8_prev <= cr8)
4418 return 1;
851ba692 4419 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4420 return 0;
4421 }
6aa8b732
AK
4422 };
4423 break;
25c4c276 4424 case 2: /* clts */
eeadf9e7 4425 handle_clts(vcpu);
4d4ec087 4426 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4427 skip_emulated_instruction(vcpu);
6b52d186 4428 vmx_fpu_activate(vcpu);
25c4c276 4429 return 1;
6aa8b732
AK
4430 case 1: /*mov from cr*/
4431 switch (cr) {
4432 case 3:
9f8fe504
AK
4433 val = kvm_read_cr3(vcpu);
4434 kvm_register_write(vcpu, reg, val);
4435 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4436 skip_emulated_instruction(vcpu);
4437 return 1;
4438 case 8:
229456fc
MT
4439 val = kvm_get_cr8(vcpu);
4440 kvm_register_write(vcpu, reg, val);
4441 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4442 skip_emulated_instruction(vcpu);
4443 return 1;
4444 }
4445 break;
4446 case 3: /* lmsw */
a1f83a74 4447 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4448 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4449 kvm_lmsw(vcpu, val);
6aa8b732
AK
4450
4451 skip_emulated_instruction(vcpu);
4452 return 1;
4453 default:
4454 break;
4455 }
851ba692 4456 vcpu->run->exit_reason = 0;
f0242478 4457 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4458 (int)(exit_qualification >> 4) & 3, cr);
4459 return 0;
4460}
4461
851ba692 4462static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4463{
bfdaab09 4464 unsigned long exit_qualification;
6aa8b732
AK
4465 int dr, reg;
4466
f2483415 4467 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4468 if (!kvm_require_cpl(vcpu, 0))
4469 return 1;
42dbaa5a
JK
4470 dr = vmcs_readl(GUEST_DR7);
4471 if (dr & DR7_GD) {
4472 /*
4473 * As the vm-exit takes precedence over the debug trap, we
4474 * need to emulate the latter, either for the host or the
4475 * guest debugging itself.
4476 */
4477 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4478 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4479 vcpu->run->debug.arch.dr7 = dr;
4480 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4481 vmcs_readl(GUEST_CS_BASE) +
4482 vmcs_readl(GUEST_RIP);
851ba692
AK
4483 vcpu->run->debug.arch.exception = DB_VECTOR;
4484 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4485 return 0;
4486 } else {
4487 vcpu->arch.dr7 &= ~DR7_GD;
4488 vcpu->arch.dr6 |= DR6_BD;
4489 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4490 kvm_queue_exception(vcpu, DB_VECTOR);
4491 return 1;
4492 }
4493 }
4494
bfdaab09 4495 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4496 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4497 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4498 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4499 unsigned long val;
4500 if (!kvm_get_dr(vcpu, dr, &val))
4501 kvm_register_write(vcpu, reg, val);
4502 } else
4503 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4504 skip_emulated_instruction(vcpu);
4505 return 1;
4506}
4507
020df079
GN
4508static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4509{
4510 vmcs_writel(GUEST_DR7, val);
4511}
4512
851ba692 4513static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4514{
06465c5a
AK
4515 kvm_emulate_cpuid(vcpu);
4516 return 1;
6aa8b732
AK
4517}
4518
851ba692 4519static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4520{
ad312c7c 4521 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4522 u64 data;
4523
4524 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4525 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4526 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4527 return 1;
4528 }
4529
229456fc 4530 trace_kvm_msr_read(ecx, data);
2714d1d3 4531
6aa8b732 4532 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4533 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4534 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4535 skip_emulated_instruction(vcpu);
4536 return 1;
4537}
4538
851ba692 4539static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4540{
ad312c7c
ZX
4541 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4542 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4543 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4544
4545 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4546 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4547 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4548 return 1;
4549 }
4550
59200273 4551 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4552 skip_emulated_instruction(vcpu);
4553 return 1;
4554}
4555
851ba692 4556static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4557{
3842d135 4558 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4559 return 1;
4560}
4561
851ba692 4562static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4563{
85f455f7
ED
4564 u32 cpu_based_vm_exec_control;
4565
4566 /* clear pending irq */
4567 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4568 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4569 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4570
3842d135
AK
4571 kvm_make_request(KVM_REQ_EVENT, vcpu);
4572
a26bf12a 4573 ++vcpu->stat.irq_window_exits;
2714d1d3 4574
c1150d8c
DL
4575 /*
4576 * If the user space waits to inject interrupts, exit as soon as
4577 * possible
4578 */
8061823a 4579 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4580 vcpu->run->request_interrupt_window &&
8061823a 4581 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4582 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4583 return 0;
4584 }
6aa8b732
AK
4585 return 1;
4586}
4587
851ba692 4588static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4589{
4590 skip_emulated_instruction(vcpu);
d3bef15f 4591 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4592}
4593
851ba692 4594static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4595{
510043da 4596 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4597 kvm_emulate_hypercall(vcpu);
4598 return 1;
c21415e8
IM
4599}
4600
ec25d5e6
GN
4601static int handle_invd(struct kvm_vcpu *vcpu)
4602{
51d8b661 4603 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4604}
4605
851ba692 4606static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4607{
f9c617f6 4608 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4609
4610 kvm_mmu_invlpg(vcpu, exit_qualification);
4611 skip_emulated_instruction(vcpu);
4612 return 1;
4613}
4614
851ba692 4615static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4616{
4617 skip_emulated_instruction(vcpu);
f5f48ee1 4618 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4619 return 1;
4620}
4621
2acf923e
DC
4622static int handle_xsetbv(struct kvm_vcpu *vcpu)
4623{
4624 u64 new_bv = kvm_read_edx_eax(vcpu);
4625 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4626
4627 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4628 skip_emulated_instruction(vcpu);
4629 return 1;
4630}
4631
851ba692 4632static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4633{
58fbbf26
KT
4634 if (likely(fasteoi)) {
4635 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4636 int access_type, offset;
4637
4638 access_type = exit_qualification & APIC_ACCESS_TYPE;
4639 offset = exit_qualification & APIC_ACCESS_OFFSET;
4640 /*
4641 * Sane guest uses MOV to write EOI, with written value
4642 * not cared. So make a short-circuit here by avoiding
4643 * heavy instruction emulation.
4644 */
4645 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4646 (offset == APIC_EOI)) {
4647 kvm_lapic_set_eoi(vcpu);
4648 skip_emulated_instruction(vcpu);
4649 return 1;
4650 }
4651 }
51d8b661 4652 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4653}
4654
851ba692 4655static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4656{
60637aac 4657 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4658 unsigned long exit_qualification;
e269fb21
JK
4659 bool has_error_code = false;
4660 u32 error_code = 0;
37817f29 4661 u16 tss_selector;
64a7ec06
GN
4662 int reason, type, idt_v;
4663
4664 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4665 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4666
4667 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4668
4669 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4670 if (reason == TASK_SWITCH_GATE && idt_v) {
4671 switch (type) {
4672 case INTR_TYPE_NMI_INTR:
4673 vcpu->arch.nmi_injected = false;
654f06fc 4674 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4675 break;
4676 case INTR_TYPE_EXT_INTR:
66fd3f7f 4677 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4678 kvm_clear_interrupt_queue(vcpu);
4679 break;
4680 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4681 if (vmx->idt_vectoring_info &
4682 VECTORING_INFO_DELIVER_CODE_MASK) {
4683 has_error_code = true;
4684 error_code =
4685 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4686 }
4687 /* fall through */
64a7ec06
GN
4688 case INTR_TYPE_SOFT_EXCEPTION:
4689 kvm_clear_exception_queue(vcpu);
4690 break;
4691 default:
4692 break;
4693 }
60637aac 4694 }
37817f29
IE
4695 tss_selector = exit_qualification;
4696
64a7ec06
GN
4697 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4698 type != INTR_TYPE_EXT_INTR &&
4699 type != INTR_TYPE_NMI_INTR))
4700 skip_emulated_instruction(vcpu);
4701
acb54517
GN
4702 if (kvm_task_switch(vcpu, tss_selector, reason,
4703 has_error_code, error_code) == EMULATE_FAIL) {
4704 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4705 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4706 vcpu->run->internal.ndata = 0;
42dbaa5a 4707 return 0;
acb54517 4708 }
42dbaa5a
JK
4709
4710 /* clear all local breakpoint enable flags */
4711 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4712
4713 /*
4714 * TODO: What about debug traps on tss switch?
4715 * Are we supposed to inject them and update dr6?
