]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
lpfc: support nvmet_fc defer_rcv callback
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
b60503ba
MW
38#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
39#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 40
adf68f21
CH
41/*
42 * We handle AEN commands ourselves and don't even let the
43 * block layer know about them.
44 */
f866fc42 45#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 46
58ffacb5
MW
47static int use_threaded_interrupts;
48module_param(use_threaded_interrupts, int, 0);
49
8ffaadf7
JD
50static bool use_cmb_sqes = true;
51module_param(use_cmb_sqes, bool, 0644);
52MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
87ad72a5
CH
54static unsigned int max_host_mem_size_mb = 128;
55module_param(max_host_mem_size_mb, uint, 0444);
56MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 58
b27c1e68 59static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63};
64
65static int io_queue_depth = 1024;
66module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
1c63dc66
CH
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
1c63dc66
CH
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
1c63dc66 90 void __iomem *bar;
97f6ef64 91 unsigned long bar_mapped_size;
5c8809e6 92 struct work_struct remove_work;
77bf25ea 93 struct mutex shutdown_lock;
1c63dc66 94 bool subsystem;
1c63dc66
CH
95 void __iomem *cmb;
96 dma_addr_t cmb_dma_addr;
97 u64 cmb_size;
98 u32 cmbsz;
202021c1 99 u32 cmbloc;
1c63dc66 100 struct nvme_ctrl ctrl;
db3cbfff 101 struct completion ioq_wait;
87ad72a5
CH
102
103 /* shadow doorbell buffer support: */
f9f38e33
HK
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
4d115420 114};
1fa6aead 115
b27c1e68 116static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117{
118 int n = 0, ret;
119
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
123
124 return param_set_int(val, kp);
125}
126
f9f38e33
HK
127static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128{
129 return qid * 2 * stride;
130}
131
132static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133{
134 return (qid * 2 + 1) * stride;
135}
136
1c63dc66
CH
137static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138{
139 return container_of(ctrl, struct nvme_dev, ctrl);
140}
141
b60503ba
MW
142/*
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
145 */
146struct nvme_queue {
147 struct device *q_dmadev;
091b6092 148 struct nvme_dev *dev;
b60503ba
MW
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
8ffaadf7 151 struct nvme_command __iomem *sq_cmds_io;
b60503ba 152 volatile struct nvme_completion *cqes;
42483228 153 struct blk_mq_tags **tags;
b60503ba
MW
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
b60503ba
MW
156 u32 __iomem *q_db;
157 u16 q_depth;
6222d172 158 s16 cq_vector;
b60503ba
MW
159 u16 sq_tail;
160 u16 cq_head;
c30341dc 161 u16 qid;
e9539f47
MW
162 u8 cq_phase;
163 u8 cqe_seen;
f9f38e33
HK
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
b60503ba
MW
168};
169
71bd150c
CH
170/*
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 173 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
174 * allocated to store the PRP list.
175 */
176struct nvme_iod {
d49187e9 177 struct nvme_request req;
f4800d6d
CH
178 struct nvme_queue *nvmeq;
179 int aborted;
71bd150c 180 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
181 int nents; /* Used in scatterlist */
182 int length; /* Of data, in bytes */
183 dma_addr_t first_dma;
bf684057 184 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
185 struct scatterlist *sg;
186 struct scatterlist inline_sg[0];
b60503ba
MW
187};
188
189/*
190 * Check we didin't inadvertently grow the command struct
191 */
192static inline void _nvme_check_size(void)
193{
194 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 199 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 200 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 201 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
202 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 204 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 205 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
206 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
207}
208
209static inline unsigned int nvme_dbbuf_size(u32 stride)
210{
211 return ((num_possible_cpus() + 1) * 8 * stride);
212}
213
214static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
215{
216 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
217
218 if (dev->dbbuf_dbs)
219 return 0;
220
221 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
222 &dev->dbbuf_dbs_dma_addr,
223 GFP_KERNEL);
224 if (!dev->dbbuf_dbs)
225 return -ENOMEM;
226 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
227 &dev->dbbuf_eis_dma_addr,
228 GFP_KERNEL);
229 if (!dev->dbbuf_eis) {
230 dma_free_coherent(dev->dev, mem_size,
231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232 dev->dbbuf_dbs = NULL;
233 return -ENOMEM;
234 }
235
236 return 0;
237}
238
239static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
240{
241 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
242
243 if (dev->dbbuf_dbs) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 }
248 if (dev->dbbuf_eis) {
249 dma_free_coherent(dev->dev, mem_size,
250 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
251 dev->dbbuf_eis = NULL;
252 }
253}
254
255static void nvme_dbbuf_init(struct nvme_dev *dev,
256 struct nvme_queue *nvmeq, int qid)
257{
258 if (!dev->dbbuf_dbs || !qid)
259 return;
260
261 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
262 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
265}
266
267static void nvme_dbbuf_set(struct nvme_dev *dev)
268{
269 struct nvme_command c;
270
271 if (!dev->dbbuf_dbs)
272 return;
273
274 memset(&c, 0, sizeof(c));
275 c.dbbuf.opcode = nvme_admin_dbbuf;
276 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
277 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
278
279 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 280 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
281 /* Free memory and continue on */
282 nvme_dbbuf_dma_free(dev);
283 }
284}
285
286static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
287{
288 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
289}
290
291/* Update dbbuf and return true if an MMIO is required */
292static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
293 volatile u32 *dbbuf_ei)
294{
295 if (dbbuf_db) {
296 u16 old_value;
297
298 /*
299 * Ensure that the queue is written before updating
300 * the doorbell in memory
301 */
302 wmb();
303
304 old_value = *dbbuf_db;
305 *dbbuf_db = value;
306
307 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
308 return false;
309 }
310
311 return true;
b60503ba
MW
312}
313
ac3dd5bd
JA
314/*
315 * Max size of iod being embedded in the request payload
316 */
317#define NVME_INT_PAGES 2
5fd4ce1b 318#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
319
320/*
321 * Will slightly overestimate the number of pages needed. This is OK
322 * as it only leads to a small amount of wasted memory for the lifetime of
323 * the I/O.
324 */
325static int nvme_npages(unsigned size, struct nvme_dev *dev)
326{
5fd4ce1b
CH
327 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
328 dev->ctrl.page_size);
ac3dd5bd
JA
329 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
330}
331
f4800d6d
CH
332static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
333 unsigned int size, unsigned int nseg)
ac3dd5bd 334{
f4800d6d
CH
335 return sizeof(__le64 *) * nvme_npages(size, dev) +
336 sizeof(struct scatterlist) * nseg;
337}
ac3dd5bd 338
f4800d6d
CH
339static unsigned int nvme_cmd_size(struct nvme_dev *dev)
340{
341 return sizeof(struct nvme_iod) +
342 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
343}
344
a4aea562
MB
345static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346 unsigned int hctx_idx)
e85248e5 347{
a4aea562
MB
348 struct nvme_dev *dev = data;
349 struct nvme_queue *nvmeq = dev->queues[0];
350
42483228
KB
351 WARN_ON(hctx_idx != 0);
352 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
353 WARN_ON(nvmeq->tags);
354
a4aea562 355 hctx->driver_data = nvmeq;
42483228 356 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 357 return 0;
e85248e5
MW
358}
359
4af0e21c
KB
360static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
361{
362 struct nvme_queue *nvmeq = hctx->driver_data;
363
364 nvmeq->tags = NULL;
365}
366
a4aea562
MB
367static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
368 unsigned int hctx_idx)
b60503ba 369{
a4aea562 370 struct nvme_dev *dev = data;
42483228 371 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 372
42483228
KB
373 if (!nvmeq->tags)
374 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 375
42483228 376 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
377 hctx->driver_data = nvmeq;
378 return 0;
b60503ba
MW
379}
380
d6296d39
CH
381static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
382 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 383{
d6296d39 384 struct nvme_dev *dev = set->driver_data;
f4800d6d 385 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
386 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
387 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
388
389 BUG_ON(!nvmeq);
f4800d6d 390 iod->nvmeq = nvmeq;
a4aea562
MB
391 return 0;
392}
393
dca51e78
CH
394static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
395{
396 struct nvme_dev *dev = set->driver_data;
397
398 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
399}
400
b60503ba 401/**
adf68f21 402 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
403 * @nvmeq: The queue to use
404 * @cmd: The command to send
405 *
406 * Safe to use from interrupt context
407 */
e3f879bf
SB
408static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
409 struct nvme_command *cmd)
b60503ba 410{
a4aea562
MB
411 u16 tail = nvmeq->sq_tail;
412
8ffaadf7
JD
413 if (nvmeq->sq_cmds_io)
414 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
415 else
416 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
417
b60503ba
MW
418 if (++tail == nvmeq->q_depth)
419 tail = 0;
f9f38e33
HK
420 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
421 nvmeq->dbbuf_sq_ei))
422 writel(tail, nvmeq->q_db);
b60503ba 423 nvmeq->sq_tail = tail;
b60503ba
MW
424}
425
f4800d6d 426static __le64 **iod_list(struct request *req)
b60503ba 427{
f4800d6d 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 429 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
430}
431
fc17b653 432static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 433{
f4800d6d 434 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 435 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 436 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 437
f4800d6d
CH
438 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
439 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
440 if (!iod->sg)
fc17b653 441 return BLK_STS_RESOURCE;
f4800d6d
CH
442 } else {
443 iod->sg = iod->inline_sg;
ac3dd5bd
JA
444 }
445
f4800d6d
CH
446 iod->aborted = 0;
447 iod->npages = -1;
448 iod->nents = 0;
449 iod->length = size;
f80ec966 450
fc17b653 451 return BLK_STS_OK;
ac3dd5bd
JA
452}
453
f4800d6d 454static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 455{
f4800d6d 456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 457 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 458 int i;
f4800d6d 459 __le64 **list = iod_list(req);
eca18b23
MW
460 dma_addr_t prp_dma = iod->first_dma;
461
462 if (iod->npages == 0)
463 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464 for (i = 0; i < iod->npages; i++) {
465 __le64 *prp_list = list[i];
466 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468 prp_dma = next_prp_dma;
469 }
ac3dd5bd 470
f4800d6d
CH
471 if (iod->sg != iod->inline_sg)
472 kfree(iod->sg);
b4ff9c8d
KB
473}
474
52b68d7e 475#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
476static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
477{
478 if (be32_to_cpu(pi->ref_tag) == v)
479 pi->ref_tag = cpu_to_be32(p);
480}
481
482static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
483{
484 if (be32_to_cpu(pi->ref_tag) == p)
485 pi->ref_tag = cpu_to_be32(v);
486}
487
488/**
489 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
490 *
491 * The virtual start sector is the one that was originally submitted by the
492 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
493 * start sector may be different. Remap protection information to match the
494 * physical LBA on writes, and back to the original seed on reads.
