]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/nvme/host/pci.c
nvme-pci: fix host memory buffer allocation fallback
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
b60503ba
MW
38#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
39#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 40
adf68f21
CH
41/*
42 * We handle AEN commands ourselves and don't even let the
43 * block layer know about them.
44 */
f866fc42 45#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 46
58ffacb5
MW
47static int use_threaded_interrupts;
48module_param(use_threaded_interrupts, int, 0);
49
8ffaadf7
JD
50static bool use_cmb_sqes = true;
51module_param(use_cmb_sqes, bool, 0644);
52MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
87ad72a5
CH
54static unsigned int max_host_mem_size_mb = 128;
55module_param(max_host_mem_size_mb, uint, 0444);
56MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 58
b27c1e68 59static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63};
64
65static int io_queue_depth = 1024;
66module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
1c63dc66
CH
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
1c63dc66
CH
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
1c63dc66 90 void __iomem *bar;
97f6ef64 91 unsigned long bar_mapped_size;
5c8809e6 92 struct work_struct remove_work;
77bf25ea 93 struct mutex shutdown_lock;
1c63dc66 94 bool subsystem;
1c63dc66
CH
95 void __iomem *cmb;
96 dma_addr_t cmb_dma_addr;
97 u64 cmb_size;
98 u32 cmbsz;
202021c1 99 u32 cmbloc;
1c63dc66 100 struct nvme_ctrl ctrl;
db3cbfff 101 struct completion ioq_wait;
87ad72a5
CH
102
103 /* shadow doorbell buffer support: */
f9f38e33
HK
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
4033f35d 112 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
113 struct nvme_host_mem_buf_desc *host_mem_descs;
114 void **host_mem_desc_bufs;
4d115420 115};
1fa6aead 116
b27c1e68 117static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118{
119 int n = 0, ret;
120
121 ret = kstrtoint(val, 10, &n);
122 if (ret != 0 || n < 2)
123 return -EINVAL;
124
125 return param_set_int(val, kp);
126}
127
f9f38e33
HK
128static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129{
130 return qid * 2 * stride;
131}
132
133static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134{
135 return (qid * 2 + 1) * stride;
136}
137
1c63dc66
CH
138static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139{
140 return container_of(ctrl, struct nvme_dev, ctrl);
141}
142
b60503ba
MW
143/*
144 * An NVM Express queue. Each device has at least two (one for admin
145 * commands and one for I/O commands).
146 */
147struct nvme_queue {
148 struct device *q_dmadev;
091b6092 149 struct nvme_dev *dev;
b60503ba
MW
150 spinlock_t q_lock;
151 struct nvme_command *sq_cmds;
8ffaadf7 152 struct nvme_command __iomem *sq_cmds_io;
b60503ba 153 volatile struct nvme_completion *cqes;
42483228 154 struct blk_mq_tags **tags;
b60503ba
MW
155 dma_addr_t sq_dma_addr;
156 dma_addr_t cq_dma_addr;
b60503ba
MW
157 u32 __iomem *q_db;
158 u16 q_depth;
6222d172 159 s16 cq_vector;
b60503ba
MW
160 u16 sq_tail;
161 u16 cq_head;
c30341dc 162 u16 qid;
e9539f47
MW
163 u8 cq_phase;
164 u8 cqe_seen;
f9f38e33
HK
165 u32 *dbbuf_sq_db;
166 u32 *dbbuf_cq_db;
167 u32 *dbbuf_sq_ei;
168 u32 *dbbuf_cq_ei;
b60503ba
MW
169};
170
71bd150c
CH
171/*
172 * The nvme_iod describes the data in an I/O, including the list of PRP
173 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 174 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
175 * allocated to store the PRP list.
176 */
177struct nvme_iod {
d49187e9 178 struct nvme_request req;
f4800d6d
CH
179 struct nvme_queue *nvmeq;
180 int aborted;
71bd150c 181 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
bf684057 185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
b60503ba
MW
188};
189
190/*
191 * Check we didin't inadvertently grow the command struct
192 */
193static inline void _nvme_check_size(void)
194{
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208}
209
210static inline unsigned int nvme_dbbuf_size(u32 stride)
211{
212 return ((num_possible_cpus() + 1) * 8 * stride);
213}
214
215static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216{
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219 if (dev->dbbuf_dbs)
220 return 0;
221
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
235 }
236
237 return 0;
238}
239
240static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241{
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
248 }
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
253 }
254}
255
256static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
258{
259 if (!dev->dbbuf_dbs || !qid)
260 return;
261
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266}
267
268static void nvme_dbbuf_set(struct nvme_dev *dev)
269{
270 struct nvme_command c;
271
272 if (!dev->dbbuf_dbs)
273 return;
274
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
284 }
285}
286
287static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288{
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290}
291
292/* Update dbbuf and return true if an MMIO is required */
293static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
295{
296 if (dbbuf_db) {
297 u16 old_value;
298
299 /*
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
302 */
303 wmb();
304
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
307
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
310 }
311
312 return true;
b60503ba
MW
313}
314
ac3dd5bd
JA
315/*
316 * Max size of iod being embedded in the request payload
317 */
318#define NVME_INT_PAGES 2
5fd4ce1b 319#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
320
321/*
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
325 */
326static int nvme_npages(unsigned size, struct nvme_dev *dev)
327{
5fd4ce1b
CH
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
ac3dd5bd
JA
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331}
332
f4800d6d
CH
333static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
334 unsigned int size, unsigned int nseg)
ac3dd5bd 335{
f4800d6d
CH
336 return sizeof(__le64 *) * nvme_npages(size, dev) +
337 sizeof(struct scatterlist) * nseg;
338}
ac3dd5bd 339
f4800d6d
CH
340static unsigned int nvme_cmd_size(struct nvme_dev *dev)
341{
342 return sizeof(struct nvme_iod) +
343 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
344}
345
a4aea562
MB
346static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347 unsigned int hctx_idx)
e85248e5 348{
a4aea562
MB
349 struct nvme_dev *dev = data;
350 struct nvme_queue *nvmeq = dev->queues[0];
351
42483228
KB
352 WARN_ON(hctx_idx != 0);
353 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
354 WARN_ON(nvmeq->tags);
355
a4aea562 356 hctx->driver_data = nvmeq;
42483228 357 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 358 return 0;
e85248e5
MW
359}
360
4af0e21c
KB
361static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
362{
363 struct nvme_queue *nvmeq = hctx->driver_data;
364
365 nvmeq->tags = NULL;
366}
367
a4aea562
MB
368static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
369 unsigned int hctx_idx)
b60503ba 370{
a4aea562 371 struct nvme_dev *dev = data;
42483228 372 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 373
42483228
KB
374 if (!nvmeq->tags)
375 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 376
42483228 377 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
378 hctx->driver_data = nvmeq;
379 return 0;
b60503ba
MW
380}
381
d6296d39
CH
382static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
383 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 384{
d6296d39 385 struct nvme_dev *dev = set->driver_data;
f4800d6d 386 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
387 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
388 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
389
390 BUG_ON(!nvmeq);
f4800d6d 391 iod->nvmeq = nvmeq;
a4aea562
MB
392 return 0;
393}
394
dca51e78
CH
395static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
396{
397 struct nvme_dev *dev = set->driver_data;
398
399 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
400}
401
b60503ba 402/**
adf68f21 403 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
404 * @nvmeq: The queue to use
405 * @cmd: The command to send
406 *
407 * Safe to use from interrupt context
408 */
e3f879bf
SB
409static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
410 struct nvme_command *cmd)
b60503ba 411{
a4aea562
MB
412 u16 tail = nvmeq->sq_tail;
413
8ffaadf7
JD
414 if (nvmeq->sq_cmds_io)
415 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
416 else
417 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
418
b60503ba
MW
419 if (++tail == nvmeq->q_depth)
420 tail = 0;
f9f38e33
HK
421 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
422 nvmeq->dbbuf_sq_ei))
423 writel(tail, nvmeq->q_db);
b60503ba 424 nvmeq->sq_tail = tail;
b60503ba
MW
425}
426
f4800d6d 427static __le64 **iod_list(struct request *req)
b60503ba 428{
f4800d6d 429 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 430 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
431}
432
fc17b653 433static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 434{
f4800d6d 435 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 436 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 437 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 438
f4800d6d
CH
439 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
440 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
441 if (!iod->sg)
fc17b653 442 return BLK_STS_RESOURCE;
f4800d6d
CH
443 } else {
444 iod->sg = iod->inline_sg;
ac3dd5bd
JA
445 }
446
f4800d6d
CH
447 iod->aborted = 0;
448 iod->npages = -1;
449 iod->nents = 0;
450 iod->length = size;
f80ec966 451
fc17b653 452 return BLK_STS_OK;
ac3dd5bd
JA
453}
454
f4800d6d 455static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 456{
f4800d6d 457 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 458 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 459 int i;
f4800d6d 460 __le64 **list = iod_list(req);
eca18b23
MW
461 dma_addr_t prp_dma = iod->first_dma;
462
463 if (iod->npages == 0)
464 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
465 for (i = 0; i < iod->npages; i++) {
466 __le64 *prp_list = list[i];
467 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
468 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
469 prp_dma = next_prp_dma;
470 }
ac3dd5bd 471
f4800d6d
CH
472 if (iod->sg != iod->inline_sg)
473 kfree(iod->sg);
b4ff9c8d
KB
474}
475
52b68d7e 476#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
477static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
478{
479 if (be32_to_cpu(pi->ref_tag) == v)
480 pi->ref_tag = cpu_to_be32(p);
481}
482
483static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
484{
485 if (be32_to_cpu(pi->ref_tag) == p)
486 pi->ref_tag = cpu_to_be32(v);
487}
488
489/**
490 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
491 *
492 * The virtual start sector is the one that was originally submitted by the
493 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
494 * start sector may be different. Remap protection information to match the
495 * physical LBA on writes, and back to the original seed on reads.
