]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: nVMX: Advertise PAUSE and WBINVD exiting support
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
8f536b76 45#include <asm/kexec.h>
6aa8b732 46
229456fc
MT
47#include "trace.h"
48
4ecac3fd 49#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
50#define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 52
6aa8b732
AK
53MODULE_AUTHOR("Qumranet");
54MODULE_LICENSE("GPL");
55
e9bda3b3
JT
56static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59};
60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
476bc001 62static bool __read_mostly enable_vpid = 1;
736caefe 63module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 64
476bc001 65static bool __read_mostly flexpriority_enabled = 1;
736caefe 66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 67
476bc001 68static bool __read_mostly enable_ept = 1;
736caefe 69module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 70
476bc001 71static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
72module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
83c3a331
XH
75static bool __read_mostly enable_ept_ad_bits = 1;
76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
a27685c3 78static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 80
476bc001 81static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
82module_param(vmm_exclusive, bool, S_IRUGO);
83
476bc001 84static bool __read_mostly fasteoi = 1;
58fbbf26
KT
85module_param(fasteoi, bool, S_IRUGO);
86
257090f7 87static bool __read_mostly enable_apicv_reg_vid;
83d4c286 88
801d3424
NHE
89/*
90 * If nested=1, nested virtualization is supported, i.e., guests may use
91 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
92 * use VMX instructions.
93 */
476bc001 94static bool __read_mostly nested = 0;
801d3424
NHE
95module_param(nested, bool, S_IRUGO);
96
5037878e
GN
97#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
98#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
99#define KVM_VM_CR0_ALWAYS_ON \
100 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
101#define KVM_CR4_GUEST_OWNED_BITS \
102 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
103 | X86_CR4_OSXMMEXCPT)
104
cdc0e244
AK
105#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
106#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
107
78ac8b47
AK
108#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
109
4b8d54f9
ZE
110/*
111 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
112 * ple_gap: upper bound on the amount of time between two successive
113 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 114 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
115 * ple_window: upper bound on the amount of time a guest is allowed to execute
116 * in a PAUSE loop. Tests indicate that most spinlocks are held for
117 * less than 2^12 cycles
118 * Time is measured based on a counter that runs at the same rate as the TSC,
119 * refer SDM volume 3b section 21.6.13 & 22.1.3.
120 */
00c25bce 121#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
122#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
123static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
124module_param(ple_gap, int, S_IRUGO);
125
126static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
127module_param(ple_window, int, S_IRUGO);
128
83287ea4
AK
129extern const ulong vmx_return;
130
8bf00a52 131#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 132#define VMCS02_POOL_SIZE 1
61d2ef2c 133
a2fa3e9f
GH
134struct vmcs {
135 u32 revision_id;
136 u32 abort;
137 char data[0];
138};
139
d462b819
NHE
140/*
141 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
142 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
143 * loaded on this CPU (so we can clear them if the CPU goes down).
144 */
145struct loaded_vmcs {
146 struct vmcs *vmcs;
147 int cpu;
148 int launched;
149 struct list_head loaded_vmcss_on_cpu_link;
150};
151
26bb0981
AK
152struct shared_msr_entry {
153 unsigned index;
154 u64 data;
d5696725 155 u64 mask;
26bb0981
AK
156};
157
a9d30f33
NHE
158/*
159 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
160 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
161 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
162 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
163 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
164 * More than one of these structures may exist, if L1 runs multiple L2 guests.
165 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
166 * underlying hardware which will be used to run L2.
167 * This structure is packed to ensure that its layout is identical across
168 * machines (necessary for live migration).
169 * If there are changes in this struct, VMCS12_REVISION must be changed.
170 */
22bd0358 171typedef u64 natural_width;
a9d30f33
NHE
172struct __packed vmcs12 {
173 /* According to the Intel spec, a VMCS region must start with the
174 * following two fields. Then follow implementation-specific data.
175 */
176 u32 revision_id;
177 u32 abort;
22bd0358 178
27d6c865
NHE
179 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
180 u32 padding[7]; /* room for future expansion */
181
22bd0358
NHE
182 u64 io_bitmap_a;
183 u64 io_bitmap_b;
184 u64 msr_bitmap;
185 u64 vm_exit_msr_store_addr;
186 u64 vm_exit_msr_load_addr;
187 u64 vm_entry_msr_load_addr;
188 u64 tsc_offset;
189 u64 virtual_apic_page_addr;
190 u64 apic_access_addr;
191 u64 ept_pointer;
192 u64 guest_physical_address;
193 u64 vmcs_link_pointer;
194 u64 guest_ia32_debugctl;
195 u64 guest_ia32_pat;
196 u64 guest_ia32_efer;
197 u64 guest_ia32_perf_global_ctrl;
198 u64 guest_pdptr0;
199 u64 guest_pdptr1;
200 u64 guest_pdptr2;
201 u64 guest_pdptr3;
202 u64 host_ia32_pat;
203 u64 host_ia32_efer;
204 u64 host_ia32_perf_global_ctrl;
205 u64 padding64[8]; /* room for future expansion */
206 /*
207 * To allow migration of L1 (complete with its L2 guests) between
208 * machines of different natural widths (32 or 64 bit), we cannot have
209 * unsigned long fields with no explict size. We use u64 (aliased
210 * natural_width) instead. Luckily, x86 is little-endian.
211 */
212 natural_width cr0_guest_host_mask;
213 natural_width cr4_guest_host_mask;
214 natural_width cr0_read_shadow;
215 natural_width cr4_read_shadow;
216 natural_width cr3_target_value0;
217 natural_width cr3_target_value1;
218 natural_width cr3_target_value2;
219 natural_width cr3_target_value3;
220 natural_width exit_qualification;
221 natural_width guest_linear_address;
222 natural_width guest_cr0;
223 natural_width guest_cr3;
224 natural_width guest_cr4;
225 natural_width guest_es_base;
226 natural_width guest_cs_base;
227 natural_width guest_ss_base;
228 natural_width guest_ds_base;
229 natural_width guest_fs_base;
230 natural_width guest_gs_base;
231 natural_width guest_ldtr_base;
232 natural_width guest_tr_base;
233 natural_width guest_gdtr_base;
234 natural_width guest_idtr_base;
235 natural_width guest_dr7;
236 natural_width guest_rsp;
237 natural_width guest_rip;
238 natural_width guest_rflags;
239 natural_width guest_pending_dbg_exceptions;
240 natural_width guest_sysenter_esp;
241 natural_width guest_sysenter_eip;
242 natural_width host_cr0;
243 natural_width host_cr3;
244 natural_width host_cr4;
245 natural_width host_fs_base;
246 natural_width host_gs_base;
247 natural_width host_tr_base;
248 natural_width host_gdtr_base;
249 natural_width host_idtr_base;
250 natural_width host_ia32_sysenter_esp;
251 natural_width host_ia32_sysenter_eip;
252 natural_width host_rsp;
253 natural_width host_rip;
254 natural_width paddingl[8]; /* room for future expansion */
255 u32 pin_based_vm_exec_control;
256 u32 cpu_based_vm_exec_control;
257 u32 exception_bitmap;
258 u32 page_fault_error_code_mask;
259 u32 page_fault_error_code_match;
260 u32 cr3_target_count;
261 u32 vm_exit_controls;
262 u32 vm_exit_msr_store_count;
263 u32 vm_exit_msr_load_count;
264 u32 vm_entry_controls;
265 u32 vm_entry_msr_load_count;
266 u32 vm_entry_intr_info_field;
267 u32 vm_entry_exception_error_code;
268 u32 vm_entry_instruction_len;
269 u32 tpr_threshold;
270 u32 secondary_vm_exec_control;
271 u32 vm_instruction_error;
272 u32 vm_exit_reason;
273 u32 vm_exit_intr_info;
274 u32 vm_exit_intr_error_code;
275 u32 idt_vectoring_info_field;
276 u32 idt_vectoring_error_code;
277 u32 vm_exit_instruction_len;
278 u32 vmx_instruction_info;
279 u32 guest_es_limit;
280 u32 guest_cs_limit;
281 u32 guest_ss_limit;
282 u32 guest_ds_limit;
283 u32 guest_fs_limit;
284 u32 guest_gs_limit;
285 u32 guest_ldtr_limit;
286 u32 guest_tr_limit;
287 u32 guest_gdtr_limit;
288 u32 guest_idtr_limit;
289 u32 guest_es_ar_bytes;
290 u32 guest_cs_ar_bytes;
291 u32 guest_ss_ar_bytes;
292 u32 guest_ds_ar_bytes;
293 u32 guest_fs_ar_bytes;
294 u32 guest_gs_ar_bytes;
295 u32 guest_ldtr_ar_bytes;
296 u32 guest_tr_ar_bytes;
297 u32 guest_interruptibility_info;
298 u32 guest_activity_state;
299 u32 guest_sysenter_cs;
300 u32 host_ia32_sysenter_cs;
301 u32 padding32[8]; /* room for future expansion */
302 u16 virtual_processor_id;
303 u16 guest_es_selector;
304 u16 guest_cs_selector;
305 u16 guest_ss_selector;
306 u16 guest_ds_selector;
307 u16 guest_fs_selector;
308 u16 guest_gs_selector;
309 u16 guest_ldtr_selector;
310 u16 guest_tr_selector;
311 u16 host_es_selector;
312 u16 host_cs_selector;
313 u16 host_ss_selector;
314 u16 host_ds_selector;
315 u16 host_fs_selector;
316 u16 host_gs_selector;
317 u16 host_tr_selector;
a9d30f33
NHE
318};
319
320/*
321 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
322 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
323 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
324 */
325#define VMCS12_REVISION 0x11e57ed0
326
327/*
328 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
329 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
330 * current implementation, 4K are reserved to avoid future complications.
331 */
332#define VMCS12_SIZE 0x1000
333
ff2f6fe9
NHE
334/* Used to remember the last vmcs02 used for some recently used vmcs12s */
335struct vmcs02_list {
336 struct list_head list;
337 gpa_t vmptr;
338 struct loaded_vmcs vmcs02;
339};
340
ec378aee
NHE
341/*
342 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
343 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
344 */
345struct nested_vmx {
346 /* Has the level1 guest done vmxon? */
347 bool vmxon;
a9d30f33
NHE
348
349 /* The guest-physical address of the current VMCS L1 keeps for L2 */
350 gpa_t current_vmptr;
351 /* The host-usable pointer to the above */
352 struct page *current_vmcs12_page;
353 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
354
355 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
356 struct list_head vmcs02_pool;
357 int vmcs02_num;
fe3ef05c 358 u64 vmcs01_tsc_offset;
644d711a
NHE
359 /* L2 must run next, and mustn't decide to exit to L1. */
360 bool nested_run_pending;
fe3ef05c
NHE
361 /*
362 * Guest pages referred to in vmcs02 with host-physical pointers, so
363 * we must keep them pinned while L2 runs.
364 */
365 struct page *apic_access_page;
ec378aee
NHE
366};
367
a2fa3e9f 368struct vcpu_vmx {
fb3f0f51 369 struct kvm_vcpu vcpu;
313dbd49 370 unsigned long host_rsp;
29bd8a78 371 u8 fail;
69c73028 372 u8 cpl;
9d58b931 373 bool nmi_known_unmasked;
51aa01d1 374 u32 exit_intr_info;
1155f76a 375 u32 idt_vectoring_info;
6de12732 376 ulong rflags;
26bb0981 377 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
378 int nmsrs;
379 int save_nmsrs;
a2fa3e9f 380#ifdef CONFIG_X86_64
44ea2b17
AK
381 u64 msr_host_kernel_gs_base;
382 u64 msr_guest_kernel_gs_base;
a2fa3e9f 383#endif
d462b819
NHE
384 /*
385 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
386 * non-nested (L1) guest, it always points to vmcs01. For a nested
387 * guest (L2), it points to a different VMCS.
388 */
389 struct loaded_vmcs vmcs01;
390 struct loaded_vmcs *loaded_vmcs;
391 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
392 struct msr_autoload {
393 unsigned nr;
394 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
395 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
396 } msr_autoload;
a2fa3e9f
GH
397 struct {
398 int loaded;
399 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
400#ifdef CONFIG_X86_64
401 u16 ds_sel, es_sel;
402#endif
152d3f2f
LV
403 int gs_ldt_reload_needed;
404 int fs_reload_needed;
d77c26fc 405 } host_state;
9c8cba37 406 struct {
7ffd92c5 407 int vm86_active;
78ac8b47 408 ulong save_rflags;
f5f7b2fe
AK
409 struct kvm_segment segs[8];
410 } rmode;
411 struct {
412 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
413 struct kvm_save_segment {
414 u16 selector;
415 unsigned long base;
416 u32 limit;
417 u32 ar;
f5f7b2fe 418 } seg[8];
2fb92db1 419 } segment_cache;
2384d2b3 420 int vpid;
04fa4d32 421 bool emulation_required;
3b86cd99
JK
422
423 /* Support for vnmi-less CPUs */
424 int soft_vnmi_blocked;
425 ktime_t entry_time;
426 s64 vnmi_blocked_time;
a0861c02 427 u32 exit_reason;
4e47c7a6
SY
428
429 bool rdtscp_enabled;
ec378aee
NHE
430
431 /* Support for a guest hypervisor (nested VMX) */
432 struct nested_vmx nested;
a2fa3e9f
GH
433};
434
2fb92db1
AK
435enum segment_cache_field {
436 SEG_FIELD_SEL = 0,
437 SEG_FIELD_BASE = 1,
438 SEG_FIELD_LIMIT = 2,
439 SEG_FIELD_AR = 3,
440
441 SEG_FIELD_NR = 4
442};
443
a2fa3e9f
GH
444static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
445{
fb3f0f51 446 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
447}
448
22bd0358
NHE
449#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
450#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
451#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
452 [number##_HIGH] = VMCS12_OFFSET(name)+4
453
772e0318 454static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
455 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
456 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
457 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
458 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
459 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
460 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
461 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
462 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
463 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
464 FIELD(HOST_ES_SELECTOR, host_es_selector),
465 FIELD(HOST_CS_SELECTOR, host_cs_selector),
466 FIELD(HOST_SS_SELECTOR, host_ss_selector),
467 FIELD(HOST_DS_SELECTOR, host_ds_selector),
468 FIELD(HOST_FS_SELECTOR, host_fs_selector),
469 FIELD(HOST_GS_SELECTOR, host_gs_selector),
470 FIELD(HOST_TR_SELECTOR, host_tr_selector),
471 FIELD64(IO_BITMAP_A, io_bitmap_a),
472 FIELD64(IO_BITMAP_B, io_bitmap_b),
473 FIELD64(MSR_BITMAP, msr_bitmap),
474 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
475 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
476 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
477 FIELD64(TSC_OFFSET, tsc_offset),
478 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
479 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
480 FIELD64(EPT_POINTER, ept_pointer),
481 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
482 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
483 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
484 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
485 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
486 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
487 FIELD64(GUEST_PDPTR0, guest_pdptr0),
488 FIELD64(GUEST_PDPTR1, guest_pdptr1),
489 FIELD64(GUEST_PDPTR2, guest_pdptr2),
490 FIELD64(GUEST_PDPTR3, guest_pdptr3),
491 FIELD64(HOST_IA32_PAT, host_ia32_pat),
492 FIELD64(HOST_IA32_EFER, host_ia32_efer),
493 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
494 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
495 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
496 FIELD(EXCEPTION_BITMAP, exception_bitmap),
497 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
498 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
499 FIELD(CR3_TARGET_COUNT, cr3_target_count),
500 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
501 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
502 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
503 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
504 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
505 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
506 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
507 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
508 FIELD(TPR_THRESHOLD, tpr_threshold),
509 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
510 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
511 FIELD(VM_EXIT_REASON, vm_exit_reason),
512 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
513 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
514 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
515 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
516 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
517 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
518 FIELD(GUEST_ES_LIMIT, guest_es_limit),
519 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
520 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
521 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
522 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
523 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
524 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
525 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
526 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
527 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
528 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
529 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
530 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
531 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
532 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
533 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
534 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
535 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
536 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
537 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
538 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
539 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
540 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
541 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
542 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
543 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
544 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
545 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
546 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
547 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
548 FIELD(EXIT_QUALIFICATION, exit_qualification),
549 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
550 FIELD(GUEST_CR0, guest_cr0),
551 FIELD(GUEST_CR3, guest_cr3),
552 FIELD(GUEST_CR4, guest_cr4),
553 FIELD(GUEST_ES_BASE, guest_es_base),
554 FIELD(GUEST_CS_BASE, guest_cs_base),
555 FIELD(GUEST_SS_BASE, guest_ss_base),
556 FIELD(GUEST_DS_BASE, guest_ds_base),
557 FIELD(GUEST_FS_BASE, guest_fs_base),
558 FIELD(GUEST_GS_BASE, guest_gs_base),
559 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
560 FIELD(GUEST_TR_BASE, guest_tr_base),
561 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
562 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
563 FIELD(GUEST_DR7, guest_dr7),
564 FIELD(GUEST_RSP, guest_rsp),
565 FIELD(GUEST_RIP, guest_rip),
566 FIELD(GUEST_RFLAGS, guest_rflags),
567 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
568 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
569 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
570 FIELD(HOST_CR0, host_cr0),
571 FIELD(HOST_CR3, host_cr3),
572 FIELD(HOST_CR4, host_cr4),
573 FIELD(HOST_FS_BASE, host_fs_base),
574 FIELD(HOST_GS_BASE, host_gs_base),
575 FIELD(HOST_TR_BASE, host_tr_base),
576 FIELD(HOST_GDTR_BASE, host_gdtr_base),
577 FIELD(HOST_IDTR_BASE, host_idtr_base),
578 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
579 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
580 FIELD(HOST_RSP, host_rsp),
581 FIELD(HOST_RIP, host_rip),
582};
583static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
584
585static inline short vmcs_field_to_offset(unsigned long field)
586{
587 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
588 return -1;
589 return vmcs_field_to_offset_table[field];
590}
591
a9d30f33
NHE
592static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
593{
594 return to_vmx(vcpu)->nested.current_vmcs12;
595}
596
597static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
598{
599 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 600 if (is_error_page(page))
a9d30f33 601 return NULL;
32cad84f 602
a9d30f33
NHE
603 return page;
604}
605
606static void nested_release_page(struct page *page)
607{
608 kvm_release_page_dirty(page);
609}
610
611static void nested_release_page_clean(struct page *page)
612{
613 kvm_release_page_clean(page);
614}
615
4e1096d2 616static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
617static void kvm_cpu_vmxon(u64 addr);
618static void kvm_cpu_vmxoff(void);
aff48baa 619static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 620static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
621static void vmx_set_segment(struct kvm_vcpu *vcpu,
622 struct kvm_segment *var, int seg);
623static void vmx_get_segment(struct kvm_vcpu *vcpu,
624 struct kvm_segment *var, int seg);
d99e4152
GN
625static bool guest_state_valid(struct kvm_vcpu *vcpu);
626static u32 vmx_segment_access_rights(struct kvm_segment *var);
75880a01 627
6aa8b732
AK
628static DEFINE_PER_CPU(struct vmcs *, vmxarea);
629static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
630/*
631 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
632 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
633 */
634static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 635static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 636
3e7c73e9
AK
637static unsigned long *vmx_io_bitmap_a;
638static unsigned long *vmx_io_bitmap_b;
5897297b
AK
639static unsigned long *vmx_msr_bitmap_legacy;
640static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
641static unsigned long *vmx_msr_bitmap_legacy_x2apic;
642static unsigned long *vmx_msr_bitmap_longmode_x2apic;
fdef3ad1 643
110312c8 644static bool cpu_has_load_ia32_efer;
8bf00a52 645static bool cpu_has_load_perf_global_ctrl;
110312c8 646
2384d2b3
SY
647static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
648static DEFINE_SPINLOCK(vmx_vpid_lock);
649
1c3d14fe 650static struct vmcs_config {
6aa8b732
AK
651 int size;
652 int order;
653 u32 revision_id;
1c3d14fe
YS
654 u32 pin_based_exec_ctrl;
655 u32 cpu_based_exec_ctrl;
f78e0e2e 656 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
657 u32 vmexit_ctrl;
658 u32 vmentry_ctrl;
659} vmcs_config;
6aa8b732 660
efff9e53 661static struct vmx_capability {
d56f546d
SY
662 u32 ept;
663 u32 vpid;
664} vmx_capability;
665
6aa8b732
AK
666#define VMX_SEGMENT_FIELD(seg) \
667 [VCPU_SREG_##seg] = { \
668 .selector = GUEST_##seg##_SELECTOR, \
669 .base = GUEST_##seg##_BASE, \
670 .limit = GUEST_##seg##_LIMIT, \
671 .ar_bytes = GUEST_##seg##_AR_BYTES, \
672 }
673
772e0318 674static const struct kvm_vmx_segment_field {
6aa8b732
AK
675 unsigned selector;
676 unsigned base;
677 unsigned limit;
678 unsigned ar_bytes;
679} kvm_vmx_segment_fields[] = {
680 VMX_SEGMENT_FIELD(CS),
681 VMX_SEGMENT_FIELD(DS),
682 VMX_SEGMENT_FIELD(ES),
683 VMX_SEGMENT_FIELD(FS),
684 VMX_SEGMENT_FIELD(GS),
685 VMX_SEGMENT_FIELD(SS),
686 VMX_SEGMENT_FIELD(TR),
687 VMX_SEGMENT_FIELD(LDTR),
688};
689
26bb0981
AK
690static u64 host_efer;
691
6de4f3ad
AK
692static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
693
4d56c8a7 694/*
8c06585d 695 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
696 * away by decrementing the array size.
