]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme-rdma: default MR page size to 4k
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
b60503ba
MW
38#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
39#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 40
adf68f21
CH
41/*
42 * We handle AEN commands ourselves and don't even let the
43 * block layer know about them.
44 */
f866fc42 45#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 46
58ffacb5
MW
47static int use_threaded_interrupts;
48module_param(use_threaded_interrupts, int, 0);
49
8ffaadf7
JD
50static bool use_cmb_sqes = true;
51module_param(use_cmb_sqes, bool, 0644);
52MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
87ad72a5
CH
54static unsigned int max_host_mem_size_mb = 128;
55module_param(max_host_mem_size_mb, uint, 0444);
56MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 58
b27c1e68 59static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63};
64
65static int io_queue_depth = 1024;
66module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
1c63dc66
CH
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
1c63dc66
CH
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
1c63dc66 90 void __iomem *bar;
97f6ef64 91 unsigned long bar_mapped_size;
5c8809e6 92 struct work_struct remove_work;
77bf25ea 93 struct mutex shutdown_lock;
1c63dc66 94 bool subsystem;
1c63dc66
CH
95 void __iomem *cmb;
96 dma_addr_t cmb_dma_addr;
97 u64 cmb_size;
98 u32 cmbsz;
202021c1 99 u32 cmbloc;
1c63dc66 100 struct nvme_ctrl ctrl;
db3cbfff 101 struct completion ioq_wait;
87ad72a5
CH
102
103 /* shadow doorbell buffer support: */
f9f38e33
HK
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
4d115420 114};
1fa6aead 115
b27c1e68 116static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117{
118 int n = 0, ret;
119
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
123
124 return param_set_int(val, kp);
125}
126
f9f38e33
HK
127static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128{
129 return qid * 2 * stride;
130}
131
132static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133{
134 return (qid * 2 + 1) * stride;
135}
136
1c63dc66
CH
137static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138{
139 return container_of(ctrl, struct nvme_dev, ctrl);
140}
141
b60503ba
MW
142/*
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
145 */
146struct nvme_queue {
147 struct device *q_dmadev;
091b6092 148 struct nvme_dev *dev;
b60503ba
MW
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
8ffaadf7 151 struct nvme_command __iomem *sq_cmds_io;
b60503ba 152 volatile struct nvme_completion *cqes;
42483228 153 struct blk_mq_tags **tags;
b60503ba
MW
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
b60503ba
MW
156 u32 __iomem *q_db;
157 u16 q_depth;
6222d172 158 s16 cq_vector;
b60503ba
MW
159 u16 sq_tail;
160 u16 cq_head;
c30341dc 161 u16 qid;
e9539f47
MW
162 u8 cq_phase;
163 u8 cqe_seen;
f9f38e33
HK
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
b60503ba
MW
168};
169
71bd150c
CH
170/*
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 173 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
174 * allocated to store the PRP list.
175 */
176struct nvme_iod {
d49187e9 177 struct nvme_request req;
f4800d6d
CH
178 struct nvme_queue *nvmeq;
179 int aborted;
71bd150c 180 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
181 int nents; /* Used in scatterlist */
182 int length; /* Of data, in bytes */
183 dma_addr_t first_dma;
bf684057 184 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
185 struct scatterlist *sg;
186 struct scatterlist inline_sg[0];
b60503ba
MW
187};
188
189/*
190 * Check we didin't inadvertently grow the command struct
191 */
192static inline void _nvme_check_size(void)
193{
194 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 199 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 200 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 201 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
202 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 204 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 205 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
206 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
207}
208
209static inline unsigned int nvme_dbbuf_size(u32 stride)
210{
211 return ((num_possible_cpus() + 1) * 8 * stride);
212}
213
214static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
215{
216 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
217
218 if (dev->dbbuf_dbs)
219 return 0;
220
221 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
222 &dev->dbbuf_dbs_dma_addr,
223 GFP_KERNEL);
224 if (!dev->dbbuf_dbs)
225 return -ENOMEM;
226 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
227 &dev->dbbuf_eis_dma_addr,
228 GFP_KERNEL);
229 if (!dev->dbbuf_eis) {
230 dma_free_coherent(dev->dev, mem_size,
231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232 dev->dbbuf_dbs = NULL;
233 return -ENOMEM;
234 }
235
236 return 0;
237}
238
239static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
240{
241 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
242
243 if (dev->dbbuf_dbs) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 }
248 if (dev->dbbuf_eis) {
249 dma_free_coherent(dev->dev, mem_size,
250 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
251 dev->dbbuf_eis = NULL;
252 }
253}
254
255static void nvme_dbbuf_init(struct nvme_dev *dev,
256 struct nvme_queue *nvmeq, int qid)
257{
258 if (!dev->dbbuf_dbs || !qid)
259 return;
260
261 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
262 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
265}
266
267static void nvme_dbbuf_set(struct nvme_dev *dev)
268{
269 struct nvme_command c;
270
271 if (!dev->dbbuf_dbs)
272 return;
273
274 memset(&c, 0, sizeof(c));
275 c.dbbuf.opcode = nvme_admin_dbbuf;
276 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
277 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
278
279 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 280 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
281 /* Free memory and continue on */
282 nvme_dbbuf_dma_free(dev);
283 }
284}
285
286static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
287{
288 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
289}
290
291/* Update dbbuf and return true if an MMIO is required */
292static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
293 volatile u32 *dbbuf_ei)
294{
295 if (dbbuf_db) {
296 u16 old_value;
297
298 /*
299 * Ensure that the queue is written before updating
300 * the doorbell in memory
301 */
302 wmb();
303
304 old_value = *dbbuf_db;
305 *dbbuf_db = value;
306
307 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
308 return false;
309 }
310
311 return true;
b60503ba
MW
312}
313
ac3dd5bd
JA
314/*
315 * Max size of iod being embedded in the request payload
316 */
317#define NVME_INT_PAGES 2
5fd4ce1b 318#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
319
320/*
321 * Will slightly overestimate the number of pages needed. This is OK
322 * as it only leads to a small amount of wasted memory for the lifetime of
323 * the I/O.
324 */
325static int nvme_npages(unsigned size, struct nvme_dev *dev)
326{
5fd4ce1b
CH
327 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
328 dev->ctrl.page_size);
ac3dd5bd
JA
329 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
330}
331
f4800d6d
CH
332static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
333 unsigned int size, unsigned int nseg)
ac3dd5bd 334{
f4800d6d
CH
335 return sizeof(__le64 *) * nvme_npages(size, dev) +
336 sizeof(struct scatterlist) * nseg;
337}
ac3dd5bd 338
f4800d6d
CH
339static unsigned int nvme_cmd_size(struct nvme_dev *dev)
340{
341 return sizeof(struct nvme_iod) +
342 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
343}
344
a4aea562
MB
345static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346 unsigned int hctx_idx)
e85248e5 347{
a4aea562
MB
348 struct nvme_dev *dev = data;
349 struct nvme_queue *nvmeq = dev->queues[0];
350
42483228
KB
351 WARN_ON(hctx_idx != 0);
352 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
353 WARN_ON(nvmeq->tags);
354
a4aea562 355 hctx->driver_data = nvmeq;
42483228 356 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 357 return 0;
e85248e5
MW
358}
359
4af0e21c
KB
360static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
361{
362 struct nvme_queue *nvmeq = hctx->driver_data;
363
364 nvmeq->tags = NULL;
365}
366
a4aea562
MB
367static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
368 unsigned int hctx_idx)
b60503ba 369{
a4aea562 370 struct nvme_dev *dev = data;
42483228 371 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 372
42483228
KB
373 if (!nvmeq->tags)
374 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 375
42483228 376 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
377 hctx->driver_data = nvmeq;
378 return 0;
b60503ba
MW
379}
380
d6296d39
CH
381static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
382 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 383{
d6296d39 384 struct nvme_dev *dev = set->driver_data;
f4800d6d 385 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
386 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
387 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
388
389 BUG_ON(!nvmeq);
f4800d6d 390 iod->nvmeq = nvmeq;
a4aea562
MB
391 return 0;
392}
393
dca51e78
CH
394static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
395{
396 struct nvme_dev *dev = set->driver_data;
397
398 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
399}
400
b60503ba 401/**
adf68f21 402 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
403 * @nvmeq: The queue to use
404 * @cmd: The command to send
405 *
406 * Safe to use from interrupt context
407 */
e3f879bf
SB
408static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
409 struct nvme_command *cmd)
b60503ba 410{
a4aea562
MB
411 u16 tail = nvmeq->sq_tail;
412
8ffaadf7
JD
413 if (nvmeq->sq_cmds_io)
414 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
415 else
416 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
417
b60503ba
MW
418 if (++tail == nvmeq->q_depth)
419 tail = 0;
f9f38e33
HK
420 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
421 nvmeq->dbbuf_sq_ei))
422 writel(tail, nvmeq->q_db);
b60503ba 423 nvmeq->sq_tail = tail;
b60503ba
MW
424}
425
f4800d6d 426static __le64 **iod_list(struct request *req)
b60503ba 427{
f4800d6d 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 429 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
430}
431
fc17b653 432static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 433{
f4800d6d 434 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 435 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 436 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 437
f4800d6d
CH
438 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
439 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
440 if (!iod->sg)
fc17b653 441 return BLK_STS_RESOURCE;
f4800d6d
CH
442 } else {
443 iod->sg = iod->inline_sg;
ac3dd5bd
JA
444 }
445
f4800d6d
CH
446 iod->aborted = 0;
447 iod->npages = -1;
448 iod->nents = 0;
449 iod->length = size;
f80ec966 450
fc17b653 451 return BLK_STS_OK;
ac3dd5bd
JA
452}
453
f4800d6d 454static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 455{
f4800d6d 456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 457 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 458 int i;
f4800d6d 459 __le64 **list = iod_list(req);
eca18b23
MW
460 dma_addr_t prp_dma = iod->first_dma;
461
462 if (iod->npages == 0)
463 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464 for (i = 0; i < iod->npages; i++) {
465 __le64 *prp_list = list[i];
466 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468 prp_dma = next_prp_dma;
469 }
ac3dd5bd 470
f4800d6d
CH
471 if (iod->sg != iod->inline_sg)
472 kfree(iod->sg);
b4ff9c8d
KB
473}
474
52b68d7e 475#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
476static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
477{
478 if (be32_to_cpu(pi->ref_tag) == v)
479 pi->ref_tag = cpu_to_be32(p);
480}
481
482static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
483{
484 if (be32_to_cpu(pi->ref_tag) == p)
485 pi->ref_tag = cpu_to_be32(v);
486}
487
488/**
489 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
490 *
491 * The virtual start sector is the one that was originally submitted by the
492 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
493 * start sector may be different. Remap protection information to match the
494 * physical LBA on writes, and back to the original seed on reads.
