]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
229456fc 30#include <linux/ftrace_event.h>
5a0e3ad6 31#include <linux/slab.h>
cafd6659 32#include <linux/tboot.h>
5fdbf976 33#include "kvm_cache_regs.h"
35920a35 34#include "x86.h"
e495606d 35
6aa8b732 36#include <asm/io.h>
3b3be0d1 37#include <asm/desc.h>
13673a90 38#include <asm/vmx.h>
6210e37b 39#include <asm/virtext.h>
a0861c02 40#include <asm/mce.h>
2acf923e
DC
41#include <asm/i387.h>
42#include <asm/xcr.h>
d7cd9796 43#include <asm/perf_event.h>
6aa8b732 44
229456fc
MT
45#include "trace.h"
46
4ecac3fd 47#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
48#define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 50
6aa8b732
AK
51MODULE_AUTHOR("Qumranet");
52MODULE_LICENSE("GPL");
53
476bc001 54static bool __read_mostly enable_vpid = 1;
736caefe 55module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 56
476bc001 57static bool __read_mostly flexpriority_enabled = 1;
736caefe 58module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 59
476bc001 60static bool __read_mostly enable_ept = 1;
736caefe 61module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 62
476bc001 63static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
64module_param_named(unrestricted_guest,
65 enable_unrestricted_guest, bool, S_IRUGO);
66
476bc001 67static bool __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 68module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 69
476bc001 70static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
71module_param(vmm_exclusive, bool, S_IRUGO);
72
476bc001 73static bool __read_mostly fasteoi = 1;
58fbbf26
KT
74module_param(fasteoi, bool, S_IRUGO);
75
801d3424
NHE
76/*
77 * If nested=1, nested virtualization is supported, i.e., guests may use
78 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
79 * use VMX instructions.
80 */
476bc001 81static bool __read_mostly nested = 0;
801d3424
NHE
82module_param(nested, bool, S_IRUGO);
83
cdc0e244
AK
84#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
85 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
86#define KVM_GUEST_CR0_MASK \
87 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
88#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 89 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
90#define KVM_VM_CR0_ALWAYS_ON \
91 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
92#define KVM_CR4_GUEST_OWNED_BITS \
93 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
94 | X86_CR4_OSXMMEXCPT)
95
cdc0e244
AK
96#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
97#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
98
78ac8b47
AK
99#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
100
4b8d54f9
ZE
101/*
102 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
103 * ple_gap: upper bound on the amount of time between two successive
104 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 105 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
106 * ple_window: upper bound on the amount of time a guest is allowed to execute
107 * in a PAUSE loop. Tests indicate that most spinlocks are held for
108 * less than 2^12 cycles
109 * Time is measured based on a counter that runs at the same rate as the TSC,
110 * refer SDM volume 3b section 21.6.13 & 22.1.3.
111 */
00c25bce 112#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
113#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
114static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
115module_param(ple_gap, int, S_IRUGO);
116
117static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
118module_param(ple_window, int, S_IRUGO);
119
8bf00a52 120#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 121#define VMCS02_POOL_SIZE 1
61d2ef2c 122
a2fa3e9f
GH
123struct vmcs {
124 u32 revision_id;
125 u32 abort;
126 char data[0];
127};
128
d462b819
NHE
129/*
130 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132 * loaded on this CPU (so we can clear them if the CPU goes down).
133 */
134struct loaded_vmcs {
135 struct vmcs *vmcs;
136 int cpu;
137 int launched;
138 struct list_head loaded_vmcss_on_cpu_link;
139};
140
26bb0981
AK
141struct shared_msr_entry {
142 unsigned index;
143 u64 data;
d5696725 144 u64 mask;
26bb0981
AK
145};
146
a9d30f33
NHE
147/*
148 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153 * More than one of these structures may exist, if L1 runs multiple L2 guests.
154 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155 * underlying hardware which will be used to run L2.
156 * This structure is packed to ensure that its layout is identical across
157 * machines (necessary for live migration).
158 * If there are changes in this struct, VMCS12_REVISION must be changed.
159 */
22bd0358 160typedef u64 natural_width;
a9d30f33
NHE
161struct __packed vmcs12 {
162 /* According to the Intel spec, a VMCS region must start with the
163 * following two fields. Then follow implementation-specific data.
164 */
165 u32 revision_id;
166 u32 abort;
22bd0358 167
27d6c865
NHE
168 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
169 u32 padding[7]; /* room for future expansion */
170
22bd0358
NHE
171 u64 io_bitmap_a;
172 u64 io_bitmap_b;
173 u64 msr_bitmap;
174 u64 vm_exit_msr_store_addr;
175 u64 vm_exit_msr_load_addr;
176 u64 vm_entry_msr_load_addr;
177 u64 tsc_offset;
178 u64 virtual_apic_page_addr;
179 u64 apic_access_addr;
180 u64 ept_pointer;
181 u64 guest_physical_address;
182 u64 vmcs_link_pointer;
183 u64 guest_ia32_debugctl;
184 u64 guest_ia32_pat;
185 u64 guest_ia32_efer;
186 u64 guest_ia32_perf_global_ctrl;
187 u64 guest_pdptr0;
188 u64 guest_pdptr1;
189 u64 guest_pdptr2;
190 u64 guest_pdptr3;
191 u64 host_ia32_pat;
192 u64 host_ia32_efer;
193 u64 host_ia32_perf_global_ctrl;
194 u64 padding64[8]; /* room for future expansion */
195 /*
196 * To allow migration of L1 (complete with its L2 guests) between
197 * machines of different natural widths (32 or 64 bit), we cannot have
198 * unsigned long fields with no explict size. We use u64 (aliased
199 * natural_width) instead. Luckily, x86 is little-endian.
200 */
201 natural_width cr0_guest_host_mask;
202 natural_width cr4_guest_host_mask;
203 natural_width cr0_read_shadow;
204 natural_width cr4_read_shadow;
205 natural_width cr3_target_value0;
206 natural_width cr3_target_value1;
207 natural_width cr3_target_value2;
208 natural_width cr3_target_value3;
209 natural_width exit_qualification;
210 natural_width guest_linear_address;
211 natural_width guest_cr0;
212 natural_width guest_cr3;
213 natural_width guest_cr4;
214 natural_width guest_es_base;
215 natural_width guest_cs_base;
216 natural_width guest_ss_base;
217 natural_width guest_ds_base;
218 natural_width guest_fs_base;
219 natural_width guest_gs_base;
220 natural_width guest_ldtr_base;
221 natural_width guest_tr_base;
222 natural_width guest_gdtr_base;
223 natural_width guest_idtr_base;
224 natural_width guest_dr7;
225 natural_width guest_rsp;
226 natural_width guest_rip;
227 natural_width guest_rflags;
228 natural_width guest_pending_dbg_exceptions;
229 natural_width guest_sysenter_esp;
230 natural_width guest_sysenter_eip;
231 natural_width host_cr0;
232 natural_width host_cr3;
233 natural_width host_cr4;
234 natural_width host_fs_base;
235 natural_width host_gs_base;
236 natural_width host_tr_base;
237 natural_width host_gdtr_base;
238 natural_width host_idtr_base;
239 natural_width host_ia32_sysenter_esp;
240 natural_width host_ia32_sysenter_eip;
241 natural_width host_rsp;
242 natural_width host_rip;
243 natural_width paddingl[8]; /* room for future expansion */
244 u32 pin_based_vm_exec_control;
245 u32 cpu_based_vm_exec_control;
246 u32 exception_bitmap;
247 u32 page_fault_error_code_mask;
248 u32 page_fault_error_code_match;
249 u32 cr3_target_count;
250 u32 vm_exit_controls;
251 u32 vm_exit_msr_store_count;
252 u32 vm_exit_msr_load_count;
253 u32 vm_entry_controls;
254 u32 vm_entry_msr_load_count;
255 u32 vm_entry_intr_info_field;
256 u32 vm_entry_exception_error_code;
257 u32 vm_entry_instruction_len;
258 u32 tpr_threshold;
259 u32 secondary_vm_exec_control;
260 u32 vm_instruction_error;
261 u32 vm_exit_reason;
262 u32 vm_exit_intr_info;
263 u32 vm_exit_intr_error_code;
264 u32 idt_vectoring_info_field;
265 u32 idt_vectoring_error_code;
266 u32 vm_exit_instruction_len;
267 u32 vmx_instruction_info;
268 u32 guest_es_limit;
269 u32 guest_cs_limit;
270 u32 guest_ss_limit;
271 u32 guest_ds_limit;
272 u32 guest_fs_limit;
273 u32 guest_gs_limit;
274 u32 guest_ldtr_limit;
275 u32 guest_tr_limit;
276 u32 guest_gdtr_limit;
277 u32 guest_idtr_limit;
278 u32 guest_es_ar_bytes;
279 u32 guest_cs_ar_bytes;
280 u32 guest_ss_ar_bytes;
281 u32 guest_ds_ar_bytes;
282 u32 guest_fs_ar_bytes;
283 u32 guest_gs_ar_bytes;
284 u32 guest_ldtr_ar_bytes;
285 u32 guest_tr_ar_bytes;
286 u32 guest_interruptibility_info;
287 u32 guest_activity_state;
288 u32 guest_sysenter_cs;
289 u32 host_ia32_sysenter_cs;
290 u32 padding32[8]; /* room for future expansion */
291 u16 virtual_processor_id;
292 u16 guest_es_selector;
293 u16 guest_cs_selector;
294 u16 guest_ss_selector;
295 u16 guest_ds_selector;
296 u16 guest_fs_selector;
297 u16 guest_gs_selector;
298 u16 guest_ldtr_selector;
299 u16 guest_tr_selector;
300 u16 host_es_selector;
301 u16 host_cs_selector;
302 u16 host_ss_selector;
303 u16 host_ds_selector;
304 u16 host_fs_selector;
305 u16 host_gs_selector;
306 u16 host_tr_selector;
a9d30f33
NHE
307};
308
309/*
310 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
311 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
312 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
313 */
314#define VMCS12_REVISION 0x11e57ed0
315
316/*
317 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
318 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
319 * current implementation, 4K are reserved to avoid future complications.
320 */
321#define VMCS12_SIZE 0x1000
322
ff2f6fe9
NHE
323/* Used to remember the last vmcs02 used for some recently used vmcs12s */
324struct vmcs02_list {
325 struct list_head list;
326 gpa_t vmptr;
327 struct loaded_vmcs vmcs02;
328};
329
ec378aee
NHE
330/*
331 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
332 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
333 */
334struct nested_vmx {
335 /* Has the level1 guest done vmxon? */
336 bool vmxon;
a9d30f33
NHE
337
338 /* The guest-physical address of the current VMCS L1 keeps for L2 */
339 gpa_t current_vmptr;
340 /* The host-usable pointer to the above */
341 struct page *current_vmcs12_page;
342 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
343
344 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
345 struct list_head vmcs02_pool;
346 int vmcs02_num;
fe3ef05c 347 u64 vmcs01_tsc_offset;
644d711a
NHE
348 /* L2 must run next, and mustn't decide to exit to L1. */
349 bool nested_run_pending;
fe3ef05c
NHE
350 /*
351 * Guest pages referred to in vmcs02 with host-physical pointers, so
352 * we must keep them pinned while L2 runs.
353 */
354 struct page *apic_access_page;
ec378aee
NHE
355};
356
a2fa3e9f 357struct vcpu_vmx {
fb3f0f51 358 struct kvm_vcpu vcpu;
313dbd49 359 unsigned long host_rsp;
29bd8a78 360 u8 fail;
69c73028 361 u8 cpl;
9d58b931 362 bool nmi_known_unmasked;
51aa01d1 363 u32 exit_intr_info;
1155f76a 364 u32 idt_vectoring_info;
6de12732 365 ulong rflags;
26bb0981 366 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
367 int nmsrs;
368 int save_nmsrs;
a2fa3e9f 369#ifdef CONFIG_X86_64
44ea2b17
AK
370 u64 msr_host_kernel_gs_base;
371 u64 msr_guest_kernel_gs_base;
a2fa3e9f 372#endif
d462b819
NHE
373 /*
374 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
375 * non-nested (L1) guest, it always points to vmcs01. For a nested
376 * guest (L2), it points to a different VMCS.
377 */
378 struct loaded_vmcs vmcs01;
379 struct loaded_vmcs *loaded_vmcs;
380 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
381 struct msr_autoload {
382 unsigned nr;
383 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
384 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
385 } msr_autoload;
a2fa3e9f
GH
386 struct {
387 int loaded;
388 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
389 int gs_ldt_reload_needed;
390 int fs_reload_needed;
d77c26fc 391 } host_state;
9c8cba37 392 struct {
7ffd92c5 393 int vm86_active;
78ac8b47 394 ulong save_rflags;
7ffd92c5
AK
395 struct kvm_save_segment {
396 u16 selector;
397 unsigned long base;
398 u32 limit;
399 u32 ar;
400 } tr, es, ds, fs, gs;
9c8cba37 401 } rmode;
2fb92db1
AK
402 struct {
403 u32 bitmask; /* 4 bits per segment (1 bit per field) */
404 struct kvm_save_segment seg[8];
405 } segment_cache;
2384d2b3 406 int vpid;
04fa4d32 407 bool emulation_required;
3b86cd99
JK
408
409 /* Support for vnmi-less CPUs */
410 int soft_vnmi_blocked;
411 ktime_t entry_time;
412 s64 vnmi_blocked_time;
a0861c02 413 u32 exit_reason;
4e47c7a6
SY
414
415 bool rdtscp_enabled;
ec378aee
NHE
416
417 /* Support for a guest hypervisor (nested VMX) */
418 struct nested_vmx nested;
a2fa3e9f
GH
419};
420
2fb92db1
AK
421enum segment_cache_field {
422 SEG_FIELD_SEL = 0,
423 SEG_FIELD_BASE = 1,
424 SEG_FIELD_LIMIT = 2,
425 SEG_FIELD_AR = 3,
426
427 SEG_FIELD_NR = 4
428};
429
a2fa3e9f
GH
430static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
431{
fb3f0f51 432 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
433}
434
22bd0358
NHE
435#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
436#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
437#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
438 [number##_HIGH] = VMCS12_OFFSET(name)+4
439
440static unsigned short vmcs_field_to_offset_table[] = {
441 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
442 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
443 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
444 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
445 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
446 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
447 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
448 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
449 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
450 FIELD(HOST_ES_SELECTOR, host_es_selector),
451 FIELD(HOST_CS_SELECTOR, host_cs_selector),
452 FIELD(HOST_SS_SELECTOR, host_ss_selector),
453 FIELD(HOST_DS_SELECTOR, host_ds_selector),
454 FIELD(HOST_FS_SELECTOR, host_fs_selector),
455 FIELD(HOST_GS_SELECTOR, host_gs_selector),
456 FIELD(HOST_TR_SELECTOR, host_tr_selector),
457 FIELD64(IO_BITMAP_A, io_bitmap_a),
458 FIELD64(IO_BITMAP_B, io_bitmap_b),
459 FIELD64(MSR_BITMAP, msr_bitmap),
460 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
461 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
462 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
463 FIELD64(TSC_OFFSET, tsc_offset),
464 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
465 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
466 FIELD64(EPT_POINTER, ept_pointer),
467 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
468 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
469 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
470 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
471 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
472 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
473 FIELD64(GUEST_PDPTR0, guest_pdptr0),
474 FIELD64(GUEST_PDPTR1, guest_pdptr1),
475 FIELD64(GUEST_PDPTR2, guest_pdptr2),
476 FIELD64(GUEST_PDPTR3, guest_pdptr3),
477 FIELD64(HOST_IA32_PAT, host_ia32_pat),
478 FIELD64(HOST_IA32_EFER, host_ia32_efer),
479 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
480 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
481 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
482 FIELD(EXCEPTION_BITMAP, exception_bitmap),
483 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
484 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
485 FIELD(CR3_TARGET_COUNT, cr3_target_count),
486 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
487 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
488 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
489 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
490 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
491 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
492 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
493 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
494 FIELD(TPR_THRESHOLD, tpr_threshold),
495 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
496 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
497 FIELD(VM_EXIT_REASON, vm_exit_reason),
498 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
499 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
500 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
501 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
502 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
503 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
504 FIELD(GUEST_ES_LIMIT, guest_es_limit),
505 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
506 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
507 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
508 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
509 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
510 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
511 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
512 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
513 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
514 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
515 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
516 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
517 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
518 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
519 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
520 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
521 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
522 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
523 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
524 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
525 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
526 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
527 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
528 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
529 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
530 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
531 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
532 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
533 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
534 FIELD(EXIT_QUALIFICATION, exit_qualification),
535 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
536 FIELD(GUEST_CR0, guest_cr0),
537 FIELD(GUEST_CR3, guest_cr3),
538 FIELD(GUEST_CR4, guest_cr4),
539 FIELD(GUEST_ES_BASE, guest_es_base),
540 FIELD(GUEST_CS_BASE, guest_cs_base),
541 FIELD(GUEST_SS_BASE, guest_ss_base),
542 FIELD(GUEST_DS_BASE, guest_ds_base),
543 FIELD(GUEST_FS_BASE, guest_fs_base),
544 FIELD(GUEST_GS_BASE, guest_gs_base),
545 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
546 FIELD(GUEST_TR_BASE, guest_tr_base),
547 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
548 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
549 FIELD(GUEST_DR7, guest_dr7),
550 FIELD(GUEST_RSP, guest_rsp),
551 FIELD(GUEST_RIP, guest_rip),
552 FIELD(GUEST_RFLAGS, guest_rflags),
553 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
554 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
555 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
556 FIELD(HOST_CR0, host_cr0),
557 FIELD(HOST_CR3, host_cr3),
558 FIELD(HOST_CR4, host_cr4),
559 FIELD(HOST_FS_BASE, host_fs_base),
560 FIELD(HOST_GS_BASE, host_gs_base),
561 FIELD(HOST_TR_BASE, host_tr_base),
562 FIELD(HOST_GDTR_BASE, host_gdtr_base),
563 FIELD(HOST_IDTR_BASE, host_idtr_base),
564 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
565 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
566 FIELD(HOST_RSP, host_rsp),
567 FIELD(HOST_RIP, host_rip),
568};
569static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
570
571static inline short vmcs_field_to_offset(unsigned long field)
572{
573 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
574 return -1;
575 return vmcs_field_to_offset_table[field];
576}
577
a9d30f33
NHE
578static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
579{
580 return to_vmx(vcpu)->nested.current_vmcs12;
581}
582
583static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
584{
585 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
586 if (is_error_page(page)) {
587 kvm_release_page_clean(page);
588 return NULL;
589 }
590 return page;
591}
592
593static void nested_release_page(struct page *page)
594{
595 kvm_release_page_dirty(page);
596}
597
598static void nested_release_page_clean(struct page *page)
599{
600 kvm_release_page_clean(page);
601}
602
4e1096d2 603static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
604static void kvm_cpu_vmxon(u64 addr);
605static void kvm_cpu_vmxoff(void);
aff48baa 606static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 607static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 608
6aa8b732
AK
609static DEFINE_PER_CPU(struct vmcs *, vmxarea);
610static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
611/*
612 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
613 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
614 */
615static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 616static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 617
3e7c73e9
AK
618static unsigned long *vmx_io_bitmap_a;
619static unsigned long *vmx_io_bitmap_b;
5897297b
AK
620static unsigned long *vmx_msr_bitmap_legacy;
621static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 622
110312c8 623static bool cpu_has_load_ia32_efer;
8bf00a52 624static bool cpu_has_load_perf_global_ctrl;
110312c8 625
2384d2b3
SY
626static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
627static DEFINE_SPINLOCK(vmx_vpid_lock);
628
1c3d14fe 629static struct vmcs_config {
6aa8b732
AK
630 int size;
631 int order;
632 u32 revision_id;
1c3d14fe
YS
633 u32 pin_based_exec_ctrl;
634 u32 cpu_based_exec_ctrl;
f78e0e2e 635 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
636 u32 vmexit_ctrl;
637 u32 vmentry_ctrl;
638} vmcs_config;
6aa8b732 639
efff9e53 640static struct vmx_capability {
d56f546d
SY
641 u32 ept;
642 u32 vpid;
643} vmx_capability;
644
6aa8b732
AK
645#define VMX_SEGMENT_FIELD(seg) \
646 [VCPU_SREG_##seg] = { \
647 .selector = GUEST_##seg##_SELECTOR, \
648 .base = GUEST_##seg##_BASE, \
649 .limit = GUEST_##seg##_LIMIT, \
650 .ar_bytes = GUEST_##seg##_AR_BYTES, \
651 }
652
653static struct kvm_vmx_segment_field {
654 unsigned selector;
655 unsigned base;
656 unsigned limit;
657 unsigned ar_bytes;
658} kvm_vmx_segment_fields[] = {
659 VMX_SEGMENT_FIELD(CS),
660 VMX_SEGMENT_FIELD(DS),
661 VMX_SEGMENT_FIELD(ES),
662 VMX_SEGMENT_FIELD(FS),
663 VMX_SEGMENT_FIELD(GS),
664 VMX_SEGMENT_FIELD(SS),
665 VMX_SEGMENT_FIELD(TR),
666 VMX_SEGMENT_FIELD(LDTR),
667};
668
26bb0981
AK
669static u64 host_efer;
670
6de4f3ad
AK
671static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
672
4d56c8a7 673/*
8c06585d 674 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
675 * away by decrementing the array size.