697 */
6aa8b732 698static const u32 vmx_msr_index[] = {
05b3e0c2 699#ifdef CONFIG_X86_64
44ea2b17 700 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 701#endif
8c06585d 702 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 703};
9d8f549d 704#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 705
31299944 706static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
707{
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
709 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 710 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
711}
712
31299944 713static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
714{
715 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
716 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 717 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
718}
719
31299944 720static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
721{
722 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
723 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 724 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
725}
726
31299944 727static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
728{
729 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
730 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
731}
732
31299944 733static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
734{
735 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
736 INTR_INFO_VALID_MASK)) ==
737 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
738}
739
31299944 740static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 741{
04547156 742 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
743}
744
31299944 745static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 746{
04547156 747 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
748}
749
31299944 750static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 751{
04547156 752 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
753}
754
31299944 755static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 756{
04547156
SY
757 return vmcs_config.cpu_based_exec_ctrl &
758 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
759}
760
774ead3a 761static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 762{
04547156
SY
763 return vmcs_config.cpu_based_2nd_exec_ctrl &
764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
765}
766
8d14695f
YZ
767static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
768{
769 return vmcs_config.cpu_based_2nd_exec_ctrl &
770 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
771}
772
83d4c286
YZ
773static inline bool cpu_has_vmx_apic_register_virt(void)
774{
775 return vmcs_config.cpu_based_2nd_exec_ctrl &
776 SECONDARY_EXEC_APIC_REGISTER_VIRT;
777}
778
c7c9c56c
YZ
779static inline bool cpu_has_vmx_virtual_intr_delivery(void)
780{
781 return vmcs_config.cpu_based_2nd_exec_ctrl &
782 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
783}
784
04547156
SY
785static inline bool cpu_has_vmx_flexpriority(void)
786{
787 return cpu_has_vmx_tpr_shadow() &&
788 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
789}
790
e799794e
MT
791static inline bool cpu_has_vmx_ept_execute_only(void)
792{
31299944 793 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
794}
795
796static inline bool cpu_has_vmx_eptp_uncacheable(void)
797{
31299944 798 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
799}
800
801static inline bool cpu_has_vmx_eptp_writeback(void)
802{
31299944 803 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
804}
805
806static inline bool cpu_has_vmx_ept_2m_page(void)
807{
31299944 808 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
809}
810
878403b7
SY
811static inline bool cpu_has_vmx_ept_1g_page(void)
812{
31299944 813 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
814}
815
4bc9b982
SY
816static inline bool cpu_has_vmx_ept_4levels(void)
817{
818 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
819}
820
83c3a331
XH
821static inline bool cpu_has_vmx_ept_ad_bits(void)
822{
823 return vmx_capability.ept & VMX_EPT_AD_BIT;
824}
825
31299944 826static inline bool cpu_has_vmx_invept_context(void)
d56f546d 827{
31299944 828 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
829}
830
31299944 831static inline bool cpu_has_vmx_invept_global(void)
d56f546d 832{
31299944 833 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
834}
835
518c8aee
GJ
836static inline bool cpu_has_vmx_invvpid_single(void)
837{
838 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
839}
840
b9d762fa
GJ
841static inline bool cpu_has_vmx_invvpid_global(void)
842{
843 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
844}
845
31299944 846static inline bool cpu_has_vmx_ept(void)
d56f546d 847{
04547156
SY
848 return vmcs_config.cpu_based_2nd_exec_ctrl &
849 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
850}
851
31299944 852static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
853{
854 return vmcs_config.cpu_based_2nd_exec_ctrl &
855 SECONDARY_EXEC_UNRESTRICTED_GUEST;
856}
857
31299944 858static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
859{
860 return vmcs_config.cpu_based_2nd_exec_ctrl &
861 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
862}
863
31299944 864static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 865{
6d3e435e 866 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
867}
868
31299944 869static inline bool cpu_has_vmx_vpid(void)
2384d2b3 870{
04547156
SY
871 return vmcs_config.cpu_based_2nd_exec_ctrl &
872 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
873}
874
31299944 875static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
876{
877 return vmcs_config.cpu_based_2nd_exec_ctrl &
878 SECONDARY_EXEC_RDTSCP;
879}
880
ad756a16
MJ
881static inline bool cpu_has_vmx_invpcid(void)
882{
883 return vmcs_config.cpu_based_2nd_exec_ctrl &
884 SECONDARY_EXEC_ENABLE_INVPCID;
885}
886
31299944 887static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
888{
889 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
890}
891
f5f48ee1
SY
892static inline bool cpu_has_vmx_wbinvd_exit(void)
893{
894 return vmcs_config.cpu_based_2nd_exec_ctrl &
895 SECONDARY_EXEC_WBINVD_EXITING;
896}
897
04547156
SY
898static inline bool report_flexpriority(void)
899{
900 return flexpriority_enabled;
901}
902
fe3ef05c
NHE
903static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
904{
905 return vmcs12->cpu_based_vm_exec_control & bit;
906}
907
908static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
909{
910 return (vmcs12->cpu_based_vm_exec_control &
911 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
912 (vmcs12->secondary_vm_exec_control & bit);
913}
914
644d711a
NHE
915static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
916 struct kvm_vcpu *vcpu)
917{
918 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
919}
920
921static inline bool is_exception(u32 intr_info)
922{
923 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
924 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
925}
926
927static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
928static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
929 struct vmcs12 *vmcs12,
930 u32 reason, unsigned long qualification);
931
8b9cf98c 932static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
933{
934 int i;
935
a2fa3e9f 936 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 937 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
938 return i;
939 return -1;
940}
941
2384d2b3
SY
942static inline void __invvpid(int ext, u16 vpid, gva_t gva)
943{
944 struct {
945 u64 vpid : 16;
946 u64 rsvd : 48;
947 u64 gva;
948 } operand = { vpid, 0, gva };
949
4ecac3fd 950 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
951 /* CF==1 or ZF==1 --> rc = -1 */
952 "; ja 1f ; ud2 ; 1:"
953 : : "a"(&operand), "c"(ext) : "cc", "memory");
954}
955
1439442c
SY
956static inline void __invept(int ext, u64 eptp, gpa_t gpa)
957{
958 struct {
959 u64 eptp, gpa;
960 } operand = {eptp, gpa};
961
4ecac3fd 962 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
963 /* CF==1 or ZF==1 --> rc = -1 */
964 "; ja 1f ; ud2 ; 1:\n"
965 : : "a" (&operand), "c" (ext) : "cc", "memory");
966}
967
26bb0981 968static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
969{
970 int i;
971
8b9cf98c 972 i = __find_msr_index(vmx, msr);
a75beee6 973 if (i >= 0)
a2fa3e9f 974 return &vmx->guest_msrs[i];
8b6d44c7 975 return NULL;
7725f0ba
AK
976}
977
6aa8b732
AK
978static void vmcs_clear(struct vmcs *vmcs)
979{
980 u64 phys_addr = __pa(vmcs);
981 u8 error;
982
4ecac3fd 983 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 984 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
985 : "cc", "memory");
986 if (error)
987 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
988 vmcs, phys_addr);
989}
990
d462b819
NHE
991static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
992{
993 vmcs_clear(loaded_vmcs->vmcs);
994 loaded_vmcs->cpu = -1;
995 loaded_vmcs->launched = 0;
996}
997
7725b894
DX
998static void vmcs_load(struct vmcs *vmcs)
999{
1000 u64 phys_addr = __pa(vmcs);
1001 u8 error;
1002
1003 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1004 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1005 : "cc", "memory");
1006 if (error)
2844d849 1007 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1008 vmcs, phys_addr);
1009}
1010
8f536b76
ZY
1011#ifdef CONFIG_KEXEC
1012/*
1013 * This bitmap is used to indicate whether the vmclear
1014 * operation is enabled on all cpus. All disabled by
1015 * default.
1016 */
1017static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1018
1019static inline void crash_enable_local_vmclear(int cpu)
1020{
1021 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1022}
1023
1024static inline void crash_disable_local_vmclear(int cpu)
1025{
1026 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1027}
1028
1029static inline int crash_local_vmclear_enabled(int cpu)
1030{
1031 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1032}
1033
1034static void crash_vmclear_local_loaded_vmcss(void)
1035{
1036 int cpu = raw_smp_processor_id();
1037 struct loaded_vmcs *v;
1038
1039 if (!crash_local_vmclear_enabled(cpu))
1040 return;
1041
1042 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1043 loaded_vmcss_on_cpu_link)
1044 vmcs_clear(v->vmcs);
1045}
1046#else
1047static inline void crash_enable_local_vmclear(int cpu) { }
1048static inline void crash_disable_local_vmclear(int cpu) { }
1049#endif /* CONFIG_KEXEC */
1050
d462b819 1051static void __loaded_vmcs_clear(void *arg)
6aa8b732 1052{
d462b819 1053 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1054 int cpu = raw_smp_processor_id();
6aa8b732 1055
d462b819
NHE
1056 if (loaded_vmcs->cpu != cpu)
1057 return; /* vcpu migration can race with cpu offline */
1058 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1059 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1060 crash_disable_local_vmclear(cpu);
d462b819 1061 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1062
1063 /*
1064 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1065 * is before setting loaded_vmcs->vcpu to -1 which is done in
1066 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1067 * then adds the vmcs into percpu list before it is deleted.
1068 */
1069 smp_wmb();
1070
d462b819 1071 loaded_vmcs_init(loaded_vmcs);
8f536b76 1072 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1073}
1074
d462b819 1075static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1076{
e6c7d321
XG
1077 int cpu = loaded_vmcs->cpu;
1078
1079 if (cpu != -1)
1080 smp_call_function_single(cpu,
1081 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1082}
1083
1760dd49 1084static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1085{
1086 if (vmx->vpid == 0)
1087 return;
1088
518c8aee
GJ
1089 if (cpu_has_vmx_invvpid_single())
1090 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1091}
1092
b9d762fa
GJ
1093static inline void vpid_sync_vcpu_global(void)
1094{
1095 if (cpu_has_vmx_invvpid_global())
1096 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1097}
1098
1099static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1100{
1101 if (cpu_has_vmx_invvpid_single())
1760dd49 1102 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1103 else
1104 vpid_sync_vcpu_global();
1105}
1106
1439442c
SY
1107static inline void ept_sync_global(void)
1108{
1109 if (cpu_has_vmx_invept_global())
1110 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1111}
1112
1113static inline void ept_sync_context(u64 eptp)
1114{
089d034e 1115 if (enable_ept) {
1439442c
SY
1116 if (cpu_has_vmx_invept_context())
1117 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1118 else
1119 ept_sync_global();
1120 }
1121}
1122
96304217 1123static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1124{
5e520e62 1125 unsigned long value;
6aa8b732 1126
5e520e62
AK
1127 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1128 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1129 return value;
1130}
1131
96304217 1132static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1133{
1134 return vmcs_readl(field);
1135}
1136
96304217 1137static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1138{
1139 return vmcs_readl(field);
1140}
1141
96304217 1142static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1143{
05b3e0c2 1144#ifdef CONFIG_X86_64
6aa8b732
AK
1145 return vmcs_readl(field);
1146#else
1147 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1148#endif
1149}
1150
e52de1b8
AK
1151static noinline void vmwrite_error(unsigned long field, unsigned long value)
1152{
1153 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1154 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1155 dump_stack();
1156}
1157
6aa8b732
AK
1158static void vmcs_writel(unsigned long field, unsigned long value)
1159{
1160 u8 error;
1161
4ecac3fd 1162 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1163 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1164 if (unlikely(error))
1165 vmwrite_error(field, value);
6aa8b732
AK
1166}
1167
1168static void vmcs_write16(unsigned long field, u16 value)
1169{
1170 vmcs_writel(field, value);
1171}
1172
1173static void vmcs_write32(unsigned long field, u32 value)
1174{
1175 vmcs_writel(field, value);
1176}
1177
1178static void vmcs_write64(unsigned long field, u64 value)
1179{
6aa8b732 1180 vmcs_writel(field, value);
7682f2d0 1181#ifndef CONFIG_X86_64
6aa8b732
AK
1182 asm volatile ("");
1183 vmcs_writel(field+1, value >> 32);
1184#endif
1185}
1186
2ab455cc
AL
1187static void vmcs_clear_bits(unsigned long field, u32 mask)
1188{
1189 vmcs_writel(field, vmcs_readl(field) & ~mask);
1190}
1191
1192static void vmcs_set_bits(unsigned long field, u32 mask)
1193{
1194 vmcs_writel(field, vmcs_readl(field) | mask);
1195}
1196
2fb92db1
AK
1197static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1198{
1199 vmx->segment_cache.bitmask = 0;
1200}
1201
1202static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1203 unsigned field)
1204{
1205 bool ret;
1206 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1207
1208 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1209 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1210 vmx->segment_cache.bitmask = 0;
1211 }
1212 ret = vmx->segment_cache.bitmask & mask;
1213 vmx->segment_cache.bitmask |= mask;
1214 return ret;
1215}
1216
1217static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1218{
1219 u16 *p = &vmx->segment_cache.seg[seg].selector;
1220
1221 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1222 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1223 return *p;
1224}
1225
1226static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1227{
1228 ulong *p = &vmx->segment_cache.seg[seg].base;
1229
1230 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1231 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1232 return *p;
1233}
1234
1235static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1236{
1237 u32 *p = &vmx->segment_cache.seg[seg].limit;
1238
1239 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1240 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1241 return *p;
1242}
1243
1244static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1245{
1246 u32 *p = &vmx->segment_cache.seg[seg].ar;
1247
1248 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1249 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1250 return *p;
1251}
1252
abd3f2d6
AK
1253static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1254{
1255 u32 eb;
1256
fd7373cc
JK
1257 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1258 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1259 if ((vcpu->guest_debug &
1260 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1261 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1262 eb |= 1u << BP_VECTOR;
7ffd92c5 1263 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1264 eb = ~0;
089d034e 1265 if (enable_ept)
1439442c 1266 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1267 if (vcpu->fpu_active)
1268 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1269
1270 /* When we are running a nested L2 guest and L1 specified for it a
1271 * certain exception bitmap, we must trap the same exceptions and pass
1272 * them to L1. When running L2, we will only handle the exceptions
1273 * specified above if L1 did not want them.
1274 */
1275 if (is_guest_mode(vcpu))
1276 eb |= get_vmcs12(vcpu)->exception_bitmap;
1277
abd3f2d6
AK
1278 vmcs_write32(EXCEPTION_BITMAP, eb);
1279}
1280
8bf00a52
GN
1281static void clear_atomic_switch_msr_special(unsigned long entry,
1282 unsigned long exit)
1283{
1284 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1285 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1286}
1287
61d2ef2c
AK
1288static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1289{
1290 unsigned i;
1291 struct msr_autoload *m = &vmx->msr_autoload;
1292
8bf00a52
GN
1293 switch (msr) {
1294 case MSR_EFER:
1295 if (cpu_has_load_ia32_efer) {
1296 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1297 VM_EXIT_LOAD_IA32_EFER);
1298 return;
1299 }
1300 break;
1301 case MSR_CORE_PERF_GLOBAL_CTRL:
1302 if (cpu_has_load_perf_global_ctrl) {
1303 clear_atomic_switch_msr_special(
1304 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1305 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1306 return;
1307 }
1308 break;
110312c8
AK
1309 }
1310
61d2ef2c
AK
1311 for (i = 0; i < m->nr; ++i)
1312 if (m->guest[i].index == msr)
1313 break;
1314
1315 if (i == m->nr)
1316 return;
1317 --m->nr;
1318 m->guest[i] = m->guest[m->nr];
1319 m->host[i] = m->host[m->nr];
1320 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1321 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1322}
1323
8bf00a52
GN
1324static void add_atomic_switch_msr_special(unsigned long entry,
1325 unsigned long exit, unsigned long guest_val_vmcs,
1326 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1327{
1328 vmcs_write64(guest_val_vmcs, guest_val);
1329 vmcs_write64(host_val_vmcs, host_val);
1330 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1331 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1332}
1333
61d2ef2c
AK
1334static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1335 u64 guest_val, u64 host_val)
1336{
1337 unsigned i;
1338 struct msr_autoload *m = &vmx->msr_autoload;
1339
8bf00a52
GN
1340 switch (msr) {
1341 case MSR_EFER:
1342 if (cpu_has_load_ia32_efer) {
1343 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1344 VM_EXIT_LOAD_IA32_EFER,
1345 GUEST_IA32_EFER,
1346 HOST_IA32_EFER,
1347 guest_val, host_val);
1348 return;
1349 }
1350 break;
1351 case MSR_CORE_PERF_GLOBAL_CTRL:
1352 if (cpu_has_load_perf_global_ctrl) {
1353 add_atomic_switch_msr_special(
1354 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1355 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1356 GUEST_IA32_PERF_GLOBAL_CTRL,
1357 HOST_IA32_PERF_GLOBAL_CTRL,
1358 guest_val, host_val);
1359 return;
1360 }
1361 break;
110312c8
AK
1362 }
1363
61d2ef2c
AK
1364 for (i = 0; i < m->nr; ++i)
1365 if (m->guest[i].index == msr)
1366 break;
1367
e7fc6f93
GN
1368 if (i == NR_AUTOLOAD_MSRS) {
1369 printk_once(KERN_WARNING"Not enough mst switch entries. "
1370 "Can't add msr %x\n", msr);
1371 return;
1372 } else if (i == m->nr) {
61d2ef2c
AK
1373 ++m->nr;
1374 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1375 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1376 }
1377
1378 m->guest[i].index = msr;
1379 m->guest[i].value = guest_val;
1380 m->host[i].index = msr;
1381 m->host[i].value = host_val;
1382}
1383
33ed6329
AK
1384static void reload_tss(void)
1385{
33ed6329
AK
1386 /*
1387 * VT restores TR but not its size. Useless.