495 *
496 * Type 0 and 3 do not have a ref tag, so no remapping required.
497 */
498static void nvme_dif_remap(struct request *req,
499 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
500{
501 struct nvme_ns *ns = req->rq_disk->private_data;
502 struct bio_integrity_payload *bip;
503 struct t10_pi_tuple *pi;
504 void *p, *pmap;
505 u32 i, nlb, ts, phys, virt;
506
507 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
508 return;
509
510 bip = bio_integrity(req->bio);
511 if (!bip)
512 return;
513
514 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
515
516 p = pmap;
517 virt = bip_get_seed(bip);
518 phys = nvme_block_nr(ns, blk_rq_pos(req));
519 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 520 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
521
522 for (i = 0; i < nlb; i++, virt++, phys++) {
523 pi = (struct t10_pi_tuple *)p;
524 dif_swap(phys, virt, pi);
525 p += ts;
526 }
527 kunmap_atomic(pmap);
528}
52b68d7e
KB
529#else /* CONFIG_BLK_DEV_INTEGRITY */
530static void nvme_dif_remap(struct request *req,
531 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
532{
533}
534static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535{
536}
537static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538{
539}
52b68d7e
KB
540#endif
541
86eea289 542static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 543{
f4800d6d 544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 545 struct dma_pool *pool;
b131c61d 546 int length = blk_rq_payload_bytes(req);
eca18b23 547 struct scatterlist *sg = iod->sg;
ff22b54f
MW
548 int dma_len = sg_dma_len(sg);
549 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 550 u32 page_size = dev->ctrl.page_size;
f137e0f1 551 int offset = dma_addr & (page_size - 1);
e025344c 552 __le64 *prp_list;
f4800d6d 553 __le64 **list = iod_list(req);
e025344c 554 dma_addr_t prp_dma;
eca18b23 555 int nprps, i;
ff22b54f 556
1d090624 557 length -= (page_size - offset);
ff22b54f 558 if (length <= 0)
86eea289 559 return BLK_STS_OK;
ff22b54f 560
1d090624 561 dma_len -= (page_size - offset);
ff22b54f 562 if (dma_len) {
1d090624 563 dma_addr += (page_size - offset);
ff22b54f
MW
564 } else {
565 sg = sg_next(sg);
566 dma_addr = sg_dma_address(sg);
567 dma_len = sg_dma_len(sg);
568 }
569
1d090624 570 if (length <= page_size) {
edd10d33 571 iod->first_dma = dma_addr;
86eea289 572 return BLK_STS_OK;
e025344c
SMM
573 }
574
1d090624 575 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
576 if (nprps <= (256 / 8)) {
577 pool = dev->prp_small_pool;
eca18b23 578 iod->npages = 0;
99802a7a
MW
579 } else {
580 pool = dev->prp_page_pool;
eca18b23 581 iod->npages = 1;
99802a7a
MW
582 }
583
69d2b571 584 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 585 if (!prp_list) {
edd10d33 586 iod->first_dma = dma_addr;
eca18b23 587 iod->npages = -1;
86eea289 588 return BLK_STS_RESOURCE;
b77954cb 589 }
eca18b23
MW
590 list[0] = prp_list;
591 iod->first_dma = prp_dma;
e025344c
SMM
592 i = 0;
593 for (;;) {
1d090624 594 if (i == page_size >> 3) {
e025344c 595 __le64 *old_prp_list = prp_list;
69d2b571 596 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 597 if (!prp_list)
86eea289 598 return BLK_STS_RESOURCE;
eca18b23 599 list[iod->npages++] = prp_list;
7523d834
MW
600 prp_list[0] = old_prp_list[i - 1];
601 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
602 i = 1;
e025344c
SMM
603 }
604 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
605 dma_len -= page_size;
606 dma_addr += page_size;
607 length -= page_size;
e025344c
SMM
608 if (length <= 0)
609 break;
610 if (dma_len > 0)
611 continue;
86eea289
KB
612 if (unlikely(dma_len < 0))
613 goto bad_sgl;
e025344c
SMM
614 sg = sg_next(sg);
615 dma_addr = sg_dma_address(sg);
616 dma_len = sg_dma_len(sg);
ff22b54f
MW
617 }
618
86eea289
KB
619 return BLK_STS_OK;
620
621 bad_sgl:
622 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
623 blk_rq_payload_bytes(req), iod->nents)) {
624 for_each_sg(iod->sg, sg, iod->nents, i) {
625 dma_addr_t phys = sg_phys(sg);
626 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
627 "dma_address:%pad dma_length:%d\n", i, &phys,
628 sg->offset, sg->length,
629 &sg_dma_address(sg),
630 sg_dma_len(sg));
631 }
632 }
633 return BLK_STS_IOERR;
634
ff22b54f
MW
635}
636
fc17b653 637static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 638 struct nvme_command *cmnd)
d29ec824 639{
f4800d6d 640 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
641 struct request_queue *q = req->q;
642 enum dma_data_direction dma_dir = rq_data_dir(req) ?
643 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 644 blk_status_t ret = BLK_STS_IOERR;
d29ec824 645
f9d03f96 646 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
647 iod->nents = blk_rq_map_sg(q, req, iod->sg);
648 if (!iod->nents)
649 goto out;
d29ec824 650
fc17b653 651 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
652 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
653 DMA_ATTR_NO_WARN))
ba1ca37e 654 goto out;
d29ec824 655
86eea289
KB
656 ret = nvme_setup_prps(dev, req);
657 if (ret != BLK_STS_OK)
ba1ca37e 658 goto out_unmap;
0e5e4f0e 659
fc17b653 660 ret = BLK_STS_IOERR;
ba1ca37e
CH
661 if (blk_integrity_rq(req)) {
662 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
663 goto out_unmap;
0e5e4f0e 664
bf684057
CH
665 sg_init_table(&iod->meta_sg, 1);
666 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 667 goto out_unmap;
0e5e4f0e 668
ba1ca37e
CH
669 if (rq_data_dir(req))
670 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 671
bf684057 672 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 673 goto out_unmap;
d29ec824 674 }
00df5cb4 675
eb793e2c
CH
676 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
677 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 678 if (blk_integrity_rq(req))
bf684057 679 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 680 return BLK_STS_OK;
00df5cb4 681
ba1ca37e
CH
682out_unmap:
683 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
684out:
685 return ret;
00df5cb4
MW
686}
687
f4800d6d 688static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 689{
f4800d6d 690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
691 enum dma_data_direction dma_dir = rq_data_dir(req) ?
692 DMA_TO_DEVICE : DMA_FROM_DEVICE;
693
694 if (iod->nents) {
695 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
696 if (blk_integrity_rq(req)) {
697 if (!rq_data_dir(req))
698 nvme_dif_remap(req, nvme_dif_complete);
bf684057 699 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 700 }
e19b127f 701 }
e1e5e564 702
f9d03f96 703 nvme_cleanup_cmd(req);
f4800d6d 704 nvme_free_iod(dev, req);
d4f6c3ab 705}
b60503ba 706
d29ec824
CH
707/*
708 * NOTE: ns is NULL when called on the admin queue.