676 */
6aa8b732 677static const u32 vmx_msr_index[] = {
05b3e0c2 678#ifdef CONFIG_X86_64
44ea2b17 679 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 680#endif
8c06585d 681 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 682};
9d8f549d 683#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 684
31299944 685static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
686{
687 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
688 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 689 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
690}
691
31299944 692static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
693{
694 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 696 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
697}
698
31299944 699static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
700{
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 703 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
704}
705
31299944 706static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
707{
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
709 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
710}
711
31299944 712static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
713{
714 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
715 INTR_INFO_VALID_MASK)) ==
716 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
717}
718
31299944 719static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 720{
04547156 721 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
722}
723
31299944 724static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 725{
04547156 726 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
727}
728
31299944 729static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 730{
04547156 731 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
732}
733
31299944 734static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 735{
04547156
SY
736 return vmcs_config.cpu_based_exec_ctrl &
737 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
738}
739
774ead3a 740static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 741{
04547156
SY
742 return vmcs_config.cpu_based_2nd_exec_ctrl &
743 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
744}
745
746static inline bool cpu_has_vmx_flexpriority(void)
747{
748 return cpu_has_vmx_tpr_shadow() &&
749 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
750}
751
e799794e
MT
752static inline bool cpu_has_vmx_ept_execute_only(void)
753{
31299944 754 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
755}
756
757static inline bool cpu_has_vmx_eptp_uncacheable(void)
758{
31299944 759 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
760}
761
762static inline bool cpu_has_vmx_eptp_writeback(void)
763{
31299944 764 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
765}
766
767static inline bool cpu_has_vmx_ept_2m_page(void)
768{
31299944 769 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
770}
771
878403b7
SY
772static inline bool cpu_has_vmx_ept_1g_page(void)
773{
31299944 774 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
775}
776
4bc9b982
SY
777static inline bool cpu_has_vmx_ept_4levels(void)
778{
779 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
780}
781
31299944 782static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 783{
31299944 784 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
785}
786
31299944 787static inline bool cpu_has_vmx_invept_context(void)
d56f546d 788{
31299944 789 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
790}
791
31299944 792static inline bool cpu_has_vmx_invept_global(void)
d56f546d 793{
31299944 794 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
795}
796
518c8aee
GJ
797static inline bool cpu_has_vmx_invvpid_single(void)
798{
799 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
800}
801
b9d762fa
GJ
802static inline bool cpu_has_vmx_invvpid_global(void)
803{
804 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
805}
806
31299944 807static inline bool cpu_has_vmx_ept(void)
d56f546d 808{
04547156
SY
809 return vmcs_config.cpu_based_2nd_exec_ctrl &
810 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
811}
812
31299944 813static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
814{
815 return vmcs_config.cpu_based_2nd_exec_ctrl &
816 SECONDARY_EXEC_UNRESTRICTED_GUEST;
817}
818
31299944 819static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
820{
821 return vmcs_config.cpu_based_2nd_exec_ctrl &
822 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
823}
824
31299944 825static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 826{
6d3e435e 827 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
828}
829
31299944 830static inline bool cpu_has_vmx_vpid(void)
2384d2b3 831{
04547156
SY
832 return vmcs_config.cpu_based_2nd_exec_ctrl &
833 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
834}
835
31299944 836static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
837{
838 return vmcs_config.cpu_based_2nd_exec_ctrl &
839 SECONDARY_EXEC_RDTSCP;
840}
841
31299944 842static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
843{
844 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
845}
846
f5f48ee1
SY
847static inline bool cpu_has_vmx_wbinvd_exit(void)
848{
849 return vmcs_config.cpu_based_2nd_exec_ctrl &
850 SECONDARY_EXEC_WBINVD_EXITING;
851}
852
04547156
SY
853static inline bool report_flexpriority(void)
854{
855 return flexpriority_enabled;
856}
857
fe3ef05c
NHE
858static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
859{
860 return vmcs12->cpu_based_vm_exec_control & bit;
861}
862
863static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
864{
865 return (vmcs12->cpu_based_vm_exec_control &
866 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
867 (vmcs12->secondary_vm_exec_control & bit);
868}
869
644d711a
NHE
870static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
871 struct kvm_vcpu *vcpu)
872{
873 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
874}
875
876static inline bool is_exception(u32 intr_info)
877{
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
880}
881
882static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
883static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
884 struct vmcs12 *vmcs12,
885 u32 reason, unsigned long qualification);
886
8b9cf98c 887static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
888{
889 int i;
890
a2fa3e9f 891 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 892 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
893 return i;
894 return -1;
895}
896
2384d2b3
SY
897static inline void __invvpid(int ext, u16 vpid, gva_t gva)
898{
899 struct {
900 u64 vpid : 16;
901 u64 rsvd : 48;
902 u64 gva;
903 } operand = { vpid, 0, gva };
904
4ecac3fd 905 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
906 /* CF==1 or ZF==1 --> rc = -1 */
907 "; ja 1f ; ud2 ; 1:"
908 : : "a"(&operand), "c"(ext) : "cc", "memory");
909}
910
1439442c
SY
911static inline void __invept(int ext, u64 eptp, gpa_t gpa)
912{
913 struct {
914 u64 eptp, gpa;
915 } operand = {eptp, gpa};
916
4ecac3fd 917 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
918 /* CF==1 or ZF==1 --> rc = -1 */
919 "; ja 1f ; ud2 ; 1:\n"
920 : : "a" (&operand), "c" (ext) : "cc", "memory");
921}
922
26bb0981 923static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
924{
925 int i;
926
8b9cf98c 927 i = __find_msr_index(vmx, msr);
a75beee6 928 if (i >= 0)
a2fa3e9f 929 return &vmx->guest_msrs[i];
8b6d44c7 930 return NULL;
7725f0ba
AK
931}
932
6aa8b732
AK
933static void vmcs_clear(struct vmcs *vmcs)
934{
935 u64 phys_addr = __pa(vmcs);
936 u8 error;
937
4ecac3fd 938 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 939 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
940 : "cc", "memory");
941 if (error)
942 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
943 vmcs, phys_addr);
944}
945
d462b819
NHE
946static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
947{
948 vmcs_clear(loaded_vmcs->vmcs);
949 loaded_vmcs->cpu = -1;
950 loaded_vmcs->launched = 0;
951}
952
7725b894
DX
953static void vmcs_load(struct vmcs *vmcs)
954{
955 u64 phys_addr = __pa(vmcs);
956 u8 error;
957
958 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 959 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
960 : "cc", "memory");
961 if (error)
2844d849 962 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
963 vmcs, phys_addr);
964}
965
d462b819 966static void __loaded_vmcs_clear(void *arg)
6aa8b732 967{
d462b819 968 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 969 int cpu = raw_smp_processor_id();
6aa8b732 970
d462b819
NHE
971 if (loaded_vmcs->cpu != cpu)
972 return; /* vcpu migration can race with cpu offline */
973 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 974 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
975 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
976 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
977}
978
d462b819 979static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 980{
d462b819
NHE
981 if (loaded_vmcs->cpu != -1)
982 smp_call_function_single(
983 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
984}
985
1760dd49 986static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
987{
988 if (vmx->vpid == 0)
989 return;
990
518c8aee
GJ
991 if (cpu_has_vmx_invvpid_single())
992 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
993}
994
b9d762fa
GJ
995static inline void vpid_sync_vcpu_global(void)
996{
997 if (cpu_has_vmx_invvpid_global())
998 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
999}
1000
1001static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1002{
1003 if (cpu_has_vmx_invvpid_single())
1760dd49 1004 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1005 else
1006 vpid_sync_vcpu_global();
1007}
1008
1439442c
SY
1009static inline void ept_sync_global(void)
1010{
1011 if (cpu_has_vmx_invept_global())
1012 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1013}
1014
1015static inline void ept_sync_context(u64 eptp)
1016{
089d034e 1017 if (enable_ept) {
1439442c
SY
1018 if (cpu_has_vmx_invept_context())
1019 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1020 else
1021 ept_sync_global();
1022 }
1023}
1024
1025static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1026{
089d034e 1027 if (enable_ept) {
1439442c
SY
1028 if (cpu_has_vmx_invept_individual_addr())
1029 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1030 eptp, gpa);
1031 else
1032 ept_sync_context(eptp);
1033 }
1034}
1035
96304217 1036static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1037{
5e520e62 1038 unsigned long value;
6aa8b732 1039
5e520e62
AK
1040 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1041 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1042 return value;
1043}
1044
96304217 1045static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1046{
1047 return vmcs_readl(field);
1048}
1049
96304217 1050static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1051{
1052 return vmcs_readl(field);
1053}
1054
96304217 1055static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1056{
05b3e0c2 1057#ifdef CONFIG_X86_64
6aa8b732
AK
1058 return vmcs_readl(field);
1059#else
1060 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1061#endif
1062}
1063
e52de1b8
AK
1064static noinline void vmwrite_error(unsigned long field, unsigned long value)
1065{
1066 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1067 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1068 dump_stack();
1069}
1070
6aa8b732
AK
1071static void vmcs_writel(unsigned long field, unsigned long value)
1072{
1073 u8 error;
1074
4ecac3fd 1075 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1076 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1077 if (unlikely(error))
1078 vmwrite_error(field, value);
6aa8b732
AK
1079}
1080
1081static void vmcs_write16(unsigned long field, u16 value)
1082{
1083 vmcs_writel(field, value);
1084}
1085
1086static void vmcs_write32(unsigned long field, u32 value)
1087{
1088 vmcs_writel(field, value);
1089}
1090
1091static void vmcs_write64(unsigned long field, u64 value)
1092{
6aa8b732 1093 vmcs_writel(field, value);
7682f2d0 1094#ifndef CONFIG_X86_64
6aa8b732
AK
1095 asm volatile ("");
1096 vmcs_writel(field+1, value >> 32);
1097#endif
1098}
1099
2ab455cc
AL
1100static void vmcs_clear_bits(unsigned long field, u32 mask)
1101{
1102 vmcs_writel(field, vmcs_readl(field) & ~mask);
1103}
1104
1105static void vmcs_set_bits(unsigned long field, u32 mask)
1106{
1107 vmcs_writel(field, vmcs_readl(field) | mask);
1108}
1109
2fb92db1
AK
1110static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1111{
1112 vmx->segment_cache.bitmask = 0;
1113}
1114
1115static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1116 unsigned field)
1117{
1118 bool ret;
1119 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1120
1121 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1122 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1123 vmx->segment_cache.bitmask = 0;
1124 }
1125 ret = vmx->segment_cache.bitmask & mask;
1126 vmx->segment_cache.bitmask |= mask;
1127 return ret;
1128}
1129
1130static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1131{
1132 u16 *p = &vmx->segment_cache.seg[seg].selector;
1133
1134 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1135 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1136 return *p;
1137}
1138
1139static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1140{
1141 ulong *p = &vmx->segment_cache.seg[seg].base;
1142
1143 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1144 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1145 return *p;
1146}
1147
1148static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1149{
1150 u32 *p = &vmx->segment_cache.seg[seg].limit;
1151
1152 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1153 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1154 return *p;
1155}
1156
1157static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1158{
1159 u32 *p = &vmx->segment_cache.seg[seg].ar;
1160
1161 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1162 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1163 return *p;
1164}
1165
abd3f2d6
AK
1166static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1167{
1168 u32 eb;
1169
fd7373cc
JK
1170 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1171 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1172 if ((vcpu->guest_debug &
1173 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1174 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1175 eb |= 1u << BP_VECTOR;
7ffd92c5 1176 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1177 eb = ~0;
089d034e 1178 if (enable_ept)
1439442c 1179 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1180 if (vcpu->fpu_active)
1181 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1182
1183 /* When we are running a nested L2 guest and L1 specified for it a
1184 * certain exception bitmap, we must trap the same exceptions and pass
1185 * them to L1. When running L2, we will only handle the exceptions
1186 * specified above if L1 did not want them.
1187 */
1188 if (is_guest_mode(vcpu))
1189 eb |= get_vmcs12(vcpu)->exception_bitmap;
1190
abd3f2d6
AK
1191 vmcs_write32(EXCEPTION_BITMAP, eb);
1192}
1193
8bf00a52
GN
1194static void clear_atomic_switch_msr_special(unsigned long entry,
1195 unsigned long exit)
1196{
1197 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1198 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1199}
1200
61d2ef2c
AK
1201static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1202{
1203 unsigned i;
1204 struct msr_autoload *m = &vmx->msr_autoload;
1205
8bf00a52
GN
1206 switch (msr) {
1207 case MSR_EFER:
1208 if (cpu_has_load_ia32_efer) {
1209 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1210 VM_EXIT_LOAD_IA32_EFER);
1211 return;
1212 }
1213 break;
1214 case MSR_CORE_PERF_GLOBAL_CTRL:
1215 if (cpu_has_load_perf_global_ctrl) {
1216 clear_atomic_switch_msr_special(
1217 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1218 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1219 return;
1220 }
1221 break;
110312c8
AK
1222 }
1223
61d2ef2c
AK
1224 for (i = 0; i < m->nr; ++i)
1225 if (m->guest[i].index == msr)
1226 break;
1227
1228 if (i == m->nr)
1229 return;
1230 --m->nr;
1231 m->guest[i] = m->guest[m->nr];
1232 m->host[i] = m->host[m->nr];
1233 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1234 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1235}
1236
8bf00a52
GN
1237static void add_atomic_switch_msr_special(unsigned long entry,
1238 unsigned long exit, unsigned long guest_val_vmcs,
1239 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1240{
1241 vmcs_write64(guest_val_vmcs, guest_val);
1242 vmcs_write64(host_val_vmcs, host_val);
1243 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1244 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1245}
1246
61d2ef2c
AK
1247static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1248 u64 guest_val, u64 host_val)
1249{
1250 unsigned i;
1251 struct msr_autoload *m = &vmx->msr_autoload;
1252
8bf00a52
GN
1253 switch (msr) {
1254 case MSR_EFER:
1255 if (cpu_has_load_ia32_efer) {
1256 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1257 VM_EXIT_LOAD_IA32_EFER,
1258 GUEST_IA32_EFER,
1259 HOST_IA32_EFER,
1260 guest_val, host_val);
1261 return;
1262 }
1263 break;
1264 case MSR_CORE_PERF_GLOBAL_CTRL:
1265 if (cpu_has_load_perf_global_ctrl) {
1266 add_atomic_switch_msr_special(
1267 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1268 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1269 GUEST_IA32_PERF_GLOBAL_CTRL,
1270 HOST_IA32_PERF_GLOBAL_CTRL,
1271 guest_val, host_val);
1272 return;
1273 }
1274 break;
110312c8
AK
1275 }
1276
61d2ef2c
AK
1277 for (i = 0; i < m->nr; ++i)
1278 if (m->guest[i].index == msr)
1279 break;
1280
e7fc6f93
GN
1281 if (i == NR_AUTOLOAD_MSRS) {
1282 printk_once(KERN_WARNING"Not enough mst switch entries. "
1283 "Can't add msr %x\n", msr);
1284 return;
1285 } else if (i == m->nr) {
61d2ef2c
AK
1286 ++m->nr;
1287 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1288 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1289 }
1290
1291 m->guest[i].index = msr;
1292 m->guest[i].value = guest_val;
1293 m->host[i].index = msr;
1294 m->host[i].value = host_val;
1295}
1296
33ed6329
AK
1297static void reload_tss(void)
1298{
33ed6329
AK
1299 /*
1300 * VT restores TR but not its size. Useless.
1301 */
d359192f 1302 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1303 struct desc_struct *descs;
33ed6329 1304
d359192f 1305 descs = (void *)gdt->address;
33ed6329
AK
1306 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1307 load_TR_desc();
33ed6329
AK
1308}
1309
92c0d900 1310static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1311{
3a34a881 1312 u64 guest_efer;
51c6cf66
AK
1313 u64 ignore_bits;
1314
f6801dff 1315 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1316
51c6cf66
AK
1317 /*
1318 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1319 * outside long mode
1320 */
1321 ignore_bits = EFER_NX | EFER_SCE;
1322#ifdef CONFIG_X86_64
1323 ignore_bits |= EFER_LMA | EFER_LME;
1324 /* SCE is meaningful only in long mode on Intel */
1325 if (guest_efer & EFER_LMA)
1326 ignore_bits &= ~(u64)EFER_SCE;
1327#endif
51c6cf66
AK
1328 guest_efer &= ~ignore_bits;
1329 guest_efer |= host_efer & ignore_bits;
26bb0981 1330 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1331 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1332
1333 clear_atomic_switch_msr(vmx, MSR_EFER);
1334 /* On ept, can't emulate nx, and must switch nx atomically */
1335 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1336 guest_efer = vmx->vcpu.arch.efer;
1337 if (!(guest_efer & EFER_LMA))
1338 guest_efer &= ~EFER_LME;
1339 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1340 return false;
1341 }
1342
26bb0981 1343 return true;
51c6cf66
AK
1344}
1345
2d49ec72
GN
1346static unsigned long segment_base(u16 selector)
1347{
d359192f 1348 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1349 struct desc_struct *d;
1350 unsigned long table_base;
1351 unsigned long v;
1352
1353 if (!(selector & ~3))
1354 return 0;
1355
d359192f 1356 table_base = gdt->address;
2d49ec72
GN
1357
1358 if (selector & 4) { /* from ldt */
1359 u16 ldt_selector = kvm_read_ldt();
1360
1361 if (!(ldt_selector & ~3))
1362 return 0;
1363
1364 table_base = segment_base(ldt_selector);
1365 }
1366 d = (struct desc_struct *)(table_base + (selector & ~7));
1367 v = get_desc_base(d);
1368#ifdef CONFIG_X86_64
1369 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1370 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1371#endif
1372 return v;
1373}
1374
1375static inline unsigned long kvm_read_tr_base(void)
1376{
1377 u16 tr;
1378 asm("str %0" : "=g"(tr));
1379 return segment_base(tr);
1380}
1381
04d2cc77 1382static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1383{
04d2cc77 1384 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1385 int i;
04d2cc77 1386
a2fa3e9f 1387 if (vmx->host_state.loaded)
33ed6329
AK
1388 return;
1389
a2fa3e9f 1390 vmx->host_state.loaded = 1;
33ed6329
AK
1391 /*
1392 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1393 * allow segment selectors with cpl > 0 or ti == 1.
1394 */
d6e88aec 1395 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1396 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1397 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1398 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1399 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1400 vmx->host_state.fs_reload_needed = 0;
1401 } else {
33ed6329 1402 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1403 vmx->host_state.fs_reload_needed = 1;
33ed6329 1404 }
9581d442 1405 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1406 if (!(vmx->host_state.gs_sel & 7))
1407 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1408 else {
1409 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1410 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1411 }
1412
1413#ifdef CONFIG_X86_64
1414 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1415 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1416#else
a2fa3e9f
GH
1417 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1418 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1419#endif
707c0874
AK
1420
1421#ifdef CONFIG_X86_64
c8770e7b
AK
1422 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1423 if (is_long_mode(&vmx->vcpu))
44ea2b17 1424 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1425#endif
26bb0981
AK
1426 for (i = 0; i < vmx->save_nmsrs; ++i)
1427 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1428 vmx->guest_msrs[i].data,
1429 vmx->guest_msrs[i].mask);
33ed6329
AK
1430}
1431
a9b21b62 1432static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1433{
a2fa3e9f 1434 if (!vmx->host_state.loaded)
33ed6329
AK
1435 return;
1436
e1beb1d3 1437 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1438 vmx->host_state.loaded = 0;
c8770e7b
AK
1439#ifdef CONFIG_X86_64
1440 if (is_long_mode(&vmx->vcpu))
1441 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1442#endif
152d3f2f 1443 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1444 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1445#ifdef CONFIG_X86_64
9581d442 1446 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1447#else
1448 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1449#endif
33ed6329 1450 }
0a77fe4c
AK
1451 if (vmx->host_state.fs_reload_needed)
1452 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1453 reload_tss();
44ea2b17 1454#ifdef CONFIG_X86_64
c8770e7b 1455 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1456#endif
f94edacf 1457 if (__thread_has_fpu(current))
1c11e713 1458 clts();
3444d7da 1459 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1460}
1461
a9b21b62
AK
1462static void vmx_load_host_state(struct vcpu_vmx *vmx)
1463{
1464 preempt_disable();
1465 __vmx_load_host_state(vmx);
1466 preempt_enable();
1467}
1468
6aa8b732
AK
1469/*
1470 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1471 * vcpu mutex is already taken.
1472 */
15ad7146 1473static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1474{
a2fa3e9f 1475 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1476 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1477
4610c9cc
DX
1478 if (!vmm_exclusive)
1479 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1480 else if (vmx->loaded_vmcs->cpu != cpu)
1481 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1482
d462b819
NHE
1483 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1484 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1485 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1486 }
1487
d462b819 1488 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1489 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1490 unsigned long sysenter_esp;
1491
a8eeb04a 1492 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1493 local_irq_disable();
d462b819
NHE
1494 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1495 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1496 local_irq_enable();
1497
6aa8b732
AK
1498 /*
1499 * Linux uses per-cpu TSS and GDT, so set these when switching
1500 * processors.
1501 */
d6e88aec 1502 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1503 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1504
1505 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1506 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1507 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1508 }
6aa8b732
AK
1509}
1510
1511static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1512{
a9b21b62 1513 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1514 if (!vmm_exclusive) {
d462b819
NHE
1515 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1516 vcpu->cpu = -1;
4610c9cc
DX
1517 kvm_cpu_vmxoff();
1518 }
6aa8b732
AK
1519}
1520
5fd86fcf
AK
1521static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1522{
81231c69
AK
1523 ulong cr0;
1524
5fd86fcf
AK
1525 if (vcpu->fpu_active)
1526 return;
1527 vcpu->fpu_active = 1;
81231c69
AK
1528 cr0 = vmcs_readl(GUEST_CR0);
1529 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1530 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1531 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1532 update_exception_bitmap(vcpu);
edcafe3c 1533 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1534 if (is_guest_mode(vcpu))
1535 vcpu->arch.cr0_guest_owned_bits &=
1536 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1537 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1538}
1539
edcafe3c
AK
1540static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1541
fe3ef05c
NHE
1542/*
1543 * Return the cr0 value that a nested guest would read. This is a combination
1544 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1545 * its hypervisor (cr0_read_shadow).
1546 */
1547static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1548{
1549 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1550 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1551}
1552static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1553{
1554 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1555 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1556}
1557
5fd86fcf
AK
1558static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1559{
36cf24e0
NHE
1560 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1561 * set this *before* calling this function.
1562 */
edcafe3c 1563 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1564 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1565 update_exception_bitmap(vcpu);
edcafe3c
AK
1566 vcpu->arch.cr0_guest_owned_bits = 0;
1567 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1568 if (is_guest_mode(vcpu)) {
1569 /*
1570 * L1's specified read shadow might not contain the TS bit,
1571 * so now that we turned on shadowing of this bit, we need to
1572 * set this bit of the shadow. Like in nested_vmx_run we need
1573 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1574 * up-to-date here because we just decached cr0.TS (and we'll
1575 * only update vmcs12->guest_cr0 on nested exit).
1576 */
1577 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1578 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1579 (vcpu->arch.cr0 & X86_CR0_TS);
1580 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1581 } else
1582 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1583}
1584
6aa8b732
AK
1585static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1586{
78ac8b47 1587 unsigned long rflags, save_rflags;
345dcaa8 1588
6de12732
AK
1589 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1590 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1591 rflags = vmcs_readl(GUEST_RFLAGS);
1592 if (to_vmx(vcpu)->rmode.vm86_active) {
1593 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1594 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1595 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1596 }
1597 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1598 }
6de12732 1599 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1600}
1601
1602static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1603{
6de12732 1604 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1605 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1606 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1607 if (to_vmx(vcpu)->rmode.vm86_active) {
1608 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1609 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1610 }
6aa8b732
AK
1611 vmcs_writel(GUEST_RFLAGS, rflags);
1612}
1613
2809f5d2
GC
1614static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1615{
1616 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1617 int ret = 0;
1618
1619 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1620 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1621 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1622 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1623
1624 return ret & mask;
1625}
1626
1627static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1628{
1629 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1630 u32 interruptibility = interruptibility_old;
1631
1632 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1633
48005f64 1634 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1635 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1636 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1637 interruptibility |= GUEST_INTR_STATE_STI;
1638
1639 if ((interruptibility != interruptibility_old))
1640 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1641}
1642
6aa8b732
AK
1643static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1644{
1645 unsigned long rip;
6aa8b732 1646
5fdbf976 1647 rip = kvm_rip_read(vcpu);
6aa8b732 1648 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1649 kvm_rip_write(vcpu, rip);
6aa8b732 1650
2809f5d2
GC
1651 /* skipping an emulated instruction also counts */
1652 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1653}
1654
0b6ac343
NHE
1655/*
1656 * KVM wants to inject page-faults which it got to the guest. This function
1657 * checks whether in a nested guest, we need to inject them to L1 or L2.
1658 * This function assumes it is called with the exit reason in vmcs02 being
1659 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1660 * is running).
1661 */
1662static int nested_pf_handled(struct kvm_vcpu *vcpu)
1663{
1664 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1665
1666 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1667 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1668 return 0;
1669
1670 nested_vmx_vmexit(vcpu);
1671 return 1;
1672}
1673
298101da 1674static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1675 bool has_error_code, u32 error_code,
1676 bool reinject)
298101da 1677{
77ab6db0 1678 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1679 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1680
0b6ac343
NHE
1681 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1682 nested_pf_handled(vcpu))
1683 return;
1684
8ab2d2e2 1685 if (has_error_code) {
77ab6db0 1686 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1687 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1688 }
77ab6db0 1689
7ffd92c5 1690 if (vmx->rmode.vm86_active) {
71f9833b
SH
1691 int inc_eip = 0;
1692 if (kvm_exception_is_soft(nr))
1693 inc_eip = vcpu->arch.event_exit_inst_len;
1694 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1695 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1696 return;
1697 }
1698
66fd3f7f
GN
1699 if (kvm_exception_is_soft(nr)) {
1700 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1701 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1702 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1703 } else
1704 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1705
1706 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1707}
1708
4e47c7a6
SY
1709static bool vmx_rdtscp_supported(void)
1710{
1711 return cpu_has_vmx_rdtscp();
1712}
1713
a75beee6
ED
1714/*
1715 * Swap MSR entry in host/guest MSR entry array.
1716 */
8b9cf98c 1717static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1718{
26bb0981 1719 struct shared_msr_entry tmp;
a2fa3e9f
GH
1720
1721 tmp = vmx->guest_msrs[to];
1722 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1723 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1724}
1725
e38aea3e
AK
1726/*
1727 * Set up the vmcs to automatically save and restore system
1728 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1729 * mode, as fiddling with msrs is very expensive.
1730 */
8b9cf98c 1731static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1732{
26bb0981 1733 int save_nmsrs, index;
5897297b 1734 unsigned long *msr_bitmap;
e38aea3e 1735
a75beee6
ED
1736 save_nmsrs = 0;
1737#ifdef CONFIG_X86_64
8b9cf98c 1738 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1739 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1740 if (index >= 0)
8b9cf98c
RR
1741 move_msr_up(vmx, index, save_nmsrs++);
1742 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1743 if (index >= 0)
8b9cf98c
RR
1744 move_msr_up(vmx, index, save_nmsrs++);
1745 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1746 if (index >= 0)
8b9cf98c 1747 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1748 index = __find_msr_index(vmx, MSR_TSC_AUX);
1749 if (index >= 0 && vmx->rdtscp_enabled)
1750 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1751 /*
8c06585d 1752 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1753 * if efer.sce is enabled.
1754 */
8c06585d 1755 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1756 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1757 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1758 }
1759#endif
92c0d900
AK
1760 index = __find_msr_index(vmx, MSR_EFER);
1761 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1762 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1763
26bb0981 1764 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1765
1766 if (cpu_has_vmx_msr_bitmap()) {
1767 if (is_long_mode(&vmx->vcpu))
1768 msr_bitmap = vmx_msr_bitmap_longmode;
1769 else
1770 msr_bitmap = vmx_msr_bitmap_legacy;
1771
1772 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1773 }
e38aea3e
AK
1774}
1775
6aa8b732
AK
1776/*
1777 * reads and returns guest's timestamp counter "register"
1778 * guest_tsc = host_tsc + tsc_offset -- 21.3
1779 */
1780static u64 guest_read_tsc(void)
1781{
1782 u64 host_tsc, tsc_offset;
1783
1784 rdtscll(host_tsc);
1785 tsc_offset = vmcs_read64(TSC_OFFSET);
1786 return host_tsc + tsc_offset;
1787}
1788
d5c1785d
NHE
1789/*
1790 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1791 * counter, even if a nested guest (L2) is currently running.
1792 */
1793u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1794{
1795 u64 host_tsc, tsc_offset;
1796
1797 rdtscll(host_tsc);
1798 tsc_offset = is_guest_mode(vcpu) ?
1799 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1800 vmcs_read64(TSC_OFFSET);
1801 return host_tsc + tsc_offset;
1802}
1803
4051b188 1804/*
cc578287
ZA
1805 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1806 * software catchup for faster rates on slower CPUs.
4051b188 1807 */
cc578287 1808static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1809{
cc578287
ZA
1810 if (!scale)
1811 return;
1812
1813 if (user_tsc_khz > tsc_khz) {
1814 vcpu->arch.tsc_catchup = 1;
1815 vcpu->arch.tsc_always_catchup = 1;
1816 } else
1817 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1818}
1819
6aa8b732 1820/*
99e3e30a 1821 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1822 */
99e3e30a 1823static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1824{
27fc51b2 1825 if (is_guest_mode(vcpu)) {
7991825b 1826 /*
27fc51b2
NHE
1827 * We're here if L1 chose not to trap WRMSR to TSC. According
1828 * to the spec, this should set L1's TSC; The offset that L1
1829 * set for L2 remains unchanged, and still needs to be added
1830 * to the newly set TSC to get L2's TSC.