4716 */
4717
4718 return 1;
37817f29
IE
4719}
4720
851ba692 4721static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4722{
f9c617f6 4723 unsigned long exit_qualification;
1439442c 4724 gpa_t gpa;
1439442c 4725 int gla_validity;
1439442c 4726
f9c617f6 4727 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4728
4729 if (exit_qualification & (1 << 6)) {
4730 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4731 return -EINVAL;
1439442c
SY
4732 }
4733
4734 gla_validity = (exit_qualification >> 7) & 0x3;
4735 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4736 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4737 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4738 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4739 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4740 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4741 (long unsigned int)exit_qualification);
851ba692
AK
4742 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4743 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4744 return 0;
1439442c
SY
4745 }
4746
4747 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4748 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4749 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4750}
4751
68f89400
MT
4752static u64 ept_rsvd_mask(u64 spte, int level)
4753{
4754 int i;
4755 u64 mask = 0;
4756
4757 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4758 mask |= (1ULL << i);
4759
4760 if (level > 2)
4761 /* bits 7:3 reserved */
4762 mask |= 0xf8;
4763 else if (level == 2) {
4764 if (spte & (1ULL << 7))
4765 /* 2MB ref, bits 20:12 reserved */
4766 mask |= 0x1ff000;
4767 else
4768 /* bits 6:3 reserved */
4769 mask |= 0x78;
4770 }
4771
4772 return mask;
4773}
4774
4775static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4776 int level)
4777{
4778 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4779
4780 /* 010b (write-only) */
4781 WARN_ON((spte & 0x7) == 0x2);
4782
4783 /* 110b (write/execute) */
4784 WARN_ON((spte & 0x7) == 0x6);
4785
4786 /* 100b (execute-only) and value not supported by logical processor */
4787 if (!cpu_has_vmx_ept_execute_only())
4788 WARN_ON((spte & 0x7) == 0x4);
4789
4790 /* not 000b */
4791 if ((spte & 0x7)) {
4792 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4793
4794 if (rsvd_bits != 0) {
4795 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4796 __func__, rsvd_bits);
4797 WARN_ON(1);
4798 }
4799
4800 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4801 u64 ept_mem_type = (spte & 0x38) >> 3;
4802
4803 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4804 ept_mem_type == 7) {
4805 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4806 __func__, ept_mem_type);
4807 WARN_ON(1);
4808 }
4809 }
4810 }
4811}
4812
851ba692 4813static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4814{
4815 u64 sptes[4];
ce88decf 4816 int nr_sptes, i, ret;
68f89400
MT
4817 gpa_t gpa;
4818
4819 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4820
ce88decf
XG
4821 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4822 if (likely(ret == 1))
4823 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4824 EMULATE_DONE;
4825 if (unlikely(!ret))
4826 return 1;
4827
4828 /* It is the real ept misconfig */
68f89400
MT
4829 printk(KERN_ERR "EPT: Misconfiguration.\n");
4830 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4831
4832 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4833
4834 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4835 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4836
851ba692
AK
4837 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4838 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4839
4840 return 0;
4841}
4842
851ba692 4843static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4844{
4845 u32 cpu_based_vm_exec_control;
4846
4847 /* clear pending NMI */
4848 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4849 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4850 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4851 ++vcpu->stat.nmi_window_exits;
3842d135 4852 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4853
4854 return 1;
4855}
4856
80ced186 4857static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4858{
8b3079a5
AK
4859 struct vcpu_vmx *vmx = to_vmx(vcpu);
4860 enum emulation_result err = EMULATE_DONE;
80ced186 4861 int ret = 1;
49e9d557
AK
4862 u32 cpu_exec_ctrl;
4863 bool intr_window_requested;
4864
4865 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4866 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4867
4868 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4869 if (intr_window_requested
4870 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4871 return handle_interrupt_window(&vmx->vcpu);
4872
51d8b661 4873 err = emulate_instruction(vcpu, 0);
ea953ef0 4874
80ced186
MG
4875 if (err == EMULATE_DO_MMIO) {
4876 ret = 0;
4877 goto out;
4878 }
1d5a4d9b 4879
6d77dbfc
GN
4880 if (err != EMULATE_DONE)
4881 return 0;
ea953ef0
MG
4882
4883 if (signal_pending(current))
80ced186 4884 goto out;
ea953ef0
MG
4885 if (need_resched())
4886 schedule();
4887 }
4888
80ced186
MG
4889 vmx->emulation_required = 0;
4890out:
4891 return ret;
ea953ef0
MG
4892}
4893
4b8d54f9
ZE
4894/*
4895 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4896 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4897 */
9fb41ba8 4898static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4899{
4900 skip_emulated_instruction(vcpu);
4901 kvm_vcpu_on_spin(vcpu);
4902
4903 return 1;
4904}
4905
59708670
SY
4906static int handle_invalid_op(struct kvm_vcpu *vcpu)
4907{
4908 kvm_queue_exception(vcpu, UD_VECTOR);
4909 return 1;
4910}
4911
ff2f6fe9
NHE
4912/*
4913 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4914 * We could reuse a single VMCS for all the L2 guests, but we also want the
4915 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4916 * allows keeping them loaded on the processor, and in the future will allow
4917 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4918 * every entry if they never change.
4919 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4920 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4921 *
4922 * The following functions allocate and free a vmcs02 in this pool.
4923 */
4924
4925/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4926static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4927{
4928 struct vmcs02_list *item;
4929 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4930 if (item->vmptr == vmx->nested.current_vmptr) {
4931 list_move(&item->list, &vmx->nested.vmcs02_pool);
4932 return &item->vmcs02;
4933 }
4934
4935 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4936 /* Recycle the least recently used VMCS. */
4937 item = list_entry(vmx->nested.vmcs02_pool.prev,
4938 struct vmcs02_list, list);
4939 item->vmptr = vmx->nested.current_vmptr;
4940 list_move(&item->list, &vmx->nested.vmcs02_pool);
4941 return &item->vmcs02;
4942 }
4943
4944 /* Create a new VMCS */
4945 item = (struct vmcs02_list *)
4946 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4947 if (!item)
4948 return NULL;
4949 item->vmcs02.vmcs = alloc_vmcs();
4950 if (!item->vmcs02.vmcs) {
4951 kfree(item);
4952 return NULL;
4953 }
4954 loaded_vmcs_init(&item->vmcs02);
4955 item->vmptr = vmx->nested.current_vmptr;
4956 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4957 vmx->nested.vmcs02_num++;
4958 return &item->vmcs02;
4959}
4960
4961/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4962static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4963{
4964 struct vmcs02_list *item;
4965 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4966 if (item->vmptr == vmptr) {
4967 free_loaded_vmcs(&item->vmcs02);
4968 list_del(&item->list);
4969 kfree(item);
4970 vmx->nested.vmcs02_num--;
4971 return;
4972 }
4973}
4974
4975/*
4976 * Free all VMCSs saved for this vcpu, except the one pointed by
4977 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4978 * currently used, if running L2), and vmcs01 when running L2.
4979 */
4980static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4981{
4982 struct vmcs02_list *item, *n;
4983 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4984 if (vmx->loaded_vmcs != &item->vmcs02)
4985 free_loaded_vmcs(&item->vmcs02);
4986 list_del(&item->list);
4987 kfree(item);
4988 }
4989 vmx->nested.vmcs02_num = 0;
4990
4991 if (vmx->loaded_vmcs != &vmx->vmcs01)
4992 free_loaded_vmcs(&vmx->vmcs01);
4993}
4994
ec378aee
NHE
4995/*
4996 * Emulate the VMXON instruction.
4997 * Currently, we just remember that VMX is active, and do not save or even
4998 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4999 * do not currently need to store anything in that guest-allocated memory
5000 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5001 * argument is different from the VMXON pointer (which the spec says they do).
5002 */
5003static int handle_vmon(struct kvm_vcpu *vcpu)
5004{
5005 struct kvm_segment cs;
5006 struct vcpu_vmx *vmx = to_vmx(vcpu);
5007
5008 /* The Intel VMX Instruction Reference lists a bunch of bits that
5009 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5010 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5011 * Otherwise, we should fail with #UD. We test these now:
5012 */
5013 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5014 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5015 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5016 kvm_queue_exception(vcpu, UD_VECTOR);
5017 return 1;
5018 }
5019
5020 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5021 if (is_long_mode(vcpu) && !cs.l) {
5022 kvm_queue_exception(vcpu, UD_VECTOR);
5023 return 1;
5024 }
5025
5026 if (vmx_get_cpl(vcpu)) {
5027 kvm_inject_gp(vcpu, 0);
5028 return 1;
5029 }
5030
ff2f6fe9
NHE
5031 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5032 vmx->nested.vmcs02_num = 0;
5033
ec378aee
NHE
5034 vmx->nested.vmxon = true;
5035
5036 skip_emulated_instruction(vcpu);
5037 return 1;
5038}
5039
5040/*
5041 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5042 * for running VMX instructions (except VMXON, whose prerequisites are
5043 * slightly different). It also specifies what exception to inject otherwise.
5044 */
5045static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5046{
5047 struct kvm_segment cs;
5048 struct vcpu_vmx *vmx = to_vmx(vcpu);
5049
5050 if (!vmx->nested.vmxon) {
5051 kvm_queue_exception(vcpu, UD_VECTOR);
5052 return 0;
5053 }
5054
5055 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5056 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5057 (is_long_mode(vcpu) && !cs.l)) {
5058 kvm_queue_exception(vcpu, UD_VECTOR);
5059 return 0;
5060 }
5061
5062 if (vmx_get_cpl(vcpu)) {
5063 kvm_inject_gp(vcpu, 0);
5064 return 0;
5065 }
5066
5067 return 1;
5068}
5069
5070/*
5071 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5072 * just stops using VMX.
5073 */
5074static void free_nested(struct vcpu_vmx *vmx)
5075{
5076 if (!vmx->nested.vmxon)
5077 return;
5078 vmx->nested.vmxon = false;
a9d30f33
NHE
5079 if (vmx->nested.current_vmptr != -1ull) {
5080 kunmap(vmx->nested.current_vmcs12_page);
5081 nested_release_page(vmx->nested.current_vmcs12_page);
5082 vmx->nested.current_vmptr = -1ull;
5083 vmx->nested.current_vmcs12 = NULL;
5084 }
fe3ef05c
NHE
5085 /* Unpin physical memory we referred to in current vmcs02 */
5086 if (vmx->nested.apic_access_page) {
5087 nested_release_page(vmx->nested.apic_access_page);
5088 vmx->nested.apic_access_page = 0;
5089 }
ff2f6fe9
NHE
5090
5091 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5092}
5093
5094/* Emulate the VMXOFF instruction */
5095static int handle_vmoff(struct kvm_vcpu *vcpu)
5096{
5097 if (!nested_vmx_check_permission(vcpu))
5098 return 1;
5099 free_nested(to_vmx(vcpu));
5100 skip_emulated_instruction(vcpu);
5101 return 1;
5102}
5103
064aea77
NHE
5104/*
5105 * Decode the memory-address operand of a vmx instruction, as recorded on an
5106 * exit caused by such an instruction (run by a guest hypervisor).
5107 * On success, returns 0. When the operand is invalid, returns 1 and throws
5108 * #UD or #GP.
5109 */
5110static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5111 unsigned long exit_qualification,
5112 u32 vmx_instruction_info, gva_t *ret)
5113{
5114 /*
5115 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5116 * Execution", on an exit, vmx_instruction_info holds most of the
5117 * addressing components of the operand. Only the displacement part
5118 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5119 * For how an actual address is calculated from all these components,
5120 * refer to Vol. 1, "Operand Addressing".
