]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
Merge tag 'v3.6-rc6' into x86/cleanups
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
6aa8b732 45
229456fc
MT
46#include "trace.h"
47
4ecac3fd 48#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
49#define __ex_clear(x, reg) \
50 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 51
6aa8b732
AK
52MODULE_AUTHOR("Qumranet");
53MODULE_LICENSE("GPL");
54
e9bda3b3
JT
55static const struct x86_cpu_id vmx_cpu_id[] = {
56 X86_FEATURE_MATCH(X86_FEATURE_VMX),
57 {}
58};
59MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
60
476bc001 61static bool __read_mostly enable_vpid = 1;
736caefe 62module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 63
476bc001 64static bool __read_mostly flexpriority_enabled = 1;
736caefe 65module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 66
476bc001 67static bool __read_mostly enable_ept = 1;
736caefe 68module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 69
476bc001 70static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
71module_param_named(unrestricted_guest,
72 enable_unrestricted_guest, bool, S_IRUGO);
73
83c3a331
XH
74static bool __read_mostly enable_ept_ad_bits = 1;
75module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
76
a27685c3 77static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 78module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 79
476bc001 80static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
81module_param(vmm_exclusive, bool, S_IRUGO);
82
476bc001 83static bool __read_mostly fasteoi = 1;
58fbbf26
KT
84module_param(fasteoi, bool, S_IRUGO);
85
801d3424
NHE
86/*
87 * If nested=1, nested virtualization is supported, i.e., guests may use
88 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
89 * use VMX instructions.
90 */
476bc001 91static bool __read_mostly nested = 0;
801d3424
NHE
92module_param(nested, bool, S_IRUGO);
93
cdc0e244
AK
94#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
95 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
96#define KVM_GUEST_CR0_MASK \
97 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
98#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 99 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
100#define KVM_VM_CR0_ALWAYS_ON \
101 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
102#define KVM_CR4_GUEST_OWNED_BITS \
103 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
104 | X86_CR4_OSXMMEXCPT)
105
cdc0e244
AK
106#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
107#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
108
78ac8b47
AK
109#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
110
4b8d54f9
ZE
111/*
112 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
113 * ple_gap: upper bound on the amount of time between two successive
114 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 115 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
116 * ple_window: upper bound on the amount of time a guest is allowed to execute
117 * in a PAUSE loop. Tests indicate that most spinlocks are held for
118 * less than 2^12 cycles
119 * Time is measured based on a counter that runs at the same rate as the TSC,
120 * refer SDM volume 3b section 21.6.13 & 22.1.3.
121 */
00c25bce 122#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
123#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
124static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
125module_param(ple_gap, int, S_IRUGO);
126
127static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
128module_param(ple_window, int, S_IRUGO);
129
8bf00a52 130#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 131#define VMCS02_POOL_SIZE 1
61d2ef2c 132
a2fa3e9f
GH
133struct vmcs {
134 u32 revision_id;
135 u32 abort;
136 char data[0];
137};
138
d462b819
NHE
139/*
140 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
141 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
142 * loaded on this CPU (so we can clear them if the CPU goes down).
143 */
144struct loaded_vmcs {
145 struct vmcs *vmcs;
146 int cpu;
147 int launched;
148 struct list_head loaded_vmcss_on_cpu_link;
149};
150
26bb0981
AK
151struct shared_msr_entry {
152 unsigned index;
153 u64 data;
d5696725 154 u64 mask;
26bb0981
AK
155};
156
a9d30f33
NHE
157/*
158 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
159 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
160 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
161 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
162 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
163 * More than one of these structures may exist, if L1 runs multiple L2 guests.
164 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
165 * underlying hardware which will be used to run L2.
166 * This structure is packed to ensure that its layout is identical across
167 * machines (necessary for live migration).
168 * If there are changes in this struct, VMCS12_REVISION must be changed.
169 */
22bd0358 170typedef u64 natural_width;
a9d30f33
NHE
171struct __packed vmcs12 {
172 /* According to the Intel spec, a VMCS region must start with the
173 * following two fields. Then follow implementation-specific data.
174 */
175 u32 revision_id;
176 u32 abort;
22bd0358 177
27d6c865
NHE
178 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
179 u32 padding[7]; /* room for future expansion */
180
22bd0358
NHE
181 u64 io_bitmap_a;
182 u64 io_bitmap_b;
183 u64 msr_bitmap;
184 u64 vm_exit_msr_store_addr;
185 u64 vm_exit_msr_load_addr;
186 u64 vm_entry_msr_load_addr;
187 u64 tsc_offset;
188 u64 virtual_apic_page_addr;
189 u64 apic_access_addr;
190 u64 ept_pointer;
191 u64 guest_physical_address;
192 u64 vmcs_link_pointer;
193 u64 guest_ia32_debugctl;
194 u64 guest_ia32_pat;
195 u64 guest_ia32_efer;
196 u64 guest_ia32_perf_global_ctrl;
197 u64 guest_pdptr0;
198 u64 guest_pdptr1;
199 u64 guest_pdptr2;
200 u64 guest_pdptr3;
201 u64 host_ia32_pat;
202 u64 host_ia32_efer;
203 u64 host_ia32_perf_global_ctrl;
204 u64 padding64[8]; /* room for future expansion */
205 /*
206 * To allow migration of L1 (complete with its L2 guests) between
207 * machines of different natural widths (32 or 64 bit), we cannot have
208 * unsigned long fields with no explict size. We use u64 (aliased
209 * natural_width) instead. Luckily, x86 is little-endian.
210 */
211 natural_width cr0_guest_host_mask;
212 natural_width cr4_guest_host_mask;
213 natural_width cr0_read_shadow;
214 natural_width cr4_read_shadow;
215 natural_width cr3_target_value0;
216 natural_width cr3_target_value1;
217 natural_width cr3_target_value2;
218 natural_width cr3_target_value3;
219 natural_width exit_qualification;
220 natural_width guest_linear_address;
221 natural_width guest_cr0;
222 natural_width guest_cr3;
223 natural_width guest_cr4;
224 natural_width guest_es_base;
225 natural_width guest_cs_base;
226 natural_width guest_ss_base;
227 natural_width guest_ds_base;
228 natural_width guest_fs_base;
229 natural_width guest_gs_base;
230 natural_width guest_ldtr_base;
231 natural_width guest_tr_base;
232 natural_width guest_gdtr_base;
233 natural_width guest_idtr_base;
234 natural_width guest_dr7;
235 natural_width guest_rsp;
236 natural_width guest_rip;
237 natural_width guest_rflags;
238 natural_width guest_pending_dbg_exceptions;
239 natural_width guest_sysenter_esp;
240 natural_width guest_sysenter_eip;
241 natural_width host_cr0;
242 natural_width host_cr3;
243 natural_width host_cr4;
244 natural_width host_fs_base;
245 natural_width host_gs_base;
246 natural_width host_tr_base;
247 natural_width host_gdtr_base;
248 natural_width host_idtr_base;
249 natural_width host_ia32_sysenter_esp;
250 natural_width host_ia32_sysenter_eip;
251 natural_width host_rsp;
252 natural_width host_rip;
253 natural_width paddingl[8]; /* room for future expansion */
254 u32 pin_based_vm_exec_control;
255 u32 cpu_based_vm_exec_control;
256 u32 exception_bitmap;
257 u32 page_fault_error_code_mask;
258 u32 page_fault_error_code_match;
259 u32 cr3_target_count;
260 u32 vm_exit_controls;
261 u32 vm_exit_msr_store_count;
262 u32 vm_exit_msr_load_count;
263 u32 vm_entry_controls;
264 u32 vm_entry_msr_load_count;
265 u32 vm_entry_intr_info_field;
266 u32 vm_entry_exception_error_code;
267 u32 vm_entry_instruction_len;
268 u32 tpr_threshold;
269 u32 secondary_vm_exec_control;
270 u32 vm_instruction_error;
271 u32 vm_exit_reason;
272 u32 vm_exit_intr_info;
273 u32 vm_exit_intr_error_code;
274 u32 idt_vectoring_info_field;
275 u32 idt_vectoring_error_code;
276 u32 vm_exit_instruction_len;
277 u32 vmx_instruction_info;
278 u32 guest_es_limit;
279 u32 guest_cs_limit;
280 u32 guest_ss_limit;
281 u32 guest_ds_limit;
282 u32 guest_fs_limit;
283 u32 guest_gs_limit;
284 u32 guest_ldtr_limit;
285 u32 guest_tr_limit;
286 u32 guest_gdtr_limit;
287 u32 guest_idtr_limit;
288 u32 guest_es_ar_bytes;
289 u32 guest_cs_ar_bytes;
290 u32 guest_ss_ar_bytes;
291 u32 guest_ds_ar_bytes;
292 u32 guest_fs_ar_bytes;
293 u32 guest_gs_ar_bytes;
294 u32 guest_ldtr_ar_bytes;
295 u32 guest_tr_ar_bytes;
296 u32 guest_interruptibility_info;
297 u32 guest_activity_state;
298 u32 guest_sysenter_cs;
299 u32 host_ia32_sysenter_cs;
300 u32 padding32[8]; /* room for future expansion */
301 u16 virtual_processor_id;
302 u16 guest_es_selector;
303 u16 guest_cs_selector;
304 u16 guest_ss_selector;
305 u16 guest_ds_selector;
306 u16 guest_fs_selector;
307 u16 guest_gs_selector;
308 u16 guest_ldtr_selector;
309 u16 guest_tr_selector;
310 u16 host_es_selector;
311 u16 host_cs_selector;
312 u16 host_ss_selector;
313 u16 host_ds_selector;
314 u16 host_fs_selector;
315 u16 host_gs_selector;
316 u16 host_tr_selector;
a9d30f33
NHE
317};
318
319/*
320 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
321 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
322 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
323 */
324#define VMCS12_REVISION 0x11e57ed0
325
326/*
327 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
328 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
329 * current implementation, 4K are reserved to avoid future complications.
330 */
331#define VMCS12_SIZE 0x1000
332
ff2f6fe9
NHE
333/* Used to remember the last vmcs02 used for some recently used vmcs12s */
334struct vmcs02_list {
335 struct list_head list;
336 gpa_t vmptr;
337 struct loaded_vmcs vmcs02;
338};
339
ec378aee
NHE
340/*
341 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
342 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
343 */
344struct nested_vmx {
345 /* Has the level1 guest done vmxon? */
346 bool vmxon;
a9d30f33
NHE
347
348 /* The guest-physical address of the current VMCS L1 keeps for L2 */
349 gpa_t current_vmptr;
350 /* The host-usable pointer to the above */
351 struct page *current_vmcs12_page;
352 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
353
354 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
355 struct list_head vmcs02_pool;
356 int vmcs02_num;
fe3ef05c 357 u64 vmcs01_tsc_offset;
644d711a
NHE
358 /* L2 must run next, and mustn't decide to exit to L1. */
359 bool nested_run_pending;
fe3ef05c
NHE
360 /*
361 * Guest pages referred to in vmcs02 with host-physical pointers, so
362 * we must keep them pinned while L2 runs.
363 */
364 struct page *apic_access_page;
ec378aee
NHE
365};
366
a2fa3e9f 367struct vcpu_vmx {
fb3f0f51 368 struct kvm_vcpu vcpu;
313dbd49 369 unsigned long host_rsp;
29bd8a78 370 u8 fail;
69c73028 371 u8 cpl;
9d58b931 372 bool nmi_known_unmasked;
51aa01d1 373 u32 exit_intr_info;
1155f76a 374 u32 idt_vectoring_info;
6de12732 375 ulong rflags;
26bb0981 376 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
377 int nmsrs;
378 int save_nmsrs;
a2fa3e9f 379#ifdef CONFIG_X86_64
44ea2b17
AK
380 u64 msr_host_kernel_gs_base;
381 u64 msr_guest_kernel_gs_base;
a2fa3e9f 382#endif
d462b819
NHE
383 /*
384 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
385 * non-nested (L1) guest, it always points to vmcs01. For a nested
386 * guest (L2), it points to a different VMCS.
387 */
388 struct loaded_vmcs vmcs01;
389 struct loaded_vmcs *loaded_vmcs;
390 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
391 struct msr_autoload {
392 unsigned nr;
393 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
394 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
395 } msr_autoload;
a2fa3e9f
GH
396 struct {
397 int loaded;
398 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
399#ifdef CONFIG_X86_64
400 u16 ds_sel, es_sel;
401#endif
152d3f2f
LV
402 int gs_ldt_reload_needed;
403 int fs_reload_needed;
d77c26fc 404 } host_state;
9c8cba37 405 struct {
7ffd92c5 406 int vm86_active;
78ac8b47 407 ulong save_rflags;
7ffd92c5
AK
408 struct kvm_save_segment {
409 u16 selector;
410 unsigned long base;
411 u32 limit;
412 u32 ar;
413 } tr, es, ds, fs, gs;
9c8cba37 414 } rmode;
2fb92db1
AK
415 struct {
416 u32 bitmask; /* 4 bits per segment (1 bit per field) */
417 struct kvm_save_segment seg[8];
418 } segment_cache;
2384d2b3 419 int vpid;
04fa4d32 420 bool emulation_required;
3b86cd99
JK
421
422 /* Support for vnmi-less CPUs */
423 int soft_vnmi_blocked;
424 ktime_t entry_time;
425 s64 vnmi_blocked_time;
a0861c02 426 u32 exit_reason;
4e47c7a6
SY
427
428 bool rdtscp_enabled;
ec378aee
NHE
429
430 /* Support for a guest hypervisor (nested VMX) */
431 struct nested_vmx nested;
a2fa3e9f
GH
432};
433
2fb92db1
AK
434enum segment_cache_field {
435 SEG_FIELD_SEL = 0,
436 SEG_FIELD_BASE = 1,
437 SEG_FIELD_LIMIT = 2,
438 SEG_FIELD_AR = 3,
439
440 SEG_FIELD_NR = 4
441};
442
a2fa3e9f
GH
443static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
444{
fb3f0f51 445 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
446}
447
22bd0358
NHE
448#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
449#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
450#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
451 [number##_HIGH] = VMCS12_OFFSET(name)+4
452
453static unsigned short vmcs_field_to_offset_table[] = {
454 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
455 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
456 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
457 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
458 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
459 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
460 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
461 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
462 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
463 FIELD(HOST_ES_SELECTOR, host_es_selector),
464 FIELD(HOST_CS_SELECTOR, host_cs_selector),
465 FIELD(HOST_SS_SELECTOR, host_ss_selector),
466 FIELD(HOST_DS_SELECTOR, host_ds_selector),
467 FIELD(HOST_FS_SELECTOR, host_fs_selector),
468 FIELD(HOST_GS_SELECTOR, host_gs_selector),
469 FIELD(HOST_TR_SELECTOR, host_tr_selector),
470 FIELD64(IO_BITMAP_A, io_bitmap_a),
471 FIELD64(IO_BITMAP_B, io_bitmap_b),
472 FIELD64(MSR_BITMAP, msr_bitmap),
473 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
474 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
475 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
476 FIELD64(TSC_OFFSET, tsc_offset),
477 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
478 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
479 FIELD64(EPT_POINTER, ept_pointer),
480 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
481 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
482 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
483 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
484 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
485 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
486 FIELD64(GUEST_PDPTR0, guest_pdptr0),
487 FIELD64(GUEST_PDPTR1, guest_pdptr1),
488 FIELD64(GUEST_PDPTR2, guest_pdptr2),
489 FIELD64(GUEST_PDPTR3, guest_pdptr3),
490 FIELD64(HOST_IA32_PAT, host_ia32_pat),
491 FIELD64(HOST_IA32_EFER, host_ia32_efer),
492 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
493 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
494 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
495 FIELD(EXCEPTION_BITMAP, exception_bitmap),
496 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
497 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
498 FIELD(CR3_TARGET_COUNT, cr3_target_count),
499 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
500 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
501 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
502 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
503 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
504 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
505 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
506 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
507 FIELD(TPR_THRESHOLD, tpr_threshold),
508 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
509 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
510 FIELD(VM_EXIT_REASON, vm_exit_reason),
511 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
512 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
513 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
514 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
515 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
516 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
517 FIELD(GUEST_ES_LIMIT, guest_es_limit),
518 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
519 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
520 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
521 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
522 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
523 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
524 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
525 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
526 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
527 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
528 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
529 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
530 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
531 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
532 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
533 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
534 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
535 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
536 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
537 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
538 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
539 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
540 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
541 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
542 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
543 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
544 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
545 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
546 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
547 FIELD(EXIT_QUALIFICATION, exit_qualification),
548 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
549 FIELD(GUEST_CR0, guest_cr0),
550 FIELD(GUEST_CR3, guest_cr3),
551 FIELD(GUEST_CR4, guest_cr4),
552 FIELD(GUEST_ES_BASE, guest_es_base),
553 FIELD(GUEST_CS_BASE, guest_cs_base),
554 FIELD(GUEST_SS_BASE, guest_ss_base),
555 FIELD(GUEST_DS_BASE, guest_ds_base),
556 FIELD(GUEST_FS_BASE, guest_fs_base),
557 FIELD(GUEST_GS_BASE, guest_gs_base),
558 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
559 FIELD(GUEST_TR_BASE, guest_tr_base),
560 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
561 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
562 FIELD(GUEST_DR7, guest_dr7),
563 FIELD(GUEST_RSP, guest_rsp),
564 FIELD(GUEST_RIP, guest_rip),
565 FIELD(GUEST_RFLAGS, guest_rflags),
566 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
567 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
568 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
569 FIELD(HOST_CR0, host_cr0),
570 FIELD(HOST_CR3, host_cr3),
571 FIELD(HOST_CR4, host_cr4),
572 FIELD(HOST_FS_BASE, host_fs_base),
573 FIELD(HOST_GS_BASE, host_gs_base),
574 FIELD(HOST_TR_BASE, host_tr_base),
575 FIELD(HOST_GDTR_BASE, host_gdtr_base),
576 FIELD(HOST_IDTR_BASE, host_idtr_base),
577 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
578 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
579 FIELD(HOST_RSP, host_rsp),
580 FIELD(HOST_RIP, host_rip),
581};
582static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
583
584static inline short vmcs_field_to_offset(unsigned long field)
585{
586 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
587 return -1;
588 return vmcs_field_to_offset_table[field];
589}
590
a9d30f33
NHE
591static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
592{
593 return to_vmx(vcpu)->nested.current_vmcs12;
594}
595
596static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
597{
598 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
599 if (is_error_page(page)) {
600 kvm_release_page_clean(page);
601 return NULL;
602 }
603 return page;
604}
605
606static void nested_release_page(struct page *page)
607{
608 kvm_release_page_dirty(page);
609}
610
611static void nested_release_page_clean(struct page *page)
612{
613 kvm_release_page_clean(page);
614}
615
4e1096d2 616static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
617static void kvm_cpu_vmxon(u64 addr);
618static void kvm_cpu_vmxoff(void);
aff48baa 619static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 620static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
621static void vmx_set_segment(struct kvm_vcpu *vcpu,
622 struct kvm_segment *var, int seg);
623static void vmx_get_segment(struct kvm_vcpu *vcpu,
624 struct kvm_segment *var, int seg);
75880a01 625
6aa8b732
AK
626static DEFINE_PER_CPU(struct vmcs *, vmxarea);
627static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
628/*
629 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
630 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
631 */
632static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 633static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 634
3e7c73e9
AK
635static unsigned long *vmx_io_bitmap_a;
636static unsigned long *vmx_io_bitmap_b;
5897297b
AK
637static unsigned long *vmx_msr_bitmap_legacy;
638static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 639
110312c8 640static bool cpu_has_load_ia32_efer;
8bf00a52 641static bool cpu_has_load_perf_global_ctrl;
110312c8 642
2384d2b3
SY
643static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
644static DEFINE_SPINLOCK(vmx_vpid_lock);
645
1c3d14fe 646static struct vmcs_config {
6aa8b732
AK
647 int size;
648 int order;
649 u32 revision_id;
1c3d14fe
YS
650 u32 pin_based_exec_ctrl;
651 u32 cpu_based_exec_ctrl;
f78e0e2e 652 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
653 u32 vmexit_ctrl;
654 u32 vmentry_ctrl;
655} vmcs_config;
6aa8b732 656
efff9e53 657static struct vmx_capability {
d56f546d
SY
658 u32 ept;
659 u32 vpid;
660} vmx_capability;
661
6aa8b732
AK
662#define VMX_SEGMENT_FIELD(seg) \
663 [VCPU_SREG_##seg] = { \
664 .selector = GUEST_##seg##_SELECTOR, \
665 .base = GUEST_##seg##_BASE, \
666 .limit = GUEST_##seg##_LIMIT, \
667 .ar_bytes = GUEST_##seg##_AR_BYTES, \
668 }
669
670static struct kvm_vmx_segment_field {
671 unsigned selector;
672 unsigned base;
673 unsigned limit;
674 unsigned ar_bytes;
675} kvm_vmx_segment_fields[] = {
676 VMX_SEGMENT_FIELD(CS),
677 VMX_SEGMENT_FIELD(DS),
678 VMX_SEGMENT_FIELD(ES),
679 VMX_SEGMENT_FIELD(FS),
680 VMX_SEGMENT_FIELD(GS),
681 VMX_SEGMENT_FIELD(SS),
682 VMX_SEGMENT_FIELD(TR),
683 VMX_SEGMENT_FIELD(LDTR),
684};
685
26bb0981
AK
686static u64 host_efer;
687
6de4f3ad
AK
688static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
689
4d56c8a7 690/*
8c06585d 691 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
692 * away by decrementing the array size.