7991825b 1831 */
27fc51b2
NHE
1832 struct vmcs12 *vmcs12;
1833 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1834 /* recalculate vmcs02.TSC_OFFSET: */
1835 vmcs12 = get_vmcs12(vcpu);
1836 vmcs_write64(TSC_OFFSET, offset +
1837 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1838 vmcs12->tsc_offset : 0));
1839 } else {
1840 vmcs_write64(TSC_OFFSET, offset);
1841 }
6aa8b732
AK
1842}
1843
f1e2b260 1844static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1845{
1846 u64 offset = vmcs_read64(TSC_OFFSET);
1847 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1848 if (is_guest_mode(vcpu)) {
1849 /* Even when running L2, the adjustment needs to apply to L1 */
1850 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1851 }
e48672fa
ZA
1852}
1853
857e4099
JR
1854static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1855{
1856 return target_tsc - native_read_tsc();
1857}
1858
801d3424
NHE
1859static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1860{
1861 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1862 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1863}
1864
1865/*
1866 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1867 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1868 * all guests if the "nested" module option is off, and can also be disabled
1869 * for a single guest by disabling its VMX cpuid bit.
1870 */
1871static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1872{
1873 return nested && guest_cpuid_has_vmx(vcpu);
1874}
1875
b87a51ae
NHE
1876/*
1877 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1878 * returned for the various VMX controls MSRs when nested VMX is enabled.
1879 * The same values should also be used to verify that vmcs12 control fields are
1880 * valid during nested entry from L1 to L2.
1881 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1882 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1883 * bit in the high half is on if the corresponding bit in the control field
1884 * may be on. See also vmx_control_verify().
1885 * TODO: allow these variables to be modified (downgraded) by module options
1886 * or other means.
1887 */
1888static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1889static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1890static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1891static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1892static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1893static __init void nested_vmx_setup_ctls_msrs(void)
1894{
1895 /*
1896 * Note that as a general rule, the high half of the MSRs (bits in
1897 * the control fields which may be 1) should be initialized by the
1898 * intersection of the underlying hardware's MSR (i.e., features which
1899 * can be supported) and the list of features we want to expose -
1900 * because they are known to be properly supported in our code.
1901 * Also, usually, the low half of the MSRs (bits which must be 1) can
1902 * be set to 0, meaning that L1 may turn off any of these bits. The
1903 * reason is that if one of these bits is necessary, it will appear
1904 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1905 * fields of vmcs01 and vmcs02, will turn these bits off - and
1906 * nested_vmx_exit_handled() will not pass related exits to L1.
1907 * These rules have exceptions below.
1908 */
1909
1910 /* pin-based controls */
1911 /*
1912 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1913 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1914 */
1915 nested_vmx_pinbased_ctls_low = 0x16 ;
1916 nested_vmx_pinbased_ctls_high = 0x16 |
1917 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1918 PIN_BASED_VIRTUAL_NMIS;
1919
1920 /* exit controls */
1921 nested_vmx_exit_ctls_low = 0;
b6f1250e 1922 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1923#ifdef CONFIG_X86_64
1924 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1925#else
1926 nested_vmx_exit_ctls_high = 0;
1927#endif
1928
1929 /* entry controls */
1930 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1931 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1932 nested_vmx_entry_ctls_low = 0;
1933 nested_vmx_entry_ctls_high &=
1934 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1935
1936 /* cpu-based controls */
1937 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1938 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1939 nested_vmx_procbased_ctls_low = 0;
1940 nested_vmx_procbased_ctls_high &=
1941 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1942 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1943 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1944 CPU_BASED_CR3_STORE_EXITING |
1945#ifdef CONFIG_X86_64
1946 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1947#endif
1948 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1949 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
fee84b07 1950 CPU_BASED_RDPMC_EXITING |
b87a51ae
NHE
1951 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1952 /*
1953 * We can allow some features even when not supported by the
1954 * hardware. For example, L1 can specify an MSR bitmap - and we
1955 * can use it to avoid exits to L1 - even when L0 runs L2
1956 * without MSR bitmaps.
1957 */
1958 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1959
1960 /* secondary cpu-based controls */
1961 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1962 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1963 nested_vmx_secondary_ctls_low = 0;
1964 nested_vmx_secondary_ctls_high &=
1965 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1966}
1967
1968static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1969{
1970 /*
1971 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1972 */
1973 return ((control & high) | low) == control;
1974}
1975
1976static inline u64 vmx_control_msr(u32 low, u32 high)
1977{
1978 return low | ((u64)high << 32);
1979}
1980
1981/*
1982 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1983 * also let it use VMX-specific MSRs.
1984 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1985 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1986 * like all other MSRs).
1987 */
1988static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1989{
1990 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1991 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1992 /*
1993 * According to the spec, processors which do not support VMX
1994 * should throw a #GP(0) when VMX capability MSRs are read.
1995 */
1996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1997 return 1;
1998 }
1999
2000 switch (msr_index) {
2001 case MSR_IA32_FEATURE_CONTROL:
2002 *pdata = 0;
2003 break;
2004 case MSR_IA32_VMX_BASIC:
2005 /*
2006 * This MSR reports some information about VMX support. We
2007 * should return information about the VMX we emulate for the
2008 * guest, and the VMCS structure we give it - not about the
2009 * VMX support of the underlying hardware.
2010 */
2011 *pdata = VMCS12_REVISION |
2012 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2013 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2014 break;
2015 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2016 case MSR_IA32_VMX_PINBASED_CTLS:
2017 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2018 nested_vmx_pinbased_ctls_high);
2019 break;
2020 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2021 case MSR_IA32_VMX_PROCBASED_CTLS:
2022 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2023 nested_vmx_procbased_ctls_high);
2024 break;
2025 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2026 case MSR_IA32_VMX_EXIT_CTLS:
2027 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2028 nested_vmx_exit_ctls_high);
2029 break;
2030 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2031 case MSR_IA32_VMX_ENTRY_CTLS:
2032 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2033 nested_vmx_entry_ctls_high);
2034 break;
2035 case MSR_IA32_VMX_MISC:
2036 *pdata = 0;
2037 break;
2038 /*
2039 * These MSRs specify bits which the guest must keep fixed (on or off)
2040 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2041 * We picked the standard core2 setting.
2042 */
2043#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2044#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2045 case MSR_IA32_VMX_CR0_FIXED0:
2046 *pdata = VMXON_CR0_ALWAYSON;
2047 break;
2048 case MSR_IA32_VMX_CR0_FIXED1:
2049 *pdata = -1ULL;
2050 break;
2051 case MSR_IA32_VMX_CR4_FIXED0:
2052 *pdata = VMXON_CR4_ALWAYSON;
2053 break;
2054 case MSR_IA32_VMX_CR4_FIXED1:
2055 *pdata = -1ULL;
2056 break;
2057 case MSR_IA32_VMX_VMCS_ENUM:
2058 *pdata = 0x1f;
2059 break;
2060 case MSR_IA32_VMX_PROCBASED_CTLS2:
2061 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2062 nested_vmx_secondary_ctls_high);
2063 break;
2064 case MSR_IA32_VMX_EPT_VPID_CAP:
2065 /* Currently, no nested ept or nested vpid */
2066 *pdata = 0;
2067 break;
2068 default:
2069 return 0;
2070 }
2071
2072 return 1;
2073}
2074
2075static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2076{
2077 if (!nested_vmx_allowed(vcpu))
2078 return 0;
2079
2080 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2081 /* TODO: the right thing. */
2082 return 1;
2083 /*
2084 * No need to treat VMX capability MSRs specially: If we don't handle
2085 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2086 */
2087 return 0;
2088}
2089
6aa8b732
AK
2090/*
2091 * Reads an msr value (of 'msr_index') into 'pdata'.
2092 * Returns 0 on success, non-0 otherwise.
2093 * Assumes vcpu_load() was already called.
2094 */
2095static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2096{
2097 u64 data;
26bb0981 2098 struct shared_msr_entry *msr;
6aa8b732
AK
2099
2100 if (!pdata) {
2101 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2102 return -EINVAL;
2103 }
2104
2105 switch (msr_index) {
05b3e0c2 2106#ifdef CONFIG_X86_64
6aa8b732
AK
2107 case MSR_FS_BASE:
2108 data = vmcs_readl(GUEST_FS_BASE);
2109 break;
2110 case MSR_GS_BASE:
2111 data = vmcs_readl(GUEST_GS_BASE);
2112 break;
44ea2b17
AK
2113 case MSR_KERNEL_GS_BASE:
2114 vmx_load_host_state(to_vmx(vcpu));
2115 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2116 break;
26bb0981 2117#endif
6aa8b732 2118 case MSR_EFER:
3bab1f5d 2119 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2120 case MSR_IA32_TSC:
6aa8b732
AK
2121 data = guest_read_tsc();
2122 break;
2123 case MSR_IA32_SYSENTER_CS:
2124 data = vmcs_read32(GUEST_SYSENTER_CS);
2125 break;
2126 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2127 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2128 break;
2129 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2130 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2131 break;
4e47c7a6
SY
2132 case MSR_TSC_AUX:
2133 if (!to_vmx(vcpu)->rdtscp_enabled)
2134 return 1;
2135 /* Otherwise falls through */
6aa8b732 2136 default:
b87a51ae
NHE
2137 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2138 return 0;
8b9cf98c 2139 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2140 if (msr) {
2141 data = msr->data;
2142 break;
6aa8b732 2143 }
3bab1f5d 2144 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2145 }
2146
2147 *pdata = data;
2148 return 0;
2149}
2150
2151/*
2152 * Writes msr value into into the appropriate "register".
2153 * Returns 0 on success, non-0 otherwise.
2154 * Assumes vcpu_load() was already called.
2155 */
2156static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2157{
a2fa3e9f 2158 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2159 struct shared_msr_entry *msr;
2cc51560
ED
2160 int ret = 0;
2161
6aa8b732 2162 switch (msr_index) {
3bab1f5d 2163 case MSR_EFER:
2cc51560 2164 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2165 break;
16175a79 2166#ifdef CONFIG_X86_64
6aa8b732 2167 case MSR_FS_BASE:
2fb92db1 2168 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2169 vmcs_writel(GUEST_FS_BASE, data);
2170 break;
2171 case MSR_GS_BASE:
2fb92db1 2172 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2173 vmcs_writel(GUEST_GS_BASE, data);
2174 break;
44ea2b17
AK
2175 case MSR_KERNEL_GS_BASE:
2176 vmx_load_host_state(vmx);
2177 vmx->msr_guest_kernel_gs_base = data;
2178 break;
6aa8b732
AK
2179#endif
2180 case MSR_IA32_SYSENTER_CS:
2181 vmcs_write32(GUEST_SYSENTER_CS, data);
2182 break;
2183 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2184 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2185 break;
2186 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2187 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2188 break;
af24a4e4 2189 case MSR_IA32_TSC:
99e3e30a 2190 kvm_write_tsc(vcpu, data);
6aa8b732 2191 break;
468d472f
SY
2192 case MSR_IA32_CR_PAT:
2193 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2194 vmcs_write64(GUEST_IA32_PAT, data);
2195 vcpu->arch.pat = data;
2196 break;
2197 }
4e47c7a6
SY
2198 ret = kvm_set_msr_common(vcpu, msr_index, data);
2199 break;
2200 case MSR_TSC_AUX:
2201 if (!vmx->rdtscp_enabled)
2202 return 1;
2203 /* Check reserved bit, higher 32 bits should be zero */
2204 if ((data >> 32) != 0)
2205 return 1;
2206 /* Otherwise falls through */
6aa8b732 2207 default:
b87a51ae
NHE
2208 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2209 break;
8b9cf98c 2210 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2211 if (msr) {
2212 msr->data = data;
2213 break;
6aa8b732 2214 }
2cc51560 2215 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2216 }
2217
2cc51560 2218 return ret;
6aa8b732
AK
2219}
2220
5fdbf976 2221static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2222{
5fdbf976
MT
2223 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2224 switch (reg) {
2225 case VCPU_REGS_RSP:
2226 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2227 break;
2228 case VCPU_REGS_RIP:
2229 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2230 break;
6de4f3ad
AK
2231 case VCPU_EXREG_PDPTR:
2232 if (enable_ept)
2233 ept_save_pdptrs(vcpu);
2234 break;
5fdbf976
MT
2235 default:
2236 break;
2237 }
6aa8b732
AK
2238}
2239
355be0b9 2240static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2241{
ae675ef0
JK
2242 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2243 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2244 else
2245 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2246
abd3f2d6 2247 update_exception_bitmap(vcpu);
6aa8b732
AK
2248}
2249
2250static __init int cpu_has_kvm_support(void)
2251{
6210e37b 2252 return cpu_has_vmx();
6aa8b732
AK
2253}
2254
2255static __init int vmx_disabled_by_bios(void)
2256{
2257 u64 msr;
2258
2259 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2260 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2261 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2262 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2263 && tboot_enabled())
2264 return 1;
23f3e991 2265 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2266 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2267 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2268 && !tboot_enabled()) {
2269 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2270 "activate TXT before enabling KVM\n");
cafd6659 2271 return 1;
f9335afe 2272 }
23f3e991
JC
2273 /* launched w/o TXT and VMX disabled */
2274 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2275 && !tboot_enabled())
2276 return 1;
cafd6659
SW
2277 }
2278
2279 return 0;
6aa8b732
AK
2280}
2281
7725b894
DX
2282static void kvm_cpu_vmxon(u64 addr)
2283{
2284 asm volatile (ASM_VMX_VMXON_RAX
2285 : : "a"(&addr), "m"(addr)
2286 : "memory", "cc");
2287}
2288
10474ae8 2289static int hardware_enable(void *garbage)
6aa8b732
AK
2290{
2291 int cpu = raw_smp_processor_id();
2292 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2293 u64 old, test_bits;
6aa8b732 2294
10474ae8
AG
2295 if (read_cr4() & X86_CR4_VMXE)
2296 return -EBUSY;
2297
d462b819 2298 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2299 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2300
2301 test_bits = FEATURE_CONTROL_LOCKED;
2302 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2303 if (tboot_enabled())
2304 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2305
2306 if ((old & test_bits) != test_bits) {
6aa8b732 2307 /* enable and lock */
cafd6659
SW
2308 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2309 }
66aee91a 2310 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2311
4610c9cc
DX
2312 if (vmm_exclusive) {
2313 kvm_cpu_vmxon(phys_addr);
2314 ept_sync_global();
2315 }
10474ae8 2316
3444d7da
AK
2317 store_gdt(&__get_cpu_var(host_gdt));
2318
10474ae8 2319 return 0;
6aa8b732
AK
2320}
2321
d462b819 2322static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2323{
2324 int cpu = raw_smp_processor_id();
d462b819 2325 struct loaded_vmcs *v, *n;
543e4243 2326
d462b819
NHE
2327 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2328 loaded_vmcss_on_cpu_link)
2329 __loaded_vmcs_clear(v);
543e4243
AK
2330}
2331
710ff4a8
EH
2332
2333/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2334 * tricks.
2335 */
2336static void kvm_cpu_vmxoff(void)
6aa8b732 2337{
4ecac3fd 2338 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2339}
2340
710ff4a8
EH
2341static void hardware_disable(void *garbage)
2342{
4610c9cc 2343 if (vmm_exclusive) {
d462b819 2344 vmclear_local_loaded_vmcss();
4610c9cc
DX
2345 kvm_cpu_vmxoff();
2346 }
7725b894 2347 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2348}
2349
1c3d14fe 2350static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2351 u32 msr, u32 *result)
1c3d14fe
YS
2352{
2353 u32 vmx_msr_low, vmx_msr_high;
2354 u32 ctl = ctl_min | ctl_opt;
2355
2356 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2357
2358 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2359 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2360
2361 /* Ensure minimum (required) set of control bits are supported. */
2362 if (ctl_min & ~ctl)
002c7f7c 2363 return -EIO;
1c3d14fe
YS
2364
2365 *result = ctl;
2366 return 0;
2367}
2368
110312c8
AK
2369static __init bool allow_1_setting(u32 msr, u32 ctl)
2370{
2371 u32 vmx_msr_low, vmx_msr_high;
2372
2373 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2374 return vmx_msr_high & ctl;
2375}
2376
002c7f7c 2377static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2378{
2379 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2380 u32 min, opt, min2, opt2;
1c3d14fe
YS
2381 u32 _pin_based_exec_control = 0;
2382 u32 _cpu_based_exec_control = 0;
f78e0e2e 2383 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2384 u32 _vmexit_control = 0;
2385 u32 _vmentry_control = 0;
2386
2387 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2388 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2389 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2390 &_pin_based_exec_control) < 0)
002c7f7c 2391 return -EIO;
1c3d14fe 2392
10166744 2393 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2394#ifdef CONFIG_X86_64
2395 CPU_BASED_CR8_LOAD_EXITING |
2396 CPU_BASED_CR8_STORE_EXITING |
2397#endif
d56f546d
SY
2398 CPU_BASED_CR3_LOAD_EXITING |
2399 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2400 CPU_BASED_USE_IO_BITMAPS |
2401 CPU_BASED_MOV_DR_EXITING |
a7052897 2402 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2403 CPU_BASED_MWAIT_EXITING |
2404 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2405 CPU_BASED_INVLPG_EXITING |
2406 CPU_BASED_RDPMC_EXITING;
443381a8 2407
f78e0e2e 2408 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2409 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2410 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2411 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2412 &_cpu_based_exec_control) < 0)
002c7f7c 2413 return -EIO;
6e5d865c
YS
2414#ifdef CONFIG_X86_64
2415 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2416 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2417 ~CPU_BASED_CR8_STORE_EXITING;
2418#endif
f78e0e2e 2419 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2420 min2 = 0;
2421 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2422 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2423 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2424 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2425 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2426 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2427 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2428 if (adjust_vmx_controls(min2, opt2,
2429 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2430 &_cpu_based_2nd_exec_control) < 0)
2431 return -EIO;
2432 }
2433#ifndef CONFIG_X86_64
2434 if (!(_cpu_based_2nd_exec_control &
2435 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2436 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2437#endif
d56f546d 2438 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2439 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2440 enabled */
5fff7d27
GN
2441 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2442 CPU_BASED_CR3_STORE_EXITING |
2443 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2444 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2445 vmx_capability.ept, vmx_capability.vpid);
2446 }
1c3d14fe
YS
2447
2448 min = 0;
2449#ifdef CONFIG_X86_64
2450 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2451#endif
468d472f 2452 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2453 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2454 &_vmexit_control) < 0)
002c7f7c 2455 return -EIO;
1c3d14fe 2456
468d472f
SY
2457 min = 0;
2458 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2459 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2460 &_vmentry_control) < 0)
002c7f7c 2461 return -EIO;
6aa8b732 2462
c68876fd 2463 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2464
2465 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2466 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2467 return -EIO;
1c3d14fe
YS
2468
2469#ifdef CONFIG_X86_64
2470 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2471 if (vmx_msr_high & (1u<<16))
002c7f7c 2472 return -EIO;
1c3d14fe
YS
2473#endif
2474
2475 /* Require Write-Back (WB) memory type for VMCS accesses. */
2476 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2477 return -EIO;
1c3d14fe 2478
002c7f7c
YS
2479 vmcs_conf->size = vmx_msr_high & 0x1fff;
2480 vmcs_conf->order = get_order(vmcs_config.size);
2481 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2482
002c7f7c
YS
2483 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2484 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2485 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2486 vmcs_conf->vmexit_ctrl = _vmexit_control;
2487 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2488
110312c8
AK
2489 cpu_has_load_ia32_efer =
2490 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2491 VM_ENTRY_LOAD_IA32_EFER)
2492 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2493 VM_EXIT_LOAD_IA32_EFER);
2494
8bf00a52
GN
2495 cpu_has_load_perf_global_ctrl =
2496 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2497 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2498 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2499 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2500
2501 /*
2502 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2503 * but due to arrata below it can't be used. Workaround is to use
2504 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2505 *
2506 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2507 *
2508 * AAK155 (model 26)
2509 * AAP115 (model 30)
2510 * AAT100 (model 37)
2511 * BC86,AAY89,BD102 (model 44)
2512 * BA97 (model 46)
2513 *
2514 */
2515 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2516 switch (boot_cpu_data.x86_model) {
2517 case 26:
2518 case 30:
2519 case 37:
2520 case 44:
2521 case 46:
2522 cpu_has_load_perf_global_ctrl = false;
2523 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2524 "does not work properly. Using workaround\n");
2525 break;
2526 default:
2527 break;
2528 }
2529 }
2530
1c3d14fe 2531 return 0;
c68876fd 2532}
6aa8b732
AK
2533
2534static struct vmcs *alloc_vmcs_cpu(int cpu)
2535{
2536 int node = cpu_to_node(cpu);
2537 struct page *pages;
2538 struct vmcs *vmcs;
2539
6484eb3e 2540 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2541 if (!pages)
2542 return NULL;
2543 vmcs = page_address(pages);
1c3d14fe
YS
2544 memset(vmcs, 0, vmcs_config.size);
2545 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2546 return vmcs;
2547}
2548
2549static struct vmcs *alloc_vmcs(void)
2550{
d3b2c338 2551 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2552}
2553
2554static void free_vmcs(struct vmcs *vmcs)
2555{
1c3d14fe 2556 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2557}
2558
d462b819
NHE
2559/*
2560 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2561 */
2562static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2563{
2564 if (!loaded_vmcs->vmcs)
2565 return;
2566 loaded_vmcs_clear(loaded_vmcs);
2567 free_vmcs(loaded_vmcs->vmcs);
2568 loaded_vmcs->vmcs = NULL;
2569}
2570
39959588 2571static void free_kvm_area(void)
6aa8b732
AK
2572{
2573 int cpu;
2574
3230bb47 2575 for_each_possible_cpu(cpu) {
6aa8b732 2576 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2577 per_cpu(vmxarea, cpu) = NULL;
2578 }
6aa8b732
AK
2579}
2580
6aa8b732
AK
2581static __init int alloc_kvm_area(void)
2582{
2583 int cpu;
2584
3230bb47 2585 for_each_possible_cpu(cpu) {
6aa8b732
AK
2586 struct vmcs *vmcs;
2587
2588 vmcs = alloc_vmcs_cpu(cpu);
2589 if (!vmcs) {
2590 free_kvm_area();
2591 return -ENOMEM;
2592 }
2593
2594 per_cpu(vmxarea, cpu) = vmcs;
2595 }
2596 return 0;
2597}
2598
2599static __init int hardware_setup(void)
2600{
002c7f7c
YS
2601 if (setup_vmcs_config(&vmcs_config) < 0)
2602 return -EIO;
50a37eb4
JR
2603
2604 if (boot_cpu_has(X86_FEATURE_NX))
2605 kvm_enable_efer_bits(EFER_NX);
2606
93ba03c2
SY
2607 if (!cpu_has_vmx_vpid())
2608 enable_vpid = 0;
2609
4bc9b982
SY
2610 if (!cpu_has_vmx_ept() ||
2611 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2612 enable_ept = 0;
3a624e29
NK
2613 enable_unrestricted_guest = 0;
2614 }
2615
2616 if (!cpu_has_vmx_unrestricted_guest())
2617 enable_unrestricted_guest = 0;
93ba03c2
SY
2618
2619 if (!cpu_has_vmx_flexpriority())
2620 flexpriority_enabled = 0;
2621
95ba8273
GN
2622 if (!cpu_has_vmx_tpr_shadow())
2623 kvm_x86_ops->update_cr8_intercept = NULL;
2624
54dee993
MT
2625 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2626 kvm_disable_largepages();
2627
4b8d54f9
ZE
2628 if (!cpu_has_vmx_ple())
2629 ple_gap = 0;
2630
b87a51ae
NHE
2631 if (nested)
2632 nested_vmx_setup_ctls_msrs();
2633
6aa8b732
AK
2634 return alloc_kvm_area();
2635}
2636
2637static __exit void hardware_unsetup(void)
2638{
2639 free_kvm_area();
2640}
2641
6aa8b732
AK
2642static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2643{
2644 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2645
6af11b9e 2646 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2647 vmcs_write16(sf->selector, save->selector);
2648 vmcs_writel(sf->base, save->base);
2649 vmcs_write32(sf->limit, save->limit);
2650 vmcs_write32(sf->ar_bytes, save->ar);
2651 } else {
2652 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2653 << AR_DPL_SHIFT;
2654 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2655 }
2656}
2657
2658static void enter_pmode(struct kvm_vcpu *vcpu)
2659{
2660 unsigned long flags;
a89a8fb9 2661 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2662
a89a8fb9 2663 vmx->emulation_required = 1;
7ffd92c5 2664 vmx->rmode.vm86_active = 0;
6aa8b732 2665
2fb92db1
AK
2666 vmx_segment_cache_clear(vmx);
2667
d0ba64f9 2668 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2669 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2670 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2671 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2672
2673 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2674 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2675 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2676 vmcs_writel(GUEST_RFLAGS, flags);
2677
66aee91a
RR
2678 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2679 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2680
2681 update_exception_bitmap(vcpu);
2682
a89a8fb9
MG
2683 if (emulate_invalid_guest_state)
2684 return;
2685
7ffd92c5
AK
2686 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2687 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2688 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2689 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2690
2fb92db1
AK
2691 vmx_segment_cache_clear(vmx);
2692
6aa8b732
AK
2693 vmcs_write16(GUEST_SS_SELECTOR, 0);
2694 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2695
2696 vmcs_write16(GUEST_CS_SELECTOR,
2697 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2698 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2699}
2700
d77c26fc 2701static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2702{
bfc6d222 2703 if (!kvm->arch.tss_addr) {
bc6678a3 2704 struct kvm_memslots *slots;
28a37544 2705 struct kvm_memory_slot *slot;
bc6678a3
MT
2706 gfn_t base_gfn;
2707
90d83dc3 2708 slots = kvm_memslots(kvm);
28a37544
XG
2709 slot = id_to_memslot(slots, 0);
2710 base_gfn = slot->base_gfn + slot->npages - 3;
2711
cbc94022
IE
2712 return base_gfn << PAGE_SHIFT;
2713 }
bfc6d222 2714 return kvm->arch.tss_addr;
6aa8b732
AK
2715}
2716
2717static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2718{
2719 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2720
2721 save->selector = vmcs_read16(sf->selector);
2722 save->base = vmcs_readl(sf->base);
2723 save->limit = vmcs_read32(sf->limit);
2724 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2725 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2726 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2727 vmcs_write32(sf->limit, 0xffff);
2728 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2729 if (save->base & 0xf)
2730 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2731 " aligned when entering protected mode (seg=%d)",
2732 seg);
6aa8b732
AK
2733}
2734
2735static void enter_rmode(struct kvm_vcpu *vcpu)
2736{
2737 unsigned long flags;
a89a8fb9 2738 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2739
3a624e29
NK
2740 if (enable_unrestricted_guest)
2741 return;
2742
a89a8fb9 2743 vmx->emulation_required = 1;
7ffd92c5 2744 vmx->rmode.vm86_active = 1;
6aa8b732 2745
776e58ea
GN
2746 /*
2747 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2748 * vcpu. Call it here with phys address pointing 16M below 4G.