709 */
fc17b653 710static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 711 const struct blk_mq_queue_data *bd)
edd10d33 712{
a4aea562
MB
713 struct nvme_ns *ns = hctx->queue->queuedata;
714 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 715 struct nvme_dev *dev = nvmeq->dev;
a4aea562 716 struct request *req = bd->rq;
ba1ca37e 717 struct nvme_command cmnd;
ebe6d874 718 blk_status_t ret;
e1e5e564 719
f9d03f96 720 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 721 if (ret)
f4800d6d 722 return ret;
a4aea562 723
b131c61d 724 ret = nvme_init_iod(req, dev);
fc17b653 725 if (ret)
f9d03f96 726 goto out_free_cmd;
a4aea562 727
fc17b653 728 if (blk_rq_nr_phys_segments(req)) {
b131c61d 729 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
730 if (ret)
731 goto out_cleanup_iod;
732 }
a4aea562 733
aae239e1 734 blk_mq_start_request(req);
a4aea562 735
ba1ca37e 736 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 737 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 738 ret = BLK_STS_IOERR;
ae1fba20 739 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 740 goto out_cleanup_iod;
ae1fba20 741 }
ba1ca37e 742 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
743 nvme_process_cq(nvmeq);
744 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 745 return BLK_STS_OK;
f9d03f96 746out_cleanup_iod:
f4800d6d 747 nvme_free_iod(dev, req);
f9d03f96
CH
748out_free_cmd:
749 nvme_cleanup_cmd(req);
ba1ca37e 750 return ret;
b60503ba 751}
e1e5e564 752
77f02a7a 753static void nvme_pci_complete_rq(struct request *req)
eee417b0 754{
f4800d6d 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 756
77f02a7a
CH
757 nvme_unmap_data(iod->nvmeq->dev, req);
758 nvme_complete_rq(req);
b60503ba
MW
759}
760
d783e0bd
MR
761/* We read the CQE phase first to check if the rest of the entry is valid */
762static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
763 u16 phase)
764{
765 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
766}
767
eb281c82 768static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 769{
eb281c82 770 u16 head = nvmeq->cq_head;
adf68f21 771
eb281c82
SG
772 if (likely(nvmeq->cq_vector >= 0)) {
773 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
774 nvmeq->dbbuf_cq_ei))
775 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
776 }
777}
aae239e1 778
83a12fb7
SG
779static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
780 struct nvme_completion *cqe)
781{
782 struct request *req;
adf68f21 783
83a12fb7
SG
784 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
785 dev_warn(nvmeq->dev->ctrl.device,
786 "invalid id %d completed on queue %d\n",
787 cqe->command_id, le16_to_cpu(cqe->sq_id));
788 return;
b60503ba
MW
789 }
790
83a12fb7
SG
791 /*
792 * AEN requests are special as they don't time out and can
793 * survive any kind of queue freeze and often don't respond to
794 * aborts. We don't even bother to allocate a struct request
795 * for them but rather special case them here.
796 */
797 if (unlikely(nvmeq->qid == 0 &&
798 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
799 nvme_complete_async_event(&nvmeq->dev->ctrl,
800 cqe->status, &cqe->result);
a0fa9647 801 return;
83a12fb7 802 }
b60503ba 803
e9d8a0fd 804 nvmeq->cqe_seen = 1;
83a12fb7
SG
805 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
806 nvme_end_request(req, cqe->status, cqe->result);
807}
b60503ba 808
920d13a8
SG
809static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
810 struct nvme_completion *cqe)
b60503ba 811{
920d13a8
SG
812 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
813 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 814
920d13a8
SG
815 if (++nvmeq->cq_head == nvmeq->q_depth) {
816 nvmeq->cq_head = 0;
817 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 818 }
920d13a8 819 return true;
b60503ba 820 }
920d13a8 821 return false;
a0fa9647
JA
822}
823
824static void nvme_process_cq(struct nvme_queue *nvmeq)
825{
920d13a8
SG
826 struct nvme_completion cqe;
827 int consumed = 0;
b60503ba 828
920d13a8
SG
829 while (nvme_read_cqe(nvmeq, &cqe)) {
830 nvme_handle_cqe(nvmeq, &cqe);
831 consumed++;
920d13a8 832 }
eb281c82 833
e9d8a0fd 834 if (consumed)
920d13a8 835 nvme_ring_cq_doorbell(nvmeq);
b60503ba
MW
836}
837
838static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
839{
840 irqreturn_t result;
841 struct nvme_queue *nvmeq = data;
842 spin_lock(&nvmeq->q_lock);
e9539f47
MW
843 nvme_process_cq(nvmeq);
844 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
845 nvmeq->cqe_seen = 0;
58ffacb5
MW
846 spin_unlock(&nvmeq->q_lock);
847 return result;
848}
849
850static irqreturn_t nvme_irq_check(int irq, void *data)
851{
852 struct nvme_queue *nvmeq = data;
d783e0bd
MR
853 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
854 return IRQ_WAKE_THREAD;
855 return IRQ_NONE;
58ffacb5
MW
856}
857
7776db1c 858static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 859{
442e19b7
SG
860 struct nvme_completion cqe;
861 int found = 0, consumed = 0;
a0fa9647 862
442e19b7
SG
863 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
864 return 0;
a0fa9647 865
442e19b7
SG
866 spin_lock_irq(&nvmeq->q_lock);
867 while (nvme_read_cqe(nvmeq, &cqe)) {
868 nvme_handle_cqe(nvmeq, &cqe);
869 consumed++;
870
871 if (tag == cqe.command_id) {
872 found = 1;
873 break;
874 }
875 }
876
877 if (consumed)
878 nvme_ring_cq_doorbell(nvmeq);
879 spin_unlock_irq(&nvmeq->q_lock);
880
881 return found;
a0fa9647
JA
882}
883
7776db1c
KB
884static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
885{
886 struct nvme_queue *nvmeq = hctx->driver_data;
887
888 return __nvme_poll(nvmeq, tag);
889}
890
f866fc42 891static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 892{
f866fc42 893 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 894 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 895 struct nvme_command c;
b60503ba 896
a4aea562
MB
897 memset(&c, 0, sizeof(c));
898 c.common.opcode = nvme_admin_async_event;
f866fc42 899 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 900
9396dec9 901 spin_lock_irq(&nvmeq->q_lock);
f866fc42 902 __nvme_submit_cmd(nvmeq, &c);
9396dec9 903 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
904}
905
b60503ba 906static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 907{
b60503ba
MW
908 struct nvme_command c;
909
910 memset(&c, 0, sizeof(c));
911 c.delete_queue.opcode = opcode;
912 c.delete_queue.qid = cpu_to_le16(id);
913
1c63dc66 914 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
915}
916
b60503ba
MW
917static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
918 struct nvme_queue *nvmeq)
919{
b60503ba
MW
920 struct nvme_command c;
921 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
922
d29ec824
CH
923 /*
924 * Note: we (ab)use the fact the the prp fields survive if no data
925 * is attached to the request.
926 */
b60503ba
MW
927 memset(&c, 0, sizeof(c));
928 c.create_cq.opcode = nvme_admin_create_cq;
929 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
930 c.create_cq.cqid = cpu_to_le16(qid);
931 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
932 c.create_cq.cq_flags = cpu_to_le16(flags);
933 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
934
1c63dc66 935 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
936}
937
938static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
939 struct nvme_queue *nvmeq)
940{
b60503ba 941 struct nvme_command c;
81c1cd98 942 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 943
d29ec824
CH
944 /*
945 * Note: we (ab)use the fact the the prp fields survive if no data
946 * is attached to the request.
947 */
b60503ba
MW
948 memset(&c, 0, sizeof(c));
949 c.create_sq.opcode = nvme_admin_create_sq;
950 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
951 c.create_sq.sqid = cpu_to_le16(qid);
952 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
953 c.create_sq.sq_flags = cpu_to_le16(flags);
954 c.create_sq.cqid = cpu_to_le16(qid);
955
1c63dc66 956 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
957}
958
959static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
960{
961 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
962}
963
964static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
965{
966 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
967}
968
2a842aca 969static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 970{
f4800d6d
CH
971 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
972 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 973
27fa9bc5
CH
974 dev_warn(nvmeq->dev->ctrl.device,
975 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 976 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 977 blk_mq_free_request(req);
bc5fc7e4
MW
978}
979
b2a0eb1a
KB
980static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
981{
982
983 /* If true, indicates loss of adapter communication, possibly by a
984 * NVMe Subsystem reset.
985 */
986 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
987
988 /* If there is a reset ongoing, we shouldn't reset again. */
989 if (dev->ctrl.state == NVME_CTRL_RESETTING)
990 return false;
991
992 /* We shouldn't reset unless the controller is on fatal error state
993 * _or_ if we lost the communication with it.
994 */
995 if (!(csts & NVME_CSTS_CFS) && !nssro)
996 return false;
997
998 /* If PCI error recovery process is happening, we cannot reset or
999 * the recovery mechanism will surely fail.
1000 */
1001 if (pci_channel_offline(to_pci_dev(dev->dev)))
1002 return false;
1003
1004 return true;
1005}
1006
1007static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1008{
1009 /* Read a config register to help see what died. */
1010 u16 pci_status;
1011 int result;
1012
1013 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1014 &pci_status);
1015 if (result == PCIBIOS_SUCCESSFUL)
1016 dev_warn(dev->ctrl.device,
1017 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1018 csts, pci_status);
1019 else
1020 dev_warn(dev->ctrl.device,
1021 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1022 csts, result);
1023}
1024
31c7c7d2 1025static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1026{
f4800d6d
CH
1027 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1028 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1029 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1030 struct request *abort_req;
a4aea562 1031 struct nvme_command cmd;
b2a0eb1a
KB
1032 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1033
1034 /*
1035 * Reset immediately if the controller is failed
1036 */
1037 if (nvme_should_reset(dev, csts)) {
1038 nvme_warn_reset(dev, csts);
1039 nvme_dev_disable(dev, false);
d86c4d8e 1040 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1041 return BLK_EH_HANDLED;
1042 }
c30341dc 1043
7776db1c
KB
1044 /*
1045 * Did we miss an interrupt?