5121 */
5122 int scaling = vmx_instruction_info & 3;
5123 int addr_size = (vmx_instruction_info >> 7) & 7;
5124 bool is_reg = vmx_instruction_info & (1u << 10);
5125 int seg_reg = (vmx_instruction_info >> 15) & 7;
5126 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5127 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5128 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5129 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5130
5131 if (is_reg) {
5132 kvm_queue_exception(vcpu, UD_VECTOR);
5133 return 1;
5134 }
5135
5136 /* Addr = segment_base + offset */
5137 /* offset = base + [index * scale] + displacement */
5138 *ret = vmx_get_segment_base(vcpu, seg_reg);
5139 if (base_is_valid)
5140 *ret += kvm_register_read(vcpu, base_reg);
5141 if (index_is_valid)
5142 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5143 *ret += exit_qualification; /* holds the displacement */
5144
5145 if (addr_size == 1) /* 32 bit */
5146 *ret &= 0xffffffff;
5147
5148 /*
5149 * TODO: throw #GP (and return 1) in various cases that the VM*
5150 * instructions require it - e.g., offset beyond segment limit,
5151 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5152 * address, and so on. Currently these are not checked.
5153 */
5154 return 0;
5155}
5156
0140caea
NHE
5157/*
5158 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5159 * set the success or error code of an emulated VMX instruction, as specified
5160 * by Vol 2B, VMX Instruction Reference, "Conventions".
5161 */
5162static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5163{
5164 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5165 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5166 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5167}
5168
5169static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5170{
5171 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5172 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5173 X86_EFLAGS_SF | X86_EFLAGS_OF))
5174 | X86_EFLAGS_CF);
5175}
5176
5177static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5178 u32 vm_instruction_error)
5179{
5180 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5181 /*
5182 * failValid writes the error number to the current VMCS, which
5183 * can't be done there isn't a current VMCS.
5184 */
5185 nested_vmx_failInvalid(vcpu);
5186 return;
5187 }
5188 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5189 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5190 X86_EFLAGS_SF | X86_EFLAGS_OF))
5191 | X86_EFLAGS_ZF);
5192 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5193}
5194
27d6c865
NHE
5195/* Emulate the VMCLEAR instruction */
5196static int handle_vmclear(struct kvm_vcpu *vcpu)
5197{
5198 struct vcpu_vmx *vmx = to_vmx(vcpu);
5199 gva_t gva;
5200 gpa_t vmptr;
5201 struct vmcs12 *vmcs12;
5202 struct page *page;
5203 struct x86_exception e;
5204
5205 if (!nested_vmx_check_permission(vcpu))
5206 return 1;
5207
5208 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5209 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5210 return 1;
5211
5212 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5213 sizeof(vmptr), &e)) {
5214 kvm_inject_page_fault(vcpu, &e);
5215 return 1;
5216 }
5217
5218 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5219 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5220 skip_emulated_instruction(vcpu);
5221 return 1;
5222 }
5223
5224 if (vmptr == vmx->nested.current_vmptr) {
5225 kunmap(vmx->nested.current_vmcs12_page);
5226 nested_release_page(vmx->nested.current_vmcs12_page);
5227 vmx->nested.current_vmptr = -1ull;
5228 vmx->nested.current_vmcs12 = NULL;
5229 }
5230
5231 page = nested_get_page(vcpu, vmptr);
5232 if (page == NULL) {
5233 /*
5234 * For accurate processor emulation, VMCLEAR beyond available
5235 * physical memory should do nothing at all. However, it is
5236 * possible that a nested vmx bug, not a guest hypervisor bug,
5237 * resulted in this case, so let's shut down before doing any
5238 * more damage:
5239 */
5240 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5241 return 1;
5242 }
5243 vmcs12 = kmap(page);
5244 vmcs12->launch_state = 0;
5245 kunmap(page);
5246 nested_release_page(page);
5247
5248 nested_free_vmcs02(vmx, vmptr);
5249
5250 skip_emulated_instruction(vcpu);
5251 nested_vmx_succeed(vcpu);
5252 return 1;
5253}
5254
cd232ad0
NHE
5255static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5256
5257/* Emulate the VMLAUNCH instruction */
5258static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5259{
5260 return nested_vmx_run(vcpu, true);
5261}
5262
5263/* Emulate the VMRESUME instruction */
5264static int handle_vmresume(struct kvm_vcpu *vcpu)
5265{
5266
5267 return nested_vmx_run(vcpu, false);
5268}
5269
49f705c5
NHE
5270enum vmcs_field_type {
5271 VMCS_FIELD_TYPE_U16 = 0,
5272 VMCS_FIELD_TYPE_U64 = 1,
5273 VMCS_FIELD_TYPE_U32 = 2,
5274 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5275};
5276
5277static inline int vmcs_field_type(unsigned long field)
5278{
5279 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5280 return VMCS_FIELD_TYPE_U32;
5281 return (field >> 13) & 0x3 ;
5282}
5283
5284static inline int vmcs_field_readonly(unsigned long field)
5285{
5286 return (((field >> 10) & 0x3) == 1);
5287}
5288
5289/*
5290 * Read a vmcs12 field. Since these can have varying lengths and we return
5291 * one type, we chose the biggest type (u64) and zero-extend the return value
5292 * to that size. Note that the caller, handle_vmread, might need to use only
5293 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5294 * 64-bit fields are to be returned).
5295 */
5296static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5297 unsigned long field, u64 *ret)
5298{
5299 short offset = vmcs_field_to_offset(field);
5300 char *p;
5301
5302 if (offset < 0)
5303 return 0;
5304
5305 p = ((char *)(get_vmcs12(vcpu))) + offset;
5306
5307 switch (vmcs_field_type(field)) {
5308 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5309 *ret = *((natural_width *)p);
5310 return 1;
5311 case VMCS_FIELD_TYPE_U16:
5312 *ret = *((u16 *)p);
5313 return 1;
5314 case VMCS_FIELD_TYPE_U32:
5315 *ret = *((u32 *)p);
5316 return 1;
5317 case VMCS_FIELD_TYPE_U64:
5318 *ret = *((u64 *)p);
5319 return 1;
5320 default:
5321 return 0; /* can never happen. */
5322 }
5323}
5324
5325/*
5326 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5327 * used before) all generate the same failure when it is missing.
5328 */
5329static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5330{
5331 struct vcpu_vmx *vmx = to_vmx(vcpu);
5332 if (vmx->nested.current_vmptr == -1ull) {
5333 nested_vmx_failInvalid(vcpu);
5334 skip_emulated_instruction(vcpu);
5335 return 0;
5336 }
5337 return 1;
5338}
5339
5340static int handle_vmread(struct kvm_vcpu *vcpu)
5341{
5342 unsigned long field;
5343 u64 field_value;
5344 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5345 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5346 gva_t gva = 0;
5347
5348 if (!nested_vmx_check_permission(vcpu) ||
5349 !nested_vmx_check_vmcs12(vcpu))
5350 return 1;
5351
5352 /* Decode instruction info and find the field to read */
5353 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5354 /* Read the field, zero-extended to a u64 field_value */
5355 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5356 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5357 skip_emulated_instruction(vcpu);
5358 return 1;
5359 }
5360 /*
5361 * Now copy part of this value to register or memory, as requested.
5362 * Note that the number of bits actually copied is 32 or 64 depending
5363 * on the guest's mode (32 or 64 bit), not on the given field's length.
5364 */
5365 if (vmx_instruction_info & (1u << 10)) {
5366 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5367 field_value);
5368 } else {
5369 if (get_vmx_mem_address(vcpu, exit_qualification,
5370 vmx_instruction_info, &gva))
5371 return 1;
5372 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5373 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5374 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5375 }
5376
5377 nested_vmx_succeed(vcpu);
5378 skip_emulated_instruction(vcpu);
5379 return 1;
5380}
5381
5382
5383static int handle_vmwrite(struct kvm_vcpu *vcpu)
5384{
5385 unsigned long field;
5386 gva_t gva;
5387 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5388 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5389 char *p;
5390 short offset;
5391 /* The value to write might be 32 or 64 bits, depending on L1's long
5392 * mode, and eventually we need to write that into a field of several
5393 * possible lengths. The code below first zero-extends the value to 64
5394 * bit (field_value), and then copies only the approriate number of
5395 * bits into the vmcs12 field.