1388 */
d359192f 1389 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1390 struct desc_struct *descs;
33ed6329 1391
d359192f 1392 descs = (void *)gdt->address;
33ed6329
AK
1393 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1394 load_TR_desc();
33ed6329
AK
1395}
1396
92c0d900 1397static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1398{
3a34a881 1399 u64 guest_efer;
51c6cf66
AK
1400 u64 ignore_bits;
1401
f6801dff 1402 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1403
51c6cf66 1404 /*
0fa06071 1405 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1406 * outside long mode
1407 */
1408 ignore_bits = EFER_NX | EFER_SCE;
1409#ifdef CONFIG_X86_64
1410 ignore_bits |= EFER_LMA | EFER_LME;
1411 /* SCE is meaningful only in long mode on Intel */
1412 if (guest_efer & EFER_LMA)
1413 ignore_bits &= ~(u64)EFER_SCE;
1414#endif
51c6cf66
AK
1415 guest_efer &= ~ignore_bits;
1416 guest_efer |= host_efer & ignore_bits;
26bb0981 1417 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1418 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1419
1420 clear_atomic_switch_msr(vmx, MSR_EFER);
1421 /* On ept, can't emulate nx, and must switch nx atomically */
1422 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1423 guest_efer = vmx->vcpu.arch.efer;
1424 if (!(guest_efer & EFER_LMA))
1425 guest_efer &= ~EFER_LME;
1426 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1427 return false;
1428 }
1429
26bb0981 1430 return true;
51c6cf66
AK
1431}
1432
2d49ec72
GN
1433static unsigned long segment_base(u16 selector)
1434{
d359192f 1435 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1436 struct desc_struct *d;
1437 unsigned long table_base;
1438 unsigned long v;
1439
1440 if (!(selector & ~3))
1441 return 0;
1442
d359192f 1443 table_base = gdt->address;
2d49ec72
GN
1444
1445 if (selector & 4) { /* from ldt */
1446 u16 ldt_selector = kvm_read_ldt();
1447
1448 if (!(ldt_selector & ~3))
1449 return 0;
1450
1451 table_base = segment_base(ldt_selector);
1452 }
1453 d = (struct desc_struct *)(table_base + (selector & ~7));
1454 v = get_desc_base(d);
1455#ifdef CONFIG_X86_64
1456 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1457 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1458#endif
1459 return v;
1460}
1461
1462static inline unsigned long kvm_read_tr_base(void)
1463{
1464 u16 tr;
1465 asm("str %0" : "=g"(tr));
1466 return segment_base(tr);
1467}
1468
04d2cc77 1469static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1470{
04d2cc77 1471 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1472 int i;
04d2cc77 1473
a2fa3e9f 1474 if (vmx->host_state.loaded)
33ed6329
AK
1475 return;
1476
a2fa3e9f 1477 vmx->host_state.loaded = 1;
33ed6329
AK
1478 /*
1479 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1480 * allow segment selectors with cpl > 0 or ti == 1.
1481 */
d6e88aec 1482 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1483 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1484 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1485 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1486 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1487 vmx->host_state.fs_reload_needed = 0;
1488 } else {
33ed6329 1489 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1490 vmx->host_state.fs_reload_needed = 1;
33ed6329 1491 }
9581d442 1492 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1493 if (!(vmx->host_state.gs_sel & 7))
1494 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1495 else {
1496 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1497 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1498 }
1499
b2da15ac
AK
1500#ifdef CONFIG_X86_64
1501 savesegment(ds, vmx->host_state.ds_sel);
1502 savesegment(es, vmx->host_state.es_sel);
1503#endif
1504
33ed6329
AK
1505#ifdef CONFIG_X86_64
1506 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1507 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1508#else
a2fa3e9f
GH
1509 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1510 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1511#endif
707c0874
AK
1512
1513#ifdef CONFIG_X86_64
c8770e7b
AK
1514 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1515 if (is_long_mode(&vmx->vcpu))
44ea2b17 1516 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1517#endif
26bb0981
AK
1518 for (i = 0; i < vmx->save_nmsrs; ++i)
1519 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1520 vmx->guest_msrs[i].data,
1521 vmx->guest_msrs[i].mask);
33ed6329
AK
1522}
1523
a9b21b62 1524static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1525{
a2fa3e9f 1526 if (!vmx->host_state.loaded)
33ed6329
AK
1527 return;
1528
e1beb1d3 1529 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1530 vmx->host_state.loaded = 0;
c8770e7b
AK
1531#ifdef CONFIG_X86_64
1532 if (is_long_mode(&vmx->vcpu))
1533 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1534#endif
152d3f2f 1535 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1536 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1537#ifdef CONFIG_X86_64
9581d442 1538 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1539#else
1540 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1541#endif
33ed6329 1542 }
0a77fe4c
AK
1543 if (vmx->host_state.fs_reload_needed)
1544 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1545#ifdef CONFIG_X86_64
1546 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1547 loadsegment(ds, vmx->host_state.ds_sel);
1548 loadsegment(es, vmx->host_state.es_sel);
1549 }
b2da15ac 1550#endif
152d3f2f 1551 reload_tss();
44ea2b17 1552#ifdef CONFIG_X86_64
c8770e7b 1553 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1554#endif
b1a74bf8
SS
1555 /*
1556 * If the FPU is not active (through the host task or
1557 * the guest vcpu), then restore the cr0.TS bit.
1558 */
1559 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1560 stts();
3444d7da 1561 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1562}
1563
a9b21b62
AK
1564static void vmx_load_host_state(struct vcpu_vmx *vmx)
1565{
1566 preempt_disable();
1567 __vmx_load_host_state(vmx);
1568 preempt_enable();
1569}
1570
6aa8b732
AK
1571/*
1572 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1573 * vcpu mutex is already taken.
1574 */
15ad7146 1575static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1576{
a2fa3e9f 1577 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1578 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1579
4610c9cc
DX
1580 if (!vmm_exclusive)
1581 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1582 else if (vmx->loaded_vmcs->cpu != cpu)
1583 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1584
d462b819
NHE
1585 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1586 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1587 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1588 }
1589
d462b819 1590 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1591 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1592 unsigned long sysenter_esp;
1593
a8eeb04a 1594 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1595 local_irq_disable();
8f536b76 1596 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1597
1598 /*
1599 * Read loaded_vmcs->cpu should be before fetching
1600 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1601 * See the comments in __loaded_vmcs_clear().
1602 */
1603 smp_rmb();
1604
d462b819
NHE
1605 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1606 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1607 crash_enable_local_vmclear(cpu);
92fe13be
DX
1608 local_irq_enable();
1609
6aa8b732
AK
1610 /*
1611 * Linux uses per-cpu TSS and GDT, so set these when switching
1612 * processors.
1613 */
d6e88aec 1614 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1615 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1616
1617 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1618 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1619 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1620 }
6aa8b732
AK
1621}
1622
1623static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1624{
a9b21b62 1625 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1626 if (!vmm_exclusive) {
d462b819
NHE
1627 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1628 vcpu->cpu = -1;
4610c9cc
DX
1629 kvm_cpu_vmxoff();
1630 }
6aa8b732
AK
1631}
1632
5fd86fcf
AK
1633static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1634{
81231c69
AK
1635 ulong cr0;
1636
5fd86fcf
AK
1637 if (vcpu->fpu_active)
1638 return;
1639 vcpu->fpu_active = 1;
81231c69
AK
1640 cr0 = vmcs_readl(GUEST_CR0);
1641 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1642 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1643 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1644 update_exception_bitmap(vcpu);
edcafe3c 1645 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1646 if (is_guest_mode(vcpu))
1647 vcpu->arch.cr0_guest_owned_bits &=
1648 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1649 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1650}
1651
edcafe3c
AK
1652static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1653
fe3ef05c
NHE
1654/*
1655 * Return the cr0 value that a nested guest would read. This is a combination
1656 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1657 * its hypervisor (cr0_read_shadow).
1658 */
1659static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1660{
1661 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1662 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1663}
1664static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1665{
1666 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1667 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1668}
1669
5fd86fcf
AK
1670static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1671{
36cf24e0
NHE
1672 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1673 * set this *before* calling this function.
1674 */
edcafe3c 1675 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1676 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1677 update_exception_bitmap(vcpu);
edcafe3c
AK
1678 vcpu->arch.cr0_guest_owned_bits = 0;
1679 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1680 if (is_guest_mode(vcpu)) {
1681 /*
1682 * L1's specified read shadow might not contain the TS bit,
1683 * so now that we turned on shadowing of this bit, we need to
1684 * set this bit of the shadow. Like in nested_vmx_run we need
1685 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1686 * up-to-date here because we just decached cr0.TS (and we'll
1687 * only update vmcs12->guest_cr0 on nested exit).
1688 */
1689 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1690 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1691 (vcpu->arch.cr0 & X86_CR0_TS);
1692 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1693 } else
1694 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1695}
1696
6aa8b732
AK
1697static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1698{
78ac8b47 1699 unsigned long rflags, save_rflags;
345dcaa8 1700
6de12732
AK
1701 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1702 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1703 rflags = vmcs_readl(GUEST_RFLAGS);
1704 if (to_vmx(vcpu)->rmode.vm86_active) {
1705 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1706 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1707 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1708 }
1709 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1710 }
6de12732 1711 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1712}
1713
1714static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1715{
6de12732
AK
1716 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1717 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1718 if (to_vmx(vcpu)->rmode.vm86_active) {
1719 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1720 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1721 }
6aa8b732
AK
1722 vmcs_writel(GUEST_RFLAGS, rflags);
1723}
1724
2809f5d2
GC
1725static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1726{
1727 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1728 int ret = 0;
1729
1730 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1731 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1732 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1733 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1734
1735 return ret & mask;
1736}
1737
1738static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1739{
1740 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1741 u32 interruptibility = interruptibility_old;
1742
1743 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1744
48005f64 1745 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1746 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1747 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1748 interruptibility |= GUEST_INTR_STATE_STI;
1749
1750 if ((interruptibility != interruptibility_old))
1751 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1752}
1753
6aa8b732
AK
1754static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1755{
1756 unsigned long rip;
6aa8b732 1757
5fdbf976 1758 rip = kvm_rip_read(vcpu);
6aa8b732 1759 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1760 kvm_rip_write(vcpu, rip);
6aa8b732 1761
2809f5d2
GC
1762 /* skipping an emulated instruction also counts */
1763 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1764}
1765
0b6ac343
NHE
1766/*
1767 * KVM wants to inject page-faults which it got to the guest. This function
1768 * checks whether in a nested guest, we need to inject them to L1 or L2.
1769 * This function assumes it is called with the exit reason in vmcs02 being
1770 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1771 * is running).
1772 */
1773static int nested_pf_handled(struct kvm_vcpu *vcpu)
1774{
1775 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1776
1777 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1778 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1779 return 0;
1780
1781 nested_vmx_vmexit(vcpu);
1782 return 1;
1783}
1784
298101da 1785static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1786 bool has_error_code, u32 error_code,
1787 bool reinject)
298101da 1788{
77ab6db0 1789 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1790 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1791
0b6ac343
NHE
1792 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1793 nested_pf_handled(vcpu))
1794 return;
1795
8ab2d2e2 1796 if (has_error_code) {
77ab6db0 1797 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1798 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1799 }
77ab6db0 1800
7ffd92c5 1801 if (vmx->rmode.vm86_active) {
71f9833b
SH
1802 int inc_eip = 0;
1803 if (kvm_exception_is_soft(nr))
1804 inc_eip = vcpu->arch.event_exit_inst_len;
1805 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1806 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1807 return;
1808 }
1809
66fd3f7f
GN
1810 if (kvm_exception_is_soft(nr)) {
1811 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1812 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1813 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1814 } else
1815 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1816
1817 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1818}
1819
4e47c7a6
SY
1820static bool vmx_rdtscp_supported(void)
1821{
1822 return cpu_has_vmx_rdtscp();
1823}
1824
ad756a16
MJ
1825static bool vmx_invpcid_supported(void)
1826{
1827 return cpu_has_vmx_invpcid() && enable_ept;
1828}
1829
a75beee6
ED
1830/*
1831 * Swap MSR entry in host/guest MSR entry array.
1832 */
8b9cf98c 1833static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1834{
26bb0981 1835 struct shared_msr_entry tmp;
a2fa3e9f
GH
1836
1837 tmp = vmx->guest_msrs[to];
1838 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1839 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1840}
1841
8d14695f
YZ
1842static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1843{
1844 unsigned long *msr_bitmap;
1845
1846 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1847 if (is_long_mode(vcpu))
1848 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1849 else
1850 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1851 } else {
1852 if (is_long_mode(vcpu))
1853 msr_bitmap = vmx_msr_bitmap_longmode;
1854 else
1855 msr_bitmap = vmx_msr_bitmap_legacy;
1856 }
1857
1858 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1859}
1860
e38aea3e
AK
1861/*
1862 * Set up the vmcs to automatically save and restore system
1863 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1864 * mode, as fiddling with msrs is very expensive.
1865 */
8b9cf98c 1866static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1867{
26bb0981 1868 int save_nmsrs, index;
e38aea3e 1869
a75beee6
ED
1870 save_nmsrs = 0;
1871#ifdef CONFIG_X86_64
8b9cf98c 1872 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1873 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1874 if (index >= 0)
8b9cf98c
RR
1875 move_msr_up(vmx, index, save_nmsrs++);
1876 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1877 if (index >= 0)
8b9cf98c
RR
1878 move_msr_up(vmx, index, save_nmsrs++);
1879 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1880 if (index >= 0)
8b9cf98c 1881 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1882 index = __find_msr_index(vmx, MSR_TSC_AUX);
1883 if (index >= 0 && vmx->rdtscp_enabled)
1884 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1885 /*
8c06585d 1886 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1887 * if efer.sce is enabled.
1888 */
8c06585d 1889 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1890 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1891 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1892 }
1893#endif
92c0d900
AK
1894 index = __find_msr_index(vmx, MSR_EFER);
1895 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1896 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1897
26bb0981 1898 vmx->save_nmsrs = save_nmsrs;
5897297b 1899
8d14695f
YZ
1900 if (cpu_has_vmx_msr_bitmap())
1901 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
1902}
1903
6aa8b732
AK
1904/*
1905 * reads and returns guest's timestamp counter "register"
1906 * guest_tsc = host_tsc + tsc_offset -- 21.3
1907 */
1908static u64 guest_read_tsc(void)
1909{
1910 u64 host_tsc, tsc_offset;
1911
1912 rdtscll(host_tsc);
1913 tsc_offset = vmcs_read64(TSC_OFFSET);
1914 return host_tsc + tsc_offset;
1915}
1916
d5c1785d
NHE
1917/*
1918 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1919 * counter, even if a nested guest (L2) is currently running.
1920 */
886b470c 1921u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 1922{
886b470c 1923 u64 tsc_offset;
d5c1785d 1924
d5c1785d
NHE
1925 tsc_offset = is_guest_mode(vcpu) ?
1926 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1927 vmcs_read64(TSC_OFFSET);
1928 return host_tsc + tsc_offset;
1929}
1930
4051b188 1931/*
cc578287
ZA
1932 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1933 * software catchup for faster rates on slower CPUs.
4051b188 1934 */
cc578287 1935static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1936{
cc578287
ZA
1937 if (!scale)
1938 return;
1939
1940 if (user_tsc_khz > tsc_khz) {
1941 vcpu->arch.tsc_catchup = 1;
1942 vcpu->arch.tsc_always_catchup = 1;
1943 } else
1944 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1945}
1946
ba904635
WA
1947static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
1948{
1949 return vmcs_read64(TSC_OFFSET);
1950}
1951
6aa8b732 1952/*
99e3e30a 1953 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1954 */
99e3e30a 1955static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1956{
27fc51b2 1957 if (is_guest_mode(vcpu)) {
7991825b 1958 /*
27fc51b2
NHE
1959 * We're here if L1 chose not to trap WRMSR to TSC. According
1960 * to the spec, this should set L1's TSC; The offset that L1
1961 * set for L2 remains unchanged, and still needs to be added
1962 * to the newly set TSC to get L2's TSC.
7991825b 1963 */
27fc51b2
NHE
1964 struct vmcs12 *vmcs12;
1965 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1966 /* recalculate vmcs02.TSC_OFFSET: */
1967 vmcs12 = get_vmcs12(vcpu);
1968 vmcs_write64(TSC_OFFSET, offset +
1969 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1970 vmcs12->tsc_offset : 0));
1971 } else {
1972 vmcs_write64(TSC_OFFSET, offset);
1973 }
6aa8b732
AK
1974}
1975
f1e2b260 1976static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1977{
1978 u64 offset = vmcs_read64(TSC_OFFSET);
1979 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1980 if (is_guest_mode(vcpu)) {
1981 /* Even when running L2, the adjustment needs to apply to L1 */
1982 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1983 }
e48672fa
ZA
1984}
1985
857e4099
JR
1986static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1987{
1988 return target_tsc - native_read_tsc();
1989}
1990
801d3424
NHE
1991static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1992{
1993 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1994 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1995}
1996
1997/*
1998 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1999 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2000 * all guests if the "nested" module option is off, and can also be disabled
2001 * for a single guest by disabling its VMX cpuid bit.
2002 */
2003static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2004{
2005 return nested && guest_cpuid_has_vmx(vcpu);
2006}
2007
b87a51ae
NHE
2008/*
2009 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2010 * returned for the various VMX controls MSRs when nested VMX is enabled.
2011 * The same values should also be used to verify that vmcs12 control fields are
2012 * valid during nested entry from L1 to L2.
2013 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2014 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2015 * bit in the high half is on if the corresponding bit in the control field
2016 * may be on. See also vmx_control_verify().
2017 * TODO: allow these variables to be modified (downgraded) by module options
2018 * or other means.
2019 */
2020static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2021static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2022static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2023static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2024static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2025static __init void nested_vmx_setup_ctls_msrs(void)
2026{
2027 /*
2028 * Note that as a general rule, the high half of the MSRs (bits in
2029 * the control fields which may be 1) should be initialized by the
2030 * intersection of the underlying hardware's MSR (i.e., features which
2031 * can be supported) and the list of features we want to expose -
2032 * because they are known to be properly supported in our code.
2033 * Also, usually, the low half of the MSRs (bits which must be 1) can
2034 * be set to 0, meaning that L1 may turn off any of these bits. The
2035 * reason is that if one of these bits is necessary, it will appear
2036 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2037 * fields of vmcs01 and vmcs02, will turn these bits off - and
2038 * nested_vmx_exit_handled() will not pass related exits to L1.
2039 * These rules have exceptions below.