2749 */
2750 if (!vcpu->kvm->arch.tss_addr) {
2751 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2752 "called before entering vcpu\n");
2753 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2754 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2755 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2756 }
2757
2fb92db1
AK
2758 vmx_segment_cache_clear(vmx);
2759
d0ba64f9 2760 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2761 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2762 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2763
7ffd92c5 2764 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2765 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2766
7ffd92c5 2767 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2768 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2769
2770 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2771 vmx->rmode.save_rflags = flags;
6aa8b732 2772
053de044 2773 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2774
2775 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2776 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2777 update_exception_bitmap(vcpu);
2778
a89a8fb9
MG
2779 if (emulate_invalid_guest_state)
2780 goto continue_rmode;
2781
6aa8b732
AK
2782 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2783 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2784 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2785
2786 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2787 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2788 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2789 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2790 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2791
7ffd92c5
AK
2792 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2793 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2794 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2795 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2796
a89a8fb9 2797continue_rmode:
8668a3c4 2798 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2799}
2800
401d10de
AS
2801static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2802{
2803 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2804 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2805
2806 if (!msr)
2807 return;
401d10de 2808
44ea2b17
AK
2809 /*
2810 * Force kernel_gs_base reloading before EFER changes, as control
2811 * of this msr depends on is_long_mode().
2812 */
2813 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2814 vcpu->arch.efer = efer;
401d10de
AS
2815 if (efer & EFER_LMA) {
2816 vmcs_write32(VM_ENTRY_CONTROLS,
2817 vmcs_read32(VM_ENTRY_CONTROLS) |
2818 VM_ENTRY_IA32E_MODE);
2819 msr->data = efer;
2820 } else {
2821 vmcs_write32(VM_ENTRY_CONTROLS,
2822 vmcs_read32(VM_ENTRY_CONTROLS) &
2823 ~VM_ENTRY_IA32E_MODE);
2824
2825 msr->data = efer & ~EFER_LME;
2826 }
2827 setup_msrs(vmx);
2828}
2829
05b3e0c2 2830#ifdef CONFIG_X86_64
6aa8b732
AK
2831
2832static void enter_lmode(struct kvm_vcpu *vcpu)
2833{
2834 u32 guest_tr_ar;
2835
2fb92db1
AK
2836 vmx_segment_cache_clear(to_vmx(vcpu));
2837
6aa8b732
AK
2838 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2839 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2840 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2841 __func__);
6aa8b732
AK
2842 vmcs_write32(GUEST_TR_AR_BYTES,
2843 (guest_tr_ar & ~AR_TYPE_MASK)
2844 | AR_TYPE_BUSY_64_TSS);
2845 }
da38f438 2846 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2847}
2848
2849static void exit_lmode(struct kvm_vcpu *vcpu)
2850{
6aa8b732
AK
2851 vmcs_write32(VM_ENTRY_CONTROLS,
2852 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2853 & ~VM_ENTRY_IA32E_MODE);
da38f438 2854 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2855}
2856
2857#endif
2858
2384d2b3
SY
2859static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2860{
b9d762fa 2861 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2862 if (enable_ept) {
2863 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2864 return;
4e1096d2 2865 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2866 }
2384d2b3
SY
2867}
2868
e8467fda
AK
2869static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2870{
2871 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2872
2873 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2874 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2875}
2876
aff48baa
AK
2877static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2878{
2879 if (enable_ept && is_paging(vcpu))
2880 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2881 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2882}
2883
25c4c276 2884static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2885{
fc78f519
AK
2886 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2887
2888 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2889 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2890}
2891
1439442c
SY
2892static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2893{
6de4f3ad
AK
2894 if (!test_bit(VCPU_EXREG_PDPTR,
2895 (unsigned long *)&vcpu->arch.regs_dirty))
2896 return;
2897
1439442c 2898 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2899 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2900 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2901 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2902 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2903 }
2904}
2905
8f5d549f
AK
2906static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2907{
2908 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2909 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2910 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2911 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2912 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2913 }
6de4f3ad
AK
2914
2915 __set_bit(VCPU_EXREG_PDPTR,
2916 (unsigned long *)&vcpu->arch.regs_avail);
2917 __set_bit(VCPU_EXREG_PDPTR,
2918 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2919}
2920
5e1746d6 2921static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2922
2923static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2924 unsigned long cr0,
2925 struct kvm_vcpu *vcpu)
2926{
5233dd51
MT
2927 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2928 vmx_decache_cr3(vcpu);
1439442c
SY
2929 if (!(cr0 & X86_CR0_PG)) {
2930 /* From paging/starting to nonpaging */
2931 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2932 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2933 (CPU_BASED_CR3_LOAD_EXITING |
2934 CPU_BASED_CR3_STORE_EXITING));
2935 vcpu->arch.cr0 = cr0;
fc78f519 2936 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2937 } else if (!is_paging(vcpu)) {
2938 /* From nonpaging to paging */
2939 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2940 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2941 ~(CPU_BASED_CR3_LOAD_EXITING |
2942 CPU_BASED_CR3_STORE_EXITING));
2943 vcpu->arch.cr0 = cr0;
fc78f519 2944 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2945 }
95eb84a7
SY
2946
2947 if (!(cr0 & X86_CR0_WP))
2948 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2949}
2950
6aa8b732
AK
2951static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2952{
7ffd92c5 2953 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2954 unsigned long hw_cr0;
2955
2956 if (enable_unrestricted_guest)
2957 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2958 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2959 else
2960 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2961
7ffd92c5 2962 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2963 enter_pmode(vcpu);
2964
7ffd92c5 2965 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2966 enter_rmode(vcpu);
2967
05b3e0c2 2968#ifdef CONFIG_X86_64
f6801dff 2969 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2970 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2971 enter_lmode(vcpu);
707d92fa 2972 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2973 exit_lmode(vcpu);
2974 }
2975#endif
2976
089d034e 2977 if (enable_ept)
1439442c
SY
2978 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2979
02daab21 2980 if (!vcpu->fpu_active)
81231c69 2981 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 2982
6aa8b732 2983 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 2984 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 2985 vcpu->arch.cr0 = cr0;
69c73028 2986 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
2987}
2988
1439442c
SY
2989static u64 construct_eptp(unsigned long root_hpa)
2990{
2991 u64 eptp;
2992
2993 /* TODO write the value reading from MSR */
2994 eptp = VMX_EPT_DEFAULT_MT |
2995 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2996 eptp |= (root_hpa & PAGE_MASK);
2997
2998 return eptp;
2999}
3000
6aa8b732
AK
3001static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3002{
1439442c
SY
3003 unsigned long guest_cr3;
3004 u64 eptp;
3005
3006 guest_cr3 = cr3;
089d034e 3007 if (enable_ept) {
1439442c
SY
3008 eptp = construct_eptp(cr3);
3009 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3010 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3011 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3012 ept_load_pdptrs(vcpu);
1439442c
SY
3013 }
3014
2384d2b3 3015 vmx_flush_tlb(vcpu);
1439442c 3016 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3017}
3018
5e1746d6 3019static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3020{
7ffd92c5 3021 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3022 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3023
5e1746d6
NHE
3024 if (cr4 & X86_CR4_VMXE) {
3025 /*
3026 * To use VMXON (and later other VMX instructions), a guest
3027 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3028 * So basically the check on whether to allow nested VMX
3029 * is here.
3030 */
3031 if (!nested_vmx_allowed(vcpu))
3032 return 1;
3033 } else if (to_vmx(vcpu)->nested.vmxon)
3034 return 1;
3035
ad312c7c 3036 vcpu->arch.cr4 = cr4;
bc23008b
AK
3037 if (enable_ept) {
3038 if (!is_paging(vcpu)) {
3039 hw_cr4 &= ~X86_CR4_PAE;
3040 hw_cr4 |= X86_CR4_PSE;
3041 } else if (!(cr4 & X86_CR4_PAE)) {
3042 hw_cr4 &= ~X86_CR4_PAE;
3043 }
3044 }
1439442c
SY
3045
3046 vmcs_writel(CR4_READ_SHADOW, cr4);
3047 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3048 return 0;
6aa8b732
AK
3049}
3050
6aa8b732
AK
3051static void vmx_get_segment(struct kvm_vcpu *vcpu,
3052 struct kvm_segment *var, int seg)
3053{
a9179499 3054 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 3055 struct kvm_save_segment *save;
6aa8b732
AK
3056 u32 ar;
3057
a9179499
AK
3058 if (vmx->rmode.vm86_active
3059 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3060 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3061 || seg == VCPU_SREG_GS)
3062 && !emulate_invalid_guest_state) {
3063 switch (seg) {
3064 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3065 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3066 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3067 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3068 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3069 default: BUG();
3070 }
3071 var->selector = save->selector;
3072 var->base = save->base;
3073 var->limit = save->limit;
3074 ar = save->ar;
3075 if (seg == VCPU_SREG_TR
2fb92db1 3076 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3077 goto use_saved_rmode_seg;
3078 }
2fb92db1
AK
3079 var->base = vmx_read_guest_seg_base(vmx, seg);
3080 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3081 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3082 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3083use_saved_rmode_seg:
9fd4a3b7 3084 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3085 ar = 0;
3086 var->type = ar & 15;
3087 var->s = (ar >> 4) & 1;
3088 var->dpl = (ar >> 5) & 3;
3089 var->present = (ar >> 7) & 1;
3090 var->avl = (ar >> 12) & 1;
3091 var->l = (ar >> 13) & 1;
3092 var->db = (ar >> 14) & 1;
3093 var->g = (ar >> 15) & 1;
3094 var->unusable = (ar >> 16) & 1;
3095}
3096
a9179499
AK
3097static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3098{
a9179499
AK
3099 struct kvm_segment s;
3100
3101 if (to_vmx(vcpu)->rmode.vm86_active) {
3102 vmx_get_segment(vcpu, &s, seg);
3103 return s.base;
3104 }
2fb92db1 3105 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3106}
3107
69c73028 3108static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3109{
3eeb3288 3110 if (!is_protmode(vcpu))
2e4d2653
IE
3111 return 0;
3112
f4c63e5d
AK
3113 if (!is_long_mode(vcpu)
3114 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3115 return 3;
3116
2fb92db1 3117 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3118}
3119
69c73028
AK
3120static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3121{
3122 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3123 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3124 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3125 }
3126 return to_vmx(vcpu)->cpl;
3127}
3128
3129
653e3108 3130static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3131{
6aa8b732
AK
3132 u32 ar;
3133
653e3108 3134 if (var->unusable)
6aa8b732
AK
3135 ar = 1 << 16;
3136 else {
3137 ar = var->type & 15;
3138 ar |= (var->s & 1) << 4;
3139 ar |= (var->dpl & 3) << 5;
3140 ar |= (var->present & 1) << 7;
3141 ar |= (var->avl & 1) << 12;
3142 ar |= (var->l & 1) << 13;
3143 ar |= (var->db & 1) << 14;
3144 ar |= (var->g & 1) << 15;
3145 }
f7fbf1fd
UL
3146 if (ar == 0) /* a 0 value means unusable */
3147 ar = AR_UNUSABLE_MASK;
653e3108
AK
3148
3149 return ar;
3150}
3151
3152static void vmx_set_segment(struct kvm_vcpu *vcpu,
3153 struct kvm_segment *var, int seg)
3154{
7ffd92c5 3155 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3156 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3157 u32 ar;
3158
2fb92db1
AK
3159 vmx_segment_cache_clear(vmx);
3160
7ffd92c5 3161 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3162 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3163 vmx->rmode.tr.selector = var->selector;
3164 vmx->rmode.tr.base = var->base;
3165 vmx->rmode.tr.limit = var->limit;
3166 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3167 return;
3168 }
3169 vmcs_writel(sf->base, var->base);
3170 vmcs_write32(sf->limit, var->limit);
3171 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3172 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3173 /*
3174 * Hack real-mode segments into vm86 compatibility.
3175 */
3176 if (var->base == 0xffff0000 && var->selector == 0xf000)
3177 vmcs_writel(sf->base, 0xf0000);
3178 ar = 0xf3;
3179 } else
3180 ar = vmx_segment_access_rights(var);
3a624e29
NK
3181
3182 /*
3183 * Fix the "Accessed" bit in AR field of segment registers for older
3184 * qemu binaries.
3185 * IA32 arch specifies that at the time of processor reset the
3186 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3187 * is setting it to 0 in the usedland code. This causes invalid guest
3188 * state vmexit when "unrestricted guest" mode is turned on.
3189 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3190 * tree. Newer qemu binaries with that qemu fix would not need this
3191 * kvm hack.
3192 */
3193 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3194 ar |= 0x1; /* Accessed */
3195
6aa8b732 3196 vmcs_write32(sf->ar_bytes, ar);
69c73028 3197 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3198}
3199
6aa8b732
AK
3200static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3201{
2fb92db1 3202 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3203
3204 *db = (ar >> 14) & 1;
3205 *l = (ar >> 13) & 1;
3206}
3207
89a27f4d 3208static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3209{
89a27f4d
GN
3210 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3211 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3212}
3213
89a27f4d 3214static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3215{
89a27f4d
GN
3216 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3217 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3218}
3219
89a27f4d 3220static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3221{
89a27f4d
GN
3222 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3223 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3224}
3225
89a27f4d 3226static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3227{
89a27f4d
GN
3228 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3229 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3230}
3231
648dfaa7
MG
3232static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3233{
3234 struct kvm_segment var;
3235 u32 ar;
3236
3237 vmx_get_segment(vcpu, &var, seg);
3238 ar = vmx_segment_access_rights(&var);
3239
3240 if (var.base != (var.selector << 4))
3241 return false;
3242 if (var.limit != 0xffff)
3243 return false;
3244 if (ar != 0xf3)
3245 return false;
3246
3247 return true;
3248}
3249
3250static bool code_segment_valid(struct kvm_vcpu *vcpu)
3251{
3252 struct kvm_segment cs;
3253 unsigned int cs_rpl;
3254
3255 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3256 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3257
1872a3f4
AK
3258 if (cs.unusable)
3259 return false;
648dfaa7
MG
3260 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3261 return false;
3262 if (!cs.s)
3263 return false;
1872a3f4 3264 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3265 if (cs.dpl > cs_rpl)
3266 return false;
1872a3f4 3267 } else {
648dfaa7
MG
3268 if (cs.dpl != cs_rpl)
3269 return false;
3270 }
3271 if (!cs.present)
3272 return false;
3273
3274 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3275 return true;
3276}
3277
3278static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3279{
3280 struct kvm_segment ss;
3281 unsigned int ss_rpl;
3282
3283 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3284 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3285
1872a3f4
AK
3286 if (ss.unusable)
3287 return true;
3288 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3289 return false;
3290 if (!ss.s)
3291 return false;
3292 if (ss.dpl != ss_rpl) /* DPL != RPL */
3293 return false;
3294 if (!ss.present)
3295 return false;
3296
3297 return true;
3298}
3299
3300static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3301{
3302 struct kvm_segment var;
3303 unsigned int rpl;
3304
3305 vmx_get_segment(vcpu, &var, seg);
3306 rpl = var.selector & SELECTOR_RPL_MASK;
3307
1872a3f4
AK
3308 if (var.unusable)
3309 return true;
648dfaa7
MG
3310 if (!var.s)
3311 return false;
3312 if (!var.present)
3313 return false;
3314 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3315 if (var.dpl < rpl) /* DPL < RPL */
3316 return false;
3317 }
3318
3319 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3320 * rights flags
3321 */
3322 return true;
3323}
3324
3325static bool tr_valid(struct kvm_vcpu *vcpu)
3326{
3327 struct kvm_segment tr;
3328
3329 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3330
1872a3f4
AK
3331 if (tr.unusable)
3332 return false;
648dfaa7
MG
3333 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3334 return false;
1872a3f4 3335 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3336 return false;
3337 if (!tr.present)
3338 return false;
3339
3340 return true;
3341}
3342
3343static bool ldtr_valid(struct kvm_vcpu *vcpu)
3344{
3345 struct kvm_segment ldtr;
3346
3347 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3348
1872a3f4
AK
3349 if (ldtr.unusable)
3350 return true;
648dfaa7
MG
3351 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3352 return false;
3353 if (ldtr.type != 2)
3354 return false;
3355 if (!ldtr.present)
3356 return false;
3357
3358 return true;
3359}
3360
3361static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3362{
3363 struct kvm_segment cs, ss;
3364
3365 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3366 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3367
3368 return ((cs.selector & SELECTOR_RPL_MASK) ==
3369 (ss.selector & SELECTOR_RPL_MASK));
3370}
3371
3372/*
3373 * Check if guest state is valid. Returns true if valid, false if
3374 * not.
3375 * We assume that registers are always usable
3376 */
3377static bool guest_state_valid(struct kvm_vcpu *vcpu)
3378{
3379 /* real mode guest state checks */
3eeb3288 3380 if (!is_protmode(vcpu)) {
648dfaa7
MG
3381 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3382 return false;
3383 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3384 return false;
3385 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3386 return false;
3387 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3388 return false;
3389 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3390 return false;
3391 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3392 return false;
3393 } else {
3394 /* protected mode guest state checks */
3395 if (!cs_ss_rpl_check(vcpu))
3396 return false;
3397 if (!code_segment_valid(vcpu))
3398 return false;
3399 if (!stack_segment_valid(vcpu))
3400 return false;
3401 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3402 return false;
3403 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3404 return false;
3405 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3406 return false;
3407 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3408 return false;
3409 if (!tr_valid(vcpu))
3410 return false;
3411 if (!ldtr_valid(vcpu))
3412 return false;
3413 }
3414 /* TODO:
3415 * - Add checks on RIP
3416 * - Add checks on RFLAGS
3417 */
3418
3419 return true;
3420}
3421
d77c26fc 3422static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3423{
40dcaa9f 3424 gfn_t fn;
195aefde 3425 u16 data = 0;
40dcaa9f 3426 int r, idx, ret = 0;
6aa8b732 3427
40dcaa9f
XG
3428 idx = srcu_read_lock(&kvm->srcu);
3429 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3430 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3431 if (r < 0)
10589a46 3432 goto out;
195aefde 3433 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3434 r = kvm_write_guest_page(kvm, fn++, &data,
3435 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3436 if (r < 0)
10589a46 3437 goto out;
195aefde
IE
3438 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3439 if (r < 0)
10589a46 3440 goto out;
195aefde
IE
3441 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3442 if (r < 0)
10589a46 3443 goto out;
195aefde 3444 data = ~0;
10589a46
MT
3445 r = kvm_write_guest_page(kvm, fn, &data,
3446 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3447 sizeof(u8));
195aefde 3448 if (r < 0)
10589a46
MT
3449 goto out;
3450
3451 ret = 1;
3452out:
40dcaa9f 3453 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3454 return ret;
6aa8b732
AK
3455}
3456
b7ebfb05
SY
3457static int init_rmode_identity_map(struct kvm *kvm)
3458{
40dcaa9f 3459 int i, idx, r, ret;
b7ebfb05
SY
3460 pfn_t identity_map_pfn;
3461 u32 tmp;
3462
089d034e 3463 if (!enable_ept)
b7ebfb05
SY
3464 return 1;
3465 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3466 printk(KERN_ERR "EPT: identity-mapping pagetable "
3467 "haven't been allocated!\n");
3468 return 0;
3469 }
3470 if (likely(kvm->arch.ept_identity_pagetable_done))
3471 return 1;
3472 ret = 0;
b927a3ce 3473 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3474 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3475 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3476 if (r < 0)
3477 goto out;
3478 /* Set up identity-mapping pagetable for EPT in real mode */
3479 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3480 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3481 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3482 r = kvm_write_guest_page(kvm, identity_map_pfn,
3483 &tmp, i * sizeof(tmp), sizeof(tmp));
3484 if (r < 0)
3485 goto out;
3486 }
3487 kvm->arch.ept_identity_pagetable_done = true;
3488 ret = 1;
3489out:
40dcaa9f 3490 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3491 return ret;
3492}
3493
6aa8b732
AK
3494static void seg_setup(int seg)
3495{
3496 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3497 unsigned int ar;
6aa8b732
AK
3498
3499 vmcs_write16(sf->selector, 0);
3500 vmcs_writel(sf->base, 0);
3501 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3502 if (enable_unrestricted_guest) {
3503 ar = 0x93;
3504 if (seg == VCPU_SREG_CS)
3505 ar |= 0x08; /* code segment */
3506 } else
3507 ar = 0xf3;
3508
3509 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3510}
3511
f78e0e2e
SY
3512static int alloc_apic_access_page(struct kvm *kvm)
3513{
3514 struct kvm_userspace_memory_region kvm_userspace_mem;
3515 int r = 0;
3516
79fac95e 3517 mutex_lock(&kvm->slots_lock);
bfc6d222 3518 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3519 goto out;
3520 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3521 kvm_userspace_mem.flags = 0;
3522 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3523 kvm_userspace_mem.memory_size = PAGE_SIZE;
3524 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3525 if (r)
3526 goto out;
72dc67a6 3527
bfc6d222 3528 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3529out:
79fac95e 3530 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3531 return r;
3532}
3533
b7ebfb05
SY
3534static int alloc_identity_pagetable(struct kvm *kvm)
3535{
3536 struct kvm_userspace_memory_region kvm_userspace_mem;
3537 int r = 0;
3538
79fac95e 3539 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3540 if (kvm->arch.ept_identity_pagetable)
3541 goto out;
3542 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3543 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3544 kvm_userspace_mem.guest_phys_addr =
3545 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3546 kvm_userspace_mem.memory_size = PAGE_SIZE;
3547 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3548 if (r)
3549 goto out;
3550
b7ebfb05 3551 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3552 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3553out:
79fac95e 3554 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3555 return r;
3556}
3557
2384d2b3
SY
3558static void allocate_vpid(struct vcpu_vmx *vmx)
3559{
3560 int vpid;
3561
3562 vmx->vpid = 0;
919818ab 3563 if (!enable_vpid)
2384d2b3
SY
3564 return;
3565 spin_lock(&vmx_vpid_lock);
3566 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3567 if (vpid < VMX_NR_VPIDS) {
3568 vmx->vpid = vpid;
3569 __set_bit(vpid, vmx_vpid_bitmap);
3570 }
3571 spin_unlock(&vmx_vpid_lock);
3572}
3573
cdbecfc3
LJ
3574static void free_vpid(struct vcpu_vmx *vmx)
3575{
3576 if (!enable_vpid)
3577 return;
3578 spin_lock(&vmx_vpid_lock);
3579 if (vmx->vpid != 0)
3580 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3581 spin_unlock(&vmx_vpid_lock);
3582}
3583
5897297b 3584static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3585{
3e7c73e9 3586 int f = sizeof(unsigned long);
25c5f225
SY
3587
3588 if (!cpu_has_vmx_msr_bitmap())
3589 return;
3590
3591 /*
3592 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3593 * have the write-low and read-high bitmap offsets the wrong way round.
3594 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3595 */
25c5f225 3596 if (msr <= 0x1fff) {
3e7c73e9
AK
3597 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3598 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3599 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3600 msr &= 0x1fff;
3e7c73e9
AK
3601 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3602 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3603 }
25c5f225
SY
3604}
3605
5897297b
AK
3606static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3607{
3608 if (!longmode_only)
3609 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3610 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3611}
3612
a3a8ff8e
NHE
3613/*
3614 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3615 * will not change in the lifetime of the guest.