693 */
6aa8b732 694static const u32 vmx_msr_index[] = {
05b3e0c2 695#ifdef CONFIG_X86_64
44ea2b17 696 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 697#endif
8c06585d 698 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 699};
9d8f549d 700#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 701
31299944 702static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
703{
704 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 706 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
707}
708
31299944 709static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
710{
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
712 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 713 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
714}
715
31299944 716static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
717{
718 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
719 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 720 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
721}
722
31299944 723static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
724{
725 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
726 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
727}
728
31299944 729static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
730{
731 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
732 INTR_INFO_VALID_MASK)) ==
733 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
734}
735
31299944 736static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 737{
04547156 738 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
739}
740
31299944 741static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 742{
04547156 743 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
744}
745
31299944 746static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 747{
04547156 748 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
749}
750
31299944 751static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 752{
04547156
SY
753 return vmcs_config.cpu_based_exec_ctrl &
754 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
755}
756
774ead3a 757static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 758{
04547156
SY
759 return vmcs_config.cpu_based_2nd_exec_ctrl &
760 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
761}
762
763static inline bool cpu_has_vmx_flexpriority(void)
764{
765 return cpu_has_vmx_tpr_shadow() &&
766 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
767}
768
e799794e
MT
769static inline bool cpu_has_vmx_ept_execute_only(void)
770{
31299944 771 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
772}
773
774static inline bool cpu_has_vmx_eptp_uncacheable(void)
775{
31299944 776 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
777}
778
779static inline bool cpu_has_vmx_eptp_writeback(void)
780{
31299944 781 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
782}
783
784static inline bool cpu_has_vmx_ept_2m_page(void)
785{
31299944 786 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
787}
788
878403b7
SY
789static inline bool cpu_has_vmx_ept_1g_page(void)
790{
31299944 791 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
792}
793
4bc9b982
SY
794static inline bool cpu_has_vmx_ept_4levels(void)
795{
796 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
797}
798
83c3a331
XH
799static inline bool cpu_has_vmx_ept_ad_bits(void)
800{
801 return vmx_capability.ept & VMX_EPT_AD_BIT;
802}
803
31299944 804static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 805{
31299944 806 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
807}
808
31299944 809static inline bool cpu_has_vmx_invept_context(void)
d56f546d 810{
31299944 811 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
812}
813
31299944 814static inline bool cpu_has_vmx_invept_global(void)
d56f546d 815{
31299944 816 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
817}
818
518c8aee
GJ
819static inline bool cpu_has_vmx_invvpid_single(void)
820{
821 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
822}
823
b9d762fa
GJ
824static inline bool cpu_has_vmx_invvpid_global(void)
825{
826 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
827}
828
31299944 829static inline bool cpu_has_vmx_ept(void)
d56f546d 830{
04547156
SY
831 return vmcs_config.cpu_based_2nd_exec_ctrl &
832 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
833}
834
31299944 835static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
836{
837 return vmcs_config.cpu_based_2nd_exec_ctrl &
838 SECONDARY_EXEC_UNRESTRICTED_GUEST;
839}
840
31299944 841static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
842{
843 return vmcs_config.cpu_based_2nd_exec_ctrl &
844 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
845}
846
31299944 847static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 848{
6d3e435e 849 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
850}
851
31299944 852static inline bool cpu_has_vmx_vpid(void)
2384d2b3 853{
04547156
SY
854 return vmcs_config.cpu_based_2nd_exec_ctrl &
855 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
856}
857
31299944 858static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
859{
860 return vmcs_config.cpu_based_2nd_exec_ctrl &
861 SECONDARY_EXEC_RDTSCP;
862}
863
ad756a16
MJ
864static inline bool cpu_has_vmx_invpcid(void)
865{
866 return vmcs_config.cpu_based_2nd_exec_ctrl &
867 SECONDARY_EXEC_ENABLE_INVPCID;
868}
869
31299944 870static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
871{
872 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
873}
874
f5f48ee1
SY
875static inline bool cpu_has_vmx_wbinvd_exit(void)
876{
877 return vmcs_config.cpu_based_2nd_exec_ctrl &
878 SECONDARY_EXEC_WBINVD_EXITING;
879}
880
04547156
SY
881static inline bool report_flexpriority(void)
882{
883 return flexpriority_enabled;
884}
885
fe3ef05c
NHE
886static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
887{
888 return vmcs12->cpu_based_vm_exec_control & bit;
889}
890
891static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
892{
893 return (vmcs12->cpu_based_vm_exec_control &
894 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
895 (vmcs12->secondary_vm_exec_control & bit);
896}
897
644d711a
NHE
898static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
899 struct kvm_vcpu *vcpu)
900{
901 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
902}
903
904static inline bool is_exception(u32 intr_info)
905{
906 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
907 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
908}
909
910static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
911static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
912 struct vmcs12 *vmcs12,
913 u32 reason, unsigned long qualification);
914
8b9cf98c 915static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
916{
917 int i;
918
a2fa3e9f 919 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 920 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
921 return i;
922 return -1;
923}
924
2384d2b3
SY
925static inline void __invvpid(int ext, u16 vpid, gva_t gva)
926{
927 struct {
928 u64 vpid : 16;
929 u64 rsvd : 48;
930 u64 gva;
931 } operand = { vpid, 0, gva };
932
4ecac3fd 933 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
934 /* CF==1 or ZF==1 --> rc = -1 */
935 "; ja 1f ; ud2 ; 1:"
936 : : "a"(&operand), "c"(ext) : "cc", "memory");
937}
938
1439442c
SY
939static inline void __invept(int ext, u64 eptp, gpa_t gpa)
940{
941 struct {
942 u64 eptp, gpa;
943 } operand = {eptp, gpa};
944
4ecac3fd 945 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
946 /* CF==1 or ZF==1 --> rc = -1 */
947 "; ja 1f ; ud2 ; 1:\n"
948 : : "a" (&operand), "c" (ext) : "cc", "memory");
949}
950
26bb0981 951static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
952{
953 int i;
954
8b9cf98c 955 i = __find_msr_index(vmx, msr);
a75beee6 956 if (i >= 0)
a2fa3e9f 957 return &vmx->guest_msrs[i];
8b6d44c7 958 return NULL;
7725f0ba
AK
959}
960
6aa8b732
AK
961static void vmcs_clear(struct vmcs *vmcs)
962{
963 u64 phys_addr = __pa(vmcs);
964 u8 error;
965
4ecac3fd 966 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 967 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
968 : "cc", "memory");
969 if (error)
970 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
971 vmcs, phys_addr);
972}
973
d462b819
NHE
974static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
975{
976 vmcs_clear(loaded_vmcs->vmcs);
977 loaded_vmcs->cpu = -1;
978 loaded_vmcs->launched = 0;
979}
980
7725b894
DX
981static void vmcs_load(struct vmcs *vmcs)
982{
983 u64 phys_addr = __pa(vmcs);
984 u8 error;
985
986 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 987 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
988 : "cc", "memory");
989 if (error)
2844d849 990 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
991 vmcs, phys_addr);
992}
993
d462b819 994static void __loaded_vmcs_clear(void *arg)
6aa8b732 995{
d462b819 996 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 997 int cpu = raw_smp_processor_id();
6aa8b732 998
d462b819
NHE
999 if (loaded_vmcs->cpu != cpu)
1000 return; /* vcpu migration can race with cpu offline */
1001 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1002 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
1003 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1004 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
1005}
1006
d462b819 1007static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1008{
d462b819
NHE
1009 if (loaded_vmcs->cpu != -1)
1010 smp_call_function_single(
1011 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1012}
1013
1760dd49 1014static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1015{
1016 if (vmx->vpid == 0)
1017 return;
1018
518c8aee
GJ
1019 if (cpu_has_vmx_invvpid_single())
1020 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1021}
1022
b9d762fa
GJ
1023static inline void vpid_sync_vcpu_global(void)
1024{
1025 if (cpu_has_vmx_invvpid_global())
1026 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1027}
1028
1029static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1030{
1031 if (cpu_has_vmx_invvpid_single())
1760dd49 1032 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1033 else
1034 vpid_sync_vcpu_global();
1035}
1036
1439442c
SY
1037static inline void ept_sync_global(void)
1038{
1039 if (cpu_has_vmx_invept_global())
1040 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1041}
1042
1043static inline void ept_sync_context(u64 eptp)
1044{
089d034e 1045 if (enable_ept) {
1439442c
SY
1046 if (cpu_has_vmx_invept_context())
1047 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1048 else
1049 ept_sync_global();
1050 }
1051}
1052
1053static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1054{
089d034e 1055 if (enable_ept) {
1439442c
SY
1056 if (cpu_has_vmx_invept_individual_addr())
1057 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1058 eptp, gpa);
1059 else
1060 ept_sync_context(eptp);
1061 }
1062}
1063
96304217 1064static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1065{
5e520e62 1066 unsigned long value;
6aa8b732 1067
5e520e62
AK
1068 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1069 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1070 return value;
1071}
1072
96304217 1073static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1074{
1075 return vmcs_readl(field);
1076}
1077
96304217 1078static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1079{
1080 return vmcs_readl(field);
1081}
1082
96304217 1083static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1084{
05b3e0c2 1085#ifdef CONFIG_X86_64
6aa8b732
AK
1086 return vmcs_readl(field);
1087#else
1088 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1089#endif
1090}
1091
e52de1b8
AK
1092static noinline void vmwrite_error(unsigned long field, unsigned long value)
1093{
1094 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1095 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1096 dump_stack();
1097}
1098
6aa8b732
AK
1099static void vmcs_writel(unsigned long field, unsigned long value)
1100{
1101 u8 error;
1102
4ecac3fd 1103 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1104 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1105 if (unlikely(error))
1106 vmwrite_error(field, value);
6aa8b732
AK
1107}
1108
1109static void vmcs_write16(unsigned long field, u16 value)
1110{
1111 vmcs_writel(field, value);
1112}
1113
1114static void vmcs_write32(unsigned long field, u32 value)
1115{
1116 vmcs_writel(field, value);
1117}
1118
1119static void vmcs_write64(unsigned long field, u64 value)
1120{
6aa8b732 1121 vmcs_writel(field, value);
7682f2d0 1122#ifndef CONFIG_X86_64
6aa8b732
AK
1123 asm volatile ("");
1124 vmcs_writel(field+1, value >> 32);
1125#endif
1126}
1127
2ab455cc
AL
1128static void vmcs_clear_bits(unsigned long field, u32 mask)
1129{
1130 vmcs_writel(field, vmcs_readl(field) & ~mask);
1131}
1132
1133static void vmcs_set_bits(unsigned long field, u32 mask)
1134{
1135 vmcs_writel(field, vmcs_readl(field) | mask);
1136}
1137
2fb92db1
AK
1138static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1139{
1140 vmx->segment_cache.bitmask = 0;
1141}
1142
1143static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1144 unsigned field)
1145{
1146 bool ret;
1147 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1148
1149 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1150 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1151 vmx->segment_cache.bitmask = 0;
1152 }
1153 ret = vmx->segment_cache.bitmask & mask;
1154 vmx->segment_cache.bitmask |= mask;
1155 return ret;
1156}
1157
1158static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1159{
1160 u16 *p = &vmx->segment_cache.seg[seg].selector;
1161
1162 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1163 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1164 return *p;
1165}
1166
1167static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1168{
1169 ulong *p = &vmx->segment_cache.seg[seg].base;
1170
1171 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1172 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1173 return *p;
1174}
1175
1176static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1177{
1178 u32 *p = &vmx->segment_cache.seg[seg].limit;
1179
1180 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1181 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1182 return *p;
1183}
1184
1185static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1186{
1187 u32 *p = &vmx->segment_cache.seg[seg].ar;
1188
1189 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1190 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1191 return *p;
1192}
1193
abd3f2d6
AK
1194static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1195{
1196 u32 eb;
1197
fd7373cc
JK
1198 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1199 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1200 if ((vcpu->guest_debug &
1201 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1202 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1203 eb |= 1u << BP_VECTOR;
7ffd92c5 1204 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1205 eb = ~0;
089d034e 1206 if (enable_ept)
1439442c 1207 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1208 if (vcpu->fpu_active)
1209 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1210
1211 /* When we are running a nested L2 guest and L1 specified for it a
1212 * certain exception bitmap, we must trap the same exceptions and pass
1213 * them to L1. When running L2, we will only handle the exceptions
1214 * specified above if L1 did not want them.
1215 */
1216 if (is_guest_mode(vcpu))
1217 eb |= get_vmcs12(vcpu)->exception_bitmap;
1218
abd3f2d6
AK
1219 vmcs_write32(EXCEPTION_BITMAP, eb);
1220}
1221
8bf00a52
GN
1222static void clear_atomic_switch_msr_special(unsigned long entry,
1223 unsigned long exit)
1224{
1225 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1226 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1227}
1228
61d2ef2c
AK
1229static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1230{
1231 unsigned i;
1232 struct msr_autoload *m = &vmx->msr_autoload;
1233
8bf00a52
GN
1234 switch (msr) {
1235 case MSR_EFER:
1236 if (cpu_has_load_ia32_efer) {
1237 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1238 VM_EXIT_LOAD_IA32_EFER);
1239 return;
1240 }
1241 break;
1242 case MSR_CORE_PERF_GLOBAL_CTRL:
1243 if (cpu_has_load_perf_global_ctrl) {
1244 clear_atomic_switch_msr_special(
1245 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1246 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1247 return;
1248 }
1249 break;
110312c8
AK
1250 }
1251
61d2ef2c
AK
1252 for (i = 0; i < m->nr; ++i)
1253 if (m->guest[i].index == msr)
1254 break;
1255
1256 if (i == m->nr)
1257 return;
1258 --m->nr;
1259 m->guest[i] = m->guest[m->nr];
1260 m->host[i] = m->host[m->nr];
1261 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1262 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1263}
1264
8bf00a52
GN
1265static void add_atomic_switch_msr_special(unsigned long entry,
1266 unsigned long exit, unsigned long guest_val_vmcs,
1267 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1268{
1269 vmcs_write64(guest_val_vmcs, guest_val);
1270 vmcs_write64(host_val_vmcs, host_val);
1271 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1272 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1273}
1274
61d2ef2c
AK
1275static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1276 u64 guest_val, u64 host_val)
1277{
1278 unsigned i;
1279 struct msr_autoload *m = &vmx->msr_autoload;
1280
8bf00a52
GN
1281 switch (msr) {
1282 case MSR_EFER:
1283 if (cpu_has_load_ia32_efer) {
1284 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1285 VM_EXIT_LOAD_IA32_EFER,
1286 GUEST_IA32_EFER,
1287 HOST_IA32_EFER,
1288 guest_val, host_val);
1289 return;
1290 }
1291 break;
1292 case MSR_CORE_PERF_GLOBAL_CTRL:
1293 if (cpu_has_load_perf_global_ctrl) {
1294 add_atomic_switch_msr_special(
1295 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1296 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1297 GUEST_IA32_PERF_GLOBAL_CTRL,
1298 HOST_IA32_PERF_GLOBAL_CTRL,
1299 guest_val, host_val);
1300 return;
1301 }
1302 break;
110312c8
AK
1303 }
1304
61d2ef2c
AK
1305 for (i = 0; i < m->nr; ++i)
1306 if (m->guest[i].index == msr)
1307 break;
1308
e7fc6f93
GN
1309 if (i == NR_AUTOLOAD_MSRS) {
1310 printk_once(KERN_WARNING"Not enough mst switch entries. "
1311 "Can't add msr %x\n", msr);
1312 return;
1313 } else if (i == m->nr) {
61d2ef2c
AK
1314 ++m->nr;
1315 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1316 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1317 }
1318
1319 m->guest[i].index = msr;
1320 m->guest[i].value = guest_val;
1321 m->host[i].index = msr;
1322 m->host[i].value = host_val;
1323}
1324
33ed6329
AK
1325static void reload_tss(void)
1326{
33ed6329
AK
1327 /*
1328 * VT restores TR but not its size. Useless.
1329 */
d359192f 1330 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1331 struct desc_struct *descs;
33ed6329 1332
d359192f 1333 descs = (void *)gdt->address;
33ed6329
AK
1334 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1335 load_TR_desc();
33ed6329
AK
1336}
1337
92c0d900 1338static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1339{
3a34a881 1340 u64 guest_efer;
51c6cf66
AK
1341 u64 ignore_bits;
1342
f6801dff 1343 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1344
51c6cf66
AK
1345 /*
1346 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1347 * outside long mode
1348 */
1349 ignore_bits = EFER_NX | EFER_SCE;
1350#ifdef CONFIG_X86_64
1351 ignore_bits |= EFER_LMA | EFER_LME;
1352 /* SCE is meaningful only in long mode on Intel */
1353 if (guest_efer & EFER_LMA)
1354 ignore_bits &= ~(u64)EFER_SCE;
1355#endif
51c6cf66
AK
1356 guest_efer &= ~ignore_bits;
1357 guest_efer |= host_efer & ignore_bits;
26bb0981 1358 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1359 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1360
1361 clear_atomic_switch_msr(vmx, MSR_EFER);
1362 /* On ept, can't emulate nx, and must switch nx atomically */
1363 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1364 guest_efer = vmx->vcpu.arch.efer;
1365 if (!(guest_efer & EFER_LMA))
1366 guest_efer &= ~EFER_LME;
1367 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1368 return false;
1369 }
1370
26bb0981 1371 return true;
51c6cf66
AK
1372}
1373
2d49ec72
GN
1374static unsigned long segment_base(u16 selector)
1375{
d359192f 1376 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1377 struct desc_struct *d;
1378 unsigned long table_base;
1379 unsigned long v;
1380
1381 if (!(selector & ~3))
1382 return 0;
1383
d359192f 1384 table_base = gdt->address;
2d49ec72
GN
1385
1386 if (selector & 4) { /* from ldt */
1387 u16 ldt_selector = kvm_read_ldt();
1388
1389 if (!(ldt_selector & ~3))
1390 return 0;
1391
1392 table_base = segment_base(ldt_selector);
1393 }
1394 d = (struct desc_struct *)(table_base + (selector & ~7));
1395 v = get_desc_base(d);
1396#ifdef CONFIG_X86_64
1397 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1398 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1399#endif
1400 return v;
1401}
1402
1403static inline unsigned long kvm_read_tr_base(void)
1404{
1405 u16 tr;
1406 asm("str %0" : "=g"(tr));
1407 return segment_base(tr);
1408}
1409
04d2cc77 1410static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1411{
04d2cc77 1412 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1413 int i;
04d2cc77 1414
a2fa3e9f 1415 if (vmx->host_state.loaded)
33ed6329
AK
1416 return;
1417
a2fa3e9f 1418 vmx->host_state.loaded = 1;
33ed6329
AK
1419 /*
1420 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1421 * allow segment selectors with cpl > 0 or ti == 1.
1422 */
d6e88aec 1423 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1424 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1425 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1426 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1427 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1428 vmx->host_state.fs_reload_needed = 0;
1429 } else {
33ed6329 1430 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1431 vmx->host_state.fs_reload_needed = 1;
33ed6329 1432 }
9581d442 1433 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1434 if (!(vmx->host_state.gs_sel & 7))
1435 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1436 else {
1437 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1438 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1439 }
1440
b2da15ac
AK
1441#ifdef CONFIG_X86_64
1442 savesegment(ds, vmx->host_state.ds_sel);
1443 savesegment(es, vmx->host_state.es_sel);
1444#endif
1445
33ed6329
AK
1446#ifdef CONFIG_X86_64
1447 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1448 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1449#else
a2fa3e9f
GH
1450 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1451 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1452#endif
707c0874
AK
1453
1454#ifdef CONFIG_X86_64
c8770e7b
AK
1455 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1456 if (is_long_mode(&vmx->vcpu))
44ea2b17 1457 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1458#endif
26bb0981
AK
1459 for (i = 0; i < vmx->save_nmsrs; ++i)
1460 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1461 vmx->guest_msrs[i].data,
1462 vmx->guest_msrs[i].mask);
33ed6329
AK
1463}
1464
a9b21b62 1465static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1466{
a2fa3e9f 1467 if (!vmx->host_state.loaded)
33ed6329
AK
1468 return;
1469
e1beb1d3 1470 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1471 vmx->host_state.loaded = 0;
c8770e7b
AK
1472#ifdef CONFIG_X86_64
1473 if (is_long_mode(&vmx->vcpu))
1474 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1475#endif
152d3f2f 1476 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1477 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1478#ifdef CONFIG_X86_64
9581d442 1479 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1480#else
1481 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1482#endif
33ed6329 1483 }
0a77fe4c
AK
1484 if (vmx->host_state.fs_reload_needed)
1485 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1486#ifdef CONFIG_X86_64
1487 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1488 loadsegment(ds, vmx->host_state.ds_sel);
1489 loadsegment(es, vmx->host_state.es_sel);
1490 }
b2da15ac 1491#endif
152d3f2f 1492 reload_tss();
44ea2b17 1493#ifdef CONFIG_X86_64
c8770e7b 1494 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1495#endif
1361b83a 1496 if (user_has_fpu())
1c11e713 1497 clts();
3444d7da 1498 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1499}
1500
a9b21b62
AK
1501static void vmx_load_host_state(struct vcpu_vmx *vmx)
1502{
1503 preempt_disable();
1504 __vmx_load_host_state(vmx);
1505 preempt_enable();
1506}
1507
6aa8b732
AK
1508/*
1509 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1510 * vcpu mutex is already taken.
1511 */
15ad7146 1512static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1513{
a2fa3e9f 1514 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1515 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1516
4610c9cc
DX
1517 if (!vmm_exclusive)
1518 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1519 else if (vmx->loaded_vmcs->cpu != cpu)
1520 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1521
d462b819
NHE
1522 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1523 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1524 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1525 }
1526
d462b819 1527 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1528 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1529 unsigned long sysenter_esp;
1530
a8eeb04a 1531 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1532 local_irq_disable();
d462b819
NHE
1533 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1534 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1535 local_irq_enable();
1536
6aa8b732
AK
1537 /*
1538 * Linux uses per-cpu TSS and GDT, so set these when switching
1539 * processors.
1540 */
d6e88aec 1541 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1542 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1543
1544 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1545 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1546 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1547 }
6aa8b732
AK
1548}
1549
1550static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1551{
a9b21b62 1552 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1553 if (!vmm_exclusive) {
d462b819
NHE
1554 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1555 vcpu->cpu = -1;
4610c9cc
DX
1556 kvm_cpu_vmxoff();
1557 }
6aa8b732
AK
1558}
1559
5fd86fcf
AK
1560static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1561{
81231c69
AK
1562 ulong cr0;
1563
5fd86fcf
AK
1564 if (vcpu->fpu_active)
1565 return;
1566 vcpu->fpu_active = 1;
81231c69
AK
1567 cr0 = vmcs_readl(GUEST_CR0);
1568 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1569 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1570 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1571 update_exception_bitmap(vcpu);
edcafe3c 1572 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1573 if (is_guest_mode(vcpu))
1574 vcpu->arch.cr0_guest_owned_bits &=
1575 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1576 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1577}
1578
edcafe3c
AK
1579static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1580
fe3ef05c
NHE
1581/*
1582 * Return the cr0 value that a nested guest would read. This is a combination
1583 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1584 * its hypervisor (cr0_read_shadow).
1585 */
1586static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1587{
1588 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1589 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1590}
1591static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1592{
1593 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1594 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1595}
1596
5fd86fcf
AK
1597static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1598{
36cf24e0
NHE
1599 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1600 * set this *before* calling this function.
1601 */
edcafe3c 1602 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1603 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1604 update_exception_bitmap(vcpu);
edcafe3c
AK
1605 vcpu->arch.cr0_guest_owned_bits = 0;
1606 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1607 if (is_guest_mode(vcpu)) {
1608 /*
1609 * L1's specified read shadow might not contain the TS bit,
1610 * so now that we turned on shadowing of this bit, we need to
1611 * set this bit of the shadow. Like in nested_vmx_run we need
1612 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1613 * up-to-date here because we just decached cr0.TS (and we'll
1614 * only update vmcs12->guest_cr0 on nested exit).
1615 */
1616 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1617 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1618 (vcpu->arch.cr0 & X86_CR0_TS);
1619 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1620 } else
1621 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1622}
1623
6aa8b732
AK
1624static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1625{
78ac8b47 1626 unsigned long rflags, save_rflags;
345dcaa8 1627
6de12732
AK
1628 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1629 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1630 rflags = vmcs_readl(GUEST_RFLAGS);
1631 if (to_vmx(vcpu)->rmode.vm86_active) {
1632 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1633 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1634 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1635 }
1636 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1637 }
6de12732 1638 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1639}
1640
1641static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1642{
6de12732 1643 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1644 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1645 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1646 if (to_vmx(vcpu)->rmode.vm86_active) {
1647 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1648 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1649 }
6aa8b732
AK
1650 vmcs_writel(GUEST_RFLAGS, rflags);
1651}
1652
2809f5d2
GC
1653static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1654{
1655 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1656 int ret = 0;
1657
1658 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1659 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1660 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1661 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1662
1663 return ret & mask;
1664}
1665
1666static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1667{
1668 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1669 u32 interruptibility = interruptibility_old;
1670
1671 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1672
48005f64 1673 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1674 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1675 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1676 interruptibility |= GUEST_INTR_STATE_STI;
1677
1678 if ((interruptibility != interruptibility_old))
1679 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1680}
1681
6aa8b732
AK
1682static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1683{
1684 unsigned long rip;
6aa8b732 1685
5fdbf976 1686 rip = kvm_rip_read(vcpu);
6aa8b732 1687 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1688 kvm_rip_write(vcpu, rip);
6aa8b732 1689
2809f5d2
GC
1690 /* skipping an emulated instruction also counts */
1691 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1692}
1693
0b6ac343
NHE
1694/*
1695 * KVM wants to inject page-faults which it got to the guest. This function
1696 * checks whether in a nested guest, we need to inject them to L1 or L2.
1697 * This function assumes it is called with the exit reason in vmcs02 being
1698 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1699 * is running).
1700 */
1701static int nested_pf_handled(struct kvm_vcpu *vcpu)
1702{
1703 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1704
1705 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1706 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1707 return 0;
1708
1709 nested_vmx_vmexit(vcpu);
1710 return 1;
1711}
1712
298101da 1713static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1714 bool has_error_code, u32 error_code,
1715 bool reinject)
298101da 1716{
77ab6db0 1717 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1718 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1719
0b6ac343
NHE
1720 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1721 nested_pf_handled(vcpu))
1722 return;
1723
8ab2d2e2 1724 if (has_error_code) {
77ab6db0 1725 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1726 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1727 }
77ab6db0 1728
7ffd92c5 1729 if (vmx->rmode.vm86_active) {
71f9833b
SH
1730 int inc_eip = 0;
1731 if (kvm_exception_is_soft(nr))
1732 inc_eip = vcpu->arch.event_exit_inst_len;
1733 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1734 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1735 return;
1736 }
1737
66fd3f7f
GN
1738 if (kvm_exception_is_soft(nr)) {
1739 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1740 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1741 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1742 } else
1743 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1744
1745 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1746}
1747
4e47c7a6
SY
1748static bool vmx_rdtscp_supported(void)
1749{
1750 return cpu_has_vmx_rdtscp();
1751}
1752
ad756a16
MJ
1753static bool vmx_invpcid_supported(void)
1754{
1755 return cpu_has_vmx_invpcid() && enable_ept;
1756}
1757
a75beee6
ED
1758/*
1759 * Swap MSR entry in host/guest MSR entry array.
1760 */
8b9cf98c 1761static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1762{
26bb0981 1763 struct shared_msr_entry tmp;
a2fa3e9f
GH
1764
1765 tmp = vmx->guest_msrs[to];
1766 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1767 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1768}
1769
e38aea3e
AK
1770/*
1771 * Set up the vmcs to automatically save and restore system
1772 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1773 * mode, as fiddling with msrs is very expensive.
1774 */
8b9cf98c 1775static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1776{
26bb0981 1777 int save_nmsrs, index;
5897297b 1778 unsigned long *msr_bitmap;
e38aea3e 1779
a75beee6
ED
1780 save_nmsrs = 0;
1781#ifdef CONFIG_X86_64
8b9cf98c 1782 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1783 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1784 if (index >= 0)
8b9cf98c
RR
1785 move_msr_up(vmx, index, save_nmsrs++);
1786 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1787 if (index >= 0)
8b9cf98c
RR
1788 move_msr_up(vmx, index, save_nmsrs++);
1789 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1790 if (index >= 0)
8b9cf98c 1791 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1792 index = __find_msr_index(vmx, MSR_TSC_AUX);
1793 if (index >= 0 && vmx->rdtscp_enabled)
1794 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1795 /*
8c06585d 1796 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1797 * if efer.sce is enabled.
1798 */
8c06585d 1799 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1800 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1801 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1802 }
1803#endif
92c0d900
AK
1804 index = __find_msr_index(vmx, MSR_EFER);
1805 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1806 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1807
26bb0981 1808 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1809
1810 if (cpu_has_vmx_msr_bitmap()) {
1811 if (is_long_mode(&vmx->vcpu))
1812 msr_bitmap = vmx_msr_bitmap_longmode;
1813 else
1814 msr_bitmap = vmx_msr_bitmap_legacy;
1815
1816 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1817 }
e38aea3e
AK
1818}
1819
6aa8b732
AK
1820/*
1821 * reads and returns guest's timestamp counter "register"
1822 * guest_tsc = host_tsc + tsc_offset -- 21.3
1823 */
1824static u64 guest_read_tsc(void)
1825{
1826 u64 host_tsc, tsc_offset;
1827
1828 rdtscll(host_tsc);
1829 tsc_offset = vmcs_read64(TSC_OFFSET);
1830 return host_tsc + tsc_offset;
1831}
1832
d5c1785d
NHE
1833/*
1834 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1835 * counter, even if a nested guest (L2) is currently running.
1836 */
1837u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1838{
1839 u64 host_tsc, tsc_offset;
1840
1841 rdtscll(host_tsc);
1842 tsc_offset = is_guest_mode(vcpu) ?
1843 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1844 vmcs_read64(TSC_OFFSET);
1845 return host_tsc + tsc_offset;
1846}
1847
4051b188 1848/*
cc578287
ZA
1849 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1850 * software catchup for faster rates on slower CPUs.
4051b188 1851 */
cc578287 1852static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1853{
cc578287
ZA
1854 if (!scale)
1855 return;
1856
1857 if (user_tsc_khz > tsc_khz) {
1858 vcpu->arch.tsc_catchup = 1;
1859 vcpu->arch.tsc_always_catchup = 1;
1860 } else
1861 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1862}
1863
6aa8b732 1864/*
99e3e30a 1865 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1866 */
99e3e30a 1867static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1868{
27fc51b2 1869 if (is_guest_mode(vcpu)) {
7991825b 1870 /*
27fc51b2
NHE
1871 * We're here if L1 chose not to trap WRMSR to TSC. According
1872 * to the spec, this should set L1's TSC; The offset that L1
1873 * set for L2 remains unchanged, and still needs to be added
1874 * to the newly set TSC to get L2's TSC.