1046 */
1047 if (__nvme_poll(nvmeq, req->tag)) {
1048 dev_warn(dev->ctrl.device,
1049 "I/O %d QID %d timeout, completion polled\n",
1050 req->tag, nvmeq->qid);
1051 return BLK_EH_HANDLED;
1052 }
1053
31c7c7d2 1054 /*
fd634f41
CH
1055 * Shutdown immediately if controller times out while starting. The
1056 * reset work will see the pci device disabled when it gets the forced
1057 * cancellation error. All outstanding requests are completed on
1058 * shutdown, so we return BLK_EH_HANDLED.
1059 */
bb8d261e 1060 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1061 dev_warn(dev->ctrl.device,
fd634f41
CH
1062 "I/O %d QID %d timeout, disable controller\n",
1063 req->tag, nvmeq->qid);
a5cdb68c 1064 nvme_dev_disable(dev, false);
27fa9bc5 1065 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1066 return BLK_EH_HANDLED;
c30341dc
KB
1067 }
1068
fd634f41
CH
1069 /*
1070 * Shutdown the controller immediately and schedule a reset if the
1071 * command was already aborted once before and still hasn't been
1072 * returned to the driver, or if this is the admin queue.
31c7c7d2 1073 */
f4800d6d 1074 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1075 dev_warn(dev->ctrl.device,
e1569a16
KB
1076 "I/O %d QID %d timeout, reset controller\n",
1077 req->tag, nvmeq->qid);
a5cdb68c 1078 nvme_dev_disable(dev, false);
d86c4d8e 1079 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1080
e1569a16
KB
1081 /*
1082 * Mark the request as handled, since the inline shutdown
1083 * forces all outstanding requests to complete.
1084 */
27fa9bc5 1085 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1086 return BLK_EH_HANDLED;
c30341dc 1087 }
c30341dc 1088
e7a2a87d 1089 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1090 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1091 return BLK_EH_RESET_TIMER;
6bf25d16 1092 }
7bf7d778 1093 iod->aborted = 1;
a4aea562 1094
c30341dc
KB
1095 memset(&cmd, 0, sizeof(cmd));
1096 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1097 cmd.abort.cid = req->tag;
c30341dc 1098 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1099
1b3c47c1
SG
1100 dev_warn(nvmeq->dev->ctrl.device,
1101 "I/O %d QID %d timeout, aborting\n",
1102 req->tag, nvmeq->qid);
e7a2a87d
CH
1103
1104 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1105 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1106 if (IS_ERR(abort_req)) {
1107 atomic_inc(&dev->ctrl.abort_limit);
1108 return BLK_EH_RESET_TIMER;
1109 }
1110
1111 abort_req->timeout = ADMIN_TIMEOUT;
1112 abort_req->end_io_data = NULL;
1113 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1114
31c7c7d2
CH
1115 /*
1116 * The aborted req will be completed on receiving the abort req.
1117 * We enable the timer again. If hit twice, it'll cause a device reset,
1118 * as the device then is in a faulty state.
1119 */
1120 return BLK_EH_RESET_TIMER;
c30341dc
KB
1121}
1122
a4aea562
MB
1123static void nvme_free_queue(struct nvme_queue *nvmeq)
1124{
9e866774
MW
1125 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1126 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1127 if (nvmeq->sq_cmds)
1128 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1129 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1130 kfree(nvmeq);
1131}
1132
a1a5ef99 1133static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1134{
1135 int i;
1136
d858e5f0 1137 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
a4aea562 1138 struct nvme_queue *nvmeq = dev->queues[i];
d858e5f0 1139 dev->ctrl.queue_count--;
a4aea562 1140 dev->queues[i] = NULL;
f435c282 1141 nvme_free_queue(nvmeq);
121c7ad4 1142 }
22404274
KB
1143}
1144
4d115420
KB
1145/**
1146 * nvme_suspend_queue - put queue into suspended state
1147 * @nvmeq - queue to suspend
4d115420
KB
1148 */
1149static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1150{
2b25d981 1151 int vector;
b60503ba 1152
a09115b2 1153 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1154 if (nvmeq->cq_vector == -1) {
1155 spin_unlock_irq(&nvmeq->q_lock);
1156 return 1;
1157 }
0ff199cb 1158 vector = nvmeq->cq_vector;
42f61420 1159 nvmeq->dev->online_queues--;
2b25d981 1160 nvmeq->cq_vector = -1;
a09115b2
MW
1161 spin_unlock_irq(&nvmeq->q_lock);
1162
1c63dc66 1163 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1164 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1165
0ff199cb 1166 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1167
4d115420
KB
1168 return 0;
1169}
b60503ba 1170
a5cdb68c 1171static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1172{
a5cdb68c 1173 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1174
1175 if (!nvmeq)
1176 return;
1177 if (nvme_suspend_queue(nvmeq))
1178 return;
1179
a5cdb68c
KB
1180 if (shutdown)
1181 nvme_shutdown_ctrl(&dev->ctrl);
1182 else
20d0dfe6 1183 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65
KB
1184
1185 spin_lock_irq(&nvmeq->q_lock);
1186 nvme_process_cq(nvmeq);
1187 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1188}
1189
8ffaadf7
JD
1190static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1191 int entry_size)
1192{
1193 int q_depth = dev->q_depth;
5fd4ce1b
CH
1194 unsigned q_size_aligned = roundup(q_depth * entry_size,
1195 dev->ctrl.page_size);
8ffaadf7
JD
1196
1197 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1198 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1199 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1200 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1201
1202 /*
1203 * Ensure the reduced q_depth is above some threshold where it
1204 * would be better to map queues in system memory with the
1205 * original depth
1206 */
1207 if (q_depth < 64)
1208 return -ENOMEM;
1209 }
1210
1211 return q_depth;
1212}
1213
1214static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1215 int qid, int depth)
1216{
1217 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1218 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1219 dev->ctrl.page_size);
8ffaadf7
JD
1220 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1221 nvmeq->sq_cmds_io = dev->cmb + offset;
1222 } else {
1223 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1224 &nvmeq->sq_dma_addr, GFP_KERNEL);
1225 if (!nvmeq->sq_cmds)
1226 return -ENOMEM;
1227 }
1228
1229 return 0;
1230}
1231
b60503ba 1232static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1233 int depth, int node)
b60503ba 1234{
d3af3ecd
SL
1235 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1236 node);
b60503ba
MW
1237 if (!nvmeq)
1238 return NULL;
1239
e75ec752 1240 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1241 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1242 if (!nvmeq->cqes)
1243 goto free_nvmeq;
b60503ba 1244
8ffaadf7 1245 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1246 goto free_cqdma;
1247
e75ec752 1248 nvmeq->q_dmadev = dev->dev;
091b6092 1249 nvmeq->dev = dev;
b60503ba
MW
1250 spin_lock_init(&nvmeq->q_lock);
1251 nvmeq->cq_head = 0;
82123460 1252 nvmeq->cq_phase = 1;
b80d5ccc 1253 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1254 nvmeq->q_depth = depth;
c30341dc 1255 nvmeq->qid = qid;
758dd7fd 1256 nvmeq->cq_vector = -1;
a4aea562 1257 dev->queues[qid] = nvmeq;
d858e5f0 1258 dev->ctrl.queue_count++;
36a7e993 1259
b60503ba
MW
1260 return nvmeq;
1261
1262 free_cqdma:
e75ec752 1263 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1264 nvmeq->cq_dma_addr);
1265 free_nvmeq:
1266 kfree(nvmeq);
1267 return NULL;
1268}
1269
dca51e78 1270static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1271{
0ff199cb
CH
1272 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1273 int nr = nvmeq->dev->ctrl.instance;
1274
1275 if (use_threaded_interrupts) {
1276 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1277 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1278 } else {
1279 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1280 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1281 }
3001082c
MW
1282}
1283
22404274 1284static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1285{
22404274 1286 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1287
7be50e93 1288 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1289 nvmeq->sq_tail = 0;
1290 nvmeq->cq_head = 0;
1291 nvmeq->cq_phase = 1;
b80d5ccc 1292 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1293 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1294 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1295 dev->online_queues++;
7be50e93 1296 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1297}
1298
1299static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1300{
1301 struct nvme_dev *dev = nvmeq->dev;
1302 int result;
3f85d50b 1303
2b25d981 1304 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1305 result = adapter_alloc_cq(dev, qid, nvmeq);
1306 if (result < 0)
22404274 1307 return result;
b60503ba
MW
1308
1309 result = adapter_alloc_sq(dev, qid, nvmeq);
1310 if (result < 0)
1311 goto release_cq;
1312
dca51e78 1313 result = queue_request_irq(nvmeq);
b60503ba
MW
1314 if (result < 0)
1315 goto release_sq;
1316
22404274 1317 nvme_init_queue(nvmeq, qid);
22404274 1318 return result;
b60503ba
MW
1319
1320 release_sq:
1321 adapter_delete_sq(dev, qid);
1322 release_cq:
1323 adapter_delete_cq(dev, qid);
22404274 1324 return result;
b60503ba
MW
1325}
1326
f363b089 1327static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1328 .queue_rq = nvme_queue_rq,
77f02a7a 1329 .complete = nvme_pci_complete_rq,
a4aea562 1330 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1331 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1332 .init_request = nvme_init_request,
a4aea562
MB
1333 .timeout = nvme_timeout,
1334};
1335
f363b089 1336static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1337 .queue_rq = nvme_queue_rq,
77f02a7a 1338 .complete = nvme_pci_complete_rq,
a4aea562
MB
1339 .init_hctx = nvme_init_hctx,
1340 .init_request = nvme_init_request,
dca51e78 1341 .map_queues = nvme_pci_map_queues,
a4aea562 1342 .timeout = nvme_timeout,
a0fa9647 1343 .poll = nvme_poll,
a4aea562
MB
1344};
1345
ea191d2f
KB
1346static void nvme_dev_remove_admin(struct nvme_dev *dev)
1347{
1c63dc66 1348 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1349 /*
1350 * If the controller was reset during removal, it's possible
1351 * user requests may be waiting on a stopped queue. Start the
1352 * queue to flush these to completion.