2040 */
2041
2042 /* pin-based controls */
2043 /*
2044 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2045 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2046 */
2047 nested_vmx_pinbased_ctls_low = 0x16 ;
2048 nested_vmx_pinbased_ctls_high = 0x16 |
2049 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
2050 PIN_BASED_VIRTUAL_NMIS;
2051
2052 /* exit controls */
2053 nested_vmx_exit_ctls_low = 0;
b6f1250e 2054 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
2055#ifdef CONFIG_X86_64
2056 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2057#else
2058 nested_vmx_exit_ctls_high = 0;
2059#endif
2060
2061 /* entry controls */
2062 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2063 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2064 nested_vmx_entry_ctls_low = 0;
2065 nested_vmx_entry_ctls_high &=
2066 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2067
2068 /* cpu-based controls */
2069 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2070 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2071 nested_vmx_procbased_ctls_low = 0;
2072 nested_vmx_procbased_ctls_high &=
2073 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2074 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2075 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2076 CPU_BASED_CR3_STORE_EXITING |
2077#ifdef CONFIG_X86_64
2078 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2079#endif
2080 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2081 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2082 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
d6851fbe 2083 CPU_BASED_PAUSE_EXITING |
b87a51ae
NHE
2084 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2085 /*
2086 * We can allow some features even when not supported by the
2087 * hardware. For example, L1 can specify an MSR bitmap - and we
2088 * can use it to avoid exits to L1 - even when L0 runs L2
2089 * without MSR bitmaps.
2090 */
2091 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2092
2093 /* secondary cpu-based controls */
2094 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2095 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2096 nested_vmx_secondary_ctls_low = 0;
2097 nested_vmx_secondary_ctls_high &=
d6851fbe
JK
2098 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2099 SECONDARY_EXEC_WBINVD_EXITING;
b87a51ae
NHE
2100}
2101
2102static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2103{
2104 /*
2105 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2106 */
2107 return ((control & high) | low) == control;
2108}
2109
2110static inline u64 vmx_control_msr(u32 low, u32 high)
2111{
2112 return low | ((u64)high << 32);
2113}
2114
2115/*
2116 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2117 * also let it use VMX-specific MSRs.
2118 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2119 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2120 * like all other MSRs).
2121 */
2122static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2123{
2124 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2125 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2126 /*
2127 * According to the spec, processors which do not support VMX
2128 * should throw a #GP(0) when VMX capability MSRs are read.
2129 */
2130 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2131 return 1;
2132 }
2133
2134 switch (msr_index) {
2135 case MSR_IA32_FEATURE_CONTROL:
2136 *pdata = 0;
2137 break;
2138 case MSR_IA32_VMX_BASIC:
2139 /*
2140 * This MSR reports some information about VMX support. We
2141 * should return information about the VMX we emulate for the
2142 * guest, and the VMCS structure we give it - not about the
2143 * VMX support of the underlying hardware.
2144 */
2145 *pdata = VMCS12_REVISION |
2146 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2147 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2148 break;
2149 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2150 case MSR_IA32_VMX_PINBASED_CTLS:
2151 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2152 nested_vmx_pinbased_ctls_high);
2153 break;
2154 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2155 case MSR_IA32_VMX_PROCBASED_CTLS:
2156 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2157 nested_vmx_procbased_ctls_high);
2158 break;
2159 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2160 case MSR_IA32_VMX_EXIT_CTLS:
2161 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2162 nested_vmx_exit_ctls_high);
2163 break;
2164 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2165 case MSR_IA32_VMX_ENTRY_CTLS:
2166 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2167 nested_vmx_entry_ctls_high);
2168 break;
2169 case MSR_IA32_VMX_MISC:
2170 *pdata = 0;
2171 break;
2172 /*
2173 * These MSRs specify bits which the guest must keep fixed (on or off)
2174 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2175 * We picked the standard core2 setting.
2176 */
2177#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2178#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2179 case MSR_IA32_VMX_CR0_FIXED0:
2180 *pdata = VMXON_CR0_ALWAYSON;
2181 break;
2182 case MSR_IA32_VMX_CR0_FIXED1:
2183 *pdata = -1ULL;
2184 break;
2185 case MSR_IA32_VMX_CR4_FIXED0:
2186 *pdata = VMXON_CR4_ALWAYSON;
2187 break;
2188 case MSR_IA32_VMX_CR4_FIXED1:
2189 *pdata = -1ULL;
2190 break;
2191 case MSR_IA32_VMX_VMCS_ENUM:
2192 *pdata = 0x1f;
2193 break;
2194 case MSR_IA32_VMX_PROCBASED_CTLS2:
2195 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2196 nested_vmx_secondary_ctls_high);
2197 break;
2198 case MSR_IA32_VMX_EPT_VPID_CAP:
2199 /* Currently, no nested ept or nested vpid */
2200 *pdata = 0;
2201 break;
2202 default:
2203 return 0;
2204 }
2205
2206 return 1;
2207}
2208
2209static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2210{
2211 if (!nested_vmx_allowed(vcpu))
2212 return 0;
2213
2214 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2215 /* TODO: the right thing. */
2216 return 1;
2217 /*
2218 * No need to treat VMX capability MSRs specially: If we don't handle
2219 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2220 */
2221 return 0;
2222}
2223
6aa8b732
AK
2224/*
2225 * Reads an msr value (of 'msr_index') into 'pdata'.
2226 * Returns 0 on success, non-0 otherwise.
2227 * Assumes vcpu_load() was already called.
2228 */
2229static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2230{
2231 u64 data;
26bb0981 2232 struct shared_msr_entry *msr;
6aa8b732
AK
2233
2234 if (!pdata) {
2235 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2236 return -EINVAL;
2237 }
2238
2239 switch (msr_index) {
05b3e0c2 2240#ifdef CONFIG_X86_64
6aa8b732
AK
2241 case MSR_FS_BASE:
2242 data = vmcs_readl(GUEST_FS_BASE);
2243 break;
2244 case MSR_GS_BASE:
2245 data = vmcs_readl(GUEST_GS_BASE);
2246 break;
44ea2b17
AK
2247 case MSR_KERNEL_GS_BASE:
2248 vmx_load_host_state(to_vmx(vcpu));
2249 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2250 break;
26bb0981 2251#endif
6aa8b732 2252 case MSR_EFER:
3bab1f5d 2253 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2254 case MSR_IA32_TSC:
6aa8b732
AK
2255 data = guest_read_tsc();
2256 break;
2257 case MSR_IA32_SYSENTER_CS:
2258 data = vmcs_read32(GUEST_SYSENTER_CS);
2259 break;
2260 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2261 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2262 break;
2263 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2264 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2265 break;
4e47c7a6
SY
2266 case MSR_TSC_AUX:
2267 if (!to_vmx(vcpu)->rdtscp_enabled)
2268 return 1;
2269 /* Otherwise falls through */
6aa8b732 2270 default:
b87a51ae
NHE
2271 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2272 return 0;
8b9cf98c 2273 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2274 if (msr) {
2275 data = msr->data;
2276 break;
6aa8b732 2277 }
3bab1f5d 2278 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2279 }
2280
2281 *pdata = data;
2282 return 0;
2283}
2284
2285/*
2286 * Writes msr value into into the appropriate "register".
2287 * Returns 0 on success, non-0 otherwise.
2288 * Assumes vcpu_load() was already called.
2289 */
8fe8ab46 2290static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2291{
a2fa3e9f 2292 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2293 struct shared_msr_entry *msr;
2cc51560 2294 int ret = 0;
8fe8ab46
WA
2295 u32 msr_index = msr_info->index;
2296 u64 data = msr_info->data;
2cc51560 2297
6aa8b732 2298 switch (msr_index) {
3bab1f5d 2299 case MSR_EFER:
8fe8ab46 2300 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2301 break;
16175a79 2302#ifdef CONFIG_X86_64
6aa8b732 2303 case MSR_FS_BASE:
2fb92db1 2304 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2305 vmcs_writel(GUEST_FS_BASE, data);
2306 break;
2307 case MSR_GS_BASE:
2fb92db1 2308 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2309 vmcs_writel(GUEST_GS_BASE, data);
2310 break;
44ea2b17
AK
2311 case MSR_KERNEL_GS_BASE:
2312 vmx_load_host_state(vmx);
2313 vmx->msr_guest_kernel_gs_base = data;
2314 break;
6aa8b732
AK
2315#endif
2316 case MSR_IA32_SYSENTER_CS:
2317 vmcs_write32(GUEST_SYSENTER_CS, data);
2318 break;
2319 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2320 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2321 break;
2322 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2323 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2324 break;
af24a4e4 2325 case MSR_IA32_TSC:
8fe8ab46 2326 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2327 break;
468d472f
SY
2328 case MSR_IA32_CR_PAT:
2329 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2330 vmcs_write64(GUEST_IA32_PAT, data);
2331 vcpu->arch.pat = data;
2332 break;
2333 }
8fe8ab46 2334 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2335 break;
ba904635
WA
2336 case MSR_IA32_TSC_ADJUST:
2337 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6
SY
2338 break;
2339 case MSR_TSC_AUX:
2340 if (!vmx->rdtscp_enabled)
2341 return 1;
2342 /* Check reserved bit, higher 32 bits should be zero */
2343 if ((data >> 32) != 0)
2344 return 1;
2345 /* Otherwise falls through */
6aa8b732 2346 default:
b87a51ae
NHE
2347 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2348 break;
8b9cf98c 2349 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2350 if (msr) {
2351 msr->data = data;
2225fd56
AK
2352 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2353 preempt_disable();
9ee73970
AK
2354 kvm_set_shared_msr(msr->index, msr->data,
2355 msr->mask);
2225fd56
AK
2356 preempt_enable();
2357 }
3bab1f5d 2358 break;
6aa8b732 2359 }
8fe8ab46 2360 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2361 }
2362
2cc51560 2363 return ret;
6aa8b732
AK
2364}
2365
5fdbf976 2366static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2367{
5fdbf976
MT
2368 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2369 switch (reg) {
2370 case VCPU_REGS_RSP:
2371 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2372 break;
2373 case VCPU_REGS_RIP:
2374 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2375 break;
6de4f3ad
AK
2376 case VCPU_EXREG_PDPTR:
2377 if (enable_ept)
2378 ept_save_pdptrs(vcpu);
2379 break;
5fdbf976
MT
2380 default:
2381 break;
2382 }
6aa8b732
AK
2383}
2384
6aa8b732
AK
2385static __init int cpu_has_kvm_support(void)
2386{
6210e37b 2387 return cpu_has_vmx();
6aa8b732
AK
2388}
2389
2390static __init int vmx_disabled_by_bios(void)
2391{
2392 u64 msr;
2393
2394 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2395 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2396 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2397 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2398 && tboot_enabled())
2399 return 1;
23f3e991 2400 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2401 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2402 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2403 && !tboot_enabled()) {
2404 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2405 "activate TXT before enabling KVM\n");
cafd6659 2406 return 1;
f9335afe 2407 }
23f3e991
JC
2408 /* launched w/o TXT and VMX disabled */
2409 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2410 && !tboot_enabled())
2411 return 1;
cafd6659
SW
2412 }
2413
2414 return 0;
6aa8b732
AK
2415}
2416
7725b894
DX
2417static void kvm_cpu_vmxon(u64 addr)
2418{
2419 asm volatile (ASM_VMX_VMXON_RAX
2420 : : "a"(&addr), "m"(addr)
2421 : "memory", "cc");
2422}
2423
10474ae8 2424static int hardware_enable(void *garbage)
6aa8b732
AK
2425{
2426 int cpu = raw_smp_processor_id();
2427 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2428 u64 old, test_bits;
6aa8b732 2429
10474ae8
AG
2430 if (read_cr4() & X86_CR4_VMXE)
2431 return -EBUSY;
2432
d462b819 2433 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2434
2435 /*
2436 * Now we can enable the vmclear operation in kdump
2437 * since the loaded_vmcss_on_cpu list on this cpu
2438 * has been initialized.
2439 *
2440 * Though the cpu is not in VMX operation now, there
2441 * is no problem to enable the vmclear operation
2442 * for the loaded_vmcss_on_cpu list is empty!
2443 */
2444 crash_enable_local_vmclear(cpu);
2445
6aa8b732 2446 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2447
2448 test_bits = FEATURE_CONTROL_LOCKED;
2449 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2450 if (tboot_enabled())
2451 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2452
2453 if ((old & test_bits) != test_bits) {
6aa8b732 2454 /* enable and lock */
cafd6659
SW
2455 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2456 }
66aee91a 2457 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2458
4610c9cc
DX
2459 if (vmm_exclusive) {
2460 kvm_cpu_vmxon(phys_addr);
2461 ept_sync_global();
2462 }
10474ae8 2463
3444d7da
AK
2464 store_gdt(&__get_cpu_var(host_gdt));
2465
10474ae8 2466 return 0;
6aa8b732
AK
2467}
2468
d462b819 2469static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2470{
2471 int cpu = raw_smp_processor_id();
d462b819 2472 struct loaded_vmcs *v, *n;
543e4243 2473
d462b819
NHE
2474 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2475 loaded_vmcss_on_cpu_link)
2476 __loaded_vmcs_clear(v);
543e4243
AK
2477}
2478
710ff4a8
EH
2479
2480/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2481 * tricks.
2482 */
2483static void kvm_cpu_vmxoff(void)
6aa8b732 2484{
4ecac3fd 2485 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2486}
2487
710ff4a8
EH
2488static void hardware_disable(void *garbage)
2489{
4610c9cc 2490 if (vmm_exclusive) {
d462b819 2491 vmclear_local_loaded_vmcss();
4610c9cc
DX
2492 kvm_cpu_vmxoff();
2493 }
7725b894 2494 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2495}
2496
1c3d14fe 2497static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2498 u32 msr, u32 *result)
1c3d14fe
YS
2499{
2500 u32 vmx_msr_low, vmx_msr_high;
2501 u32 ctl = ctl_min | ctl_opt;
2502
2503 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2504
2505 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2506 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2507
2508 /* Ensure minimum (required) set of control bits are supported. */
2509 if (ctl_min & ~ctl)
002c7f7c 2510 return -EIO;
1c3d14fe
YS
2511
2512 *result = ctl;
2513 return 0;
2514}
2515
110312c8
AK
2516static __init bool allow_1_setting(u32 msr, u32 ctl)
2517{
2518 u32 vmx_msr_low, vmx_msr_high;
2519
2520 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2521 return vmx_msr_high & ctl;
2522}
2523
002c7f7c 2524static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2525{
2526 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2527 u32 min, opt, min2, opt2;
1c3d14fe
YS
2528 u32 _pin_based_exec_control = 0;
2529 u32 _cpu_based_exec_control = 0;
f78e0e2e 2530 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2531 u32 _vmexit_control = 0;
2532 u32 _vmentry_control = 0;
2533
2534 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2535 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2536 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2537 &_pin_based_exec_control) < 0)
002c7f7c 2538 return -EIO;
1c3d14fe 2539
10166744 2540 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2541#ifdef CONFIG_X86_64
2542 CPU_BASED_CR8_LOAD_EXITING |
2543 CPU_BASED_CR8_STORE_EXITING |
2544#endif
d56f546d
SY
2545 CPU_BASED_CR3_LOAD_EXITING |
2546 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2547 CPU_BASED_USE_IO_BITMAPS |
2548 CPU_BASED_MOV_DR_EXITING |
a7052897 2549 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2550 CPU_BASED_MWAIT_EXITING |
2551 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2552 CPU_BASED_INVLPG_EXITING |
2553 CPU_BASED_RDPMC_EXITING;
443381a8 2554
f78e0e2e 2555 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2556 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2557 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2558 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2559 &_cpu_based_exec_control) < 0)
002c7f7c 2560 return -EIO;
6e5d865c
YS
2561#ifdef CONFIG_X86_64
2562 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2563 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2564 ~CPU_BASED_CR8_STORE_EXITING;
2565#endif
f78e0e2e 2566 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2567 min2 = 0;
2568 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2569 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2570 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2571 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2572 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2573 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2574 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2575 SECONDARY_EXEC_RDTSCP |
83d4c286 2576 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c
YZ
2577 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2578 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
d56f546d
SY
2579 if (adjust_vmx_controls(min2, opt2,
2580 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2581 &_cpu_based_2nd_exec_control) < 0)
2582 return -EIO;
2583 }
2584#ifndef CONFIG_X86_64
2585 if (!(_cpu_based_2nd_exec_control &
2586 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2587 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2588#endif
83d4c286
YZ
2589
2590 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2591 _cpu_based_2nd_exec_control &= ~(
8d14695f 2592 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2593 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2594 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2595
d56f546d 2596 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2597 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2598 enabled */
5fff7d27
GN
2599 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2600 CPU_BASED_CR3_STORE_EXITING |
2601 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2602 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2603 vmx_capability.ept, vmx_capability.vpid);
2604 }
1c3d14fe
YS
2605
2606 min = 0;
2607#ifdef CONFIG_X86_64
2608 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2609#endif
468d472f 2610 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2611 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2612 &_vmexit_control) < 0)
002c7f7c 2613 return -EIO;
1c3d14fe 2614
468d472f
SY
2615 min = 0;
2616 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2617 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2618 &_vmentry_control) < 0)
002c7f7c 2619 return -EIO;
6aa8b732 2620
c68876fd 2621 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2622
2623 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2624 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2625 return -EIO;
1c3d14fe
YS
2626
2627#ifdef CONFIG_X86_64
2628 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2629 if (vmx_msr_high & (1u<<16))
002c7f7c 2630 return -EIO;
1c3d14fe
YS
2631#endif
2632
2633 /* Require Write-Back (WB) memory type for VMCS accesses. */
2634 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2635 return -EIO;
1c3d14fe 2636
002c7f7c
YS
2637 vmcs_conf->size = vmx_msr_high & 0x1fff;
2638 vmcs_conf->order = get_order(vmcs_config.size);
2639 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2640
002c7f7c
YS
2641 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2642 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2643 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2644 vmcs_conf->vmexit_ctrl = _vmexit_control;
2645 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2646
110312c8
AK
2647 cpu_has_load_ia32_efer =
2648 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2649 VM_ENTRY_LOAD_IA32_EFER)
2650 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2651 VM_EXIT_LOAD_IA32_EFER);
2652
8bf00a52
GN
2653 cpu_has_load_perf_global_ctrl =
2654 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2655 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2656 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2657 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2658
2659 /*
2660 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2661 * but due to arrata below it can't be used. Workaround is to use
2662 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2663 *
2664 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2665 *
2666 * AAK155 (model 26)
2667 * AAP115 (model 30)
2668 * AAT100 (model 37)
2669 * BC86,AAY89,BD102 (model 44)
2670 * BA97 (model 46)
2671 *
2672 */
2673 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2674 switch (boot_cpu_data.x86_model) {
2675 case 26:
2676 case 30:
2677 case 37:
2678 case 44:
2679 case 46:
2680 cpu_has_load_perf_global_ctrl = false;
2681 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2682 "does not work properly. Using workaround\n");
2683 break;
2684 default:
2685 break;
2686 }
2687 }
2688
1c3d14fe 2689 return 0;
c68876fd 2690}
6aa8b732
AK
2691
2692static struct vmcs *alloc_vmcs_cpu(int cpu)
2693{
2694 int node = cpu_to_node(cpu);
2695 struct page *pages;
2696 struct vmcs *vmcs;
2697
6484eb3e 2698 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2699 if (!pages)
2700 return NULL;
2701 vmcs = page_address(pages);
1c3d14fe
YS
2702 memset(vmcs, 0, vmcs_config.size);
2703 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2704 return vmcs;
2705}
2706
2707static struct vmcs *alloc_vmcs(void)
2708{
d3b2c338 2709 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2710}
2711
2712static void free_vmcs(struct vmcs *vmcs)
2713{
1c3d14fe 2714 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2715}
2716
d462b819
NHE
2717/*
2718 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2719 */
2720static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2721{
2722 if (!loaded_vmcs->vmcs)
2723 return;
2724 loaded_vmcs_clear(loaded_vmcs);
2725 free_vmcs(loaded_vmcs->vmcs);
2726 loaded_vmcs->vmcs = NULL;
2727}
2728
39959588 2729static void free_kvm_area(void)
6aa8b732
AK
2730{
2731 int cpu;
2732
3230bb47 2733 for_each_possible_cpu(cpu) {
6aa8b732 2734 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2735 per_cpu(vmxarea, cpu) = NULL;
2736 }
6aa8b732
AK
2737}
2738
6aa8b732
AK
2739static __init int alloc_kvm_area(void)
2740{
2741 int cpu;
2742
3230bb47 2743 for_each_possible_cpu(cpu) {
6aa8b732
AK
2744 struct vmcs *vmcs;
2745
2746 vmcs = alloc_vmcs_cpu(cpu);
2747 if (!vmcs) {
2748 free_kvm_area();
2749 return -ENOMEM;
2750 }
2751
2752 per_cpu(vmxarea, cpu) = vmcs;
2753 }
2754 return 0;
2755}
2756
2757static __init int hardware_setup(void)
2758{
002c7f7c
YS
2759 if (setup_vmcs_config(&vmcs_config) < 0)
2760 return -EIO;
50a37eb4
JR
2761
2762 if (boot_cpu_has(X86_FEATURE_NX))
2763 kvm_enable_efer_bits(EFER_NX);
2764
93ba03c2
SY
2765 if (!cpu_has_vmx_vpid())
2766 enable_vpid = 0;
2767
4bc9b982
SY
2768 if (!cpu_has_vmx_ept() ||
2769 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2770 enable_ept = 0;
3a624e29 2771 enable_unrestricted_guest = 0;
83c3a331 2772 enable_ept_ad_bits = 0;
3a624e29
NK
2773 }
2774
83c3a331
XH
2775 if (!cpu_has_vmx_ept_ad_bits())
2776 enable_ept_ad_bits = 0;
2777
3a624e29
NK
2778 if (!cpu_has_vmx_unrestricted_guest())
2779 enable_unrestricted_guest = 0;
93ba03c2
SY
2780
2781 if (!cpu_has_vmx_flexpriority())
2782 flexpriority_enabled = 0;
2783
95ba8273
GN
2784 if (!cpu_has_vmx_tpr_shadow())
2785 kvm_x86_ops->update_cr8_intercept = NULL;
2786
54dee993
MT
2787 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2788 kvm_disable_largepages();
2789
4b8d54f9
ZE
2790 if (!cpu_has_vmx_ple())
2791 ple_gap = 0;
2792
c7c9c56c
YZ
2793 if (!cpu_has_vmx_apic_register_virt() ||
2794 !cpu_has_vmx_virtual_intr_delivery())
2795 enable_apicv_reg_vid = 0;
2796
2797 if (enable_apicv_reg_vid)
2798 kvm_x86_ops->update_cr8_intercept = NULL;
2799 else
2800 kvm_x86_ops->hwapic_irr_update = NULL;
83d4c286 2801
b87a51ae
NHE
2802 if (nested)
2803 nested_vmx_setup_ctls_msrs();
2804
6aa8b732
AK
2805 return alloc_kvm_area();
2806}
2807
2808static __exit void hardware_unsetup(void)
2809{
2810 free_kvm_area();
2811}
2812
14168786
GN
2813static bool emulation_required(struct kvm_vcpu *vcpu)
2814{
2815 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2816}
2817
91b0aa2c 2818static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 2819 struct kvm_segment *save)
6aa8b732 2820{
d99e4152
GN
2821 if (!emulate_invalid_guest_state) {
2822 /*
2823 * CS and SS RPL should be equal during guest entry according
2824 * to VMX spec, but in reality it is not always so. Since vcpu
2825 * is in the middle of the transition from real mode to
2826 * protected mode it is safe to assume that RPL 0 is a good
2827 * default value.