7991825b 1875 */
27fc51b2
NHE
1876 struct vmcs12 *vmcs12;
1877 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1878 /* recalculate vmcs02.TSC_OFFSET: */
1879 vmcs12 = get_vmcs12(vcpu);
1880 vmcs_write64(TSC_OFFSET, offset +
1881 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1882 vmcs12->tsc_offset : 0));
1883 } else {
1884 vmcs_write64(TSC_OFFSET, offset);
1885 }
6aa8b732
AK
1886}
1887
f1e2b260 1888static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1889{
1890 u64 offset = vmcs_read64(TSC_OFFSET);
1891 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1892 if (is_guest_mode(vcpu)) {
1893 /* Even when running L2, the adjustment needs to apply to L1 */
1894 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1895 }
e48672fa
ZA
1896}
1897
857e4099
JR
1898static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1899{
1900 return target_tsc - native_read_tsc();
1901}
1902
801d3424
NHE
1903static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1904{
1905 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1906 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1907}
1908
1909/*
1910 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1911 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1912 * all guests if the "nested" module option is off, and can also be disabled
1913 * for a single guest by disabling its VMX cpuid bit.
1914 */
1915static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1916{
1917 return nested && guest_cpuid_has_vmx(vcpu);
1918}
1919
b87a51ae
NHE
1920/*
1921 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1922 * returned for the various VMX controls MSRs when nested VMX is enabled.
1923 * The same values should also be used to verify that vmcs12 control fields are
1924 * valid during nested entry from L1 to L2.
1925 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1926 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1927 * bit in the high half is on if the corresponding bit in the control field
1928 * may be on. See also vmx_control_verify().
1929 * TODO: allow these variables to be modified (downgraded) by module options
1930 * or other means.
1931 */
1932static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1933static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1934static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1935static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1936static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1937static __init void nested_vmx_setup_ctls_msrs(void)
1938{
1939 /*
1940 * Note that as a general rule, the high half of the MSRs (bits in
1941 * the control fields which may be 1) should be initialized by the
1942 * intersection of the underlying hardware's MSR (i.e., features which
1943 * can be supported) and the list of features we want to expose -
1944 * because they are known to be properly supported in our code.
1945 * Also, usually, the low half of the MSRs (bits which must be 1) can
1946 * be set to 0, meaning that L1 may turn off any of these bits. The
1947 * reason is that if one of these bits is necessary, it will appear
1948 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1949 * fields of vmcs01 and vmcs02, will turn these bits off - and
1950 * nested_vmx_exit_handled() will not pass related exits to L1.
1951 * These rules have exceptions below.
1952 */
1953
1954 /* pin-based controls */
1955 /*
1956 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1957 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1958 */
1959 nested_vmx_pinbased_ctls_low = 0x16 ;
1960 nested_vmx_pinbased_ctls_high = 0x16 |
1961 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1962 PIN_BASED_VIRTUAL_NMIS;
1963
1964 /* exit controls */
1965 nested_vmx_exit_ctls_low = 0;
b6f1250e 1966 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1967#ifdef CONFIG_X86_64
1968 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1969#else
1970 nested_vmx_exit_ctls_high = 0;
1971#endif
1972
1973 /* entry controls */
1974 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1975 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1976 nested_vmx_entry_ctls_low = 0;
1977 nested_vmx_entry_ctls_high &=
1978 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1979
1980 /* cpu-based controls */
1981 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1982 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1983 nested_vmx_procbased_ctls_low = 0;
1984 nested_vmx_procbased_ctls_high &=
1985 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1986 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1987 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1988 CPU_BASED_CR3_STORE_EXITING |
1989#ifdef CONFIG_X86_64
1990 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1991#endif
1992 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1993 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
fee84b07 1994 CPU_BASED_RDPMC_EXITING |
b87a51ae
NHE
1995 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1996 /*
1997 * We can allow some features even when not supported by the
1998 * hardware. For example, L1 can specify an MSR bitmap - and we
1999 * can use it to avoid exits to L1 - even when L0 runs L2
2000 * without MSR bitmaps.
2001 */
2002 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2003
2004 /* secondary cpu-based controls */
2005 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2006 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2007 nested_vmx_secondary_ctls_low = 0;
2008 nested_vmx_secondary_ctls_high &=
2009 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2010}
2011
2012static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2013{
2014 /*
2015 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2016 */
2017 return ((control & high) | low) == control;
2018}
2019
2020static inline u64 vmx_control_msr(u32 low, u32 high)
2021{
2022 return low | ((u64)high << 32);
2023}
2024
2025/*
2026 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2027 * also let it use VMX-specific MSRs.
2028 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2029 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2030 * like all other MSRs).
2031 */
2032static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2033{
2034 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2035 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2036 /*
2037 * According to the spec, processors which do not support VMX
2038 * should throw a #GP(0) when VMX capability MSRs are read.
2039 */
2040 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2041 return 1;
2042 }
2043
2044 switch (msr_index) {
2045 case MSR_IA32_FEATURE_CONTROL:
2046 *pdata = 0;
2047 break;
2048 case MSR_IA32_VMX_BASIC:
2049 /*
2050 * This MSR reports some information about VMX support. We
2051 * should return information about the VMX we emulate for the
2052 * guest, and the VMCS structure we give it - not about the
2053 * VMX support of the underlying hardware.
2054 */
2055 *pdata = VMCS12_REVISION |
2056 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2057 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2058 break;
2059 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2060 case MSR_IA32_VMX_PINBASED_CTLS:
2061 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2062 nested_vmx_pinbased_ctls_high);
2063 break;
2064 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2065 case MSR_IA32_VMX_PROCBASED_CTLS:
2066 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2067 nested_vmx_procbased_ctls_high);
2068 break;
2069 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2070 case MSR_IA32_VMX_EXIT_CTLS:
2071 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2072 nested_vmx_exit_ctls_high);
2073 break;
2074 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2075 case MSR_IA32_VMX_ENTRY_CTLS:
2076 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2077 nested_vmx_entry_ctls_high);
2078 break;
2079 case MSR_IA32_VMX_MISC:
2080 *pdata = 0;
2081 break;
2082 /*
2083 * These MSRs specify bits which the guest must keep fixed (on or off)
2084 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2085 * We picked the standard core2 setting.
2086 */
2087#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2088#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2089 case MSR_IA32_VMX_CR0_FIXED0:
2090 *pdata = VMXON_CR0_ALWAYSON;
2091 break;
2092 case MSR_IA32_VMX_CR0_FIXED1:
2093 *pdata = -1ULL;
2094 break;
2095 case MSR_IA32_VMX_CR4_FIXED0:
2096 *pdata = VMXON_CR4_ALWAYSON;
2097 break;
2098 case MSR_IA32_VMX_CR4_FIXED1:
2099 *pdata = -1ULL;
2100 break;
2101 case MSR_IA32_VMX_VMCS_ENUM:
2102 *pdata = 0x1f;
2103 break;
2104 case MSR_IA32_VMX_PROCBASED_CTLS2:
2105 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2106 nested_vmx_secondary_ctls_high);
2107 break;
2108 case MSR_IA32_VMX_EPT_VPID_CAP:
2109 /* Currently, no nested ept or nested vpid */
2110 *pdata = 0;
2111 break;
2112 default:
2113 return 0;
2114 }
2115
2116 return 1;
2117}
2118
2119static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2120{
2121 if (!nested_vmx_allowed(vcpu))
2122 return 0;
2123
2124 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2125 /* TODO: the right thing. */
2126 return 1;
2127 /*
2128 * No need to treat VMX capability MSRs specially: If we don't handle
2129 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2130 */
2131 return 0;
2132}
2133
6aa8b732
AK
2134/*
2135 * Reads an msr value (of 'msr_index') into 'pdata'.
2136 * Returns 0 on success, non-0 otherwise.
2137 * Assumes vcpu_load() was already called.
2138 */
2139static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2140{
2141 u64 data;
26bb0981 2142 struct shared_msr_entry *msr;
6aa8b732
AK
2143
2144 if (!pdata) {
2145 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2146 return -EINVAL;
2147 }
2148
2149 switch (msr_index) {
05b3e0c2 2150#ifdef CONFIG_X86_64
6aa8b732
AK
2151 case MSR_FS_BASE:
2152 data = vmcs_readl(GUEST_FS_BASE);
2153 break;
2154 case MSR_GS_BASE:
2155 data = vmcs_readl(GUEST_GS_BASE);
2156 break;
44ea2b17
AK
2157 case MSR_KERNEL_GS_BASE:
2158 vmx_load_host_state(to_vmx(vcpu));
2159 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2160 break;
26bb0981 2161#endif
6aa8b732 2162 case MSR_EFER:
3bab1f5d 2163 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2164 case MSR_IA32_TSC:
6aa8b732
AK
2165 data = guest_read_tsc();
2166 break;
2167 case MSR_IA32_SYSENTER_CS:
2168 data = vmcs_read32(GUEST_SYSENTER_CS);
2169 break;
2170 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2171 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2172 break;
2173 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2174 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2175 break;
4e47c7a6
SY
2176 case MSR_TSC_AUX:
2177 if (!to_vmx(vcpu)->rdtscp_enabled)
2178 return 1;
2179 /* Otherwise falls through */
6aa8b732 2180 default:
b87a51ae
NHE
2181 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2182 return 0;
8b9cf98c 2183 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2184 if (msr) {
2185 data = msr->data;
2186 break;
6aa8b732 2187 }
3bab1f5d 2188 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2189 }
2190
2191 *pdata = data;
2192 return 0;
2193}
2194
2195/*
2196 * Writes msr value into into the appropriate "register".
2197 * Returns 0 on success, non-0 otherwise.
2198 * Assumes vcpu_load() was already called.
2199 */
2200static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2201{
a2fa3e9f 2202 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2203 struct shared_msr_entry *msr;
2cc51560
ED
2204 int ret = 0;
2205
6aa8b732 2206 switch (msr_index) {
3bab1f5d 2207 case MSR_EFER:
2cc51560 2208 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2209 break;
16175a79 2210#ifdef CONFIG_X86_64
6aa8b732 2211 case MSR_FS_BASE:
2fb92db1 2212 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2213 vmcs_writel(GUEST_FS_BASE, data);
2214 break;
2215 case MSR_GS_BASE:
2fb92db1 2216 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2217 vmcs_writel(GUEST_GS_BASE, data);
2218 break;
44ea2b17
AK
2219 case MSR_KERNEL_GS_BASE:
2220 vmx_load_host_state(vmx);
2221 vmx->msr_guest_kernel_gs_base = data;
2222 break;
6aa8b732
AK
2223#endif
2224 case MSR_IA32_SYSENTER_CS:
2225 vmcs_write32(GUEST_SYSENTER_CS, data);
2226 break;
2227 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2228 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2229 break;
2230 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2231 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2232 break;
af24a4e4 2233 case MSR_IA32_TSC:
99e3e30a 2234 kvm_write_tsc(vcpu, data);
6aa8b732 2235 break;
468d472f
SY
2236 case MSR_IA32_CR_PAT:
2237 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2238 vmcs_write64(GUEST_IA32_PAT, data);
2239 vcpu->arch.pat = data;
2240 break;
2241 }
4e47c7a6
SY
2242 ret = kvm_set_msr_common(vcpu, msr_index, data);
2243 break;
2244 case MSR_TSC_AUX:
2245 if (!vmx->rdtscp_enabled)
2246 return 1;
2247 /* Check reserved bit, higher 32 bits should be zero */
2248 if ((data >> 32) != 0)
2249 return 1;
2250 /* Otherwise falls through */
6aa8b732 2251 default:
b87a51ae
NHE
2252 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2253 break;
8b9cf98c 2254 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2255 if (msr) {
2256 msr->data = data;
2225fd56
AK
2257 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2258 preempt_disable();
9ee73970
AK
2259 kvm_set_shared_msr(msr->index, msr->data,
2260 msr->mask);
2225fd56
AK
2261 preempt_enable();
2262 }
3bab1f5d 2263 break;
6aa8b732 2264 }
2cc51560 2265 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2266 }
2267
2cc51560 2268 return ret;
6aa8b732
AK
2269}
2270
5fdbf976 2271static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2272{
5fdbf976
MT
2273 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2274 switch (reg) {
2275 case VCPU_REGS_RSP:
2276 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2277 break;
2278 case VCPU_REGS_RIP:
2279 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2280 break;
6de4f3ad
AK
2281 case VCPU_EXREG_PDPTR:
2282 if (enable_ept)
2283 ept_save_pdptrs(vcpu);
2284 break;
5fdbf976
MT
2285 default:
2286 break;
2287 }
6aa8b732
AK
2288}
2289
355be0b9 2290static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2291{
ae675ef0
JK
2292 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2293 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2294 else
2295 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2296
abd3f2d6 2297 update_exception_bitmap(vcpu);
6aa8b732
AK
2298}
2299
2300static __init int cpu_has_kvm_support(void)
2301{
6210e37b 2302 return cpu_has_vmx();
6aa8b732
AK
2303}
2304
2305static __init int vmx_disabled_by_bios(void)
2306{
2307 u64 msr;
2308
2309 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2310 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2311 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2312 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2313 && tboot_enabled())
2314 return 1;
23f3e991 2315 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2316 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2317 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2318 && !tboot_enabled()) {
2319 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2320 "activate TXT before enabling KVM\n");
cafd6659 2321 return 1;
f9335afe 2322 }
23f3e991
JC
2323 /* launched w/o TXT and VMX disabled */
2324 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2325 && !tboot_enabled())
2326 return 1;
cafd6659
SW
2327 }
2328
2329 return 0;
6aa8b732
AK
2330}
2331
7725b894
DX
2332static void kvm_cpu_vmxon(u64 addr)
2333{
2334 asm volatile (ASM_VMX_VMXON_RAX
2335 : : "a"(&addr), "m"(addr)
2336 : "memory", "cc");
2337}
2338
10474ae8 2339static int hardware_enable(void *garbage)
6aa8b732
AK
2340{
2341 int cpu = raw_smp_processor_id();
2342 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2343 u64 old, test_bits;
6aa8b732 2344
10474ae8
AG
2345 if (read_cr4() & X86_CR4_VMXE)
2346 return -EBUSY;
2347
d462b819 2348 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2349 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2350
2351 test_bits = FEATURE_CONTROL_LOCKED;
2352 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2353 if (tboot_enabled())
2354 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2355
2356 if ((old & test_bits) != test_bits) {
6aa8b732 2357 /* enable and lock */
cafd6659
SW
2358 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2359 }
66aee91a 2360 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2361
4610c9cc
DX
2362 if (vmm_exclusive) {
2363 kvm_cpu_vmxon(phys_addr);
2364 ept_sync_global();
2365 }
10474ae8 2366
3444d7da
AK
2367 store_gdt(&__get_cpu_var(host_gdt));
2368
10474ae8 2369 return 0;
6aa8b732
AK
2370}
2371
d462b819 2372static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2373{
2374 int cpu = raw_smp_processor_id();
d462b819 2375 struct loaded_vmcs *v, *n;
543e4243 2376
d462b819
NHE
2377 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2378 loaded_vmcss_on_cpu_link)
2379 __loaded_vmcs_clear(v);
543e4243
AK
2380}
2381
710ff4a8
EH
2382
2383/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2384 * tricks.
2385 */
2386static void kvm_cpu_vmxoff(void)
6aa8b732 2387{
4ecac3fd 2388 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2389}
2390
710ff4a8
EH
2391static void hardware_disable(void *garbage)
2392{
4610c9cc 2393 if (vmm_exclusive) {
d462b819 2394 vmclear_local_loaded_vmcss();
4610c9cc
DX
2395 kvm_cpu_vmxoff();
2396 }
7725b894 2397 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2398}
2399
1c3d14fe 2400static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2401 u32 msr, u32 *result)
1c3d14fe
YS
2402{
2403 u32 vmx_msr_low, vmx_msr_high;
2404 u32 ctl = ctl_min | ctl_opt;
2405
2406 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2407
2408 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2409 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2410
2411 /* Ensure minimum (required) set of control bits are supported. */
2412 if (ctl_min & ~ctl)
002c7f7c 2413 return -EIO;
1c3d14fe
YS
2414
2415 *result = ctl;
2416 return 0;
2417}
2418
110312c8
AK
2419static __init bool allow_1_setting(u32 msr, u32 ctl)
2420{
2421 u32 vmx_msr_low, vmx_msr_high;
2422
2423 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2424 return vmx_msr_high & ctl;
2425}
2426
002c7f7c 2427static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2428{
2429 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2430 u32 min, opt, min2, opt2;
1c3d14fe
YS
2431 u32 _pin_based_exec_control = 0;
2432 u32 _cpu_based_exec_control = 0;
f78e0e2e 2433 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2434 u32 _vmexit_control = 0;
2435 u32 _vmentry_control = 0;
2436
2437 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2438 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2439 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2440 &_pin_based_exec_control) < 0)
002c7f7c 2441 return -EIO;
1c3d14fe 2442
10166744 2443 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2444#ifdef CONFIG_X86_64
2445 CPU_BASED_CR8_LOAD_EXITING |
2446 CPU_BASED_CR8_STORE_EXITING |
2447#endif
d56f546d
SY
2448 CPU_BASED_CR3_LOAD_EXITING |
2449 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2450 CPU_BASED_USE_IO_BITMAPS |
2451 CPU_BASED_MOV_DR_EXITING |
a7052897 2452 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2453 CPU_BASED_MWAIT_EXITING |
2454 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2455 CPU_BASED_INVLPG_EXITING |
2456 CPU_BASED_RDPMC_EXITING;
443381a8 2457
f78e0e2e 2458 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2459 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2460 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2461 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2462 &_cpu_based_exec_control) < 0)
002c7f7c 2463 return -EIO;
6e5d865c
YS
2464#ifdef CONFIG_X86_64
2465 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2466 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2467 ~CPU_BASED_CR8_STORE_EXITING;
2468#endif
f78e0e2e 2469 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2470 min2 = 0;
2471 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2472 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2473 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2474 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2475 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2476 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16
MJ
2477 SECONDARY_EXEC_RDTSCP |
2478 SECONDARY_EXEC_ENABLE_INVPCID;
d56f546d
SY
2479 if (adjust_vmx_controls(min2, opt2,
2480 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2481 &_cpu_based_2nd_exec_control) < 0)
2482 return -EIO;
2483 }
2484#ifndef CONFIG_X86_64
2485 if (!(_cpu_based_2nd_exec_control &
2486 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2487 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2488#endif
d56f546d 2489 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2490 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2491 enabled */
5fff7d27
GN
2492 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2493 CPU_BASED_CR3_STORE_EXITING |
2494 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2495 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2496 vmx_capability.ept, vmx_capability.vpid);
2497 }
1c3d14fe
YS
2498
2499 min = 0;
2500#ifdef CONFIG_X86_64
2501 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2502#endif
468d472f 2503 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2504 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2505 &_vmexit_control) < 0)
002c7f7c 2506 return -EIO;
1c3d14fe 2507
468d472f
SY
2508 min = 0;
2509 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2510 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2511 &_vmentry_control) < 0)
002c7f7c 2512 return -EIO;
6aa8b732 2513
c68876fd 2514 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2515
2516 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2517 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2518 return -EIO;
1c3d14fe
YS
2519
2520#ifdef CONFIG_X86_64
2521 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2522 if (vmx_msr_high & (1u<<16))
002c7f7c 2523 return -EIO;
1c3d14fe
YS
2524#endif
2525
2526 /* Require Write-Back (WB) memory type for VMCS accesses. */
2527 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2528 return -EIO;
1c3d14fe 2529
002c7f7c
YS
2530 vmcs_conf->size = vmx_msr_high & 0x1fff;
2531 vmcs_conf->order = get_order(vmcs_config.size);
2532 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2533
002c7f7c
YS
2534 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2535 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2536 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2537 vmcs_conf->vmexit_ctrl = _vmexit_control;
2538 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2539
110312c8
AK
2540 cpu_has_load_ia32_efer =
2541 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2542 VM_ENTRY_LOAD_IA32_EFER)
2543 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2544 VM_EXIT_LOAD_IA32_EFER);
2545
8bf00a52
GN
2546 cpu_has_load_perf_global_ctrl =
2547 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2548 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2549 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2550 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2551
2552 /*
2553 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2554 * but due to arrata below it can't be used. Workaround is to use
2555 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2556 *
2557 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2558 *
2559 * AAK155 (model 26)
2560 * AAP115 (model 30)
2561 * AAT100 (model 37)
2562 * BC86,AAY89,BD102 (model 44)
2563 * BA97 (model 46)
2564 *
2565 */
2566 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2567 switch (boot_cpu_data.x86_model) {
2568 case 26:
2569 case 30:
2570 case 37:
2571 case 44:
2572 case 46:
2573 cpu_has_load_perf_global_ctrl = false;
2574 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2575 "does not work properly. Using workaround\n");
2576 break;
2577 default:
2578 break;
2579 }
2580 }
2581
1c3d14fe 2582 return 0;
c68876fd 2583}
6aa8b732
AK
2584
2585static struct vmcs *alloc_vmcs_cpu(int cpu)
2586{
2587 int node = cpu_to_node(cpu);
2588 struct page *pages;
2589 struct vmcs *vmcs;
2590
6484eb3e 2591 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2592 if (!pages)
2593 return NULL;
2594 vmcs = page_address(pages);
1c3d14fe
YS
2595 memset(vmcs, 0, vmcs_config.size);
2596 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2597 return vmcs;
2598}
2599
2600static struct vmcs *alloc_vmcs(void)
2601{
d3b2c338 2602 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2603}
2604
2605static void free_vmcs(struct vmcs *vmcs)
2606{
1c3d14fe 2607 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2608}
2609
d462b819
NHE
2610/*
2611 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2612 */
2613static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2614{
2615 if (!loaded_vmcs->vmcs)
2616 return;
2617 loaded_vmcs_clear(loaded_vmcs);
2618 free_vmcs(loaded_vmcs->vmcs);
2619 loaded_vmcs->vmcs = NULL;
2620}
2621
39959588 2622static void free_kvm_area(void)
6aa8b732
AK
2623{
2624 int cpu;
2625
3230bb47 2626 for_each_possible_cpu(cpu) {
6aa8b732 2627 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2628 per_cpu(vmxarea, cpu) = NULL;
2629 }
6aa8b732
AK
2630}
2631
6aa8b732
AK
2632static __init int alloc_kvm_area(void)
2633{
2634 int cpu;
2635
3230bb47 2636 for_each_possible_cpu(cpu) {
6aa8b732
AK
2637 struct vmcs *vmcs;
2638
2639 vmcs = alloc_vmcs_cpu(cpu);
2640 if (!vmcs) {
2641 free_kvm_area();
2642 return -ENOMEM;
2643 }
2644
2645 per_cpu(vmxarea, cpu) = vmcs;
2646 }
2647 return 0;
2648}
2649
2650static __init int hardware_setup(void)
2651{
002c7f7c
YS
2652 if (setup_vmcs_config(&vmcs_config) < 0)
2653 return -EIO;
50a37eb4
JR
2654
2655 if (boot_cpu_has(X86_FEATURE_NX))
2656 kvm_enable_efer_bits(EFER_NX);
2657
93ba03c2
SY
2658 if (!cpu_has_vmx_vpid())
2659 enable_vpid = 0;
2660
4bc9b982
SY
2661 if (!cpu_has_vmx_ept() ||
2662 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2663 enable_ept = 0;
3a624e29 2664 enable_unrestricted_guest = 0;
83c3a331 2665 enable_ept_ad_bits = 0;
3a624e29
NK
2666 }
2667
83c3a331
XH
2668 if (!cpu_has_vmx_ept_ad_bits())
2669 enable_ept_ad_bits = 0;
2670
3a624e29
NK
2671 if (!cpu_has_vmx_unrestricted_guest())
2672 enable_unrestricted_guest = 0;
93ba03c2
SY
2673
2674 if (!cpu_has_vmx_flexpriority())
2675 flexpriority_enabled = 0;
2676
95ba8273
GN
2677 if (!cpu_has_vmx_tpr_shadow())
2678 kvm_x86_ops->update_cr8_intercept = NULL;
2679
54dee993
MT
2680 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2681 kvm_disable_largepages();
2682
4b8d54f9
ZE
2683 if (!cpu_has_vmx_ple())
2684 ple_gap = 0;
2685
b87a51ae
NHE
2686 if (nested)
2687 nested_vmx_setup_ctls_msrs();
2688
6aa8b732
AK
2689 return alloc_kvm_area();
2690}
2691
2692static __exit void hardware_unsetup(void)
2693{
2694 free_kvm_area();
2695}
2696
6aa8b732
AK
2697static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2698{
2699 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2700
6af11b9e 2701 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2702 vmcs_write16(sf->selector, save->selector);
2703 vmcs_writel(sf->base, save->base);
2704 vmcs_write32(sf->limit, save->limit);
2705 vmcs_write32(sf->ar_bytes, save->ar);
2706 } else {
2707 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2708 << AR_DPL_SHIFT;
2709 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2710 }
2711}
2712
2713static void enter_pmode(struct kvm_vcpu *vcpu)
2714{
2715 unsigned long flags;
a89a8fb9 2716 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2717
a89a8fb9 2718 vmx->emulation_required = 1;
7ffd92c5 2719 vmx->rmode.vm86_active = 0;
6aa8b732 2720
2fb92db1
AK
2721 vmx_segment_cache_clear(vmx);
2722
d0ba64f9 2723 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2724 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2725 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2726 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2727
2728 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2729 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2730 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2731 vmcs_writel(GUEST_RFLAGS, flags);
2732
66aee91a
RR
2733 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2734 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2735
2736 update_exception_bitmap(vcpu);
2737
a89a8fb9
MG
2738 if (emulate_invalid_guest_state)
2739 return;
2740
7ffd92c5
AK
2741 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2742 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2743 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2744 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2745
2fb92db1
AK
2746 vmx_segment_cache_clear(vmx);
2747
6aa8b732
AK
2748 vmcs_write16(GUEST_SS_SELECTOR, 0);
2749 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2750
2751 vmcs_write16(GUEST_CS_SELECTOR,
2752 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2753 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2754}
2755
d77c26fc 2756static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2757{
bfc6d222 2758 if (!kvm->arch.tss_addr) {
bc6678a3 2759 struct kvm_memslots *slots;
28a37544 2760 struct kvm_memory_slot *slot;
bc6678a3
MT
2761 gfn_t base_gfn;
2762
90d83dc3 2763 slots = kvm_memslots(kvm);
28a37544
XG
2764 slot = id_to_memslot(slots, 0);
2765 base_gfn = slot->base_gfn + slot->npages - 3;
2766
cbc94022
IE
2767 return base_gfn << PAGE_SHIFT;
2768 }
bfc6d222 2769 return kvm->arch.tss_addr;
6aa8b732
AK
2770}
2771
2772static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2773{
2774 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2775
2776 save->selector = vmcs_read16(sf->selector);
2777 save->base = vmcs_readl(sf->base);
2778 save->limit = vmcs_read32(sf->limit);
2779 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2780 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2781 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2782 vmcs_write32(sf->limit, 0xffff);
2783 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2784 if (save->base & 0xf)
2785 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2786 " aligned when entering protected mode (seg=%d)",
2787 seg);
6aa8b732
AK
2788}
2789
2790static void enter_rmode(struct kvm_vcpu *vcpu)
2791{
2792 unsigned long flags;
a89a8fb9 2793 struct vcpu_vmx *vmx = to_vmx(vcpu);
b246dd5d 2794 struct kvm_segment var;
6aa8b732 2795
3a624e29
NK
2796 if (enable_unrestricted_guest)
2797 return;
2798
a89a8fb9 2799 vmx->emulation_required = 1;
7ffd92c5 2800 vmx->rmode.vm86_active = 1;
6aa8b732 2801
776e58ea
GN
2802 /*
2803 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2804 * vcpu. Call it here with phys address pointing 16M below 4G.