1353 */
c81545f9 1354 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1355 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1356 blk_mq_free_tag_set(&dev->admin_tagset);
1357 }
1358}
1359
a4aea562
MB
1360static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1361{
1c63dc66 1362 if (!dev->ctrl.admin_q) {
a4aea562
MB
1363 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1364 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1365
1366 /*
1367 * Subtract one to leave an empty queue entry for 'Full Queue'
1368 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1369 */
1370 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1371 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1372 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1373 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1374 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1375 dev->admin_tagset.driver_data = dev;
1376
1377 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1378 return -ENOMEM;
1379
1c63dc66
CH
1380 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1381 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1382 blk_mq_free_tag_set(&dev->admin_tagset);
1383 return -ENOMEM;
1384 }
1c63dc66 1385 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1386 nvme_dev_remove_admin(dev);
1c63dc66 1387 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1388 return -ENODEV;
1389 }
0fb59cbc 1390 } else
c81545f9 1391 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1392
1393 return 0;
1394}
1395
97f6ef64
XY
1396static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1397{
1398 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1399}
1400
1401static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1402{
1403 struct pci_dev *pdev = to_pci_dev(dev->dev);
1404
1405 if (size <= dev->bar_mapped_size)
1406 return 0;
1407 if (size > pci_resource_len(pdev, 0))
1408 return -ENOMEM;
1409 if (dev->bar)
1410 iounmap(dev->bar);
1411 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1412 if (!dev->bar) {
1413 dev->bar_mapped_size = 0;
1414 return -ENOMEM;
1415 }
1416 dev->bar_mapped_size = size;
1417 dev->dbs = dev->bar + NVME_REG_DBS;
1418
1419 return 0;
1420}
1421
01ad0990 1422static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1423{
ba47e386 1424 int result;
b60503ba
MW
1425 u32 aqa;
1426 struct nvme_queue *nvmeq;
1427
97f6ef64
XY
1428 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1429 if (result < 0)
1430 return result;
1431
8ef2074d 1432 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1433 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1434
7a67cbea
CH
1435 if (dev->subsystem &&
1436 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1437 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1438
20d0dfe6 1439 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1440 if (result < 0)
1441 return result;
b60503ba 1442
a4aea562 1443 nvmeq = dev->queues[0];
cd638946 1444 if (!nvmeq) {
d3af3ecd
SL
1445 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1446 dev_to_node(dev->dev));
cd638946
KB
1447 if (!nvmeq)
1448 return -ENOMEM;
cd638946 1449 }
b60503ba
MW
1450
1451 aqa = nvmeq->q_depth - 1;
1452 aqa |= aqa << 16;
1453
7a67cbea
CH
1454 writel(aqa, dev->bar + NVME_REG_AQA);
1455 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1456 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1457
20d0dfe6 1458 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1459 if (result)
d4875622 1460 return result;
a4aea562 1461
2b25d981 1462 nvmeq->cq_vector = 0;
dca51e78 1463 result = queue_request_irq(nvmeq);
758dd7fd
JD
1464 if (result) {
1465 nvmeq->cq_vector = -1;
d4875622 1466 return result;
758dd7fd 1467 }
025c557a 1468
b60503ba
MW
1469 return result;
1470}
1471
749941f2 1472static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1473{
949928c1 1474 unsigned i, max;
749941f2 1475 int ret = 0;
42f61420 1476
d858e5f0 1477 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1478 /* vector == qid - 1, match nvme_create_queue */
1479 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1480 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1481 ret = -ENOMEM;
42f61420 1482 break;
749941f2
CH
1483 }
1484 }
42f61420 1485
d858e5f0 1486 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
949928c1 1487 for (i = dev->online_queues; i <= max; i++) {
749941f2 1488 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1489 if (ret)
42f61420 1490 break;
27e8166c 1491 }
749941f2
CH
1492
1493 /*
1494 * Ignore failing Create SQ/CQ commands, we can continue with less
1495 * than the desired aount of queues, and even a controller without
1496 * I/O queues an still be used to issue admin commands. This might
1497 * be useful to upgrade a buggy firmware for example.
1498 */
1499 return ret >= 0 ? 0 : ret;
b60503ba
MW
1500}
1501
202021c1
SB
1502static ssize_t nvme_cmb_show(struct device *dev,
1503 struct device_attribute *attr,
1504 char *buf)
1505{
1506 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1507
c965809c 1508 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1509 ndev->cmbloc, ndev->cmbsz);
1510}
1511static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1512
8ffaadf7
JD
1513static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1514{
1515 u64 szu, size, offset;
8ffaadf7
JD
1516 resource_size_t bar_size;
1517 struct pci_dev *pdev = to_pci_dev(dev->dev);
1518 void __iomem *cmb;
1519 dma_addr_t dma_addr;
1520
7a67cbea 1521 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1522 if (!(NVME_CMB_SZ(dev->cmbsz)))
1523 return NULL;
202021c1 1524 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1525
202021c1
SB
1526 if (!use_cmb_sqes)
1527 return NULL;
8ffaadf7
JD
1528
1529 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1530 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1531 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1532 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1533
1534 if (offset > bar_size)
1535 return NULL;
1536
1537 /*
1538 * Controllers may support a CMB size larger than their BAR,
1539 * for example, due to being behind a bridge. Reduce the CMB to
1540 * the reported size of the BAR
1541 */
1542 if (size > bar_size - offset)
1543 size = bar_size - offset;
1544
202021c1 1545 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1546 cmb = ioremap_wc(dma_addr, size);
1547 if (!cmb)
1548 return NULL;
1549
1550 dev->cmb_dma_addr = dma_addr;
1551 dev->cmb_size = size;
1552 return cmb;
1553}
1554
1555static inline void nvme_release_cmb(struct nvme_dev *dev)
1556{
1557 if (dev->cmb) {
1558 iounmap(dev->cmb);
1559 dev->cmb = NULL;
1c78f773
MG
1560 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1561 &dev_attr_cmb.attr, NULL);
1562 dev->cmbsz = 0;
8ffaadf7
JD
1563 }
1564}
1565
87ad72a5
CH
1566static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1567{
1568 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1569 struct nvme_command c;
1570 u64 dma_addr;
1571 int ret;
1572
1573 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1574 DMA_TO_DEVICE);
1575 if (dma_mapping_error(dev->dev, dma_addr))
1576 return -ENOMEM;
1577
1578 memset(&c, 0, sizeof(c));
1579 c.features.opcode = nvme_admin_set_features;
1580 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1581 c.features.dword11 = cpu_to_le32(bits);
1582 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1583 ilog2(dev->ctrl.page_size));
1584 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1585 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1586 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1587
1588 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1589 if (ret) {
1590 dev_warn(dev->ctrl.device,
1591 "failed to set host mem (err %d, flags %#x).\n",
1592 ret, bits);
1593 }
1594 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1595 return ret;
1596}
1597
1598static void nvme_free_host_mem(struct nvme_dev *dev)
1599{
1600 int i;
1601
1602 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1603 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1604 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1605
1606 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1607 le64_to_cpu(desc->addr));
1608 }
1609
1610 kfree(dev->host_mem_desc_bufs);
1611 dev->host_mem_desc_bufs = NULL;
1612 kfree(dev->host_mem_descs);
1613 dev->host_mem_descs = NULL;
1614}
1615
1616static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
9d713c2b 1617{
87ad72a5 1618 struct nvme_host_mem_buf_desc *descs;
50cdb7c6 1619 u32 chunk_size, max_entries, len;
2ee0e4ed 1620 int i = 0;
87ad72a5 1621 void **bufs;
2ee0e4ed 1622 u64 size = 0, tmp;
87ad72a5
CH
1623
1624 /* start big and work our way down */
1625 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1626retry:
1627 tmp = (preferred + chunk_size - 1);
1628 do_div(tmp, chunk_size);
1629 max_entries = tmp;
1630 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1631 if (!descs)
1632 goto out;
1633
1634 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1635 if (!bufs)
1636 goto out_free_descs;
1637
50cdb7c6 1638 for (size = 0; size < preferred; size += len) {
87ad72a5
CH
1639 dma_addr_t dma_addr;
1640
50cdb7c6 1641 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1642 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1643 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1644 if (!bufs[i])
1645 break;
1646
1647 descs[i].addr = cpu_to_le64(dma_addr);
1648 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1649 i++;
1650 }
1651
1652 if (!size || (min && size < min)) {
1653 dev_warn(dev->ctrl.device,
1654 "failed to allocate host memory buffer.\n");
1655 goto out_free_bufs;
1656 }
1657
1658 dev_info(dev->ctrl.device,
1659 "allocated %lld MiB host memory buffer.\n",
1660 size >> ilog2(SZ_1M));
1661 dev->nr_host_mem_descs = i;
1662 dev->host_mem_size = size;
1663 dev->host_mem_descs = descs;
1664 dev->host_mem_desc_bufs = bufs;
1665 return 0;
1666
1667out_free_bufs:
1668 while (--i >= 0) {
1669 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1670
1671 dma_free_coherent(dev->dev, size, bufs[i],
1672 le64_to_cpu(descs[i].addr));
1673 }
1674
1675 kfree(bufs);
1676out_free_descs:
1677 kfree(descs);
1678out:
1679 /* try a smaller chunk size if we failed early */
1680 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1681 chunk_size /= 2;
1682 goto retry;
1683 }
1684 dev->host_mem_descs = NULL;
1685 return -ENOMEM;
1686}
1687
1688static void nvme_setup_host_mem(struct nvme_dev *dev)
1689{
1690 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1691 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1692 u64 min = (u64)dev->ctrl.hmmin * 4096;
1693 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1694
1695 preferred = min(preferred, max);
1696 if (min > max) {
1697 dev_warn(dev->ctrl.device,
1698 "min host memory (%lld MiB) above limit (%d MiB).\n",
1699 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1700 nvme_free_host_mem(dev);
1701 return;
1702 }
1703
1704 /*
1705 * If we already have a buffer allocated check if we can reuse it.