496 *
497 * Type 0 and 3 do not have a ref tag, so no remapping required.
498 */
499static void nvme_dif_remap(struct request *req,
500 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
501{
502 struct nvme_ns *ns = req->rq_disk->private_data;
503 struct bio_integrity_payload *bip;
504 struct t10_pi_tuple *pi;
505 void *p, *pmap;
506 u32 i, nlb, ts, phys, virt;
507
508 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
509 return;
510
511 bip = bio_integrity(req->bio);
512 if (!bip)
513 return;
514
515 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
516
517 p = pmap;
518 virt = bip_get_seed(bip);
519 phys = nvme_block_nr(ns, blk_rq_pos(req));
520 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 521 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
522
523 for (i = 0; i < nlb; i++, virt++, phys++) {
524 pi = (struct t10_pi_tuple *)p;
525 dif_swap(phys, virt, pi);
526 p += ts;
527 }
528 kunmap_atomic(pmap);
529}
52b68d7e
KB
530#else /* CONFIG_BLK_DEV_INTEGRITY */
531static void nvme_dif_remap(struct request *req,
532 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
533{
534}
535static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536{
537}
538static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539{
540}
52b68d7e
KB
541#endif
542
86eea289 543static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 544{
f4800d6d 545 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 546 struct dma_pool *pool;
b131c61d 547 int length = blk_rq_payload_bytes(req);
eca18b23 548 struct scatterlist *sg = iod->sg;
ff22b54f
MW
549 int dma_len = sg_dma_len(sg);
550 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 551 u32 page_size = dev->ctrl.page_size;
f137e0f1 552 int offset = dma_addr & (page_size - 1);
e025344c 553 __le64 *prp_list;
f4800d6d 554 __le64 **list = iod_list(req);
e025344c 555 dma_addr_t prp_dma;
eca18b23 556 int nprps, i;
ff22b54f 557
1d090624 558 length -= (page_size - offset);
5228b328
JS
559 if (length <= 0) {
560 iod->first_dma = 0;
86eea289 561 return BLK_STS_OK;
5228b328 562 }
ff22b54f 563
1d090624 564 dma_len -= (page_size - offset);
ff22b54f 565 if (dma_len) {
1d090624 566 dma_addr += (page_size - offset);
ff22b54f
MW
567 } else {
568 sg = sg_next(sg);
569 dma_addr = sg_dma_address(sg);
570 dma_len = sg_dma_len(sg);
571 }
572
1d090624 573 if (length <= page_size) {
edd10d33 574 iod->first_dma = dma_addr;
86eea289 575 return BLK_STS_OK;
e025344c
SMM
576 }
577
1d090624 578 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
579 if (nprps <= (256 / 8)) {
580 pool = dev->prp_small_pool;
eca18b23 581 iod->npages = 0;
99802a7a
MW
582 } else {
583 pool = dev->prp_page_pool;
eca18b23 584 iod->npages = 1;
99802a7a
MW
585 }
586
69d2b571 587 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 588 if (!prp_list) {
edd10d33 589 iod->first_dma = dma_addr;
eca18b23 590 iod->npages = -1;
86eea289 591 return BLK_STS_RESOURCE;
b77954cb 592 }
eca18b23
MW
593 list[0] = prp_list;
594 iod->first_dma = prp_dma;
e025344c
SMM
595 i = 0;
596 for (;;) {
1d090624 597 if (i == page_size >> 3) {
e025344c 598 __le64 *old_prp_list = prp_list;
69d2b571 599 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 600 if (!prp_list)
86eea289 601 return BLK_STS_RESOURCE;
eca18b23 602 list[iod->npages++] = prp_list;
7523d834
MW
603 prp_list[0] = old_prp_list[i - 1];
604 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
605 i = 1;
e025344c
SMM
606 }
607 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
608 dma_len -= page_size;
609 dma_addr += page_size;
610 length -= page_size;
e025344c
SMM
611 if (length <= 0)
612 break;
613 if (dma_len > 0)
614 continue;
86eea289
KB
615 if (unlikely(dma_len < 0))
616 goto bad_sgl;
e025344c
SMM
617 sg = sg_next(sg);
618 dma_addr = sg_dma_address(sg);
619 dma_len = sg_dma_len(sg);
ff22b54f
MW
620 }
621
86eea289
KB
622 return BLK_STS_OK;
623
624 bad_sgl:
625 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
626 blk_rq_payload_bytes(req), iod->nents)) {
627 for_each_sg(iod->sg, sg, iod->nents, i) {
628 dma_addr_t phys = sg_phys(sg);
629 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
630 "dma_address:%pad dma_length:%d\n", i, &phys,
631 sg->offset, sg->length,
632 &sg_dma_address(sg),
633 sg_dma_len(sg));
634 }
635 }
636 return BLK_STS_IOERR;
637
ff22b54f
MW
638}
639
fc17b653 640static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 641 struct nvme_command *cmnd)
d29ec824 642{
f4800d6d 643 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
644 struct request_queue *q = req->q;
645 enum dma_data_direction dma_dir = rq_data_dir(req) ?
646 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 647 blk_status_t ret = BLK_STS_IOERR;
d29ec824 648
f9d03f96 649 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
650 iod->nents = blk_rq_map_sg(q, req, iod->sg);
651 if (!iod->nents)
652 goto out;
d29ec824 653
fc17b653 654 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
655 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
656 DMA_ATTR_NO_WARN))
ba1ca37e 657 goto out;
d29ec824 658
86eea289
KB
659 ret = nvme_setup_prps(dev, req);
660 if (ret != BLK_STS_OK)
ba1ca37e 661 goto out_unmap;
0e5e4f0e 662
fc17b653 663 ret = BLK_STS_IOERR;
ba1ca37e
CH
664 if (blk_integrity_rq(req)) {
665 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
666 goto out_unmap;
0e5e4f0e 667
bf684057
CH
668 sg_init_table(&iod->meta_sg, 1);
669 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 670 goto out_unmap;
0e5e4f0e 671
b5d8af5b 672 if (req_op(req) == REQ_OP_WRITE)
ba1ca37e 673 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 674
bf684057 675 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 676 goto out_unmap;
d29ec824 677 }
00df5cb4 678
eb793e2c
CH
679 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 681 if (blk_integrity_rq(req))
bf684057 682 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 683 return BLK_STS_OK;
00df5cb4 684
ba1ca37e
CH
685out_unmap:
686 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
687out:
688 return ret;
00df5cb4
MW
689}
690
f4800d6d 691static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 692{
f4800d6d 693 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
694 enum dma_data_direction dma_dir = rq_data_dir(req) ?
695 DMA_TO_DEVICE : DMA_FROM_DEVICE;
696
697 if (iod->nents) {
698 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
699 if (blk_integrity_rq(req)) {
b5d8af5b 700 if (req_op(req) == REQ_OP_READ)
d4f6c3ab 701 nvme_dif_remap(req, nvme_dif_complete);
bf684057 702 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 703 }
e19b127f 704 }
e1e5e564 705
f9d03f96 706 nvme_cleanup_cmd(req);
f4800d6d 707 nvme_free_iod(dev, req);
d4f6c3ab 708}
b60503ba 709
d29ec824
CH
710/*
711 * NOTE: ns is NULL when called on the admin queue.