2828 */
2829 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2830 save->selector &= ~SELECTOR_RPL_MASK;
2831 save->dpl = save->selector & SELECTOR_RPL_MASK;
2832 save->s = 1;
6aa8b732 2833 }
d99e4152 2834 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
2835}
2836
2837static void enter_pmode(struct kvm_vcpu *vcpu)
2838{
2839 unsigned long flags;
a89a8fb9 2840 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2841
d99e4152
GN
2842 /*
2843 * Update real mode segment cache. It may be not up-to-date if sement
2844 * register was written while vcpu was in a guest mode.
2845 */
2846 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2847 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2848 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2849 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2850 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2851 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2852
7ffd92c5 2853 vmx->rmode.vm86_active = 0;
6aa8b732 2854
2fb92db1
AK
2855 vmx_segment_cache_clear(vmx);
2856
f5f7b2fe 2857 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
2858
2859 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2860 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2861 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2862 vmcs_writel(GUEST_RFLAGS, flags);
2863
66aee91a
RR
2864 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2865 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2866
2867 update_exception_bitmap(vcpu);
2868
91b0aa2c
GN
2869 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2870 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2871 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2872 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2873 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2874 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
1f3141e8
GN
2875
2876 /* CPL is always 0 when CPU enters protected mode */
2877 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2878 vmx->cpl = 0;
6aa8b732
AK
2879}
2880
d77c26fc 2881static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2882{
bfc6d222 2883 if (!kvm->arch.tss_addr) {
bc6678a3 2884 struct kvm_memslots *slots;
28a37544 2885 struct kvm_memory_slot *slot;
bc6678a3
MT
2886 gfn_t base_gfn;
2887
90d83dc3 2888 slots = kvm_memslots(kvm);
28a37544
XG
2889 slot = id_to_memslot(slots, 0);
2890 base_gfn = slot->base_gfn + slot->npages - 3;
2891
cbc94022
IE
2892 return base_gfn << PAGE_SHIFT;
2893 }
bfc6d222 2894 return kvm->arch.tss_addr;
6aa8b732
AK
2895}
2896
f5f7b2fe 2897static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 2898{
772e0318 2899 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
2900 struct kvm_segment var = *save;
2901
2902 var.dpl = 0x3;
2903 if (seg == VCPU_SREG_CS)
2904 var.type = 0x3;
2905
2906 if (!emulate_invalid_guest_state) {
2907 var.selector = var.base >> 4;
2908 var.base = var.base & 0xffff0;
2909 var.limit = 0xffff;
2910 var.g = 0;
2911 var.db = 0;
2912 var.present = 1;
2913 var.s = 1;
2914 var.l = 0;
2915 var.unusable = 0;
2916 var.type = 0x3;
2917 var.avl = 0;
2918 if (save->base & 0xf)
2919 printk_once(KERN_WARNING "kvm: segment base is not "
2920 "paragraph aligned when entering "
2921 "protected mode (seg=%d)", seg);
2922 }
6aa8b732 2923
d99e4152
GN
2924 vmcs_write16(sf->selector, var.selector);
2925 vmcs_write32(sf->base, var.base);
2926 vmcs_write32(sf->limit, var.limit);
2927 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
2928}
2929
2930static void enter_rmode(struct kvm_vcpu *vcpu)
2931{
2932 unsigned long flags;
a89a8fb9 2933 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2934
f5f7b2fe
AK
2935 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2936 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2937 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2938 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2939 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
2940 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2941 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 2942
7ffd92c5 2943 vmx->rmode.vm86_active = 1;
6aa8b732 2944
776e58ea
GN
2945 /*
2946 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2947 * vcpu. Call it here with phys address pointing 16M below 4G.
2948 */
2949 if (!vcpu->kvm->arch.tss_addr) {
2950 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2951 "called before entering vcpu\n");
2952 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2953 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2954 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2955 }
2956
2fb92db1
AK
2957 vmx_segment_cache_clear(vmx);
2958
6aa8b732 2959 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
6aa8b732 2960 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
2961 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2962
2963 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2964 vmx->rmode.save_rflags = flags;
6aa8b732 2965
053de044 2966 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2967
2968 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2969 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2970 update_exception_bitmap(vcpu);
2971
d99e4152
GN
2972 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2973 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2974 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2975 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2976 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2977 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 2978
8668a3c4 2979 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2980}
2981
401d10de
AS
2982static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2983{
2984 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2985 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2986
2987 if (!msr)
2988 return;
401d10de 2989
44ea2b17
AK
2990 /*
2991 * Force kernel_gs_base reloading before EFER changes, as control
2992 * of this msr depends on is_long_mode().
2993 */
2994 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2995 vcpu->arch.efer = efer;
401d10de
AS
2996 if (efer & EFER_LMA) {
2997 vmcs_write32(VM_ENTRY_CONTROLS,
2998 vmcs_read32(VM_ENTRY_CONTROLS) |
2999 VM_ENTRY_IA32E_MODE);
3000 msr->data = efer;
3001 } else {
3002 vmcs_write32(VM_ENTRY_CONTROLS,
3003 vmcs_read32(VM_ENTRY_CONTROLS) &
3004 ~VM_ENTRY_IA32E_MODE);
3005
3006 msr->data = efer & ~EFER_LME;
3007 }
3008 setup_msrs(vmx);
3009}
3010
05b3e0c2 3011#ifdef CONFIG_X86_64
6aa8b732
AK
3012
3013static void enter_lmode(struct kvm_vcpu *vcpu)
3014{
3015 u32 guest_tr_ar;
3016
2fb92db1
AK
3017 vmx_segment_cache_clear(to_vmx(vcpu));
3018
6aa8b732
AK
3019 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3020 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3021 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3022 __func__);
6aa8b732
AK
3023 vmcs_write32(GUEST_TR_AR_BYTES,
3024 (guest_tr_ar & ~AR_TYPE_MASK)
3025 | AR_TYPE_BUSY_64_TSS);
3026 }
da38f438 3027 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3028}
3029
3030static void exit_lmode(struct kvm_vcpu *vcpu)
3031{
6aa8b732
AK
3032 vmcs_write32(VM_ENTRY_CONTROLS,
3033 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 3034 & ~VM_ENTRY_IA32E_MODE);
da38f438 3035 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3036}
3037
3038#endif
3039
2384d2b3
SY
3040static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3041{
b9d762fa 3042 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3043 if (enable_ept) {
3044 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3045 return;
4e1096d2 3046 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3047 }
2384d2b3
SY
3048}
3049
e8467fda
AK
3050static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3051{
3052 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3053
3054 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3055 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3056}
3057
aff48baa
AK
3058static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3059{
3060 if (enable_ept && is_paging(vcpu))
3061 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3062 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3063}
3064
25c4c276 3065static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3066{
fc78f519
AK
3067 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3068
3069 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3070 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3071}
3072
1439442c
SY
3073static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3074{
6de4f3ad
AK
3075 if (!test_bit(VCPU_EXREG_PDPTR,
3076 (unsigned long *)&vcpu->arch.regs_dirty))
3077 return;
3078
1439442c 3079 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3080 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3081 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3082 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3083 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
3084 }
3085}
3086
8f5d549f
AK
3087static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3088{
3089 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3090 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3091 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3092 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3093 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3094 }
6de4f3ad
AK
3095
3096 __set_bit(VCPU_EXREG_PDPTR,
3097 (unsigned long *)&vcpu->arch.regs_avail);
3098 __set_bit(VCPU_EXREG_PDPTR,
3099 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3100}
3101
5e1746d6 3102static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3103
3104static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3105 unsigned long cr0,
3106 struct kvm_vcpu *vcpu)
3107{
5233dd51
MT
3108 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3109 vmx_decache_cr3(vcpu);
1439442c
SY
3110 if (!(cr0 & X86_CR0_PG)) {
3111 /* From paging/starting to nonpaging */
3112 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3113 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3114 (CPU_BASED_CR3_LOAD_EXITING |
3115 CPU_BASED_CR3_STORE_EXITING));
3116 vcpu->arch.cr0 = cr0;
fc78f519 3117 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3118 } else if (!is_paging(vcpu)) {
3119 /* From nonpaging to paging */
3120 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3121 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3122 ~(CPU_BASED_CR3_LOAD_EXITING |
3123 CPU_BASED_CR3_STORE_EXITING));
3124 vcpu->arch.cr0 = cr0;
fc78f519 3125 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3126 }
95eb84a7
SY
3127
3128 if (!(cr0 & X86_CR0_WP))
3129 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3130}
3131
6aa8b732
AK
3132static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3133{
7ffd92c5 3134 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3135 unsigned long hw_cr0;
3136
5037878e 3137 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3138 if (enable_unrestricted_guest)
5037878e 3139 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3140 else {
5037878e 3141 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3142
218e763f
GN
3143 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3144 enter_pmode(vcpu);
6aa8b732 3145
218e763f
GN
3146 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3147 enter_rmode(vcpu);
3148 }
6aa8b732 3149
05b3e0c2 3150#ifdef CONFIG_X86_64
f6801dff 3151 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3152 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3153 enter_lmode(vcpu);
707d92fa 3154 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3155 exit_lmode(vcpu);
3156 }
3157#endif
3158
089d034e 3159 if (enable_ept)
1439442c
SY
3160 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3161
02daab21 3162 if (!vcpu->fpu_active)
81231c69 3163 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3164
6aa8b732 3165 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3166 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3167 vcpu->arch.cr0 = cr0;
14168786
GN
3168
3169 /* depends on vcpu->arch.cr0 to be set to a new value */
3170 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3171}
3172
1439442c
SY
3173static u64 construct_eptp(unsigned long root_hpa)
3174{
3175 u64 eptp;
3176
3177 /* TODO write the value reading from MSR */
3178 eptp = VMX_EPT_DEFAULT_MT |
3179 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3180 if (enable_ept_ad_bits)
3181 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3182 eptp |= (root_hpa & PAGE_MASK);
3183
3184 return eptp;
3185}
3186
6aa8b732
AK
3187static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3188{
1439442c
SY
3189 unsigned long guest_cr3;
3190 u64 eptp;
3191
3192 guest_cr3 = cr3;
089d034e 3193 if (enable_ept) {
1439442c
SY
3194 eptp = construct_eptp(cr3);
3195 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3196 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3197 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3198 ept_load_pdptrs(vcpu);
1439442c
SY
3199 }
3200
2384d2b3 3201 vmx_flush_tlb(vcpu);
1439442c 3202 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3203}
3204
5e1746d6 3205static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3206{
7ffd92c5 3207 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3208 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3209
5e1746d6
NHE
3210 if (cr4 & X86_CR4_VMXE) {
3211 /*
3212 * To use VMXON (and later other VMX instructions), a guest
3213 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3214 * So basically the check on whether to allow nested VMX
3215 * is here.
3216 */
3217 if (!nested_vmx_allowed(vcpu))
3218 return 1;
3219 } else if (to_vmx(vcpu)->nested.vmxon)
3220 return 1;
3221
ad312c7c 3222 vcpu->arch.cr4 = cr4;
bc23008b
AK
3223 if (enable_ept) {
3224 if (!is_paging(vcpu)) {
3225 hw_cr4 &= ~X86_CR4_PAE;
3226 hw_cr4 |= X86_CR4_PSE;
c08800a5
DX
3227 /*
3228 * SMEP is disabled if CPU is in non-paging mode in
3229 * hardware. However KVM always uses paging mode to
3230 * emulate guest non-paging mode with TDP.
3231 * To emulate this behavior, SMEP needs to be manually
3232 * disabled when guest switches to non-paging mode.
3233 */
3234 hw_cr4 &= ~X86_CR4_SMEP;
bc23008b
AK
3235 } else if (!(cr4 & X86_CR4_PAE)) {
3236 hw_cr4 &= ~X86_CR4_PAE;
3237 }
3238 }
1439442c
SY
3239
3240 vmcs_writel(CR4_READ_SHADOW, cr4);
3241 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3242 return 0;
6aa8b732
AK
3243}
3244
6aa8b732
AK
3245static void vmx_get_segment(struct kvm_vcpu *vcpu,
3246 struct kvm_segment *var, int seg)
3247{
a9179499 3248 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3249 u32 ar;
3250
c6ad1153 3251 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3252 *var = vmx->rmode.segs[seg];
a9179499 3253 if (seg == VCPU_SREG_TR
2fb92db1 3254 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3255 return;
1390a28b
AK
3256 var->base = vmx_read_guest_seg_base(vmx, seg);
3257 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3258 return;
a9179499 3259 }
2fb92db1
AK
3260 var->base = vmx_read_guest_seg_base(vmx, seg);
3261 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3262 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3263 ar = vmx_read_guest_seg_ar(vmx, seg);
6aa8b732
AK
3264 var->type = ar & 15;
3265 var->s = (ar >> 4) & 1;
3266 var->dpl = (ar >> 5) & 3;
3267 var->present = (ar >> 7) & 1;
3268 var->avl = (ar >> 12) & 1;
3269 var->l = (ar >> 13) & 1;
3270 var->db = (ar >> 14) & 1;
3271 var->g = (ar >> 15) & 1;
3272 var->unusable = (ar >> 16) & 1;
3273}
3274
a9179499
AK
3275static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3276{
a9179499
AK
3277 struct kvm_segment s;
3278
3279 if (to_vmx(vcpu)->rmode.vm86_active) {
3280 vmx_get_segment(vcpu, &s, seg);
3281 return s.base;
3282 }
2fb92db1 3283 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3284}
3285
b09408d0 3286static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3287{
b09408d0
MT
3288 struct vcpu_vmx *vmx = to_vmx(vcpu);
3289
3eeb3288 3290 if (!is_protmode(vcpu))
2e4d2653
IE
3291 return 0;
3292
f4c63e5d
AK
3293 if (!is_long_mode(vcpu)
3294 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3295 return 3;
3296
69c73028
AK
3297 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3298 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
b09408d0 3299 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
69c73028 3300 }
d881e6f6
AK
3301
3302 return vmx->cpl;
69c73028
AK
3303}
3304
3305
653e3108 3306static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3307{
6aa8b732
AK
3308 u32 ar;
3309
f0495f9b 3310 if (var->unusable || !var->present)
6aa8b732
AK
3311 ar = 1 << 16;
3312 else {
3313 ar = var->type & 15;
3314 ar |= (var->s & 1) << 4;
3315 ar |= (var->dpl & 3) << 5;
3316 ar |= (var->present & 1) << 7;
3317 ar |= (var->avl & 1) << 12;
3318 ar |= (var->l & 1) << 13;
3319 ar |= (var->db & 1) << 14;
3320 ar |= (var->g & 1) << 15;
3321 }
653e3108
AK
3322
3323 return ar;
3324}
3325
3326static void vmx_set_segment(struct kvm_vcpu *vcpu,
3327 struct kvm_segment *var, int seg)
3328{
7ffd92c5 3329 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3330 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3331
2fb92db1 3332 vmx_segment_cache_clear(vmx);
2f143240
GN
3333 if (seg == VCPU_SREG_CS)
3334 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2fb92db1 3335
1ecd50a9
GN
3336 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3337 vmx->rmode.segs[seg] = *var;
3338 if (seg == VCPU_SREG_TR)
3339 vmcs_write16(sf->selector, var->selector);
3340 else if (var->s)
3341 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3342 goto out;
653e3108 3343 }
1ecd50a9 3344
653e3108
AK
3345 vmcs_writel(sf->base, var->base);
3346 vmcs_write32(sf->limit, var->limit);
3347 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3348
3349 /*
3350 * Fix the "Accessed" bit in AR field of segment registers for older
3351 * qemu binaries.