2805 */
2806 if (!vcpu->kvm->arch.tss_addr) {
2807 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2808 "called before entering vcpu\n");
2809 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2810 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2811 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2812 }
2813
2fb92db1
AK
2814 vmx_segment_cache_clear(vmx);
2815
d0ba64f9 2816 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2817 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2818 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2819
7ffd92c5 2820 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2821 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2822
7ffd92c5 2823 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2824 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2825
2826 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2827 vmx->rmode.save_rflags = flags;
6aa8b732 2828
053de044 2829 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2830
2831 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2832 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2833 update_exception_bitmap(vcpu);
2834
a89a8fb9
MG
2835 if (emulate_invalid_guest_state)
2836 goto continue_rmode;
2837
b246dd5d
OW
2838 vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2839 vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2840
2841 vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2842 vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2843
2844 vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2845 vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2846
2847 vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2848 vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
6aa8b732 2849
b246dd5d
OW
2850 vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2851 vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
6aa8b732 2852
b246dd5d
OW
2853 vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2854 vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
75880a01 2855
a89a8fb9 2856continue_rmode:
8668a3c4 2857 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2858}
2859
401d10de
AS
2860static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2861{
2862 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2863 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2864
2865 if (!msr)
2866 return;
401d10de 2867
44ea2b17
AK
2868 /*
2869 * Force kernel_gs_base reloading before EFER changes, as control
2870 * of this msr depends on is_long_mode().
2871 */
2872 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2873 vcpu->arch.efer = efer;
401d10de
AS
2874 if (efer & EFER_LMA) {
2875 vmcs_write32(VM_ENTRY_CONTROLS,
2876 vmcs_read32(VM_ENTRY_CONTROLS) |
2877 VM_ENTRY_IA32E_MODE);
2878 msr->data = efer;
2879 } else {
2880 vmcs_write32(VM_ENTRY_CONTROLS,
2881 vmcs_read32(VM_ENTRY_CONTROLS) &
2882 ~VM_ENTRY_IA32E_MODE);
2883
2884 msr->data = efer & ~EFER_LME;
2885 }
2886 setup_msrs(vmx);
2887}
2888
05b3e0c2 2889#ifdef CONFIG_X86_64
6aa8b732
AK
2890
2891static void enter_lmode(struct kvm_vcpu *vcpu)
2892{
2893 u32 guest_tr_ar;
2894
2fb92db1
AK
2895 vmx_segment_cache_clear(to_vmx(vcpu));
2896
6aa8b732
AK
2897 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2898 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2899 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2900 __func__);
6aa8b732
AK
2901 vmcs_write32(GUEST_TR_AR_BYTES,
2902 (guest_tr_ar & ~AR_TYPE_MASK)
2903 | AR_TYPE_BUSY_64_TSS);
2904 }
da38f438 2905 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2906}
2907
2908static void exit_lmode(struct kvm_vcpu *vcpu)
2909{
6aa8b732
AK
2910 vmcs_write32(VM_ENTRY_CONTROLS,
2911 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2912 & ~VM_ENTRY_IA32E_MODE);
da38f438 2913 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2914}
2915
2916#endif
2917
2384d2b3
SY
2918static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2919{
b9d762fa 2920 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2921 if (enable_ept) {
2922 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2923 return;
4e1096d2 2924 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2925 }
2384d2b3
SY
2926}
2927
e8467fda
AK
2928static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2929{
2930 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2931
2932 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2933 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2934}
2935
aff48baa
AK
2936static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2937{
2938 if (enable_ept && is_paging(vcpu))
2939 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2940 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2941}
2942
25c4c276 2943static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2944{
fc78f519
AK
2945 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2946
2947 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2948 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2949}
2950
1439442c
SY
2951static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2952{
6de4f3ad
AK
2953 if (!test_bit(VCPU_EXREG_PDPTR,
2954 (unsigned long *)&vcpu->arch.regs_dirty))
2955 return;
2956
1439442c 2957 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2958 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2959 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2960 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2961 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2962 }
2963}
2964
8f5d549f
AK
2965static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2966{
2967 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2968 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2969 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2970 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2971 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2972 }
6de4f3ad
AK
2973
2974 __set_bit(VCPU_EXREG_PDPTR,
2975 (unsigned long *)&vcpu->arch.regs_avail);
2976 __set_bit(VCPU_EXREG_PDPTR,
2977 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2978}
2979
5e1746d6 2980static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2981
2982static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2983 unsigned long cr0,
2984 struct kvm_vcpu *vcpu)
2985{
5233dd51
MT
2986 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2987 vmx_decache_cr3(vcpu);
1439442c
SY
2988 if (!(cr0 & X86_CR0_PG)) {
2989 /* From paging/starting to nonpaging */
2990 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2991 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2992 (CPU_BASED_CR3_LOAD_EXITING |
2993 CPU_BASED_CR3_STORE_EXITING));
2994 vcpu->arch.cr0 = cr0;
fc78f519 2995 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2996 } else if (!is_paging(vcpu)) {
2997 /* From nonpaging to paging */
2998 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2999 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3000 ~(CPU_BASED_CR3_LOAD_EXITING |
3001 CPU_BASED_CR3_STORE_EXITING));
3002 vcpu->arch.cr0 = cr0;
fc78f519 3003 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3004 }
95eb84a7
SY
3005
3006 if (!(cr0 & X86_CR0_WP))
3007 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3008}
3009
6aa8b732
AK
3010static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3011{
7ffd92c5 3012 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3013 unsigned long hw_cr0;
3014
3015 if (enable_unrestricted_guest)
3016 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
3017 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3018 else
3019 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 3020
7ffd92c5 3021 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
3022 enter_pmode(vcpu);
3023
7ffd92c5 3024 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
3025 enter_rmode(vcpu);
3026
05b3e0c2 3027#ifdef CONFIG_X86_64
f6801dff 3028 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3029 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3030 enter_lmode(vcpu);
707d92fa 3031 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3032 exit_lmode(vcpu);
3033 }
3034#endif
3035
089d034e 3036 if (enable_ept)
1439442c
SY
3037 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3038
02daab21 3039 if (!vcpu->fpu_active)
81231c69 3040 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3041
6aa8b732 3042 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3043 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3044 vcpu->arch.cr0 = cr0;
69c73028 3045 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3046}
3047
1439442c
SY
3048static u64 construct_eptp(unsigned long root_hpa)
3049{
3050 u64 eptp;
3051
3052 /* TODO write the value reading from MSR */
3053 eptp = VMX_EPT_DEFAULT_MT |
3054 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3055 if (enable_ept_ad_bits)
3056 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3057 eptp |= (root_hpa & PAGE_MASK);
3058
3059 return eptp;
3060}
3061
6aa8b732
AK
3062static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3063{
1439442c
SY
3064 unsigned long guest_cr3;
3065 u64 eptp;
3066
3067 guest_cr3 = cr3;
089d034e 3068 if (enable_ept) {
1439442c
SY
3069 eptp = construct_eptp(cr3);
3070 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3071 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3072 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3073 ept_load_pdptrs(vcpu);
1439442c
SY
3074 }
3075
2384d2b3 3076 vmx_flush_tlb(vcpu);
1439442c 3077 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3078}
3079
5e1746d6 3080static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3081{
7ffd92c5 3082 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3083 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3084
5e1746d6
NHE
3085 if (cr4 & X86_CR4_VMXE) {
3086 /*
3087 * To use VMXON (and later other VMX instructions), a guest
3088 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3089 * So basically the check on whether to allow nested VMX
3090 * is here.
3091 */
3092 if (!nested_vmx_allowed(vcpu))
3093 return 1;
3094 } else if (to_vmx(vcpu)->nested.vmxon)
3095 return 1;
3096
ad312c7c 3097 vcpu->arch.cr4 = cr4;
bc23008b
AK
3098 if (enable_ept) {
3099 if (!is_paging(vcpu)) {
3100 hw_cr4 &= ~X86_CR4_PAE;
3101 hw_cr4 |= X86_CR4_PSE;
3102 } else if (!(cr4 & X86_CR4_PAE)) {
3103 hw_cr4 &= ~X86_CR4_PAE;
3104 }
3105 }
1439442c
SY
3106
3107 vmcs_writel(CR4_READ_SHADOW, cr4);
3108 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3109 return 0;
6aa8b732
AK
3110}
3111
6aa8b732
AK
3112static void vmx_get_segment(struct kvm_vcpu *vcpu,
3113 struct kvm_segment *var, int seg)
3114{
a9179499 3115 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 3116 struct kvm_save_segment *save;
6aa8b732
AK
3117 u32 ar;
3118
a9179499
AK
3119 if (vmx->rmode.vm86_active
3120 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3121 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3122 || seg == VCPU_SREG_GS)
3123 && !emulate_invalid_guest_state) {
3124 switch (seg) {
3125 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3126 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3127 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3128 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3129 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3130 default: BUG();
3131 }
3132 var->selector = save->selector;
3133 var->base = save->base;
3134 var->limit = save->limit;
3135 ar = save->ar;
3136 if (seg == VCPU_SREG_TR
2fb92db1 3137 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3138 goto use_saved_rmode_seg;
3139 }
2fb92db1
AK
3140 var->base = vmx_read_guest_seg_base(vmx, seg);
3141 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3142 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3143 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3144use_saved_rmode_seg:
9fd4a3b7 3145 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3146 ar = 0;
3147 var->type = ar & 15;
3148 var->s = (ar >> 4) & 1;
3149 var->dpl = (ar >> 5) & 3;
3150 var->present = (ar >> 7) & 1;
3151 var->avl = (ar >> 12) & 1;
3152 var->l = (ar >> 13) & 1;
3153 var->db = (ar >> 14) & 1;
3154 var->g = (ar >> 15) & 1;
3155 var->unusable = (ar >> 16) & 1;
3156}
3157
a9179499
AK
3158static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3159{
a9179499
AK
3160 struct kvm_segment s;
3161
3162 if (to_vmx(vcpu)->rmode.vm86_active) {
3163 vmx_get_segment(vcpu, &s, seg);
3164 return s.base;
3165 }
2fb92db1 3166 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3167}
3168
69c73028 3169static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3170{
3eeb3288 3171 if (!is_protmode(vcpu))
2e4d2653
IE
3172 return 0;
3173
f4c63e5d
AK
3174 if (!is_long_mode(vcpu)
3175 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3176 return 3;
3177
2fb92db1 3178 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3179}
3180
69c73028
AK
3181static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3182{
d881e6f6
AK
3183 struct vcpu_vmx *vmx = to_vmx(vcpu);
3184
3185 /*
3186 * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3187 * fail; use the cache instead.
3188 */
3189 if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
3190 return vmx->cpl;
3191 }
3192
69c73028
AK
3193 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3194 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
d881e6f6 3195 vmx->cpl = __vmx_get_cpl(vcpu);
69c73028 3196 }
d881e6f6
AK
3197
3198 return vmx->cpl;
69c73028
AK
3199}
3200
3201
653e3108 3202static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3203{
6aa8b732
AK
3204 u32 ar;
3205
f0495f9b 3206 if (var->unusable || !var->present)
6aa8b732
AK
3207 ar = 1 << 16;
3208 else {
3209 ar = var->type & 15;
3210 ar |= (var->s & 1) << 4;
3211 ar |= (var->dpl & 3) << 5;
3212 ar |= (var->present & 1) << 7;
3213 ar |= (var->avl & 1) << 12;
3214 ar |= (var->l & 1) << 13;
3215 ar |= (var->db & 1) << 14;
3216 ar |= (var->g & 1) << 15;
3217 }
653e3108
AK
3218
3219 return ar;
3220}
3221
3222static void vmx_set_segment(struct kvm_vcpu *vcpu,
3223 struct kvm_segment *var, int seg)
3224{
7ffd92c5 3225 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3226 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3227 u32 ar;
3228
2fb92db1
AK
3229 vmx_segment_cache_clear(vmx);
3230
7ffd92c5 3231 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3232 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3233 vmx->rmode.tr.selector = var->selector;
3234 vmx->rmode.tr.base = var->base;
3235 vmx->rmode.tr.limit = var->limit;
3236 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3237 return;
3238 }
3239 vmcs_writel(sf->base, var->base);
3240 vmcs_write32(sf->limit, var->limit);
3241 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3242 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3243 /*
3244 * Hack real-mode segments into vm86 compatibility.
3245 */
3246 if (var->base == 0xffff0000 && var->selector == 0xf000)
3247 vmcs_writel(sf->base, 0xf0000);
3248 ar = 0xf3;
3249 } else
3250 ar = vmx_segment_access_rights(var);
3a624e29
NK
3251
3252 /*
3253 * Fix the "Accessed" bit in AR field of segment registers for older
3254 * qemu binaries.
3255 * IA32 arch specifies that at the time of processor reset the
3256 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3257 * is setting it to 0 in the usedland code. This causes invalid guest
3258 * state vmexit when "unrestricted guest" mode is turned on.
3259 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3260 * tree. Newer qemu binaries with that qemu fix would not need this
3261 * kvm hack.
3262 */
3263 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3264 ar |= 0x1; /* Accessed */
3265
6aa8b732 3266 vmcs_write32(sf->ar_bytes, ar);
69c73028 3267 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
b246dd5d
OW
3268
3269 /*
3270 * Fix segments for real mode guest in hosts that don't have
3271 * "unrestricted_mode" or it was disabled.
3272 * This is done to allow migration of the guests from hosts with
3273 * unrestricted guest like Westmere to older host that don't have
3274 * unrestricted guest like Nehelem.
3275 */
3276 if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
3277 switch (seg) {
3278 case VCPU_SREG_CS:
3279 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
3280 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
3281 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
3282 vmcs_writel(GUEST_CS_BASE, 0xf0000);
3283 vmcs_write16(GUEST_CS_SELECTOR,
3284 vmcs_readl(GUEST_CS_BASE) >> 4);
3285 break;
3286 case VCPU_SREG_ES:
3287 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
3288 break;
3289 case VCPU_SREG_DS:
3290 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
3291 break;
3292 case VCPU_SREG_GS:
3293 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
3294 break;
3295 case VCPU_SREG_FS:
3296 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
3297 break;
3298 case VCPU_SREG_SS:
3299 vmcs_write16(GUEST_SS_SELECTOR,
3300 vmcs_readl(GUEST_SS_BASE) >> 4);
3301 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
3302 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
3303 break;
3304 }
3305 }
6aa8b732
AK
3306}
3307
6aa8b732
AK
3308static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3309{
2fb92db1 3310 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3311
3312 *db = (ar >> 14) & 1;
3313 *l = (ar >> 13) & 1;
3314}
3315
89a27f4d 3316static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3317{
89a27f4d
GN
3318 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3319 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3320}
3321
89a27f4d 3322static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3323{
89a27f4d
GN
3324 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3325 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3326}
3327
89a27f4d 3328static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3329{
89a27f4d
GN
3330 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3331 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3332}
3333
89a27f4d 3334static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3335{
89a27f4d
GN
3336 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3337 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3338}
3339
648dfaa7
MG
3340static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3341{
3342 struct kvm_segment var;
3343 u32 ar;
3344
3345 vmx_get_segment(vcpu, &var, seg);
3346 ar = vmx_segment_access_rights(&var);
3347
3348 if (var.base != (var.selector << 4))
3349 return false;
3350 if (var.limit != 0xffff)
3351 return false;
3352 if (ar != 0xf3)
3353 return false;
3354
3355 return true;
3356}
3357
3358static bool code_segment_valid(struct kvm_vcpu *vcpu)
3359{
3360 struct kvm_segment cs;
3361 unsigned int cs_rpl;
3362
3363 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3364 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3365
1872a3f4
AK
3366 if (cs.unusable)
3367 return false;
648dfaa7
MG
3368 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3369 return false;
3370 if (!cs.s)
3371 return false;
1872a3f4 3372 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3373 if (cs.dpl > cs_rpl)
3374 return false;
1872a3f4 3375 } else {
648dfaa7
MG
3376 if (cs.dpl != cs_rpl)
3377 return false;
3378 }
3379 if (!cs.present)
3380 return false;
3381
3382 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3383 return true;
3384}
3385
3386static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3387{
3388 struct kvm_segment ss;
3389 unsigned int ss_rpl;
3390
3391 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3392 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3393
1872a3f4
AK
3394 if (ss.unusable)
3395 return true;
3396 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3397 return false;
3398 if (!ss.s)
3399 return false;
3400 if (ss.dpl != ss_rpl) /* DPL != RPL */
3401 return false;
3402 if (!ss.present)
3403 return false;
3404
3405 return true;
3406}
3407
3408static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3409{
3410 struct kvm_segment var;
3411 unsigned int rpl;
3412
3413 vmx_get_segment(vcpu, &var, seg);
3414 rpl = var.selector & SELECTOR_RPL_MASK;
3415
1872a3f4
AK
3416 if (var.unusable)
3417 return true;
648dfaa7
MG
3418 if (!var.s)
3419 return false;
3420 if (!var.present)
3421 return false;
3422 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3423 if (var.dpl < rpl) /* DPL < RPL */
3424 return false;
3425 }
3426
3427 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3428 * rights flags
3429 */
3430 return true;
3431}
3432
3433static bool tr_valid(struct kvm_vcpu *vcpu)
3434{
3435 struct kvm_segment tr;
3436
3437 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3438
1872a3f4
AK
3439 if (tr.unusable)
3440 return false;
648dfaa7
MG
3441 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3442 return false;
1872a3f4 3443 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3444 return false;
3445 if (!tr.present)
3446 return false;
3447
3448 return true;
3449}
3450
3451static bool ldtr_valid(struct kvm_vcpu *vcpu)
3452{
3453 struct kvm_segment ldtr;
3454
3455 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3456
1872a3f4
AK
3457 if (ldtr.unusable)
3458 return true;
648dfaa7
MG
3459 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3460 return false;
3461 if (ldtr.type != 2)
3462 return false;
3463 if (!ldtr.present)
3464 return false;
3465
3466 return true;
3467}
3468
3469static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3470{
3471 struct kvm_segment cs, ss;
3472
3473 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3474 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3475
3476 return ((cs.selector & SELECTOR_RPL_MASK) ==
3477 (ss.selector & SELECTOR_RPL_MASK));
3478}
3479
3480/*
3481 * Check if guest state is valid. Returns true if valid, false if
3482 * not.
3483 * We assume that registers are always usable
3484 */
3485static bool guest_state_valid(struct kvm_vcpu *vcpu)
3486{
3487 /* real mode guest state checks */
3eeb3288 3488 if (!is_protmode(vcpu)) {
648dfaa7
MG
3489 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3490 return false;
3491 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3492 return false;
3493 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3494 return false;
3495 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3496 return false;
3497 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3498 return false;
3499 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3500 return false;
3501 } else {
3502 /* protected mode guest state checks */
3503 if (!cs_ss_rpl_check(vcpu))
3504 return false;
3505 if (!code_segment_valid(vcpu))
3506 return false;
3507 if (!stack_segment_valid(vcpu))
3508 return false;
3509 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3510 return false;
3511 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3512 return false;
3513 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3514 return false;
3515 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3516 return false;
3517 if (!tr_valid(vcpu))
3518 return false;
3519 if (!ldtr_valid(vcpu))
3520 return false;
3521 }
3522 /* TODO:
3523 * - Add checks on RIP
3524 * - Add checks on RFLAGS
3525 */
3526
3527 return true;
3528}
3529
d77c26fc 3530static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3531{
40dcaa9f 3532 gfn_t fn;
195aefde 3533 u16 data = 0;
40dcaa9f 3534 int r, idx, ret = 0;
6aa8b732 3535
40dcaa9f
XG
3536 idx = srcu_read_lock(&kvm->srcu);
3537 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3538 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3539 if (r < 0)
10589a46 3540 goto out;
195aefde 3541 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3542 r = kvm_write_guest_page(kvm, fn++, &data,
3543 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3544 if (r < 0)
10589a46 3545 goto out;
195aefde
IE
3546 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3547 if (r < 0)
10589a46 3548 goto out;
195aefde
IE
3549 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3550 if (r < 0)
10589a46 3551 goto out;
195aefde 3552 data = ~0;
10589a46
MT
3553 r = kvm_write_guest_page(kvm, fn, &data,
3554 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3555 sizeof(u8));
195aefde 3556 if (r < 0)
10589a46
MT
3557 goto out;
3558
3559 ret = 1;
3560out:
40dcaa9f 3561 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3562 return ret;
6aa8b732
AK
3563}
3564
b7ebfb05
SY
3565static int init_rmode_identity_map(struct kvm *kvm)
3566{
40dcaa9f 3567 int i, idx, r, ret;
b7ebfb05
SY
3568 pfn_t identity_map_pfn;
3569 u32 tmp;
3570
089d034e 3571 if (!enable_ept)
b7ebfb05
SY
3572 return 1;
3573 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3574 printk(KERN_ERR "EPT: identity-mapping pagetable "
3575 "haven't been allocated!\n");
3576 return 0;
3577 }
3578 if (likely(kvm->arch.ept_identity_pagetable_done))
3579 return 1;
3580 ret = 0;
b927a3ce 3581 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3582 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3583 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3584 if (r < 0)
3585 goto out;
3586 /* Set up identity-mapping pagetable for EPT in real mode */
3587 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3588 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3589 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3590 r = kvm_write_guest_page(kvm, identity_map_pfn,
3591 &tmp, i * sizeof(tmp), sizeof(tmp));
3592 if (r < 0)
3593 goto out;
3594 }
3595 kvm->arch.ept_identity_pagetable_done = true;
3596 ret = 1;
3597out:
40dcaa9f 3598 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3599 return ret;
3600}
3601
6aa8b732
AK
3602static void seg_setup(int seg)
3603{
3604 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3605 unsigned int ar;
6aa8b732
AK
3606
3607 vmcs_write16(sf->selector, 0);
3608 vmcs_writel(sf->base, 0);
3609 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3610 if (enable_unrestricted_guest) {
3611 ar = 0x93;
3612 if (seg == VCPU_SREG_CS)
3613 ar |= 0x08; /* code segment */
3614 } else
3615 ar = 0xf3;
3616
3617 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3618}
3619
f78e0e2e
SY
3620static int alloc_apic_access_page(struct kvm *kvm)
3621{
4484141a 3622 struct page *page;
f78e0e2e
SY
3623 struct kvm_userspace_memory_region kvm_userspace_mem;
3624 int r = 0;
3625
79fac95e 3626 mutex_lock(&kvm->slots_lock);
bfc6d222 3627 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3628 goto out;
3629 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3630 kvm_userspace_mem.flags = 0;
3631 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3632 kvm_userspace_mem.memory_size = PAGE_SIZE;
3633 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3634 if (r)
3635 goto out;
72dc67a6 3636
4484141a
XG
3637 page = gfn_to_page(kvm, 0xfee00);
3638 if (is_error_page(page)) {
3639 r = -EFAULT;
3640 goto out;
3641 }
3642
3643 kvm->arch.apic_access_page = page;
f78e0e2e 3644out:
79fac95e 3645 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3646 return r;
3647}
3648
b7ebfb05
SY
3649static int alloc_identity_pagetable(struct kvm *kvm)
3650{
4484141a 3651 struct page *page;
b7ebfb05
SY
3652 struct kvm_userspace_memory_region kvm_userspace_mem;
3653 int r = 0;
3654
79fac95e 3655 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3656 if (kvm->arch.ept_identity_pagetable)
3657 goto out;
3658 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3659 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3660 kvm_userspace_mem.guest_phys_addr =
3661 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3662 kvm_userspace_mem.memory_size = PAGE_SIZE;
3663 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3664 if (r)
3665 goto out;
3666
4484141a
XG
3667 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3668 if (is_error_page(page)) {
3669 r = -EFAULT;
3670 goto out;
3671 }
3672
3673 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 3674out:
79fac95e 3675 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3676 return r;
3677}
3678
2384d2b3
SY
3679static void allocate_vpid(struct vcpu_vmx *vmx)
3680{
3681 int vpid;
3682
3683 vmx->vpid = 0;
919818ab 3684 if (!enable_vpid)
2384d2b3
SY
3685 return;
3686 spin_lock(&vmx_vpid_lock);
3687 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3688 if (vpid < VMX_NR_VPIDS) {
3689 vmx->vpid = vpid;
3690 __set_bit(vpid, vmx_vpid_bitmap);
3691 }
3692 spin_unlock(&vmx_vpid_lock);
3693}
3694
cdbecfc3
LJ
3695static void free_vpid(struct vcpu_vmx *vmx)
3696{
3697 if (!enable_vpid)
3698 return;
3699 spin_lock(&vmx_vpid_lock);
3700 if (vmx->vpid != 0)
3701 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3702 spin_unlock(&vmx_vpid_lock);
3703}
3704
5897297b 3705static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3706{
3e7c73e9 3707 int f = sizeof(unsigned long);
25c5f225
SY
3708
3709 if (!cpu_has_vmx_msr_bitmap())
3710 return;
3711
3712 /*
3713 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3714 * have the write-low and read-high bitmap offsets the wrong way round.