712 */
fc17b653 713static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 714 const struct blk_mq_queue_data *bd)
edd10d33 715{
a4aea562
MB
716 struct nvme_ns *ns = hctx->queue->queuedata;
717 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 718 struct nvme_dev *dev = nvmeq->dev;
a4aea562 719 struct request *req = bd->rq;
ba1ca37e 720 struct nvme_command cmnd;
ebe6d874 721 blk_status_t ret;
e1e5e564 722
f9d03f96 723 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 724 if (ret)
f4800d6d 725 return ret;
a4aea562 726
b131c61d 727 ret = nvme_init_iod(req, dev);
fc17b653 728 if (ret)
f9d03f96 729 goto out_free_cmd;
a4aea562 730
fc17b653 731 if (blk_rq_nr_phys_segments(req)) {
b131c61d 732 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
733 if (ret)
734 goto out_cleanup_iod;
735 }
a4aea562 736
aae239e1 737 blk_mq_start_request(req);
a4aea562 738
ba1ca37e 739 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 740 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 741 ret = BLK_STS_IOERR;
ae1fba20 742 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 743 goto out_cleanup_iod;
ae1fba20 744 }
ba1ca37e 745 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
746 nvme_process_cq(nvmeq);
747 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 748 return BLK_STS_OK;
f9d03f96 749out_cleanup_iod:
f4800d6d 750 nvme_free_iod(dev, req);
f9d03f96
CH
751out_free_cmd:
752 nvme_cleanup_cmd(req);
ba1ca37e 753 return ret;
b60503ba 754}
e1e5e564 755
77f02a7a 756static void nvme_pci_complete_rq(struct request *req)
eee417b0 757{
f4800d6d 758 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 759
77f02a7a
CH
760 nvme_unmap_data(iod->nvmeq->dev, req);
761 nvme_complete_rq(req);
b60503ba
MW
762}
763
d783e0bd
MR
764/* We read the CQE phase first to check if the rest of the entry is valid */
765static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
766 u16 phase)
767{
768 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
769}
770
eb281c82 771static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 772{
eb281c82 773 u16 head = nvmeq->cq_head;
adf68f21 774
eb281c82
SG
775 if (likely(nvmeq->cq_vector >= 0)) {
776 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
777 nvmeq->dbbuf_cq_ei))
778 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
779 }
780}
aae239e1 781
83a12fb7
SG
782static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
783 struct nvme_completion *cqe)
784{
785 struct request *req;
adf68f21 786
83a12fb7
SG
787 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
788 dev_warn(nvmeq->dev->ctrl.device,
789 "invalid id %d completed on queue %d\n",
790 cqe->command_id, le16_to_cpu(cqe->sq_id));
791 return;
b60503ba
MW
792 }
793
83a12fb7
SG
794 /*
795 * AEN requests are special as they don't time out and can
796 * survive any kind of queue freeze and often don't respond to
797 * aborts. We don't even bother to allocate a struct request
798 * for them but rather special case them here.
799 */
800 if (unlikely(nvmeq->qid == 0 &&
801 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
802 nvme_complete_async_event(&nvmeq->dev->ctrl,
803 cqe->status, &cqe->result);
a0fa9647 804 return;
83a12fb7 805 }
b60503ba 806
e9d8a0fd 807 nvmeq->cqe_seen = 1;
83a12fb7
SG
808 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
809 nvme_end_request(req, cqe->status, cqe->result);
810}
b60503ba 811
920d13a8
SG
812static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
813 struct nvme_completion *cqe)
b60503ba 814{
920d13a8
SG
815 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
816 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 817
920d13a8
SG
818 if (++nvmeq->cq_head == nvmeq->q_depth) {
819 nvmeq->cq_head = 0;
820 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 821 }
920d13a8 822 return true;
b60503ba 823 }
920d13a8 824 return false;
a0fa9647
JA
825}
826
827static void nvme_process_cq(struct nvme_queue *nvmeq)
828{
920d13a8
SG
829 struct nvme_completion cqe;
830 int consumed = 0;
b60503ba 831
920d13a8
SG
832 while (nvme_read_cqe(nvmeq, &cqe)) {
833 nvme_handle_cqe(nvmeq, &cqe);
834 consumed++;
920d13a8 835 }
eb281c82 836
e9d8a0fd 837 if (consumed)
920d13a8 838 nvme_ring_cq_doorbell(nvmeq);
b60503ba
MW
839}
840
841static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
842{
843 irqreturn_t result;
844 struct nvme_queue *nvmeq = data;
845 spin_lock(&nvmeq->q_lock);
e9539f47
MW
846 nvme_process_cq(nvmeq);
847 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
848 nvmeq->cqe_seen = 0;
58ffacb5
MW
849 spin_unlock(&nvmeq->q_lock);
850 return result;
851}
852
853static irqreturn_t nvme_irq_check(int irq, void *data)
854{
855 struct nvme_queue *nvmeq = data;
d783e0bd
MR
856 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
857 return IRQ_WAKE_THREAD;
858 return IRQ_NONE;
58ffacb5
MW
859}
860
7776db1c 861static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 862{
442e19b7
SG
863 struct nvme_completion cqe;
864 int found = 0, consumed = 0;
a0fa9647 865
442e19b7
SG
866 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
867 return 0;
a0fa9647 868
442e19b7
SG
869 spin_lock_irq(&nvmeq->q_lock);
870 while (nvme_read_cqe(nvmeq, &cqe)) {
871 nvme_handle_cqe(nvmeq, &cqe);
872 consumed++;
873
874 if (tag == cqe.command_id) {
875 found = 1;
876 break;
877 }
878 }
879
880 if (consumed)
881 nvme_ring_cq_doorbell(nvmeq);
882 spin_unlock_irq(&nvmeq->q_lock);
883
884 return found;
a0fa9647
JA
885}
886
7776db1c
KB
887static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
888{
889 struct nvme_queue *nvmeq = hctx->driver_data;
890
891 return __nvme_poll(nvmeq, tag);
892}
893
f866fc42 894static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 895{
f866fc42 896 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 897 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 898 struct nvme_command c;
b60503ba 899
a4aea562
MB
900 memset(&c, 0, sizeof(c));
901 c.common.opcode = nvme_admin_async_event;
f866fc42 902 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 903
9396dec9 904 spin_lock_irq(&nvmeq->q_lock);
f866fc42 905 __nvme_submit_cmd(nvmeq, &c);
9396dec9 906 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
907}
908
b60503ba 909static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 910{
b60503ba
MW
911 struct nvme_command c;
912
913 memset(&c, 0, sizeof(c));
914 c.delete_queue.opcode = opcode;
915 c.delete_queue.qid = cpu_to_le16(id);
916
1c63dc66 917 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
918}
919
b60503ba
MW
920static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
921 struct nvme_queue *nvmeq)
922{
b60503ba
MW
923 struct nvme_command c;
924 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
925
d29ec824
CH
926 /*
927 * Note: we (ab)use the fact the the prp fields survive if no data
928 * is attached to the request.
929 */
b60503ba
MW
930 memset(&c, 0, sizeof(c));
931 c.create_cq.opcode = nvme_admin_create_cq;
932 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
933 c.create_cq.cqid = cpu_to_le16(qid);
934 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
935 c.create_cq.cq_flags = cpu_to_le16(flags);
936 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
937
1c63dc66 938 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
939}
940
941static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
942 struct nvme_queue *nvmeq)
943{
b60503ba 944 struct nvme_command c;
81c1cd98 945 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 946
d29ec824
CH
947 /*
948 * Note: we (ab)use the fact the the prp fields survive if no data
949 * is attached to the request.
950 */
b60503ba
MW
951 memset(&c, 0, sizeof(c));
952 c.create_sq.opcode = nvme_admin_create_sq;
953 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
954 c.create_sq.sqid = cpu_to_le16(qid);
955 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
956 c.create_sq.sq_flags = cpu_to_le16(flags);
957 c.create_sq.cqid = cpu_to_le16(qid);
958
1c63dc66 959 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
960}
961
962static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
963{
964 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
965}
966
967static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
968{
969 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
970}
971
2a842aca 972static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 973{
f4800d6d
CH
974 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
975 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 976
27fa9bc5
CH
977 dev_warn(nvmeq->dev->ctrl.device,
978 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 979 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 980 blk_mq_free_request(req);
bc5fc7e4
MW
981}
982
b2a0eb1a
KB
983static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
984{
985
986 /* If true, indicates loss of adapter communication, possibly by a
987 * NVMe Subsystem reset.
988 */
989 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
990
991 /* If there is a reset ongoing, we shouldn't reset again. */
992 if (dev->ctrl.state == NVME_CTRL_RESETTING)
993 return false;
994
995 /* We shouldn't reset unless the controller is on fatal error state
996 * _or_ if we lost the communication with it.
997 */
998 if (!(csts & NVME_CSTS_CFS) && !nssro)
999 return false;
1000
1001 /* If PCI error recovery process is happening, we cannot reset or
1002 * the recovery mechanism will surely fail.
1003 */
1004 if (pci_channel_offline(to_pci_dev(dev->dev)))
1005 return false;
1006
1007 return true;
1008}
1009
1010static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1011{
1012 /* Read a config register to help see what died. */
1013 u16 pci_status;
1014 int result;
1015
1016 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1017 &pci_status);
1018 if (result == PCIBIOS_SUCCESSFUL)
1019 dev_warn(dev->ctrl.device,
1020 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1021 csts, pci_status);
1022 else
1023 dev_warn(dev->ctrl.device,
1024 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1025 csts, result);
1026}
1027
31c7c7d2 1028static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1029{
f4800d6d
CH
1030 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1031 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1032 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1033 struct request *abort_req;
a4aea562 1034 struct nvme_command cmd;
b2a0eb1a
KB
1035 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1036
1037 /*
1038 * Reset immediately if the controller is failed
1039 */
1040 if (nvme_should_reset(dev, csts)) {
1041 nvme_warn_reset(dev, csts);
1042 nvme_dev_disable(dev, false);
d86c4d8e 1043 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1044 return BLK_EH_HANDLED;
1045 }
c30341dc 1046
7776db1c
KB
1047 /*
1048 * Did we miss an interrupt?
1049 */
1050 if (__nvme_poll(nvmeq, req->tag)) {
1051 dev_warn(dev->ctrl.device,
1052 "I/O %d QID %d timeout, completion polled\n",
1053 req->tag, nvmeq->qid);
1054 return BLK_EH_HANDLED;
1055 }
1056
31c7c7d2 1057 /*
fd634f41
CH
1058 * Shutdown immediately if controller times out while starting. The
1059 * reset work will see the pci device disabled when it gets the forced
1060 * cancellation error. All outstanding requests are completed on
1061 * shutdown, so we return BLK_EH_HANDLED.