495 *
496 * Type 0 and 3 do not have a ref tag, so no remapping required.
497 */
498static void nvme_dif_remap(struct request *req,
499 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
500{
501 struct nvme_ns *ns = req->rq_disk->private_data;
502 struct bio_integrity_payload *bip;
503 struct t10_pi_tuple *pi;
504 void *p, *pmap;
505 u32 i, nlb, ts, phys, virt;
506
507 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
508 return;
509
510 bip = bio_integrity(req->bio);
511 if (!bip)
512 return;
513
514 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
515
516 p = pmap;
517 virt = bip_get_seed(bip);
518 phys = nvme_block_nr(ns, blk_rq_pos(req));
519 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 520 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
521
522 for (i = 0; i < nlb; i++, virt++, phys++) {
523 pi = (struct t10_pi_tuple *)p;
524 dif_swap(phys, virt, pi);
525 p += ts;
526 }
527 kunmap_atomic(pmap);
528}
52b68d7e
KB
529#else /* CONFIG_BLK_DEV_INTEGRITY */
530static void nvme_dif_remap(struct request *req,
531 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
532{
533}
534static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535{
536}
537static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538{
539}
52b68d7e
KB
540#endif
541
86eea289 542static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 543{
f4800d6d 544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 545 struct dma_pool *pool;
b131c61d 546 int length = blk_rq_payload_bytes(req);
eca18b23 547 struct scatterlist *sg = iod->sg;
ff22b54f
MW
548 int dma_len = sg_dma_len(sg);
549 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 550 u32 page_size = dev->ctrl.page_size;
f137e0f1 551 int offset = dma_addr & (page_size - 1);
e025344c 552 __le64 *prp_list;
f4800d6d 553 __le64 **list = iod_list(req);
e025344c 554 dma_addr_t prp_dma;
eca18b23 555 int nprps, i;
ff22b54f 556
1d090624 557 length -= (page_size - offset);
ff22b54f 558 if (length <= 0)
86eea289 559 return BLK_STS_OK;
ff22b54f 560
1d090624 561 dma_len -= (page_size - offset);
ff22b54f 562 if (dma_len) {
1d090624 563 dma_addr += (page_size - offset);
ff22b54f
MW
564 } else {
565 sg = sg_next(sg);
566 dma_addr = sg_dma_address(sg);
567 dma_len = sg_dma_len(sg);
568 }
569
1d090624 570 if (length <= page_size) {
edd10d33 571 iod->first_dma = dma_addr;
86eea289 572 return BLK_STS_OK;
e025344c
SMM
573 }
574
1d090624 575 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
576 if (nprps <= (256 / 8)) {
577 pool = dev->prp_small_pool;
eca18b23 578 iod->npages = 0;
99802a7a
MW
579 } else {
580 pool = dev->prp_page_pool;
eca18b23 581 iod->npages = 1;
99802a7a
MW
582 }
583
69d2b571 584 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 585 if (!prp_list) {
edd10d33 586 iod->first_dma = dma_addr;
eca18b23 587 iod->npages = -1;
86eea289 588 return BLK_STS_RESOURCE;
b77954cb 589 }
eca18b23
MW
590 list[0] = prp_list;
591 iod->first_dma = prp_dma;
e025344c
SMM
592 i = 0;
593 for (;;) {
1d090624 594 if (i == page_size >> 3) {
e025344c 595 __le64 *old_prp_list = prp_list;
69d2b571 596 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 597 if (!prp_list)
86eea289 598 return BLK_STS_RESOURCE;
eca18b23 599 list[iod->npages++] = prp_list;
7523d834
MW
600 prp_list[0] = old_prp_list[i - 1];
601 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
602 i = 1;
e025344c
SMM
603 }
604 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
605 dma_len -= page_size;
606 dma_addr += page_size;
607 length -= page_size;
e025344c
SMM
608 if (length <= 0)
609 break;
610 if (dma_len > 0)
611 continue;
86eea289
KB
612 if (unlikely(dma_len < 0))
613 goto bad_sgl;
e025344c
SMM
614 sg = sg_next(sg);
615 dma_addr = sg_dma_address(sg);
616 dma_len = sg_dma_len(sg);
ff22b54f
MW
617 }
618
86eea289
KB
619 return BLK_STS_OK;
620
621 bad_sgl:
622 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
623 blk_rq_payload_bytes(req), iod->nents)) {
624 for_each_sg(iod->sg, sg, iod->nents, i) {
625 dma_addr_t phys = sg_phys(sg);
626 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
627 "dma_address:%pad dma_length:%d\n", i, &phys,
628 sg->offset, sg->length,
629 &sg_dma_address(sg),
630 sg_dma_len(sg));
631 }
632 }
633 return BLK_STS_IOERR;
634
ff22b54f
MW
635}
636
fc17b653 637static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 638 struct nvme_command *cmnd)
d29ec824 639{
f4800d6d 640 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
641 struct request_queue *q = req->q;
642 enum dma_data_direction dma_dir = rq_data_dir(req) ?
643 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 644 blk_status_t ret = BLK_STS_IOERR;
d29ec824 645
f9d03f96 646 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
647 iod->nents = blk_rq_map_sg(q, req, iod->sg);
648 if (!iod->nents)
649 goto out;
d29ec824 650
fc17b653 651 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
652 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
653 DMA_ATTR_NO_WARN))
ba1ca37e 654 goto out;
d29ec824 655
86eea289
KB
656 ret = nvme_setup_prps(dev, req);
657 if (ret != BLK_STS_OK)
ba1ca37e 658 goto out_unmap;
0e5e4f0e 659
fc17b653 660 ret = BLK_STS_IOERR;
ba1ca37e
CH
661 if (blk_integrity_rq(req)) {
662 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
663 goto out_unmap;
0e5e4f0e 664
bf684057
CH
665 sg_init_table(&iod->meta_sg, 1);
666 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 667 goto out_unmap;
0e5e4f0e 668
ba1ca37e
CH
669 if (rq_data_dir(req))
670 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 671
bf684057 672 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 673 goto out_unmap;
d29ec824 674 }
00df5cb4 675
eb793e2c
CH
676 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
677 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 678 if (blk_integrity_rq(req))
bf684057 679 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 680 return BLK_STS_OK;
00df5cb4 681
ba1ca37e
CH
682out_unmap:
683 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
684out:
685 return ret;
00df5cb4
MW
686}
687
f4800d6d 688static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 689{
f4800d6d 690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
691 enum dma_data_direction dma_dir = rq_data_dir(req) ?
692 DMA_TO_DEVICE : DMA_FROM_DEVICE;
693
694 if (iod->nents) {
695 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
696 if (blk_integrity_rq(req)) {
697 if (!rq_data_dir(req))
698 nvme_dif_remap(req, nvme_dif_complete);
bf684057 699 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 700 }
e19b127f 701 }
e1e5e564 702
f9d03f96 703 nvme_cleanup_cmd(req);
f4800d6d 704 nvme_free_iod(dev, req);
d4f6c3ab 705}
b60503ba 706
d29ec824
CH
707/*
708 * NOTE: ns is NULL when called on the admin queue.