3715 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3716 */
25c5f225 3717 if (msr <= 0x1fff) {
3e7c73e9
AK
3718 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3719 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3720 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3721 msr &= 0x1fff;
3e7c73e9
AK
3722 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3723 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3724 }
25c5f225
SY
3725}
3726
5897297b
AK
3727static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3728{
3729 if (!longmode_only)
3730 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3731 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3732}
3733
a3a8ff8e
NHE
3734/*
3735 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3736 * will not change in the lifetime of the guest.
3737 * Note that host-state that does change is set elsewhere. E.g., host-state
3738 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3739 */
3740static void vmx_set_constant_host_state(void)
3741{
3742 u32 low32, high32;
3743 unsigned long tmpl;
3744 struct desc_ptr dt;
3745
3746 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3747 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3748 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3749
3750 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
3751#ifdef CONFIG_X86_64
3752 /*
3753 * Load null selectors, so we can avoid reloading them in
3754 * __vmx_load_host_state(), in case userspace uses the null selectors
3755 * too (the expected case).
3756 */
3757 vmcs_write16(HOST_DS_SELECTOR, 0);
3758 vmcs_write16(HOST_ES_SELECTOR, 0);
3759#else
a3a8ff8e
NHE
3760 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3761 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 3762#endif
a3a8ff8e
NHE
3763 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3764 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3765
3766 native_store_idt(&dt);
3767 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3768
3769 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3770 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3771
3772 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3773 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3774 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3775 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3776
3777 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3778 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3779 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3780 }
3781}
3782
bf8179a0
NHE
3783static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3784{
3785 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3786 if (enable_ept)
3787 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3788 if (is_guest_mode(&vmx->vcpu))
3789 vmx->vcpu.arch.cr4_guest_owned_bits &=
3790 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3791 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3792}
3793
3794static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3795{
3796 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3797 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3798 exec_control &= ~CPU_BASED_TPR_SHADOW;
3799#ifdef CONFIG_X86_64
3800 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3801 CPU_BASED_CR8_LOAD_EXITING;
3802#endif
3803 }
3804 if (!enable_ept)
3805 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3806 CPU_BASED_CR3_LOAD_EXITING |
3807 CPU_BASED_INVLPG_EXITING;
3808 return exec_control;
3809}
3810
3811static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3812{
3813 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3814 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3815 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3816 if (vmx->vpid == 0)
3817 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3818 if (!enable_ept) {
3819 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3820 enable_unrestricted_guest = 0;
ad756a16
MJ
3821 /* Enable INVPCID for non-ept guests may cause performance regression. */
3822 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
3823 }
3824 if (!enable_unrestricted_guest)
3825 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3826 if (!ple_gap)
3827 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3828 return exec_control;
3829}
3830
ce88decf
XG
3831static void ept_set_mmio_spte_mask(void)
3832{
3833 /*
3834 * EPT Misconfigurations can be generated if the value of bits 2:0
3835 * of an EPT paging-structure entry is 110b (write/execute).
3836 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3837 * spte.
3838 */
3839 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3840}
3841
6aa8b732
AK
3842/*
3843 * Sets up the vmcs for emulated real mode.
3844 */
8b9cf98c 3845static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3846{
2e4ce7f5 3847#ifdef CONFIG_X86_64
6aa8b732 3848 unsigned long a;
2e4ce7f5 3849#endif
6aa8b732 3850 int i;
6aa8b732 3851
6aa8b732 3852 /* I/O */
3e7c73e9
AK
3853 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3854 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3855
25c5f225 3856 if (cpu_has_vmx_msr_bitmap())
5897297b 3857 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3858
6aa8b732
AK
3859 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3860
6aa8b732 3861 /* Control */
1c3d14fe
YS
3862 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3863 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3864
bf8179a0 3865 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3866
83ff3b9d 3867 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3868 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3869 vmx_secondary_exec_control(vmx));
83ff3b9d 3870 }
f78e0e2e 3871
4b8d54f9
ZE
3872 if (ple_gap) {
3873 vmcs_write32(PLE_GAP, ple_gap);
3874 vmcs_write32(PLE_WINDOW, ple_window);
3875 }
3876
c3707958
XG
3877 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3878 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3879 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3880
9581d442
AK
3881 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3882 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3883 vmx_set_constant_host_state();
05b3e0c2 3884#ifdef CONFIG_X86_64
6aa8b732
AK
3885 rdmsrl(MSR_FS_BASE, a);
3886 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3887 rdmsrl(MSR_GS_BASE, a);
3888 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3889#else
3890 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3891 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3892#endif
3893
2cc51560
ED
3894 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3895 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3896 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3897 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3898 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3899
468d472f 3900 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3901 u32 msr_low, msr_high;
3902 u64 host_pat;
468d472f
SY
3903 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3904 host_pat = msr_low | ((u64) msr_high << 32);
3905 /* Write the default value follow host pat */
3906 vmcs_write64(GUEST_IA32_PAT, host_pat);
3907 /* Keep arch.pat sync with GUEST_IA32_PAT */
3908 vmx->vcpu.arch.pat = host_pat;
3909 }
3910
6aa8b732
AK
3911 for (i = 0; i < NR_VMX_MSR; ++i) {
3912 u32 index = vmx_msr_index[i];
3913 u32 data_low, data_high;
a2fa3e9f 3914 int j = vmx->nmsrs;
6aa8b732
AK
3915
3916 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3917 continue;
432bd6cb
AK
3918 if (wrmsr_safe(index, data_low, data_high) < 0)
3919 continue;
26bb0981
AK
3920 vmx->guest_msrs[j].index = i;
3921 vmx->guest_msrs[j].data = 0;
d5696725 3922 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3923 ++vmx->nmsrs;
6aa8b732 3924 }
6aa8b732 3925
1c3d14fe 3926 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3927
3928 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3929 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3930
e00c8cf2 3931 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3932 set_cr4_guest_host_mask(vmx);
e00c8cf2 3933
99e3e30a 3934 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3935
e00c8cf2
AK
3936 return 0;
3937}
3938
3939static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3940{
3941 struct vcpu_vmx *vmx = to_vmx(vcpu);
3942 u64 msr;
4b9d3a04 3943 int ret;
e00c8cf2 3944
5fdbf976 3945 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3946
7ffd92c5 3947 vmx->rmode.vm86_active = 0;
e00c8cf2 3948
3b86cd99
JK
3949 vmx->soft_vnmi_blocked = 0;
3950
ad312c7c 3951 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3952 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3953 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3954 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3955 msr |= MSR_IA32_APICBASE_BSP;
3956 kvm_set_apic_base(&vmx->vcpu, msr);
3957
10ab25cd
JK
3958 ret = fx_init(&vmx->vcpu);
3959 if (ret != 0)
3960 goto out;
e00c8cf2 3961
2fb92db1
AK
3962 vmx_segment_cache_clear(vmx);
3963
5706be0d 3964 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3965 /*
3966 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3967 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3968 */
c5af89b6 3969 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3970 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3971 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3972 } else {
ad312c7c
ZX
3973 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3974 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3975 }
e00c8cf2
AK
3976
3977 seg_setup(VCPU_SREG_DS);
3978 seg_setup(VCPU_SREG_ES);
3979 seg_setup(VCPU_SREG_FS);
3980 seg_setup(VCPU_SREG_GS);
3981 seg_setup(VCPU_SREG_SS);
3982
3983 vmcs_write16(GUEST_TR_SELECTOR, 0);
3984 vmcs_writel(GUEST_TR_BASE, 0);
3985 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3986 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3987
3988 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3989 vmcs_writel(GUEST_LDTR_BASE, 0);
3990 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3991 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3992
3993 vmcs_write32(GUEST_SYSENTER_CS, 0);
3994 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3995 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3996
3997 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3998 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3999 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4000 else
5fdbf976
MT
4001 kvm_rip_write(vcpu, 0);
4002 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 4003
e00c8cf2
AK
4004 vmcs_writel(GUEST_DR7, 0x400);
4005
4006 vmcs_writel(GUEST_GDTR_BASE, 0);
4007 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4008
4009 vmcs_writel(GUEST_IDTR_BASE, 0);
4010 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4011
443381a8 4012 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4013 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4014 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4015
e00c8cf2
AK
4016 /* Special registers */
4017 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4018
4019 setup_msrs(vmx);
4020
6aa8b732
AK
4021 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4022
f78e0e2e
SY
4023 if (cpu_has_vmx_tpr_shadow()) {
4024 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4025 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4026 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4027 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4028 vmcs_write32(TPR_THRESHOLD, 0);
4029 }
4030
4031 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4032 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4033 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4034
2384d2b3
SY
4035 if (vmx->vpid != 0)
4036 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4037
fa40052c 4038 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
7a4f5ad0 4039 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4d4ec087 4040 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
7a4f5ad0 4041 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8b9cf98c 4042 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4043 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4044 vmx_fpu_activate(&vmx->vcpu);
4045 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4046
b9d762fa 4047 vpid_sync_context(vmx);
2384d2b3 4048
3200f405 4049 ret = 0;
6aa8b732 4050
a89a8fb9
MG
4051 /* HACK: Don't enable emulation on guest boot/reset */
4052 vmx->emulation_required = 0;
4053
6aa8b732
AK
4054out:
4055 return ret;
4056}
4057
b6f1250e
NHE
4058/*
4059 * In nested virtualization, check if L1 asked to exit on external interrupts.
4060 * For most existing hypervisors, this will always return true.
4061 */
4062static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4063{
4064 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4065 PIN_BASED_EXT_INTR_MASK;
4066}
4067
3b86cd99
JK
4068static void enable_irq_window(struct kvm_vcpu *vcpu)
4069{
4070 u32 cpu_based_vm_exec_control;
d6185f20
NHE
4071 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4072 /*
4073 * We get here if vmx_interrupt_allowed() said we can't
4074 * inject to L1 now because L2 must run. Ask L2 to exit
4075 * right after entry, so we can inject to L1 more promptly.
b6f1250e 4076 */
d6185f20 4077 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 4078 return;
d6185f20 4079 }
3b86cd99
JK
4080
4081 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4082 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4083 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4084}
4085
4086static void enable_nmi_window(struct kvm_vcpu *vcpu)
4087{
4088 u32 cpu_based_vm_exec_control;
4089
4090 if (!cpu_has_virtual_nmis()) {
4091 enable_irq_window(vcpu);
4092 return;
4093 }
4094
30bd0c4c
AK
4095 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4096 enable_irq_window(vcpu);
4097 return;
4098 }
3b86cd99
JK
4099 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4100 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4101 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4102}
4103
66fd3f7f 4104static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4105{
9c8cba37 4106 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4107 uint32_t intr;
4108 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4109
229456fc 4110 trace_kvm_inj_virq(irq);
2714d1d3 4111
fa89a817 4112 ++vcpu->stat.irq_injections;
7ffd92c5 4113 if (vmx->rmode.vm86_active) {
71f9833b
SH
4114 int inc_eip = 0;
4115 if (vcpu->arch.interrupt.soft)
4116 inc_eip = vcpu->arch.event_exit_inst_len;
4117 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4118 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4119 return;
4120 }
66fd3f7f
GN
4121 intr = irq | INTR_INFO_VALID_MASK;
4122 if (vcpu->arch.interrupt.soft) {
4123 intr |= INTR_TYPE_SOFT_INTR;
4124 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4125 vmx->vcpu.arch.event_exit_inst_len);
4126 } else
4127 intr |= INTR_TYPE_EXT_INTR;
4128 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4129}
4130
f08864b4
SY
4131static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4132{
66a5a347
JK
4133 struct vcpu_vmx *vmx = to_vmx(vcpu);
4134
0b6ac343
NHE
4135 if (is_guest_mode(vcpu))
4136 return;
4137
3b86cd99
JK
4138 if (!cpu_has_virtual_nmis()) {
4139 /*
4140 * Tracking the NMI-blocked state in software is built upon
4141 * finding the next open IRQ window. This, in turn, depends on
4142 * well-behaving guests: They have to keep IRQs disabled at
4143 * least as long as the NMI handler runs. Otherwise we may
4144 * cause NMI nesting, maybe breaking the guest. But as this is
4145 * highly unlikely, we can live with the residual risk.
4146 */
4147 vmx->soft_vnmi_blocked = 1;
4148 vmx->vnmi_blocked_time = 0;
4149 }
4150
487b391d 4151 ++vcpu->stat.nmi_injections;
9d58b931 4152 vmx->nmi_known_unmasked = false;
7ffd92c5 4153 if (vmx->rmode.vm86_active) {
71f9833b 4154 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4155 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4156 return;
4157 }
f08864b4
SY
4158 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4159 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4160}
4161
c4282df9 4162static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4163{
3b86cd99 4164 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4165 return 0;
33f089ca 4166
c4282df9 4167 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4168 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4169 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4170}
4171
3cfc3092
JK
4172static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4173{
4174 if (!cpu_has_virtual_nmis())
4175 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4176 if (to_vmx(vcpu)->nmi_known_unmasked)
4177 return false;
c332c83a 4178 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4179}
4180
4181static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4182{
4183 struct vcpu_vmx *vmx = to_vmx(vcpu);
4184
4185 if (!cpu_has_virtual_nmis()) {
4186 if (vmx->soft_vnmi_blocked != masked) {
4187 vmx->soft_vnmi_blocked = masked;
4188 vmx->vnmi_blocked_time = 0;
4189 }
4190 } else {
9d58b931 4191 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4192 if (masked)
4193 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4194 GUEST_INTR_STATE_NMI);
4195 else
4196 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4197 GUEST_INTR_STATE_NMI);
4198 }
4199}
4200
78646121
GN
4201static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4202{
b6f1250e 4203 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4204 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4205 if (to_vmx(vcpu)->nested.nested_run_pending ||
4206 (vmcs12->idt_vectoring_info_field &
4207 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4208 return 0;
4209 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4210 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4211 vmcs12->vm_exit_intr_info = 0;
4212 /* fall through to normal code, but now in L1, not L2 */
4213 }
4214
c4282df9
GN
4215 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4216 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4217 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4218}
4219
cbc94022
IE
4220static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4221{
4222 int ret;
4223 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4224 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4225 .guest_phys_addr = addr,
4226 .memory_size = PAGE_SIZE * 3,
4227 .flags = 0,
4228 };
4229
4230 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4231 if (ret)
4232 return ret;
bfc6d222 4233 kvm->arch.tss_addr = addr;
93ea5388
GN
4234 if (!init_rmode_tss(kvm))
4235 return -ENOMEM;
4236
cbc94022
IE
4237 return 0;
4238}
4239
6aa8b732
AK
4240static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4241 int vec, u32 err_code)
4242{
b3f37707
NK
4243 /*
4244 * Instruction with address size override prefix opcode 0x67
4245 * Cause the #SS fault with 0 error code in VM86 mode.
4246 */
4247 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4248 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4249 return 1;
77ab6db0
JK
4250 /*
4251 * Forward all other exceptions that are valid in real mode.
4252 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4253 * the required debugging infrastructure rework.
4254 */
4255 switch (vec) {
77ab6db0 4256 case DB_VECTOR:
d0bfb940
JK
4257 if (vcpu->guest_debug &
4258 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4259 return 0;
4260 kvm_queue_exception(vcpu, vec);
4261 return 1;
77ab6db0 4262 case BP_VECTOR:
c573cd22
JK
4263 /*
4264 * Update instruction length as we may reinject the exception
4265 * from user space while in guest debugging mode.
4266 */
4267 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4268 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4269 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4270 return 0;
4271 /* fall through */
4272 case DE_VECTOR:
77ab6db0
JK
4273 case OF_VECTOR:
4274 case BR_VECTOR:
4275 case UD_VECTOR:
4276 case DF_VECTOR:
4277 case SS_VECTOR:
4278 case GP_VECTOR:
4279 case MF_VECTOR:
4280 kvm_queue_exception(vcpu, vec);
4281 return 1;
4282 }
6aa8b732
AK
4283 return 0;
4284}
4285
a0861c02
AK
4286/*
4287 * Trigger machine check on the host. We assume all the MSRs are already set up
4288 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4289 * We pass a fake environment to the machine check handler because we want
4290 * the guest to be always treated like user space, no matter what context
4291 * it used internally.
4292 */
4293static void kvm_machine_check(void)
4294{
4295#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4296 struct pt_regs regs = {
4297 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4298 .flags = X86_EFLAGS_IF,
4299 };
4300
4301 do_machine_check(&regs, 0);
4302#endif
4303}
4304
851ba692 4305static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4306{
4307 /* already handled by vcpu_run */
4308 return 1;
4309}
4310
851ba692 4311static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4312{
1155f76a 4313 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4314 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4315 u32 intr_info, ex_no, error_code;
42dbaa5a 4316 unsigned long cr2, rip, dr6;
6aa8b732
AK
4317 u32 vect_info;
4318 enum emulation_result er;
4319
1155f76a 4320 vect_info = vmx->idt_vectoring_info;
88786475 4321 intr_info = vmx->exit_intr_info;
6aa8b732 4322
a0861c02 4323 if (is_machine_check(intr_info))
851ba692 4324 return handle_machine_check(vcpu);
a0861c02 4325
6aa8b732 4326 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4327 !is_page_fault(intr_info)) {
4328 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4329 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4330 vcpu->run->internal.ndata = 2;
4331 vcpu->run->internal.data[0] = vect_info;
4332 vcpu->run->internal.data[1] = intr_info;
4333 return 0;
4334 }
6aa8b732 4335
e4a41889 4336 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4337 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4338
4339 if (is_no_device(intr_info)) {
5fd86fcf 4340 vmx_fpu_activate(vcpu);
2ab455cc
AL
4341 return 1;
4342 }
4343
7aa81cc0 4344 if (is_invalid_opcode(intr_info)) {
51d8b661 4345 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4346 if (er != EMULATE_DONE)
7ee5d940 4347 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4348 return 1;
4349 }
4350
6aa8b732 4351 error_code = 0;
2e11384c 4352 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4353 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4354 if (is_page_fault(intr_info)) {
1439442c 4355 /* EPT won't cause page fault directly */
cf3ace79 4356 BUG_ON(enable_ept);
6aa8b732 4357 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4358 trace_kvm_page_fault(cr2, error_code);
4359
3298b75c 4360 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4361 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4362 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4363 }
4364
7ffd92c5 4365 if (vmx->rmode.vm86_active &&
6aa8b732 4366 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4367 error_code)) {
ad312c7c
ZX
4368 if (vcpu->arch.halt_request) {
4369 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4370 return kvm_emulate_halt(vcpu);
4371 }
6aa8b732 4372 return 1;
72d6e5a0 4373 }
6aa8b732 4374
d0bfb940 4375 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4376 switch (ex_no) {
4377 case DB_VECTOR:
4378 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4379 if (!(vcpu->guest_debug &
4380 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4381 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4382 kvm_queue_exception(vcpu, DB_VECTOR);
4383 return 1;
4384 }
4385 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4386 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4387 /* fall through */
4388 case BP_VECTOR:
c573cd22
JK
4389 /*
4390 * Update instruction length as we may reinject #BP from
4391 * user space while in guest debugging mode. Reading it for
4392 * #DB as well causes no harm, it is not used in that case.
4393 */
4394 vmx->vcpu.arch.event_exit_inst_len =
4395 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4396 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4397 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4398 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4399 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4400 break;
4401 default:
d0bfb940
JK
4402 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4403 kvm_run->ex.exception = ex_no;
4404 kvm_run->ex.error_code = error_code;
42dbaa5a 4405 break;
6aa8b732 4406 }
6aa8b732
AK
4407 return 0;
4408}
4409
851ba692 4410static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4411{
1165f5fe 4412 ++vcpu->stat.irq_exits;
6aa8b732
AK
4413 return 1;
4414}
4415
851ba692 4416static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4417{
851ba692 4418 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4419 return 0;
4420}
6aa8b732 4421
851ba692 4422static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4423{
bfdaab09 4424 unsigned long exit_qualification;
34c33d16 4425 int size, in, string;
039576c0 4426 unsigned port;
6aa8b732 4427
bfdaab09 4428 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4429 string = (exit_qualification & 16) != 0;
cf8f70bf 4430 in = (exit_qualification & 8) != 0;
e70669ab 4431
cf8f70bf 4432 ++vcpu->stat.io_exits;
e70669ab 4433
cf8f70bf 4434 if (string || in)
51d8b661 4435 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4436
cf8f70bf
GN
4437 port = exit_qualification >> 16;
4438 size = (exit_qualification & 7) + 1;
e93f36bc 4439 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4440
4441 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4442}
4443
102d8325
IM
4444static void
4445vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4446{
4447 /*
4448 * Patch in the VMCALL instruction:
4449 */
4450 hypercall[0] = 0x0f;
4451 hypercall[1] = 0x01;
4452 hypercall[2] = 0xc1;
102d8325
IM
4453}
4454
eeadf9e7
NHE
4455/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4456static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4457{
4458 if (to_vmx(vcpu)->nested.vmxon &&
4459 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4460 return 1;
4461
4462 if (is_guest_mode(vcpu)) {
4463 /*
4464 * We get here when L2 changed cr0 in a way that did not change
4465 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4466 * but did change L0 shadowed bits. This can currently happen
4467 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4468 * loading) while pretending to allow the guest to change it.
4469 */
4470 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4471 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4472 return 1;
4473 vmcs_writel(CR0_READ_SHADOW, val);
4474 return 0;
4475 } else
4476 return kvm_set_cr0(vcpu, val);
4477}
4478
4479static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4480{
4481 if (is_guest_mode(vcpu)) {
4482 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4483 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4484 return 1;
4485 vmcs_writel(CR4_READ_SHADOW, val);
4486 return 0;
4487 } else
4488 return kvm_set_cr4(vcpu, val);
4489}
4490
4491/* called to set cr0 as approriate for clts instruction exit. */
4492static void handle_clts(struct kvm_vcpu *vcpu)
4493{
4494 if (is_guest_mode(vcpu)) {
4495 /*
4496 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4497 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4498 * just pretend it's off (also in arch.cr0 for fpu_activate).
4499 */
4500 vmcs_writel(CR0_READ_SHADOW,
4501 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4502 vcpu->arch.cr0 &= ~X86_CR0_TS;
4503 } else
4504 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4505}
4506
851ba692 4507static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4508{
229456fc 4509 unsigned long exit_qualification, val;
6aa8b732
AK
4510 int cr;
4511 int reg;
49a9b07e 4512 int err;
6aa8b732 4513
bfdaab09 4514 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4515 cr = exit_qualification & 15;
4516 reg = (exit_qualification >> 8) & 15;
4517 switch ((exit_qualification >> 4) & 3) {
4518 case 0: /* mov to cr */
229456fc
MT
4519 val = kvm_register_read(vcpu, reg);
4520 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4521 switch (cr) {
4522 case 0:
eeadf9e7 4523 err = handle_set_cr0(vcpu, val);
db8fcefa 4524 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4525 return 1;
4526 case 3:
2390218b 4527 err = kvm_set_cr3(vcpu, val);
db8fcefa 4528 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4529 return 1;
4530 case 4:
eeadf9e7 4531 err = handle_set_cr4(vcpu, val);
db8fcefa 4532 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4533 return 1;
0a5fff19
GN
4534 case 8: {
4535 u8 cr8_prev = kvm_get_cr8(vcpu);
4536 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4537 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4538 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4539 if (irqchip_in_kernel(vcpu->kvm))
4540 return 1;
4541 if (cr8_prev <= cr8)
4542 return 1;
851ba692 4543 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4544 return 0;
4545 }
6aa8b732
AK
4546 };
4547 break;
25c4c276 4548 case 2: /* clts */
eeadf9e7 4549 handle_clts(vcpu);
4d4ec087 4550 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4551 skip_emulated_instruction(vcpu);
6b52d186 4552 vmx_fpu_activate(vcpu);
25c4c276 4553 return 1;
6aa8b732
AK
4554 case 1: /*mov from cr*/
4555 switch (cr) {
4556 case 3:
9f8fe504
AK
4557 val = kvm_read_cr3(vcpu);
4558 kvm_register_write(vcpu, reg, val);
4559 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4560 skip_emulated_instruction(vcpu);
4561 return 1;
4562 case 8:
229456fc
MT
4563 val = kvm_get_cr8(vcpu);
4564 kvm_register_write(vcpu, reg, val);
4565 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4566 skip_emulated_instruction(vcpu);
4567 return 1;
4568 }
4569 break;
4570 case 3: /* lmsw */
a1f83a74 4571 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4572 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4573 kvm_lmsw(vcpu, val);
6aa8b732
AK
4574
4575 skip_emulated_instruction(vcpu);
4576 return 1;
4577 default:
4578 break;
4579 }
851ba692 4580 vcpu->run->exit_reason = 0;
a737f256 4581 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4582 (int)(exit_qualification >> 4) & 3, cr);
4583 return 0;
4584}
4585
851ba692 4586static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4587{
bfdaab09 4588 unsigned long exit_qualification;
6aa8b732
AK
4589 int dr, reg;
4590
f2483415 4591 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4592 if (!kvm_require_cpl(vcpu, 0))
4593 return 1;
42dbaa5a
JK
4594 dr = vmcs_readl(GUEST_DR7);
4595 if (dr & DR7_GD) {
4596 /*
4597 * As the vm-exit takes precedence over the debug trap, we
4598 * need to emulate the latter, either for the host or the
4599 * guest debugging itself.