3616 * Note that host-state that does change is set elsewhere. E.g., host-state
3617 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3618 */
3619static void vmx_set_constant_host_state(void)
3620{
3621 u32 low32, high32;
3622 unsigned long tmpl;
3623 struct desc_ptr dt;
3624
3625 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3626 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3627 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3628
3629 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3630 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3631 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3632 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3633 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3634
3635 native_store_idt(&dt);
3636 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3637
3638 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3639 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3640
3641 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3642 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3643 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3644 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3645
3646 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3647 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3648 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3649 }
3650}
3651
bf8179a0
NHE
3652static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3653{
3654 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3655 if (enable_ept)
3656 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3657 if (is_guest_mode(&vmx->vcpu))
3658 vmx->vcpu.arch.cr4_guest_owned_bits &=
3659 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3660 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3661}
3662
3663static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3664{
3665 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3666 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3667 exec_control &= ~CPU_BASED_TPR_SHADOW;
3668#ifdef CONFIG_X86_64
3669 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3670 CPU_BASED_CR8_LOAD_EXITING;
3671#endif
3672 }
3673 if (!enable_ept)
3674 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3675 CPU_BASED_CR3_LOAD_EXITING |
3676 CPU_BASED_INVLPG_EXITING;
3677 return exec_control;
3678}
3679
3680static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3681{
3682 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3683 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3684 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3685 if (vmx->vpid == 0)
3686 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3687 if (!enable_ept) {
3688 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3689 enable_unrestricted_guest = 0;
3690 }
3691 if (!enable_unrestricted_guest)
3692 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3693 if (!ple_gap)
3694 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3695 return exec_control;
3696}
3697
ce88decf
XG
3698static void ept_set_mmio_spte_mask(void)
3699{
3700 /*
3701 * EPT Misconfigurations can be generated if the value of bits 2:0
3702 * of an EPT paging-structure entry is 110b (write/execute).
3703 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3704 * spte.
3705 */
3706 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3707}
3708
6aa8b732
AK
3709/*
3710 * Sets up the vmcs for emulated real mode.
3711 */
8b9cf98c 3712static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3713{
2e4ce7f5 3714#ifdef CONFIG_X86_64
6aa8b732 3715 unsigned long a;
2e4ce7f5 3716#endif
6aa8b732 3717 int i;
6aa8b732 3718
6aa8b732 3719 /* I/O */
3e7c73e9
AK
3720 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3721 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3722
25c5f225 3723 if (cpu_has_vmx_msr_bitmap())
5897297b 3724 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3725
6aa8b732
AK
3726 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3727
6aa8b732 3728 /* Control */
1c3d14fe
YS
3729 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3730 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3731
bf8179a0 3732 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3733
83ff3b9d 3734 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3735 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3736 vmx_secondary_exec_control(vmx));
83ff3b9d 3737 }
f78e0e2e 3738
4b8d54f9
ZE
3739 if (ple_gap) {
3740 vmcs_write32(PLE_GAP, ple_gap);
3741 vmcs_write32(PLE_WINDOW, ple_window);
3742 }
3743
c3707958
XG
3744 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3745 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3746 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3747
9581d442
AK
3748 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3749 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3750 vmx_set_constant_host_state();
05b3e0c2 3751#ifdef CONFIG_X86_64
6aa8b732
AK
3752 rdmsrl(MSR_FS_BASE, a);
3753 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3754 rdmsrl(MSR_GS_BASE, a);
3755 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3756#else
3757 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3758 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3759#endif
3760
2cc51560
ED
3761 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3762 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3763 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3764 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3765 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3766
468d472f 3767 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3768 u32 msr_low, msr_high;
3769 u64 host_pat;
468d472f
SY
3770 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3771 host_pat = msr_low | ((u64) msr_high << 32);
3772 /* Write the default value follow host pat */
3773 vmcs_write64(GUEST_IA32_PAT, host_pat);
3774 /* Keep arch.pat sync with GUEST_IA32_PAT */
3775 vmx->vcpu.arch.pat = host_pat;
3776 }
3777
6aa8b732
AK
3778 for (i = 0; i < NR_VMX_MSR; ++i) {
3779 u32 index = vmx_msr_index[i];
3780 u32 data_low, data_high;
a2fa3e9f 3781 int j = vmx->nmsrs;
6aa8b732
AK
3782
3783 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3784 continue;
432bd6cb
AK
3785 if (wrmsr_safe(index, data_low, data_high) < 0)
3786 continue;
26bb0981
AK
3787 vmx->guest_msrs[j].index = i;
3788 vmx->guest_msrs[j].data = 0;
d5696725 3789 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3790 ++vmx->nmsrs;
6aa8b732 3791 }
6aa8b732 3792
1c3d14fe 3793 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3794
3795 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3796 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3797
e00c8cf2 3798 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3799 set_cr4_guest_host_mask(vmx);
e00c8cf2 3800
99e3e30a 3801 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3802
e00c8cf2
AK
3803 return 0;
3804}
3805
3806static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3807{
3808 struct vcpu_vmx *vmx = to_vmx(vcpu);
3809 u64 msr;
4b9d3a04 3810 int ret;
e00c8cf2 3811
5fdbf976 3812 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3813
7ffd92c5 3814 vmx->rmode.vm86_active = 0;
e00c8cf2 3815
3b86cd99
JK
3816 vmx->soft_vnmi_blocked = 0;
3817
ad312c7c 3818 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3819 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3820 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3821 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3822 msr |= MSR_IA32_APICBASE_BSP;
3823 kvm_set_apic_base(&vmx->vcpu, msr);
3824
10ab25cd
JK
3825 ret = fx_init(&vmx->vcpu);
3826 if (ret != 0)
3827 goto out;
e00c8cf2 3828
2fb92db1
AK
3829 vmx_segment_cache_clear(vmx);
3830
5706be0d 3831 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3832 /*
3833 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3834 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3835 */
c5af89b6 3836 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3837 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3838 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3839 } else {
ad312c7c
ZX
3840 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3841 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3842 }
e00c8cf2
AK
3843
3844 seg_setup(VCPU_SREG_DS);
3845 seg_setup(VCPU_SREG_ES);
3846 seg_setup(VCPU_SREG_FS);
3847 seg_setup(VCPU_SREG_GS);
3848 seg_setup(VCPU_SREG_SS);
3849
3850 vmcs_write16(GUEST_TR_SELECTOR, 0);
3851 vmcs_writel(GUEST_TR_BASE, 0);
3852 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3853 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3854
3855 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3856 vmcs_writel(GUEST_LDTR_BASE, 0);
3857 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3858 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3859
3860 vmcs_write32(GUEST_SYSENTER_CS, 0);
3861 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3862 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3863
3864 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3865 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3866 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3867 else
5fdbf976
MT
3868 kvm_rip_write(vcpu, 0);
3869 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3870
e00c8cf2
AK
3871 vmcs_writel(GUEST_DR7, 0x400);
3872
3873 vmcs_writel(GUEST_GDTR_BASE, 0);
3874 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3875
3876 vmcs_writel(GUEST_IDTR_BASE, 0);
3877 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3878
443381a8 3879 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3880 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3881 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3882
e00c8cf2
AK
3883 /* Special registers */
3884 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3885
3886 setup_msrs(vmx);
3887
6aa8b732
AK
3888 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3889
f78e0e2e
SY
3890 if (cpu_has_vmx_tpr_shadow()) {
3891 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3892 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3893 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3894 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3895 vmcs_write32(TPR_THRESHOLD, 0);
3896 }
3897
3898 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3899 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3900 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3901
2384d2b3
SY
3902 if (vmx->vpid != 0)
3903 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3904
fa40052c 3905 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 3906 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 3907 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3908 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3909 vmx_fpu_activate(&vmx->vcpu);
3910 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3911
b9d762fa 3912 vpid_sync_context(vmx);
2384d2b3 3913
3200f405 3914 ret = 0;
6aa8b732 3915
a89a8fb9
MG
3916 /* HACK: Don't enable emulation on guest boot/reset */
3917 vmx->emulation_required = 0;
3918
6aa8b732
AK
3919out:
3920 return ret;
3921}
3922
b6f1250e
NHE
3923/*
3924 * In nested virtualization, check if L1 asked to exit on external interrupts.
3925 * For most existing hypervisors, this will always return true.
3926 */
3927static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3928{
3929 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3930 PIN_BASED_EXT_INTR_MASK;
3931}
3932
3b86cd99
JK
3933static void enable_irq_window(struct kvm_vcpu *vcpu)
3934{
3935 u32 cpu_based_vm_exec_control;
d6185f20
NHE
3936 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3937 /*
3938 * We get here if vmx_interrupt_allowed() said we can't
3939 * inject to L1 now because L2 must run. Ask L2 to exit
3940 * right after entry, so we can inject to L1 more promptly.
b6f1250e 3941 */
d6185f20 3942 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 3943 return;
d6185f20 3944 }
3b86cd99
JK
3945
3946 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3947 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3948 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3949}
3950
3951static void enable_nmi_window(struct kvm_vcpu *vcpu)
3952{
3953 u32 cpu_based_vm_exec_control;
3954
3955 if (!cpu_has_virtual_nmis()) {
3956 enable_irq_window(vcpu);
3957 return;
3958 }
3959
30bd0c4c
AK
3960 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3961 enable_irq_window(vcpu);
3962 return;
3963 }
3b86cd99
JK
3964 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3965 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3966 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3967}
3968
66fd3f7f 3969static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3970{
9c8cba37 3971 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3972 uint32_t intr;
3973 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3974
229456fc 3975 trace_kvm_inj_virq(irq);
2714d1d3 3976
fa89a817 3977 ++vcpu->stat.irq_injections;
7ffd92c5 3978 if (vmx->rmode.vm86_active) {
71f9833b
SH
3979 int inc_eip = 0;
3980 if (vcpu->arch.interrupt.soft)
3981 inc_eip = vcpu->arch.event_exit_inst_len;
3982 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 3983 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
3984 return;
3985 }
66fd3f7f
GN
3986 intr = irq | INTR_INFO_VALID_MASK;
3987 if (vcpu->arch.interrupt.soft) {
3988 intr |= INTR_TYPE_SOFT_INTR;
3989 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3990 vmx->vcpu.arch.event_exit_inst_len);
3991 } else
3992 intr |= INTR_TYPE_EXT_INTR;
3993 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
3994}
3995
f08864b4
SY
3996static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
3997{
66a5a347
JK
3998 struct vcpu_vmx *vmx = to_vmx(vcpu);
3999
0b6ac343
NHE
4000 if (is_guest_mode(vcpu))
4001 return;
4002
3b86cd99
JK
4003 if (!cpu_has_virtual_nmis()) {
4004 /*
4005 * Tracking the NMI-blocked state in software is built upon
4006 * finding the next open IRQ window. This, in turn, depends on
4007 * well-behaving guests: They have to keep IRQs disabled at
4008 * least as long as the NMI handler runs. Otherwise we may
4009 * cause NMI nesting, maybe breaking the guest. But as this is
4010 * highly unlikely, we can live with the residual risk.
4011 */
4012 vmx->soft_vnmi_blocked = 1;
4013 vmx->vnmi_blocked_time = 0;
4014 }
4015
487b391d 4016 ++vcpu->stat.nmi_injections;
9d58b931 4017 vmx->nmi_known_unmasked = false;
7ffd92c5 4018 if (vmx->rmode.vm86_active) {
71f9833b 4019 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4020 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4021 return;
4022 }
f08864b4
SY
4023 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4024 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4025}
4026
c4282df9 4027static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4028{
3b86cd99 4029 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4030 return 0;
33f089ca 4031
c4282df9 4032 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4033 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4034 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4035}
4036
3cfc3092
JK
4037static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4038{
4039 if (!cpu_has_virtual_nmis())
4040 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4041 if (to_vmx(vcpu)->nmi_known_unmasked)
4042 return false;
c332c83a 4043 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4044}
4045
4046static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4047{
4048 struct vcpu_vmx *vmx = to_vmx(vcpu);
4049
4050 if (!cpu_has_virtual_nmis()) {
4051 if (vmx->soft_vnmi_blocked != masked) {
4052 vmx->soft_vnmi_blocked = masked;
4053 vmx->vnmi_blocked_time = 0;
4054 }
4055 } else {
9d58b931 4056 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4057 if (masked)
4058 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4059 GUEST_INTR_STATE_NMI);
4060 else
4061 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4062 GUEST_INTR_STATE_NMI);
4063 }
4064}
4065
78646121
GN
4066static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4067{
b6f1250e 4068 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4069 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4070 if (to_vmx(vcpu)->nested.nested_run_pending ||
4071 (vmcs12->idt_vectoring_info_field &
4072 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4073 return 0;
4074 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4075 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4076 vmcs12->vm_exit_intr_info = 0;
4077 /* fall through to normal code, but now in L1, not L2 */
4078 }
4079
c4282df9
GN
4080 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4081 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4082 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4083}
4084
cbc94022
IE
4085static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4086{
4087 int ret;
4088 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4089 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4090 .guest_phys_addr = addr,
4091 .memory_size = PAGE_SIZE * 3,
4092 .flags = 0,
4093 };
4094
4095 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4096 if (ret)
4097 return ret;
bfc6d222 4098 kvm->arch.tss_addr = addr;
93ea5388
GN
4099 if (!init_rmode_tss(kvm))
4100 return -ENOMEM;
4101
cbc94022
IE
4102 return 0;
4103}
4104
6aa8b732
AK
4105static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4106 int vec, u32 err_code)
4107{
b3f37707
NK
4108 /*
4109 * Instruction with address size override prefix opcode 0x67
4110 * Cause the #SS fault with 0 error code in VM86 mode.
4111 */
4112 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4113 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4114 return 1;
77ab6db0
JK
4115 /*
4116 * Forward all other exceptions that are valid in real mode.
4117 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4118 * the required debugging infrastructure rework.
4119 */
4120 switch (vec) {
77ab6db0 4121 case DB_VECTOR:
d0bfb940
JK
4122 if (vcpu->guest_debug &
4123 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4124 return 0;
4125 kvm_queue_exception(vcpu, vec);
4126 return 1;
77ab6db0 4127 case BP_VECTOR:
c573cd22
JK
4128 /*
4129 * Update instruction length as we may reinject the exception
4130 * from user space while in guest debugging mode.
4131 */
4132 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4133 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4134 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4135 return 0;
4136 /* fall through */
4137 case DE_VECTOR:
77ab6db0
JK
4138 case OF_VECTOR:
4139 case BR_VECTOR:
4140 case UD_VECTOR:
4141 case DF_VECTOR:
4142 case SS_VECTOR:
4143 case GP_VECTOR:
4144 case MF_VECTOR:
4145 kvm_queue_exception(vcpu, vec);
4146 return 1;
4147 }
6aa8b732
AK
4148 return 0;
4149}
4150
a0861c02
AK
4151/*
4152 * Trigger machine check on the host. We assume all the MSRs are already set up
4153 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4154 * We pass a fake environment to the machine check handler because we want
4155 * the guest to be always treated like user space, no matter what context
4156 * it used internally.
4157 */
4158static void kvm_machine_check(void)
4159{
4160#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4161 struct pt_regs regs = {
4162 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4163 .flags = X86_EFLAGS_IF,
4164 };
4165
4166 do_machine_check(&regs, 0);
4167#endif
4168}
4169
851ba692 4170static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4171{
4172 /* already handled by vcpu_run */
4173 return 1;
4174}
4175
851ba692 4176static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4177{
1155f76a 4178 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4179 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4180 u32 intr_info, ex_no, error_code;
42dbaa5a 4181 unsigned long cr2, rip, dr6;
6aa8b732
AK
4182 u32 vect_info;
4183 enum emulation_result er;
4184
1155f76a 4185 vect_info = vmx->idt_vectoring_info;
88786475 4186 intr_info = vmx->exit_intr_info;
6aa8b732 4187
a0861c02 4188 if (is_machine_check(intr_info))
851ba692 4189 return handle_machine_check(vcpu);
a0861c02 4190
6aa8b732 4191 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4192 !is_page_fault(intr_info)) {
4193 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4194 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4195 vcpu->run->internal.ndata = 2;
4196 vcpu->run->internal.data[0] = vect_info;
4197 vcpu->run->internal.data[1] = intr_info;
4198 return 0;
4199 }
6aa8b732 4200
e4a41889 4201 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4202 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4203
4204 if (is_no_device(intr_info)) {
5fd86fcf 4205 vmx_fpu_activate(vcpu);
2ab455cc
AL
4206 return 1;
4207 }
4208
7aa81cc0 4209 if (is_invalid_opcode(intr_info)) {
51d8b661 4210 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4211 if (er != EMULATE_DONE)
7ee5d940 4212 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4213 return 1;
4214 }
4215
6aa8b732 4216 error_code = 0;
2e11384c 4217 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4218 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4219 if (is_page_fault(intr_info)) {
1439442c 4220 /* EPT won't cause page fault directly */
cf3ace79 4221 BUG_ON(enable_ept);
6aa8b732 4222 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4223 trace_kvm_page_fault(cr2, error_code);
4224
3298b75c 4225 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4226 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4227 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4228 }
4229
7ffd92c5 4230 if (vmx->rmode.vm86_active &&
6aa8b732 4231 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4232 error_code)) {
ad312c7c
ZX
4233 if (vcpu->arch.halt_request) {
4234 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4235 return kvm_emulate_halt(vcpu);
4236 }
6aa8b732 4237 return 1;
72d6e5a0 4238 }
6aa8b732 4239
d0bfb940 4240 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4241 switch (ex_no) {
4242 case DB_VECTOR:
4243 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4244 if (!(vcpu->guest_debug &
4245 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4246 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4247 kvm_queue_exception(vcpu, DB_VECTOR);
4248 return 1;
4249 }
4250 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4251 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4252 /* fall through */
4253 case BP_VECTOR:
c573cd22
JK
4254 /*
4255 * Update instruction length as we may reinject #BP from
4256 * user space while in guest debugging mode. Reading it for
4257 * #DB as well causes no harm, it is not used in that case.
4258 */
4259 vmx->vcpu.arch.event_exit_inst_len =
4260 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4261 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4262 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4263 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4264 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4265 break;
4266 default:
d0bfb940
JK
4267 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4268 kvm_run->ex.exception = ex_no;
4269 kvm_run->ex.error_code = error_code;
42dbaa5a 4270 break;
6aa8b732 4271 }
6aa8b732
AK
4272 return 0;
4273}
4274
851ba692 4275static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4276{
1165f5fe 4277 ++vcpu->stat.irq_exits;
6aa8b732
AK
4278 return 1;
4279}
4280
851ba692 4281static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4282{
851ba692 4283 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4284 return 0;
4285}
6aa8b732 4286
851ba692 4287static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4288{
bfdaab09 4289 unsigned long exit_qualification;
34c33d16 4290 int size, in, string;
039576c0 4291 unsigned port;
6aa8b732 4292
bfdaab09 4293 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4294 string = (exit_qualification & 16) != 0;
cf8f70bf 4295 in = (exit_qualification & 8) != 0;
e70669ab 4296
cf8f70bf 4297 ++vcpu->stat.io_exits;
e70669ab 4298
cf8f70bf 4299 if (string || in)
51d8b661 4300 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4301
cf8f70bf
GN
4302 port = exit_qualification >> 16;
4303 size = (exit_qualification & 7) + 1;
e93f36bc 4304 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4305
4306 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4307}
4308
102d8325
IM
4309static void
4310vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4311{
4312 /*
4313 * Patch in the VMCALL instruction:
4314 */
4315 hypercall[0] = 0x0f;
4316 hypercall[1] = 0x01;
4317 hypercall[2] = 0xc1;
102d8325
IM
4318}
4319
eeadf9e7
NHE
4320/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4321static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4322{
4323 if (to_vmx(vcpu)->nested.vmxon &&
4324 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4325 return 1;
4326
4327 if (is_guest_mode(vcpu)) {
4328 /*
4329 * We get here when L2 changed cr0 in a way that did not change
4330 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4331 * but did change L0 shadowed bits. This can currently happen
4332 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4333 * loading) while pretending to allow the guest to change it.
4334 */
4335 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4336 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4337 return 1;
4338 vmcs_writel(CR0_READ_SHADOW, val);
4339 return 0;
4340 } else
4341 return kvm_set_cr0(vcpu, val);
4342}
4343
4344static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4345{
4346 if (is_guest_mode(vcpu)) {
4347 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4348 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4349 return 1;
4350 vmcs_writel(CR4_READ_SHADOW, val);
4351 return 0;
4352 } else
4353 return kvm_set_cr4(vcpu, val);
4354}
4355
4356/* called to set cr0 as approriate for clts instruction exit. */
4357static void handle_clts(struct kvm_vcpu *vcpu)
4358{
4359 if (is_guest_mode(vcpu)) {
4360 /*
4361 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4362 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4363 * just pretend it's off (also in arch.cr0 for fpu_activate).
4364 */
4365 vmcs_writel(CR0_READ_SHADOW,
4366 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4367 vcpu->arch.cr0 &= ~X86_CR0_TS;
4368 } else
4369 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4370}
4371
851ba692 4372static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4373{
229456fc 4374 unsigned long exit_qualification, val;
6aa8b732
AK
4375 int cr;
4376 int reg;
49a9b07e 4377 int err;
6aa8b732 4378
bfdaab09 4379 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4380 cr = exit_qualification & 15;
4381 reg = (exit_qualification >> 8) & 15;
4382 switch ((exit_qualification >> 4) & 3) {
4383 case 0: /* mov to cr */
229456fc
MT
4384 val = kvm_register_read(vcpu, reg);
4385 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4386 switch (cr) {
4387 case 0:
eeadf9e7 4388 err = handle_set_cr0(vcpu, val);
db8fcefa 4389 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4390 return 1;
4391 case 3:
2390218b 4392 err = kvm_set_cr3(vcpu, val);
db8fcefa 4393 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4394 return 1;
4395 case 4:
eeadf9e7 4396 err = handle_set_cr4(vcpu, val);
db8fcefa 4397 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4398 return 1;
0a5fff19
GN
4399 case 8: {
4400 u8 cr8_prev = kvm_get_cr8(vcpu);
4401 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4402 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4403 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4404 if (irqchip_in_kernel(vcpu->kvm))
4405 return 1;
4406 if (cr8_prev <= cr8)
4407 return 1;
851ba692 4408 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4409 return 0;
4410 }
6aa8b732
AK
4411 };
4412 break;
25c4c276 4413 case 2: /* clts */
eeadf9e7 4414 handle_clts(vcpu);
4d4ec087 4415 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4416 skip_emulated_instruction(vcpu);
6b52d186 4417 vmx_fpu_activate(vcpu);
25c4c276 4418 return 1;
6aa8b732
AK
4419 case 1: /*mov from cr*/
4420 switch (cr) {
4421 case 3:
9f8fe504
AK
4422 val = kvm_read_cr3(vcpu);
4423 kvm_register_write(vcpu, reg, val);
4424 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4425 skip_emulated_instruction(vcpu);
4426 return 1;
4427 case 8:
229456fc
MT
4428 val = kvm_get_cr8(vcpu);
4429 kvm_register_write(vcpu, reg, val);
4430 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4431 skip_emulated_instruction(vcpu);
4432 return 1;
4433 }
4434 break;
4435 case 3: /* lmsw */
a1f83a74 4436 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4437 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4438 kvm_lmsw(vcpu, val);
6aa8b732
AK
4439
4440 skip_emulated_instruction(vcpu);
4441 return 1;
4442 default:
4443 break;
4444 }
851ba692 4445 vcpu->run->exit_reason = 0;
f0242478 4446 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4447 (int)(exit_qualification >> 4) & 3, cr);
4448 return 0;
4449}
4450
851ba692 4451static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4452{
bfdaab09 4453 unsigned long exit_qualification;
6aa8b732
AK
4454 int dr, reg;
4455
f2483415 4456 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4457 if (!kvm_require_cpl(vcpu, 0))
4458 return 1;
42dbaa5a
JK
4459 dr = vmcs_readl(GUEST_DR7);
4460 if (dr & DR7_GD) {
4461 /*
4462 * As the vm-exit takes precedence over the debug trap, we
4463 * need to emulate the latter, either for the host or the
4464 * guest debugging itself.