5396 */
5397 u64 field_value = 0;
5398 struct x86_exception e;
5399
5400 if (!nested_vmx_check_permission(vcpu) ||
5401 !nested_vmx_check_vmcs12(vcpu))
5402 return 1;
5403
5404 if (vmx_instruction_info & (1u << 10))
5405 field_value = kvm_register_read(vcpu,
5406 (((vmx_instruction_info) >> 3) & 0xf));
5407 else {
5408 if (get_vmx_mem_address(vcpu, exit_qualification,
5409 vmx_instruction_info, &gva))
5410 return 1;
5411 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5412 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5413 kvm_inject_page_fault(vcpu, &e);
5414 return 1;
5415 }
5416 }
5417
5418
5419 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5420 if (vmcs_field_readonly(field)) {
5421 nested_vmx_failValid(vcpu,
5422 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5423 skip_emulated_instruction(vcpu);
5424 return 1;
5425 }
5426
5427 offset = vmcs_field_to_offset(field);
5428 if (offset < 0) {
5429 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5430 skip_emulated_instruction(vcpu);
5431 return 1;
5432 }
5433 p = ((char *) get_vmcs12(vcpu)) + offset;
5434
5435 switch (vmcs_field_type(field)) {
5436 case VMCS_FIELD_TYPE_U16:
5437 *(u16 *)p = field_value;
5438 break;
5439 case VMCS_FIELD_TYPE_U32:
5440 *(u32 *)p = field_value;
5441 break;
5442 case VMCS_FIELD_TYPE_U64:
5443 *(u64 *)p = field_value;
5444 break;
5445 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5446 *(natural_width *)p = field_value;
5447 break;
5448 default:
5449 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5450 skip_emulated_instruction(vcpu);
5451 return 1;
5452 }
5453
5454 nested_vmx_succeed(vcpu);
5455 skip_emulated_instruction(vcpu);
5456 return 1;
5457}
5458
63846663
NHE
5459/* Emulate the VMPTRLD instruction */
5460static int handle_vmptrld(struct kvm_vcpu *vcpu)
5461{
5462 struct vcpu_vmx *vmx = to_vmx(vcpu);
5463 gva_t gva;
5464 gpa_t vmptr;
5465 struct x86_exception e;
5466
5467 if (!nested_vmx_check_permission(vcpu))
5468 return 1;
5469
5470 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5471 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5472 return 1;
5473
5474 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5475 sizeof(vmptr), &e)) {
5476 kvm_inject_page_fault(vcpu, &e);
5477 return 1;
5478 }
5479
5480 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5481 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5482 skip_emulated_instruction(vcpu);
5483 return 1;
5484 }
5485
5486 if (vmx->nested.current_vmptr != vmptr) {
5487 struct vmcs12 *new_vmcs12;
5488 struct page *page;
5489 page = nested_get_page(vcpu, vmptr);
5490 if (page == NULL) {
5491 nested_vmx_failInvalid(vcpu);
5492 skip_emulated_instruction(vcpu);
5493 return 1;
5494 }
5495 new_vmcs12 = kmap(page);
5496 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5497 kunmap(page);
5498 nested_release_page_clean(page);
5499 nested_vmx_failValid(vcpu,
5500 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5501 skip_emulated_instruction(vcpu);
5502 return 1;
5503 }
5504 if (vmx->nested.current_vmptr != -1ull) {
5505 kunmap(vmx->nested.current_vmcs12_page);
5506 nested_release_page(vmx->nested.current_vmcs12_page);
5507 }
5508
5509 vmx->nested.current_vmptr = vmptr;
5510 vmx->nested.current_vmcs12 = new_vmcs12;
5511 vmx->nested.current_vmcs12_page = page;
5512 }
5513
5514 nested_vmx_succeed(vcpu);
5515 skip_emulated_instruction(vcpu);
5516 return 1;
5517}
5518
6a4d7550
NHE
5519/* Emulate the VMPTRST instruction */
5520static int handle_vmptrst(struct kvm_vcpu *vcpu)
5521{
5522 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5523 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5524 gva_t vmcs_gva;
5525 struct x86_exception e;
5526
5527 if (!nested_vmx_check_permission(vcpu))
5528 return 1;
5529
5530 if (get_vmx_mem_address(vcpu, exit_qualification,
5531 vmx_instruction_info, &vmcs_gva))
5532 return 1;
5533 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5534 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5535 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5536 sizeof(u64), &e)) {
5537 kvm_inject_page_fault(vcpu, &e);
5538 return 1;
5539 }
5540 nested_vmx_succeed(vcpu);
5541 skip_emulated_instruction(vcpu);
5542 return 1;
5543}
5544
6aa8b732
AK
5545/*
5546 * The exit handlers return 1 if the exit was handled fully and guest execution
5547 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5548 * to be done to userspace and return 0.
5549 */
851ba692 5550static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5551 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5552 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5553 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5554 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5555 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5556 [EXIT_REASON_CR_ACCESS] = handle_cr,
5557 [EXIT_REASON_DR_ACCESS] = handle_dr,
5558 [EXIT_REASON_CPUID] = handle_cpuid,
5559 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5560 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5561 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5562 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5563 [EXIT_REASON_INVD] = handle_invd,
a7052897 5564 [EXIT_REASON_INVLPG] = handle_invlpg,
c21415e8 5565 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5566 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5567 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5568 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5569 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5570 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5571 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5572 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5573 [EXIT_REASON_VMOFF] = handle_vmoff,
5574 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5575 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5576 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5577 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5578 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5579 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5580 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5581 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5582 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5583 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5584 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5585 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5586};
5587
5588static const int kvm_vmx_max_exit_handlers =
50a3485c 5589 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5590
644d711a
NHE
5591/*
5592 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5593 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5594 * disinterest in the current event (read or write a specific MSR) by using an
5595 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5596 */
5597static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5598 struct vmcs12 *vmcs12, u32 exit_reason)
5599{
5600 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5601 gpa_t bitmap;
5602
5603 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5604 return 1;
5605
5606 /*
5607 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5608 * for the four combinations of read/write and low/high MSR numbers.
5609 * First we need to figure out which of the four to use:
5610 */
5611 bitmap = vmcs12->msr_bitmap;
5612 if (exit_reason == EXIT_REASON_MSR_WRITE)
5613 bitmap += 2048;
5614 if (msr_index >= 0xc0000000) {
5615 msr_index -= 0xc0000000;
5616 bitmap += 1024;
5617 }
5618
5619 /* Then read the msr_index'th bit from this bitmap: */
5620 if (msr_index < 1024*8) {
5621 unsigned char b;
5622 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5623 return 1 & (b >> (msr_index & 7));
5624 } else
5625 return 1; /* let L1 handle the wrong parameter */
5626}
5627
5628/*
5629 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5630 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5631 * intercept (via guest_host_mask etc.) the current event.
5632 */
5633static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5634 struct vmcs12 *vmcs12)
5635{
5636 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5637 int cr = exit_qualification & 15;
5638 int reg = (exit_qualification >> 8) & 15;
5639 unsigned long val = kvm_register_read(vcpu, reg);
5640
5641 switch ((exit_qualification >> 4) & 3) {
5642 case 0: /* mov to cr */
5643 switch (cr) {
5644 case 0:
5645 if (vmcs12->cr0_guest_host_mask &
5646 (val ^ vmcs12->cr0_read_shadow))
5647 return 1;
5648 break;
5649 case 3:
5650 if ((vmcs12->cr3_target_count >= 1 &&
5651 vmcs12->cr3_target_value0 == val) ||
5652 (vmcs12->cr3_target_count >= 2 &&
5653 vmcs12->cr3_target_value1 == val) ||
5654 (vmcs12->cr3_target_count >= 3 &&
5655 vmcs12->cr3_target_value2 == val) ||
5656 (vmcs12->cr3_target_count >= 4 &&
5657 vmcs12->cr3_target_value3 == val))
5658 return 0;
5659 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5660 return 1;
5661 break;
5662 case 4:
5663 if (vmcs12->cr4_guest_host_mask &
5664 (vmcs12->cr4_read_shadow ^ val))
5665 return 1;
5666 break;
5667 case 8:
5668 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5669 return 1;
5670 break;
5671 }
5672 break;
5673 case 2: /* clts */
5674 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5675 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5676 return 1;
5677 break;
5678 case 1: /* mov from cr */
5679 switch (cr) {
5680 case 3:
5681 if (vmcs12->cpu_based_vm_exec_control &
5682 CPU_BASED_CR3_STORE_EXITING)
5683 return 1;
5684 break;
5685 case 8:
5686 if (vmcs12->cpu_based_vm_exec_control &
5687 CPU_BASED_CR8_STORE_EXITING)
5688 return 1;
5689 break;
5690 }
5691 break;
5692 case 3: /* lmsw */
5693 /*
5694 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5695 * cr0. Other attempted changes are ignored, with no exit.
5696 */
5697 if (vmcs12->cr0_guest_host_mask & 0xe &
5698 (val ^ vmcs12->cr0_read_shadow))
5699 return 1;
5700 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5701 !(vmcs12->cr0_read_shadow & 0x1) &&
5702 (val & 0x1))
5703 return 1;
5704 break;
5705 }
5706 return 0;
5707}
5708
5709/*
5710 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5711 * should handle it ourselves in L0 (and then continue L2). Only call this
5712 * when in is_guest_mode (L2).
5713 */
5714static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5715{
5716 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5717 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5718 struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5720
5721 if (vmx->nested.nested_run_pending)
5722 return 0;
5723
5724 if (unlikely(vmx->fail)) {
bd80158a
JK
5725 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5726 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5727 return 1;
5728 }
5729
5730 switch (exit_reason) {
5731 case EXIT_REASON_EXCEPTION_NMI:
5732 if (!is_exception(intr_info))
5733 return 0;
5734 else if (is_page_fault(intr_info))
5735 return enable_ept;
5736 return vmcs12->exception_bitmap &
5737 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5738 case EXIT_REASON_EXTERNAL_INTERRUPT:
5739 return 0;
5740 case EXIT_REASON_TRIPLE_FAULT:
5741 return 1;
5742 case EXIT_REASON_PENDING_INTERRUPT:
5743 case EXIT_REASON_NMI_WINDOW:
5744 /*
5745 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5746 * (aka Interrupt Window Exiting) only when L1 turned it on,
5747 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5748 * Same for NMI Window Exiting.
5749 */
5750 return 1;
5751 case EXIT_REASON_TASK_SWITCH:
5752 return 1;
5753 case EXIT_REASON_CPUID:
5754 return 1;
5755 case EXIT_REASON_HLT:
5756 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5757 case EXIT_REASON_INVD:
5758 return 1;
5759 case EXIT_REASON_INVLPG:
5760 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5761 case EXIT_REASON_RDPMC:
5762 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5763 case EXIT_REASON_RDTSC:
5764 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5765 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5766 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5767 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5768 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5769 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5770 /*
5771 * VMX instructions trap unconditionally. This allows L1 to
5772 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5773 */
5774 return 1;
5775 case EXIT_REASON_CR_ACCESS:
5776 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5777 case EXIT_REASON_DR_ACCESS:
5778 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5779 case EXIT_REASON_IO_INSTRUCTION:
5780 /* TODO: support IO bitmaps */
5781 return 1;
5782 case EXIT_REASON_MSR_READ:
5783 case EXIT_REASON_MSR_WRITE:
5784 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5785 case EXIT_REASON_INVALID_STATE:
5786 return 1;
5787 case EXIT_REASON_MWAIT_INSTRUCTION:
5788 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5789 case EXIT_REASON_MONITOR_INSTRUCTION:
5790 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5791 case EXIT_REASON_PAUSE_INSTRUCTION:
5792 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5793 nested_cpu_has2(vmcs12,
5794 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5795 case EXIT_REASON_MCE_DURING_VMENTRY:
5796 return 0;
5797 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5798 return 1;
5799 case EXIT_REASON_APIC_ACCESS:
5800 return nested_cpu_has2(vmcs12,
5801 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5802 case EXIT_REASON_EPT_VIOLATION:
5803 case EXIT_REASON_EPT_MISCONFIG:
5804 return 0;
5805 case EXIT_REASON_WBINVD:
5806 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5807 case EXIT_REASON_XSETBV:
5808 return 1;
5809 default:
5810 return 1;
5811 }
5812}
5813
586f9607
AK
5814static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5815{
5816 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5817 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5818}
5819
6aa8b732
AK
5820/*
5821 * The guest has exited. See if we can fix it or if we need userspace
5822 * assistance.