709 */
fc17b653 710static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 711 const struct blk_mq_queue_data *bd)
edd10d33 712{
a4aea562
MB
713 struct nvme_ns *ns = hctx->queue->queuedata;
714 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 715 struct nvme_dev *dev = nvmeq->dev;
a4aea562 716 struct request *req = bd->rq;
ba1ca37e 717 struct nvme_command cmnd;
ebe6d874 718 blk_status_t ret;
e1e5e564 719
f9d03f96 720 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 721 if (ret)
f4800d6d 722 return ret;
a4aea562 723
b131c61d 724 ret = nvme_init_iod(req, dev);
fc17b653 725 if (ret)
f9d03f96 726 goto out_free_cmd;
a4aea562 727
fc17b653 728 if (blk_rq_nr_phys_segments(req)) {
b131c61d 729 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
730 if (ret)
731 goto out_cleanup_iod;
732 }
a4aea562 733
aae239e1 734 blk_mq_start_request(req);
a4aea562 735
ba1ca37e 736 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 737 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 738 ret = BLK_STS_IOERR;
ae1fba20 739 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 740 goto out_cleanup_iod;
ae1fba20 741 }
ba1ca37e 742 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
743 nvme_process_cq(nvmeq);
744 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 745 return BLK_STS_OK;
f9d03f96 746out_cleanup_iod:
f4800d6d 747 nvme_free_iod(dev, req);
f9d03f96
CH
748out_free_cmd:
749 nvme_cleanup_cmd(req);
ba1ca37e 750 return ret;
b60503ba 751}
e1e5e564 752
77f02a7a 753static void nvme_pci_complete_rq(struct request *req)
eee417b0 754{
f4800d6d 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 756
77f02a7a
CH
757 nvme_unmap_data(iod->nvmeq->dev, req);
758 nvme_complete_rq(req);
b60503ba
MW
759}
760
d783e0bd
MR
761/* We read the CQE phase first to check if the rest of the entry is valid */
762static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
763 u16 phase)
764{
765 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
766}
767
eb281c82 768static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 769{
eb281c82 770 u16 head = nvmeq->cq_head;
adf68f21 771
eb281c82
SG
772 if (likely(nvmeq->cq_vector >= 0)) {
773 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
774 nvmeq->dbbuf_cq_ei))
775 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
776 }
777}
aae239e1 778
83a12fb7
SG
779static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
780 struct nvme_completion *cqe)
781{
782 struct request *req;
adf68f21 783
83a12fb7
SG
784 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
785 dev_warn(nvmeq->dev->ctrl.device,
786 "invalid id %d completed on queue %d\n",
787 cqe->command_id, le16_to_cpu(cqe->sq_id));
788 return;
b60503ba
MW
789 }
790
83a12fb7
SG
791 /*
792 * AEN requests are special as they don't time out and can
793 * survive any kind of queue freeze and often don't respond to
794 * aborts. We don't even bother to allocate a struct request
795 * for them but rather special case them here.
796 */
797 if (unlikely(nvmeq->qid == 0 &&
798 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
799 nvme_complete_async_event(&nvmeq->dev->ctrl,
800 cqe->status, &cqe->result);
a0fa9647 801 return;
83a12fb7 802 }
b60503ba 803
83a12fb7
SG
804 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
805 nvme_end_request(req, cqe->status, cqe->result);
806}
b60503ba 807
920d13a8
SG
808static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
809 struct nvme_completion *cqe)
b60503ba 810{
920d13a8
SG
811 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
812 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 813
920d13a8
SG
814 if (++nvmeq->cq_head == nvmeq->q_depth) {
815 nvmeq->cq_head = 0;
816 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 817 }
920d13a8 818 return true;
b60503ba 819 }
920d13a8 820 return false;
a0fa9647
JA
821}
822
823static void nvme_process_cq(struct nvme_queue *nvmeq)
824{
920d13a8
SG
825 struct nvme_completion cqe;
826 int consumed = 0;
b60503ba 827
920d13a8
SG
828 while (nvme_read_cqe(nvmeq, &cqe)) {
829 nvme_handle_cqe(nvmeq, &cqe);
830 consumed++;
920d13a8 831 }
eb281c82 832
920d13a8
SG
833 if (consumed) {
834 nvme_ring_cq_doorbell(nvmeq);
835 nvmeq->cqe_seen = 1;
836 }
b60503ba
MW
837}
838
839static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
840{
841 irqreturn_t result;
842 struct nvme_queue *nvmeq = data;
843 spin_lock(&nvmeq->q_lock);
e9539f47
MW
844 nvme_process_cq(nvmeq);
845 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
846 nvmeq->cqe_seen = 0;
58ffacb5
MW
847 spin_unlock(&nvmeq->q_lock);
848 return result;
849}
850
851static irqreturn_t nvme_irq_check(int irq, void *data)
852{
853 struct nvme_queue *nvmeq = data;
d783e0bd
MR
854 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
855 return IRQ_WAKE_THREAD;
856 return IRQ_NONE;
58ffacb5
MW
857}
858
7776db1c 859static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 860{
442e19b7
SG
861 struct nvme_completion cqe;
862 int found = 0, consumed = 0;
a0fa9647 863
442e19b7
SG
864 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
865 return 0;
a0fa9647 866
442e19b7
SG
867 spin_lock_irq(&nvmeq->q_lock);
868 while (nvme_read_cqe(nvmeq, &cqe)) {
869 nvme_handle_cqe(nvmeq, &cqe);
870 consumed++;
871
872 if (tag == cqe.command_id) {
873 found = 1;
874 break;
875 }
876 }
877
878 if (consumed)
879 nvme_ring_cq_doorbell(nvmeq);
880 spin_unlock_irq(&nvmeq->q_lock);
881
882 return found;
a0fa9647
JA
883}
884
7776db1c
KB
885static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
886{
887 struct nvme_queue *nvmeq = hctx->driver_data;
888
889 return __nvme_poll(nvmeq, tag);
890}
891
f866fc42 892static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 893{
f866fc42 894 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 895 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 896 struct nvme_command c;
b60503ba 897
a4aea562
MB
898 memset(&c, 0, sizeof(c));
899 c.common.opcode = nvme_admin_async_event;
f866fc42 900 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 901
9396dec9 902 spin_lock_irq(&nvmeq->q_lock);
f866fc42 903 __nvme_submit_cmd(nvmeq, &c);
9396dec9 904 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
905}
906
b60503ba 907static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 908{
b60503ba
MW
909 struct nvme_command c;
910
911 memset(&c, 0, sizeof(c));
912 c.delete_queue.opcode = opcode;
913 c.delete_queue.qid = cpu_to_le16(id);
914
1c63dc66 915 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
916}
917
b60503ba
MW
918static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
919 struct nvme_queue *nvmeq)
920{
b60503ba
MW
921 struct nvme_command c;
922 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
923
d29ec824
CH
924 /*
925 * Note: we (ab)use the fact the the prp fields survive if no data
926 * is attached to the request.
927 */
b60503ba
MW
928 memset(&c, 0, sizeof(c));
929 c.create_cq.opcode = nvme_admin_create_cq;
930 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
931 c.create_cq.cqid = cpu_to_le16(qid);
932 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933 c.create_cq.cq_flags = cpu_to_le16(flags);
934 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
935
1c63dc66 936 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
937}
938
939static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
940 struct nvme_queue *nvmeq)
941{
b60503ba 942 struct nvme_command c;
81c1cd98 943 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 944
d29ec824
CH
945 /*
946 * Note: we (ab)use the fact the the prp fields survive if no data
947 * is attached to the request.
948 */
b60503ba
MW
949 memset(&c, 0, sizeof(c));
950 c.create_sq.opcode = nvme_admin_create_sq;
951 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
952 c.create_sq.sqid = cpu_to_le16(qid);
953 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
954 c.create_sq.sq_flags = cpu_to_le16(flags);
955 c.create_sq.cqid = cpu_to_le16(qid);
956
1c63dc66 957 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
958}
959
960static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
961{
962 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
963}
964
965static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
966{
967 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
968}
969
2a842aca 970static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 971{
f4800d6d
CH
972 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
973 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 974
27fa9bc5
CH
975 dev_warn(nvmeq->dev->ctrl.device,
976 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 977 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 978 blk_mq_free_request(req);
bc5fc7e4
MW
979}
980
b2a0eb1a
KB
981static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
982{
983
984 /* If true, indicates loss of adapter communication, possibly by a
985 * NVMe Subsystem reset.
986 */
987 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
988
989 /* If there is a reset ongoing, we shouldn't reset again. */
990 if (dev->ctrl.state == NVME_CTRL_RESETTING)
991 return false;
992
993 /* We shouldn't reset unless the controller is on fatal error state
994 * _or_ if we lost the communication with it.
995 */
996 if (!(csts & NVME_CSTS_CFS) && !nssro)
997 return false;
998
999 /* If PCI error recovery process is happening, we cannot reset or
1000 * the recovery mechanism will surely fail.
1001 */
1002 if (pci_channel_offline(to_pci_dev(dev->dev)))
1003 return false;
1004
1005 return true;
1006}
1007
1008static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1009{
1010 /* Read a config register to help see what died. */
1011 u16 pci_status;
1012 int result;
1013
1014 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1015 &pci_status);
1016 if (result == PCIBIOS_SUCCESSFUL)
1017 dev_warn(dev->ctrl.device,
1018 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1019 csts, pci_status);
1020 else
1021 dev_warn(dev->ctrl.device,
1022 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1023 csts, result);
1024}
1025
31c7c7d2 1026static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1027{
f4800d6d
CH
1028 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1029 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1030 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1031 struct request *abort_req;
a4aea562 1032 struct nvme_command cmd;
b2a0eb1a
KB
1033 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1034
1035 /*
1036 * Reset immediately if the controller is failed
1037 */
1038 if (nvme_should_reset(dev, csts)) {
1039 nvme_warn_reset(dev, csts);
1040 nvme_dev_disable(dev, false);
d86c4d8e 1041 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1042 return BLK_EH_HANDLED;
1043 }
c30341dc 1044
7776db1c
KB
1045 /*
1046 * Did we miss an interrupt?