1062 */
bb8d261e 1063 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1064 dev_warn(dev->ctrl.device,
fd634f41
CH
1065 "I/O %d QID %d timeout, disable controller\n",
1066 req->tag, nvmeq->qid);
a5cdb68c 1067 nvme_dev_disable(dev, false);
27fa9bc5 1068 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1069 return BLK_EH_HANDLED;
c30341dc
KB
1070 }
1071
fd634f41
CH
1072 /*
1073 * Shutdown the controller immediately and schedule a reset if the
1074 * command was already aborted once before and still hasn't been
1075 * returned to the driver, or if this is the admin queue.
31c7c7d2 1076 */
f4800d6d 1077 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1078 dev_warn(dev->ctrl.device,
e1569a16
KB
1079 "I/O %d QID %d timeout, reset controller\n",
1080 req->tag, nvmeq->qid);
a5cdb68c 1081 nvme_dev_disable(dev, false);
d86c4d8e 1082 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1083
e1569a16
KB
1084 /*
1085 * Mark the request as handled, since the inline shutdown
1086 * forces all outstanding requests to complete.
1087 */
27fa9bc5 1088 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1089 return BLK_EH_HANDLED;
c30341dc 1090 }
c30341dc 1091
e7a2a87d 1092 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1093 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1094 return BLK_EH_RESET_TIMER;
6bf25d16 1095 }
7bf7d778 1096 iod->aborted = 1;
a4aea562 1097
c30341dc
KB
1098 memset(&cmd, 0, sizeof(cmd));
1099 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1100 cmd.abort.cid = req->tag;
c30341dc 1101 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1102
1b3c47c1
SG
1103 dev_warn(nvmeq->dev->ctrl.device,
1104 "I/O %d QID %d timeout, aborting\n",
1105 req->tag, nvmeq->qid);
e7a2a87d
CH
1106
1107 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1108 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1109 if (IS_ERR(abort_req)) {
1110 atomic_inc(&dev->ctrl.abort_limit);
1111 return BLK_EH_RESET_TIMER;
1112 }
1113
1114 abort_req->timeout = ADMIN_TIMEOUT;
1115 abort_req->end_io_data = NULL;
1116 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1117
31c7c7d2
CH
1118 /*
1119 * The aborted req will be completed on receiving the abort req.
1120 * We enable the timer again. If hit twice, it'll cause a device reset,
1121 * as the device then is in a faulty state.
1122 */
1123 return BLK_EH_RESET_TIMER;
c30341dc
KB
1124}
1125
a4aea562
MB
1126static void nvme_free_queue(struct nvme_queue *nvmeq)
1127{
9e866774
MW
1128 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1129 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1130 if (nvmeq->sq_cmds)
1131 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1132 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1133 kfree(nvmeq);
1134}
1135
a1a5ef99 1136static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1137{
1138 int i;
1139
d858e5f0 1140 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
a4aea562 1141 struct nvme_queue *nvmeq = dev->queues[i];
d858e5f0 1142 dev->ctrl.queue_count--;
a4aea562 1143 dev->queues[i] = NULL;
f435c282 1144 nvme_free_queue(nvmeq);
121c7ad4 1145 }
22404274
KB
1146}
1147
4d115420
KB
1148/**
1149 * nvme_suspend_queue - put queue into suspended state
1150 * @nvmeq - queue to suspend
4d115420
KB
1151 */
1152static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1153{
2b25d981 1154 int vector;
b60503ba 1155
a09115b2 1156 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1157 if (nvmeq->cq_vector == -1) {
1158 spin_unlock_irq(&nvmeq->q_lock);
1159 return 1;
1160 }
0ff199cb 1161 vector = nvmeq->cq_vector;
42f61420 1162 nvmeq->dev->online_queues--;
2b25d981 1163 nvmeq->cq_vector = -1;
a09115b2
MW
1164 spin_unlock_irq(&nvmeq->q_lock);
1165
1c63dc66 1166 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1167 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1168
0ff199cb 1169 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1170
4d115420
KB
1171 return 0;
1172}
b60503ba 1173
a5cdb68c 1174static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1175{
a5cdb68c 1176 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1177
1178 if (!nvmeq)
1179 return;
1180 if (nvme_suspend_queue(nvmeq))
1181 return;
1182
a5cdb68c
KB
1183 if (shutdown)
1184 nvme_shutdown_ctrl(&dev->ctrl);
1185 else
20d0dfe6 1186 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65
KB
1187
1188 spin_lock_irq(&nvmeq->q_lock);
1189 nvme_process_cq(nvmeq);
1190 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1191}
1192
8ffaadf7
JD
1193static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1194 int entry_size)
1195{
1196 int q_depth = dev->q_depth;
5fd4ce1b
CH
1197 unsigned q_size_aligned = roundup(q_depth * entry_size,
1198 dev->ctrl.page_size);
8ffaadf7
JD
1199
1200 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1201 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1202 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1203 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1204
1205 /*
1206 * Ensure the reduced q_depth is above some threshold where it
1207 * would be better to map queues in system memory with the
1208 * original depth
1209 */
1210 if (q_depth < 64)
1211 return -ENOMEM;
1212 }
1213
1214 return q_depth;
1215}
1216
1217static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1218 int qid, int depth)
1219{
1220 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1221 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1222 dev->ctrl.page_size);
8ffaadf7
JD
1223 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1224 nvmeq->sq_cmds_io = dev->cmb + offset;
1225 } else {
1226 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1227 &nvmeq->sq_dma_addr, GFP_KERNEL);
1228 if (!nvmeq->sq_cmds)
1229 return -ENOMEM;
1230 }
1231
1232 return 0;
1233}
1234
b60503ba 1235static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1236 int depth, int node)
b60503ba 1237{
d3af3ecd
SL
1238 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1239 node);
b60503ba
MW
1240 if (!nvmeq)
1241 return NULL;
1242
e75ec752 1243 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1244 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1245 if (!nvmeq->cqes)
1246 goto free_nvmeq;
b60503ba 1247
8ffaadf7 1248 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1249 goto free_cqdma;
1250
e75ec752 1251 nvmeq->q_dmadev = dev->dev;
091b6092 1252 nvmeq->dev = dev;
b60503ba
MW
1253 spin_lock_init(&nvmeq->q_lock);
1254 nvmeq->cq_head = 0;
82123460 1255 nvmeq->cq_phase = 1;
b80d5ccc 1256 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1257 nvmeq->q_depth = depth;
c30341dc 1258 nvmeq->qid = qid;
758dd7fd 1259 nvmeq->cq_vector = -1;
a4aea562 1260 dev->queues[qid] = nvmeq;
d858e5f0 1261 dev->ctrl.queue_count++;
36a7e993 1262
b60503ba
MW
1263 return nvmeq;
1264
1265 free_cqdma:
e75ec752 1266 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1267 nvmeq->cq_dma_addr);
1268 free_nvmeq:
1269 kfree(nvmeq);
1270 return NULL;
1271}
1272
dca51e78 1273static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1274{
0ff199cb
CH
1275 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1276 int nr = nvmeq->dev->ctrl.instance;
1277
1278 if (use_threaded_interrupts) {
1279 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1280 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1281 } else {
1282 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1283 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1284 }
3001082c
MW
1285}
1286
22404274 1287static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1288{
22404274 1289 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1290
7be50e93 1291 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1292 nvmeq->sq_tail = 0;
1293 nvmeq->cq_head = 0;
1294 nvmeq->cq_phase = 1;
b80d5ccc 1295 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1296 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1297 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1298 dev->online_queues++;
7be50e93 1299 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1300}
1301
1302static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1303{
1304 struct nvme_dev *dev = nvmeq->dev;
1305 int result;
3f85d50b 1306
2b25d981 1307 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1308 result = adapter_alloc_cq(dev, qid, nvmeq);
1309 if (result < 0)
22404274 1310 return result;
b60503ba
MW
1311
1312 result = adapter_alloc_sq(dev, qid, nvmeq);
1313 if (result < 0)
1314 goto release_cq;
1315
dca51e78 1316 result = queue_request_irq(nvmeq);
b60503ba
MW
1317 if (result < 0)
1318 goto release_sq;
1319
22404274 1320 nvme_init_queue(nvmeq, qid);
22404274 1321 return result;
b60503ba
MW
1322
1323 release_sq:
1324 adapter_delete_sq(dev, qid);
1325 release_cq:
1326 adapter_delete_cq(dev, qid);
22404274 1327 return result;
b60503ba
MW
1328}
1329
f363b089 1330static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1331 .queue_rq = nvme_queue_rq,
77f02a7a 1332 .complete = nvme_pci_complete_rq,
a4aea562 1333 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1334 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1335 .init_request = nvme_init_request,
a4aea562
MB
1336 .timeout = nvme_timeout,
1337};
1338
f363b089 1339static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1340 .queue_rq = nvme_queue_rq,
77f02a7a 1341 .complete = nvme_pci_complete_rq,
a4aea562
MB
1342 .init_hctx = nvme_init_hctx,
1343 .init_request = nvme_init_request,
dca51e78 1344 .map_queues = nvme_pci_map_queues,
a4aea562 1345 .timeout = nvme_timeout,
a0fa9647 1346 .poll = nvme_poll,
a4aea562
MB
1347};
1348
ea191d2f
KB
1349static void nvme_dev_remove_admin(struct nvme_dev *dev)
1350{
1c63dc66 1351 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1352 /*
1353 * If the controller was reset during removal, it's possible
1354 * user requests may be waiting on a stopped queue. Start the
1355 * queue to flush these to completion.