5823 */
851ba692 5824static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5825{
29bd8a78 5826 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5827 u32 exit_reason = vmx->exit_reason;
1155f76a 5828 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5829
80ced186
MG
5830 /* If guest state is invalid, start emulating */
5831 if (vmx->emulation_required && emulate_invalid_guest_state)
5832 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5833
b6f1250e
NHE
5834 /*
5835 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5836 * we did not inject a still-pending event to L1 now because of
5837 * nested_run_pending, we need to re-enable this bit.
5838 */
5839 if (vmx->nested.nested_run_pending)
5840 kvm_make_request(KVM_REQ_EVENT, vcpu);
5841
509c75ea
NHE
5842 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5843 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5844 vmx->nested.nested_run_pending = 1;
5845 else
5846 vmx->nested.nested_run_pending = 0;
5847
5848 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5849 nested_vmx_vmexit(vcpu);
5850 return 1;
5851 }
5852
5120702e
MG
5853 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5854 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5855 vcpu->run->fail_entry.hardware_entry_failure_reason
5856 = exit_reason;
5857 return 0;
5858 }
5859
29bd8a78 5860 if (unlikely(vmx->fail)) {
851ba692
AK
5861 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5862 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5863 = vmcs_read32(VM_INSTRUCTION_ERROR);
5864 return 0;
5865 }
6aa8b732 5866
d77c26fc 5867 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5868 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5869 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5870 exit_reason != EXIT_REASON_TASK_SWITCH))
5871 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5872 "(0x%x) and exit reason is 0x%x\n",
5873 __func__, vectoring_info, exit_reason);
3b86cd99 5874
644d711a
NHE
5875 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5876 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5877 get_vmcs12(vcpu), vcpu)))) {
c4282df9 5878 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5879 vmx->soft_vnmi_blocked = 0;
3b86cd99 5880 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5881 vcpu->arch.nmi_pending) {
3b86cd99
JK
5882 /*
5883 * This CPU don't support us in finding the end of an
5884 * NMI-blocked window if the guest runs with IRQs
5885 * disabled. So we pull the trigger after 1 s of
5886 * futile waiting, but inform the user about this.
5887 */
5888 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5889 "state on VCPU %d after 1 s timeout\n",
5890 __func__, vcpu->vcpu_id);
5891 vmx->soft_vnmi_blocked = 0;
3b86cd99 5892 }
3b86cd99
JK
5893 }
5894
6aa8b732
AK
5895 if (exit_reason < kvm_vmx_max_exit_handlers
5896 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5897 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5898 else {
851ba692
AK
5899 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5900 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5901 }
5902 return 0;
5903}
5904
95ba8273 5905static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5906{
95ba8273 5907 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5908 vmcs_write32(TPR_THRESHOLD, 0);
5909 return;
5910 }
5911
95ba8273 5912 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5913}
5914
51aa01d1 5915static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5916{
00eba012
AK
5917 u32 exit_intr_info;
5918
5919 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5920 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5921 return;
5922
c5ca8e57 5923 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5924 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5925
5926 /* Handle machine checks before interrupts are enabled */
00eba012 5927 if (is_machine_check(exit_intr_info))
a0861c02
AK
5928 kvm_machine_check();
5929
20f65983 5930 /* We need to handle NMIs before interrupts are enabled */
00eba012 5931 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5932 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5933 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5934 asm("int $2");
ff9d07a0
ZY
5935 kvm_after_handle_nmi(&vmx->vcpu);
5936 }
51aa01d1 5937}
20f65983 5938
51aa01d1
AK
5939static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5940{
c5ca8e57 5941 u32 exit_intr_info;
51aa01d1
AK
5942 bool unblock_nmi;
5943 u8 vector;
5944 bool idtv_info_valid;
5945
5946 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5947
cf393f75 5948 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5949 if (vmx->nmi_known_unmasked)
5950 return;
c5ca8e57
AK
5951 /*
5952 * Can't use vmx->exit_intr_info since we're not sure what
5953 * the exit reason is.
5954 */
5955 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5956 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5957 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5958 /*
7b4a25cb 5959 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5960 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5961 * a guest IRET fault.
7b4a25cb
GN
5962 * SDM 3: 23.2.2 (September 2008)
5963 * Bit 12 is undefined in any of the following cases:
5964 * If the VM exit sets the valid bit in the IDT-vectoring
5965 * information field.
5966 * If the VM exit is due to a double fault.
cf393f75 5967 */
7b4a25cb
GN
5968 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5969 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5970 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5971 GUEST_INTR_STATE_NMI);
9d58b931
AK
5972 else
5973 vmx->nmi_known_unmasked =
5974 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5975 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5976 } else if (unlikely(vmx->soft_vnmi_blocked))
5977 vmx->vnmi_blocked_time +=
5978 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5979}
5980
83422e17
AK
5981static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5982 u32 idt_vectoring_info,
5983 int instr_len_field,
5984 int error_code_field)
51aa01d1 5985{
51aa01d1
AK
5986 u8 vector;
5987 int type;
5988 bool idtv_info_valid;
5989
5990 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 5991
37b96e98
GN
5992 vmx->vcpu.arch.nmi_injected = false;
5993 kvm_clear_exception_queue(&vmx->vcpu);
5994 kvm_clear_interrupt_queue(&vmx->vcpu);
5995
5996 if (!idtv_info_valid)
5997 return;
5998
3842d135
AK
5999 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6000
668f612f
AK
6001 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6002 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6003
64a7ec06 6004 switch (type) {
37b96e98
GN
6005 case INTR_TYPE_NMI_INTR:
6006 vmx->vcpu.arch.nmi_injected = true;
668f612f 6007 /*
7b4a25cb 6008 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6009 * Clear bit "block by NMI" before VM entry if a NMI
6010 * delivery faulted.
668f612f 6011 */
654f06fc 6012 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6013 break;
37b96e98 6014 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6015 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6016 vmcs_read32(instr_len_field);
66fd3f7f
GN
6017 /* fall through */
6018 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6019 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6020 u32 err = vmcs_read32(error_code_field);
37b96e98 6021 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6022 } else
6023 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6024 break;
66fd3f7f
GN
6025 case INTR_TYPE_SOFT_INTR:
6026 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6027 vmcs_read32(instr_len_field);
66fd3f7f 6028 /* fall through */
37b96e98 6029 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6030 kvm_queue_interrupt(&vmx->vcpu, vector,
6031 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6032 break;
6033 default:
6034 break;
f7d9238f 6035 }
cf393f75
AK
6036}
6037
83422e17
AK
6038static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6039{
66c78ae4
NHE
6040 if (is_guest_mode(&vmx->vcpu))
6041 return;
83422e17
AK
6042 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6043 VM_EXIT_INSTRUCTION_LEN,
6044 IDT_VECTORING_ERROR_CODE);
6045}
6046
b463a6f7
AK
6047static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6048{
66c78ae4
NHE
6049 if (is_guest_mode(vcpu))
6050 return;
b463a6f7
AK
6051 __vmx_complete_interrupts(to_vmx(vcpu),
6052 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6053 VM_ENTRY_INSTRUCTION_LEN,
6054 VM_ENTRY_EXCEPTION_ERROR_CODE);
6055
6056 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6057}
6058
d7cd9796
GN
6059static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6060{
6061 int i, nr_msrs;
6062 struct perf_guest_switch_msr *msrs;
6063
6064 msrs = perf_guest_get_msrs(&nr_msrs);
6065
6066 if (!msrs)
6067 return;
6068
6069 for (i = 0; i < nr_msrs; i++)
6070 if (msrs[i].host == msrs[i].guest)
6071 clear_atomic_switch_msr(vmx, msrs[i].msr);
6072 else
6073 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6074 msrs[i].host);
6075}
6076
c801949d
AK
6077#ifdef CONFIG_X86_64
6078#define R "r"
6079#define Q "q"
6080#else
6081#define R "e"
6082#define Q "l"
6083#endif
6084
a3b5ba49 6085static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6086{
a2fa3e9f 6087 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 6088
66c78ae4
NHE
6089 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6091 if (vmcs12->idt_vectoring_info_field &
6092 VECTORING_INFO_VALID_MASK) {
6093 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6094 vmcs12->idt_vectoring_info_field);
6095 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6096 vmcs12->vm_exit_instruction_len);
6097 if (vmcs12->idt_vectoring_info_field &
6098 VECTORING_INFO_DELIVER_CODE_MASK)
6099 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6100 vmcs12->idt_vectoring_error_code);
6101 }
6102 }
6103
104f226b
AK
6104 /* Record the guest's net vcpu time for enforced NMI injections. */
6105 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6106 vmx->entry_time = ktime_get();
6107
6108 /* Don't enter VMX if guest state is invalid, let the exit handler
6109 start emulation until we arrive back to a valid state */
6110 if (vmx->emulation_required && emulate_invalid_guest_state)
6111 return;
6112
6113 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6114 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6115 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6116 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6117
6118 /* When single-stepping over STI and MOV SS, we must clear the
6119 * corresponding interruptibility bits in the guest state. Otherwise
6120 * vmentry fails as it then expects bit 14 (BS) in pending debug
6121 * exceptions being set, but that's not correct for the guest debugging
6122 * case. */
6123 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6124 vmx_set_interrupt_shadow(vcpu, 0);
6125
d7cd9796
GN
6126 atomic_switch_perf_msrs(vmx);
6127
d462b819 6128 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6129 asm(
6aa8b732 6130 /* Store host registers */
c801949d 6131 "push %%"R"dx; push %%"R"bp;"
40712fae 6132 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6133 "push %%"R"cx \n\t"
313dbd49
AK