3352 * IA32 arch specifies that at the time of processor reset the
3353 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3354 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3355 * state vmexit when "unrestricted guest" mode is turned on.
3356 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3357 * tree. Newer qemu binaries with that qemu fix would not need this
3358 * kvm hack.
3359 */
3360 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3361 var->type |= 0x1; /* Accessed */
3a624e29 3362
f924d66d 3363 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3364
3365out:
14168786 3366 vmx->emulation_required |= emulation_required(vcpu);
6aa8b732
AK
3367}
3368
6aa8b732
AK
3369static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3370{
2fb92db1 3371 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3372
3373 *db = (ar >> 14) & 1;
3374 *l = (ar >> 13) & 1;
3375}
3376
89a27f4d 3377static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3378{
89a27f4d
GN
3379 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3380 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3381}
3382
89a27f4d 3383static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3384{
89a27f4d
GN
3385 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3386 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3387}
3388
89a27f4d 3389static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3390{
89a27f4d
GN
3391 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3392 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3393}
3394
89a27f4d 3395static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3396{
89a27f4d
GN
3397 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3398 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3399}
3400
648dfaa7
MG
3401static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3402{
3403 struct kvm_segment var;
3404 u32 ar;
3405
3406 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3407 var.dpl = 0x3;
0647f4aa
GN
3408 if (seg == VCPU_SREG_CS)
3409 var.type = 0x3;
648dfaa7
MG
3410 ar = vmx_segment_access_rights(&var);
3411
3412 if (var.base != (var.selector << 4))
3413 return false;
89efbed0 3414 if (var.limit != 0xffff)
648dfaa7 3415 return false;
07f42f5f 3416 if (ar != 0xf3)
648dfaa7
MG
3417 return false;
3418
3419 return true;
3420}
3421
3422static bool code_segment_valid(struct kvm_vcpu *vcpu)
3423{
3424 struct kvm_segment cs;
3425 unsigned int cs_rpl;
3426
3427 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3428 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3429
1872a3f4
AK
3430 if (cs.unusable)
3431 return false;
648dfaa7
MG
3432 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3433 return false;
3434 if (!cs.s)
3435 return false;
1872a3f4 3436 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3437 if (cs.dpl > cs_rpl)
3438 return false;
1872a3f4 3439 } else {
648dfaa7
MG
3440 if (cs.dpl != cs_rpl)
3441 return false;
3442 }
3443 if (!cs.present)
3444 return false;
3445
3446 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3447 return true;
3448}
3449
3450static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3451{
3452 struct kvm_segment ss;
3453 unsigned int ss_rpl;
3454
3455 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3456 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3457
1872a3f4
AK
3458 if (ss.unusable)
3459 return true;
3460 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3461 return false;
3462 if (!ss.s)
3463 return false;
3464 if (ss.dpl != ss_rpl) /* DPL != RPL */
3465 return false;
3466 if (!ss.present)
3467 return false;
3468
3469 return true;
3470}
3471
3472static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3473{
3474 struct kvm_segment var;
3475 unsigned int rpl;
3476
3477 vmx_get_segment(vcpu, &var, seg);
3478 rpl = var.selector & SELECTOR_RPL_MASK;
3479
1872a3f4
AK
3480 if (var.unusable)
3481 return true;
648dfaa7
MG
3482 if (!var.s)
3483 return false;
3484 if (!var.present)
3485 return false;
3486 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3487 if (var.dpl < rpl) /* DPL < RPL */
3488 return false;
3489 }
3490
3491 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3492 * rights flags
3493 */
3494 return true;
3495}
3496
3497static bool tr_valid(struct kvm_vcpu *vcpu)
3498{
3499 struct kvm_segment tr;
3500
3501 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3502
1872a3f4
AK
3503 if (tr.unusable)
3504 return false;
648dfaa7
MG
3505 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3506 return false;
1872a3f4 3507 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3508 return false;
3509 if (!tr.present)
3510 return false;
3511
3512 return true;
3513}
3514
3515static bool ldtr_valid(struct kvm_vcpu *vcpu)
3516{
3517 struct kvm_segment ldtr;
3518
3519 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3520
1872a3f4
AK
3521 if (ldtr.unusable)
3522 return true;
648dfaa7
MG
3523 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3524 return false;
3525 if (ldtr.type != 2)
3526 return false;
3527 if (!ldtr.present)
3528 return false;
3529
3530 return true;
3531}
3532
3533static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3534{
3535 struct kvm_segment cs, ss;
3536
3537 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3538 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3539
3540 return ((cs.selector & SELECTOR_RPL_MASK) ==
3541 (ss.selector & SELECTOR_RPL_MASK));
3542}
3543
3544/*
3545 * Check if guest state is valid. Returns true if valid, false if
3546 * not.
3547 * We assume that registers are always usable
3548 */
3549static bool guest_state_valid(struct kvm_vcpu *vcpu)
3550{
c5e97c80
GN
3551 if (enable_unrestricted_guest)
3552 return true;
3553
648dfaa7 3554 /* real mode guest state checks */
3eeb3288 3555 if (!is_protmode(vcpu)) {
648dfaa7
MG
3556 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3557 return false;
3558 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3559 return false;
3560 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3561 return false;
3562 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3563 return false;
3564 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3565 return false;
3566 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3567 return false;
3568 } else {
3569 /* protected mode guest state checks */
3570 if (!cs_ss_rpl_check(vcpu))
3571 return false;
3572 if (!code_segment_valid(vcpu))
3573 return false;
3574 if (!stack_segment_valid(vcpu))
3575 return false;
3576 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3577 return false;
3578 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3579 return false;
3580 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3581 return false;
3582 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3583 return false;
3584 if (!tr_valid(vcpu))
3585 return false;
3586 if (!ldtr_valid(vcpu))
3587 return false;
3588 }
3589 /* TODO:
3590 * - Add checks on RIP
3591 * - Add checks on RFLAGS
3592 */
3593
3594 return true;
3595}
3596
d77c26fc 3597static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3598{
40dcaa9f 3599 gfn_t fn;
195aefde 3600 u16 data = 0;
40dcaa9f 3601 int r, idx, ret = 0;
6aa8b732 3602
40dcaa9f
XG
3603 idx = srcu_read_lock(&kvm->srcu);
3604 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3605 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3606 if (r < 0)
10589a46 3607 goto out;
195aefde 3608 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3609 r = kvm_write_guest_page(kvm, fn++, &data,
3610 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3611 if (r < 0)
10589a46 3612 goto out;
195aefde
IE
3613 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3614 if (r < 0)
10589a46 3615 goto out;
195aefde
IE
3616 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3617 if (r < 0)
10589a46 3618 goto out;
195aefde 3619 data = ~0;
10589a46
MT
3620 r = kvm_write_guest_page(kvm, fn, &data,
3621 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3622 sizeof(u8));
195aefde 3623 if (r < 0)
10589a46
MT
3624 goto out;
3625
3626 ret = 1;
3627out:
40dcaa9f 3628 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3629 return ret;
6aa8b732
AK
3630}
3631
b7ebfb05
SY
3632static int init_rmode_identity_map(struct kvm *kvm)
3633{
40dcaa9f 3634 int i, idx, r, ret;
b7ebfb05
SY
3635 pfn_t identity_map_pfn;
3636 u32 tmp;
3637
089d034e 3638 if (!enable_ept)
b7ebfb05
SY
3639 return 1;
3640 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3641 printk(KERN_ERR "EPT: identity-mapping pagetable "
3642 "haven't been allocated!\n");
3643 return 0;
3644 }
3645 if (likely(kvm->arch.ept_identity_pagetable_done))
3646 return 1;
3647 ret = 0;
b927a3ce 3648 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3649 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3650 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3651 if (r < 0)
3652 goto out;
3653 /* Set up identity-mapping pagetable for EPT in real mode */
3654 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3655 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3656 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3657 r = kvm_write_guest_page(kvm, identity_map_pfn,
3658 &tmp, i * sizeof(tmp), sizeof(tmp));
3659 if (r < 0)
3660 goto out;
3661 }
3662 kvm->arch.ept_identity_pagetable_done = true;
3663 ret = 1;
3664out:
40dcaa9f 3665 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3666 return ret;
3667}
3668
6aa8b732
AK
3669static void seg_setup(int seg)
3670{
772e0318 3671 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3672 unsigned int ar;
6aa8b732
AK
3673
3674 vmcs_write16(sf->selector, 0);
3675 vmcs_writel(sf->base, 0);
3676 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
3677 ar = 0x93;
3678 if (seg == VCPU_SREG_CS)
3679 ar |= 0x08; /* code segment */
3a624e29
NK
3680
3681 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3682}
3683
f78e0e2e
SY
3684static int alloc_apic_access_page(struct kvm *kvm)
3685{
4484141a 3686 struct page *page;
f78e0e2e
SY
3687 struct kvm_userspace_memory_region kvm_userspace_mem;
3688 int r = 0;
3689
79fac95e 3690 mutex_lock(&kvm->slots_lock);
bfc6d222 3691 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3692 goto out;
3693 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3694 kvm_userspace_mem.flags = 0;
3695 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3696 kvm_userspace_mem.memory_size = PAGE_SIZE;
f82a8cfe 3697 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
f78e0e2e
SY
3698 if (r)
3699 goto out;
72dc67a6 3700
4484141a
XG
3701 page = gfn_to_page(kvm, 0xfee00);
3702 if (is_error_page(page)) {
3703 r = -EFAULT;
3704 goto out;
3705 }
3706
3707 kvm->arch.apic_access_page = page;
f78e0e2e 3708out:
79fac95e 3709 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3710 return r;
3711}
3712
b7ebfb05
SY
3713static int alloc_identity_pagetable(struct kvm *kvm)
3714{
4484141a 3715 struct page *page;
b7ebfb05
SY
3716 struct kvm_userspace_memory_region kvm_userspace_mem;
3717 int r = 0;
3718
79fac95e 3719 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3720 if (kvm->arch.ept_identity_pagetable)
3721 goto out;
3722 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3723 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3724 kvm_userspace_mem.guest_phys_addr =
3725 kvm->arch.ept_identity_map_addr;
b7ebfb05 3726 kvm_userspace_mem.memory_size = PAGE_SIZE;
f82a8cfe 3727 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
b7ebfb05
SY
3728 if (r)
3729 goto out;
3730
4484141a
XG
3731 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3732 if (is_error_page(page)) {
3733 r = -EFAULT;
3734 goto out;
3735 }
3736
3737 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 3738out:
79fac95e 3739 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3740 return r;
3741}
3742
2384d2b3
SY
3743static void allocate_vpid(struct vcpu_vmx *vmx)
3744{
3745 int vpid;
3746
3747 vmx->vpid = 0;
919818ab 3748 if (!enable_vpid)
2384d2b3
SY
3749 return;
3750 spin_lock(&vmx_vpid_lock);
3751 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3752 if (vpid < VMX_NR_VPIDS) {
3753 vmx->vpid = vpid;
3754 __set_bit(vpid, vmx_vpid_bitmap);
3755 }
3756 spin_unlock(&vmx_vpid_lock);
3757}
3758
cdbecfc3
LJ
3759static void free_vpid(struct vcpu_vmx *vmx)
3760{
3761 if (!enable_vpid)
3762 return;
3763 spin_lock(&vmx_vpid_lock);
3764 if (vmx->vpid != 0)
3765 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3766 spin_unlock(&vmx_vpid_lock);
3767}
3768
8d14695f
YZ
3769#define MSR_TYPE_R 1
3770#define MSR_TYPE_W 2
3771static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3772 u32 msr, int type)
25c5f225 3773{
3e7c73e9 3774 int f = sizeof(unsigned long);
25c5f225
SY
3775
3776 if (!cpu_has_vmx_msr_bitmap())
3777 return;
3778
3779 /*
3780 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3781 * have the write-low and read-high bitmap offsets the wrong way round.
3782 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3783 */
25c5f225 3784 if (msr <= 0x1fff) {
8d14695f
YZ
3785 if (type & MSR_TYPE_R)
3786 /* read-low */
3787 __clear_bit(msr, msr_bitmap + 0x000 / f);
3788
3789 if (type & MSR_TYPE_W)
3790 /* write-low */
3791 __clear_bit(msr, msr_bitmap + 0x800 / f);
3792
25c5f225
SY
3793 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3794 msr &= 0x1fff;
8d14695f
YZ
3795 if (type & MSR_TYPE_R)
3796 /* read-high */
3797 __clear_bit(msr, msr_bitmap + 0x400 / f);
3798
3799 if (type & MSR_TYPE_W)
3800 /* write-high */
3801 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3802
3803 }
3804}
3805
3806static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3807 u32 msr, int type)
3808{
3809 int f = sizeof(unsigned long);
3810
3811 if (!cpu_has_vmx_msr_bitmap())
3812 return;
3813
3814 /*
3815 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3816 * have the write-low and read-high bitmap offsets the wrong way round.
3817 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3818 */
3819 if (msr <= 0x1fff) {
3820 if (type & MSR_TYPE_R)
3821 /* read-low */
3822 __set_bit(msr, msr_bitmap + 0x000 / f);
3823
3824 if (type & MSR_TYPE_W)
3825 /* write-low */
3826 __set_bit(msr, msr_bitmap + 0x800 / f);
3827
3828 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3829 msr &= 0x1fff;
3830 if (type & MSR_TYPE_R)
3831 /* read-high */
3832 __set_bit(msr, msr_bitmap + 0x400 / f);
3833
3834 if (type & MSR_TYPE_W)
3835 /* write-high */
3836 __set_bit(msr, msr_bitmap + 0xc00 / f);
3837
25c5f225 3838 }
25c5f225
SY
3839}
3840
5897297b
AK
3841static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3842{
3843 if (!longmode_only)
8d14695f
YZ
3844 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3845 msr, MSR_TYPE_R | MSR_TYPE_W);
3846 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3847 msr, MSR_TYPE_R | MSR_TYPE_W);
3848}
3849
3850static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3851{
3852 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3853 msr, MSR_TYPE_R);
3854 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3855 msr, MSR_TYPE_R);
3856}
3857
3858static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3859{
3860 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3861 msr, MSR_TYPE_R);
3862 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3863 msr, MSR_TYPE_R);
3864}
3865
3866static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
3867{
3868 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3869 msr, MSR_TYPE_W);
3870 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3871 msr, MSR_TYPE_W);
5897297b
AK
3872}
3873
a3a8ff8e
NHE
3874/*
3875 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3876 * will not change in the lifetime of the guest.
3877 * Note that host-state that does change is set elsewhere. E.g., host-state
3878 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3879 */
3880static void vmx_set_constant_host_state(void)
3881{
3882 u32 low32, high32;
3883 unsigned long tmpl;
3884 struct desc_ptr dt;
3885
b1a74bf8 3886 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
3887 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3888 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3889
3890 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
3891#ifdef CONFIG_X86_64
3892 /*
3893 * Load null selectors, so we can avoid reloading them in
3894 * __vmx_load_host_state(), in case userspace uses the null selectors
3895 * too (the expected case).
3896 */
3897 vmcs_write16(HOST_DS_SELECTOR, 0);
3898 vmcs_write16(HOST_ES_SELECTOR, 0);
3899#else
a3a8ff8e
NHE
3900 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3901 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 3902#endif
a3a8ff8e
NHE
3903 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3904 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3905
3906 native_store_idt(&dt);
3907 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3908
83287ea4 3909 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
3910
3911 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3912 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3913 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3914 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3915
3916 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3917 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3918 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3919 }
3920}
3921
bf8179a0
NHE
3922static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3923{
3924 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3925 if (enable_ept)
3926 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3927 if (is_guest_mode(&vmx->vcpu))
3928 vmx->vcpu.arch.cr4_guest_owned_bits &=
3929 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3930 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3931}
3932
3933static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3934{
3935 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3936 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3937 exec_control &= ~CPU_BASED_TPR_SHADOW;
3938#ifdef CONFIG_X86_64
3939 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3940 CPU_BASED_CR8_LOAD_EXITING;
3941#endif
3942 }
3943 if (!enable_ept)
3944 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3945 CPU_BASED_CR3_LOAD_EXITING |
3946 CPU_BASED_INVLPG_EXITING;
3947 return exec_control;
3948}
3949
c7c9c56c
YZ
3950static int vmx_vm_has_apicv(struct kvm *kvm)
3951{
3952 return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
3953}
3954
bf8179a0
NHE
3955static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3956{
3957 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3958 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3959 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3960 if (vmx->vpid == 0)
3961 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3962 if (!enable_ept) {
3963 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3964 enable_unrestricted_guest = 0;
ad756a16
MJ
3965 /* Enable INVPCID for non-ept guests may cause performance regression. */
3966 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
3967 }
3968 if (!enable_unrestricted_guest)
3969 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3970 if (!ple_gap)
3971 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
3972 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
3973 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3974 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 3975 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
bf8179a0
NHE
3976 return exec_control;
3977}
3978
ce88decf
XG
3979static void ept_set_mmio_spte_mask(void)
3980{
3981 /*
3982 * EPT Misconfigurations can be generated if the value of bits 2:0
3983 * of an EPT paging-structure entry is 110b (write/execute).
3984 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3985 * spte.
3986 */
3987 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3988}
3989
6aa8b732
AK
3990/*
3991 * Sets up the vmcs for emulated real mode.