1047 */
1048 if (__nvme_poll(nvmeq, req->tag)) {
1049 dev_warn(dev->ctrl.device,
1050 "I/O %d QID %d timeout, completion polled\n",
1051 req->tag, nvmeq->qid);
1052 return BLK_EH_HANDLED;
1053 }
1054
31c7c7d2 1055 /*
fd634f41
CH
1056 * Shutdown immediately if controller times out while starting. The
1057 * reset work will see the pci device disabled when it gets the forced
1058 * cancellation error. All outstanding requests are completed on
1059 * shutdown, so we return BLK_EH_HANDLED.
1060 */
bb8d261e 1061 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1062 dev_warn(dev->ctrl.device,
fd634f41
CH
1063 "I/O %d QID %d timeout, disable controller\n",
1064 req->tag, nvmeq->qid);
a5cdb68c 1065 nvme_dev_disable(dev, false);
27fa9bc5 1066 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1067 return BLK_EH_HANDLED;
c30341dc
KB
1068 }
1069
fd634f41
CH
1070 /*
1071 * Shutdown the controller immediately and schedule a reset if the
1072 * command was already aborted once before and still hasn't been
1073 * returned to the driver, or if this is the admin queue.
31c7c7d2 1074 */
f4800d6d 1075 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1076 dev_warn(dev->ctrl.device,
e1569a16
KB
1077 "I/O %d QID %d timeout, reset controller\n",
1078 req->tag, nvmeq->qid);
a5cdb68c 1079 nvme_dev_disable(dev, false);
d86c4d8e 1080 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1081
e1569a16
KB
1082 /*
1083 * Mark the request as handled, since the inline shutdown
1084 * forces all outstanding requests to complete.
1085 */
27fa9bc5 1086 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1087 return BLK_EH_HANDLED;
c30341dc 1088 }
c30341dc 1089
e7a2a87d 1090 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1091 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1092 return BLK_EH_RESET_TIMER;
6bf25d16 1093 }
7bf7d778 1094 iod->aborted = 1;
a4aea562 1095
c30341dc
KB
1096 memset(&cmd, 0, sizeof(cmd));
1097 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1098 cmd.abort.cid = req->tag;
c30341dc 1099 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1100
1b3c47c1
SG
1101 dev_warn(nvmeq->dev->ctrl.device,
1102 "I/O %d QID %d timeout, aborting\n",
1103 req->tag, nvmeq->qid);
e7a2a87d
CH
1104
1105 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1106 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1107 if (IS_ERR(abort_req)) {
1108 atomic_inc(&dev->ctrl.abort_limit);
1109 return BLK_EH_RESET_TIMER;
1110 }
1111
1112 abort_req->timeout = ADMIN_TIMEOUT;
1113 abort_req->end_io_data = NULL;
1114 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1115
31c7c7d2
CH
1116 /*
1117 * The aborted req will be completed on receiving the abort req.
1118 * We enable the timer again. If hit twice, it'll cause a device reset,
1119 * as the device then is in a faulty state.
1120 */
1121 return BLK_EH_RESET_TIMER;
c30341dc
KB
1122}
1123
a4aea562
MB
1124static void nvme_free_queue(struct nvme_queue *nvmeq)
1125{
9e866774
MW
1126 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1127 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1128 if (nvmeq->sq_cmds)
1129 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1130 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1131 kfree(nvmeq);
1132}
1133
a1a5ef99 1134static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1135{
1136 int i;
1137
d858e5f0 1138 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
a4aea562 1139 struct nvme_queue *nvmeq = dev->queues[i];
d858e5f0 1140 dev->ctrl.queue_count--;
a4aea562 1141 dev->queues[i] = NULL;
f435c282 1142 nvme_free_queue(nvmeq);
121c7ad4 1143 }
22404274
KB
1144}
1145
4d115420
KB
1146/**
1147 * nvme_suspend_queue - put queue into suspended state
1148 * @nvmeq - queue to suspend
4d115420
KB
1149 */
1150static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1151{
2b25d981 1152 int vector;
b60503ba 1153
a09115b2 1154 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1155 if (nvmeq->cq_vector == -1) {
1156 spin_unlock_irq(&nvmeq->q_lock);
1157 return 1;
1158 }
0ff199cb 1159 vector = nvmeq->cq_vector;
42f61420 1160 nvmeq->dev->online_queues--;
2b25d981 1161 nvmeq->cq_vector = -1;
a09115b2
MW
1162 spin_unlock_irq(&nvmeq->q_lock);
1163
1c63dc66 1164 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1165 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1166
0ff199cb 1167 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1168
4d115420
KB
1169 return 0;
1170}
b60503ba 1171
a5cdb68c 1172static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1173{
a5cdb68c 1174 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1175
1176 if (!nvmeq)
1177 return;
1178 if (nvme_suspend_queue(nvmeq))
1179 return;
1180
a5cdb68c
KB
1181 if (shutdown)
1182 nvme_shutdown_ctrl(&dev->ctrl);
1183 else
20d0dfe6 1184 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65
KB
1185
1186 spin_lock_irq(&nvmeq->q_lock);
1187 nvme_process_cq(nvmeq);
1188 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1189}
1190
8ffaadf7
JD
1191static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1192 int entry_size)
1193{
1194 int q_depth = dev->q_depth;
5fd4ce1b
CH
1195 unsigned q_size_aligned = roundup(q_depth * entry_size,
1196 dev->ctrl.page_size);
8ffaadf7
JD
1197
1198 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1199 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1200 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1201 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1202
1203 /*
1204 * Ensure the reduced q_depth is above some threshold where it
1205 * would be better to map queues in system memory with the
1206 * original depth
1207 */
1208 if (q_depth < 64)
1209 return -ENOMEM;
1210 }
1211
1212 return q_depth;
1213}
1214
1215static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1216 int qid, int depth)
1217{
1218 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1219 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1220 dev->ctrl.page_size);
8ffaadf7
JD
1221 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1222 nvmeq->sq_cmds_io = dev->cmb + offset;
1223 } else {
1224 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1225 &nvmeq->sq_dma_addr, GFP_KERNEL);
1226 if (!nvmeq->sq_cmds)
1227 return -ENOMEM;
1228 }
1229
1230 return 0;
1231}
1232
b60503ba 1233static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1234 int depth, int node)
b60503ba 1235{
d3af3ecd
SL
1236 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1237 node);
b60503ba
MW
1238 if (!nvmeq)
1239 return NULL;
1240
e75ec752 1241 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1242 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1243 if (!nvmeq->cqes)
1244 goto free_nvmeq;
b60503ba 1245
8ffaadf7 1246 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1247 goto free_cqdma;
1248
e75ec752 1249 nvmeq->q_dmadev = dev->dev;
091b6092 1250 nvmeq->dev = dev;
b60503ba
MW
1251 spin_lock_init(&nvmeq->q_lock);
1252 nvmeq->cq_head = 0;
82123460 1253 nvmeq->cq_phase = 1;
b80d5ccc 1254 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1255 nvmeq->q_depth = depth;
c30341dc 1256 nvmeq->qid = qid;
758dd7fd 1257 nvmeq->cq_vector = -1;
a4aea562 1258 dev->queues[qid] = nvmeq;
d858e5f0 1259 dev->ctrl.queue_count++;
36a7e993 1260
b60503ba
MW
1261 return nvmeq;
1262
1263 free_cqdma:
e75ec752 1264 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1265 nvmeq->cq_dma_addr);
1266 free_nvmeq:
1267 kfree(nvmeq);
1268 return NULL;
1269}
1270
dca51e78 1271static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1272{
0ff199cb
CH
1273 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1274 int nr = nvmeq->dev->ctrl.instance;
1275
1276 if (use_threaded_interrupts) {
1277 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1278 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1279 } else {
1280 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1281 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1282 }
3001082c
MW
1283}
1284
22404274 1285static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1286{
22404274 1287 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1288
7be50e93 1289 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1290 nvmeq->sq_tail = 0;
1291 nvmeq->cq_head = 0;
1292 nvmeq->cq_phase = 1;
b80d5ccc 1293 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1294 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1295 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1296 dev->online_queues++;
7be50e93 1297 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1298}
1299
1300static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1301{
1302 struct nvme_dev *dev = nvmeq->dev;
1303 int result;
3f85d50b 1304
2b25d981 1305 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1306 result = adapter_alloc_cq(dev, qid, nvmeq);
1307 if (result < 0)
22404274 1308 return result;
b60503ba
MW
1309
1310 result = adapter_alloc_sq(dev, qid, nvmeq);
1311 if (result < 0)
1312 goto release_cq;
1313
dca51e78 1314 result = queue_request_irq(nvmeq);
b60503ba
MW
1315 if (result < 0)
1316 goto release_sq;
1317
22404274 1318 nvme_init_queue(nvmeq, qid);
22404274 1319 return result;
b60503ba
MW
1320
1321 release_sq:
1322 adapter_delete_sq(dev, qid);
1323 release_cq:
1324 adapter_delete_cq(dev, qid);
22404274 1325 return result;
b60503ba
MW
1326}
1327
f363b089 1328static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1329 .queue_rq = nvme_queue_rq,
77f02a7a 1330 .complete = nvme_pci_complete_rq,
a4aea562 1331 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1332 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1333 .init_request = nvme_init_request,
a4aea562
MB
1334 .timeout = nvme_timeout,
1335};
1336
f363b089 1337static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1338 .queue_rq = nvme_queue_rq,
77f02a7a 1339 .complete = nvme_pci_complete_rq,
a4aea562
MB
1340 .init_hctx = nvme_init_hctx,
1341 .init_request = nvme_init_request,
dca51e78 1342 .map_queues = nvme_pci_map_queues,
a4aea562 1343 .timeout = nvme_timeout,
a0fa9647 1344 .poll = nvme_poll,
a4aea562
MB
1345};
1346
ea191d2f
KB
1347static void nvme_dev_remove_admin(struct nvme_dev *dev)
1348{
1c63dc66 1349 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1350 /*
1351 * If the controller was reset during removal, it's possible
1352 * user requests may be waiting on a stopped queue. Start the
1353 * queue to flush these to completion.