6134 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6135 "je 1f \n\t"
6136 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6137 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6138 "1: \n\t"
d3edefc0
AK
6139 /* Reload cr2 if changed */
6140 "mov %c[cr2](%0), %%"R"ax \n\t"
6141 "mov %%cr2, %%"R"dx \n\t"
6142 "cmp %%"R"ax, %%"R"dx \n\t"
6143 "je 2f \n\t"
6144 "mov %%"R"ax, %%cr2 \n\t"
6145 "2: \n\t"
6aa8b732 6146 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6147 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6148 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6149 "mov %c[rax](%0), %%"R"ax \n\t"
6150 "mov %c[rbx](%0), %%"R"bx \n\t"
6151 "mov %c[rdx](%0), %%"R"dx \n\t"
6152 "mov %c[rsi](%0), %%"R"si \n\t"
6153 "mov %c[rdi](%0), %%"R"di \n\t"
6154 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6155#ifdef CONFIG_X86_64
e08aa78a
AK
6156 "mov %c[r8](%0), %%r8 \n\t"
6157 "mov %c[r9](%0), %%r9 \n\t"
6158 "mov %c[r10](%0), %%r10 \n\t"
6159 "mov %c[r11](%0), %%r11 \n\t"
6160 "mov %c[r12](%0), %%r12 \n\t"
6161 "mov %c[r13](%0), %%r13 \n\t"
6162 "mov %c[r14](%0), %%r14 \n\t"
6163 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6164#endif
c801949d
AK
6165 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6166
6aa8b732 6167 /* Enter guest mode */
cd2276a7 6168 "jne .Llaunched \n\t"
4ecac3fd 6169 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6170 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6171 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6172 ".Lkvm_vmx_return: "
6aa8b732 6173 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6174 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6175 "pop %0 \n\t"
c801949d
AK
6176 "mov %%"R"ax, %c[rax](%0) \n\t"
6177 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6178 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6179 "mov %%"R"dx, %c[rdx](%0) \n\t"
6180 "mov %%"R"si, %c[rsi](%0) \n\t"
6181 "mov %%"R"di, %c[rdi](%0) \n\t"
6182 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6183#ifdef CONFIG_X86_64
e08aa78a
AK
6184 "mov %%r8, %c[r8](%0) \n\t"
6185 "mov %%r9, %c[r9](%0) \n\t"
6186 "mov %%r10, %c[r10](%0) \n\t"
6187 "mov %%r11, %c[r11](%0) \n\t"
6188 "mov %%r12, %c[r12](%0) \n\t"
6189 "mov %%r13, %c[r13](%0) \n\t"
6190 "mov %%r14, %c[r14](%0) \n\t"
6191 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6192#endif
c801949d
AK
6193 "mov %%cr2, %%"R"ax \n\t"
6194 "mov %%"R"ax, %c[cr2](%0) \n\t"
6195
1c696d0e 6196 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6197 "setbe %c[fail](%0) \n\t"
6198 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6199 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6200 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6201 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6202 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6203 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6204 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6205 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6206 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6207 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6208 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6209#ifdef CONFIG_X86_64
ad312c7c
ZX
6210 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6211 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6212 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6213 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6214 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6215 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6216 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6217 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6218#endif
40712fae
AK
6219 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6220 [wordsize]"i"(sizeof(ulong))
c2036300 6221 : "cc", "memory"
07d6f555 6222 , R"ax", R"bx", R"di", R"si"
c2036300 6223#ifdef CONFIG_X86_64
c2036300
LV
6224 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6225#endif
6226 );
6aa8b732 6227
6de4f3ad 6228 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6229 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6230 | (1 << VCPU_EXREG_CPL)
aff48baa 6231 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6232 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6233 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6234 vcpu->arch.regs_dirty = 0;
6235
1155f76a
AK
6236 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6237
66c78ae4
NHE
6238 if (is_guest_mode(vcpu)) {
6239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6240 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6241 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6242 vmcs12->idt_vectoring_error_code =
6243 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6244 vmcs12->vm_exit_instruction_len =
6245 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6246 }
6247 }
6248
d77c26fc 6249 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 6250 vmx->loaded_vmcs->launched = 1;
1b6269db 6251
51aa01d1 6252 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6253 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6254
6255 vmx_complete_atomic_exit(vmx);
6256 vmx_recover_nmi_blocking(vmx);
cf393f75 6257 vmx_complete_interrupts(vmx);
6aa8b732
AK
6258}
6259
c801949d
AK
6260#undef R
6261#undef Q
6262
6aa8b732
AK
6263static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6264{
fb3f0f51
RR
6265 struct vcpu_vmx *vmx = to_vmx(vcpu);
6266
cdbecfc3 6267 free_vpid(vmx);
ec378aee 6268 free_nested(vmx);
d462b819 6269 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6270 kfree(vmx->guest_msrs);
6271 kvm_vcpu_uninit(vcpu);
a4770347 6272 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6273}
6274
fb3f0f51 6275static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6276{
fb3f0f51 6277 int err;
c16f862d 6278 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6279 int cpu;
6aa8b732 6280
a2fa3e9f 6281 if (!vmx)
fb3f0f51
RR
6282 return ERR_PTR(-ENOMEM);
6283
2384d2b3
SY
6284 allocate_vpid(vmx);
6285
fb3f0f51
RR
6286 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6287 if (err)
6288 goto free_vcpu;
965b58a5 6289
a2fa3e9f 6290 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6291 err = -ENOMEM;
fb3f0f51 6292 if (!vmx->guest_msrs) {
fb3f0f51
RR
6293 goto uninit_vcpu;
6294 }
965b58a5 6295
d462b819
NHE
6296 vmx->loaded_vmcs = &vmx->vmcs01;
6297 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6298 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6299 goto free_msrs;
d462b819
NHE
6300 if (!vmm_exclusive)
6301 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6302 loaded_vmcs_init(vmx->loaded_vmcs);
6303 if (!vmm_exclusive)
6304 kvm_cpu_vmxoff();
a2fa3e9f 6305
15ad7146
AK
6306 cpu = get_cpu();
6307 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6308 vmx->vcpu.cpu = cpu;
8b9cf98c 6309 err = vmx_vcpu_setup(vmx);
fb3f0f51 6310 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6311 put_cpu();
fb3f0f51
RR
6312 if (err)
6313 goto free_vmcs;
5e4a0b3c 6314 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6315 err = alloc_apic_access_page(kvm);
6316 if (err)
5e4a0b3c 6317 goto free_vmcs;
fb3f0f51 6318
b927a3ce
SY
6319 if (enable_ept) {
6320 if (!kvm->arch.ept_identity_map_addr)
6321 kvm->arch.ept_identity_map_addr =
6322 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6323 err = -ENOMEM;
b7ebfb05
SY
6324 if (alloc_identity_pagetable(kvm) != 0)
6325 goto free_vmcs;
93ea5388
GN
6326 if (!init_rmode_identity_map(kvm))
6327 goto free_vmcs;
b927a3ce 6328 }
b7ebfb05 6329
a9d30f33
NHE
6330 vmx->nested.current_vmptr = -1ull;
6331 vmx->nested.current_vmcs12 = NULL;
6332
fb3f0f51
RR
6333 return &vmx->vcpu;
6334
6335free_vmcs:
d462b819 6336 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 6337free_msrs:
fb3f0f51
RR
6338 kfree(vmx->guest_msrs);
6339uninit_vcpu:
6340 kvm_vcpu_uninit(&vmx->vcpu);
6341free_vcpu:
cdbecfc3 6342 free_vpid(vmx);
a4770347 6343 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6344 return ERR_PTR(err);
6aa8b732
AK
6345}
6346
002c7f7c
YS
6347static void __init vmx_check_processor_compat(void *rtn)
6348{
6349 struct vmcs_config vmcs_conf;
6350
6351 *(int *)rtn = 0;
6352 if (setup_vmcs_config(&vmcs_conf) < 0)
6353 *(int *)rtn = -EIO;
6354 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6355 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6356 smp_processor_id());
6357 *(int *)rtn = -EIO;
6358 }
6359}
6360
67253af5
SY
6361static int get_ept_level(void)
6362{
6363 return VMX_EPT_DEFAULT_GAW + 1;
6364}
6365
4b12f0de 6366static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6367{
4b12f0de
SY
6368 u64 ret;
6369
522c68c4
SY
6370 /* For VT-d and EPT combination
6371 * 1. MMIO: always map as UC
6372 * 2. EPT with VT-d:
6373 * a. VT-d without snooping control feature: can't guarantee the
6374 * result, try to trust guest.
6375 * b. VT-d with snooping control feature: snooping control feature of
6376 * VT-d engine can guarantee the cache correctness. Just set it
6377 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6378 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6379 * consistent with host MTRR
6380 */
4b12f0de
SY
6381 if (is_mmio)
6382 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6383 else if (vcpu->kvm->arch.iommu_domain &&
6384 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6385 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6386 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6387 else
522c68c4 6388 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6389 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6390
6391 return ret;
64d4d521
SY
6392}
6393
17cc3935 6394static int vmx_get_lpage_level(void)
344f414f 6395{
878403b7
SY
6396 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6397 return PT_DIRECTORY_LEVEL;
6398 else
6399 /* For shadow and EPT supported 1GB page */
6400 return PT_PDPE_LEVEL;
344f414f
JR
6401}
6402
0e851880
SY
6403static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6404{
4e47c7a6
SY
6405 struct kvm_cpuid_entry2 *best;
6406 struct vcpu_vmx *vmx = to_vmx(vcpu);
6407 u32 exec_control;
6408
6409 vmx->rdtscp_enabled = false;
6410 if (vmx_rdtscp_supported()) {
6411 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6412 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6413 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6414 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6415 vmx->rdtscp_enabled = true;
6416 else {
6417 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6418 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6419 exec_control);
6420 }
6421 }
6422 }
0e851880
SY
6423}
6424
d4330ef2
JR
6425static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6426{
7b8050f5
NHE
6427 if (func == 1 && nested)
6428 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6429}
6430
fe3ef05c
NHE
6431/*
6432 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6433 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6434 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6435 * guest in a way that will both be appropriate to L1's requests, and our
6436 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6437 * function also has additional necessary side-effects, like setting various
6438 * vcpu->arch fields.