1706 */
1707 if (dev->host_mem_descs) {
1708 if (dev->host_mem_size >= min)
1709 enable_bits |= NVME_HOST_MEM_RETURN;
1710 else
1711 nvme_free_host_mem(dev);
1712 }
1713
1714 if (!dev->host_mem_descs) {
1715 if (nvme_alloc_host_mem(dev, min, preferred))
1716 return;
1717 }
1718
1719 if (nvme_set_host_mem(dev, enable_bits))
1720 nvme_free_host_mem(dev);
9d713c2b
KB
1721}
1722
8d85fce7 1723static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1724{
a4aea562 1725 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1726 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1727 int result, nr_io_queues;
1728 unsigned long size;
b60503ba 1729
425a17cb 1730 nr_io_queues = num_present_cpus();
9a0be7ab
CH
1731 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1732 if (result < 0)
1b23484b 1733 return result;
9a0be7ab 1734
f5fa90dc 1735 if (nr_io_queues == 0)
a5229050 1736 return 0;
b60503ba 1737
8ffaadf7
JD
1738 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1739 result = nvme_cmb_qdepth(dev, nr_io_queues,
1740 sizeof(struct nvme_command));
1741 if (result > 0)
1742 dev->q_depth = result;
1743 else
1744 nvme_release_cmb(dev);
1745 }
1746
97f6ef64
XY
1747 do {
1748 size = db_bar_size(dev, nr_io_queues);
1749 result = nvme_remap_bar(dev, size);
1750 if (!result)
1751 break;
1752 if (!--nr_io_queues)
1753 return -ENOMEM;
1754 } while (1);
1755 adminq->q_db = dev->dbs;
f1938f6e 1756
9d713c2b 1757 /* Deregister the admin queue's interrupt */
0ff199cb 1758 pci_free_irq(pdev, 0, adminq);
9d713c2b 1759
e32efbfc
JA
1760 /*
1761 * If we enable msix early due to not intx, disable it again before
1762 * setting up the full range we need.
1763 */
dca51e78
CH
1764 pci_free_irq_vectors(pdev);
1765 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1766 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1767 if (nr_io_queues <= 0)
1768 return -EIO;
1769 dev->max_qid = nr_io_queues;
fa08a396 1770
063a8096
MW
1771 /*
1772 * Should investigate if there's a performance win from allocating
1773 * more queues than interrupt vectors; it might allow the submission
1774 * path to scale better, even if the receive path is limited by the
1775 * number of interrupts.
1776 */
063a8096 1777
dca51e78 1778 result = queue_request_irq(adminq);
758dd7fd
JD
1779 if (result) {
1780 adminq->cq_vector = -1;
d4875622 1781 return result;
758dd7fd 1782 }
749941f2 1783 return nvme_create_io_queues(dev);
b60503ba
MW
1784}
1785
2a842aca 1786static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1787{
db3cbfff 1788 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1789
db3cbfff
KB
1790 blk_mq_free_request(req);
1791 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1792}
1793
2a842aca 1794static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1795{
db3cbfff 1796 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1797
db3cbfff
KB
1798 if (!error) {
1799 unsigned long flags;
1800
2e39e0f6
ML
1801 /*
1802 * We might be called with the AQ q_lock held
1803 * and the I/O queue q_lock should always
1804 * nest inside the AQ one.
1805 */
1806 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1807 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1808 nvme_process_cq(nvmeq);
1809 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1810 }
db3cbfff
KB
1811
1812 nvme_del_queue_end(req, error);
a5768aa8
KB
1813}
1814
db3cbfff 1815static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1816{
db3cbfff
KB
1817 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1818 struct request *req;
1819 struct nvme_command cmd;
bda4e0fb 1820
db3cbfff
KB
1821 memset(&cmd, 0, sizeof(cmd));
1822 cmd.delete_queue.opcode = opcode;
1823 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1824
eb71f435 1825 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1826 if (IS_ERR(req))
1827 return PTR_ERR(req);
bda4e0fb 1828
db3cbfff
KB
1829 req->timeout = ADMIN_TIMEOUT;
1830 req->end_io_data = nvmeq;
1831
1832 blk_execute_rq_nowait(q, NULL, req, false,
1833 opcode == nvme_admin_delete_cq ?
1834 nvme_del_cq_end : nvme_del_queue_end);
1835 return 0;
bda4e0fb
KB
1836}
1837
70659060 1838static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1839{
70659060 1840 int pass;
db3cbfff
KB
1841 unsigned long timeout;
1842 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1843
db3cbfff 1844 for (pass = 0; pass < 2; pass++) {
014a0d60 1845 int sent = 0, i = queues;
db3cbfff
KB
1846
1847 reinit_completion(&dev->ioq_wait);
1848 retry:
1849 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1850 for (; i > 0; i--, sent++)
1851 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1852 break;
c21377f8 1853
db3cbfff
KB
1854 while (sent--) {
1855 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1856 if (timeout == 0)
1857 return;
1858 if (i)
1859 goto retry;
1860 }
1861 opcode = nvme_admin_delete_cq;
1862 }
a5768aa8
KB
1863}
1864
422ef0c7
MW
1865/*
1866 * Return: error value if an error occurred setting up the queues or calling
1867 * Identify Device. 0 if these succeeded, even if adding some of the
1868 * namespaces failed. At the moment, these failures are silent. TBD which
1869 * failures should be reported.
1870 */
8d85fce7 1871static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1872{
5bae7f73 1873 if (!dev->ctrl.tagset) {
ffe7704d
KB
1874 dev->tagset.ops = &nvme_mq_ops;
1875 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1876 dev->tagset.timeout = NVME_IO_TIMEOUT;
1877 dev->tagset.numa_node = dev_to_node(dev->dev);
1878 dev->tagset.queue_depth =
a4aea562 1879 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1880 dev->tagset.cmd_size = nvme_cmd_size(dev);
1881 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1882 dev->tagset.driver_data = dev;
b60503ba 1883
ffe7704d
KB
1884 if (blk_mq_alloc_tag_set(&dev->tagset))
1885 return 0;
5bae7f73 1886 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1887
1888 nvme_dbbuf_set(dev);
949928c1
KB
1889 } else {
1890 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1891
1892 /* Free previously allocated queues that are no longer usable */
1893 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1894 }
949928c1 1895
e1e5e564 1896 return 0;
b60503ba
MW
1897}
1898
b00a726a 1899static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1900{
b00a726a 1901 int result = -ENOMEM;
e75ec752 1902 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1903
1904 if (pci_enable_device_mem(pdev))
1905 return result;
1906
0877cb0d 1907 pci_set_master(pdev);
0877cb0d 1908
e75ec752
CH
1909 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1910 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1911 goto disable;
0877cb0d 1912
7a67cbea 1913 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1914 result = -ENODEV;
b00a726a 1915 goto disable;
0e53d180 1916 }
e32efbfc
JA
1917
1918 /*
a5229050
KB
1919 * Some devices and/or platforms don't advertise or work with INTx
1920 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1921 * adjust this later.
e32efbfc 1922 */
dca51e78
CH
1923 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1924 if (result < 0)
1925 return result;
e32efbfc 1926
20d0dfe6 1927 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 1928
20d0dfe6 1929 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 1930 io_queue_depth);
20d0dfe6 1931 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 1932 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1933
1934 /*
1935 * Temporary fix for the Apple controller found in the MacBook8,1 and
1936 * some MacBook7,1 to avoid controller resets and data loss.