1356 */
c81545f9 1357 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1358 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1359 blk_mq_free_tag_set(&dev->admin_tagset);
1360 }
1361}
1362
a4aea562
MB
1363static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1364{
1c63dc66 1365 if (!dev->ctrl.admin_q) {
a4aea562
MB
1366 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1367 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1368
1369 /*
1370 * Subtract one to leave an empty queue entry for 'Full Queue'
1371 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1372 */
1373 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1374 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1375 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1376 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1377 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1378 dev->admin_tagset.driver_data = dev;
1379
1380 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1381 return -ENOMEM;
34b6c231 1382 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1383
1c63dc66
CH
1384 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1385 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1386 blk_mq_free_tag_set(&dev->admin_tagset);
1387 return -ENOMEM;
1388 }
1c63dc66 1389 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1390 nvme_dev_remove_admin(dev);
1c63dc66 1391 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1392 return -ENODEV;
1393 }
0fb59cbc 1394 } else
c81545f9 1395 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1396
1397 return 0;
1398}
1399
97f6ef64
XY
1400static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1401{
1402 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1403}
1404
1405static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1406{
1407 struct pci_dev *pdev = to_pci_dev(dev->dev);
1408
1409 if (size <= dev->bar_mapped_size)
1410 return 0;
1411 if (size > pci_resource_len(pdev, 0))
1412 return -ENOMEM;
1413 if (dev->bar)
1414 iounmap(dev->bar);
1415 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1416 if (!dev->bar) {
1417 dev->bar_mapped_size = 0;
1418 return -ENOMEM;
1419 }
1420 dev->bar_mapped_size = size;
1421 dev->dbs = dev->bar + NVME_REG_DBS;
1422
1423 return 0;
1424}
1425
01ad0990 1426static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1427{
ba47e386 1428 int result;
b60503ba
MW
1429 u32 aqa;
1430 struct nvme_queue *nvmeq;
1431
97f6ef64
XY
1432 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1433 if (result < 0)
1434 return result;
1435
8ef2074d 1436 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1437 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1438
7a67cbea
CH
1439 if (dev->subsystem &&
1440 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1441 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1442
20d0dfe6 1443 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1444 if (result < 0)
1445 return result;
b60503ba 1446
a4aea562 1447 nvmeq = dev->queues[0];
cd638946 1448 if (!nvmeq) {
d3af3ecd
SL
1449 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1450 dev_to_node(dev->dev));
cd638946
KB
1451 if (!nvmeq)
1452 return -ENOMEM;
cd638946 1453 }
b60503ba
MW
1454
1455 aqa = nvmeq->q_depth - 1;
1456 aqa |= aqa << 16;
1457
7a67cbea
CH
1458 writel(aqa, dev->bar + NVME_REG_AQA);
1459 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1460 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1461
20d0dfe6 1462 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1463 if (result)
d4875622 1464 return result;
a4aea562 1465
2b25d981 1466 nvmeq->cq_vector = 0;
dca51e78 1467 result = queue_request_irq(nvmeq);
758dd7fd
JD
1468 if (result) {
1469 nvmeq->cq_vector = -1;
d4875622 1470 return result;
758dd7fd 1471 }
025c557a 1472
b60503ba
MW
1473 return result;
1474}
1475
749941f2 1476static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1477{
949928c1 1478 unsigned i, max;
749941f2 1479 int ret = 0;
42f61420 1480
d858e5f0 1481 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1482 /* vector == qid - 1, match nvme_create_queue */
1483 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1484 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1485 ret = -ENOMEM;
42f61420 1486 break;
749941f2
CH
1487 }
1488 }
42f61420 1489
d858e5f0 1490 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
949928c1 1491 for (i = dev->online_queues; i <= max; i++) {
749941f2 1492 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1493 if (ret)
42f61420 1494 break;
27e8166c 1495 }
749941f2
CH
1496
1497 /*
1498 * Ignore failing Create SQ/CQ commands, we can continue with less
1499 * than the desired aount of queues, and even a controller without
1500 * I/O queues an still be used to issue admin commands. This might
1501 * be useful to upgrade a buggy firmware for example.
1502 */
1503 return ret >= 0 ? 0 : ret;
b60503ba
MW
1504}
1505
202021c1
SB
1506static ssize_t nvme_cmb_show(struct device *dev,
1507 struct device_attribute *attr,
1508 char *buf)
1509{
1510 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1511
c965809c 1512 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1513 ndev->cmbloc, ndev->cmbsz);
1514}
1515static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1516
8ffaadf7
JD
1517static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1518{
1519 u64 szu, size, offset;
8ffaadf7
JD
1520 resource_size_t bar_size;
1521 struct pci_dev *pdev = to_pci_dev(dev->dev);
1522 void __iomem *cmb;
1523 dma_addr_t dma_addr;
1524
7a67cbea 1525 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1526 if (!(NVME_CMB_SZ(dev->cmbsz)))
1527 return NULL;
202021c1 1528 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1529
202021c1
SB
1530 if (!use_cmb_sqes)
1531 return NULL;
8ffaadf7
JD
1532
1533 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1534 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1535 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1536 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1537
1538 if (offset > bar_size)
1539 return NULL;
1540
1541 /*
1542 * Controllers may support a CMB size larger than their BAR,
1543 * for example, due to being behind a bridge. Reduce the CMB to
1544 * the reported size of the BAR
1545 */
1546 if (size > bar_size - offset)
1547 size = bar_size - offset;
1548
202021c1 1549 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1550 cmb = ioremap_wc(dma_addr, size);
1551 if (!cmb)
1552 return NULL;
1553
1554 dev->cmb_dma_addr = dma_addr;
1555 dev->cmb_size = size;
1556 return cmb;
1557}
1558
1559static inline void nvme_release_cmb(struct nvme_dev *dev)
1560{
1561 if (dev->cmb) {
1562 iounmap(dev->cmb);
1563 dev->cmb = NULL;
1c78f773
MG
1564 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1565 &dev_attr_cmb.attr, NULL);
1566 dev->cmbsz = 0;
8ffaadf7
JD
1567 }
1568}
1569
87ad72a5
CH
1570static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1571{
4033f35d 1572 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1573 struct nvme_command c;
87ad72a5
CH
1574 int ret;
1575
87ad72a5
CH
1576 memset(&c, 0, sizeof(c));
1577 c.features.opcode = nvme_admin_set_features;
1578 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1579 c.features.dword11 = cpu_to_le32(bits);
1580 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1581 ilog2(dev->ctrl.page_size));
1582 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1583 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1584 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1585
1586 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1587 if (ret) {
1588 dev_warn(dev->ctrl.device,
1589 "failed to set host mem (err %d, flags %#x).\n",
1590 ret, bits);
1591 }
87ad72a5
CH
1592 return ret;
1593}
1594
1595static void nvme_free_host_mem(struct nvme_dev *dev)
1596{
1597 int i;
1598
1599 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1600 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1601 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1602
1603 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1604 le64_to_cpu(desc->addr));
1605 }
1606
1607 kfree(dev->host_mem_desc_bufs);
1608 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1609 dma_free_coherent(dev->dev,
1610 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1611 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5
CH
1612 dev->host_mem_descs = NULL;
1613}
1614
92dc6895
CH
1615static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1616 u32 chunk_size)
9d713c2b 1617{
87ad72a5 1618 struct nvme_host_mem_buf_desc *descs;
92dc6895 1619 u32 max_entries, len;
4033f35d 1620 dma_addr_t descs_dma;
2ee0e4ed 1621 int i = 0;
87ad72a5 1622 void **bufs;
2ee0e4ed 1623 u64 size = 0, tmp;
87ad72a5 1624
87ad72a5
CH
1625 tmp = (preferred + chunk_size - 1);
1626 do_div(tmp, chunk_size);
1627 max_entries = tmp;
4033f35d
CH
1628 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1629 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1630 if (!descs)
1631 goto out;
1632
1633 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1634 if (!bufs)
1635 goto out_free_descs;
1636
50cdb7c6 1637 for (size = 0; size < preferred; size += len) {
87ad72a5
CH
1638 dma_addr_t dma_addr;
1639
50cdb7c6 1640 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1641 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1642 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1643 if (!bufs[i])
1644 break;
1645
1646 descs[i].addr = cpu_to_le64(dma_addr);
1647 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1648 i++;
1649 }
1650
92dc6895 1651 if (!size)
87ad72a5 1652 goto out_free_bufs;
87ad72a5 1653
87ad72a5
CH
1654 dev->nr_host_mem_descs = i;
1655 dev->host_mem_size = size;
1656 dev->host_mem_descs = descs;
4033f35d 1657 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1658 dev->host_mem_desc_bufs = bufs;
1659 return 0;
1660
1661out_free_bufs:
1662 while (--i >= 0) {
1663 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1664
1665 dma_free_coherent(dev->dev, size, bufs[i],
1666 le64_to_cpu(descs[i].addr));
1667 }
1668
1669 kfree(bufs);
1670out_free_descs:
4033f35d
CH
1671 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1672 descs_dma);
87ad72a5 1673out:
87ad72a5
CH
1674 dev->host_mem_descs = NULL;
1675 return -ENOMEM;
1676}
1677
92dc6895
CH
1678static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1679{
1680 u32 chunk_size;
1681
1682 /* start big and work our way down */
1683 for (chunk_size = min_t(u64, preferred, PAGE_SIZE << MAX_ORDER);
1684 chunk_size >= PAGE_SIZE * 2;
1685 chunk_size /= 2) {
1686 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1687 if (!min || dev->host_mem_size >= min)
1688 return 0;
1689 nvme_free_host_mem(dev);
1690 }
1691 }
1692
1693 return -ENOMEM;
1694}
1695
87ad72a5
CH
1696static void nvme_setup_host_mem(struct nvme_dev *dev)
1697{
1698 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1699 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1700 u64 min = (u64)dev->ctrl.hmmin * 4096;
1701 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1702
1703 preferred = min(preferred, max);
1704 if (min > max) {
1705 dev_warn(dev->ctrl.device,
1706 "min host memory (%lld MiB) above limit (%d MiB).\n",
1707 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1708 nvme_free_host_mem(dev);
1709 return;
1710 }
1711
1712 /*
1713 * If we already have a buffer allocated check if we can reuse it.