6439 */
6440static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6441{
6442 struct vcpu_vmx *vmx = to_vmx(vcpu);
6443 u32 exec_control;
6444
6445 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6446 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6447 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6448 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6449 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6450 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6451 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6452 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6453 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6454 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6455 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6456 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6457 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6458 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6459 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6460 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6461 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6462 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6463 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6464 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6465 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6466 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6467 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6468 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6469 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6470 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6471 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6472 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6473 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6474 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6475 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6476 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6477 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6478 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6479 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6480 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6481
6482 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6483 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6484 vmcs12->vm_entry_intr_info_field);
6485 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6486 vmcs12->vm_entry_exception_error_code);
6487 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6488 vmcs12->vm_entry_instruction_len);
6489 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6490 vmcs12->guest_interruptibility_info);
6491 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6492 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6493 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6494 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6495 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6496 vmcs12->guest_pending_dbg_exceptions);
6497 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6498 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6499
6500 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6501
6502 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6503 (vmcs_config.pin_based_exec_ctrl |
6504 vmcs12->pin_based_vm_exec_control));
6505
6506 /*
6507 * Whether page-faults are trapped is determined by a combination of
6508 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6509 * If enable_ept, L0 doesn't care about page faults and we should
6510 * set all of these to L1's desires. However, if !enable_ept, L0 does
6511 * care about (at least some) page faults, and because it is not easy
6512 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6513 * to exit on each and every L2 page fault. This is done by setting
6514 * MASK=MATCH=0 and (see below) EB.PF=1.
6515 * Note that below we don't need special code to set EB.PF beyond the
6516 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6517 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6518 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6519 *
6520 * A problem with this approach (when !enable_ept) is that L1 may be
6521 * injected with more page faults than it asked for. This could have
6522 * caused problems, but in practice existing hypervisors don't care.
6523 * To fix this, we will need to emulate the PFEC checking (on the L1
6524 * page tables), using walk_addr(), when injecting PFs to L1.
6525 */
6526 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6527 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6528 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6529 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6530
6531 if (cpu_has_secondary_exec_ctrls()) {
6532 u32 exec_control = vmx_secondary_exec_control(vmx);
6533 if (!vmx->rdtscp_enabled)
6534 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6535 /* Take the following fields only from vmcs12 */
6536 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6537 if (nested_cpu_has(vmcs12,
6538 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6539 exec_control |= vmcs12->secondary_vm_exec_control;
6540
6541 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6542 /*
6543 * Translate L1 physical address to host physical
6544 * address for vmcs02. Keep the page pinned, so this
6545 * physical address remains valid. We keep a reference
6546 * to it so we can release it later.
6547 */
6548 if (vmx->nested.apic_access_page) /* shouldn't happen */
6549 nested_release_page(vmx->nested.apic_access_page);
6550 vmx->nested.apic_access_page =
6551 nested_get_page(vcpu, vmcs12->apic_access_addr);
6552 /*
6553 * If translation failed, no matter: This feature asks
6554 * to exit when accessing the given address, and if it
6555 * can never be accessed, this feature won't do
6556 * anything anyway.
6557 */
6558 if (!vmx->nested.apic_access_page)
6559 exec_control &=
6560 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6561 else
6562 vmcs_write64(APIC_ACCESS_ADDR,
6563 page_to_phys(vmx->nested.apic_access_page));
6564 }
6565
6566 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6567 }
6568
6569
6570 /*
6571 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6572 * Some constant fields are set here by vmx_set_constant_host_state().
6573 * Other fields are different per CPU, and will be set later when
6574 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6575 */
6576 vmx_set_constant_host_state();
6577
6578 /*
6579 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6580 * entry, but only if the current (host) sp changed from the value
6581 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6582 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6583 * here we just force the write to happen on entry.
6584 */
6585 vmx->host_rsp = 0;
6586
6587 exec_control = vmx_exec_control(vmx); /* L0's desires */
6588 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6589 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6590 exec_control &= ~CPU_BASED_TPR_SHADOW;
6591 exec_control |= vmcs12->cpu_based_vm_exec_control;
6592 /*
6593 * Merging of IO and MSR bitmaps not currently supported.
6594 * Rather, exit every time.
6595 */
6596 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6597 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6598 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6599
6600 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6601
6602 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6603 * bitwise-or of what L1 wants to trap for L2, and what we want to
6604 * trap. Note that CR0.TS also needs updating - we do this later.
6605 */
6606 update_exception_bitmap(vcpu);
6607 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6608 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6609
6610 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6611 vmcs_write32(VM_EXIT_CONTROLS,
6612 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6613 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6614 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6615
6616 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6617 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6618 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6619 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6620
6621
6622 set_cr4_guest_host_mask(vmx);
6623
27fc51b2
NHE
6624 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6625 vmcs_write64(TSC_OFFSET,
6626 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6627 else
6628 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6629
6630 if (enable_vpid) {
6631 /*
6632 * Trivially support vpid by letting L2s share their parent
6633 * L1's vpid. TODO: move to a more elaborate solution, giving
6634 * each L2 its own vpid and exposing the vpid feature to L1.
6635 */
6636 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6637 vmx_flush_tlb(vcpu);
6638 }
6639
6640 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6641 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6642 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6643 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6644 else
6645 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6646 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6647 vmx_set_efer(vcpu, vcpu->arch.efer);
6648
6649 /*
6650 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6651 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6652 * The CR0_READ_SHADOW is what L2 should have expected to read given
6653 * the specifications by L1; It's not enough to take
6654 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6655 * have more bits than L1 expected.
6656 */
6657 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6658 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6659
6660 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6661 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6662
6663 /* shadow page tables on either EPT or shadow page tables */
6664 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6665 kvm_mmu_reset_context(vcpu);
6666
6667 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6668 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6669}
6670
cd232ad0
NHE
6671/*
6672 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6673 * for running an L2 nested guest.
6674 */
6675static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6676{
6677 struct vmcs12 *vmcs12;
6678 struct vcpu_vmx *vmx = to_vmx(vcpu);
6679 int cpu;
6680 struct loaded_vmcs *vmcs02;
6681
6682 if (!nested_vmx_check_permission(vcpu) ||
6683 !nested_vmx_check_vmcs12(vcpu))
6684 return 1;
6685
6686 skip_emulated_instruction(vcpu);
6687 vmcs12 = get_vmcs12(vcpu);
6688
7c177938
NHE
6689 /*
6690 * The nested entry process starts with enforcing various prerequisites
6691 * on vmcs12 as required by the Intel SDM, and act appropriately when
6692 * they fail: As the SDM explains, some conditions should cause the
6693 * instruction to fail, while others will cause the instruction to seem
6694 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6695 * To speed up the normal (success) code path, we should avoid checking
6696 * for misconfigurations which will anyway be caught by the processor
6697 * when using the merged vmcs02.
6698 */
6699 if (vmcs12->launch_state == launch) {
6700 nested_vmx_failValid(vcpu,
6701 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6702 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6703 return 1;
6704 }
6705
6706 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6707 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6708 /*TODO: Also verify bits beyond physical address width are 0*/
6709 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6710 return 1;
6711 }
6712
6713 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6714 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6715 /*TODO: Also verify bits beyond physical address width are 0*/
6716 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6717 return 1;
6718 }
6719
6720 if (vmcs12->vm_entry_msr_load_count > 0 ||
6721 vmcs12->vm_exit_msr_load_count > 0 ||
6722 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6723 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6724 __func__);
7c177938
NHE
6725 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6726 return 1;
6727 }
6728
6729 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6730 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6731 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6732 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6733 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6734 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6735 !vmx_control_verify(vmcs12->vm_exit_controls,
6736 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6737 !vmx_control_verify(vmcs12->vm_entry_controls,
6738 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6739 {
6740 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6741 return 1;
6742 }
6743
6744 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6745 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6746 nested_vmx_failValid(vcpu,
6747 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6748 return 1;
6749 }
6750
6751 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6752 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6753 nested_vmx_entry_failure(vcpu, vmcs12,
6754 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6755 return 1;
6756 }
6757 if (vmcs12->vmcs_link_pointer != -1ull) {
6758 nested_vmx_entry_failure(vcpu, vmcs12,
6759 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6760 return 1;
6761 }
6762
6763 /*
6764 * We're finally done with prerequisite checking, and can start with
6765 * the nested entry.
6766 */
6767
cd232ad0
NHE
6768 vmcs02 = nested_get_current_vmcs02(vmx);
6769 if (!vmcs02)
6770 return -ENOMEM;
6771
6772 enter_guest_mode(vcpu);
6773
6774 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6775
6776 cpu = get_cpu();
6777 vmx->loaded_vmcs = vmcs02;
6778 vmx_vcpu_put(vcpu);
6779 vmx_vcpu_load(vcpu, cpu);
6780 vcpu->cpu = cpu;
6781 put_cpu();
6782
6783 vmcs12->launch_state = 1;
6784
6785 prepare_vmcs02(vcpu, vmcs12);
6786
6787 /*
6788 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6789 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6790 * returned as far as L1 is concerned. It will only return (and set
6791 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6792 */
6793 return 1;
6794}
6795
4704d0be
NHE
6796/*
6797 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6798 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6799 * This function returns the new value we should put in vmcs12.guest_cr0.
6800 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6801 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6802 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6803 * didn't trap the bit, because if L1 did, so would L0).
6804 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6805 * been modified by L2, and L1 knows it. So just leave the old value of
6806 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6807 * isn't relevant, because if L0 traps this bit it can set it to anything.
6808 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6809 * changed these bits, and therefore they need to be updated, but L0
6810 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6811 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6812 */
6813static inline unsigned long
6814vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6815{
6816 return
6817 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6818 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6819 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6820 vcpu->arch.cr0_guest_owned_bits));
6821}
6822
6823static inline unsigned long
6824vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6825{
6826 return
6827 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6828 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6829 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6830 vcpu->arch.cr4_guest_owned_bits));
6831}
6832
6833/*
6834 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6835 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6836 * and this function updates it to reflect the changes to the guest state while
6837 * L2 was running (and perhaps made some exits which were handled directly by L0
6838 * without going back to L1), and to reflect the exit reason.
6839 * Note that we do not have to copy here all VMCS fields, just those that
6840 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6841 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6842 * which already writes to vmcs12 directly.