1937 */
1938 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1939 dev->q_depth = 2;
9bdcfb10
CH
1940 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1941 "set queue depth=%u to work around controller resets\n",
1f390c1f 1942 dev->q_depth);
d554b5e1
MP
1943 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1944 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 1945 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
1946 dev->q_depth = 64;
1947 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1948 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
1949 }
1950
202021c1
SB
1951 /*
1952 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1c78f773
MG
1953 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1954 * has no name we can pass NULL as final argument to
1955 * sysfs_add_file_to_group.
202021c1
SB
1956 */
1957
8ef2074d 1958 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1959 dev->cmb = nvme_map_cmb(dev);
1c78f773 1960 if (dev->cmb) {
202021c1
SB
1961 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1962 &dev_attr_cmb.attr, NULL))
9bdcfb10 1963 dev_warn(dev->ctrl.device,
202021c1
SB
1964 "failed to add sysfs attribute for CMB\n");
1965 }
1966 }
1967
a0a3408e
KB
1968 pci_enable_pcie_error_reporting(pdev);
1969 pci_save_state(pdev);
0877cb0d
KB
1970 return 0;
1971
1972 disable:
0877cb0d
KB
1973 pci_disable_device(pdev);
1974 return result;
1975}
1976
1977static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1978{
1979 if (dev->bar)
1980 iounmap(dev->bar);
a1f447b3 1981 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1982}
1983
1984static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1985{
e75ec752
CH
1986 struct pci_dev *pdev = to_pci_dev(dev->dev);
1987
f63572df 1988 nvme_release_cmb(dev);
dca51e78 1989 pci_free_irq_vectors(pdev);
0877cb0d 1990
a0a3408e
KB
1991 if (pci_is_enabled(pdev)) {
1992 pci_disable_pcie_error_reporting(pdev);
e75ec752 1993 pci_disable_device(pdev);
4d115420 1994 }
4d115420
KB
1995}
1996
a5cdb68c 1997static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1998{
70659060 1999 int i, queues;
302ad8cc
KB
2000 bool dead = true;
2001 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2002
77bf25ea 2003 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2004 if (pci_is_enabled(pdev)) {
2005 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2006
ebef7368
KB
2007 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2008 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
2009 nvme_start_freeze(&dev->ctrl);
2010 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2011 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2012 }
c21377f8 2013
302ad8cc
KB
2014 /*
2015 * Give the controller a chance to complete all entered requests if
2016 * doing a safe shutdown.
2017 */
87ad72a5
CH
2018 if (!dead) {
2019 if (shutdown)
2020 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2021
2022 /*
2023 * If the controller is still alive tell it to stop using the
2024 * host memory buffer. In theory the shutdown / reset should
2025 * make sure that it doesn't access the host memoery anymore,
2026 * but I'd rather be safe than sorry..
2027 */
2028 if (dev->host_mem_descs)
2029 nvme_set_host_mem(dev, 0);
2030
2031 }
302ad8cc
KB
2032 nvme_stop_queues(&dev->ctrl);
2033
70659060 2034 queues = dev->online_queues - 1;
d858e5f0 2035 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
c21377f8
GKB
2036 nvme_suspend_queue(dev->queues[i]);
2037
302ad8cc 2038 if (dead) {
82469c59
GKB
2039 /* A device might become IO incapable very soon during
2040 * probe, before the admin queue is configured. Thus,
2041 * queue_count can be 0 here.
2042 */
d858e5f0 2043 if (dev->ctrl.queue_count)
82469c59 2044 nvme_suspend_queue(dev->queues[0]);
4d115420 2045 } else {
70659060 2046 nvme_disable_io_queues(dev, queues);
a5cdb68c 2047 nvme_disable_admin_queue(dev, shutdown);
4d115420 2048 }
b00a726a 2049 nvme_pci_disable(dev);
07836e65 2050
e1958e65
ML
2051 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2052 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2053
2054 /*
2055 * The driver will not be starting up queues again if shutting down so
2056 * must flush all entered requests to their failed completion to avoid
2057 * deadlocking blk-mq hot-cpu notifier.
2058 */
2059 if (shutdown)
2060 nvme_start_queues(&dev->ctrl);
77bf25ea 2061 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2062}
2063
091b6092
MW
2064static int nvme_setup_prp_pools(struct nvme_dev *dev)
2065{
e75ec752 2066 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2067 PAGE_SIZE, PAGE_SIZE, 0);
2068 if (!dev->prp_page_pool)
2069 return -ENOMEM;
2070
99802a7a 2071 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2072 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2073 256, 256, 0);
2074 if (!dev->prp_small_pool) {
2075 dma_pool_destroy(dev->prp_page_pool);
2076 return -ENOMEM;
2077 }
091b6092
MW
2078 return 0;
2079}
2080
2081static void nvme_release_prp_pools(struct nvme_dev *dev)
2082{
2083 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2084 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2085}
2086
1673f1f0 2087static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2088{
1673f1f0 2089 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2090
f9f38e33 2091 nvme_dbbuf_dma_free(dev);
e75ec752 2092 put_device(dev->dev);
4af0e21c
KB
2093 if (dev->tagset.tags)
2094 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2095 if (dev->ctrl.admin_q)
2096 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2097 kfree(dev->queues);
e286bcfc 2098 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2099 kfree(dev);
2100}
2101
f58944e2
KB
2102static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2103{
237045fc 2104 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2105
2106 kref_get(&dev->ctrl.kref);
69d9a99c 2107 nvme_dev_disable(dev, false);
f58944e2
KB
2108 if (!schedule_work(&dev->remove_work))
2109 nvme_put_ctrl(&dev->ctrl);
2110}
2111
fd634f41 2112static void nvme_reset_work(struct work_struct *work)
5e82e952 2113{
d86c4d8e
CH
2114 struct nvme_dev *dev =
2115 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2116 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2117 int result = -ENODEV;
5e82e952 2118
82b057ca 2119 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2120 goto out;
5e82e952 2121
fd634f41
CH
2122 /*
2123 * If we're called to reset a live controller first shut it down before
2124 * moving on.
2125 */
b00a726a 2126 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2127 nvme_dev_disable(dev, false);
5e82e952 2128
b00a726a 2129 result = nvme_pci_enable(dev);
f0b50732 2130 if (result)
3cf519b5 2131 goto out;
f0b50732 2132
01ad0990 2133 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2134 if (result)
f58944e2 2135 goto out;
f0b50732 2136
a4aea562 2137 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2138 result = nvme_alloc_admin_tags(dev);
2139 if (result)
f58944e2 2140 goto out;
b9afca3e 2141
ce4541f4
CH
2142 result = nvme_init_identify(&dev->ctrl);
2143 if (result)
f58944e2 2144 goto out;
ce4541f4 2145
e286bcfc
SB
2146 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2147 if (!dev->ctrl.opal_dev)
2148 dev->ctrl.opal_dev =
2149 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2150 else if (was_suspend)
2151 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2152 } else {
2153 free_opal_dev(dev->ctrl.opal_dev);
2154 dev->ctrl.opal_dev = NULL;
4f1244c8 2155 }
a98e58e5 2156
f9f38e33
HK
2157 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2158 result = nvme_dbbuf_dma_alloc(dev);
2159 if (result)
2160 dev_warn(dev->dev,
2161 "unable to allocate dma for dbbuf\n");
2162 }
2163
87ad72a5
CH
2164 if (dev->ctrl.hmpre)
2165 nvme_setup_host_mem(dev);
2166
f0b50732 2167 result = nvme_setup_io_queues(dev);
badc34d4 2168 if (result)
f58944e2 2169 goto out;
f0b50732 2170
2659e57b
CH
2171 /*
2172 * Keep the controller around but remove all namespaces if we don't have
2173 * any working I/O queue.
2174 */
3cf519b5 2175 if (dev->online_queues < 2) {
1b3c47c1 2176 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2177 nvme_kill_queues(&dev->ctrl);
5bae7f73 2178 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2179 } else {
25646264 2180 nvme_start_queues(&dev->ctrl);
302ad8cc 2181 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2182 nvme_dev_add(dev);
302ad8cc 2183 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2184 }
2185
bb8d261e
CH
2186 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2187 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2188 goto out;
2189 }
92911a55 2190
d09f2b45 2191 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2192 return;
f0b50732 2193
3cf519b5 2194 out:
f58944e2 2195 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2196}
2197
5c8809e6 2198static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2199{
5c8809e6 2200 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2201 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2202
69d9a99c 2203 nvme_kill_queues(&dev->ctrl);
9a6b9458 2204 if (pci_get_drvdata(pdev))
921920ab 2205 device_release_driver(&pdev->dev);
1673f1f0 2206 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2207}
2208
1c63dc66 2209static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2210{
1c63dc66 2211 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2212 return 0;
9ca97374
TH
2213}
2214
5fd4ce1b 2215static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2216{
5fd4ce1b
CH
2217 writel(val, to_nvme_dev(ctrl)->bar + off);
2218 return 0;
2219}
4cc06521 2220
7fd8930f
CH
2221static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2222{
2223 *val = readq(to_nvme_dev(ctrl)->bar + off);
2224 return 0;
4cc06521
KB
2225}
2226
1c63dc66 2227static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2228 .name = "pcie",
e439bb12 2229 .module = THIS_MODULE,
c81bfba9 2230 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2231 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2232 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2233 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2234 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2235 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2236};
4cc06521 2237
b00a726a
KB
2238static int nvme_dev_map(struct nvme_dev *dev)
2239{
b00a726a
KB
2240 struct pci_dev *pdev = to_pci_dev(dev->dev);
2241
a1f447b3 2242 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2243 return -ENODEV;
2244
97f6ef64 2245 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2246 goto release;
2247
9fa196e7 2248 return 0;
b00a726a 2249 release:
9fa196e7
MG
2250 pci_release_mem_regions(pdev);
2251 return -ENODEV;
b00a726a
KB
2252}
2253
ff5350a8
AL
2254static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2255{
2256 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2257 /*
2258 * Several Samsung devices seem to drop off the PCIe bus
2259 * randomly when APST is on and uses the deepest sleep state.