1714 */
1715 if (dev->host_mem_descs) {
1716 if (dev->host_mem_size >= min)
1717 enable_bits |= NVME_HOST_MEM_RETURN;
1718 else
1719 nvme_free_host_mem(dev);
1720 }
1721
1722 if (!dev->host_mem_descs) {
92dc6895
CH
1723 if (nvme_alloc_host_mem(dev, min, preferred)) {
1724 dev_warn(dev->ctrl.device,
1725 "failed to allocate host memory buffer.\n");
87ad72a5 1726 return;
92dc6895
CH
1727 }
1728
1729 dev_info(dev->ctrl.device,
1730 "allocated %lld MiB host memory buffer.\n",
1731 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
1732 }
1733
1734 if (nvme_set_host_mem(dev, enable_bits))
1735 nvme_free_host_mem(dev);
9d713c2b
KB
1736}
1737
8d85fce7 1738static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1739{
a4aea562 1740 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1741 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1742 int result, nr_io_queues;
1743 unsigned long size;
b60503ba 1744
425a17cb 1745 nr_io_queues = num_present_cpus();
9a0be7ab
CH
1746 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1747 if (result < 0)
1b23484b 1748 return result;
9a0be7ab 1749
f5fa90dc 1750 if (nr_io_queues == 0)
a5229050 1751 return 0;
b60503ba 1752
8ffaadf7
JD
1753 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1754 result = nvme_cmb_qdepth(dev, nr_io_queues,
1755 sizeof(struct nvme_command));
1756 if (result > 0)
1757 dev->q_depth = result;
1758 else
1759 nvme_release_cmb(dev);
1760 }
1761
97f6ef64
XY
1762 do {
1763 size = db_bar_size(dev, nr_io_queues);
1764 result = nvme_remap_bar(dev, size);
1765 if (!result)
1766 break;
1767 if (!--nr_io_queues)
1768 return -ENOMEM;
1769 } while (1);
1770 adminq->q_db = dev->dbs;
f1938f6e 1771
9d713c2b 1772 /* Deregister the admin queue's interrupt */
0ff199cb 1773 pci_free_irq(pdev, 0, adminq);
9d713c2b 1774
e32efbfc
JA
1775 /*
1776 * If we enable msix early due to not intx, disable it again before
1777 * setting up the full range we need.
1778 */
dca51e78
CH
1779 pci_free_irq_vectors(pdev);
1780 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1781 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1782 if (nr_io_queues <= 0)
1783 return -EIO;
1784 dev->max_qid = nr_io_queues;
fa08a396 1785
063a8096
MW
1786 /*
1787 * Should investigate if there's a performance win from allocating
1788 * more queues than interrupt vectors; it might allow the submission
1789 * path to scale better, even if the receive path is limited by the
1790 * number of interrupts.
1791 */
063a8096 1792
dca51e78 1793 result = queue_request_irq(adminq);
758dd7fd
JD
1794 if (result) {
1795 adminq->cq_vector = -1;
d4875622 1796 return result;
758dd7fd 1797 }
749941f2 1798 return nvme_create_io_queues(dev);
b60503ba
MW
1799}
1800
2a842aca 1801static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1802{
db3cbfff 1803 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1804
db3cbfff
KB
1805 blk_mq_free_request(req);
1806 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1807}
1808
2a842aca 1809static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1810{
db3cbfff 1811 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1812
db3cbfff
KB
1813 if (!error) {
1814 unsigned long flags;
1815
2e39e0f6
ML
1816 /*
1817 * We might be called with the AQ q_lock held
1818 * and the I/O queue q_lock should always
1819 * nest inside the AQ one.
1820 */
1821 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1822 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1823 nvme_process_cq(nvmeq);
1824 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1825 }
db3cbfff
KB
1826
1827 nvme_del_queue_end(req, error);
a5768aa8
KB
1828}
1829
db3cbfff 1830static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1831{
db3cbfff
KB
1832 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1833 struct request *req;
1834 struct nvme_command cmd;
bda4e0fb 1835
db3cbfff
KB
1836 memset(&cmd, 0, sizeof(cmd));
1837 cmd.delete_queue.opcode = opcode;
1838 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1839
eb71f435 1840 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1841 if (IS_ERR(req))
1842 return PTR_ERR(req);
bda4e0fb 1843
db3cbfff
KB
1844 req->timeout = ADMIN_TIMEOUT;
1845 req->end_io_data = nvmeq;
1846
1847 blk_execute_rq_nowait(q, NULL, req, false,
1848 opcode == nvme_admin_delete_cq ?
1849 nvme_del_cq_end : nvme_del_queue_end);
1850 return 0;
bda4e0fb
KB
1851}
1852
70659060 1853static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1854{
70659060 1855 int pass;
db3cbfff
KB
1856 unsigned long timeout;
1857 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1858
db3cbfff 1859 for (pass = 0; pass < 2; pass++) {
014a0d60 1860 int sent = 0, i = queues;
db3cbfff
KB
1861
1862 reinit_completion(&dev->ioq_wait);
1863 retry:
1864 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1865 for (; i > 0; i--, sent++)
1866 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1867 break;
c21377f8 1868
db3cbfff
KB
1869 while (sent--) {
1870 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1871 if (timeout == 0)
1872 return;
1873 if (i)
1874 goto retry;
1875 }
1876 opcode = nvme_admin_delete_cq;
1877 }
a5768aa8
KB
1878}
1879
422ef0c7
MW
1880/*
1881 * Return: error value if an error occurred setting up the queues or calling
1882 * Identify Device. 0 if these succeeded, even if adding some of the
1883 * namespaces failed. At the moment, these failures are silent. TBD which
1884 * failures should be reported.
1885 */
8d85fce7 1886static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1887{
5bae7f73 1888 if (!dev->ctrl.tagset) {
ffe7704d
KB
1889 dev->tagset.ops = &nvme_mq_ops;
1890 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1891 dev->tagset.timeout = NVME_IO_TIMEOUT;
1892 dev->tagset.numa_node = dev_to_node(dev->dev);
1893 dev->tagset.queue_depth =
a4aea562 1894 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1895 dev->tagset.cmd_size = nvme_cmd_size(dev);
1896 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1897 dev->tagset.driver_data = dev;
b60503ba 1898
ffe7704d
KB
1899 if (blk_mq_alloc_tag_set(&dev->tagset))
1900 return 0;
5bae7f73 1901 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1902
1903 nvme_dbbuf_set(dev);
949928c1
KB
1904 } else {
1905 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1906
1907 /* Free previously allocated queues that are no longer usable */
1908 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1909 }
949928c1 1910
e1e5e564 1911 return 0;
b60503ba
MW
1912}
1913
b00a726a 1914static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1915{
b00a726a 1916 int result = -ENOMEM;
e75ec752 1917 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1918
1919 if (pci_enable_device_mem(pdev))
1920 return result;
1921
0877cb0d 1922 pci_set_master(pdev);
0877cb0d 1923
e75ec752
CH
1924 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1925 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1926 goto disable;
0877cb0d 1927
7a67cbea 1928 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1929 result = -ENODEV;
b00a726a 1930 goto disable;
0e53d180 1931 }
e32efbfc
JA
1932
1933 /*
a5229050
KB
1934 * Some devices and/or platforms don't advertise or work with INTx
1935 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1936 * adjust this later.
e32efbfc 1937 */
dca51e78
CH
1938 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1939 if (result < 0)
1940 return result;
e32efbfc 1941
20d0dfe6 1942 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 1943
20d0dfe6 1944 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 1945 io_queue_depth);
20d0dfe6 1946 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 1947 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1948
1949 /*
1950 * Temporary fix for the Apple controller found in the MacBook8,1 and
1951 * some MacBook7,1 to avoid controller resets and data loss.
1952 */
1953 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1954 dev->q_depth = 2;
9bdcfb10
CH
1955 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1956 "set queue depth=%u to work around controller resets\n",
1f390c1f 1957 dev->q_depth);
d554b5e1
MP
1958 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1959 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 1960 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
1961 dev->q_depth = 64;
1962 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1963 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
1964 }
1965
202021c1
SB
1966 /*
1967 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1c78f773
MG
1968 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1969 * has no name we can pass NULL as final argument to
1970 * sysfs_add_file_to_group.