4465 */
4466 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4467 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4468 vcpu->run->debug.arch.dr7 = dr;
4469 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4470 vmcs_readl(GUEST_CS_BASE) +
4471 vmcs_readl(GUEST_RIP);
851ba692
AK
4472 vcpu->run->debug.arch.exception = DB_VECTOR;
4473 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4474 return 0;
4475 } else {
4476 vcpu->arch.dr7 &= ~DR7_GD;
4477 vcpu->arch.dr6 |= DR6_BD;
4478 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4479 kvm_queue_exception(vcpu, DB_VECTOR);
4480 return 1;
4481 }
4482 }
4483
bfdaab09 4484 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4485 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4486 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4487 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4488 unsigned long val;
4489 if (!kvm_get_dr(vcpu, dr, &val))
4490 kvm_register_write(vcpu, reg, val);
4491 } else
4492 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4493 skip_emulated_instruction(vcpu);
4494 return 1;
4495}
4496
020df079
GN
4497static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4498{
4499 vmcs_writel(GUEST_DR7, val);
4500}
4501
851ba692 4502static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4503{
06465c5a
AK
4504 kvm_emulate_cpuid(vcpu);
4505 return 1;
6aa8b732
AK
4506}
4507
851ba692 4508static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4509{
ad312c7c 4510 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4511 u64 data;
4512
4513 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4514 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4515 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4516 return 1;
4517 }
4518
229456fc 4519 trace_kvm_msr_read(ecx, data);
2714d1d3 4520
6aa8b732 4521 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4522 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4523 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4524 skip_emulated_instruction(vcpu);
4525 return 1;
4526}
4527
851ba692 4528static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4529{
ad312c7c
ZX
4530 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4531 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4532 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4533
4534 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4535 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4536 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4537 return 1;
4538 }
4539
59200273 4540 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4541 skip_emulated_instruction(vcpu);
4542 return 1;
4543}
4544
851ba692 4545static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4546{
3842d135 4547 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4548 return 1;
4549}
4550
851ba692 4551static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4552{
85f455f7
ED
4553 u32 cpu_based_vm_exec_control;
4554
4555 /* clear pending irq */
4556 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4557 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4558 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4559
3842d135
AK
4560 kvm_make_request(KVM_REQ_EVENT, vcpu);
4561
a26bf12a 4562 ++vcpu->stat.irq_window_exits;
2714d1d3 4563
c1150d8c
DL
4564 /*
4565 * If the user space waits to inject interrupts, exit as soon as
4566 * possible
4567 */
8061823a 4568 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4569 vcpu->run->request_interrupt_window &&
8061823a 4570 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4571 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4572 return 0;
4573 }
6aa8b732
AK
4574 return 1;
4575}
4576
851ba692 4577static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4578{
4579 skip_emulated_instruction(vcpu);
d3bef15f 4580 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4581}
4582
851ba692 4583static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4584{
510043da 4585 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4586 kvm_emulate_hypercall(vcpu);
4587 return 1;
c21415e8
IM
4588}
4589
ec25d5e6
GN
4590static int handle_invd(struct kvm_vcpu *vcpu)
4591{
51d8b661 4592 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4593}
4594
851ba692 4595static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4596{
f9c617f6 4597 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4598
4599 kvm_mmu_invlpg(vcpu, exit_qualification);
4600 skip_emulated_instruction(vcpu);
4601 return 1;
4602}
4603
fee84b07
AK
4604static int handle_rdpmc(struct kvm_vcpu *vcpu)
4605{
4606 int err;
4607
4608 err = kvm_rdpmc(vcpu);
4609 kvm_complete_insn_gp(vcpu, err);
4610
4611 return 1;
4612}
4613
851ba692 4614static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4615{
4616 skip_emulated_instruction(vcpu);
f5f48ee1 4617 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4618 return 1;
4619}
4620
2acf923e
DC
4621static int handle_xsetbv(struct kvm_vcpu *vcpu)
4622{
4623 u64 new_bv = kvm_read_edx_eax(vcpu);
4624 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4625
4626 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4627 skip_emulated_instruction(vcpu);
4628 return 1;
4629}
4630
851ba692 4631static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4632{
58fbbf26
KT
4633 if (likely(fasteoi)) {
4634 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4635 int access_type, offset;
4636
4637 access_type = exit_qualification & APIC_ACCESS_TYPE;
4638 offset = exit_qualification & APIC_ACCESS_OFFSET;
4639 /*
4640 * Sane guest uses MOV to write EOI, with written value
4641 * not cared. So make a short-circuit here by avoiding
4642 * heavy instruction emulation.
4643 */
4644 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4645 (offset == APIC_EOI)) {
4646 kvm_lapic_set_eoi(vcpu);
4647 skip_emulated_instruction(vcpu);
4648 return 1;
4649 }
4650 }
51d8b661 4651 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4652}
4653
851ba692 4654static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4655{
60637aac 4656 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4657 unsigned long exit_qualification;
e269fb21
JK
4658 bool has_error_code = false;
4659 u32 error_code = 0;
37817f29 4660 u16 tss_selector;
64a7ec06
GN
4661 int reason, type, idt_v;
4662
4663 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4664 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4665
4666 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4667
4668 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4669 if (reason == TASK_SWITCH_GATE && idt_v) {
4670 switch (type) {
4671 case INTR_TYPE_NMI_INTR:
4672 vcpu->arch.nmi_injected = false;
654f06fc 4673 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4674 break;
4675 case INTR_TYPE_EXT_INTR:
66fd3f7f 4676 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4677 kvm_clear_interrupt_queue(vcpu);
4678 break;
4679 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4680 if (vmx->idt_vectoring_info &
4681 VECTORING_INFO_DELIVER_CODE_MASK) {
4682 has_error_code = true;
4683 error_code =
4684 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4685 }
4686 /* fall through */
64a7ec06
GN
4687 case INTR_TYPE_SOFT_EXCEPTION:
4688 kvm_clear_exception_queue(vcpu);
4689 break;
4690 default:
4691 break;
4692 }
60637aac 4693 }
37817f29
IE
4694 tss_selector = exit_qualification;
4695
64a7ec06
GN
4696 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4697 type != INTR_TYPE_EXT_INTR &&
4698 type != INTR_TYPE_NMI_INTR))
4699 skip_emulated_instruction(vcpu);
4700
acb54517
GN
4701 if (kvm_task_switch(vcpu, tss_selector, reason,
4702 has_error_code, error_code) == EMULATE_FAIL) {
4703 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4704 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4705 vcpu->run->internal.ndata = 0;
42dbaa5a 4706 return 0;
acb54517 4707 }
42dbaa5a
JK
4708
4709 /* clear all local breakpoint enable flags */
4710 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4711
4712 /*
4713 * TODO: What about debug traps on tss switch?
4714 * Are we supposed to inject them and update dr6?
4715 */
4716
4717 return 1;
37817f29
IE
4718}
4719
851ba692 4720static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4721{
f9c617f6 4722 unsigned long exit_qualification;
1439442c 4723 gpa_t gpa;
1439442c 4724 int gla_validity;
1439442c 4725
f9c617f6 4726 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4727
4728 if (exit_qualification & (1 << 6)) {
4729 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4730 return -EINVAL;
1439442c
SY
4731 }
4732
4733 gla_validity = (exit_qualification >> 7) & 0x3;
4734 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4735 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4736 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4737 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4738 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4739 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4740 (long unsigned int)exit_qualification);
851ba692
AK
4741 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4742 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4743 return 0;
1439442c
SY
4744 }
4745
4746 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4747 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4748 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4749}
4750
68f89400
MT
4751static u64 ept_rsvd_mask(u64 spte, int level)
4752{
4753 int i;
4754 u64 mask = 0;
4755
4756 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4757 mask |= (1ULL << i);
4758
4759 if (level > 2)
4760 /* bits 7:3 reserved */
4761 mask |= 0xf8;
4762 else if (level == 2) {
4763 if (spte & (1ULL << 7))
4764 /* 2MB ref, bits 20:12 reserved */
4765 mask |= 0x1ff000;
4766 else
4767 /* bits 6:3 reserved */
4768 mask |= 0x78;
4769 }
4770
4771 return mask;
4772}
4773
4774static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4775 int level)
4776{
4777 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4778
4779 /* 010b (write-only) */
4780 WARN_ON((spte & 0x7) == 0x2);
4781
4782 /* 110b (write/execute) */
4783 WARN_ON((spte & 0x7) == 0x6);
4784
4785 /* 100b (execute-only) and value not supported by logical processor */
4786 if (!cpu_has_vmx_ept_execute_only())
4787 WARN_ON((spte & 0x7) == 0x4);
4788
4789 /* not 000b */
4790 if ((spte & 0x7)) {
4791 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4792
4793 if (rsvd_bits != 0) {
4794 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4795 __func__, rsvd_bits);
4796 WARN_ON(1);
4797 }
4798
4799 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4800 u64 ept_mem_type = (spte & 0x38) >> 3;
4801
4802 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4803 ept_mem_type == 7) {
4804 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4805 __func__, ept_mem_type);
4806 WARN_ON(1);
4807 }
4808 }
4809 }
4810}
4811
851ba692 4812static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4813{
4814 u64 sptes[4];
ce88decf 4815 int nr_sptes, i, ret;
68f89400
MT
4816 gpa_t gpa;
4817
4818 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4819
ce88decf
XG
4820 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4821 if (likely(ret == 1))
4822 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4823 EMULATE_DONE;
4824 if (unlikely(!ret))
4825 return 1;
4826
4827 /* It is the real ept misconfig */
68f89400
MT
4828 printk(KERN_ERR "EPT: Misconfiguration.\n");
4829 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4830
4831 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4832
4833 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4834 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4835
851ba692
AK
4836 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4837 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4838
4839 return 0;
4840}
4841
851ba692 4842static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4843{
4844 u32 cpu_based_vm_exec_control;
4845
4846 /* clear pending NMI */
4847 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4848 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4849 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4850 ++vcpu->stat.nmi_window_exits;
3842d135 4851 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4852
4853 return 1;
4854}
4855
80ced186 4856static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4857{
8b3079a5
AK
4858 struct vcpu_vmx *vmx = to_vmx(vcpu);
4859 enum emulation_result err = EMULATE_DONE;
80ced186 4860 int ret = 1;
49e9d557
AK
4861 u32 cpu_exec_ctrl;
4862 bool intr_window_requested;
4863
4864 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4865 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4866
4867 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4868 if (intr_window_requested
4869 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4870 return handle_interrupt_window(&vmx->vcpu);
4871
51d8b661 4872 err = emulate_instruction(vcpu, 0);
ea953ef0 4873
80ced186
MG
4874 if (err == EMULATE_DO_MMIO) {
4875 ret = 0;
4876 goto out;
4877 }
1d5a4d9b 4878
6d77dbfc
GN
4879 if (err != EMULATE_DONE)
4880 return 0;
ea953ef0
MG
4881
4882 if (signal_pending(current))
80ced186 4883 goto out;
ea953ef0
MG
4884 if (need_resched())
4885 schedule();
4886 }
4887
80ced186
MG
4888 vmx->emulation_required = 0;
4889out:
4890 return ret;
ea953ef0
MG
4891}
4892
4b8d54f9
ZE
4893/*
4894 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4895 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4896 */
9fb41ba8 4897static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4898{
4899 skip_emulated_instruction(vcpu);
4900 kvm_vcpu_on_spin(vcpu);
4901
4902 return 1;
4903}
4904
59708670
SY
4905static int handle_invalid_op(struct kvm_vcpu *vcpu)
4906{
4907 kvm_queue_exception(vcpu, UD_VECTOR);
4908 return 1;
4909}
4910
ff2f6fe9
NHE
4911/*
4912 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4913 * We could reuse a single VMCS for all the L2 guests, but we also want the
4914 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4915 * allows keeping them loaded on the processor, and in the future will allow
4916 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4917 * every entry if they never change.
4918 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4919 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4920 *
4921 * The following functions allocate and free a vmcs02 in this pool.
4922 */
4923
4924/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4925static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4926{
4927 struct vmcs02_list *item;
4928 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4929 if (item->vmptr == vmx->nested.current_vmptr) {
4930 list_move(&item->list, &vmx->nested.vmcs02_pool);
4931 return &item->vmcs02;
4932 }
4933
4934 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4935 /* Recycle the least recently used VMCS. */
4936 item = list_entry(vmx->nested.vmcs02_pool.prev,
4937 struct vmcs02_list, list);
4938 item->vmptr = vmx->nested.current_vmptr;
4939 list_move(&item->list, &vmx->nested.vmcs02_pool);
4940 return &item->vmcs02;
4941 }
4942
4943 /* Create a new VMCS */
4944 item = (struct vmcs02_list *)
4945 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4946 if (!item)
4947 return NULL;
4948 item->vmcs02.vmcs = alloc_vmcs();
4949 if (!item->vmcs02.vmcs) {
4950 kfree(item);
4951 return NULL;
4952 }
4953 loaded_vmcs_init(&item->vmcs02);
4954 item->vmptr = vmx->nested.current_vmptr;
4955 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4956 vmx->nested.vmcs02_num++;
4957 return &item->vmcs02;
4958}
4959
4960/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4961static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4962{
4963 struct vmcs02_list *item;
4964 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4965 if (item->vmptr == vmptr) {
4966 free_loaded_vmcs(&item->vmcs02);
4967 list_del(&item->list);
4968 kfree(item);
4969 vmx->nested.vmcs02_num--;
4970 return;
4971 }
4972}
4973
4974/*
4975 * Free all VMCSs saved for this vcpu, except the one pointed by
4976 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4977 * currently used, if running L2), and vmcs01 when running L2.
4978 */
4979static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4980{
4981 struct vmcs02_list *item, *n;
4982 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4983 if (vmx->loaded_vmcs != &item->vmcs02)
4984 free_loaded_vmcs(&item->vmcs02);
4985 list_del(&item->list);
4986 kfree(item);
4987 }
4988 vmx->nested.vmcs02_num = 0;
4989
4990 if (vmx->loaded_vmcs != &vmx->vmcs01)
4991 free_loaded_vmcs(&vmx->vmcs01);
4992}
4993
ec378aee
NHE
4994/*
4995 * Emulate the VMXON instruction.
4996 * Currently, we just remember that VMX is active, and do not save or even
4997 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4998 * do not currently need to store anything in that guest-allocated memory
4999 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5000 * argument is different from the VMXON pointer (which the spec says they do).
5001 */
5002static int handle_vmon(struct kvm_vcpu *vcpu)
5003{
5004 struct kvm_segment cs;
5005 struct vcpu_vmx *vmx = to_vmx(vcpu);
5006
5007 /* The Intel VMX Instruction Reference lists a bunch of bits that
5008 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5009 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5010 * Otherwise, we should fail with #UD. We test these now:
5011 */
5012 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5013 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5014 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5015 kvm_queue_exception(vcpu, UD_VECTOR);
5016 return 1;
5017 }
5018
5019 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5020 if (is_long_mode(vcpu) && !cs.l) {
5021 kvm_queue_exception(vcpu, UD_VECTOR);
5022 return 1;
5023 }
5024
5025 if (vmx_get_cpl(vcpu)) {
5026 kvm_inject_gp(vcpu, 0);
5027 return 1;
5028 }
5029
ff2f6fe9
NHE
5030 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5031 vmx->nested.vmcs02_num = 0;
5032
ec378aee
NHE
5033 vmx->nested.vmxon = true;
5034
5035 skip_emulated_instruction(vcpu);
5036 return 1;
5037}
5038
5039/*
5040 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5041 * for running VMX instructions (except VMXON, whose prerequisites are
5042 * slightly different). It also specifies what exception to inject otherwise.
5043 */
5044static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5045{
5046 struct kvm_segment cs;
5047 struct vcpu_vmx *vmx = to_vmx(vcpu);
5048
5049 if (!vmx->nested.vmxon) {
5050 kvm_queue_exception(vcpu, UD_VECTOR);
5051 return 0;
5052 }
5053
5054 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5055 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5056 (is_long_mode(vcpu) && !cs.l)) {
5057 kvm_queue_exception(vcpu, UD_VECTOR);
5058 return 0;
5059 }
5060
5061 if (vmx_get_cpl(vcpu)) {
5062 kvm_inject_gp(vcpu, 0);
5063 return 0;
5064 }
5065
5066 return 1;
5067}
5068
5069/*
5070 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5071 * just stops using VMX.
5072 */
5073static void free_nested(struct vcpu_vmx *vmx)
5074{
5075 if (!vmx->nested.vmxon)
5076 return;
5077 vmx->nested.vmxon = false;
a9d30f33
NHE
5078 if (vmx->nested.current_vmptr != -1ull) {
5079 kunmap(vmx->nested.current_vmcs12_page);
5080 nested_release_page(vmx->nested.current_vmcs12_page);
5081 vmx->nested.current_vmptr = -1ull;
5082 vmx->nested.current_vmcs12 = NULL;
5083 }
fe3ef05c
NHE
5084 /* Unpin physical memory we referred to in current vmcs02 */
5085 if (vmx->nested.apic_access_page) {
5086 nested_release_page(vmx->nested.apic_access_page);
5087 vmx->nested.apic_access_page = 0;
5088 }
ff2f6fe9
NHE
5089
5090 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5091}
5092
5093/* Emulate the VMXOFF instruction */
5094static int handle_vmoff(struct kvm_vcpu *vcpu)
5095{
5096 if (!nested_vmx_check_permission(vcpu))
5097 return 1;
5098 free_nested(to_vmx(vcpu));
5099 skip_emulated_instruction(vcpu);
5100 return 1;
5101}
5102
064aea77
NHE
5103/*
5104 * Decode the memory-address operand of a vmx instruction, as recorded on an
5105 * exit caused by such an instruction (run by a guest hypervisor).
5106 * On success, returns 0. When the operand is invalid, returns 1 and throws
5107 * #UD or #GP.
5108 */
5109static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5110 unsigned long exit_qualification,
5111 u32 vmx_instruction_info, gva_t *ret)
5112{
5113 /*
5114 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5115 * Execution", on an exit, vmx_instruction_info holds most of the
5116 * addressing components of the operand. Only the displacement part
5117 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5118 * For how an actual address is calculated from all these components,
5119 * refer to Vol. 1, "Operand Addressing".
5120 */
5121 int scaling = vmx_instruction_info & 3;
5122 int addr_size = (vmx_instruction_info >> 7) & 7;
5123 bool is_reg = vmx_instruction_info & (1u << 10);
5124 int seg_reg = (vmx_instruction_info >> 15) & 7;
5125 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5126 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5127 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5128 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5129
5130 if (is_reg) {
5131 kvm_queue_exception(vcpu, UD_VECTOR);
5132 return 1;
5133 }
5134
5135 /* Addr = segment_base + offset */
5136 /* offset = base + [index * scale] + displacement */
5137 *ret = vmx_get_segment_base(vcpu, seg_reg);
5138 if (base_is_valid)
5139 *ret += kvm_register_read(vcpu, base_reg);
5140 if (index_is_valid)
5141 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5142 *ret += exit_qualification; /* holds the displacement */
5143
5144 if (addr_size == 1) /* 32 bit */
5145 *ret &= 0xffffffff;
5146
5147 /*
5148 * TODO: throw #GP (and return 1) in various cases that the VM*
5149 * instructions require it - e.g., offset beyond segment limit,
5150 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5151 * address, and so on. Currently these are not checked.
5152 */
5153 return 0;
5154}
5155
0140caea
NHE
5156/*
5157 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5158 * set the success or error code of an emulated VMX instruction, as specified
5159 * by Vol 2B, VMX Instruction Reference, "Conventions".
5160 */
5161static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5162{
5163 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5164 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5165 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5166}
5167
5168static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5169{
5170 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5171 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5172 X86_EFLAGS_SF | X86_EFLAGS_OF))
5173 | X86_EFLAGS_CF);
5174}
5175
5176static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5177 u32 vm_instruction_error)
5178{
5179 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5180 /*
5181 * failValid writes the error number to the current VMCS, which
5182 * can't be done there isn't a current VMCS.
5183 */
5184 nested_vmx_failInvalid(vcpu);
5185 return;
5186 }
5187 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5188 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5189 X86_EFLAGS_SF | X86_EFLAGS_OF))
5190 | X86_EFLAGS_ZF);
5191 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5192}
5193
27d6c865
NHE
5194/* Emulate the VMCLEAR instruction */
5195static int handle_vmclear(struct kvm_vcpu *vcpu)
5196{
5197 struct vcpu_vmx *vmx = to_vmx(vcpu);
5198 gva_t gva;
5199 gpa_t vmptr;
5200 struct vmcs12 *vmcs12;
5201 struct page *page;
5202 struct x86_exception e;
5203
5204 if (!nested_vmx_check_permission(vcpu))
5205 return 1;
5206
5207 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5208 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5209 return 1;
5210
5211 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5212 sizeof(vmptr), &e)) {
5213 kvm_inject_page_fault(vcpu, &e);
5214 return 1;
5215 }
5216
5217 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5218 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5219 skip_emulated_instruction(vcpu);
5220 return 1;
5221 }
5222
5223 if (vmptr == vmx->nested.current_vmptr) {
5224 kunmap(vmx->nested.current_vmcs12_page);
5225 nested_release_page(vmx->nested.current_vmcs12_page);
5226 vmx->nested.current_vmptr = -1ull;
5227 vmx->nested.current_vmcs12 = NULL;
5228 }
5229
5230 page = nested_get_page(vcpu, vmptr);
5231 if (page == NULL) {
5232 /*
5233 * For accurate processor emulation, VMCLEAR beyond available
5234 * physical memory should do nothing at all. However, it is
5235 * possible that a nested vmx bug, not a guest hypervisor bug,
5236 * resulted in this case, so let's shut down before doing any
5237 * more damage:
5238 */
5239 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5240 return 1;
5241 }
5242 vmcs12 = kmap(page);
5243 vmcs12->launch_state = 0;
5244 kunmap(page);
5245 nested_release_page(page);
5246
5247 nested_free_vmcs02(vmx, vmptr);
5248
5249 skip_emulated_instruction(vcpu);
5250 nested_vmx_succeed(vcpu);
5251 return 1;
5252}
5253
cd232ad0
NHE
5254static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5255
5256/* Emulate the VMLAUNCH instruction */
5257static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5258{
5259 return nested_vmx_run(vcpu, true);
5260}
5261
5262/* Emulate the VMRESUME instruction */
5263static int handle_vmresume(struct kvm_vcpu *vcpu)
5264{
5265
5266 return nested_vmx_run(vcpu, false);
5267}
5268
49f705c5
NHE
5269enum vmcs_field_type {
5270 VMCS_FIELD_TYPE_U16 = 0,
5271 VMCS_FIELD_TYPE_U64 = 1,
5272 VMCS_FIELD_TYPE_U32 = 2,
5273 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5274};
5275
5276static inline int vmcs_field_type(unsigned long field)
5277{
5278 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5279 return VMCS_FIELD_TYPE_U32;
5280 return (field >> 13) & 0x3 ;
5281}
5282
5283static inline int vmcs_field_readonly(unsigned long field)
5284{
5285 return (((field >> 10) & 0x3) == 1);
5286}
5287
5288/*
5289 * Read a vmcs12 field. Since these can have varying lengths and we return
5290 * one type, we chose the biggest type (u64) and zero-extend the return value
5291 * to that size. Note that the caller, handle_vmread, might need to use only
5292 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5293 * 64-bit fields are to be returned).
5294 */
5295static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5296 unsigned long field, u64 *ret)
5297{
5298 short offset = vmcs_field_to_offset(field);
5299 char *p;
5300
5301 if (offset < 0)
5302 return 0;
5303
5304 p = ((char *)(get_vmcs12(vcpu))) + offset;
5305
5306 switch (vmcs_field_type(field)) {
5307 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5308 *ret = *((natural_width *)p);
5309 return 1;
5310 case VMCS_FIELD_TYPE_U16:
5311 *ret = *((u16 *)p);
5312 return 1;
5313 case VMCS_FIELD_TYPE_U32:
5314 *ret = *((u32 *)p);
5315 return 1;
5316 case VMCS_FIELD_TYPE_U64:
5317 *ret = *((u64 *)p);
5318 return 1;
5319 default:
5320 return 0; /* can never happen. */
5321 }
5322}
5323
5324/*
5325 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5326 * used before) all generate the same failure when it is missing.
5327 */
5328static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5329{
5330 struct vcpu_vmx *vmx = to_vmx(vcpu);
5331 if (vmx->nested.current_vmptr == -1ull) {
5332 nested_vmx_failInvalid(vcpu);
5333 skip_emulated_instruction(vcpu);
5334 return 0;
5335 }
5336 return 1;
5337}
5338
5339static int handle_vmread(struct kvm_vcpu *vcpu)
5340{
5341 unsigned long field;
5342 u64 field_value;
5343 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5344 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5345 gva_t gva = 0;
5346
5347 if (!nested_vmx_check_permission(vcpu) ||
5348 !nested_vmx_check_vmcs12(vcpu))
5349 return 1;
5350
5351 /* Decode instruction info and find the field to read */
5352 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5353 /* Read the field, zero-extended to a u64 field_value */
5354 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5355 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5356 skip_emulated_instruction(vcpu);
5357 return 1;
5358 }
5359 /*
5360 * Now copy part of this value to register or memory, as requested.
5361 * Note that the number of bits actually copied is 32 or 64 depending
5362 * on the guest's mode (32 or 64 bit), not on the given field's length.
5363 */
5364 if (vmx_instruction_info & (1u << 10)) {
5365 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5366 field_value);
5367 } else {
5368 if (get_vmx_mem_address(vcpu, exit_qualification,
5369 vmx_instruction_info, &gva))
5370 return 1;
5371 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5372 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5373 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5374 }
5375
5376 nested_vmx_succeed(vcpu);
5377 skip_emulated_instruction(vcpu);
5378 return 1;
5379}
5380
5381
5382static int handle_vmwrite(struct kvm_vcpu *vcpu)
5383{
5384 unsigned long field;
5385 gva_t gva;
5386 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5387 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5388 char *p;
5389 short offset;
5390 /* The value to write might be 32 or 64 bits, depending on L1's long
5391 * mode, and eventually we need to write that into a field of several
5392 * possible lengths. The code below first zero-extends the value to 64
5393 * bit (field_value), and then copies only the approriate number of
5394 * bits into the vmcs12 field.