3992 */
8b9cf98c 3993static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3994{
2e4ce7f5 3995#ifdef CONFIG_X86_64
6aa8b732 3996 unsigned long a;
2e4ce7f5 3997#endif
6aa8b732 3998 int i;
6aa8b732 3999
6aa8b732 4000 /* I/O */
3e7c73e9
AK
4001 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4002 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4003
25c5f225 4004 if (cpu_has_vmx_msr_bitmap())
5897297b 4005 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4006
6aa8b732
AK
4007 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4008
6aa8b732 4009 /* Control */
1c3d14fe
YS
4010 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
4011 vmcs_config.pin_based_exec_ctrl);
6e5d865c 4012
bf8179a0 4013 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4014
83ff3b9d 4015 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4016 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4017 vmx_secondary_exec_control(vmx));
83ff3b9d 4018 }
f78e0e2e 4019
c7c9c56c
YZ
4020 if (enable_apicv_reg_vid) {
4021 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4022 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4023 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4024 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4025
4026 vmcs_write16(GUEST_INTR_STATUS, 0);
4027 }
4028
4b8d54f9
ZE
4029 if (ple_gap) {
4030 vmcs_write32(PLE_GAP, ple_gap);
4031 vmcs_write32(PLE_WINDOW, ple_window);
4032 }
4033
c3707958
XG
4034 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4035 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4036 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4037
9581d442
AK
4038 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4039 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 4040 vmx_set_constant_host_state();
05b3e0c2 4041#ifdef CONFIG_X86_64
6aa8b732
AK
4042 rdmsrl(MSR_FS_BASE, a);
4043 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4044 rdmsrl(MSR_GS_BASE, a);
4045 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4046#else
4047 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4048 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4049#endif
4050
2cc51560
ED
4051 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4052 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4053 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4054 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4055 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4056
468d472f 4057 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4058 u32 msr_low, msr_high;
4059 u64 host_pat;
468d472f
SY
4060 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4061 host_pat = msr_low | ((u64) msr_high << 32);
4062 /* Write the default value follow host pat */
4063 vmcs_write64(GUEST_IA32_PAT, host_pat);
4064 /* Keep arch.pat sync with GUEST_IA32_PAT */
4065 vmx->vcpu.arch.pat = host_pat;
4066 }
4067
6aa8b732
AK
4068 for (i = 0; i < NR_VMX_MSR; ++i) {
4069 u32 index = vmx_msr_index[i];
4070 u32 data_low, data_high;
a2fa3e9f 4071 int j = vmx->nmsrs;
6aa8b732
AK
4072
4073 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4074 continue;
432bd6cb
AK
4075 if (wrmsr_safe(index, data_low, data_high) < 0)
4076 continue;
26bb0981
AK
4077 vmx->guest_msrs[j].index = i;
4078 vmx->guest_msrs[j].data = 0;
d5696725 4079 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4080 ++vmx->nmsrs;
6aa8b732 4081 }
6aa8b732 4082
1c3d14fe 4083 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4084
4085 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
4086 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4087
e00c8cf2 4088 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4089 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
4090
4091 return 0;
4092}
4093
4094static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4095{
4096 struct vcpu_vmx *vmx = to_vmx(vcpu);
4097 u64 msr;
4b9d3a04 4098 int ret;
e00c8cf2 4099
7ffd92c5 4100 vmx->rmode.vm86_active = 0;
e00c8cf2 4101
3b86cd99
JK
4102 vmx->soft_vnmi_blocked = 0;
4103
ad312c7c 4104 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4105 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 4106 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4107 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
4108 msr |= MSR_IA32_APICBASE_BSP;
4109 kvm_set_apic_base(&vmx->vcpu, msr);
4110
2fb92db1
AK
4111 vmx_segment_cache_clear(vmx);
4112
5706be0d 4113 seg_setup(VCPU_SREG_CS);
d54d07b2 4114 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2 4115 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
d54d07b2 4116 else {
ad312c7c
ZX
4117 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
4118 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 4119 }
e00c8cf2
AK
4120
4121 seg_setup(VCPU_SREG_DS);
4122 seg_setup(VCPU_SREG_ES);
4123 seg_setup(VCPU_SREG_FS);
4124 seg_setup(VCPU_SREG_GS);
4125 seg_setup(VCPU_SREG_SS);
4126
4127 vmcs_write16(GUEST_TR_SELECTOR, 0);
4128 vmcs_writel(GUEST_TR_BASE, 0);
4129 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4130 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4131
4132 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4133 vmcs_writel(GUEST_LDTR_BASE, 0);
4134 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4135 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4136
4137 vmcs_write32(GUEST_SYSENTER_CS, 0);
4138 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4139 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4140
4141 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 4142 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 4143 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4144 else
5fdbf976 4145 kvm_rip_write(vcpu, 0);
e00c8cf2 4146
e00c8cf2
AK
4147 vmcs_writel(GUEST_GDTR_BASE, 0);
4148 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4149
4150 vmcs_writel(GUEST_IDTR_BASE, 0);
4151 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4152
443381a8 4153 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4154 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4155 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4156
e00c8cf2
AK
4157 /* Special registers */
4158 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4159
4160 setup_msrs(vmx);
4161
6aa8b732
AK
4162 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4163
f78e0e2e
SY
4164 if (cpu_has_vmx_tpr_shadow()) {
4165 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4166 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4167 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4168 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4169 vmcs_write32(TPR_THRESHOLD, 0);
4170 }
4171
4172 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4173 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4174 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4175
2384d2b3
SY
4176 if (vmx->vpid != 0)
4177 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4178
fa40052c 4179 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
7a4f5ad0 4180 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4d4ec087 4181 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
7a4f5ad0 4182 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8b9cf98c 4183 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4184 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4185 vmx_fpu_activate(&vmx->vcpu);
4186 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4187
b9d762fa 4188 vpid_sync_context(vmx);
2384d2b3 4189
3200f405 4190 ret = 0;
6aa8b732 4191
6aa8b732
AK
4192 return ret;
4193}
4194
b6f1250e
NHE
4195/*
4196 * In nested virtualization, check if L1 asked to exit on external interrupts.
4197 * For most existing hypervisors, this will always return true.
4198 */
4199static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4200{
4201 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4202 PIN_BASED_EXT_INTR_MASK;
4203}
4204
3b86cd99
JK
4205static void enable_irq_window(struct kvm_vcpu *vcpu)
4206{
4207 u32 cpu_based_vm_exec_control;
d6185f20
NHE
4208 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4209 /*
4210 * We get here if vmx_interrupt_allowed() said we can't
4211 * inject to L1 now because L2 must run. Ask L2 to exit
4212 * right after entry, so we can inject to L1 more promptly.
b6f1250e 4213 */
d6185f20 4214 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 4215 return;
d6185f20 4216 }
3b86cd99
JK
4217
4218 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4219 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4220 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4221}
4222
4223static void enable_nmi_window(struct kvm_vcpu *vcpu)
4224{
4225 u32 cpu_based_vm_exec_control;
4226
4227 if (!cpu_has_virtual_nmis()) {
4228 enable_irq_window(vcpu);
4229 return;
4230 }
4231
30bd0c4c
AK
4232 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4233 enable_irq_window(vcpu);
4234 return;
4235 }
3b86cd99
JK
4236 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4237 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4238 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4239}
4240
66fd3f7f 4241static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4242{
9c8cba37 4243 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4244 uint32_t intr;
4245 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4246
229456fc 4247 trace_kvm_inj_virq(irq);
2714d1d3 4248
fa89a817 4249 ++vcpu->stat.irq_injections;
7ffd92c5 4250 if (vmx->rmode.vm86_active) {
71f9833b
SH
4251 int inc_eip = 0;
4252 if (vcpu->arch.interrupt.soft)
4253 inc_eip = vcpu->arch.event_exit_inst_len;
4254 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4255 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4256 return;
4257 }
66fd3f7f
GN
4258 intr = irq | INTR_INFO_VALID_MASK;
4259 if (vcpu->arch.interrupt.soft) {
4260 intr |= INTR_TYPE_SOFT_INTR;
4261 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4262 vmx->vcpu.arch.event_exit_inst_len);
4263 } else
4264 intr |= INTR_TYPE_EXT_INTR;
4265 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4266}
4267
f08864b4
SY
4268static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4269{
66a5a347
JK
4270 struct vcpu_vmx *vmx = to_vmx(vcpu);
4271
0b6ac343
NHE
4272 if (is_guest_mode(vcpu))
4273 return;
4274
3b86cd99
JK
4275 if (!cpu_has_virtual_nmis()) {
4276 /*
4277 * Tracking the NMI-blocked state in software is built upon
4278 * finding the next open IRQ window. This, in turn, depends on
4279 * well-behaving guests: They have to keep IRQs disabled at
4280 * least as long as the NMI handler runs. Otherwise we may
4281 * cause NMI nesting, maybe breaking the guest. But as this is
4282 * highly unlikely, we can live with the residual risk.
4283 */
4284 vmx->soft_vnmi_blocked = 1;
4285 vmx->vnmi_blocked_time = 0;
4286 }
4287
487b391d 4288 ++vcpu->stat.nmi_injections;
9d58b931 4289 vmx->nmi_known_unmasked = false;
7ffd92c5 4290 if (vmx->rmode.vm86_active) {
71f9833b 4291 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4292 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4293 return;
4294 }
f08864b4
SY
4295 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4296 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4297}
4298
c4282df9 4299static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4300{
3b86cd99 4301 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4302 return 0;
33f089ca 4303
c4282df9 4304 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4305 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4306 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4307}
4308
3cfc3092
JK
4309static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4310{
4311 if (!cpu_has_virtual_nmis())
4312 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4313 if (to_vmx(vcpu)->nmi_known_unmasked)
4314 return false;
c332c83a 4315 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4316}
4317
4318static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4319{
4320 struct vcpu_vmx *vmx = to_vmx(vcpu);
4321
4322 if (!cpu_has_virtual_nmis()) {
4323 if (vmx->soft_vnmi_blocked != masked) {
4324 vmx->soft_vnmi_blocked = masked;
4325 vmx->vnmi_blocked_time = 0;
4326 }
4327 } else {
9d58b931 4328 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4329 if (masked)
4330 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4331 GUEST_INTR_STATE_NMI);
4332 else
4333 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4334 GUEST_INTR_STATE_NMI);
4335 }
4336}
4337
78646121
GN
4338static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4339{
b6f1250e 4340 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4341 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4342 if (to_vmx(vcpu)->nested.nested_run_pending ||
4343 (vmcs12->idt_vectoring_info_field &
4344 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4345 return 0;
4346 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4347 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4348 vmcs12->vm_exit_intr_info = 0;
4349 /* fall through to normal code, but now in L1, not L2 */
4350 }
4351
c4282df9
GN
4352 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4353 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4354 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4355}
4356
cbc94022
IE
4357static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4358{
4359 int ret;
4360 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4361 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4362 .guest_phys_addr = addr,
4363 .memory_size = PAGE_SIZE * 3,
4364 .flags = 0,
4365 };
4366
f82a8cfe 4367 ret = kvm_set_memory_region(kvm, &tss_mem, false);
cbc94022
IE
4368 if (ret)
4369 return ret;
bfc6d222 4370 kvm->arch.tss_addr = addr;
93ea5388
GN
4371 if (!init_rmode_tss(kvm))
4372 return -ENOMEM;
4373
cbc94022
IE
4374 return 0;
4375}
4376
0ca1b4f4 4377static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4378{
77ab6db0 4379 switch (vec) {
77ab6db0 4380 case BP_VECTOR:
c573cd22
JK
4381 /*
4382 * Update instruction length as we may reinject the exception
4383 * from user space while in guest debugging mode.
4384 */
4385 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4386 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4387 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4388 return false;
4389 /* fall through */
4390 case DB_VECTOR:
4391 if (vcpu->guest_debug &
4392 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4393 return false;
d0bfb940
JK
4394 /* fall through */
4395 case DE_VECTOR:
77ab6db0
JK
4396 case OF_VECTOR:
4397 case BR_VECTOR:
4398 case UD_VECTOR:
4399 case DF_VECTOR:
4400 case SS_VECTOR:
4401 case GP_VECTOR:
4402 case MF_VECTOR:
0ca1b4f4
GN
4403 return true;
4404 break;
77ab6db0 4405 }
0ca1b4f4
GN
4406 return false;
4407}
4408
4409static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4410 int vec, u32 err_code)
4411{
4412 /*
4413 * Instruction with address size override prefix opcode 0x67
4414 * Cause the #SS fault with 0 error code in VM86 mode.
4415 */
4416 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4417 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4418 if (vcpu->arch.halt_request) {
4419 vcpu->arch.halt_request = 0;
4420 return kvm_emulate_halt(vcpu);
4421 }
4422 return 1;
4423 }
4424 return 0;
4425 }
4426
4427 /*
4428 * Forward all other exceptions that are valid in real mode.
4429 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4430 * the required debugging infrastructure rework.
4431 */
4432 kvm_queue_exception(vcpu, vec);
4433 return 1;
6aa8b732
AK
4434}
4435
a0861c02
AK
4436/*
4437 * Trigger machine check on the host. We assume all the MSRs are already set up
4438 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4439 * We pass a fake environment to the machine check handler because we want
4440 * the guest to be always treated like user space, no matter what context
4441 * it used internally.
4442 */
4443static void kvm_machine_check(void)
4444{
4445#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4446 struct pt_regs regs = {
4447 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4448 .flags = X86_EFLAGS_IF,
4449 };
4450
4451 do_machine_check(&regs, 0);
4452#endif
4453}
4454
851ba692 4455static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4456{
4457 /* already handled by vcpu_run */
4458 return 1;
4459}
4460
851ba692 4461static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4462{
1155f76a 4463 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4464 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4465 u32 intr_info, ex_no, error_code;
42dbaa5a 4466 unsigned long cr2, rip, dr6;
6aa8b732
AK
4467 u32 vect_info;
4468 enum emulation_result er;
4469
1155f76a 4470 vect_info = vmx->idt_vectoring_info;
88786475 4471 intr_info = vmx->exit_intr_info;
6aa8b732 4472
a0861c02 4473 if (is_machine_check(intr_info))
851ba692 4474 return handle_machine_check(vcpu);
a0861c02 4475
e4a41889 4476 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4477 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4478
4479 if (is_no_device(intr_info)) {
5fd86fcf 4480 vmx_fpu_activate(vcpu);
2ab455cc
AL
4481 return 1;
4482 }
4483
7aa81cc0 4484 if (is_invalid_opcode(intr_info)) {
51d8b661 4485 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4486 if (er != EMULATE_DONE)
7ee5d940 4487 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4488 return 1;
4489 }
4490
6aa8b732 4491 error_code = 0;
2e11384c 4492 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4493 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4494
4495 /*
4496 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4497 * MMIO, it is better to report an internal error.
4498 * See the comments in vmx_handle_exit.
4499 */
4500 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4501 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4502 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4503 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4504 vcpu->run->internal.ndata = 2;
4505 vcpu->run->internal.data[0] = vect_info;
4506 vcpu->run->internal.data[1] = intr_info;
4507 return 0;
4508 }
4509
6aa8b732 4510 if (is_page_fault(intr_info)) {
1439442c 4511 /* EPT won't cause page fault directly */
cf3ace79 4512 BUG_ON(enable_ept);
6aa8b732 4513 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4514 trace_kvm_page_fault(cr2, error_code);
4515
3298b75c 4516 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4517 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4518 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4519 }
4520
d0bfb940 4521 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4522
4523 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4524 return handle_rmode_exception(vcpu, ex_no, error_code);
4525
42dbaa5a
JK
4526 switch (ex_no) {
4527 case DB_VECTOR:
4528 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4529 if (!(vcpu->guest_debug &
4530 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4531 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4532 kvm_queue_exception(vcpu, DB_VECTOR);
4533 return 1;
4534 }
4535 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4536 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4537 /* fall through */
4538 case BP_VECTOR:
c573cd22
JK
4539 /*
4540 * Update instruction length as we may reinject #BP from
4541 * user space while in guest debugging mode. Reading it for
4542 * #DB as well causes no harm, it is not used in that case.
4543 */
4544 vmx->vcpu.arch.event_exit_inst_len =
4545 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4546 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4547 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4548 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4549 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4550 break;
4551 default:
d0bfb940
JK
4552 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4553 kvm_run->ex.exception = ex_no;
4554 kvm_run->ex.error_code = error_code;
42dbaa5a 4555 break;
6aa8b732 4556 }
6aa8b732
AK
4557 return 0;
4558}
4559
851ba692 4560static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4561{
1165f5fe 4562 ++vcpu->stat.irq_exits;
6aa8b732
AK
4563 return 1;
4564}
4565
851ba692 4566static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4567{
851ba692 4568 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4569 return 0;
4570}
6aa8b732 4571
851ba692 4572static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4573{
bfdaab09 4574 unsigned long exit_qualification;
34c33d16 4575 int size, in, string;
039576c0 4576 unsigned port;
6aa8b732 4577
bfdaab09 4578 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4579 string = (exit_qualification & 16) != 0;
cf8f70bf 4580 in = (exit_qualification & 8) != 0;
e70669ab 4581
cf8f70bf 4582 ++vcpu->stat.io_exits;
e70669ab 4583
cf8f70bf 4584 if (string || in)
51d8b661 4585 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4586
cf8f70bf
GN
4587 port = exit_qualification >> 16;
4588 size = (exit_qualification & 7) + 1;
e93f36bc 4589 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4590
4591 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4592}
4593
102d8325
IM
4594static void
4595vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4596{
4597 /*
4598 * Patch in the VMCALL instruction:
4599 */
4600 hypercall[0] = 0x0f;
4601 hypercall[1] = 0x01;
4602 hypercall[2] = 0xc1;
102d8325
IM
4603}
4604
0fa06071 4605/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
4606static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4607{
4608 if (to_vmx(vcpu)->nested.vmxon &&
4609 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4610 return 1;
4611
4612 if (is_guest_mode(vcpu)) {
4613 /*
4614 * We get here when L2 changed cr0 in a way that did not change
4615 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4616 * but did change L0 shadowed bits. This can currently happen
4617 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4618 * loading) while pretending to allow the guest to change it.
4619 */
4620 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4621 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4622 return 1;
4623 vmcs_writel(CR0_READ_SHADOW, val);
4624 return 0;
4625 } else
4626 return kvm_set_cr0(vcpu, val);
4627}
4628
4629static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4630{
4631 if (is_guest_mode(vcpu)) {
4632 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4633 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4634 return 1;
4635 vmcs_writel(CR4_READ_SHADOW, val);
4636 return 0;
4637 } else
4638 return kvm_set_cr4(vcpu, val);
4639}
4640
4641/* called to set cr0 as approriate for clts instruction exit. */
4642static void handle_clts(struct kvm_vcpu *vcpu)
4643{
4644 if (is_guest_mode(vcpu)) {
4645 /*
4646 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4647 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4648 * just pretend it's off (also in arch.cr0 for fpu_activate).
4649 */
4650 vmcs_writel(CR0_READ_SHADOW,
4651 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4652 vcpu->arch.cr0 &= ~X86_CR0_TS;
4653 } else
4654 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4655}
4656
851ba692 4657static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4658{
229456fc 4659 unsigned long exit_qualification, val;
6aa8b732
AK
4660 int cr;
4661 int reg;
49a9b07e 4662 int err;
6aa8b732 4663
bfdaab09 4664 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4665 cr = exit_qualification & 15;
4666 reg = (exit_qualification >> 8) & 15;
4667 switch ((exit_qualification >> 4) & 3) {
4668 case 0: /* mov to cr */
229456fc
MT
4669 val = kvm_register_read(vcpu, reg);
4670 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4671 switch (cr) {
4672 case 0:
eeadf9e7 4673 err = handle_set_cr0(vcpu, val);
db8fcefa 4674 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4675 return 1;
4676 case 3:
2390218b 4677 err = kvm_set_cr3(vcpu, val);
db8fcefa 4678 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4679 return 1;
4680 case 4:
eeadf9e7 4681 err = handle_set_cr4(vcpu, val);
db8fcefa 4682 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4683 return 1;
0a5fff19
GN
4684 case 8: {
4685 u8 cr8_prev = kvm_get_cr8(vcpu);
4686 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4687 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4688 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4689 if (irqchip_in_kernel(vcpu->kvm))
4690 return 1;
4691 if (cr8_prev <= cr8)
4692 return 1;
851ba692 4693 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4694 return 0;
4695 }
4b8073e4 4696 }
6aa8b732 4697 break;
25c4c276 4698 case 2: /* clts */
eeadf9e7 4699 handle_clts(vcpu);
4d4ec087 4700 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4701 skip_emulated_instruction(vcpu);
6b52d186 4702 vmx_fpu_activate(vcpu);
25c4c276 4703 return 1;
6aa8b732
AK
4704 case 1: /*mov from cr*/
4705 switch (cr) {
4706 case 3:
9f8fe504
AK
4707 val = kvm_read_cr3(vcpu);
4708 kvm_register_write(vcpu, reg, val);
4709 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4710 skip_emulated_instruction(vcpu);
4711 return 1;
4712 case 8:
229456fc
MT
4713 val = kvm_get_cr8(vcpu);
4714 kvm_register_write(vcpu, reg, val);
4715 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4716 skip_emulated_instruction(vcpu);
4717 return 1;
4718 }
4719 break;
4720 case 3: /* lmsw */
a1f83a74 4721 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4722 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4723 kvm_lmsw(vcpu, val);
6aa8b732
AK
4724
4725 skip_emulated_instruction(vcpu);
4726 return 1;
4727 default:
4728 break;
4729 }
851ba692 4730 vcpu->run->exit_reason = 0;
a737f256 4731 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4732 (int)(exit_qualification >> 4) & 3, cr);
4733 return 0;
4734}
4735
851ba692 4736static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4737{
bfdaab09 4738 unsigned long exit_qualification;
6aa8b732
AK
4739 int dr, reg;
4740
f2483415 4741 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4742 if (!kvm_require_cpl(vcpu, 0))
4743 return 1;
42dbaa5a
JK
4744 dr = vmcs_readl(GUEST_DR7);
4745 if (dr & DR7_GD) {
4746 /*
4747 * As the vm-exit takes precedence over the debug trap, we
4748 * need to emulate the latter, either for the host or the
4749 * guest debugging itself.