202021c1
SB
1971 */
1972
8ef2074d 1973 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1974 dev->cmb = nvme_map_cmb(dev);
1c78f773 1975 if (dev->cmb) {
202021c1
SB
1976 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1977 &dev_attr_cmb.attr, NULL))
9bdcfb10 1978 dev_warn(dev->ctrl.device,
202021c1
SB
1979 "failed to add sysfs attribute for CMB\n");
1980 }
1981 }
1982
a0a3408e
KB
1983 pci_enable_pcie_error_reporting(pdev);
1984 pci_save_state(pdev);
0877cb0d
KB
1985 return 0;
1986
1987 disable:
0877cb0d
KB
1988 pci_disable_device(pdev);
1989 return result;
1990}
1991
1992static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1993{
1994 if (dev->bar)
1995 iounmap(dev->bar);
a1f447b3 1996 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1997}
1998
1999static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2000{
e75ec752
CH
2001 struct pci_dev *pdev = to_pci_dev(dev->dev);
2002
f63572df 2003 nvme_release_cmb(dev);
dca51e78 2004 pci_free_irq_vectors(pdev);
0877cb0d 2005
a0a3408e
KB
2006 if (pci_is_enabled(pdev)) {
2007 pci_disable_pcie_error_reporting(pdev);
e75ec752 2008 pci_disable_device(pdev);
4d115420 2009 }
4d115420
KB
2010}
2011
a5cdb68c 2012static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2013{
70659060 2014 int i, queues;
302ad8cc
KB
2015 bool dead = true;
2016 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2017
77bf25ea 2018 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2019 if (pci_is_enabled(pdev)) {
2020 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2021
ebef7368
KB
2022 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2023 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
2024 nvme_start_freeze(&dev->ctrl);
2025 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2026 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2027 }
c21377f8 2028
302ad8cc
KB
2029 /*
2030 * Give the controller a chance to complete all entered requests if
2031 * doing a safe shutdown.
2032 */
87ad72a5
CH
2033 if (!dead) {
2034 if (shutdown)
2035 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2036
2037 /*
2038 * If the controller is still alive tell it to stop using the
2039 * host memory buffer. In theory the shutdown / reset should
2040 * make sure that it doesn't access the host memoery anymore,
2041 * but I'd rather be safe than sorry..
2042 */
2043 if (dev->host_mem_descs)
2044 nvme_set_host_mem(dev, 0);
2045
2046 }
302ad8cc
KB
2047 nvme_stop_queues(&dev->ctrl);
2048
70659060 2049 queues = dev->online_queues - 1;
d858e5f0 2050 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
c21377f8
GKB
2051 nvme_suspend_queue(dev->queues[i]);
2052
302ad8cc 2053 if (dead) {
82469c59
GKB
2054 /* A device might become IO incapable very soon during
2055 * probe, before the admin queue is configured. Thus,
2056 * queue_count can be 0 here.
2057 */
d858e5f0 2058 if (dev->ctrl.queue_count)
82469c59 2059 nvme_suspend_queue(dev->queues[0]);
4d115420 2060 } else {
70659060 2061 nvme_disable_io_queues(dev, queues);
a5cdb68c 2062 nvme_disable_admin_queue(dev, shutdown);
4d115420 2063 }
b00a726a 2064 nvme_pci_disable(dev);
07836e65 2065
e1958e65
ML
2066 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2067 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2068
2069 /*
2070 * The driver will not be starting up queues again if shutting down so
2071 * must flush all entered requests to their failed completion to avoid
2072 * deadlocking blk-mq hot-cpu notifier.
2073 */
2074 if (shutdown)
2075 nvme_start_queues(&dev->ctrl);
77bf25ea 2076 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2077}
2078
091b6092
MW
2079static int nvme_setup_prp_pools(struct nvme_dev *dev)
2080{
e75ec752 2081 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2082 PAGE_SIZE, PAGE_SIZE, 0);
2083 if (!dev->prp_page_pool)
2084 return -ENOMEM;
2085
99802a7a 2086 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2087 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2088 256, 256, 0);
2089 if (!dev->prp_small_pool) {
2090 dma_pool_destroy(dev->prp_page_pool);
2091 return -ENOMEM;
2092 }
091b6092
MW
2093 return 0;
2094}
2095
2096static void nvme_release_prp_pools(struct nvme_dev *dev)
2097{
2098 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2099 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2100}
2101
1673f1f0 2102static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2103{
1673f1f0 2104 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2105
f9f38e33 2106 nvme_dbbuf_dma_free(dev);
e75ec752 2107 put_device(dev->dev);
4af0e21c
KB
2108 if (dev->tagset.tags)
2109 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2110 if (dev->ctrl.admin_q)
2111 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2112 kfree(dev->queues);
e286bcfc 2113 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2114 kfree(dev);
2115}
2116
f58944e2
KB
2117static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2118{
237045fc 2119 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2120
2121 kref_get(&dev->ctrl.kref);
69d9a99c 2122 nvme_dev_disable(dev, false);
f58944e2
KB
2123 if (!schedule_work(&dev->remove_work))
2124 nvme_put_ctrl(&dev->ctrl);
2125}
2126
fd634f41 2127static void nvme_reset_work(struct work_struct *work)
5e82e952 2128{
d86c4d8e
CH
2129 struct nvme_dev *dev =
2130 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2131 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2132 int result = -ENODEV;
5e82e952 2133
82b057ca 2134 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2135 goto out;
5e82e952 2136
fd634f41
CH
2137 /*
2138 * If we're called to reset a live controller first shut it down before
2139 * moving on.
2140 */
b00a726a 2141 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2142 nvme_dev_disable(dev, false);
5e82e952 2143
b00a726a 2144 result = nvme_pci_enable(dev);
f0b50732 2145 if (result)
3cf519b5 2146 goto out;
f0b50732 2147
01ad0990 2148 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2149 if (result)
f58944e2 2150 goto out;
f0b50732 2151
a4aea562 2152 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2153 result = nvme_alloc_admin_tags(dev);
2154 if (result)
f58944e2 2155 goto out;
b9afca3e 2156
ce4541f4
CH
2157 result = nvme_init_identify(&dev->ctrl);
2158 if (result)
f58944e2 2159 goto out;
ce4541f4 2160
e286bcfc
SB
2161 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2162 if (!dev->ctrl.opal_dev)
2163 dev->ctrl.opal_dev =
2164 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2165 else if (was_suspend)
2166 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2167 } else {
2168 free_opal_dev(dev->ctrl.opal_dev);
2169 dev->ctrl.opal_dev = NULL;
4f1244c8 2170 }
a98e58e5 2171
f9f38e33
HK
2172 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2173 result = nvme_dbbuf_dma_alloc(dev);
2174 if (result)
2175 dev_warn(dev->dev,
2176 "unable to allocate dma for dbbuf\n");
2177 }
2178
87ad72a5
CH
2179 if (dev->ctrl.hmpre)
2180 nvme_setup_host_mem(dev);
2181
f0b50732 2182 result = nvme_setup_io_queues(dev);
badc34d4 2183 if (result)
f58944e2 2184 goto out;
f0b50732 2185
2659e57b
CH
2186 /*
2187 * Keep the controller around but remove all namespaces if we don't have
2188 * any working I/O queue.
2189 */
3cf519b5 2190 if (dev->online_queues < 2) {
1b3c47c1 2191 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2192 nvme_kill_queues(&dev->ctrl);
5bae7f73 2193 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2194 } else {
25646264 2195 nvme_start_queues(&dev->ctrl);
302ad8cc 2196 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2197 nvme_dev_add(dev);
302ad8cc 2198 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2199 }
2200
bb8d261e
CH
2201 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2202 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2203 goto out;
2204 }
92911a55 2205
d09f2b45 2206 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2207 return;
f0b50732 2208
3cf519b5 2209 out:
f58944e2 2210 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2211}
2212
5c8809e6 2213static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2214{
5c8809e6 2215 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2216 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2217
69d9a99c 2218 nvme_kill_queues(&dev->ctrl);
9a6b9458 2219 if (pci_get_drvdata(pdev))
921920ab 2220 device_release_driver(&pdev->dev);
1673f1f0 2221 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2222}
2223
1c63dc66 2224static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2225{
1c63dc66 2226 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2227 return 0;
9ca97374
TH
2228}
2229
5fd4ce1b 2230static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2231{
5fd4ce1b
CH
2232 writel(val, to_nvme_dev(ctrl)->bar + off);
2233 return 0;
2234}
4cc06521 2235
7fd8930f
CH
2236static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2237{
2238 *val = readq(to_nvme_dev(ctrl)->bar + off);
2239 return 0;
4cc06521
KB
2240}
2241
1c63dc66 2242static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2243 .name = "pcie",
e439bb12 2244 .module = THIS_MODULE,
c81bfba9 2245 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2246 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2247 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2248 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2249 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2250 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2251};
4cc06521 2252
b00a726a
KB
2253static int nvme_dev_map(struct nvme_dev *dev)
2254{
b00a726a
KB
2255 struct pci_dev *pdev = to_pci_dev(dev->dev);
2256
a1f447b3 2257 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2258 return -ENODEV;
2259
97f6ef64 2260 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2261 goto release;
2262
9fa196e7 2263 return 0;
b00a726a 2264 release:
9fa196e7
MG
2265 pci_release_mem_regions(pdev);
2266 return -ENODEV;
b00a726a
KB
2267}
2268
ff5350a8
AL
2269static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2270{
2271 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2272 /*
2273 * Several Samsung devices seem to drop off the PCIe bus
2274 * randomly when APST is on and uses the deepest sleep state.