5395 */
5396 u64 field_value = 0;
5397 struct x86_exception e;
5398
5399 if (!nested_vmx_check_permission(vcpu) ||
5400 !nested_vmx_check_vmcs12(vcpu))
5401 return 1;
5402
5403 if (vmx_instruction_info & (1u << 10))
5404 field_value = kvm_register_read(vcpu,
5405 (((vmx_instruction_info) >> 3) & 0xf));
5406 else {
5407 if (get_vmx_mem_address(vcpu, exit_qualification,
5408 vmx_instruction_info, &gva))
5409 return 1;
5410 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5411 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5412 kvm_inject_page_fault(vcpu, &e);
5413 return 1;
5414 }
5415 }
5416
5417
5418 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5419 if (vmcs_field_readonly(field)) {
5420 nested_vmx_failValid(vcpu,
5421 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5422 skip_emulated_instruction(vcpu);
5423 return 1;
5424 }
5425
5426 offset = vmcs_field_to_offset(field);
5427 if (offset < 0) {
5428 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5429 skip_emulated_instruction(vcpu);
5430 return 1;
5431 }
5432 p = ((char *) get_vmcs12(vcpu)) + offset;
5433
5434 switch (vmcs_field_type(field)) {
5435 case VMCS_FIELD_TYPE_U16:
5436 *(u16 *)p = field_value;
5437 break;
5438 case VMCS_FIELD_TYPE_U32:
5439 *(u32 *)p = field_value;
5440 break;
5441 case VMCS_FIELD_TYPE_U64:
5442 *(u64 *)p = field_value;
5443 break;
5444 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5445 *(natural_width *)p = field_value;
5446 break;
5447 default:
5448 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5449 skip_emulated_instruction(vcpu);
5450 return 1;
5451 }
5452
5453 nested_vmx_succeed(vcpu);
5454 skip_emulated_instruction(vcpu);
5455 return 1;
5456}
5457
63846663
NHE
5458/* Emulate the VMPTRLD instruction */
5459static int handle_vmptrld(struct kvm_vcpu *vcpu)
5460{
5461 struct vcpu_vmx *vmx = to_vmx(vcpu);
5462 gva_t gva;
5463 gpa_t vmptr;
5464 struct x86_exception e;
5465
5466 if (!nested_vmx_check_permission(vcpu))
5467 return 1;
5468
5469 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5470 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5471 return 1;
5472
5473 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5474 sizeof(vmptr), &e)) {
5475 kvm_inject_page_fault(vcpu, &e);
5476 return 1;
5477 }
5478
5479 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5480 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5481 skip_emulated_instruction(vcpu);
5482 return 1;
5483 }
5484
5485 if (vmx->nested.current_vmptr != vmptr) {
5486 struct vmcs12 *new_vmcs12;
5487 struct page *page;
5488 page = nested_get_page(vcpu, vmptr);
5489 if (page == NULL) {
5490 nested_vmx_failInvalid(vcpu);
5491 skip_emulated_instruction(vcpu);
5492 return 1;
5493 }
5494 new_vmcs12 = kmap(page);
5495 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5496 kunmap(page);
5497 nested_release_page_clean(page);
5498 nested_vmx_failValid(vcpu,
5499 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5500 skip_emulated_instruction(vcpu);
5501 return 1;
5502 }
5503 if (vmx->nested.current_vmptr != -1ull) {
5504 kunmap(vmx->nested.current_vmcs12_page);
5505 nested_release_page(vmx->nested.current_vmcs12_page);
5506 }
5507
5508 vmx->nested.current_vmptr = vmptr;
5509 vmx->nested.current_vmcs12 = new_vmcs12;
5510 vmx->nested.current_vmcs12_page = page;
5511 }
5512
5513 nested_vmx_succeed(vcpu);
5514 skip_emulated_instruction(vcpu);
5515 return 1;
5516}
5517
6a4d7550
NHE
5518/* Emulate the VMPTRST instruction */
5519static int handle_vmptrst(struct kvm_vcpu *vcpu)
5520{
5521 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5522 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5523 gva_t vmcs_gva;
5524 struct x86_exception e;
5525
5526 if (!nested_vmx_check_permission(vcpu))
5527 return 1;
5528
5529 if (get_vmx_mem_address(vcpu, exit_qualification,
5530 vmx_instruction_info, &vmcs_gva))
5531 return 1;
5532 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5533 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5534 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5535 sizeof(u64), &e)) {
5536 kvm_inject_page_fault(vcpu, &e);
5537 return 1;
5538 }
5539 nested_vmx_succeed(vcpu);
5540 skip_emulated_instruction(vcpu);
5541 return 1;
5542}
5543
6aa8b732
AK
5544/*
5545 * The exit handlers return 1 if the exit was handled fully and guest execution
5546 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5547 * to be done to userspace and return 0.
5548 */
851ba692 5549static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5550 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5551 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5552 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5553 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5554 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5555 [EXIT_REASON_CR_ACCESS] = handle_cr,
5556 [EXIT_REASON_DR_ACCESS] = handle_dr,
5557 [EXIT_REASON_CPUID] = handle_cpuid,
5558 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5559 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5560 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5561 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5562 [EXIT_REASON_INVD] = handle_invd,
a7052897 5563 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5564 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5565 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5566 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5567 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5568 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5569 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5570 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5571 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5572 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5573 [EXIT_REASON_VMOFF] = handle_vmoff,
5574 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5575 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5576 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5577 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5578 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5579 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5580 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5581 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5582 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5583 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5584 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5585 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5586};
5587
5588static const int kvm_vmx_max_exit_handlers =
50a3485c 5589 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5590
644d711a
NHE
5591/*
5592 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5593 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5594 * disinterest in the current event (read or write a specific MSR) by using an
5595 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5596 */
5597static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5598 struct vmcs12 *vmcs12, u32 exit_reason)
5599{
5600 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5601 gpa_t bitmap;
5602
5603 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5604 return 1;
5605
5606 /*
5607 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5608 * for the four combinations of read/write and low/high MSR numbers.
5609 * First we need to figure out which of the four to use:
5610 */
5611 bitmap = vmcs12->msr_bitmap;
5612 if (exit_reason == EXIT_REASON_MSR_WRITE)
5613 bitmap += 2048;
5614 if (msr_index >= 0xc0000000) {
5615 msr_index -= 0xc0000000;
5616 bitmap += 1024;
5617 }
5618
5619 /* Then read the msr_index'th bit from this bitmap: */
5620 if (msr_index < 1024*8) {
5621 unsigned char b;
5622 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5623 return 1 & (b >> (msr_index & 7));
5624 } else
5625 return 1; /* let L1 handle the wrong parameter */
5626}
5627
5628/*
5629 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5630 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5631 * intercept (via guest_host_mask etc.) the current event.
5632 */
5633static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5634 struct vmcs12 *vmcs12)
5635{
5636 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5637 int cr = exit_qualification & 15;
5638 int reg = (exit_qualification >> 8) & 15;
5639 unsigned long val = kvm_register_read(vcpu, reg);
5640
5641 switch ((exit_qualification >> 4) & 3) {
5642 case 0: /* mov to cr */
5643 switch (cr) {
5644 case 0:
5645 if (vmcs12->cr0_guest_host_mask &
5646 (val ^ vmcs12->cr0_read_shadow))
5647 return 1;
5648 break;
5649 case 3:
5650 if ((vmcs12->cr3_target_count >= 1 &&
5651 vmcs12->cr3_target_value0 == val) ||
5652 (vmcs12->cr3_target_count >= 2 &&
5653 vmcs12->cr3_target_value1 == val) ||
5654 (vmcs12->cr3_target_count >= 3 &&
5655 vmcs12->cr3_target_value2 == val) ||
5656 (vmcs12->cr3_target_count >= 4 &&
5657 vmcs12->cr3_target_value3 == val))
5658 return 0;
5659 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5660 return 1;
5661 break;
5662 case 4:
5663 if (vmcs12->cr4_guest_host_mask &
5664 (vmcs12->cr4_read_shadow ^ val))
5665 return 1;
5666 break;
5667 case 8:
5668 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5669 return 1;
5670 break;
5671 }
5672 break;
5673 case 2: /* clts */
5674 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5675 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5676 return 1;
5677 break;
5678 case 1: /* mov from cr */
5679 switch (cr) {
5680 case 3:
5681 if (vmcs12->cpu_based_vm_exec_control &
5682 CPU_BASED_CR3_STORE_EXITING)
5683 return 1;
5684 break;
5685 case 8:
5686 if (vmcs12->cpu_based_vm_exec_control &
5687 CPU_BASED_CR8_STORE_EXITING)
5688 return 1;
5689 break;
5690 }
5691 break;
5692 case 3: /* lmsw */
5693 /*
5694 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5695 * cr0. Other attempted changes are ignored, with no exit.
5696 */
5697 if (vmcs12->cr0_guest_host_mask & 0xe &
5698 (val ^ vmcs12->cr0_read_shadow))
5699 return 1;
5700 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5701 !(vmcs12->cr0_read_shadow & 0x1) &&
5702 (val & 0x1))
5703 return 1;
5704 break;
5705 }
5706 return 0;
5707}
5708
5709/*
5710 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5711 * should handle it ourselves in L0 (and then continue L2). Only call this
5712 * when in is_guest_mode (L2).
5713 */
5714static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5715{
5716 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5717 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5718 struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5720
5721 if (vmx->nested.nested_run_pending)
5722 return 0;
5723
5724 if (unlikely(vmx->fail)) {
bd80158a
JK
5725 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5726 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5727 return 1;
5728 }
5729
5730 switch (exit_reason) {
5731 case EXIT_REASON_EXCEPTION_NMI:
5732 if (!is_exception(intr_info))
5733 return 0;
5734 else if (is_page_fault(intr_info))
5735 return enable_ept;
5736 return vmcs12->exception_bitmap &
5737 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5738 case EXIT_REASON_EXTERNAL_INTERRUPT:
5739 return 0;
5740 case EXIT_REASON_TRIPLE_FAULT:
5741 return 1;
5742 case EXIT_REASON_PENDING_INTERRUPT:
5743 case EXIT_REASON_NMI_WINDOW:
5744 /*
5745 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5746 * (aka Interrupt Window Exiting) only when L1 turned it on,
5747 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5748 * Same for NMI Window Exiting.
5749 */
5750 return 1;
5751 case EXIT_REASON_TASK_SWITCH:
5752 return 1;
5753 case EXIT_REASON_CPUID:
5754 return 1;
5755 case EXIT_REASON_HLT:
5756 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5757 case EXIT_REASON_INVD:
5758 return 1;
5759 case EXIT_REASON_INVLPG:
5760 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5761 case EXIT_REASON_RDPMC:
5762 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5763 case EXIT_REASON_RDTSC:
5764 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5765 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5766 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5767 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5768 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5769 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5770 /*
5771 * VMX instructions trap unconditionally. This allows L1 to
5772 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5773 */
5774 return 1;
5775 case EXIT_REASON_CR_ACCESS:
5776 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5777 case EXIT_REASON_DR_ACCESS:
5778 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5779 case EXIT_REASON_IO_INSTRUCTION:
5780 /* TODO: support IO bitmaps */
5781 return 1;
5782 case EXIT_REASON_MSR_READ:
5783 case EXIT_REASON_MSR_WRITE:
5784 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5785 case EXIT_REASON_INVALID_STATE:
5786 return 1;
5787 case EXIT_REASON_MWAIT_INSTRUCTION:
5788 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5789 case EXIT_REASON_MONITOR_INSTRUCTION:
5790 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5791 case EXIT_REASON_PAUSE_INSTRUCTION:
5792 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5793 nested_cpu_has2(vmcs12,
5794 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5795 case EXIT_REASON_MCE_DURING_VMENTRY:
5796 return 0;
5797 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5798 return 1;
5799 case EXIT_REASON_APIC_ACCESS:
5800 return nested_cpu_has2(vmcs12,
5801 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5802 case EXIT_REASON_EPT_VIOLATION:
5803 case EXIT_REASON_EPT_MISCONFIG:
5804 return 0;
5805 case EXIT_REASON_WBINVD:
5806 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5807 case EXIT_REASON_XSETBV:
5808 return 1;
5809 default:
5810 return 1;
5811 }
5812}
5813
586f9607
AK
5814static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5815{
5816 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5817 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5818}
5819
6aa8b732
AK
5820/*
5821 * The guest has exited. See if we can fix it or if we need userspace
5822 * assistance.
5823 */
851ba692 5824static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5825{
29bd8a78 5826 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5827 u32 exit_reason = vmx->exit_reason;
1155f76a 5828 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5829
80ced186
MG
5830 /* If guest state is invalid, start emulating */
5831 if (vmx->emulation_required && emulate_invalid_guest_state)
5832 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5833
b6f1250e
NHE
5834 /*
5835 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5836 * we did not inject a still-pending event to L1 now because of
5837 * nested_run_pending, we need to re-enable this bit.
5838 */
5839 if (vmx->nested.nested_run_pending)
5840 kvm_make_request(KVM_REQ_EVENT, vcpu);
5841
509c75ea
NHE
5842 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5843 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5844 vmx->nested.nested_run_pending = 1;
5845 else
5846 vmx->nested.nested_run_pending = 0;
5847
5848 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5849 nested_vmx_vmexit(vcpu);
5850 return 1;
5851 }
5852
5120702e
MG
5853 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5854 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5855 vcpu->run->fail_entry.hardware_entry_failure_reason
5856 = exit_reason;
5857 return 0;
5858 }
5859
29bd8a78 5860 if (unlikely(vmx->fail)) {
851ba692
AK
5861 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5862 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5863 = vmcs_read32(VM_INSTRUCTION_ERROR);
5864 return 0;
5865 }
6aa8b732 5866
d77c26fc 5867 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5868 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5869 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5870 exit_reason != EXIT_REASON_TASK_SWITCH))
5871 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5872 "(0x%x) and exit reason is 0x%x\n",
5873 __func__, vectoring_info, exit_reason);
3b86cd99 5874
644d711a
NHE
5875 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5876 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5877 get_vmcs12(vcpu), vcpu)))) {
c4282df9 5878 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5879 vmx->soft_vnmi_blocked = 0;
3b86cd99 5880 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5881 vcpu->arch.nmi_pending) {
3b86cd99
JK
5882 /*
5883 * This CPU don't support us in finding the end of an
5884 * NMI-blocked window if the guest runs with IRQs
5885 * disabled. So we pull the trigger after 1 s of
5886 * futile waiting, but inform the user about this.
5887 */
5888 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5889 "state on VCPU %d after 1 s timeout\n",
5890 __func__, vcpu->vcpu_id);
5891 vmx->soft_vnmi_blocked = 0;
3b86cd99 5892 }
3b86cd99
JK
5893 }
5894
6aa8b732
AK
5895 if (exit_reason < kvm_vmx_max_exit_handlers
5896 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5897 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5898 else {
851ba692
AK
5899 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5900 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5901 }
5902 return 0;
5903}
5904
95ba8273 5905static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5906{
95ba8273 5907 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5908 vmcs_write32(TPR_THRESHOLD, 0);
5909 return;
5910 }
5911
95ba8273 5912 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5913}
5914
51aa01d1 5915static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5916{
00eba012
AK
5917 u32 exit_intr_info;
5918
5919 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5920 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5921 return;
5922
c5ca8e57 5923 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5924 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5925
5926 /* Handle machine checks before interrupts are enabled */
00eba012 5927 if (is_machine_check(exit_intr_info))
a0861c02
AK
5928 kvm_machine_check();
5929
20f65983 5930 /* We need to handle NMIs before interrupts are enabled */
00eba012 5931 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5932 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5933 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5934 asm("int $2");
ff9d07a0
ZY
5935 kvm_after_handle_nmi(&vmx->vcpu);
5936 }
51aa01d1 5937}
20f65983 5938
51aa01d1
AK
5939static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5940{
c5ca8e57 5941 u32 exit_intr_info;
51aa01d1
AK
5942 bool unblock_nmi;
5943 u8 vector;
5944 bool idtv_info_valid;
5945
5946 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5947
cf393f75 5948 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5949 if (vmx->nmi_known_unmasked)
5950 return;
c5ca8e57
AK
5951 /*
5952 * Can't use vmx->exit_intr_info since we're not sure what
5953 * the exit reason is.
5954 */
5955 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5956 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5957 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5958 /*
7b4a25cb 5959 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5960 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5961 * a guest IRET fault.
7b4a25cb
GN
5962 * SDM 3: 23.2.2 (September 2008)
5963 * Bit 12 is undefined in any of the following cases:
5964 * If the VM exit sets the valid bit in the IDT-vectoring
5965 * information field.
5966 * If the VM exit is due to a double fault.
cf393f75 5967 */
7b4a25cb
GN
5968 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5969 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5970 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5971 GUEST_INTR_STATE_NMI);
9d58b931
AK
5972 else
5973 vmx->nmi_known_unmasked =
5974 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5975 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5976 } else if (unlikely(vmx->soft_vnmi_blocked))
5977 vmx->vnmi_blocked_time +=
5978 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5979}
5980
83422e17
AK
5981static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5982 u32 idt_vectoring_info,
5983 int instr_len_field,
5984 int error_code_field)
51aa01d1 5985{
51aa01d1
AK
5986 u8 vector;
5987 int type;
5988 bool idtv_info_valid;
5989
5990 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 5991
37b96e98
GN
5992 vmx->vcpu.arch.nmi_injected = false;
5993 kvm_clear_exception_queue(&vmx->vcpu);
5994 kvm_clear_interrupt_queue(&vmx->vcpu);
5995
5996 if (!idtv_info_valid)
5997 return;
5998
3842d135
AK
5999 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6000
668f612f
AK
6001 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6002 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6003
64a7ec06 6004 switch (type) {
37b96e98
GN
6005 case INTR_TYPE_NMI_INTR:
6006 vmx->vcpu.arch.nmi_injected = true;
668f612f 6007 /*
7b4a25cb 6008 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6009 * Clear bit "block by NMI" before VM entry if a NMI
6010 * delivery faulted.
668f612f 6011 */
654f06fc 6012 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6013 break;
37b96e98 6014 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6015 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6016 vmcs_read32(instr_len_field);
66fd3f7f
GN
6017 /* fall through */
6018 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6019 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6020 u32 err = vmcs_read32(error_code_field);
37b96e98 6021 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6022 } else
6023 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6024 break;
66fd3f7f
GN
6025 case INTR_TYPE_SOFT_INTR:
6026 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6027 vmcs_read32(instr_len_field);
66fd3f7f 6028 /* fall through */
37b96e98 6029 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6030 kvm_queue_interrupt(&vmx->vcpu, vector,
6031 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6032 break;
6033 default:
6034 break;
f7d9238f 6035 }
cf393f75
AK
6036}
6037
83422e17
AK
6038static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6039{
66c78ae4
NHE
6040 if (is_guest_mode(&vmx->vcpu))
6041 return;
83422e17
AK
6042 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6043 VM_EXIT_INSTRUCTION_LEN,
6044 IDT_VECTORING_ERROR_CODE);
6045}
6046
b463a6f7
AK
6047static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6048{
66c78ae4
NHE
6049 if (is_guest_mode(vcpu))
6050 return;
b463a6f7
AK
6051 __vmx_complete_interrupts(to_vmx(vcpu),
6052 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6053 VM_ENTRY_INSTRUCTION_LEN,
6054 VM_ENTRY_EXCEPTION_ERROR_CODE);
6055
6056 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6057}
6058
d7cd9796
GN
6059static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6060{
6061 int i, nr_msrs;
6062 struct perf_guest_switch_msr *msrs;
6063
6064 msrs = perf_guest_get_msrs(&nr_msrs);
6065
6066 if (!msrs)
6067 return;
6068
6069 for (i = 0; i < nr_msrs; i++)
6070 if (msrs[i].host == msrs[i].guest)
6071 clear_atomic_switch_msr(vmx, msrs[i].msr);
6072 else
6073 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6074 msrs[i].host);
6075}
6076
c801949d
AK
6077#ifdef CONFIG_X86_64
6078#define R "r"
6079#define Q "q"
6080#else
6081#define R "e"
6082#define Q "l"
6083#endif
6084
a3b5ba49 6085static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6086{
a2fa3e9f 6087 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 6088
66c78ae4
NHE
6089 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6091 if (vmcs12->idt_vectoring_info_field &
6092 VECTORING_INFO_VALID_MASK) {
6093 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6094 vmcs12->idt_vectoring_info_field);
6095 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6096 vmcs12->vm_exit_instruction_len);
6097 if (vmcs12->idt_vectoring_info_field &
6098 VECTORING_INFO_DELIVER_CODE_MASK)
6099 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6100 vmcs12->idt_vectoring_error_code);
6101 }
6102 }
6103
104f226b
AK
6104 /* Record the guest's net vcpu time for enforced NMI injections. */
6105 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6106 vmx->entry_time = ktime_get();
6107
6108 /* Don't enter VMX if guest state is invalid, let the exit handler
6109 start emulation until we arrive back to a valid state */
6110 if (vmx->emulation_required && emulate_invalid_guest_state)
6111 return;
6112
6113 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6114 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6115 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6116 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6117
6118 /* When single-stepping over STI and MOV SS, we must clear the
6119 * corresponding interruptibility bits in the guest state. Otherwise
6120 * vmentry fails as it then expects bit 14 (BS) in pending debug
6121 * exceptions being set, but that's not correct for the guest debugging
6122 * case. */
6123 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6124 vmx_set_interrupt_shadow(vcpu, 0);
6125
d7cd9796
GN
6126 atomic_switch_perf_msrs(vmx);
6127
d462b819 6128 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6129 asm(
6aa8b732 6130 /* Store host registers */
c801949d 6131 "push %%"R"dx; push %%"R"bp;"
40712fae 6132 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6133 "push %%"R"cx \n\t"
313dbd49
AK
6134 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6135 "je 1f \n\t"
6136 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6137 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6138 "1: \n\t"
d3edefc0
AK
6139 /* Reload cr2 if changed */
6140 "mov %c[cr2](%0), %%"R"ax \n\t"
6141 "mov %%cr2, %%"R"dx \n\t"
6142 "cmp %%"R"ax, %%"R"dx \n\t"
6143 "je 2f \n\t"
6144 "mov %%"R"ax, %%cr2 \n\t"
6145 "2: \n\t"
6aa8b732 6146 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6147 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6148 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6149 "mov %c[rax](%0), %%"R"ax \n\t"
6150 "mov %c[rbx](%0), %%"R"bx \n\t"
6151 "mov %c[rdx](%0), %%"R"dx \n\t"
6152 "mov %c[rsi](%0), %%"R"si \n\t"
6153 "mov %c[rdi](%0), %%"R"di \n\t"
6154 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6155#ifdef CONFIG_X86_64
e08aa78a
AK
6156 "mov %c[r8](%0), %%r8 \n\t"
6157 "mov %c[r9](%0), %%r9 \n\t"
6158 "mov %c[r10](%0), %%r10 \n\t"
6159 "mov %c[r11](%0), %%r11 \n\t"
6160 "mov %c[r12](%0), %%r12 \n\t"
6161 "mov %c[r13](%0), %%r13 \n\t"
6162 "mov %c[r14](%0), %%r14 \n\t"
6163 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6164#endif
c801949d
AK
6165 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6166
6aa8b732 6167 /* Enter guest mode */
cd2276a7 6168 "jne .Llaunched \n\t"
4ecac3fd 6169 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6170 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6171 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6172 ".Lkvm_vmx_return: "
6aa8b732 6173 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6174 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6175 "pop %0 \n\t"
c801949d
AK
6176 "mov %%"R"ax, %c[rax](%0) \n\t"
6177 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6178 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6179 "mov %%"R"dx, %c[rdx](%0) \n\t"
6180 "mov %%"R"si, %c[rsi](%0) \n\t"
6181 "mov %%"R"di, %c[rdi](%0) \n\t"
6182 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6183#ifdef CONFIG_X86_64
e08aa78a
AK
6184 "mov %%r8, %c[r8](%0) \n\t"
6185 "mov %%r9, %c[r9](%0) \n\t"
6186 "mov %%r10, %c[r10](%0) \n\t"
6187 "mov %%r11, %c[r11](%0) \n\t"
6188 "mov %%r12, %c[r12](%0) \n\t"
6189 "mov %%r13, %c[r13](%0) \n\t"
6190 "mov %%r14, %c[r14](%0) \n\t"
6191 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6192#endif
c801949d
AK
6193 "mov %%cr2, %%"R"ax \n\t"
6194 "mov %%"R"ax, %c[cr2](%0) \n\t"
6195
1c696d0e 6196 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6197 "setbe %c[fail](%0) \n\t"
6198 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6199 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6200 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6201 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6202 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6203 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6204 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6205 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6206 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6207 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6208 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6209#ifdef CONFIG_X86_64
ad312c7c
ZX
6210 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6211 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6212 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6213 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6214 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6215 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6216 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6217 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6218#endif
40712fae
AK
6219 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6220 [wordsize]"i"(sizeof(ulong))
c2036300 6221 : "cc", "memory"
07d6f555 6222 , R"ax", R"bx", R"di", R"si"
c2036300 6223#ifdef CONFIG_X86_64
c2036300
LV
6224 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6225#endif
6226 );
6aa8b732 6227
6de4f3ad 6228 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6229 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6230 | (1 << VCPU_EXREG_CPL)
aff48baa 6231 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6232 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6233 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6234 vcpu->arch.regs_dirty = 0;
6235
1155f76a
AK
6236 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6237
66c78ae4
NHE
6238 if (is_guest_mode(vcpu)) {
6239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6240 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6241 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6242 vmcs12->idt_vectoring_error_code =
6243 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6244 vmcs12->vm_exit_instruction_len =
6245 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6246 }
6247 }
6248
d77c26fc 6249 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 6250 vmx->loaded_vmcs->launched = 1;
1b6269db 6251
51aa01d1 6252 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6253 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6254
6255 vmx_complete_atomic_exit(vmx);
6256 vmx_recover_nmi_blocking(vmx);
cf393f75 6257 vmx_complete_interrupts(vmx);
6aa8b732
AK
6258}
6259
c801949d
AK
6260#undef R
6261#undef Q
6262
6aa8b732
AK
6263static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6264{
fb3f0f51
RR
6265 struct vcpu_vmx *vmx = to_vmx(vcpu);
6266
cdbecfc3 6267 free_vpid(vmx);
ec378aee 6268 free_nested(vmx);
d462b819 6269 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6270 kfree(vmx->guest_msrs);
6271 kvm_vcpu_uninit(vcpu);
a4770347 6272 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6273}
6274
fb3f0f51 6275static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6276{
fb3f0f51 6277 int err;
c16f862d 6278 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6279 int cpu;
6aa8b732 6280
a2fa3e9f 6281 if (!vmx)
fb3f0f51
RR
6282 return ERR_PTR(-ENOMEM);
6283
2384d2b3
SY
6284 allocate_vpid(vmx);
6285
fb3f0f51
RR
6286 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6287 if (err)
6288 goto free_vcpu;
965b58a5 6289
a2fa3e9f 6290 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6291 err = -ENOMEM;
fb3f0f51 6292 if (!vmx->guest_msrs) {
fb3f0f51
RR
6293 goto uninit_vcpu;
6294 }
965b58a5 6295
d462b819
NHE
6296 vmx->loaded_vmcs = &vmx->vmcs01;
6297 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6298 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6299 goto free_msrs;
d462b819
NHE
6300 if (!vmm_exclusive)
6301 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6302 loaded_vmcs_init(vmx->loaded_vmcs);
6303 if (!vmm_exclusive)
6304 kvm_cpu_vmxoff();
a2fa3e9f 6305
15ad7146
AK
6306 cpu = get_cpu();
6307 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6308 vmx->vcpu.cpu = cpu;
8b9cf98c 6309 err = vmx_vcpu_setup(vmx);
fb3f0f51 6310 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6311 put_cpu();
fb3f0f51
RR
6312 if (err)
6313 goto free_vmcs;
5e4a0b3c 6314 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6315 err = alloc_apic_access_page(kvm);
6316 if (err)
5e4a0b3c 6317 goto free_vmcs;
fb3f0f51 6318
b927a3ce
SY
6319 if (enable_ept) {
6320 if (!kvm->arch.ept_identity_map_addr)
6321 kvm->arch.ept_identity_map_addr =
6322 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6323 err = -ENOMEM;
b7ebfb05
SY
6324 if (alloc_identity_pagetable(kvm) != 0)
6325 goto free_vmcs;
93ea5388
GN
6326 if (!init_rmode_identity_map(kvm))
6327 goto free_vmcs;
b927a3ce 6328 }
b7ebfb05 6329
a9d30f33
NHE
6330 vmx->nested.current_vmptr = -1ull;
6331 vmx->nested.current_vmcs12 = NULL;
6332
fb3f0f51
RR
6333 return &vmx->vcpu;
6334
6335free_vmcs:
d462b819 6336 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 6337free_msrs:
fb3f0f51
RR
6338 kfree(vmx->guest_msrs);
6339uninit_vcpu:
6340 kvm_vcpu_uninit(&vmx->vcpu);
6341free_vcpu:
cdbecfc3 6342 free_vpid(vmx);
a4770347 6343 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6344 return ERR_PTR(err);
6aa8b732
AK
6345}
6346
002c7f7c
YS
6347static void __init vmx_check_processor_compat(void *rtn)
6348{
6349 struct vmcs_config vmcs_conf;
6350
6351 *(int *)rtn = 0;
6352 if (setup_vmcs_config(&vmcs_conf) < 0)
6353 *(int *)rtn = -EIO;
6354 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6355 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6356 smp_processor_id());
6357 *(int *)rtn = -EIO;
6358 }
6359}
6360
67253af5
SY
6361static int get_ept_level(void)
6362{
6363 return VMX_EPT_DEFAULT_GAW + 1;
6364}
6365
4b12f0de 6366static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6367{
4b12f0de
SY
6368 u64 ret;
6369
522c68c4
SY
6370 /* For VT-d and EPT combination
6371 * 1. MMIO: always map as UC
6372 * 2. EPT with VT-d:
6373 * a. VT-d without snooping control feature: can't guarantee the
6374 * result, try to trust guest.