4600 */
4601 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4602 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4603 vcpu->run->debug.arch.dr7 = dr;
4604 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4605 vmcs_readl(GUEST_CS_BASE) +
4606 vmcs_readl(GUEST_RIP);
851ba692
AK
4607 vcpu->run->debug.arch.exception = DB_VECTOR;
4608 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4609 return 0;
4610 } else {
4611 vcpu->arch.dr7 &= ~DR7_GD;
4612 vcpu->arch.dr6 |= DR6_BD;
4613 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4614 kvm_queue_exception(vcpu, DB_VECTOR);
4615 return 1;
4616 }
4617 }
4618
bfdaab09 4619 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4620 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4621 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4622 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4623 unsigned long val;
4624 if (!kvm_get_dr(vcpu, dr, &val))
4625 kvm_register_write(vcpu, reg, val);
4626 } else
4627 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4628 skip_emulated_instruction(vcpu);
4629 return 1;
4630}
4631
020df079
GN
4632static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4633{
4634 vmcs_writel(GUEST_DR7, val);
4635}
4636
851ba692 4637static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4638{
06465c5a
AK
4639 kvm_emulate_cpuid(vcpu);
4640 return 1;
6aa8b732
AK
4641}
4642
851ba692 4643static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4644{
ad312c7c 4645 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4646 u64 data;
4647
4648 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4649 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4650 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4651 return 1;
4652 }
4653
229456fc 4654 trace_kvm_msr_read(ecx, data);
2714d1d3 4655
6aa8b732 4656 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4657 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4658 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4659 skip_emulated_instruction(vcpu);
4660 return 1;
4661}
4662
851ba692 4663static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4664{
ad312c7c
ZX
4665 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4666 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4667 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4668
4669 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4670 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4671 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4672 return 1;
4673 }
4674
59200273 4675 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4676 skip_emulated_instruction(vcpu);
4677 return 1;
4678}
4679
851ba692 4680static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4681{
3842d135 4682 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4683 return 1;
4684}
4685
851ba692 4686static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4687{
85f455f7
ED
4688 u32 cpu_based_vm_exec_control;
4689
4690 /* clear pending irq */
4691 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4692 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4693 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4694
3842d135
AK
4695 kvm_make_request(KVM_REQ_EVENT, vcpu);
4696
a26bf12a 4697 ++vcpu->stat.irq_window_exits;
2714d1d3 4698
c1150d8c
DL
4699 /*
4700 * If the user space waits to inject interrupts, exit as soon as
4701 * possible
4702 */
8061823a 4703 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4704 vcpu->run->request_interrupt_window &&
8061823a 4705 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4706 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4707 return 0;
4708 }
6aa8b732
AK
4709 return 1;
4710}
4711
851ba692 4712static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4713{
4714 skip_emulated_instruction(vcpu);
d3bef15f 4715 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4716}
4717
851ba692 4718static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4719{
510043da 4720 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4721 kvm_emulate_hypercall(vcpu);
4722 return 1;
c21415e8
IM
4723}
4724
ec25d5e6
GN
4725static int handle_invd(struct kvm_vcpu *vcpu)
4726{
51d8b661 4727 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4728}
4729
851ba692 4730static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4731{
f9c617f6 4732 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4733
4734 kvm_mmu_invlpg(vcpu, exit_qualification);
4735 skip_emulated_instruction(vcpu);
4736 return 1;
4737}
4738
fee84b07
AK
4739static int handle_rdpmc(struct kvm_vcpu *vcpu)
4740{
4741 int err;
4742
4743 err = kvm_rdpmc(vcpu);
4744 kvm_complete_insn_gp(vcpu, err);
4745
4746 return 1;
4747}
4748
851ba692 4749static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4750{
4751 skip_emulated_instruction(vcpu);
f5f48ee1 4752 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4753 return 1;
4754}
4755
2acf923e
DC
4756static int handle_xsetbv(struct kvm_vcpu *vcpu)
4757{
4758 u64 new_bv = kvm_read_edx_eax(vcpu);
4759 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4760
4761 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4762 skip_emulated_instruction(vcpu);
4763 return 1;
4764}
4765
851ba692 4766static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4767{
58fbbf26
KT
4768 if (likely(fasteoi)) {
4769 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4770 int access_type, offset;
4771
4772 access_type = exit_qualification & APIC_ACCESS_TYPE;
4773 offset = exit_qualification & APIC_ACCESS_OFFSET;
4774 /*
4775 * Sane guest uses MOV to write EOI, with written value
4776 * not cared. So make a short-circuit here by avoiding
4777 * heavy instruction emulation.
4778 */
4779 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4780 (offset == APIC_EOI)) {
4781 kvm_lapic_set_eoi(vcpu);
4782 skip_emulated_instruction(vcpu);
4783 return 1;
4784 }
4785 }
51d8b661 4786 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4787}
4788
851ba692 4789static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4790{
60637aac 4791 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4792 unsigned long exit_qualification;
e269fb21
JK
4793 bool has_error_code = false;
4794 u32 error_code = 0;
37817f29 4795 u16 tss_selector;
7f3d35fd 4796 int reason, type, idt_v, idt_index;
64a7ec06
GN
4797
4798 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 4799 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 4800 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4801
4802 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4803
4804 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4805 if (reason == TASK_SWITCH_GATE && idt_v) {
4806 switch (type) {
4807 case INTR_TYPE_NMI_INTR:
4808 vcpu->arch.nmi_injected = false;
654f06fc 4809 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4810 break;
4811 case INTR_TYPE_EXT_INTR:
66fd3f7f 4812 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4813 kvm_clear_interrupt_queue(vcpu);
4814 break;
4815 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4816 if (vmx->idt_vectoring_info &
4817 VECTORING_INFO_DELIVER_CODE_MASK) {
4818 has_error_code = true;
4819 error_code =
4820 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4821 }
4822 /* fall through */
64a7ec06
GN
4823 case INTR_TYPE_SOFT_EXCEPTION:
4824 kvm_clear_exception_queue(vcpu);
4825 break;
4826 default:
4827 break;
4828 }
60637aac 4829 }
37817f29
IE
4830 tss_selector = exit_qualification;
4831
64a7ec06
GN
4832 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4833 type != INTR_TYPE_EXT_INTR &&
4834 type != INTR_TYPE_NMI_INTR))
4835 skip_emulated_instruction(vcpu);
4836
7f3d35fd
KW
4837 if (kvm_task_switch(vcpu, tss_selector,
4838 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4839 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
4840 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4841 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4842 vcpu->run->internal.ndata = 0;
42dbaa5a 4843 return 0;
acb54517 4844 }
42dbaa5a
JK
4845
4846 /* clear all local breakpoint enable flags */
4847 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4848
4849 /*
4850 * TODO: What about debug traps on tss switch?
4851 * Are we supposed to inject them and update dr6?
4852 */
4853
4854 return 1;
37817f29
IE
4855}
4856
851ba692 4857static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4858{
f9c617f6 4859 unsigned long exit_qualification;
1439442c 4860 gpa_t gpa;
4f5982a5 4861 u32 error_code;
1439442c 4862 int gla_validity;
1439442c 4863
f9c617f6 4864 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4865
4866 if (exit_qualification & (1 << 6)) {
4867 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4868 return -EINVAL;
1439442c
SY
4869 }
4870
4871 gla_validity = (exit_qualification >> 7) & 0x3;
4872 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4873 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4874 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4875 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4876 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4877 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4878 (long unsigned int)exit_qualification);
851ba692
AK
4879 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4880 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4881 return 0;
1439442c
SY
4882 }
4883
4884 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4885 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
4886
4887 /* It is a write fault? */
4888 error_code = exit_qualification & (1U << 1);
4889 /* ept page table is present? */
4890 error_code |= (exit_qualification >> 3) & 0x1;
4891
4892 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
4893}
4894
68f89400
MT
4895static u64 ept_rsvd_mask(u64 spte, int level)
4896{
4897 int i;
4898 u64 mask = 0;
4899
4900 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4901 mask |= (1ULL << i);
4902
4903 if (level > 2)
4904 /* bits 7:3 reserved */
4905 mask |= 0xf8;
4906 else if (level == 2) {
4907 if (spte & (1ULL << 7))
4908 /* 2MB ref, bits 20:12 reserved */
4909 mask |= 0x1ff000;
4910 else
4911 /* bits 6:3 reserved */
4912 mask |= 0x78;
4913 }
4914
4915 return mask;
4916}
4917
4918static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4919 int level)
4920{
4921 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4922
4923 /* 010b (write-only) */
4924 WARN_ON((spte & 0x7) == 0x2);
4925
4926 /* 110b (write/execute) */
4927 WARN_ON((spte & 0x7) == 0x6);
4928
4929 /* 100b (execute-only) and value not supported by logical processor */
4930 if (!cpu_has_vmx_ept_execute_only())
4931 WARN_ON((spte & 0x7) == 0x4);
4932
4933 /* not 000b */
4934 if ((spte & 0x7)) {
4935 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4936
4937 if (rsvd_bits != 0) {
4938 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4939 __func__, rsvd_bits);
4940 WARN_ON(1);
4941 }
4942
4943 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4944 u64 ept_mem_type = (spte & 0x38) >> 3;
4945
4946 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4947 ept_mem_type == 7) {
4948 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4949 __func__, ept_mem_type);
4950 WARN_ON(1);
4951 }
4952 }
4953 }
4954}
4955
851ba692 4956static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4957{
4958 u64 sptes[4];
ce88decf 4959 int nr_sptes, i, ret;
68f89400
MT
4960 gpa_t gpa;
4961
4962 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4963
ce88decf
XG
4964 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4965 if (likely(ret == 1))
4966 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4967 EMULATE_DONE;
4968 if (unlikely(!ret))
4969 return 1;
4970
4971 /* It is the real ept misconfig */
68f89400
MT
4972 printk(KERN_ERR "EPT: Misconfiguration.\n");
4973 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4974
4975 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4976
4977 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4978 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4979
851ba692
AK
4980 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4981 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4982
4983 return 0;
4984}
4985
851ba692 4986static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4987{
4988 u32 cpu_based_vm_exec_control;
4989
4990 /* clear pending NMI */
4991 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4992 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4993 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4994 ++vcpu->stat.nmi_window_exits;
3842d135 4995 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4996
4997 return 1;
4998}
4999
80ced186 5000static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5001{
8b3079a5
AK
5002 struct vcpu_vmx *vmx = to_vmx(vcpu);
5003 enum emulation_result err = EMULATE_DONE;
80ced186 5004 int ret = 1;
49e9d557
AK
5005 u32 cpu_exec_ctrl;
5006 bool intr_window_requested;
b8405c18 5007 unsigned count = 130;
49e9d557
AK
5008
5009 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5010 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5011
b8405c18 5012 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5013 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5014 return handle_interrupt_window(&vmx->vcpu);
5015
de87dcdd
AK
5016 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5017 return 1;
5018
51d8b661 5019 err = emulate_instruction(vcpu, 0);
ea953ef0 5020
80ced186
MG
5021 if (err == EMULATE_DO_MMIO) {
5022 ret = 0;
5023 goto out;
5024 }
1d5a4d9b 5025
de5f70e0
AK
5026 if (err != EMULATE_DONE) {
5027 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5028 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5029 vcpu->run->internal.ndata = 0;
6d77dbfc 5030 return 0;
de5f70e0 5031 }
ea953ef0
MG
5032
5033 if (signal_pending(current))
80ced186 5034 goto out;
ea953ef0
MG
5035 if (need_resched())
5036 schedule();
5037 }
5038
7c068e45 5039 vmx->emulation_required = !guest_state_valid(vcpu);
80ced186
MG
5040out:
5041 return ret;
ea953ef0
MG
5042}
5043
4b8d54f9
ZE
5044/*
5045 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5046 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5047 */
9fb41ba8 5048static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5049{
5050 skip_emulated_instruction(vcpu);
5051 kvm_vcpu_on_spin(vcpu);
5052
5053 return 1;
5054}
5055
59708670
SY
5056static int handle_invalid_op(struct kvm_vcpu *vcpu)
5057{
5058 kvm_queue_exception(vcpu, UD_VECTOR);
5059 return 1;
5060}
5061
ff2f6fe9
NHE
5062/*
5063 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5064 * We could reuse a single VMCS for all the L2 guests, but we also want the
5065 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5066 * allows keeping them loaded on the processor, and in the future will allow
5067 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5068 * every entry if they never change.
5069 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5070 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5071 *
5072 * The following functions allocate and free a vmcs02 in this pool.
5073 */
5074
5075/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5076static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5077{
5078 struct vmcs02_list *item;
5079 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5080 if (item->vmptr == vmx->nested.current_vmptr) {
5081 list_move(&item->list, &vmx->nested.vmcs02_pool);
5082 return &item->vmcs02;
5083 }
5084
5085 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5086 /* Recycle the least recently used VMCS. */
5087 item = list_entry(vmx->nested.vmcs02_pool.prev,
5088 struct vmcs02_list, list);
5089 item->vmptr = vmx->nested.current_vmptr;
5090 list_move(&item->list, &vmx->nested.vmcs02_pool);
5091 return &item->vmcs02;
5092 }
5093
5094 /* Create a new VMCS */
5095 item = (struct vmcs02_list *)
5096 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5097 if (!item)
5098 return NULL;
5099 item->vmcs02.vmcs = alloc_vmcs();
5100 if (!item->vmcs02.vmcs) {
5101 kfree(item);
5102 return NULL;
5103 }
5104 loaded_vmcs_init(&item->vmcs02);
5105 item->vmptr = vmx->nested.current_vmptr;
5106 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5107 vmx->nested.vmcs02_num++;
5108 return &item->vmcs02;
5109}
5110
5111/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5112static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5113{
5114 struct vmcs02_list *item;
5115 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5116 if (item->vmptr == vmptr) {
5117 free_loaded_vmcs(&item->vmcs02);
5118 list_del(&item->list);
5119 kfree(item);
5120 vmx->nested.vmcs02_num--;
5121 return;
5122 }
5123}
5124
5125/*
5126 * Free all VMCSs saved for this vcpu, except the one pointed by
5127 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5128 * currently used, if running L2), and vmcs01 when running L2.
5129 */
5130static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5131{
5132 struct vmcs02_list *item, *n;
5133 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5134 if (vmx->loaded_vmcs != &item->vmcs02)
5135 free_loaded_vmcs(&item->vmcs02);
5136 list_del(&item->list);
5137 kfree(item);
5138 }
5139 vmx->nested.vmcs02_num = 0;
5140
5141 if (vmx->loaded_vmcs != &vmx->vmcs01)
5142 free_loaded_vmcs(&vmx->vmcs01);
5143}
5144
ec378aee
NHE
5145/*
5146 * Emulate the VMXON instruction.
5147 * Currently, we just remember that VMX is active, and do not save or even
5148 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5149 * do not currently need to store anything in that guest-allocated memory
5150 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5151 * argument is different from the VMXON pointer (which the spec says they do).
5152 */
5153static int handle_vmon(struct kvm_vcpu *vcpu)
5154{
5155 struct kvm_segment cs;
5156 struct vcpu_vmx *vmx = to_vmx(vcpu);
5157
5158 /* The Intel VMX Instruction Reference lists a bunch of bits that
5159 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5160 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5161 * Otherwise, we should fail with #UD. We test these now:
5162 */
5163 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5164 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5165 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5166 kvm_queue_exception(vcpu, UD_VECTOR);
5167 return 1;
5168 }
5169
5170 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5171 if (is_long_mode(vcpu) && !cs.l) {
5172 kvm_queue_exception(vcpu, UD_VECTOR);
5173 return 1;
5174 }
5175
5176 if (vmx_get_cpl(vcpu)) {
5177 kvm_inject_gp(vcpu, 0);
5178 return 1;
5179 }
5180
ff2f6fe9
NHE
5181 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5182 vmx->nested.vmcs02_num = 0;
5183
ec378aee
NHE
5184 vmx->nested.vmxon = true;
5185
5186 skip_emulated_instruction(vcpu);
5187 return 1;
5188}
5189
5190/*
5191 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5192 * for running VMX instructions (except VMXON, whose prerequisites are
5193 * slightly different). It also specifies what exception to inject otherwise.
5194 */
5195static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5196{
5197 struct kvm_segment cs;
5198 struct vcpu_vmx *vmx = to_vmx(vcpu);
5199
5200 if (!vmx->nested.vmxon) {
5201 kvm_queue_exception(vcpu, UD_VECTOR);
5202 return 0;
5203 }
5204
5205 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5206 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5207 (is_long_mode(vcpu) && !cs.l)) {
5208 kvm_queue_exception(vcpu, UD_VECTOR);
5209 return 0;
5210 }
5211
5212 if (vmx_get_cpl(vcpu)) {
5213 kvm_inject_gp(vcpu, 0);
5214 return 0;
5215 }
5216
5217 return 1;
5218}
5219
5220/*
5221 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5222 * just stops using VMX.
5223 */
5224static void free_nested(struct vcpu_vmx *vmx)
5225{
5226 if (!vmx->nested.vmxon)
5227 return;
5228 vmx->nested.vmxon = false;
a9d30f33
NHE
5229 if (vmx->nested.current_vmptr != -1ull) {
5230 kunmap(vmx->nested.current_vmcs12_page);
5231 nested_release_page(vmx->nested.current_vmcs12_page);
5232 vmx->nested.current_vmptr = -1ull;
5233 vmx->nested.current_vmcs12 = NULL;
5234 }
fe3ef05c
NHE
5235 /* Unpin physical memory we referred to in current vmcs02 */
5236 if (vmx->nested.apic_access_page) {
5237 nested_release_page(vmx->nested.apic_access_page);
5238 vmx->nested.apic_access_page = 0;
5239 }
ff2f6fe9
NHE
5240
5241 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5242}
5243
5244/* Emulate the VMXOFF instruction */
5245static int handle_vmoff(struct kvm_vcpu *vcpu)
5246{
5247 if (!nested_vmx_check_permission(vcpu))
5248 return 1;
5249 free_nested(to_vmx(vcpu));
5250 skip_emulated_instruction(vcpu);
5251 return 1;
5252}
5253
064aea77
NHE
5254/*
5255 * Decode the memory-address operand of a vmx instruction, as recorded on an
5256 * exit caused by such an instruction (run by a guest hypervisor).
5257 * On success, returns 0. When the operand is invalid, returns 1 and throws
5258 * #UD or #GP.
5259 */
5260static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5261 unsigned long exit_qualification,
5262 u32 vmx_instruction_info, gva_t *ret)
5263{
5264 /*
5265 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5266 * Execution", on an exit, vmx_instruction_info holds most of the
5267 * addressing components of the operand. Only the displacement part
5268 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5269 * For how an actual address is calculated from all these components,
5270 * refer to Vol. 1, "Operand Addressing".
5271 */
5272 int scaling = vmx_instruction_info & 3;
5273 int addr_size = (vmx_instruction_info >> 7) & 7;
5274 bool is_reg = vmx_instruction_info & (1u << 10);
5275 int seg_reg = (vmx_instruction_info >> 15) & 7;
5276 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5277 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5278 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5279 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5280
5281 if (is_reg) {
5282 kvm_queue_exception(vcpu, UD_VECTOR);
5283 return 1;
5284 }
5285
5286 /* Addr = segment_base + offset */
5287 /* offset = base + [index * scale] + displacement */
5288 *ret = vmx_get_segment_base(vcpu, seg_reg);
5289 if (base_is_valid)
5290 *ret += kvm_register_read(vcpu, base_reg);
5291 if (index_is_valid)
5292 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5293 *ret += exit_qualification; /* holds the displacement */
5294
5295 if (addr_size == 1) /* 32 bit */
5296 *ret &= 0xffffffff;
5297
5298 /*
5299 * TODO: throw #GP (and return 1) in various cases that the VM*
5300 * instructions require it - e.g., offset beyond segment limit,
5301 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5302 * address, and so on. Currently these are not checked.
5303 */
5304 return 0;
5305}
5306
0140caea
NHE
5307/*
5308 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5309 * set the success or error code of an emulated VMX instruction, as specified
5310 * by Vol 2B, VMX Instruction Reference, "Conventions".
5311 */
5312static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5313{
5314 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5315 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5316 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5317}
5318
5319static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5320{
5321 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5322 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5323 X86_EFLAGS_SF | X86_EFLAGS_OF))
5324 | X86_EFLAGS_CF);
5325}
5326
5327static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5328 u32 vm_instruction_error)
5329{
5330 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5331 /*
5332 * failValid writes the error number to the current VMCS, which
5333 * can't be done there isn't a current VMCS.
5334 */
5335 nested_vmx_failInvalid(vcpu);
5336 return;
5337 }
5338 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5339 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5340 X86_EFLAGS_SF | X86_EFLAGS_OF))
5341 | X86_EFLAGS_ZF);
5342 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5343}
5344
27d6c865
NHE
5345/* Emulate the VMCLEAR instruction */
5346static int handle_vmclear(struct kvm_vcpu *vcpu)
5347{
5348 struct vcpu_vmx *vmx = to_vmx(vcpu);
5349 gva_t gva;
5350 gpa_t vmptr;
5351 struct vmcs12 *vmcs12;
5352 struct page *page;
5353 struct x86_exception e;
5354
5355 if (!nested_vmx_check_permission(vcpu))
5356 return 1;
5357
5358 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5359 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5360 return 1;
5361
5362 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5363 sizeof(vmptr), &e)) {
5364 kvm_inject_page_fault(vcpu, &e);
5365 return 1;
5366 }
5367
5368 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5369 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5370 skip_emulated_instruction(vcpu);
5371 return 1;
5372 }
5373
5374 if (vmptr == vmx->nested.current_vmptr) {
5375 kunmap(vmx->nested.current_vmcs12_page);
5376 nested_release_page(vmx->nested.current_vmcs12_page);
5377 vmx->nested.current_vmptr = -1ull;
5378 vmx->nested.current_vmcs12 = NULL;
5379 }
5380
5381 page = nested_get_page(vcpu, vmptr);
5382 if (page == NULL) {
5383 /*
5384 * For accurate processor emulation, VMCLEAR beyond available
5385 * physical memory should do nothing at all. However, it is
5386 * possible that a nested vmx bug, not a guest hypervisor bug,
5387 * resulted in this case, so let's shut down before doing any
5388 * more damage:
5389 */
5390 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5391 return 1;
5392 }
5393 vmcs12 = kmap(page);
5394 vmcs12->launch_state = 0;
5395 kunmap(page);
5396 nested_release_page(page);
5397
5398 nested_free_vmcs02(vmx, vmptr);
5399
5400 skip_emulated_instruction(vcpu);
5401 nested_vmx_succeed(vcpu);
5402 return 1;
5403}
5404
cd232ad0
NHE
5405static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5406
5407/* Emulate the VMLAUNCH instruction */
5408static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5409{
5410 return nested_vmx_run(vcpu, true);
5411}
5412
5413/* Emulate the VMRESUME instruction */
5414static int handle_vmresume(struct kvm_vcpu *vcpu)
5415{
5416
5417 return nested_vmx_run(vcpu, false);
5418}
5419
49f705c5
NHE
5420enum vmcs_field_type {
5421 VMCS_FIELD_TYPE_U16 = 0,
5422 VMCS_FIELD_TYPE_U64 = 1,
5423 VMCS_FIELD_TYPE_U32 = 2,
5424 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5425};
5426
5427static inline int vmcs_field_type(unsigned long field)
5428{
5429 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5430 return VMCS_FIELD_TYPE_U32;
5431 return (field >> 13) & 0x3 ;
5432}
5433
5434static inline int vmcs_field_readonly(unsigned long field)
5435{
5436 return (((field >> 10) & 0x3) == 1);
5437}
5438
5439/*
5440 * Read a vmcs12 field. Since these can have varying lengths and we return
5441 * one type, we chose the biggest type (u64) and zero-extend the return value
5442 * to that size. Note that the caller, handle_vmread, might need to use only
5443 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5444 * 64-bit fields are to be returned).
5445 */
5446static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5447 unsigned long field, u64 *ret)
5448{
5449 short offset = vmcs_field_to_offset(field);
5450 char *p;
5451
5452 if (offset < 0)
5453 return 0;
5454
5455 p = ((char *)(get_vmcs12(vcpu))) + offset;
5456
5457 switch (vmcs_field_type(field)) {
5458 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5459 *ret = *((natural_width *)p);
5460 return 1;
5461 case VMCS_FIELD_TYPE_U16:
5462 *ret = *((u16 *)p);
5463 return 1;
5464 case VMCS_FIELD_TYPE_U32:
5465 *ret = *((u32 *)p);
5466 return 1;
5467 case VMCS_FIELD_TYPE_U64:
5468 *ret = *((u64 *)p);
5469 return 1;
5470 default:
5471 return 0; /* can never happen. */
5472 }
5473}
5474
5475/*
5476 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5477 * used before) all generate the same failure when it is missing.
5478 */
5479static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5480{
5481 struct vcpu_vmx *vmx = to_vmx(vcpu);
5482 if (vmx->nested.current_vmptr == -1ull) {
5483 nested_vmx_failInvalid(vcpu);
5484 skip_emulated_instruction(vcpu);
5485 return 0;
5486 }
5487 return 1;
5488}
5489
5490static int handle_vmread(struct kvm_vcpu *vcpu)
5491{
5492 unsigned long field;
5493 u64 field_value;
5494 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5495 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5496 gva_t gva = 0;
5497
5498 if (!nested_vmx_check_permission(vcpu) ||
5499 !nested_vmx_check_vmcs12(vcpu))
5500 return 1;
5501
5502 /* Decode instruction info and find the field to read */
5503 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5504 /* Read the field, zero-extended to a u64 field_value */
5505 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5506 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5507 skip_emulated_instruction(vcpu);
5508 return 1;
5509 }
5510 /*
5511 * Now copy part of this value to register or memory, as requested.
5512 * Note that the number of bits actually copied is 32 or 64 depending
5513 * on the guest's mode (32 or 64 bit), not on the given field's length.
5514 */
5515 if (vmx_instruction_info & (1u << 10)) {
5516 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5517 field_value);
5518 } else {
5519 if (get_vmx_mem_address(vcpu, exit_qualification,
5520 vmx_instruction_info, &gva))
5521 return 1;
5522 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5523 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5524 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5525 }
5526
5527 nested_vmx_succeed(vcpu);
5528 skip_emulated_instruction(vcpu);
5529 return 1;
5530}
5531
5532
5533static int handle_vmwrite(struct kvm_vcpu *vcpu)
5534{
5535 unsigned long field;
5536 gva_t gva;
5537 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5538 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5539 char *p;
5540 short offset;
5541 /* The value to write might be 32 or 64 bits, depending on L1's long
5542 * mode, and eventually we need to write that into a field of several
5543 * possible lengths. The code below first zero-extends the value to 64
5544 * bit (field_value), and then copies only the approriate number of
5545 * bits into the vmcs12 field.