2275 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2276 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2277 * 950 PRO 256GB", but it seems to be restricted to two Dell
2278 * laptops.
2279 */
2280 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2281 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2282 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2283 return NVME_QUIRK_NO_DEEPEST_PS;
2284 }
2285
2286 return 0;
2287}
2288
8d85fce7 2289static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2290{
a4aea562 2291 int node, result = -ENOMEM;
b60503ba 2292 struct nvme_dev *dev;
ff5350a8 2293 unsigned long quirks = id->driver_data;
b60503ba 2294
a4aea562
MB
2295 node = dev_to_node(&pdev->dev);
2296 if (node == NUMA_NO_NODE)
2fa84351 2297 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2298
2299 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2300 if (!dev)
2301 return -ENOMEM;
a4aea562
MB
2302 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2303 GFP_KERNEL, node);
b60503ba
MW
2304 if (!dev->queues)
2305 goto free;
2306
e75ec752 2307 dev->dev = get_device(&pdev->dev);
9a6b9458 2308 pci_set_drvdata(pdev, dev);
1c63dc66 2309
b00a726a
KB
2310 result = nvme_dev_map(dev);
2311 if (result)
b00c9b7a 2312 goto put_pci;
b00a726a 2313
d86c4d8e 2314 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2315 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2316 mutex_init(&dev->shutdown_lock);
db3cbfff 2317 init_completion(&dev->ioq_wait);
b60503ba 2318
091b6092
MW
2319 result = nvme_setup_prp_pools(dev);
2320 if (result)
b00c9b7a 2321 goto unmap;
4cc06521 2322
ff5350a8
AL
2323 quirks |= check_dell_samsung_bug(pdev);
2324
f3ca80fc 2325 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2326 quirks);
4cc06521 2327 if (result)
2e1d8448 2328 goto release_pools;
740216fc 2329
82b057ca 2330 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2331 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2332
d86c4d8e 2333 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2334 return 0;
2335
0877cb0d 2336 release_pools:
091b6092 2337 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2338 unmap:
2339 nvme_dev_unmap(dev);
a96d4f5c 2340 put_pci:
e75ec752 2341 put_device(dev->dev);
b60503ba
MW
2342 free:
2343 kfree(dev->queues);
b60503ba
MW
2344 kfree(dev);
2345 return result;
2346}
2347
775755ed 2348static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2349{
a6739479 2350 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2351 nvme_dev_disable(dev, false);
775755ed 2352}
f0d54a54 2353
775755ed
CH
2354static void nvme_reset_done(struct pci_dev *pdev)
2355{
f263fbb8
LT
2356 struct nvme_dev *dev = pci_get_drvdata(pdev);
2357 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2358}
2359
09ece142
KB
2360static void nvme_shutdown(struct pci_dev *pdev)
2361{
2362 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2363 nvme_dev_disable(dev, true);
09ece142
KB
2364}
2365
f58944e2
KB
2366/*
2367 * The driver's remove may be called on a device in a partially initialized
2368 * state. This function must not have any dependencies on the device state in
2369 * order to proceed.
2370 */
8d85fce7 2371static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2372{
2373 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2374
bb8d261e
CH
2375 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2376
d86c4d8e 2377 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2378 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2379
6db28eda 2380 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2381 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2382 nvme_dev_disable(dev, false);
2383 }
0ff9d4e1 2384
d86c4d8e 2385 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2386 nvme_stop_ctrl(&dev->ctrl);
2387 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2388 nvme_dev_disable(dev, true);
87ad72a5 2389 nvme_free_host_mem(dev);
a4aea562 2390 nvme_dev_remove_admin(dev);
a1a5ef99 2391 nvme_free_queues(dev, 0);
d09f2b45 2392 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2393 nvme_release_prp_pools(dev);
b00a726a 2394 nvme_dev_unmap(dev);
1673f1f0 2395 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2396}
2397
13880f5b
KB
2398static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2399{
2400 int ret = 0;
2401
2402 if (numvfs == 0) {
2403 if (pci_vfs_assigned(pdev)) {
2404 dev_warn(&pdev->dev,
2405 "Cannot disable SR-IOV VFs while assigned\n");
2406 return -EPERM;
2407 }
2408 pci_disable_sriov(pdev);
2409 return 0;
2410 }
2411
2412 ret = pci_enable_sriov(pdev, numvfs);
2413 return ret ? ret : numvfs;
2414}
2415
671a6018 2416#ifdef CONFIG_PM_SLEEP
cd638946
KB
2417static int nvme_suspend(struct device *dev)
2418{
2419 struct pci_dev *pdev = to_pci_dev(dev);
2420 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2421
a5cdb68c 2422 nvme_dev_disable(ndev, true);
cd638946
KB
2423 return 0;
2424}
2425
2426static int nvme_resume(struct device *dev)
2427{
2428 struct pci_dev *pdev = to_pci_dev(dev);
2429 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2430
d86c4d8e 2431 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2432 return 0;
cd638946 2433}
671a6018 2434#endif
cd638946
KB
2435
2436static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2437
a0a3408e
KB
2438static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2439 pci_channel_state_t state)
2440{
2441 struct nvme_dev *dev = pci_get_drvdata(pdev);
2442
2443 /*
2444 * A frozen channel requires a reset. When detected, this method will
2445 * shutdown the controller to quiesce. The controller will be restarted
2446 * after the slot reset through driver's slot_reset callback.
2447 */
a0a3408e
KB
2448 switch (state) {
2449 case pci_channel_io_normal:
2450 return PCI_ERS_RESULT_CAN_RECOVER;
2451 case pci_channel_io_frozen:
d011fb31
KB
2452 dev_warn(dev->ctrl.device,
2453 "frozen state error detected, reset controller\n");
a5cdb68c 2454 nvme_dev_disable(dev, false);
a0a3408e
KB
2455 return PCI_ERS_RESULT_NEED_RESET;
2456 case pci_channel_io_perm_failure:
d011fb31
KB
2457 dev_warn(dev->ctrl.device,
2458 "failure state error detected, request disconnect\n");
a0a3408e
KB
2459 return PCI_ERS_RESULT_DISCONNECT;
2460 }
2461 return PCI_ERS_RESULT_NEED_RESET;
2462}
2463
2464static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2465{
2466 struct nvme_dev *dev = pci_get_drvdata(pdev);
2467
1b3c47c1 2468 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2469 pci_restore_state(pdev);
d86c4d8e 2470 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2471 return PCI_ERS_RESULT_RECOVERED;
2472}
2473
2474static void nvme_error_resume(struct pci_dev *pdev)
2475{
2476 pci_cleanup_aer_uncorrect_error_status(pdev);
2477}
2478
1d352035 2479static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2480 .error_detected = nvme_error_detected,
b60503ba
MW
2481 .slot_reset = nvme_slot_reset,
2482 .resume = nvme_error_resume,
775755ed
CH
2483 .reset_prepare = nvme_reset_prepare,
2484 .reset_done = nvme_reset_done,
b60503ba
MW
2485};
2486
6eb0d698 2487static const struct pci_device_id nvme_id_table[] = {
106198ed 2488 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2489 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2490 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2491 { PCI_VDEVICE(INTEL, 0x0a53),
2492 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2493 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2494 { PCI_VDEVICE(INTEL, 0x0a54),
2495 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2496 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2497 { PCI_VDEVICE(INTEL, 0x0a55),
2498 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2499 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2500 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2501 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2502 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2503 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2504 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2505 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2506 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2507 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2508 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2509 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2510 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2511 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
2512 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2513 .driver_data = NVME_QUIRK_LIGHTNVM, },
2514 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2515 .driver_data = NVME_QUIRK_LIGHTNVM, },
b60503ba 2516 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2517 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2518 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2519 { 0, }
2520};
2521MODULE_DEVICE_TABLE(pci, nvme_id_table);
2522
2523static struct pci_driver nvme_driver = {
2524 .name = "nvme",
2525 .id_table = nvme_id_table,
2526 .probe = nvme_probe,
8d85fce7 2527 .remove = nvme_remove,
09ece142 2528 .shutdown = nvme_shutdown,
cd638946
KB
2529 .driver = {
2530 .pm = &nvme_dev_pm_ops,
2531 },
13880f5b 2532 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2533 .err_handler = &nvme_err_handler,
2534};
2535
2536static int __init nvme_init(void)
2537{
9a6327d2 2538 return pci_register_driver(&nvme_driver);
b60503ba
MW
2539}
2540
2541static void __exit nvme_exit(void)
2542{
2543 pci_unregister_driver(&nvme_driver);
21bd78bc 2544 _nvme_check_size();
b60503ba
MW
2545}
2546
2547MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2548MODULE_LICENSE("GPL");
c78b4713 2549MODULE_VERSION("1.0");
b60503ba
MW
2550module_init(nvme_init);
2551module_exit(nvme_exit);