6375 * b. VT-d with snooping control feature: snooping control feature of
6376 * VT-d engine can guarantee the cache correctness. Just set it
6377 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6378 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6379 * consistent with host MTRR
6380 */
4b12f0de
SY
6381 if (is_mmio)
6382 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6383 else if (vcpu->kvm->arch.iommu_domain &&
6384 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6385 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6386 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6387 else
522c68c4 6388 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6389 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6390
6391 return ret;
64d4d521
SY
6392}
6393
17cc3935 6394static int vmx_get_lpage_level(void)
344f414f 6395{
878403b7
SY
6396 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6397 return PT_DIRECTORY_LEVEL;
6398 else
6399 /* For shadow and EPT supported 1GB page */
6400 return PT_PDPE_LEVEL;
344f414f
JR
6401}
6402
0e851880
SY
6403static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6404{
4e47c7a6
SY
6405 struct kvm_cpuid_entry2 *best;
6406 struct vcpu_vmx *vmx = to_vmx(vcpu);
6407 u32 exec_control;
6408
6409 vmx->rdtscp_enabled = false;
6410 if (vmx_rdtscp_supported()) {
6411 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6412 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6413 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6414 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6415 vmx->rdtscp_enabled = true;
6416 else {
6417 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6418 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6419 exec_control);
6420 }
6421 }
6422 }
0e851880
SY
6423}
6424
d4330ef2
JR
6425static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6426{
7b8050f5
NHE
6427 if (func == 1 && nested)
6428 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6429}
6430
fe3ef05c
NHE
6431/*
6432 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6433 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6434 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6435 * guest in a way that will both be appropriate to L1's requests, and our
6436 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6437 * function also has additional necessary side-effects, like setting various
6438 * vcpu->arch fields.
6439 */
6440static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6441{
6442 struct vcpu_vmx *vmx = to_vmx(vcpu);
6443 u32 exec_control;
6444
6445 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6446 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6447 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6448 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6449 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6450 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6451 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6452 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6453 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6454 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6455 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6456 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6457 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6458 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6459 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6460 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6461 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6462 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6463 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6464 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6465 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6466 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6467 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6468 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6469 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6470 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6471 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6472 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6473 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6474 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6475 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6476 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6477 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6478 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6479 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6480 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6481
6482 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6483 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6484 vmcs12->vm_entry_intr_info_field);
6485 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6486 vmcs12->vm_entry_exception_error_code);
6487 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6488 vmcs12->vm_entry_instruction_len);
6489 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6490 vmcs12->guest_interruptibility_info);
6491 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6492 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6493 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6494 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6495 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6496 vmcs12->guest_pending_dbg_exceptions);
6497 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6498 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6499
6500 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6501
6502 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6503 (vmcs_config.pin_based_exec_ctrl |
6504 vmcs12->pin_based_vm_exec_control));
6505
6506 /*
6507 * Whether page-faults are trapped is determined by a combination of
6508 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6509 * If enable_ept, L0 doesn't care about page faults and we should
6510 * set all of these to L1's desires. However, if !enable_ept, L0 does
6511 * care about (at least some) page faults, and because it is not easy
6512 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6513 * to exit on each and every L2 page fault. This is done by setting
6514 * MASK=MATCH=0 and (see below) EB.PF=1.
6515 * Note that below we don't need special code to set EB.PF beyond the
6516 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6517 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6518 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6519 *
6520 * A problem with this approach (when !enable_ept) is that L1 may be
6521 * injected with more page faults than it asked for. This could have
6522 * caused problems, but in practice existing hypervisors don't care.
6523 * To fix this, we will need to emulate the PFEC checking (on the L1
6524 * page tables), using walk_addr(), when injecting PFs to L1.
6525 */
6526 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6527 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6528 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6529 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6530
6531 if (cpu_has_secondary_exec_ctrls()) {
6532 u32 exec_control = vmx_secondary_exec_control(vmx);
6533 if (!vmx->rdtscp_enabled)
6534 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6535 /* Take the following fields only from vmcs12 */
6536 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6537 if (nested_cpu_has(vmcs12,
6538 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6539 exec_control |= vmcs12->secondary_vm_exec_control;
6540
6541 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6542 /*
6543 * Translate L1 physical address to host physical
6544 * address for vmcs02. Keep the page pinned, so this
6545 * physical address remains valid. We keep a reference
6546 * to it so we can release it later.
6547 */
6548 if (vmx->nested.apic_access_page) /* shouldn't happen */
6549 nested_release_page(vmx->nested.apic_access_page);
6550 vmx->nested.apic_access_page =
6551 nested_get_page(vcpu, vmcs12->apic_access_addr);
6552 /*
6553 * If translation failed, no matter: This feature asks
6554 * to exit when accessing the given address, and if it
6555 * can never be accessed, this feature won't do
6556 * anything anyway.
6557 */
6558 if (!vmx->nested.apic_access_page)
6559 exec_control &=
6560 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6561 else
6562 vmcs_write64(APIC_ACCESS_ADDR,
6563 page_to_phys(vmx->nested.apic_access_page));
6564 }
6565
6566 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6567 }
6568
6569
6570 /*
6571 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6572 * Some constant fields are set here by vmx_set_constant_host_state().
6573 * Other fields are different per CPU, and will be set later when
6574 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6575 */
6576 vmx_set_constant_host_state();
6577
6578 /*
6579 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6580 * entry, but only if the current (host) sp changed from the value
6581 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6582 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6583 * here we just force the write to happen on entry.
6584 */
6585 vmx->host_rsp = 0;
6586
6587 exec_control = vmx_exec_control(vmx); /* L0's desires */
6588 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6589 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6590 exec_control &= ~CPU_BASED_TPR_SHADOW;
6591 exec_control |= vmcs12->cpu_based_vm_exec_control;
6592 /*
6593 * Merging of IO and MSR bitmaps not currently supported.
6594 * Rather, exit every time.
6595 */
6596 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6597 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6598 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6599
6600 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6601
6602 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6603 * bitwise-or of what L1 wants to trap for L2, and what we want to
6604 * trap. Note that CR0.TS also needs updating - we do this later.
6605 */
6606 update_exception_bitmap(vcpu);
6607 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6608 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6609
6610 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6611 vmcs_write32(VM_EXIT_CONTROLS,
6612 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6613 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6614 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6615
6616 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6617 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6618 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6619 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6620
6621
6622 set_cr4_guest_host_mask(vmx);
6623
27fc51b2
NHE
6624 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6625 vmcs_write64(TSC_OFFSET,
6626 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6627 else
6628 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6629
6630 if (enable_vpid) {
6631 /*
6632 * Trivially support vpid by letting L2s share their parent
6633 * L1's vpid. TODO: move to a more elaborate solution, giving
6634 * each L2 its own vpid and exposing the vpid feature to L1.
6635 */
6636 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6637 vmx_flush_tlb(vcpu);
6638 }
6639
6640 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6641 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6642 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6643 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6644 else
6645 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6646 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6647 vmx_set_efer(vcpu, vcpu->arch.efer);
6648
6649 /*
6650 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6651 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6652 * The CR0_READ_SHADOW is what L2 should have expected to read given
6653 * the specifications by L1; It's not enough to take
6654 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6655 * have more bits than L1 expected.
6656 */
6657 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6658 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6659
6660 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6661 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6662
6663 /* shadow page tables on either EPT or shadow page tables */
6664 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6665 kvm_mmu_reset_context(vcpu);
6666
6667 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6668 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6669}
6670
cd232ad0
NHE
6671/*
6672 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6673 * for running an L2 nested guest.
6674 */
6675static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6676{
6677 struct vmcs12 *vmcs12;
6678 struct vcpu_vmx *vmx = to_vmx(vcpu);
6679 int cpu;
6680 struct loaded_vmcs *vmcs02;
6681
6682 if (!nested_vmx_check_permission(vcpu) ||
6683 !nested_vmx_check_vmcs12(vcpu))
6684 return 1;
6685
6686 skip_emulated_instruction(vcpu);
6687 vmcs12 = get_vmcs12(vcpu);
6688
7c177938
NHE
6689 /*
6690 * The nested entry process starts with enforcing various prerequisites
6691 * on vmcs12 as required by the Intel SDM, and act appropriately when
6692 * they fail: As the SDM explains, some conditions should cause the
6693 * instruction to fail, while others will cause the instruction to seem
6694 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6695 * To speed up the normal (success) code path, we should avoid checking
6696 * for misconfigurations which will anyway be caught by the processor
6697 * when using the merged vmcs02.
6698 */
6699 if (vmcs12->launch_state == launch) {
6700 nested_vmx_failValid(vcpu,
6701 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6702 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6703 return 1;
6704 }
6705
6706 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6707 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6708 /*TODO: Also verify bits beyond physical address width are 0*/
6709 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6710 return 1;
6711 }
6712
6713 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6714 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6715 /*TODO: Also verify bits beyond physical address width are 0*/
6716 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6717 return 1;
6718 }
6719
6720 if (vmcs12->vm_entry_msr_load_count > 0 ||
6721 vmcs12->vm_exit_msr_load_count > 0 ||
6722 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6723 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6724 __func__);
7c177938
NHE
6725 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6726 return 1;
6727 }
6728
6729 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6730 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6731 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6732 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6733 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6734 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6735 !vmx_control_verify(vmcs12->vm_exit_controls,
6736 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6737 !vmx_control_verify(vmcs12->vm_entry_controls,
6738 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6739 {
6740 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6741 return 1;
6742 }
6743
6744 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6745 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6746 nested_vmx_failValid(vcpu,
6747 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6748 return 1;
6749 }
6750
6751 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6752 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6753 nested_vmx_entry_failure(vcpu, vmcs12,
6754 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6755 return 1;
6756 }
6757 if (vmcs12->vmcs_link_pointer != -1ull) {
6758 nested_vmx_entry_failure(vcpu, vmcs12,
6759 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6760 return 1;
6761 }
6762
6763 /*
6764 * We're finally done with prerequisite checking, and can start with
6765 * the nested entry.
6766 */
6767
cd232ad0
NHE
6768 vmcs02 = nested_get_current_vmcs02(vmx);
6769 if (!vmcs02)
6770 return -ENOMEM;
6771
6772 enter_guest_mode(vcpu);
6773
6774 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6775
6776 cpu = get_cpu();
6777 vmx->loaded_vmcs = vmcs02;
6778 vmx_vcpu_put(vcpu);
6779 vmx_vcpu_load(vcpu, cpu);
6780 vcpu->cpu = cpu;
6781 put_cpu();
6782
6783 vmcs12->launch_state = 1;
6784
6785 prepare_vmcs02(vcpu, vmcs12);
6786
6787 /*
6788 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6789 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6790 * returned as far as L1 is concerned. It will only return (and set
6791 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6792 */
6793 return 1;
6794}
6795
4704d0be
NHE
6796/*
6797 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6798 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6799 * This function returns the new value we should put in vmcs12.guest_cr0.
6800 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6801 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6802 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6803 * didn't trap the bit, because if L1 did, so would L0).
6804 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6805 * been modified by L2, and L1 knows it. So just leave the old value of
6806 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6807 * isn't relevant, because if L0 traps this bit it can set it to anything.
6808 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6809 * changed these bits, and therefore they need to be updated, but L0
6810 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6811 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6812 */
6813static inline unsigned long
6814vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6815{
6816 return
6817 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6818 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6819 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6820 vcpu->arch.cr0_guest_owned_bits));
6821}
6822
6823static inline unsigned long
6824vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6825{
6826 return
6827 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6828 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6829 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6830 vcpu->arch.cr4_guest_owned_bits));
6831}
6832
6833/*
6834 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6835 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6836 * and this function updates it to reflect the changes to the guest state while
6837 * L2 was running (and perhaps made some exits which were handled directly by L0
6838 * without going back to L1), and to reflect the exit reason.
6839 * Note that we do not have to copy here all VMCS fields, just those that
6840 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6841 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6842 * which already writes to vmcs12 directly.
6843 */
6844void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6845{
6846 /* update guest state fields: */
6847 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6848 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6849
6850 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6851 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6852 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6853 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6854
6855 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6856 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6857 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6858 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6859 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6860 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6861 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6862 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6863 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6864 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6865 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6866 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6867 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6868 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6869 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6870 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6871 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6872 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6873 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6874 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6875 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6876 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6877 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6878 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6879 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6880 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6881 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6882 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6883 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6884 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6885 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6886 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6887 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6888 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6889 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6890 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6891
6892 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6893 vmcs12->guest_interruptibility_info =
6894 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6895 vmcs12->guest_pending_dbg_exceptions =
6896 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6897
6898 /* TODO: These cannot have changed unless we have MSR bitmaps and
6899 * the relevant bit asks not to trap the change */
6900 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6901 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6902 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6903 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6904 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6905 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6906
6907 /* update exit information fields: */
6908
6909 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6910 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6911
6912 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6913 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6914 vmcs12->idt_vectoring_info_field =
6915 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6916 vmcs12->idt_vectoring_error_code =
6917 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6918 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6919 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6920
6921 /* clear vm-entry fields which are to be cleared on exit */
6922 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6923 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6924}
6925
6926/*
6927 * A part of what we need to when the nested L2 guest exits and we want to
6928 * run its L1 parent, is to reset L1's guest state to the host state specified
6929 * in vmcs12.
6930 * This function is to be called not only on normal nested exit, but also on
6931 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6932 * Failures During or After Loading Guest State").
6933 * This function should be called when the active VMCS is L1's (vmcs01).
6934 */
6935void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6936{
6937 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6938 vcpu->arch.efer = vmcs12->host_ia32_efer;
6939 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6940 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6941 else
6942 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6943 vmx_set_efer(vcpu, vcpu->arch.efer);
6944
6945 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6946 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6947 /*
6948 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6949 * actually changed, because it depends on the current state of
6950 * fpu_active (which may have changed).
6951 * Note that vmx_set_cr0 refers to efer set above.
6952 */
6953 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6954 /*
6955 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6956 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6957 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6958 */
6959 update_exception_bitmap(vcpu);
6960 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6961 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6962
6963 /*
6964 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6965 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6966 */
6967 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6968 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6969
6970 /* shadow page tables on either EPT or shadow page tables */
6971 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6972 kvm_mmu_reset_context(vcpu);
6973
6974 if (enable_vpid) {
6975 /*
6976 * Trivially support vpid by letting L2s share their parent
6977 * L1's vpid. TODO: move to a more elaborate solution, giving
6978 * each L2 its own vpid and exposing the vpid feature to L1.
6979 */
6980 vmx_flush_tlb(vcpu);
6981 }
6982
6983
6984 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6985 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6986 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6987 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6988 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6989 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6990 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6991 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6992 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6993 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6994 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6995 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6996 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6997 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6998 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6999
7000 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7001 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7002 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7003 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7004 vmcs12->host_ia32_perf_global_ctrl);
7005}
7006
7007/*
7008 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7009 * and modify vmcs12 to make it see what it would expect to see there if
7010 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7011 */
7012static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7013{
7014 struct vcpu_vmx *vmx = to_vmx(vcpu);
7015 int cpu;
7016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7017
7018 leave_guest_mode(vcpu);
7019 prepare_vmcs12(vcpu, vmcs12);
7020
7021 cpu = get_cpu();
7022 vmx->loaded_vmcs = &vmx->vmcs01;
7023 vmx_vcpu_put(vcpu);
7024 vmx_vcpu_load(vcpu, cpu);
7025 vcpu->cpu = cpu;
7026 put_cpu();
7027
7028 /* if no vmcs02 cache requested, remove the one we used */
7029 if (VMCS02_POOL_SIZE == 0)
7030 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7031
7032 load_vmcs12_host_state(vcpu, vmcs12);
7033
27fc51b2 7034 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7035 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7036
7037 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7038 vmx->host_rsp = 0;
7039
7040 /* Unpin physical memory we referred to in vmcs02 */
7041 if (vmx->nested.apic_access_page) {
7042 nested_release_page(vmx->nested.apic_access_page);
7043 vmx->nested.apic_access_page = 0;
7044 }
7045
7046 /*
7047 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7048 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7049 * success or failure flag accordingly.
7050 */
7051 if (unlikely(vmx->fail)) {
7052 vmx->fail = 0;
7053 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7054 } else
7055 nested_vmx_succeed(vcpu);
7056}
7057
7c177938
NHE
7058/*
7059 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7060 * 23.7 "VM-entry failures during or after loading guest state" (this also
7061 * lists the acceptable exit-reason and exit-qualification parameters).
7062 * It should only be called before L2 actually succeeded to run, and when
7063 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7064 */
7065static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7066 struct vmcs12 *vmcs12,
7067 u32 reason, unsigned long qualification)
7068{
7069 load_vmcs12_host_state(vcpu, vmcs12);
7070 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7071 vmcs12->exit_qualification = qualification;
7072 nested_vmx_succeed(vcpu);
7073}
7074
8a76d7f2
JR
7075static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7076 struct x86_instruction_info *info,
7077 enum x86_intercept_stage stage)
7078{
7079 return X86EMUL_CONTINUE;
7080}
7081
cbdd1bea 7082static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7083 .cpu_has_kvm_support = cpu_has_kvm_support,
7084 .disabled_by_bios = vmx_disabled_by_bios,
7085 .hardware_setup = hardware_setup,
7086 .hardware_unsetup = hardware_unsetup,
002c7f7c 7087 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7088 .hardware_enable = hardware_enable,
7089 .hardware_disable = hardware_disable,
04547156 7090 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7091
7092 .vcpu_create = vmx_create_vcpu,
7093 .vcpu_free = vmx_free_vcpu,
04d2cc77 7094 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7095
04d2cc77 7096 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7097 .vcpu_load = vmx_vcpu_load,
7098 .vcpu_put = vmx_vcpu_put,
7099
7100 .set_guest_debug = set_guest_debug,
7101 .get_msr = vmx_get_msr,
7102 .set_msr = vmx_set_msr,
7103 .get_segment_base = vmx_get_segment_base,
7104 .get_segment = vmx_get_segment,
7105 .set_segment = vmx_set_segment,
2e4d2653 7106 .get_cpl = vmx_get_cpl,
6aa8b732 7107 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7108 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7109 .decache_cr3 = vmx_decache_cr3,
25c4c276 7110 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7111 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7112 .set_cr3 = vmx_set_cr3,
7113 .set_cr4 = vmx_set_cr4,
6aa8b732 7114 .set_efer = vmx_set_efer,
6aa8b732
AK
7115 .get_idt = vmx_get_idt,
7116 .set_idt = vmx_set_idt,
7117 .get_gdt = vmx_get_gdt,
7118 .set_gdt = vmx_set_gdt,
020df079 7119 .set_dr7 = vmx_set_dr7,
5fdbf976 7120 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7121 .get_rflags = vmx_get_rflags,
7122 .set_rflags = vmx_set_rflags,
ebcbab4c 7123 .fpu_activate = vmx_fpu_activate,
02daab21 7124 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7125
7126 .tlb_flush = vmx_flush_tlb,
6aa8b732 7127
6aa8b732 7128 .run = vmx_vcpu_run,
6062d012 7129 .handle_exit = vmx_handle_exit,
6aa8b732 7130 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7131 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7132 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7133 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7134 .set_irq = vmx_inject_irq,
95ba8273 7135 .set_nmi = vmx_inject_nmi,
298101da 7136 .queue_exception = vmx_queue_exception,
b463a6f7 7137 .cancel_injection = vmx_cancel_injection,
78646121 7138 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7139 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7140 .get_nmi_mask = vmx_get_nmi_mask,
7141 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7142 .enable_nmi_window = enable_nmi_window,
7143 .enable_irq_window = enable_irq_window,
7144 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7145
cbc94022 7146 .set_tss_addr = vmx_set_tss_addr,
67253af5 7147 .get_tdp_level = get_ept_level,
4b12f0de 7148 .get_mt_mask = vmx_get_mt_mask,
229456fc 7149
586f9607 7150 .get_exit_info = vmx_get_exit_info,
586f9607 7151
17cc3935 7152 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7153
7154 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7155
7156 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
7157
7158 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7159
7160 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7161
4051b188 7162 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7163 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7164 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7165 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7166 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7167
7168 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7169
7170 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7171};
7172
7173static int __init vmx_init(void)
7174{
26bb0981
AK
7175 int r, i;
7176
7177 rdmsrl_safe(MSR_EFER, &host_efer);
7178
7179 for (i = 0; i < NR_VMX_MSR; ++i)
7180 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7181
3e7c73e9 7182 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7183 if (!vmx_io_bitmap_a)
7184 return -ENOMEM;
7185
3e7c73e9 7186 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7187 if (!vmx_io_bitmap_b) {
7188 r = -ENOMEM;
7189 goto out;
7190 }
7191
5897297b
AK
7192 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7193 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
7194 r = -ENOMEM;
7195 goto out1;
7196 }
7197
5897297b
AK
7198 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7199 if (!vmx_msr_bitmap_longmode) {
7200 r = -ENOMEM;
7201 goto out2;
7202 }
7203
fdef3ad1
HQ
7204 /*
7205 * Allow direct access to the PC debug port (it is often used for I/O
7206 * delays, but the vmexits simply slow things down).
7207 */
3e7c73e9
AK
7208 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7209 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7210
3e7c73e9 7211 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7212
5897297b
AK
7213 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7214 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7215
2384d2b3
SY
7216 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7217
0ee75bea
AK
7218 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7219 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7220 if (r)
5897297b 7221 goto out3;
25c5f225 7222
5897297b
AK
7223 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7224 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7225 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7226 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7227 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7228 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7229
089d034e 7230 if (enable_ept) {
534e38b4 7231 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 7232 VMX_EPT_EXECUTABLE_MASK);
ce88decf 7233 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7234 kvm_enable_tdp();
7235 } else
7236 kvm_disable_tdp();
1439442c 7237
fdef3ad1
HQ
7238 return 0;
7239
5897297b
AK
7240out3:
7241 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7242out2:
5897297b 7243 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7244out1:
3e7c73e9 7245 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7246out:
3e7c73e9 7247 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7248 return r;
6aa8b732
AK
7249}
7250
7251static void __exit vmx_exit(void)
7252{
5897297b
AK
7253 free_page((unsigned long)vmx_msr_bitmap_legacy);
7254 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7255 free_page((unsigned long)vmx_io_bitmap_b);
7256 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7257
cb498ea2 7258 kvm_exit();
6aa8b732
AK
7259}
7260
7261module_init(vmx_init)
7262module_exit(vmx_exit)