5546 */
5547 u64 field_value = 0;
5548 struct x86_exception e;
5549
5550 if (!nested_vmx_check_permission(vcpu) ||
5551 !nested_vmx_check_vmcs12(vcpu))
5552 return 1;
5553
5554 if (vmx_instruction_info & (1u << 10))
5555 field_value = kvm_register_read(vcpu,
5556 (((vmx_instruction_info) >> 3) & 0xf));
5557 else {
5558 if (get_vmx_mem_address(vcpu, exit_qualification,
5559 vmx_instruction_info, &gva))
5560 return 1;
5561 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5562 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5563 kvm_inject_page_fault(vcpu, &e);
5564 return 1;
5565 }
5566 }
5567
5568
5569 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5570 if (vmcs_field_readonly(field)) {
5571 nested_vmx_failValid(vcpu,
5572 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5573 skip_emulated_instruction(vcpu);
5574 return 1;
5575 }
5576
5577 offset = vmcs_field_to_offset(field);
5578 if (offset < 0) {
5579 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5580 skip_emulated_instruction(vcpu);
5581 return 1;
5582 }
5583 p = ((char *) get_vmcs12(vcpu)) + offset;
5584
5585 switch (vmcs_field_type(field)) {
5586 case VMCS_FIELD_TYPE_U16:
5587 *(u16 *)p = field_value;
5588 break;
5589 case VMCS_FIELD_TYPE_U32:
5590 *(u32 *)p = field_value;
5591 break;
5592 case VMCS_FIELD_TYPE_U64:
5593 *(u64 *)p = field_value;
5594 break;
5595 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5596 *(natural_width *)p = field_value;
5597 break;
5598 default:
5599 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5600 skip_emulated_instruction(vcpu);
5601 return 1;
5602 }
5603
5604 nested_vmx_succeed(vcpu);
5605 skip_emulated_instruction(vcpu);
5606 return 1;
5607}
5608
63846663
NHE
5609/* Emulate the VMPTRLD instruction */
5610static int handle_vmptrld(struct kvm_vcpu *vcpu)
5611{
5612 struct vcpu_vmx *vmx = to_vmx(vcpu);
5613 gva_t gva;
5614 gpa_t vmptr;
5615 struct x86_exception e;
5616
5617 if (!nested_vmx_check_permission(vcpu))
5618 return 1;
5619
5620 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5621 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5622 return 1;
5623
5624 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5625 sizeof(vmptr), &e)) {
5626 kvm_inject_page_fault(vcpu, &e);
5627 return 1;
5628 }
5629
5630 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5631 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5632 skip_emulated_instruction(vcpu);
5633 return 1;
5634 }
5635
5636 if (vmx->nested.current_vmptr != vmptr) {
5637 struct vmcs12 *new_vmcs12;
5638 struct page *page;
5639 page = nested_get_page(vcpu, vmptr);
5640 if (page == NULL) {
5641 nested_vmx_failInvalid(vcpu);
5642 skip_emulated_instruction(vcpu);
5643 return 1;
5644 }
5645 new_vmcs12 = kmap(page);
5646 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5647 kunmap(page);
5648 nested_release_page_clean(page);
5649 nested_vmx_failValid(vcpu,
5650 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5651 skip_emulated_instruction(vcpu);
5652 return 1;
5653 }
5654 if (vmx->nested.current_vmptr != -1ull) {
5655 kunmap(vmx->nested.current_vmcs12_page);
5656 nested_release_page(vmx->nested.current_vmcs12_page);
5657 }
5658
5659 vmx->nested.current_vmptr = vmptr;
5660 vmx->nested.current_vmcs12 = new_vmcs12;
5661 vmx->nested.current_vmcs12_page = page;
5662 }
5663
5664 nested_vmx_succeed(vcpu);
5665 skip_emulated_instruction(vcpu);
5666 return 1;
5667}
5668
6a4d7550
NHE
5669/* Emulate the VMPTRST instruction */
5670static int handle_vmptrst(struct kvm_vcpu *vcpu)
5671{
5672 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5673 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5674 gva_t vmcs_gva;
5675 struct x86_exception e;
5676
5677 if (!nested_vmx_check_permission(vcpu))
5678 return 1;
5679
5680 if (get_vmx_mem_address(vcpu, exit_qualification,
5681 vmx_instruction_info, &vmcs_gva))
5682 return 1;
5683 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5684 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5685 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5686 sizeof(u64), &e)) {
5687 kvm_inject_page_fault(vcpu, &e);
5688 return 1;
5689 }
5690 nested_vmx_succeed(vcpu);
5691 skip_emulated_instruction(vcpu);
5692 return 1;
5693}
5694
6aa8b732
AK
5695/*
5696 * The exit handlers return 1 if the exit was handled fully and guest execution
5697 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5698 * to be done to userspace and return 0.
5699 */
851ba692 5700static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5701 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5702 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5703 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5704 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5705 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5706 [EXIT_REASON_CR_ACCESS] = handle_cr,
5707 [EXIT_REASON_DR_ACCESS] = handle_dr,
5708 [EXIT_REASON_CPUID] = handle_cpuid,
5709 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5710 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5711 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5712 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5713 [EXIT_REASON_INVD] = handle_invd,
a7052897 5714 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5715 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5716 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5717 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5718 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5719 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5720 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5721 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5722 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5723 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5724 [EXIT_REASON_VMOFF] = handle_vmoff,
5725 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5726 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5727 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5728 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5729 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5730 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5731 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5732 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5733 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5734 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5735 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5736 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5737};
5738
5739static const int kvm_vmx_max_exit_handlers =
50a3485c 5740 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5741
644d711a
NHE
5742/*
5743 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5744 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5745 * disinterest in the current event (read or write a specific MSR) by using an
5746 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5747 */
5748static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5749 struct vmcs12 *vmcs12, u32 exit_reason)
5750{
5751 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5752 gpa_t bitmap;
5753
5754 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5755 return 1;
5756
5757 /*
5758 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5759 * for the four combinations of read/write and low/high MSR numbers.
5760 * First we need to figure out which of the four to use:
5761 */
5762 bitmap = vmcs12->msr_bitmap;
5763 if (exit_reason == EXIT_REASON_MSR_WRITE)
5764 bitmap += 2048;
5765 if (msr_index >= 0xc0000000) {
5766 msr_index -= 0xc0000000;
5767 bitmap += 1024;
5768 }
5769
5770 /* Then read the msr_index'th bit from this bitmap: */
5771 if (msr_index < 1024*8) {
5772 unsigned char b;
5773 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5774 return 1 & (b >> (msr_index & 7));
5775 } else
5776 return 1; /* let L1 handle the wrong parameter */
5777}
5778
5779/*
5780 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5781 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5782 * intercept (via guest_host_mask etc.) the current event.
5783 */
5784static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5785 struct vmcs12 *vmcs12)
5786{
5787 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5788 int cr = exit_qualification & 15;
5789 int reg = (exit_qualification >> 8) & 15;
5790 unsigned long val = kvm_register_read(vcpu, reg);
5791
5792 switch ((exit_qualification >> 4) & 3) {
5793 case 0: /* mov to cr */
5794 switch (cr) {
5795 case 0:
5796 if (vmcs12->cr0_guest_host_mask &
5797 (val ^ vmcs12->cr0_read_shadow))
5798 return 1;
5799 break;
5800 case 3:
5801 if ((vmcs12->cr3_target_count >= 1 &&
5802 vmcs12->cr3_target_value0 == val) ||
5803 (vmcs12->cr3_target_count >= 2 &&
5804 vmcs12->cr3_target_value1 == val) ||
5805 (vmcs12->cr3_target_count >= 3 &&
5806 vmcs12->cr3_target_value2 == val) ||
5807 (vmcs12->cr3_target_count >= 4 &&
5808 vmcs12->cr3_target_value3 == val))
5809 return 0;
5810 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5811 return 1;
5812 break;
5813 case 4:
5814 if (vmcs12->cr4_guest_host_mask &
5815 (vmcs12->cr4_read_shadow ^ val))
5816 return 1;
5817 break;
5818 case 8:
5819 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5820 return 1;
5821 break;
5822 }
5823 break;
5824 case 2: /* clts */
5825 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5826 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5827 return 1;
5828 break;
5829 case 1: /* mov from cr */
5830 switch (cr) {
5831 case 3:
5832 if (vmcs12->cpu_based_vm_exec_control &
5833 CPU_BASED_CR3_STORE_EXITING)
5834 return 1;
5835 break;
5836 case 8:
5837 if (vmcs12->cpu_based_vm_exec_control &
5838 CPU_BASED_CR8_STORE_EXITING)
5839 return 1;
5840 break;
5841 }
5842 break;
5843 case 3: /* lmsw */
5844 /*
5845 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5846 * cr0. Other attempted changes are ignored, with no exit.
5847 */
5848 if (vmcs12->cr0_guest_host_mask & 0xe &
5849 (val ^ vmcs12->cr0_read_shadow))
5850 return 1;
5851 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5852 !(vmcs12->cr0_read_shadow & 0x1) &&
5853 (val & 0x1))
5854 return 1;
5855 break;
5856 }
5857 return 0;
5858}
5859
5860/*
5861 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5862 * should handle it ourselves in L0 (and then continue L2). Only call this
5863 * when in is_guest_mode (L2).
5864 */
5865static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5866{
5867 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5868 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5869 struct vcpu_vmx *vmx = to_vmx(vcpu);
5870 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5871
5872 if (vmx->nested.nested_run_pending)
5873 return 0;
5874
5875 if (unlikely(vmx->fail)) {
bd80158a
JK
5876 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5877 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5878 return 1;
5879 }
5880
5881 switch (exit_reason) {
5882 case EXIT_REASON_EXCEPTION_NMI:
5883 if (!is_exception(intr_info))
5884 return 0;
5885 else if (is_page_fault(intr_info))
5886 return enable_ept;
5887 return vmcs12->exception_bitmap &
5888 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5889 case EXIT_REASON_EXTERNAL_INTERRUPT:
5890 return 0;
5891 case EXIT_REASON_TRIPLE_FAULT:
5892 return 1;
5893 case EXIT_REASON_PENDING_INTERRUPT:
5894 case EXIT_REASON_NMI_WINDOW:
5895 /*
5896 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5897 * (aka Interrupt Window Exiting) only when L1 turned it on,
5898 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5899 * Same for NMI Window Exiting.
5900 */
5901 return 1;
5902 case EXIT_REASON_TASK_SWITCH:
5903 return 1;
5904 case EXIT_REASON_CPUID:
5905 return 1;
5906 case EXIT_REASON_HLT:
5907 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5908 case EXIT_REASON_INVD:
5909 return 1;
5910 case EXIT_REASON_INVLPG:
5911 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5912 case EXIT_REASON_RDPMC:
5913 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5914 case EXIT_REASON_RDTSC:
5915 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5916 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5917 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5918 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5919 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5920 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5921 /*
5922 * VMX instructions trap unconditionally. This allows L1 to
5923 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5924 */
5925 return 1;
5926 case EXIT_REASON_CR_ACCESS:
5927 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5928 case EXIT_REASON_DR_ACCESS:
5929 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5930 case EXIT_REASON_IO_INSTRUCTION:
5931 /* TODO: support IO bitmaps */
5932 return 1;
5933 case EXIT_REASON_MSR_READ:
5934 case EXIT_REASON_MSR_WRITE:
5935 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5936 case EXIT_REASON_INVALID_STATE:
5937 return 1;
5938 case EXIT_REASON_MWAIT_INSTRUCTION:
5939 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5940 case EXIT_REASON_MONITOR_INSTRUCTION:
5941 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5942 case EXIT_REASON_PAUSE_INSTRUCTION:
5943 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5944 nested_cpu_has2(vmcs12,
5945 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5946 case EXIT_REASON_MCE_DURING_VMENTRY:
5947 return 0;
5948 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5949 return 1;
5950 case EXIT_REASON_APIC_ACCESS:
5951 return nested_cpu_has2(vmcs12,
5952 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5953 case EXIT_REASON_EPT_VIOLATION:
5954 case EXIT_REASON_EPT_MISCONFIG:
5955 return 0;
5956 case EXIT_REASON_WBINVD:
5957 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5958 case EXIT_REASON_XSETBV:
5959 return 1;
5960 default:
5961 return 1;
5962 }
5963}
5964
586f9607
AK
5965static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5966{
5967 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5968 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5969}
5970
6aa8b732
AK
5971/*
5972 * The guest has exited. See if we can fix it or if we need userspace
5973 * assistance.
5974 */
851ba692 5975static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5976{
29bd8a78 5977 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5978 u32 exit_reason = vmx->exit_reason;
1155f76a 5979 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5980
80ced186
MG
5981 /* If guest state is invalid, start emulating */
5982 if (vmx->emulation_required && emulate_invalid_guest_state)
5983 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5984
b6f1250e
NHE
5985 /*
5986 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5987 * we did not inject a still-pending event to L1 now because of
5988 * nested_run_pending, we need to re-enable this bit.
5989 */
5990 if (vmx->nested.nested_run_pending)
5991 kvm_make_request(KVM_REQ_EVENT, vcpu);
5992
509c75ea
NHE
5993 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5994 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5995 vmx->nested.nested_run_pending = 1;
5996 else
5997 vmx->nested.nested_run_pending = 0;
5998
5999 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6000 nested_vmx_vmexit(vcpu);
6001 return 1;
6002 }
6003
5120702e
MG
6004 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6005 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6006 vcpu->run->fail_entry.hardware_entry_failure_reason
6007 = exit_reason;
6008 return 0;
6009 }
6010
29bd8a78 6011 if (unlikely(vmx->fail)) {
851ba692
AK
6012 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6013 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6014 = vmcs_read32(VM_INSTRUCTION_ERROR);
6015 return 0;
6016 }
6aa8b732 6017
d77c26fc 6018 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6019 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
6020 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6021 exit_reason != EXIT_REASON_TASK_SWITCH))
6022 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
6023 "(0x%x) and exit reason is 0x%x\n",
6024 __func__, vectoring_info, exit_reason);
3b86cd99 6025
644d711a
NHE
6026 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6027 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6028 get_vmcs12(vcpu), vcpu)))) {
c4282df9 6029 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6030 vmx->soft_vnmi_blocked = 0;
3b86cd99 6031 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6032 vcpu->arch.nmi_pending) {
3b86cd99
JK
6033 /*
6034 * This CPU don't support us in finding the end of an
6035 * NMI-blocked window if the guest runs with IRQs
6036 * disabled. So we pull the trigger after 1 s of
6037 * futile waiting, but inform the user about this.
6038 */
6039 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6040 "state on VCPU %d after 1 s timeout\n",
6041 __func__, vcpu->vcpu_id);
6042 vmx->soft_vnmi_blocked = 0;
3b86cd99 6043 }
3b86cd99
JK
6044 }
6045
6aa8b732
AK
6046 if (exit_reason < kvm_vmx_max_exit_handlers
6047 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6048 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6049 else {
851ba692
AK
6050 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6051 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6052 }
6053 return 0;
6054}
6055
95ba8273 6056static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6057{
95ba8273 6058 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6059 vmcs_write32(TPR_THRESHOLD, 0);
6060 return;
6061 }
6062
95ba8273 6063 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6064}
6065
51aa01d1 6066static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 6067{
00eba012
AK
6068 u32 exit_intr_info;
6069
6070 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6071 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6072 return;
6073
c5ca8e57 6074 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 6075 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
6076
6077 /* Handle machine checks before interrupts are enabled */
00eba012 6078 if (is_machine_check(exit_intr_info))
a0861c02
AK
6079 kvm_machine_check();
6080
20f65983 6081 /* We need to handle NMIs before interrupts are enabled */
00eba012 6082 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
6083 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6084 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 6085 asm("int $2");
ff9d07a0
ZY
6086 kvm_after_handle_nmi(&vmx->vcpu);
6087 }
51aa01d1 6088}
20f65983 6089
51aa01d1
AK
6090static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6091{
c5ca8e57 6092 u32 exit_intr_info;
51aa01d1
AK
6093 bool unblock_nmi;
6094 u8 vector;
6095 bool idtv_info_valid;
6096
6097 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 6098
cf393f75 6099 if (cpu_has_virtual_nmis()) {
9d58b931
AK
6100 if (vmx->nmi_known_unmasked)
6101 return;
c5ca8e57
AK
6102 /*
6103 * Can't use vmx->exit_intr_info since we're not sure what
6104 * the exit reason is.
6105 */
6106 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
6107 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6108 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6109 /*
7b4a25cb 6110 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
6111 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6112 * a guest IRET fault.
7b4a25cb
GN
6113 * SDM 3: 23.2.2 (September 2008)
6114 * Bit 12 is undefined in any of the following cases:
6115 * If the VM exit sets the valid bit in the IDT-vectoring
6116 * information field.
6117 * If the VM exit is due to a double fault.
cf393f75 6118 */
7b4a25cb
GN
6119 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6120 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
6121 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6122 GUEST_INTR_STATE_NMI);
9d58b931
AK
6123 else
6124 vmx->nmi_known_unmasked =
6125 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6126 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
6127 } else if (unlikely(vmx->soft_vnmi_blocked))
6128 vmx->vnmi_blocked_time +=
6129 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
6130}
6131
83422e17
AK
6132static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6133 u32 idt_vectoring_info,
6134 int instr_len_field,
6135 int error_code_field)
51aa01d1 6136{
51aa01d1
AK
6137 u8 vector;
6138 int type;
6139 bool idtv_info_valid;
6140
6141 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6142
37b96e98
GN
6143 vmx->vcpu.arch.nmi_injected = false;
6144 kvm_clear_exception_queue(&vmx->vcpu);
6145 kvm_clear_interrupt_queue(&vmx->vcpu);
6146
6147 if (!idtv_info_valid)
6148 return;
6149
3842d135
AK
6150 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6151
668f612f
AK
6152 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6153 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6154
64a7ec06 6155 switch (type) {
37b96e98
GN
6156 case INTR_TYPE_NMI_INTR:
6157 vmx->vcpu.arch.nmi_injected = true;
668f612f 6158 /*
7b4a25cb 6159 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6160 * Clear bit "block by NMI" before VM entry if a NMI
6161 * delivery faulted.
668f612f 6162 */
654f06fc 6163 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6164 break;
37b96e98 6165 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6166 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6167 vmcs_read32(instr_len_field);
66fd3f7f
GN
6168 /* fall through */
6169 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6170 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6171 u32 err = vmcs_read32(error_code_field);
37b96e98 6172 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6173 } else
6174 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6175 break;
66fd3f7f
GN
6176 case INTR_TYPE_SOFT_INTR:
6177 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6178 vmcs_read32(instr_len_field);
66fd3f7f 6179 /* fall through */
37b96e98 6180 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6181 kvm_queue_interrupt(&vmx->vcpu, vector,
6182 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6183 break;
6184 default:
6185 break;
f7d9238f 6186 }
cf393f75
AK
6187}
6188
83422e17
AK
6189static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6190{
66c78ae4
NHE
6191 if (is_guest_mode(&vmx->vcpu))
6192 return;
83422e17
AK
6193 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6194 VM_EXIT_INSTRUCTION_LEN,
6195 IDT_VECTORING_ERROR_CODE);
6196}
6197
b463a6f7
AK
6198static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6199{
66c78ae4
NHE
6200 if (is_guest_mode(vcpu))
6201 return;
b463a6f7
AK
6202 __vmx_complete_interrupts(to_vmx(vcpu),
6203 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6204 VM_ENTRY_INSTRUCTION_LEN,
6205 VM_ENTRY_EXCEPTION_ERROR_CODE);
6206
6207 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6208}
6209
d7cd9796
GN
6210static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6211{
6212 int i, nr_msrs;
6213 struct perf_guest_switch_msr *msrs;
6214
6215 msrs = perf_guest_get_msrs(&nr_msrs);
6216
6217 if (!msrs)
6218 return;
6219
6220 for (i = 0; i < nr_msrs; i++)
6221 if (msrs[i].host == msrs[i].guest)
6222 clear_atomic_switch_msr(vmx, msrs[i].msr);
6223 else
6224 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6225 msrs[i].host);
6226}
6227
c801949d
AK
6228#ifdef CONFIG_X86_64
6229#define R "r"
6230#define Q "q"
6231#else
6232#define R "e"
6233#define Q "l"
6234#endif
6235
a3b5ba49 6236static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6237{
a2fa3e9f 6238 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 6239
66c78ae4
NHE
6240 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6241 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6242 if (vmcs12->idt_vectoring_info_field &
6243 VECTORING_INFO_VALID_MASK) {
6244 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6245 vmcs12->idt_vectoring_info_field);
6246 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6247 vmcs12->vm_exit_instruction_len);
6248 if (vmcs12->idt_vectoring_info_field &
6249 VECTORING_INFO_DELIVER_CODE_MASK)
6250 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6251 vmcs12->idt_vectoring_error_code);
6252 }
6253 }
6254
104f226b
AK
6255 /* Record the guest's net vcpu time for enforced NMI injections. */
6256 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6257 vmx->entry_time = ktime_get();
6258
6259 /* Don't enter VMX if guest state is invalid, let the exit handler
6260 start emulation until we arrive back to a valid state */
6261 if (vmx->emulation_required && emulate_invalid_guest_state)
6262 return;
6263
6264 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6265 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6266 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6267 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6268
6269 /* When single-stepping over STI and MOV SS, we must clear the
6270 * corresponding interruptibility bits in the guest state. Otherwise
6271 * vmentry fails as it then expects bit 14 (BS) in pending debug
6272 * exceptions being set, but that's not correct for the guest debugging
6273 * case. */
6274 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6275 vmx_set_interrupt_shadow(vcpu, 0);
6276
d7cd9796
GN
6277 atomic_switch_perf_msrs(vmx);
6278
d462b819 6279 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6280 asm(
6aa8b732 6281 /* Store host registers */
c801949d 6282 "push %%"R"dx; push %%"R"bp;"
40712fae 6283 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6284 "push %%"R"cx \n\t"
313dbd49
AK
6285 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6286 "je 1f \n\t"
6287 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6288 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6289 "1: \n\t"
d3edefc0
AK
6290 /* Reload cr2 if changed */
6291 "mov %c[cr2](%0), %%"R"ax \n\t"
6292 "mov %%cr2, %%"R"dx \n\t"
6293 "cmp %%"R"ax, %%"R"dx \n\t"
6294 "je 2f \n\t"
6295 "mov %%"R"ax, %%cr2 \n\t"
6296 "2: \n\t"
6aa8b732 6297 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6298 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6299 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6300 "mov %c[rax](%0), %%"R"ax \n\t"
6301 "mov %c[rbx](%0), %%"R"bx \n\t"
6302 "mov %c[rdx](%0), %%"R"dx \n\t"
6303 "mov %c[rsi](%0), %%"R"si \n\t"
6304 "mov %c[rdi](%0), %%"R"di \n\t"
6305 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6306#ifdef CONFIG_X86_64
e08aa78a
AK
6307 "mov %c[r8](%0), %%r8 \n\t"
6308 "mov %c[r9](%0), %%r9 \n\t"
6309 "mov %c[r10](%0), %%r10 \n\t"
6310 "mov %c[r11](%0), %%r11 \n\t"
6311 "mov %c[r12](%0), %%r12 \n\t"
6312 "mov %c[r13](%0), %%r13 \n\t"
6313 "mov %c[r14](%0), %%r14 \n\t"
6314 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6315#endif
c801949d
AK
6316 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6317
6aa8b732 6318 /* Enter guest mode */
cd2276a7 6319 "jne .Llaunched \n\t"
4ecac3fd 6320 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6321 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6322 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6323 ".Lkvm_vmx_return: "
6aa8b732 6324 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6325 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6326 "pop %0 \n\t"
c801949d
AK
6327 "mov %%"R"ax, %c[rax](%0) \n\t"
6328 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6329 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6330 "mov %%"R"dx, %c[rdx](%0) \n\t"
6331 "mov %%"R"si, %c[rsi](%0) \n\t"
6332 "mov %%"R"di, %c[rdi](%0) \n\t"
6333 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6334#ifdef CONFIG_X86_64
e08aa78a
AK
6335 "mov %%r8, %c[r8](%0) \n\t"
6336 "mov %%r9, %c[r9](%0) \n\t"
6337 "mov %%r10, %c[r10](%0) \n\t"
6338 "mov %%r11, %c[r11](%0) \n\t"
6339 "mov %%r12, %c[r12](%0) \n\t"
6340 "mov %%r13, %c[r13](%0) \n\t"
6341 "mov %%r14, %c[r14](%0) \n\t"
6342 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6343#endif
c801949d
AK
6344 "mov %%cr2, %%"R"ax \n\t"
6345 "mov %%"R"ax, %c[cr2](%0) \n\t"
6346
1c696d0e 6347 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6348 "setbe %c[fail](%0) \n\t"
6349 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6350 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6351 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6352 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6353 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6354 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6355 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6356 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6357 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6358 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6359 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6360#ifdef CONFIG_X86_64
ad312c7c
ZX
6361 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6362 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6363 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6364 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6365 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6366 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6367 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6368 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6369#endif
40712fae
AK
6370 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6371 [wordsize]"i"(sizeof(ulong))
c2036300 6372 : "cc", "memory"
07d6f555 6373 , R"ax", R"bx", R"di", R"si"
c2036300 6374#ifdef CONFIG_X86_64
c2036300
LV
6375 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6376#endif
6377 );
6aa8b732 6378
aa67f609
AK
6379#ifndef CONFIG_X86_64
6380 /*
6381 * The sysexit path does not restore ds/es, so we must set them to
6382 * a reasonable value ourselves.
6383 *
6384 * We can't defer this to vmx_load_host_state() since that function
6385 * may be executed in interrupt context, which saves and restore segments
6386 * around it, nullifying its effect.