1354 */
c81545f9 1355 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1356 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1357 blk_mq_free_tag_set(&dev->admin_tagset);
1358 }
1359}
1360
a4aea562
MB
1361static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1362{
1c63dc66 1363 if (!dev->ctrl.admin_q) {
a4aea562
MB
1364 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1365 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1366
1367 /*
1368 * Subtract one to leave an empty queue entry for 'Full Queue'
1369 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1370 */
1371 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1372 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1373 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1374 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1375 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1376 dev->admin_tagset.driver_data = dev;
1377
1378 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1379 return -ENOMEM;
1380
1c63dc66
CH
1381 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1382 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1383 blk_mq_free_tag_set(&dev->admin_tagset);
1384 return -ENOMEM;
1385 }
1c63dc66 1386 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1387 nvme_dev_remove_admin(dev);
1c63dc66 1388 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1389 return -ENODEV;
1390 }
0fb59cbc 1391 } else
c81545f9 1392 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1393
1394 return 0;
1395}
1396
97f6ef64
XY
1397static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398{
1399 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400}
1401
1402static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1403{
1404 struct pci_dev *pdev = to_pci_dev(dev->dev);
1405
1406 if (size <= dev->bar_mapped_size)
1407 return 0;
1408 if (size > pci_resource_len(pdev, 0))
1409 return -ENOMEM;
1410 if (dev->bar)
1411 iounmap(dev->bar);
1412 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1413 if (!dev->bar) {
1414 dev->bar_mapped_size = 0;
1415 return -ENOMEM;
1416 }
1417 dev->bar_mapped_size = size;
1418 dev->dbs = dev->bar + NVME_REG_DBS;
1419
1420 return 0;
1421}
1422
01ad0990 1423static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1424{
ba47e386 1425 int result;
b60503ba
MW
1426 u32 aqa;
1427 struct nvme_queue *nvmeq;
1428
97f6ef64
XY
1429 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1430 if (result < 0)
1431 return result;
1432
8ef2074d 1433 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1434 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1435
7a67cbea
CH
1436 if (dev->subsystem &&
1437 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1438 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1439
20d0dfe6 1440 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1441 if (result < 0)
1442 return result;
b60503ba 1443
a4aea562 1444 nvmeq = dev->queues[0];
cd638946 1445 if (!nvmeq) {
d3af3ecd
SL
1446 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1447 dev_to_node(dev->dev));
cd638946
KB
1448 if (!nvmeq)
1449 return -ENOMEM;
cd638946 1450 }
b60503ba
MW
1451
1452 aqa = nvmeq->q_depth - 1;
1453 aqa |= aqa << 16;
1454
7a67cbea
CH
1455 writel(aqa, dev->bar + NVME_REG_AQA);
1456 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1457 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1458
20d0dfe6 1459 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1460 if (result)
d4875622 1461 return result;
a4aea562 1462
2b25d981 1463 nvmeq->cq_vector = 0;
dca51e78 1464 result = queue_request_irq(nvmeq);
758dd7fd
JD
1465 if (result) {
1466 nvmeq->cq_vector = -1;
d4875622 1467 return result;
758dd7fd 1468 }
025c557a 1469
b60503ba
MW
1470 return result;
1471}
1472
749941f2 1473static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1474{
949928c1 1475 unsigned i, max;
749941f2 1476 int ret = 0;
42f61420 1477
d858e5f0 1478 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1479 /* vector == qid - 1, match nvme_create_queue */
1480 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1481 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1482 ret = -ENOMEM;
42f61420 1483 break;
749941f2
CH
1484 }
1485 }
42f61420 1486
d858e5f0 1487 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
949928c1 1488 for (i = dev->online_queues; i <= max; i++) {
749941f2 1489 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1490 if (ret)
42f61420 1491 break;
27e8166c 1492 }
749941f2
CH
1493
1494 /*
1495 * Ignore failing Create SQ/CQ commands, we can continue with less
1496 * than the desired aount of queues, and even a controller without
1497 * I/O queues an still be used to issue admin commands. This might
1498 * be useful to upgrade a buggy firmware for example.
1499 */
1500 return ret >= 0 ? 0 : ret;
b60503ba
MW
1501}
1502
202021c1
SB
1503static ssize_t nvme_cmb_show(struct device *dev,
1504 struct device_attribute *attr,
1505 char *buf)
1506{
1507 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1508
c965809c 1509 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1510 ndev->cmbloc, ndev->cmbsz);
1511}
1512static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1513
8ffaadf7
JD
1514static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1515{
1516 u64 szu, size, offset;
8ffaadf7
JD
1517 resource_size_t bar_size;
1518 struct pci_dev *pdev = to_pci_dev(dev->dev);
1519 void __iomem *cmb;
1520 dma_addr_t dma_addr;
1521
7a67cbea 1522 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1523 if (!(NVME_CMB_SZ(dev->cmbsz)))
1524 return NULL;
202021c1 1525 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1526
202021c1
SB
1527 if (!use_cmb_sqes)
1528 return NULL;
8ffaadf7
JD
1529
1530 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1531 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1532 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1533 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1534
1535 if (offset > bar_size)
1536 return NULL;
1537
1538 /*
1539 * Controllers may support a CMB size larger than their BAR,
1540 * for example, due to being behind a bridge. Reduce the CMB to
1541 * the reported size of the BAR
1542 */
1543 if (size > bar_size - offset)
1544 size = bar_size - offset;
1545
202021c1 1546 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1547 cmb = ioremap_wc(dma_addr, size);
1548 if (!cmb)
1549 return NULL;
1550
1551 dev->cmb_dma_addr = dma_addr;
1552 dev->cmb_size = size;
1553 return cmb;
1554}
1555
1556static inline void nvme_release_cmb(struct nvme_dev *dev)
1557{
1558 if (dev->cmb) {
1559 iounmap(dev->cmb);
1560 dev->cmb = NULL;
f63572df
JD
1561 if (dev->cmbsz) {
1562 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1563 &dev_attr_cmb.attr, NULL);
1564 dev->cmbsz = 0;
1565 }
8ffaadf7
JD
1566 }
1567}
1568
87ad72a5
CH
1569static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1570{
1571 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1572 struct nvme_command c;
1573 u64 dma_addr;
1574 int ret;
1575
1576 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1577 DMA_TO_DEVICE);
1578 if (dma_mapping_error(dev->dev, dma_addr))
1579 return -ENOMEM;
1580
1581 memset(&c, 0, sizeof(c));
1582 c.features.opcode = nvme_admin_set_features;
1583 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1584 c.features.dword11 = cpu_to_le32(bits);
1585 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1586 ilog2(dev->ctrl.page_size));
1587 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1588 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1589 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1590
1591 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1592 if (ret) {
1593 dev_warn(dev->ctrl.device,
1594 "failed to set host mem (err %d, flags %#x).\n",
1595 ret, bits);
1596 }
1597 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1598 return ret;
1599}
1600
1601static void nvme_free_host_mem(struct nvme_dev *dev)
1602{
1603 int i;
1604
1605 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1606 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1607 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1608
1609 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1610 le64_to_cpu(desc->addr));
1611 }
1612
1613 kfree(dev->host_mem_desc_bufs);
1614 dev->host_mem_desc_bufs = NULL;
1615 kfree(dev->host_mem_descs);
1616 dev->host_mem_descs = NULL;
1617}
1618
1619static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
9d713c2b 1620{
87ad72a5 1621 struct nvme_host_mem_buf_desc *descs;
50cdb7c6 1622 u32 chunk_size, max_entries, len;
2ee0e4ed 1623 int i = 0;
87ad72a5 1624 void **bufs;
2ee0e4ed 1625 u64 size = 0, tmp;
87ad72a5
CH
1626
1627 /* start big and work our way down */
1628 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1629retry:
1630 tmp = (preferred + chunk_size - 1);
1631 do_div(tmp, chunk_size);
1632 max_entries = tmp;
1633 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1634 if (!descs)
1635 goto out;
1636
1637 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1638 if (!bufs)
1639 goto out_free_descs;
1640
50cdb7c6 1641 for (size = 0; size < preferred; size += len) {
87ad72a5
CH
1642 dma_addr_t dma_addr;
1643
50cdb7c6 1644 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1645 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1646 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1647 if (!bufs[i])
1648 break;
1649
1650 descs[i].addr = cpu_to_le64(dma_addr);
1651 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1652 i++;
1653 }
1654
1655 if (!size || (min && size < min)) {
1656 dev_warn(dev->ctrl.device,
1657 "failed to allocate host memory buffer.\n");
1658 goto out_free_bufs;
1659 }
1660
1661 dev_info(dev->ctrl.device,
1662 "allocated %lld MiB host memory buffer.\n",
1663 size >> ilog2(SZ_1M));
1664 dev->nr_host_mem_descs = i;
1665 dev->host_mem_size = size;
1666 dev->host_mem_descs = descs;
1667 dev->host_mem_desc_bufs = bufs;
1668 return 0;
1669
1670out_free_bufs:
1671 while (--i >= 0) {
1672 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1673
1674 dma_free_coherent(dev->dev, size, bufs[i],
1675 le64_to_cpu(descs[i].addr));
1676 }
1677
1678 kfree(bufs);
1679out_free_descs:
1680 kfree(descs);
1681out:
1682 /* try a smaller chunk size if we failed early */
1683 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1684 chunk_size /= 2;
1685 goto retry;
1686 }
1687 dev->host_mem_descs = NULL;
1688 return -ENOMEM;
1689}
1690
1691static void nvme_setup_host_mem(struct nvme_dev *dev)
1692{
1693 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1694 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1695 u64 min = (u64)dev->ctrl.hmmin * 4096;
1696 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1697
1698 preferred = min(preferred, max);
1699 if (min > max) {
1700 dev_warn(dev->ctrl.device,
1701 "min host memory (%lld MiB) above limit (%d MiB).\n",
1702 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1703 nvme_free_host_mem(dev);
1704 return;
1705 }
1706
1707 /*
1708 * If we already have a buffer allocated check if we can reuse it.