2260 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2261 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2262 * 950 PRO 256GB", but it seems to be restricted to two Dell
2263 * laptops.
2264 */
2265 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2266 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2267 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2268 return NVME_QUIRK_NO_DEEPEST_PS;
2269 }
2270
2271 return 0;
2272}
2273
8d85fce7 2274static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2275{
a4aea562 2276 int node, result = -ENOMEM;
b60503ba 2277 struct nvme_dev *dev;
ff5350a8 2278 unsigned long quirks = id->driver_data;
b60503ba 2279
a4aea562
MB
2280 node = dev_to_node(&pdev->dev);
2281 if (node == NUMA_NO_NODE)
2fa84351 2282 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2283
2284 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2285 if (!dev)
2286 return -ENOMEM;
a4aea562
MB
2287 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2288 GFP_KERNEL, node);
b60503ba
MW
2289 if (!dev->queues)
2290 goto free;
2291
e75ec752 2292 dev->dev = get_device(&pdev->dev);
9a6b9458 2293 pci_set_drvdata(pdev, dev);
1c63dc66 2294
b00a726a
KB
2295 result = nvme_dev_map(dev);
2296 if (result)
b00c9b7a 2297 goto put_pci;
b00a726a 2298
d86c4d8e 2299 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2300 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2301 mutex_init(&dev->shutdown_lock);
db3cbfff 2302 init_completion(&dev->ioq_wait);
b60503ba 2303
091b6092
MW
2304 result = nvme_setup_prp_pools(dev);
2305 if (result)
b00c9b7a 2306 goto unmap;
4cc06521 2307
ff5350a8
AL
2308 quirks |= check_dell_samsung_bug(pdev);
2309
f3ca80fc 2310 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2311 quirks);
4cc06521 2312 if (result)
2e1d8448 2313 goto release_pools;
740216fc 2314
82b057ca 2315 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2316 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2317
d86c4d8e 2318 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2319 return 0;
2320
0877cb0d 2321 release_pools:
091b6092 2322 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2323 unmap:
2324 nvme_dev_unmap(dev);
a96d4f5c 2325 put_pci:
e75ec752 2326 put_device(dev->dev);
b60503ba
MW
2327 free:
2328 kfree(dev->queues);
b60503ba
MW
2329 kfree(dev);
2330 return result;
2331}
2332
775755ed 2333static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2334{
a6739479 2335 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2336 nvme_dev_disable(dev, false);
775755ed 2337}
f0d54a54 2338
775755ed
CH
2339static void nvme_reset_done(struct pci_dev *pdev)
2340{
f263fbb8
LT
2341 struct nvme_dev *dev = pci_get_drvdata(pdev);
2342 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2343}
2344
09ece142
KB
2345static void nvme_shutdown(struct pci_dev *pdev)
2346{
2347 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2348 nvme_dev_disable(dev, true);
09ece142
KB
2349}
2350
f58944e2
KB
2351/*
2352 * The driver's remove may be called on a device in a partially initialized
2353 * state. This function must not have any dependencies on the device state in
2354 * order to proceed.
2355 */
8d85fce7 2356static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2357{
2358 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2359
bb8d261e
CH
2360 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2361
d86c4d8e 2362 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2363 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2364
6db28eda 2365 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2366 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2367 nvme_dev_disable(dev, false);
2368 }
0ff9d4e1 2369
d86c4d8e 2370 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2371 nvme_stop_ctrl(&dev->ctrl);
2372 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2373 nvme_dev_disable(dev, true);
87ad72a5 2374 nvme_free_host_mem(dev);
a4aea562 2375 nvme_dev_remove_admin(dev);
a1a5ef99 2376 nvme_free_queues(dev, 0);
d09f2b45 2377 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2378 nvme_release_prp_pools(dev);
b00a726a 2379 nvme_dev_unmap(dev);
1673f1f0 2380 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2381}
2382
13880f5b
KB
2383static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2384{
2385 int ret = 0;
2386
2387 if (numvfs == 0) {
2388 if (pci_vfs_assigned(pdev)) {
2389 dev_warn(&pdev->dev,
2390 "Cannot disable SR-IOV VFs while assigned\n");
2391 return -EPERM;
2392 }
2393 pci_disable_sriov(pdev);
2394 return 0;
2395 }
2396
2397 ret = pci_enable_sriov(pdev, numvfs);
2398 return ret ? ret : numvfs;
2399}
2400
671a6018 2401#ifdef CONFIG_PM_SLEEP
cd638946
KB
2402static int nvme_suspend(struct device *dev)
2403{
2404 struct pci_dev *pdev = to_pci_dev(dev);
2405 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2406
a5cdb68c 2407 nvme_dev_disable(ndev, true);
cd638946
KB
2408 return 0;
2409}
2410
2411static int nvme_resume(struct device *dev)
2412{
2413 struct pci_dev *pdev = to_pci_dev(dev);
2414 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2415
d86c4d8e 2416 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2417 return 0;
cd638946 2418}
671a6018 2419#endif
cd638946
KB
2420
2421static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2422
a0a3408e
KB
2423static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2424 pci_channel_state_t state)
2425{
2426 struct nvme_dev *dev = pci_get_drvdata(pdev);
2427
2428 /*
2429 * A frozen channel requires a reset. When detected, this method will
2430 * shutdown the controller to quiesce. The controller will be restarted
2431 * after the slot reset through driver's slot_reset callback.
2432 */
a0a3408e
KB
2433 switch (state) {
2434 case pci_channel_io_normal:
2435 return PCI_ERS_RESULT_CAN_RECOVER;
2436 case pci_channel_io_frozen:
d011fb31
KB
2437 dev_warn(dev->ctrl.device,
2438 "frozen state error detected, reset controller\n");
a5cdb68c 2439 nvme_dev_disable(dev, false);
a0a3408e
KB
2440 return PCI_ERS_RESULT_NEED_RESET;
2441 case pci_channel_io_perm_failure:
d011fb31
KB
2442 dev_warn(dev->ctrl.device,
2443 "failure state error detected, request disconnect\n");
a0a3408e
KB
2444 return PCI_ERS_RESULT_DISCONNECT;
2445 }
2446 return PCI_ERS_RESULT_NEED_RESET;
2447}
2448
2449static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2450{
2451 struct nvme_dev *dev = pci_get_drvdata(pdev);
2452
1b3c47c1 2453 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2454 pci_restore_state(pdev);
d86c4d8e 2455 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2456 return PCI_ERS_RESULT_RECOVERED;
2457}
2458
2459static void nvme_error_resume(struct pci_dev *pdev)
2460{
2461 pci_cleanup_aer_uncorrect_error_status(pdev);
2462}
2463
1d352035 2464static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2465 .error_detected = nvme_error_detected,
b60503ba
MW
2466 .slot_reset = nvme_slot_reset,
2467 .resume = nvme_error_resume,
775755ed
CH
2468 .reset_prepare = nvme_reset_prepare,
2469 .reset_done = nvme_reset_done,
b60503ba
MW
2470};
2471
6eb0d698 2472static const struct pci_device_id nvme_id_table[] = {
106198ed 2473 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2474 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2475 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2476 { PCI_VDEVICE(INTEL, 0x0a53),
2477 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2478 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2479 { PCI_VDEVICE(INTEL, 0x0a54),
2480 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2481 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2482 { PCI_VDEVICE(INTEL, 0x0a55),
2483 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2484 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2485 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2486 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2487 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2488 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2489 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2490 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2491 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2492 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2493 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2494 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2495 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2496 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2497 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2498 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2499 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2500 { 0, }
2501};
2502MODULE_DEVICE_TABLE(pci, nvme_id_table);
2503
2504static struct pci_driver nvme_driver = {
2505 .name = "nvme",
2506 .id_table = nvme_id_table,
2507 .probe = nvme_probe,
8d85fce7 2508 .remove = nvme_remove,
09ece142 2509 .shutdown = nvme_shutdown,
cd638946
KB
2510 .driver = {
2511 .pm = &nvme_dev_pm_ops,
2512 },
13880f5b 2513 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2514 .err_handler = &nvme_err_handler,
2515};
2516
2517static int __init nvme_init(void)
2518{
9a6327d2 2519 return pci_register_driver(&nvme_driver);
b60503ba
MW
2520}
2521
2522static void __exit nvme_exit(void)
2523{
2524 pci_unregister_driver(&nvme_driver);
21bd78bc 2525 _nvme_check_size();
b60503ba
MW
2526}
2527
2528MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2529MODULE_LICENSE("GPL");
c78b4713 2530MODULE_VERSION("1.0");
b60503ba
MW
2531module_init(nvme_init);
2532module_exit(nvme_exit);