6387 */
6388 loadsegment(ds, __USER_DS);
6389 loadsegment(es, __USER_DS);
6390#endif
6391
6de4f3ad 6392 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6393 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6394 | (1 << VCPU_EXREG_CPL)
aff48baa 6395 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6396 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6397 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6398 vcpu->arch.regs_dirty = 0;
6399
1155f76a
AK
6400 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6401
66c78ae4
NHE
6402 if (is_guest_mode(vcpu)) {
6403 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6404 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6405 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6406 vmcs12->idt_vectoring_error_code =
6407 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6408 vmcs12->vm_exit_instruction_len =
6409 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6410 }
6411 }
6412
d462b819 6413 vmx->loaded_vmcs->launched = 1;
1b6269db 6414
51aa01d1 6415 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6416 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6417
6418 vmx_complete_atomic_exit(vmx);
6419 vmx_recover_nmi_blocking(vmx);
cf393f75 6420 vmx_complete_interrupts(vmx);
6aa8b732
AK
6421}
6422
c801949d
AK
6423#undef R
6424#undef Q
6425
6aa8b732
AK
6426static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6427{
fb3f0f51
RR
6428 struct vcpu_vmx *vmx = to_vmx(vcpu);
6429
cdbecfc3 6430 free_vpid(vmx);
ec378aee 6431 free_nested(vmx);
d462b819 6432 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6433 kfree(vmx->guest_msrs);
6434 kvm_vcpu_uninit(vcpu);
a4770347 6435 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6436}
6437
fb3f0f51 6438static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6439{
fb3f0f51 6440 int err;
c16f862d 6441 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6442 int cpu;
6aa8b732 6443
a2fa3e9f 6444 if (!vmx)
fb3f0f51
RR
6445 return ERR_PTR(-ENOMEM);
6446
2384d2b3
SY
6447 allocate_vpid(vmx);
6448
fb3f0f51
RR
6449 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6450 if (err)
6451 goto free_vcpu;
965b58a5 6452
a2fa3e9f 6453 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6454 err = -ENOMEM;
fb3f0f51 6455 if (!vmx->guest_msrs) {
fb3f0f51
RR
6456 goto uninit_vcpu;
6457 }
965b58a5 6458
d462b819
NHE
6459 vmx->loaded_vmcs = &vmx->vmcs01;
6460 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6461 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6462 goto free_msrs;
d462b819
NHE
6463 if (!vmm_exclusive)
6464 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6465 loaded_vmcs_init(vmx->loaded_vmcs);
6466 if (!vmm_exclusive)
6467 kvm_cpu_vmxoff();
a2fa3e9f 6468
15ad7146
AK
6469 cpu = get_cpu();
6470 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6471 vmx->vcpu.cpu = cpu;
8b9cf98c 6472 err = vmx_vcpu_setup(vmx);
fb3f0f51 6473 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6474 put_cpu();
fb3f0f51
RR
6475 if (err)
6476 goto free_vmcs;
5e4a0b3c 6477 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6478 err = alloc_apic_access_page(kvm);
6479 if (err)
5e4a0b3c 6480 goto free_vmcs;
fb3f0f51 6481
b927a3ce
SY
6482 if (enable_ept) {
6483 if (!kvm->arch.ept_identity_map_addr)
6484 kvm->arch.ept_identity_map_addr =
6485 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6486 err = -ENOMEM;
b7ebfb05
SY
6487 if (alloc_identity_pagetable(kvm) != 0)
6488 goto free_vmcs;
93ea5388
GN
6489 if (!init_rmode_identity_map(kvm))
6490 goto free_vmcs;
b927a3ce 6491 }
b7ebfb05 6492
a9d30f33
NHE
6493 vmx->nested.current_vmptr = -1ull;
6494 vmx->nested.current_vmcs12 = NULL;
6495
fb3f0f51
RR
6496 return &vmx->vcpu;
6497
6498free_vmcs:
5f3fbc34 6499 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 6500free_msrs:
fb3f0f51
RR
6501 kfree(vmx->guest_msrs);
6502uninit_vcpu:
6503 kvm_vcpu_uninit(&vmx->vcpu);
6504free_vcpu:
cdbecfc3 6505 free_vpid(vmx);
a4770347 6506 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6507 return ERR_PTR(err);
6aa8b732
AK
6508}
6509
002c7f7c
YS
6510static void __init vmx_check_processor_compat(void *rtn)
6511{
6512 struct vmcs_config vmcs_conf;
6513
6514 *(int *)rtn = 0;
6515 if (setup_vmcs_config(&vmcs_conf) < 0)
6516 *(int *)rtn = -EIO;
6517 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6518 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6519 smp_processor_id());
6520 *(int *)rtn = -EIO;
6521 }
6522}
6523
67253af5
SY
6524static int get_ept_level(void)
6525{
6526 return VMX_EPT_DEFAULT_GAW + 1;
6527}
6528
4b12f0de 6529static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6530{
4b12f0de
SY
6531 u64 ret;
6532
522c68c4
SY
6533 /* For VT-d and EPT combination
6534 * 1. MMIO: always map as UC
6535 * 2. EPT with VT-d:
6536 * a. VT-d without snooping control feature: can't guarantee the
6537 * result, try to trust guest.
6538 * b. VT-d with snooping control feature: snooping control feature of
6539 * VT-d engine can guarantee the cache correctness. Just set it
6540 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6541 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6542 * consistent with host MTRR
6543 */
4b12f0de
SY
6544 if (is_mmio)
6545 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6546 else if (vcpu->kvm->arch.iommu_domain &&
6547 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6548 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6549 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6550 else
522c68c4 6551 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6552 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6553
6554 return ret;
64d4d521
SY
6555}
6556
17cc3935 6557static int vmx_get_lpage_level(void)
344f414f 6558{
878403b7
SY
6559 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6560 return PT_DIRECTORY_LEVEL;
6561 else
6562 /* For shadow and EPT supported 1GB page */
6563 return PT_PDPE_LEVEL;
344f414f
JR
6564}
6565
0e851880
SY
6566static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6567{
4e47c7a6
SY
6568 struct kvm_cpuid_entry2 *best;
6569 struct vcpu_vmx *vmx = to_vmx(vcpu);
6570 u32 exec_control;
6571
6572 vmx->rdtscp_enabled = false;
6573 if (vmx_rdtscp_supported()) {
6574 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6575 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6576 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6577 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6578 vmx->rdtscp_enabled = true;
6579 else {
6580 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6581 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6582 exec_control);
6583 }
6584 }
6585 }
ad756a16
MJ
6586
6587 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6588 /* Exposing INVPCID only when PCID is exposed */
6589 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6590 if (vmx_invpcid_supported() &&
4f977045 6591 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16
MJ
6592 guest_cpuid_has_pcid(vcpu)) {
6593 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6594 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6595 exec_control);
6596 } else {
6597 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6598 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6599 exec_control);
6600 if (best)
4f977045 6601 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 6602 }
0e851880
SY
6603}
6604
d4330ef2
JR
6605static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6606{
7b8050f5
NHE
6607 if (func == 1 && nested)
6608 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6609}
6610
fe3ef05c
NHE
6611/*
6612 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6613 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6614 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6615 * guest in a way that will both be appropriate to L1's requests, and our
6616 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6617 * function also has additional necessary side-effects, like setting various
6618 * vcpu->arch fields.
6619 */
6620static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6621{
6622 struct vcpu_vmx *vmx = to_vmx(vcpu);
6623 u32 exec_control;
6624
6625 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6626 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6627 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6628 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6629 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6630 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6631 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6632 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6633 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6634 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6635 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6636 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6637 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6638 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6639 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6640 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6641 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6642 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6643 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6644 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6645 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6646 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6647 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6648 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6649 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6650 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6651 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6652 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6653 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6654 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6655 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6656 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6657 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6658 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6659 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6660 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6661
6662 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6663 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6664 vmcs12->vm_entry_intr_info_field);
6665 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6666 vmcs12->vm_entry_exception_error_code);
6667 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6668 vmcs12->vm_entry_instruction_len);
6669 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6670 vmcs12->guest_interruptibility_info);
6671 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6672 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6673 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6674 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6675 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6676 vmcs12->guest_pending_dbg_exceptions);
6677 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6678 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6679
6680 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6681
6682 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6683 (vmcs_config.pin_based_exec_ctrl |
6684 vmcs12->pin_based_vm_exec_control));
6685
6686 /*
6687 * Whether page-faults are trapped is determined by a combination of
6688 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6689 * If enable_ept, L0 doesn't care about page faults and we should
6690 * set all of these to L1's desires. However, if !enable_ept, L0 does
6691 * care about (at least some) page faults, and because it is not easy
6692 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6693 * to exit on each and every L2 page fault. This is done by setting
6694 * MASK=MATCH=0 and (see below) EB.PF=1.
6695 * Note that below we don't need special code to set EB.PF beyond the
6696 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6697 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6698 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6699 *
6700 * A problem with this approach (when !enable_ept) is that L1 may be
6701 * injected with more page faults than it asked for. This could have
6702 * caused problems, but in practice existing hypervisors don't care.
6703 * To fix this, we will need to emulate the PFEC checking (on the L1
6704 * page tables), using walk_addr(), when injecting PFs to L1.
6705 */
6706 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6707 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6708 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6709 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6710
6711 if (cpu_has_secondary_exec_ctrls()) {
6712 u32 exec_control = vmx_secondary_exec_control(vmx);
6713 if (!vmx->rdtscp_enabled)
6714 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6715 /* Take the following fields only from vmcs12 */
6716 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6717 if (nested_cpu_has(vmcs12,
6718 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6719 exec_control |= vmcs12->secondary_vm_exec_control;
6720
6721 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6722 /*
6723 * Translate L1 physical address to host physical
6724 * address for vmcs02. Keep the page pinned, so this
6725 * physical address remains valid. We keep a reference
6726 * to it so we can release it later.
6727 */
6728 if (vmx->nested.apic_access_page) /* shouldn't happen */
6729 nested_release_page(vmx->nested.apic_access_page);
6730 vmx->nested.apic_access_page =
6731 nested_get_page(vcpu, vmcs12->apic_access_addr);
6732 /*
6733 * If translation failed, no matter: This feature asks
6734 * to exit when accessing the given address, and if it
6735 * can never be accessed, this feature won't do
6736 * anything anyway.
6737 */
6738 if (!vmx->nested.apic_access_page)
6739 exec_control &=
6740 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6741 else
6742 vmcs_write64(APIC_ACCESS_ADDR,
6743 page_to_phys(vmx->nested.apic_access_page));
6744 }
6745
6746 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6747 }
6748
6749
6750 /*
6751 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6752 * Some constant fields are set here by vmx_set_constant_host_state().
6753 * Other fields are different per CPU, and will be set later when
6754 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6755 */
6756 vmx_set_constant_host_state();
6757
6758 /*
6759 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6760 * entry, but only if the current (host) sp changed from the value
6761 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6762 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6763 * here we just force the write to happen on entry.
6764 */
6765 vmx->host_rsp = 0;
6766
6767 exec_control = vmx_exec_control(vmx); /* L0's desires */
6768 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6769 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6770 exec_control &= ~CPU_BASED_TPR_SHADOW;
6771 exec_control |= vmcs12->cpu_based_vm_exec_control;
6772 /*
6773 * Merging of IO and MSR bitmaps not currently supported.
6774 * Rather, exit every time.
6775 */
6776 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6777 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6778 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6779
6780 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6781
6782 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6783 * bitwise-or of what L1 wants to trap for L2, and what we want to
6784 * trap. Note that CR0.TS also needs updating - we do this later.
6785 */
6786 update_exception_bitmap(vcpu);
6787 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6788 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6789
6790 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6791 vmcs_write32(VM_EXIT_CONTROLS,
6792 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6793 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6794 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6795
6796 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6797 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6798 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6799 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6800
6801
6802 set_cr4_guest_host_mask(vmx);
6803
27fc51b2
NHE
6804 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6805 vmcs_write64(TSC_OFFSET,
6806 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6807 else
6808 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6809
6810 if (enable_vpid) {
6811 /*
6812 * Trivially support vpid by letting L2s share their parent
6813 * L1's vpid. TODO: move to a more elaborate solution, giving
6814 * each L2 its own vpid and exposing the vpid feature to L1.
6815 */
6816 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6817 vmx_flush_tlb(vcpu);
6818 }
6819
6820 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6821 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6822 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6823 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6824 else
6825 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6826 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6827 vmx_set_efer(vcpu, vcpu->arch.efer);
6828
6829 /*
6830 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6831 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6832 * The CR0_READ_SHADOW is what L2 should have expected to read given
6833 * the specifications by L1; It's not enough to take
6834 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6835 * have more bits than L1 expected.
6836 */
6837 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6838 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6839
6840 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6841 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6842
6843 /* shadow page tables on either EPT or shadow page tables */
6844 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6845 kvm_mmu_reset_context(vcpu);
6846
6847 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6848 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6849}
6850
cd232ad0
NHE
6851/*
6852 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6853 * for running an L2 nested guest.
6854 */
6855static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6856{
6857 struct vmcs12 *vmcs12;
6858 struct vcpu_vmx *vmx = to_vmx(vcpu);
6859 int cpu;
6860 struct loaded_vmcs *vmcs02;
6861
6862 if (!nested_vmx_check_permission(vcpu) ||
6863 !nested_vmx_check_vmcs12(vcpu))
6864 return 1;
6865
6866 skip_emulated_instruction(vcpu);
6867 vmcs12 = get_vmcs12(vcpu);
6868
7c177938
NHE
6869 /*
6870 * The nested entry process starts with enforcing various prerequisites
6871 * on vmcs12 as required by the Intel SDM, and act appropriately when
6872 * they fail: As the SDM explains, some conditions should cause the
6873 * instruction to fail, while others will cause the instruction to seem
6874 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6875 * To speed up the normal (success) code path, we should avoid checking
6876 * for misconfigurations which will anyway be caught by the processor
6877 * when using the merged vmcs02.
6878 */
6879 if (vmcs12->launch_state == launch) {
6880 nested_vmx_failValid(vcpu,
6881 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6882 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6883 return 1;
6884 }
6885
6886 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6887 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6888 /*TODO: Also verify bits beyond physical address width are 0*/
6889 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6890 return 1;
6891 }
6892
6893 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6894 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6895 /*TODO: Also verify bits beyond physical address width are 0*/
6896 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6897 return 1;
6898 }
6899
6900 if (vmcs12->vm_entry_msr_load_count > 0 ||
6901 vmcs12->vm_exit_msr_load_count > 0 ||
6902 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6903 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6904 __func__);
7c177938
NHE
6905 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6906 return 1;
6907 }
6908
6909 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6910 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6911 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6912 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6913 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6914 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6915 !vmx_control_verify(vmcs12->vm_exit_controls,
6916 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6917 !vmx_control_verify(vmcs12->vm_entry_controls,
6918 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6919 {
6920 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6921 return 1;
6922 }
6923
6924 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6925 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6926 nested_vmx_failValid(vcpu,
6927 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6928 return 1;
6929 }
6930
6931 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6932 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6933 nested_vmx_entry_failure(vcpu, vmcs12,
6934 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6935 return 1;
6936 }
6937 if (vmcs12->vmcs_link_pointer != -1ull) {
6938 nested_vmx_entry_failure(vcpu, vmcs12,
6939 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6940 return 1;
6941 }
6942
6943 /*
6944 * We're finally done with prerequisite checking, and can start with
6945 * the nested entry.
6946 */
6947
cd232ad0
NHE
6948 vmcs02 = nested_get_current_vmcs02(vmx);
6949 if (!vmcs02)
6950 return -ENOMEM;
6951
6952 enter_guest_mode(vcpu);
6953
6954 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6955
6956 cpu = get_cpu();
6957 vmx->loaded_vmcs = vmcs02;
6958 vmx_vcpu_put(vcpu);
6959 vmx_vcpu_load(vcpu, cpu);
6960 vcpu->cpu = cpu;
6961 put_cpu();
6962
6963 vmcs12->launch_state = 1;
6964
6965 prepare_vmcs02(vcpu, vmcs12);
6966
6967 /*
6968 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6969 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6970 * returned as far as L1 is concerned. It will only return (and set
6971 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6972 */
6973 return 1;
6974}
6975
4704d0be
NHE
6976/*
6977 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6978 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6979 * This function returns the new value we should put in vmcs12.guest_cr0.
6980 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6981 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6982 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6983 * didn't trap the bit, because if L1 did, so would L0).
6984 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6985 * been modified by L2, and L1 knows it. So just leave the old value of
6986 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6987 * isn't relevant, because if L0 traps this bit it can set it to anything.
6988 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6989 * changed these bits, and therefore they need to be updated, but L0
6990 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6991 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6992 */
6993static inline unsigned long
6994vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6995{
6996 return
6997 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6998 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6999 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7000 vcpu->arch.cr0_guest_owned_bits));
7001}
7002
7003static inline unsigned long
7004vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7005{
7006 return
7007 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7008 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7009 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7010 vcpu->arch.cr4_guest_owned_bits));
7011}
7012
7013/*
7014 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7015 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7016 * and this function updates it to reflect the changes to the guest state while
7017 * L2 was running (and perhaps made some exits which were handled directly by L0
7018 * without going back to L1), and to reflect the exit reason.
7019 * Note that we do not have to copy here all VMCS fields, just those that
7020 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7021 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7022 * which already writes to vmcs12 directly.
7023 */
7024void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7025{
7026 /* update guest state fields: */
7027 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7028 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7029
7030 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7031 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7032 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7033 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7034
7035 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7036 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7037 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7038 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7039 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7040 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7041 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7042 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7043 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7044 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7045 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7046 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7047 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7048 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7049 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7050 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7051 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7052 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7053 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7054 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7055 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7056 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7057 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7058 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7059 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7060 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7061 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7062 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7063 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7064 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7065 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7066 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7067 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7068 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7069 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7070 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7071
7072 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7073 vmcs12->guest_interruptibility_info =
7074 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7075 vmcs12->guest_pending_dbg_exceptions =
7076 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7077
7078 /* TODO: These cannot have changed unless we have MSR bitmaps and
7079 * the relevant bit asks not to trap the change */
7080 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7081 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7082 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7083 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7084 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7085 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7086
7087 /* update exit information fields: */
7088
7089 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7090 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7091
7092 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7093 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7094 vmcs12->idt_vectoring_info_field =
7095 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7096 vmcs12->idt_vectoring_error_code =
7097 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7098 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7099 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7100
7101 /* clear vm-entry fields which are to be cleared on exit */
7102 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7103 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7104}
7105
7106/*
7107 * A part of what we need to when the nested L2 guest exits and we want to
7108 * run its L1 parent, is to reset L1's guest state to the host state specified
7109 * in vmcs12.
7110 * This function is to be called not only on normal nested exit, but also on
7111 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7112 * Failures During or After Loading Guest State").
7113 * This function should be called when the active VMCS is L1's (vmcs01).
7114 */
7115void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7116{
7117 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7118 vcpu->arch.efer = vmcs12->host_ia32_efer;
7119 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7120 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7121 else
7122 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7123 vmx_set_efer(vcpu, vcpu->arch.efer);
7124
7125 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7126 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7127 /*
7128 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7129 * actually changed, because it depends on the current state of
7130 * fpu_active (which may have changed).
7131 * Note that vmx_set_cr0 refers to efer set above.
7132 */
7133 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7134 /*
7135 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7136 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7137 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7138 */
7139 update_exception_bitmap(vcpu);
7140 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7141 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7142
7143 /*
7144 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7145 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7146 */
7147 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7148 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7149
7150 /* shadow page tables on either EPT or shadow page tables */
7151 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7152 kvm_mmu_reset_context(vcpu);
7153
7154 if (enable_vpid) {
7155 /*
7156 * Trivially support vpid by letting L2s share their parent
7157 * L1's vpid. TODO: move to a more elaborate solution, giving
7158 * each L2 its own vpid and exposing the vpid feature to L1.
7159 */
7160 vmx_flush_tlb(vcpu);
7161 }
7162
7163
7164 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7165 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7166 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7167 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7168 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7169 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7170 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7171 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7172 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7173 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7174 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7175 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7176 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7177 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7178 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7179
7180 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7181 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7182 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7183 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7184 vmcs12->host_ia32_perf_global_ctrl);
7185}
7186
7187/*
7188 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7189 * and modify vmcs12 to make it see what it would expect to see there if
7190 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7191 */
7192static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7193{
7194 struct vcpu_vmx *vmx = to_vmx(vcpu);
7195 int cpu;
7196 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7197
7198 leave_guest_mode(vcpu);
7199 prepare_vmcs12(vcpu, vmcs12);
7200
7201 cpu = get_cpu();
7202 vmx->loaded_vmcs = &vmx->vmcs01;
7203 vmx_vcpu_put(vcpu);
7204 vmx_vcpu_load(vcpu, cpu);
7205 vcpu->cpu = cpu;
7206 put_cpu();
7207
7208 /* if no vmcs02 cache requested, remove the one we used */
7209 if (VMCS02_POOL_SIZE == 0)
7210 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7211
7212 load_vmcs12_host_state(vcpu, vmcs12);
7213
27fc51b2 7214 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7215 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7216
7217 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7218 vmx->host_rsp = 0;
7219
7220 /* Unpin physical memory we referred to in vmcs02 */
7221 if (vmx->nested.apic_access_page) {
7222 nested_release_page(vmx->nested.apic_access_page);
7223 vmx->nested.apic_access_page = 0;
7224 }
7225
7226 /*
7227 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7228 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7229 * success or failure flag accordingly.
7230 */
7231 if (unlikely(vmx->fail)) {
7232 vmx->fail = 0;
7233 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7234 } else
7235 nested_vmx_succeed(vcpu);
7236}
7237
7c177938
NHE
7238/*
7239 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7240 * 23.7 "VM-entry failures during or after loading guest state" (this also
7241 * lists the acceptable exit-reason and exit-qualification parameters).
7242 * It should only be called before L2 actually succeeded to run, and when
7243 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7244 */
7245static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7246 struct vmcs12 *vmcs12,
7247 u32 reason, unsigned long qualification)
7248{
7249 load_vmcs12_host_state(vcpu, vmcs12);
7250 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7251 vmcs12->exit_qualification = qualification;
7252 nested_vmx_succeed(vcpu);
7253}
7254
8a76d7f2
JR
7255static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7256 struct x86_instruction_info *info,
7257 enum x86_intercept_stage stage)
7258{
7259 return X86EMUL_CONTINUE;
7260}
7261
cbdd1bea 7262static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7263 .cpu_has_kvm_support = cpu_has_kvm_support,
7264 .disabled_by_bios = vmx_disabled_by_bios,
7265 .hardware_setup = hardware_setup,
7266 .hardware_unsetup = hardware_unsetup,
002c7f7c 7267 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7268 .hardware_enable = hardware_enable,
7269 .hardware_disable = hardware_disable,
04547156 7270 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7271
7272 .vcpu_create = vmx_create_vcpu,
7273 .vcpu_free = vmx_free_vcpu,
04d2cc77 7274 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7275
04d2cc77 7276 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7277 .vcpu_load = vmx_vcpu_load,
7278 .vcpu_put = vmx_vcpu_put,
7279
7280 .set_guest_debug = set_guest_debug,
7281 .get_msr = vmx_get_msr,
7282 .set_msr = vmx_set_msr,
7283 .get_segment_base = vmx_get_segment_base,
7284 .get_segment = vmx_get_segment,
7285 .set_segment = vmx_set_segment,
2e4d2653 7286 .get_cpl = vmx_get_cpl,
6aa8b732 7287 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7288 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7289 .decache_cr3 = vmx_decache_cr3,
25c4c276 7290 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7291 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7292 .set_cr3 = vmx_set_cr3,
7293 .set_cr4 = vmx_set_cr4,
6aa8b732 7294 .set_efer = vmx_set_efer,
6aa8b732
AK
7295 .get_idt = vmx_get_idt,
7296 .set_idt = vmx_set_idt,
7297 .get_gdt = vmx_get_gdt,
7298 .set_gdt = vmx_set_gdt,
020df079 7299 .set_dr7 = vmx_set_dr7,
5fdbf976 7300 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7301 .get_rflags = vmx_get_rflags,
7302 .set_rflags = vmx_set_rflags,
ebcbab4c 7303 .fpu_activate = vmx_fpu_activate,
02daab21 7304 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7305
7306 .tlb_flush = vmx_flush_tlb,
6aa8b732 7307
6aa8b732 7308 .run = vmx_vcpu_run,
6062d012 7309 .handle_exit = vmx_handle_exit,
6aa8b732 7310 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7311 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7312 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7313 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7314 .set_irq = vmx_inject_irq,
95ba8273 7315 .set_nmi = vmx_inject_nmi,
298101da 7316 .queue_exception = vmx_queue_exception,
b463a6f7 7317 .cancel_injection = vmx_cancel_injection,
78646121 7318 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7319 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7320 .get_nmi_mask = vmx_get_nmi_mask,
7321 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7322 .enable_nmi_window = enable_nmi_window,
7323 .enable_irq_window = enable_irq_window,
7324 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7325
cbc94022 7326 .set_tss_addr = vmx_set_tss_addr,
67253af5 7327 .get_tdp_level = get_ept_level,
4b12f0de 7328 .get_mt_mask = vmx_get_mt_mask,
229456fc 7329
586f9607 7330 .get_exit_info = vmx_get_exit_info,
586f9607 7331
17cc3935 7332 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7333
7334 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7335
7336 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 7337 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
7338
7339 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7340
7341 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7342
4051b188 7343 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7344 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7345 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7346 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7347 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7348
7349 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7350
7351 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7352};
7353
7354static int __init vmx_init(void)
7355{
26bb0981
AK
7356 int r, i;
7357
7358 rdmsrl_safe(MSR_EFER, &host_efer);
7359
7360 for (i = 0; i < NR_VMX_MSR; ++i)
7361 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7362
3e7c73e9 7363 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7364 if (!vmx_io_bitmap_a)
7365 return -ENOMEM;
7366
2106a548
GC
7367 r = -ENOMEM;
7368
3e7c73e9 7369 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7370 if (!vmx_io_bitmap_b)
fdef3ad1 7371 goto out;
fdef3ad1 7372
5897297b 7373 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7374 if (!vmx_msr_bitmap_legacy)
25c5f225 7375 goto out1;
2106a548 7376
25c5f225 7377
5897297b 7378 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7379 if (!vmx_msr_bitmap_longmode)
5897297b 7380 goto out2;
2106a548 7381
5897297b 7382
fdef3ad1
HQ
7383 /*
7384 * Allow direct access to the PC debug port (it is often used for I/O
7385 * delays, but the vmexits simply slow things down).
7386 */
3e7c73e9
AK
7387 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7388 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7389
3e7c73e9 7390 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7391
5897297b
AK
7392 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7393 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7394
2384d2b3
SY
7395 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7396
0ee75bea
AK
7397 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7398 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7399 if (r)
5897297b 7400 goto out3;
25c5f225 7401
5897297b
AK
7402 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7403 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7404 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7405 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7406 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7407 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7408
089d034e 7409 if (enable_ept) {
3f6d8c8a
XH
7410 kvm_mmu_set_mask_ptes(0ull,
7411 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7412 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7413 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 7414 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7415 kvm_enable_tdp();
7416 } else
7417 kvm_disable_tdp();
1439442c 7418
fdef3ad1
HQ
7419 return 0;
7420
5897297b
AK
7421out3:
7422 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7423out2:
5897297b 7424 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7425out1:
3e7c73e9 7426 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7427out:
3e7c73e9 7428 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7429 return r;
6aa8b732
AK
7430}
7431
7432static void __exit vmx_exit(void)
7433{
5897297b
AK
7434 free_page((unsigned long)vmx_msr_bitmap_legacy);
7435 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7436 free_page((unsigned long)vmx_io_bitmap_b);
7437 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7438
cb498ea2 7439 kvm_exit();
6aa8b732
AK
7440}
7441
7442module_init(vmx_init)
7443module_exit(vmx_exit)