1709 */
1710 if (dev->host_mem_descs) {
1711 if (dev->host_mem_size >= min)
1712 enable_bits |= NVME_HOST_MEM_RETURN;
1713 else
1714 nvme_free_host_mem(dev);
1715 }
1716
1717 if (!dev->host_mem_descs) {
1718 if (nvme_alloc_host_mem(dev, min, preferred))
1719 return;
1720 }
1721
1722 if (nvme_set_host_mem(dev, enable_bits))
1723 nvme_free_host_mem(dev);
9d713c2b
KB
1724}
1725
8d85fce7 1726static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1727{
a4aea562 1728 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1729 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1730 int result, nr_io_queues;
1731 unsigned long size;
b60503ba 1732
425a17cb 1733 nr_io_queues = num_present_cpus();
9a0be7ab
CH
1734 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1735 if (result < 0)
1b23484b 1736 return result;
9a0be7ab 1737
f5fa90dc 1738 if (nr_io_queues == 0)
a5229050 1739 return 0;
b60503ba 1740
8ffaadf7
JD
1741 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1742 result = nvme_cmb_qdepth(dev, nr_io_queues,
1743 sizeof(struct nvme_command));
1744 if (result > 0)
1745 dev->q_depth = result;
1746 else
1747 nvme_release_cmb(dev);
1748 }
1749
97f6ef64
XY
1750 do {
1751 size = db_bar_size(dev, nr_io_queues);
1752 result = nvme_remap_bar(dev, size);
1753 if (!result)
1754 break;
1755 if (!--nr_io_queues)
1756 return -ENOMEM;
1757 } while (1);
1758 adminq->q_db = dev->dbs;
f1938f6e 1759
9d713c2b 1760 /* Deregister the admin queue's interrupt */
0ff199cb 1761 pci_free_irq(pdev, 0, adminq);
9d713c2b 1762
e32efbfc
JA
1763 /*
1764 * If we enable msix early due to not intx, disable it again before
1765 * setting up the full range we need.
1766 */
dca51e78
CH
1767 pci_free_irq_vectors(pdev);
1768 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1769 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1770 if (nr_io_queues <= 0)
1771 return -EIO;
1772 dev->max_qid = nr_io_queues;
fa08a396 1773
063a8096
MW
1774 /*
1775 * Should investigate if there's a performance win from allocating
1776 * more queues than interrupt vectors; it might allow the submission
1777 * path to scale better, even if the receive path is limited by the
1778 * number of interrupts.
1779 */
063a8096 1780
dca51e78 1781 result = queue_request_irq(adminq);
758dd7fd
JD
1782 if (result) {
1783 adminq->cq_vector = -1;
d4875622 1784 return result;
758dd7fd 1785 }
749941f2 1786 return nvme_create_io_queues(dev);
b60503ba
MW
1787}
1788
2a842aca 1789static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1790{
db3cbfff 1791 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1792
db3cbfff
KB
1793 blk_mq_free_request(req);
1794 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1795}
1796
2a842aca 1797static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1798{
db3cbfff 1799 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1800
db3cbfff
KB
1801 if (!error) {
1802 unsigned long flags;
1803
2e39e0f6
ML
1804 /*
1805 * We might be called with the AQ q_lock held
1806 * and the I/O queue q_lock should always
1807 * nest inside the AQ one.
1808 */
1809 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1810 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1811 nvme_process_cq(nvmeq);
1812 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1813 }
db3cbfff
KB
1814
1815 nvme_del_queue_end(req, error);
a5768aa8
KB
1816}
1817
db3cbfff 1818static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1819{
db3cbfff
KB
1820 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1821 struct request *req;
1822 struct nvme_command cmd;
bda4e0fb 1823
db3cbfff
KB
1824 memset(&cmd, 0, sizeof(cmd));
1825 cmd.delete_queue.opcode = opcode;
1826 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1827
eb71f435 1828 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1829 if (IS_ERR(req))
1830 return PTR_ERR(req);
bda4e0fb 1831
db3cbfff
KB
1832 req->timeout = ADMIN_TIMEOUT;
1833 req->end_io_data = nvmeq;
1834
1835 blk_execute_rq_nowait(q, NULL, req, false,
1836 opcode == nvme_admin_delete_cq ?
1837 nvme_del_cq_end : nvme_del_queue_end);
1838 return 0;
bda4e0fb
KB
1839}
1840
70659060 1841static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1842{
70659060 1843 int pass;
db3cbfff
KB
1844 unsigned long timeout;
1845 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1846
db3cbfff 1847 for (pass = 0; pass < 2; pass++) {
014a0d60 1848 int sent = 0, i = queues;
db3cbfff
KB
1849
1850 reinit_completion(&dev->ioq_wait);
1851 retry:
1852 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1853 for (; i > 0; i--, sent++)
1854 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1855 break;
c21377f8 1856
db3cbfff
KB
1857 while (sent--) {
1858 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1859 if (timeout == 0)
1860 return;
1861 if (i)
1862 goto retry;
1863 }
1864 opcode = nvme_admin_delete_cq;
1865 }
a5768aa8
KB
1866}
1867
422ef0c7
MW
1868/*
1869 * Return: error value if an error occurred setting up the queues or calling
1870 * Identify Device. 0 if these succeeded, even if adding some of the
1871 * namespaces failed. At the moment, these failures are silent. TBD which
1872 * failures should be reported.
1873 */
8d85fce7 1874static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1875{
5bae7f73 1876 if (!dev->ctrl.tagset) {
ffe7704d
KB
1877 dev->tagset.ops = &nvme_mq_ops;
1878 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1879 dev->tagset.timeout = NVME_IO_TIMEOUT;
1880 dev->tagset.numa_node = dev_to_node(dev->dev);
1881 dev->tagset.queue_depth =
a4aea562 1882 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1883 dev->tagset.cmd_size = nvme_cmd_size(dev);
1884 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1885 dev->tagset.driver_data = dev;
b60503ba 1886
ffe7704d
KB
1887 if (blk_mq_alloc_tag_set(&dev->tagset))
1888 return 0;
5bae7f73 1889 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1890
1891 nvme_dbbuf_set(dev);
949928c1
KB
1892 } else {
1893 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1894
1895 /* Free previously allocated queues that are no longer usable */
1896 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1897 }
949928c1 1898
e1e5e564 1899 return 0;
b60503ba
MW
1900}
1901
b00a726a 1902static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1903{
b00a726a 1904 int result = -ENOMEM;
e75ec752 1905 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1906
1907 if (pci_enable_device_mem(pdev))
1908 return result;
1909
0877cb0d 1910 pci_set_master(pdev);
0877cb0d 1911
e75ec752
CH
1912 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1913 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1914 goto disable;
0877cb0d 1915
7a67cbea 1916 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1917 result = -ENODEV;
b00a726a 1918 goto disable;
0e53d180 1919 }
e32efbfc
JA
1920
1921 /*
a5229050
KB
1922 * Some devices and/or platforms don't advertise or work with INTx
1923 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1924 * adjust this later.
e32efbfc 1925 */
dca51e78
CH
1926 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1927 if (result < 0)
1928 return result;
e32efbfc 1929
20d0dfe6 1930 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 1931
20d0dfe6 1932 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 1933 io_queue_depth);
20d0dfe6 1934 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 1935 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1936
1937 /*
1938 * Temporary fix for the Apple controller found in the MacBook8,1 and
1939 * some MacBook7,1 to avoid controller resets and data loss.