6843 */
6844void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6845{
6846 /* update guest state fields: */
6847 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6848 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6849
6850 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6851 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6852 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6853 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6854
6855 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6856 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6857 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6858 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6859 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6860 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6861 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6862 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6863 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6864 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6865 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6866 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6867 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6868 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6869 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6870 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6871 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6872 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6873 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6874 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6875 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6876 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6877 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6878 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6879 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6880 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6881 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6882 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6883 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6884 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6885 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6886 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6887 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6888 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6889 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6890 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6891
6892 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6893 vmcs12->guest_interruptibility_info =
6894 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6895 vmcs12->guest_pending_dbg_exceptions =
6896 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6897
6898 /* TODO: These cannot have changed unless we have MSR bitmaps and
6899 * the relevant bit asks not to trap the change */
6900 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6901 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6902 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6903 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6904 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6905 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6906
6907 /* update exit information fields: */
6908
6909 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6910 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6911
6912 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6913 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6914 vmcs12->idt_vectoring_info_field =
6915 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6916 vmcs12->idt_vectoring_error_code =
6917 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6918 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6919 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6920
6921 /* clear vm-entry fields which are to be cleared on exit */
6922 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6923 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6924}
6925
6926/*
6927 * A part of what we need to when the nested L2 guest exits and we want to
6928 * run its L1 parent, is to reset L1's guest state to the host state specified
6929 * in vmcs12.
6930 * This function is to be called not only on normal nested exit, but also on
6931 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6932 * Failures During or After Loading Guest State").
6933 * This function should be called when the active VMCS is L1's (vmcs01).
6934 */
6935void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6936{
6937 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6938 vcpu->arch.efer = vmcs12->host_ia32_efer;
6939 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6940 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6941 else
6942 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6943 vmx_set_efer(vcpu, vcpu->arch.efer);
6944
6945 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6946 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6947 /*
6948 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6949 * actually changed, because it depends on the current state of
6950 * fpu_active (which may have changed).
6951 * Note that vmx_set_cr0 refers to efer set above.
6952 */
6953 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6954 /*
6955 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6956 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6957 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6958 */
6959 update_exception_bitmap(vcpu);
6960 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6961 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6962
6963 /*
6964 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6965 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6966 */
6967 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6968 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6969
6970 /* shadow page tables on either EPT or shadow page tables */
6971 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6972 kvm_mmu_reset_context(vcpu);
6973
6974 if (enable_vpid) {
6975 /*
6976 * Trivially support vpid by letting L2s share their parent
6977 * L1's vpid. TODO: move to a more elaborate solution, giving
6978 * each L2 its own vpid and exposing the vpid feature to L1.
6979 */
6980 vmx_flush_tlb(vcpu);
6981 }
6982
6983
6984 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6985 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6986 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6987 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6988 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6989 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6990 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6991 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6992 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6993 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6994 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6995 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6996 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6997 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6998 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6999
7000 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7001 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7002 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7003 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7004 vmcs12->host_ia32_perf_global_ctrl);
7005}
7006
7007/*
7008 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7009 * and modify vmcs12 to make it see what it would expect to see there if
7010 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7011 */
7012static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7013{
7014 struct vcpu_vmx *vmx = to_vmx(vcpu);
7015 int cpu;
7016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7017
7018 leave_guest_mode(vcpu);
7019 prepare_vmcs12(vcpu, vmcs12);
7020
7021 cpu = get_cpu();
7022 vmx->loaded_vmcs = &vmx->vmcs01;
7023 vmx_vcpu_put(vcpu);
7024 vmx_vcpu_load(vcpu, cpu);
7025 vcpu->cpu = cpu;
7026 put_cpu();
7027
7028 /* if no vmcs02 cache requested, remove the one we used */
7029 if (VMCS02_POOL_SIZE == 0)
7030 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7031
7032 load_vmcs12_host_state(vcpu, vmcs12);
7033
27fc51b2 7034 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7035 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7036
7037 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7038 vmx->host_rsp = 0;
7039
7040 /* Unpin physical memory we referred to in vmcs02 */
7041 if (vmx->nested.apic_access_page) {
7042 nested_release_page(vmx->nested.apic_access_page);
7043 vmx->nested.apic_access_page = 0;
7044 }
7045
7046 /*
7047 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7048 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7049 * success or failure flag accordingly.
7050 */
7051 if (unlikely(vmx->fail)) {
7052 vmx->fail = 0;
7053 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7054 } else
7055 nested_vmx_succeed(vcpu);
7056}
7057
7c177938
NHE
7058/*
7059 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7060 * 23.7 "VM-entry failures during or after loading guest state" (this also
7061 * lists the acceptable exit-reason and exit-qualification parameters).
7062 * It should only be called before L2 actually succeeded to run, and when
7063 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7064 */
7065static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7066 struct vmcs12 *vmcs12,
7067 u32 reason, unsigned long qualification)
7068{
7069 load_vmcs12_host_state(vcpu, vmcs12);
7070 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7071 vmcs12->exit_qualification = qualification;
7072 nested_vmx_succeed(vcpu);
7073}
7074
8a76d7f2
JR
7075static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7076 struct x86_instruction_info *info,
7077 enum x86_intercept_stage stage)
7078{
7079 return X86EMUL_CONTINUE;
7080}
7081
cbdd1bea 7082static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7083 .cpu_has_kvm_support = cpu_has_kvm_support,
7084 .disabled_by_bios = vmx_disabled_by_bios,
7085 .hardware_setup = hardware_setup,
7086 .hardware_unsetup = hardware_unsetup,
002c7f7c 7087 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7088 .hardware_enable = hardware_enable,
7089 .hardware_disable = hardware_disable,
04547156 7090 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7091
7092 .vcpu_create = vmx_create_vcpu,
7093 .vcpu_free = vmx_free_vcpu,
04d2cc77 7094 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7095
04d2cc77 7096 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7097 .vcpu_load = vmx_vcpu_load,
7098 .vcpu_put = vmx_vcpu_put,
7099
7100 .set_guest_debug = set_guest_debug,
7101 .get_msr = vmx_get_msr,
7102 .set_msr = vmx_set_msr,
7103 .get_segment_base = vmx_get_segment_base,
7104 .get_segment = vmx_get_segment,
7105 .set_segment = vmx_set_segment,
2e4d2653 7106 .get_cpl = vmx_get_cpl,
6aa8b732 7107 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7108 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7109 .decache_cr3 = vmx_decache_cr3,
25c4c276 7110 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7111 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7112 .set_cr3 = vmx_set_cr3,
7113 .set_cr4 = vmx_set_cr4,
6aa8b732 7114 .set_efer = vmx_set_efer,
6aa8b732
AK
7115 .get_idt = vmx_get_idt,
7116 .set_idt = vmx_set_idt,
7117 .get_gdt = vmx_get_gdt,
7118 .set_gdt = vmx_set_gdt,
020df079 7119 .set_dr7 = vmx_set_dr7,
5fdbf976 7120 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7121 .get_rflags = vmx_get_rflags,
7122 .set_rflags = vmx_set_rflags,
ebcbab4c 7123 .fpu_activate = vmx_fpu_activate,
02daab21 7124 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7125
7126 .tlb_flush = vmx_flush_tlb,
6aa8b732 7127
6aa8b732 7128 .run = vmx_vcpu_run,
6062d012 7129 .handle_exit = vmx_handle_exit,
6aa8b732 7130 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7131 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7132 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7133 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7134 .set_irq = vmx_inject_irq,
95ba8273 7135 .set_nmi = vmx_inject_nmi,
298101da 7136 .queue_exception = vmx_queue_exception,
b463a6f7 7137 .cancel_injection = vmx_cancel_injection,
78646121 7138 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7139 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7140 .get_nmi_mask = vmx_get_nmi_mask,
7141 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7142 .enable_nmi_window = enable_nmi_window,
7143 .enable_irq_window = enable_irq_window,
7144 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7145
cbc94022 7146 .set_tss_addr = vmx_set_tss_addr,
67253af5 7147 .get_tdp_level = get_ept_level,
4b12f0de 7148 .get_mt_mask = vmx_get_mt_mask,
229456fc 7149
586f9607 7150 .get_exit_info = vmx_get_exit_info,
586f9607 7151
17cc3935 7152 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7153
7154 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7155
7156 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
7157
7158 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7159
7160 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7161
4051b188 7162 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7163 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7164 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7165 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7166 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7167
7168 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7169
7170 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7171};
7172
7173static int __init vmx_init(void)
7174{
26bb0981
AK
7175 int r, i;
7176
7177 rdmsrl_safe(MSR_EFER, &host_efer);
7178
7179 for (i = 0; i < NR_VMX_MSR; ++i)
7180 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7181
3e7c73e9 7182 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7183 if (!vmx_io_bitmap_a)
7184 return -ENOMEM;
7185
3e7c73e9 7186 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7187 if (!vmx_io_bitmap_b) {
7188 r = -ENOMEM;
7189 goto out;
7190 }
7191
5897297b
AK
7192 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7193 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
7194 r = -ENOMEM;
7195 goto out1;
7196 }
7197
5897297b
AK
7198 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7199 if (!vmx_msr_bitmap_longmode) {
7200 r = -ENOMEM;
7201 goto out2;
7202 }
7203
fdef3ad1
HQ
7204 /*
7205 * Allow direct access to the PC debug port (it is often used for I/O
7206 * delays, but the vmexits simply slow things down).
7207 */
3e7c73e9
AK
7208 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7209 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7210
3e7c73e9 7211 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7212
5897297b
AK
7213 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7214 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7215
2384d2b3
SY
7216 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7217
0ee75bea
AK
7218 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7219 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7220 if (r)
5897297b 7221 goto out3;
25c5f225 7222
5897297b
AK
7223 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7224 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7225 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7226 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7227 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7228 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7229
089d034e 7230 if (enable_ept) {
534e38b4 7231 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 7232 VMX_EPT_EXECUTABLE_MASK);
ce88decf 7233 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7234 kvm_enable_tdp();
7235 } else
7236 kvm_disable_tdp();
1439442c 7237
fdef3ad1
HQ
7238 return 0;
7239
5897297b
AK
7240out3:
7241 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7242out2:
5897297b 7243 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7244out1:
3e7c73e9 7245 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7246out:
3e7c73e9 7247 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7248 return r;
6aa8b732
AK
7249}
7250
7251static void __exit vmx_exit(void)
7252{
5897297b
AK
7253 free_page((unsigned long)vmx_msr_bitmap_legacy);
7254 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7255 free_page((unsigned long)vmx_io_bitmap_b);
7256 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7257
cb498ea2 7258 kvm_exit();
6aa8b732
AK
7259}
7260
7261module_init(vmx_init)
7262module_exit(vmx_exit)