1940 */
1941 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1942 dev->q_depth = 2;
9bdcfb10
CH
1943 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1944 "set queue depth=%u to work around controller resets\n",
1f390c1f 1945 dev->q_depth);
d554b5e1
MP
1946 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1947 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 1948 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
1949 dev->q_depth = 64;
1950 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1951 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
1952 }
1953
202021c1
SB
1954 /*
1955 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1956 * populate sysfs if a CMB is implemented. Note that we add the
1957 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1958 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1959 * NULL as final argument to sysfs_add_file_to_group.
1960 */
1961
8ef2074d 1962 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1963 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1964
202021c1
SB
1965 if (dev->cmbsz) {
1966 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1967 &dev_attr_cmb.attr, NULL))
9bdcfb10 1968 dev_warn(dev->ctrl.device,
202021c1
SB
1969 "failed to add sysfs attribute for CMB\n");
1970 }
1971 }
1972
a0a3408e
KB
1973 pci_enable_pcie_error_reporting(pdev);
1974 pci_save_state(pdev);
0877cb0d
KB
1975 return 0;
1976
1977 disable:
0877cb0d
KB
1978 pci_disable_device(pdev);
1979 return result;
1980}
1981
1982static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1983{
1984 if (dev->bar)
1985 iounmap(dev->bar);
a1f447b3 1986 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1987}
1988
1989static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1990{
e75ec752
CH
1991 struct pci_dev *pdev = to_pci_dev(dev->dev);
1992
f63572df 1993 nvme_release_cmb(dev);
dca51e78 1994 pci_free_irq_vectors(pdev);
0877cb0d 1995
a0a3408e
KB
1996 if (pci_is_enabled(pdev)) {
1997 pci_disable_pcie_error_reporting(pdev);
e75ec752 1998 pci_disable_device(pdev);
4d115420 1999 }
4d115420
KB
2000}
2001
a5cdb68c 2002static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2003{
70659060 2004 int i, queues;
302ad8cc
KB
2005 bool dead = true;
2006 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2007
77bf25ea 2008 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2009 if (pci_is_enabled(pdev)) {
2010 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2011
ebef7368
KB
2012 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2013 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
2014 nvme_start_freeze(&dev->ctrl);
2015 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2016 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2017 }
c21377f8 2018
302ad8cc
KB
2019 /*
2020 * Give the controller a chance to complete all entered requests if
2021 * doing a safe shutdown.
2022 */
87ad72a5
CH
2023 if (!dead) {
2024 if (shutdown)
2025 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2026
2027 /*
2028 * If the controller is still alive tell it to stop using the
2029 * host memory buffer. In theory the shutdown / reset should
2030 * make sure that it doesn't access the host memoery anymore,
2031 * but I'd rather be safe than sorry..
2032 */
2033 if (dev->host_mem_descs)
2034 nvme_set_host_mem(dev, 0);
2035
2036 }
302ad8cc
KB
2037 nvme_stop_queues(&dev->ctrl);
2038
70659060 2039 queues = dev->online_queues - 1;
d858e5f0 2040 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
c21377f8
GKB
2041 nvme_suspend_queue(dev->queues[i]);
2042
302ad8cc 2043 if (dead) {
82469c59
GKB
2044 /* A device might become IO incapable very soon during
2045 * probe, before the admin queue is configured. Thus,
2046 * queue_count can be 0 here.
2047 */
d858e5f0 2048 if (dev->ctrl.queue_count)
82469c59 2049 nvme_suspend_queue(dev->queues[0]);
4d115420 2050 } else {
70659060 2051 nvme_disable_io_queues(dev, queues);
a5cdb68c 2052 nvme_disable_admin_queue(dev, shutdown);
4d115420 2053 }
b00a726a 2054 nvme_pci_disable(dev);
07836e65 2055
e1958e65
ML
2056 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2057 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2058
2059 /*
2060 * The driver will not be starting up queues again if shutting down so
2061 * must flush all entered requests to their failed completion to avoid
2062 * deadlocking blk-mq hot-cpu notifier.
2063 */
2064 if (shutdown)
2065 nvme_start_queues(&dev->ctrl);
77bf25ea 2066 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2067}
2068
091b6092
MW
2069static int nvme_setup_prp_pools(struct nvme_dev *dev)
2070{
e75ec752 2071 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2072 PAGE_SIZE, PAGE_SIZE, 0);
2073 if (!dev->prp_page_pool)
2074 return -ENOMEM;
2075
99802a7a 2076 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2077 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2078 256, 256, 0);
2079 if (!dev->prp_small_pool) {
2080 dma_pool_destroy(dev->prp_page_pool);
2081 return -ENOMEM;
2082 }
091b6092
MW
2083 return 0;
2084}
2085
2086static void nvme_release_prp_pools(struct nvme_dev *dev)
2087{
2088 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2089 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2090}
2091
1673f1f0 2092static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2093{
1673f1f0 2094 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2095
f9f38e33 2096 nvme_dbbuf_dma_free(dev);
e75ec752 2097 put_device(dev->dev);
4af0e21c
KB
2098 if (dev->tagset.tags)
2099 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2100 if (dev->ctrl.admin_q)
2101 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2102 kfree(dev->queues);
e286bcfc 2103 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2104 kfree(dev);
2105}
2106
f58944e2
KB
2107static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2108{
237045fc 2109 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2110
2111 kref_get(&dev->ctrl.kref);
69d9a99c 2112 nvme_dev_disable(dev, false);
f58944e2
KB
2113 if (!schedule_work(&dev->remove_work))
2114 nvme_put_ctrl(&dev->ctrl);
2115}
2116
fd634f41 2117static void nvme_reset_work(struct work_struct *work)
5e82e952 2118{
d86c4d8e
CH
2119 struct nvme_dev *dev =
2120 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2121 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2122 int result = -ENODEV;
5e82e952 2123
82b057ca 2124 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2125 goto out;
5e82e952 2126
fd634f41
CH
2127 /*
2128 * If we're called to reset a live controller first shut it down before
2129 * moving on.
2130 */
b00a726a 2131 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2132 nvme_dev_disable(dev, false);
5e82e952 2133
b00a726a 2134 result = nvme_pci_enable(dev);
f0b50732 2135 if (result)
3cf519b5 2136 goto out;
f0b50732 2137
01ad0990 2138 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2139 if (result)
f58944e2 2140 goto out;
f0b50732 2141
a4aea562 2142 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2143 result = nvme_alloc_admin_tags(dev);
2144 if (result)
f58944e2 2145 goto out;
b9afca3e 2146
ce4541f4
CH
2147 result = nvme_init_identify(&dev->ctrl);
2148 if (result)
f58944e2 2149 goto out;
ce4541f4 2150
e286bcfc
SB
2151 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2152 if (!dev->ctrl.opal_dev)
2153 dev->ctrl.opal_dev =
2154 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2155 else if (was_suspend)
2156 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2157 } else {
2158 free_opal_dev(dev->ctrl.opal_dev);
2159 dev->ctrl.opal_dev = NULL;
4f1244c8 2160 }
a98e58e5 2161
f9f38e33
HK
2162 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2163 result = nvme_dbbuf_dma_alloc(dev);
2164 if (result)
2165 dev_warn(dev->dev,
2166 "unable to allocate dma for dbbuf\n");
2167 }
2168
87ad72a5
CH
2169 if (dev->ctrl.hmpre)
2170 nvme_setup_host_mem(dev);
2171
f0b50732 2172 result = nvme_setup_io_queues(dev);
badc34d4 2173 if (result)
f58944e2 2174 goto out;
f0b50732 2175
2659e57b
CH
2176 /*
2177 * Keep the controller around but remove all namespaces if we don't have
2178 * any working I/O queue.
2179 */
3cf519b5 2180 if (dev->online_queues < 2) {
1b3c47c1 2181 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2182 nvme_kill_queues(&dev->ctrl);
5bae7f73 2183 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2184 } else {
25646264 2185 nvme_start_queues(&dev->ctrl);
302ad8cc 2186 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2187 nvme_dev_add(dev);
302ad8cc 2188 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2189 }
2190
bb8d261e
CH
2191 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2192 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2193 goto out;
2194 }
92911a55 2195
d09f2b45 2196 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2197 return;
f0b50732 2198
3cf519b5 2199 out:
f58944e2 2200 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2201}
2202
5c8809e6 2203static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2204{
5c8809e6 2205 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2206 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2207
69d9a99c 2208 nvme_kill_queues(&dev->ctrl);
9a6b9458 2209 if (pci_get_drvdata(pdev))
921920ab 2210 device_release_driver(&pdev->dev);
1673f1f0 2211 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2212}
2213
1c63dc66 2214static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2215{
1c63dc66 2216 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2217 return 0;
9ca97374
TH
2218}
2219
5fd4ce1b 2220static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2221{
5fd4ce1b
CH
2222 writel(val, to_nvme_dev(ctrl)->bar + off);
2223 return 0;
2224}
4cc06521 2225
7fd8930f
CH
2226static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2227{
2228 *val = readq(to_nvme_dev(ctrl)->bar + off);
2229 return 0;
4cc06521
KB
2230}
2231
1c63dc66 2232static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2233 .name = "pcie",
e439bb12 2234 .module = THIS_MODULE,
c81bfba9 2235 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2236 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2237 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2238 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2239 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2240 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2241};
4cc06521 2242
b00a726a
KB
2243static int nvme_dev_map(struct nvme_dev *dev)
2244{
b00a726a
KB
2245 struct pci_dev *pdev = to_pci_dev(dev->dev);
2246
a1f447b3 2247 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2248 return -ENODEV;
2249
97f6ef64 2250 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2251 goto release;
2252
9fa196e7 2253 return 0;
b00a726a 2254 release:
9fa196e7
MG
2255 pci_release_mem_regions(pdev);
2256 return -ENODEV;
b00a726a
KB
2257}
2258
ff5350a8
AL
2259static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2260{
2261 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2262 /*
2263 * Several Samsung devices seem to drop off the PCIe bus
2264 * randomly when APST is on and uses the deepest sleep state.
2265 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2266 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2267 * 950 PRO 256GB", but it seems to be restricted to two Dell
2268 * laptops.
2269 */
2270 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2271 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2272 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2273 return NVME_QUIRK_NO_DEEPEST_PS;
2274 }
2275
2276 return 0;
2277}
2278
8d85fce7 2279static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2280{
a4aea562 2281 int node, result = -ENOMEM;
b60503ba 2282 struct nvme_dev *dev;
ff5350a8 2283 unsigned long quirks = id->driver_data;
b60503ba 2284
a4aea562
MB
2285 node = dev_to_node(&pdev->dev);
2286 if (node == NUMA_NO_NODE)
2fa84351 2287 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2288
2289 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2290 if (!dev)
2291 return -ENOMEM;
a4aea562
MB
2292 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2293 GFP_KERNEL, node);
b60503ba
MW
2294 if (!dev->queues)
2295 goto free;
2296
e75ec752 2297 dev->dev = get_device(&pdev->dev);
9a6b9458 2298 pci_set_drvdata(pdev, dev);
1c63dc66 2299
b00a726a
KB
2300 result = nvme_dev_map(dev);
2301 if (result)
b00c9b7a 2302 goto put_pci;
b00a726a 2303
d86c4d8e 2304 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2305 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2306 mutex_init(&dev->shutdown_lock);
db3cbfff 2307 init_completion(&dev->ioq_wait);
b60503ba 2308
091b6092
MW
2309 result = nvme_setup_prp_pools(dev);
2310 if (result)
b00c9b7a 2311 goto unmap;
4cc06521 2312
ff5350a8
AL
2313 quirks |= check_dell_samsung_bug(pdev);
2314
f3ca80fc 2315 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2316 quirks);
4cc06521 2317 if (result)
2e1d8448 2318 goto release_pools;
740216fc 2319
82b057ca 2320 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2321 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2322
d86c4d8e 2323 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2324 return 0;
2325
0877cb0d 2326 release_pools:
091b6092 2327 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2328 unmap:
2329 nvme_dev_unmap(dev);
a96d4f5c 2330 put_pci:
e75ec752 2331 put_device(dev->dev);
b60503ba
MW
2332 free:
2333 kfree(dev->queues);
b60503ba
MW
2334 kfree(dev);
2335 return result;
2336}
2337
775755ed 2338static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2339{
a6739479 2340 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2341 nvme_dev_disable(dev, false);
775755ed 2342}
f0d54a54 2343
775755ed
CH
2344static void nvme_reset_done(struct pci_dev *pdev)
2345{
f263fbb8
LT
2346 struct nvme_dev *dev = pci_get_drvdata(pdev);
2347 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2348}
2349
09ece142
KB
2350static void nvme_shutdown(struct pci_dev *pdev)
2351{
2352 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2353 nvme_dev_disable(dev, true);
09ece142
KB
2354}
2355
f58944e2
KB
2356/*
2357 * The driver's remove may be called on a device in a partially initialized
2358 * state. This function must not have any dependencies on the device state in
2359 * order to proceed.
2360 */
8d85fce7 2361static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2362{
2363 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2364
bb8d261e
CH
2365 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2366
d86c4d8e 2367 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2368 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2369
6db28eda 2370 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2371 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2372 nvme_dev_disable(dev, false);
2373 }
0ff9d4e1 2374
d86c4d8e 2375 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2376 nvme_stop_ctrl(&dev->ctrl);
2377 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2378 nvme_dev_disable(dev, true);
87ad72a5 2379 nvme_free_host_mem(dev);
a4aea562 2380 nvme_dev_remove_admin(dev);
a1a5ef99 2381 nvme_free_queues(dev, 0);
d09f2b45 2382 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2383 nvme_release_prp_pools(dev);
b00a726a 2384 nvme_dev_unmap(dev);
1673f1f0 2385 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2386}
2387
13880f5b
KB
2388static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2389{
2390 int ret = 0;
2391
2392 if (numvfs == 0) {
2393 if (pci_vfs_assigned(pdev)) {
2394 dev_warn(&pdev->dev,
2395 "Cannot disable SR-IOV VFs while assigned\n");
2396 return -EPERM;
2397 }
2398 pci_disable_sriov(pdev);
2399 return 0;
2400 }
2401
2402 ret = pci_enable_sriov(pdev, numvfs);
2403 return ret ? ret : numvfs;
2404}
2405
671a6018 2406#ifdef CONFIG_PM_SLEEP
cd638946
KB
2407static int nvme_suspend(struct device *dev)
2408{
2409 struct pci_dev *pdev = to_pci_dev(dev);
2410 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2411
a5cdb68c 2412 nvme_dev_disable(ndev, true);
cd638946
KB
2413 return 0;
2414}
2415
2416static int nvme_resume(struct device *dev)
2417{
2418 struct pci_dev *pdev = to_pci_dev(dev);
2419 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2420
d86c4d8e 2421 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2422 return 0;
cd638946 2423}
671a6018 2424#endif
cd638946
KB
2425
2426static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2427
a0a3408e
KB
2428static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2429 pci_channel_state_t state)
2430{
2431 struct nvme_dev *dev = pci_get_drvdata(pdev);
2432
2433 /*
2434 * A frozen channel requires a reset. When detected, this method will
2435 * shutdown the controller to quiesce. The controller will be restarted
2436 * after the slot reset through driver's slot_reset callback.
2437 */
a0a3408e
KB
2438 switch (state) {
2439 case pci_channel_io_normal:
2440 return PCI_ERS_RESULT_CAN_RECOVER;
2441 case pci_channel_io_frozen:
d011fb31
KB
2442 dev_warn(dev->ctrl.device,
2443 "frozen state error detected, reset controller\n");
a5cdb68c 2444 nvme_dev_disable(dev, false);
a0a3408e
KB
2445 return PCI_ERS_RESULT_NEED_RESET;
2446 case pci_channel_io_perm_failure:
d011fb31
KB
2447 dev_warn(dev->ctrl.device,
2448 "failure state error detected, request disconnect\n");
a0a3408e
KB
2449 return PCI_ERS_RESULT_DISCONNECT;
2450 }
2451 return PCI_ERS_RESULT_NEED_RESET;
2452}
2453
2454static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2455{
2456 struct nvme_dev *dev = pci_get_drvdata(pdev);
2457
1b3c47c1 2458 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2459 pci_restore_state(pdev);
d86c4d8e 2460 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2461 return PCI_ERS_RESULT_RECOVERED;
2462}
2463
2464static void nvme_error_resume(struct pci_dev *pdev)
2465{
2466 pci_cleanup_aer_uncorrect_error_status(pdev);
2467}
2468
1d352035 2469static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2470 .error_detected = nvme_error_detected,
b60503ba
MW
2471 .slot_reset = nvme_slot_reset,
2472 .resume = nvme_error_resume,
775755ed
CH
2473 .reset_prepare = nvme_reset_prepare,
2474 .reset_done = nvme_reset_done,
b60503ba
MW
2475};
2476
6eb0d698 2477static const struct pci_device_id nvme_id_table[] = {
106198ed 2478 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2479 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2480 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2481 { PCI_VDEVICE(INTEL, 0x0a53),
2482 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2483 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2484 { PCI_VDEVICE(INTEL, 0x0a54),
2485 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2486 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2487 { PCI_VDEVICE(INTEL, 0x0a55),
2488 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2489 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2490 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2491 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2492 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2493 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2494 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2495 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2496 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2497 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2498 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2499 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2500 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2501 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2502 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2503 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2504 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2505 { 0, }
2506};
2507MODULE_DEVICE_TABLE(pci, nvme_id_table);
2508
2509static struct pci_driver nvme_driver = {
2510 .name = "nvme",
2511 .id_table = nvme_id_table,
2512 .probe = nvme_probe,
8d85fce7 2513 .remove = nvme_remove,
09ece142 2514 .shutdown = nvme_shutdown,
cd638946
KB
2515 .driver = {
2516 .pm = &nvme_dev_pm_ops,
2517 },
13880f5b 2518 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2519 .err_handler = &nvme_err_handler,
2520};
2521
2522static int __init nvme_init(void)
2523{
9a6327d2 2524 return pci_register_driver(&nvme_driver);
b60503ba
MW
2525}
2526
2527static void __exit nvme_exit(void)
2528{
2529 pci_unregister_driver(&nvme_driver);
21bd78bc 2530 _nvme_check_size();
b60503ba
MW
2531}
2532
2533MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2534MODULE_LICENSE("GPL");
c78b4713 2535MODULE_VERSION("1.0");
b60503ba
MW
2536module_init(nvme_init);
2537module_exit(nvme_exit);