4750 */
4751 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4752 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4753 vcpu->run->debug.arch.dr7 = dr;
4754 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4755 vmcs_readl(GUEST_CS_BASE) +
4756 vmcs_readl(GUEST_RIP);
851ba692
AK
4757 vcpu->run->debug.arch.exception = DB_VECTOR;
4758 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4759 return 0;
4760 } else {
4761 vcpu->arch.dr7 &= ~DR7_GD;
4762 vcpu->arch.dr6 |= DR6_BD;
4763 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4764 kvm_queue_exception(vcpu, DB_VECTOR);
4765 return 1;
4766 }
4767 }
4768
bfdaab09 4769 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4770 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4771 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4772 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4773 unsigned long val;
4774 if (!kvm_get_dr(vcpu, dr, &val))
4775 kvm_register_write(vcpu, reg, val);
4776 } else
4777 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4778 skip_emulated_instruction(vcpu);
4779 return 1;
4780}
4781
020df079
GN
4782static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4783{
4784 vmcs_writel(GUEST_DR7, val);
4785}
4786
851ba692 4787static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4788{
06465c5a
AK
4789 kvm_emulate_cpuid(vcpu);
4790 return 1;
6aa8b732
AK
4791}
4792
851ba692 4793static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4794{
ad312c7c 4795 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4796 u64 data;
4797
4798 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4799 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4800 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4801 return 1;
4802 }
4803
229456fc 4804 trace_kvm_msr_read(ecx, data);
2714d1d3 4805
6aa8b732 4806 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4807 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4808 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4809 skip_emulated_instruction(vcpu);
4810 return 1;
4811}
4812
851ba692 4813static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4814{
8fe8ab46 4815 struct msr_data msr;
ad312c7c
ZX
4816 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4817 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4818 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 4819
8fe8ab46
WA
4820 msr.data = data;
4821 msr.index = ecx;
4822 msr.host_initiated = false;
4823 if (vmx_set_msr(vcpu, &msr) != 0) {
59200273 4824 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4825 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4826 return 1;
4827 }
4828
59200273 4829 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4830 skip_emulated_instruction(vcpu);
4831 return 1;
4832}
4833
851ba692 4834static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4835{
3842d135 4836 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4837 return 1;
4838}
4839
851ba692 4840static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4841{
85f455f7
ED
4842 u32 cpu_based_vm_exec_control;
4843
4844 /* clear pending irq */
4845 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4846 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4847 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4848
3842d135
AK
4849 kvm_make_request(KVM_REQ_EVENT, vcpu);
4850
a26bf12a 4851 ++vcpu->stat.irq_window_exits;
2714d1d3 4852
c1150d8c
DL
4853 /*
4854 * If the user space waits to inject interrupts, exit as soon as
4855 * possible
4856 */
8061823a 4857 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4858 vcpu->run->request_interrupt_window &&
8061823a 4859 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4860 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4861 return 0;
4862 }
6aa8b732
AK
4863 return 1;
4864}
4865
851ba692 4866static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4867{
4868 skip_emulated_instruction(vcpu);
d3bef15f 4869 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4870}
4871
851ba692 4872static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4873{
510043da 4874 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4875 kvm_emulate_hypercall(vcpu);
4876 return 1;
c21415e8
IM
4877}
4878
ec25d5e6
GN
4879static int handle_invd(struct kvm_vcpu *vcpu)
4880{
51d8b661 4881 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4882}
4883
851ba692 4884static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4885{
f9c617f6 4886 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4887
4888 kvm_mmu_invlpg(vcpu, exit_qualification);
4889 skip_emulated_instruction(vcpu);
4890 return 1;
4891}
4892
fee84b07
AK
4893static int handle_rdpmc(struct kvm_vcpu *vcpu)
4894{
4895 int err;
4896
4897 err = kvm_rdpmc(vcpu);
4898 kvm_complete_insn_gp(vcpu, err);
4899
4900 return 1;
4901}
4902
851ba692 4903static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4904{
4905 skip_emulated_instruction(vcpu);
f5f48ee1 4906 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4907 return 1;
4908}
4909
2acf923e
DC
4910static int handle_xsetbv(struct kvm_vcpu *vcpu)
4911{
4912 u64 new_bv = kvm_read_edx_eax(vcpu);
4913 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4914
4915 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4916 skip_emulated_instruction(vcpu);
4917 return 1;
4918}
4919
851ba692 4920static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4921{
58fbbf26
KT
4922 if (likely(fasteoi)) {
4923 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4924 int access_type, offset;
4925
4926 access_type = exit_qualification & APIC_ACCESS_TYPE;
4927 offset = exit_qualification & APIC_ACCESS_OFFSET;
4928 /*
4929 * Sane guest uses MOV to write EOI, with written value
4930 * not cared. So make a short-circuit here by avoiding
4931 * heavy instruction emulation.
4932 */
4933 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4934 (offset == APIC_EOI)) {
4935 kvm_lapic_set_eoi(vcpu);
4936 skip_emulated_instruction(vcpu);
4937 return 1;
4938 }
4939 }
51d8b661 4940 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4941}
4942
c7c9c56c
YZ
4943static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4944{
4945 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4946 int vector = exit_qualification & 0xff;
4947
4948 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4949 kvm_apic_set_eoi_accelerated(vcpu, vector);
4950 return 1;
4951}
4952
83d4c286
YZ
4953static int handle_apic_write(struct kvm_vcpu *vcpu)
4954{
4955 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4956 u32 offset = exit_qualification & 0xfff;
4957
4958 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4959 kvm_apic_write_nodecode(vcpu, offset);
4960 return 1;
4961}
4962
851ba692 4963static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4964{
60637aac 4965 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4966 unsigned long exit_qualification;
e269fb21
JK
4967 bool has_error_code = false;
4968 u32 error_code = 0;
37817f29 4969 u16 tss_selector;
7f3d35fd 4970 int reason, type, idt_v, idt_index;
64a7ec06
GN
4971
4972 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 4973 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 4974 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4975
4976 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4977
4978 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4979 if (reason == TASK_SWITCH_GATE && idt_v) {
4980 switch (type) {
4981 case INTR_TYPE_NMI_INTR:
4982 vcpu->arch.nmi_injected = false;
654f06fc 4983 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4984 break;
4985 case INTR_TYPE_EXT_INTR:
66fd3f7f 4986 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4987 kvm_clear_interrupt_queue(vcpu);
4988 break;
4989 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4990 if (vmx->idt_vectoring_info &
4991 VECTORING_INFO_DELIVER_CODE_MASK) {
4992 has_error_code = true;
4993 error_code =
4994 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4995 }
4996 /* fall through */
64a7ec06
GN
4997 case INTR_TYPE_SOFT_EXCEPTION:
4998 kvm_clear_exception_queue(vcpu);
4999 break;
5000 default:
5001 break;
5002 }
60637aac 5003 }
37817f29
IE
5004 tss_selector = exit_qualification;
5005
64a7ec06
GN
5006 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5007 type != INTR_TYPE_EXT_INTR &&
5008 type != INTR_TYPE_NMI_INTR))
5009 skip_emulated_instruction(vcpu);
5010
7f3d35fd
KW
5011 if (kvm_task_switch(vcpu, tss_selector,
5012 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5013 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5014 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5015 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5016 vcpu->run->internal.ndata = 0;
42dbaa5a 5017 return 0;
acb54517 5018 }
42dbaa5a
JK
5019
5020 /* clear all local breakpoint enable flags */
5021 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5022
5023 /*
5024 * TODO: What about debug traps on tss switch?
5025 * Are we supposed to inject them and update dr6?
5026 */
5027
5028 return 1;
37817f29
IE
5029}
5030
851ba692 5031static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5032{
f9c617f6 5033 unsigned long exit_qualification;
1439442c 5034 gpa_t gpa;
4f5982a5 5035 u32 error_code;
1439442c 5036 int gla_validity;
1439442c 5037
f9c617f6 5038 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5039
1439442c
SY
5040 gla_validity = (exit_qualification >> 7) & 0x3;
5041 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5042 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5043 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5044 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5045 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5046 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5047 (long unsigned int)exit_qualification);
851ba692
AK
5048 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5049 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5050 return 0;
1439442c
SY
5051 }
5052
5053 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5054 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5055
5056 /* It is a write fault? */
5057 error_code = exit_qualification & (1U << 1);
5058 /* ept page table is present? */
5059 error_code |= (exit_qualification >> 3) & 0x1;
5060
5061 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5062}
5063
68f89400
MT
5064static u64 ept_rsvd_mask(u64 spte, int level)
5065{
5066 int i;
5067 u64 mask = 0;
5068
5069 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5070 mask |= (1ULL << i);
5071
5072 if (level > 2)
5073 /* bits 7:3 reserved */
5074 mask |= 0xf8;
5075 else if (level == 2) {
5076 if (spte & (1ULL << 7))
5077 /* 2MB ref, bits 20:12 reserved */
5078 mask |= 0x1ff000;
5079 else
5080 /* bits 6:3 reserved */
5081 mask |= 0x78;
5082 }
5083
5084 return mask;
5085}
5086
5087static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5088 int level)
5089{
5090 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5091
5092 /* 010b (write-only) */
5093 WARN_ON((spte & 0x7) == 0x2);
5094
5095 /* 110b (write/execute) */
5096 WARN_ON((spte & 0x7) == 0x6);
5097
5098 /* 100b (execute-only) and value not supported by logical processor */
5099 if (!cpu_has_vmx_ept_execute_only())
5100 WARN_ON((spte & 0x7) == 0x4);
5101
5102 /* not 000b */
5103 if ((spte & 0x7)) {
5104 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5105
5106 if (rsvd_bits != 0) {
5107 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5108 __func__, rsvd_bits);
5109 WARN_ON(1);
5110 }
5111
5112 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5113 u64 ept_mem_type = (spte & 0x38) >> 3;
5114
5115 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5116 ept_mem_type == 7) {
5117 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5118 __func__, ept_mem_type);
5119 WARN_ON(1);
5120 }
5121 }
5122 }
5123}
5124
851ba692 5125static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5126{
5127 u64 sptes[4];
ce88decf 5128 int nr_sptes, i, ret;
68f89400
MT
5129 gpa_t gpa;
5130
5131 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5132
ce88decf
XG
5133 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5134 if (likely(ret == 1))
5135 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5136 EMULATE_DONE;
5137 if (unlikely(!ret))
5138 return 1;
5139
5140 /* It is the real ept misconfig */
68f89400
MT
5141 printk(KERN_ERR "EPT: Misconfiguration.\n");
5142 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5143
5144 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5145
5146 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5147 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5148
851ba692
AK
5149 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5150 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5151
5152 return 0;
5153}
5154
851ba692 5155static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5156{
5157 u32 cpu_based_vm_exec_control;
5158
5159 /* clear pending NMI */
5160 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5161 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5162 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5163 ++vcpu->stat.nmi_window_exits;
3842d135 5164 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5165
5166 return 1;
5167}
5168
80ced186 5169static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5170{
8b3079a5
AK
5171 struct vcpu_vmx *vmx = to_vmx(vcpu);
5172 enum emulation_result err = EMULATE_DONE;
80ced186 5173 int ret = 1;
49e9d557
AK
5174 u32 cpu_exec_ctrl;
5175 bool intr_window_requested;
b8405c18 5176 unsigned count = 130;
49e9d557
AK
5177
5178 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5179 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5180
b8405c18 5181 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5182 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5183 return handle_interrupt_window(&vmx->vcpu);
5184
de87dcdd
AK
5185 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5186 return 1;
5187
51d8b661 5188 err = emulate_instruction(vcpu, 0);
ea953ef0 5189
80ced186
MG
5190 if (err == EMULATE_DO_MMIO) {
5191 ret = 0;
5192 goto out;
5193 }
1d5a4d9b 5194
de5f70e0
AK
5195 if (err != EMULATE_DONE) {
5196 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5197 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5198 vcpu->run->internal.ndata = 0;
6d77dbfc 5199 return 0;
de5f70e0 5200 }
ea953ef0
MG
5201
5202 if (signal_pending(current))
80ced186 5203 goto out;
ea953ef0
MG
5204 if (need_resched())
5205 schedule();
5206 }
5207
14168786 5208 vmx->emulation_required = emulation_required(vcpu);
80ced186
MG
5209out:
5210 return ret;
ea953ef0
MG
5211}
5212
4b8d54f9
ZE
5213/*
5214 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5215 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5216 */
9fb41ba8 5217static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5218{
5219 skip_emulated_instruction(vcpu);
5220 kvm_vcpu_on_spin(vcpu);
5221
5222 return 1;
5223}
5224
59708670
SY
5225static int handle_invalid_op(struct kvm_vcpu *vcpu)
5226{
5227 kvm_queue_exception(vcpu, UD_VECTOR);
5228 return 1;
5229}
5230
ff2f6fe9
NHE
5231/*
5232 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5233 * We could reuse a single VMCS for all the L2 guests, but we also want the
5234 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5235 * allows keeping them loaded on the processor, and in the future will allow
5236 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5237 * every entry if they never change.
5238 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5239 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5240 *
5241 * The following functions allocate and free a vmcs02 in this pool.
5242 */
5243
5244/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5245static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5246{
5247 struct vmcs02_list *item;
5248 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5249 if (item->vmptr == vmx->nested.current_vmptr) {
5250 list_move(&item->list, &vmx->nested.vmcs02_pool);
5251 return &item->vmcs02;
5252 }
5253
5254 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5255 /* Recycle the least recently used VMCS. */
5256 item = list_entry(vmx->nested.vmcs02_pool.prev,
5257 struct vmcs02_list, list);
5258 item->vmptr = vmx->nested.current_vmptr;
5259 list_move(&item->list, &vmx->nested.vmcs02_pool);
5260 return &item->vmcs02;
5261 }
5262
5263 /* Create a new VMCS */
5264 item = (struct vmcs02_list *)
5265 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5266 if (!item)
5267 return NULL;
5268 item->vmcs02.vmcs = alloc_vmcs();
5269 if (!item->vmcs02.vmcs) {
5270 kfree(item);
5271 return NULL;
5272 }
5273 loaded_vmcs_init(&item->vmcs02);
5274 item->vmptr = vmx->nested.current_vmptr;
5275 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5276 vmx->nested.vmcs02_num++;
5277 return &item->vmcs02;
5278}
5279
5280/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5281static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5282{
5283 struct vmcs02_list *item;
5284 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5285 if (item->vmptr == vmptr) {
5286 free_loaded_vmcs(&item->vmcs02);
5287 list_del(&item->list);
5288 kfree(item);
5289 vmx->nested.vmcs02_num--;
5290 return;
5291 }
5292}
5293
5294/*
5295 * Free all VMCSs saved for this vcpu, except the one pointed by
5296 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5297 * currently used, if running L2), and vmcs01 when running L2.
5298 */
5299static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5300{
5301 struct vmcs02_list *item, *n;
5302 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5303 if (vmx->loaded_vmcs != &item->vmcs02)
5304 free_loaded_vmcs(&item->vmcs02);
5305 list_del(&item->list);
5306 kfree(item);
5307 }
5308 vmx->nested.vmcs02_num = 0;
5309
5310 if (vmx->loaded_vmcs != &vmx->vmcs01)
5311 free_loaded_vmcs(&vmx->vmcs01);
5312}
5313
ec378aee
NHE
5314/*
5315 * Emulate the VMXON instruction.
5316 * Currently, we just remember that VMX is active, and do not save or even
5317 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5318 * do not currently need to store anything in that guest-allocated memory
5319 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5320 * argument is different from the VMXON pointer (which the spec says they do).
5321 */
5322static int handle_vmon(struct kvm_vcpu *vcpu)
5323{
5324 struct kvm_segment cs;
5325 struct vcpu_vmx *vmx = to_vmx(vcpu);
5326
5327 /* The Intel VMX Instruction Reference lists a bunch of bits that
5328 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5329 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5330 * Otherwise, we should fail with #UD. We test these now:
5331 */
5332 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5333 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5334 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5335 kvm_queue_exception(vcpu, UD_VECTOR);
5336 return 1;
5337 }
5338
5339 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5340 if (is_long_mode(vcpu) && !cs.l) {
5341 kvm_queue_exception(vcpu, UD_VECTOR);
5342 return 1;
5343 }
5344
5345 if (vmx_get_cpl(vcpu)) {
5346 kvm_inject_gp(vcpu, 0);
5347 return 1;
5348 }
5349
ff2f6fe9
NHE
5350 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5351 vmx->nested.vmcs02_num = 0;
5352
ec378aee
NHE
5353 vmx->nested.vmxon = true;
5354
5355 skip_emulated_instruction(vcpu);
5356 return 1;
5357}
5358
5359/*
5360 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5361 * for running VMX instructions (except VMXON, whose prerequisites are
5362 * slightly different). It also specifies what exception to inject otherwise.
5363 */
5364static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5365{
5366 struct kvm_segment cs;
5367 struct vcpu_vmx *vmx = to_vmx(vcpu);
5368
5369 if (!vmx->nested.vmxon) {
5370 kvm_queue_exception(vcpu, UD_VECTOR);
5371 return 0;
5372 }
5373
5374 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5375 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5376 (is_long_mode(vcpu) && !cs.l)) {
5377 kvm_queue_exception(vcpu, UD_VECTOR);
5378 return 0;
5379 }
5380
5381 if (vmx_get_cpl(vcpu)) {
5382 kvm_inject_gp(vcpu, 0);
5383 return 0;
5384 }
5385
5386 return 1;
5387}
5388
5389/*
5390 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5391 * just stops using VMX.
5392 */
5393static void free_nested(struct vcpu_vmx *vmx)
5394{
5395 if (!vmx->nested.vmxon)
5396 return;
5397 vmx->nested.vmxon = false;
a9d30f33
NHE
5398 if (vmx->nested.current_vmptr != -1ull) {
5399 kunmap(vmx->nested.current_vmcs12_page);
5400 nested_release_page(vmx->nested.current_vmcs12_page);
5401 vmx->nested.current_vmptr = -1ull;
5402 vmx->nested.current_vmcs12 = NULL;
5403 }
fe3ef05c
NHE
5404 /* Unpin physical memory we referred to in current vmcs02 */
5405 if (vmx->nested.apic_access_page) {
5406 nested_release_page(vmx->nested.apic_access_page);
5407 vmx->nested.apic_access_page = 0;
5408 }
ff2f6fe9
NHE
5409
5410 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5411}
5412
5413/* Emulate the VMXOFF instruction */
5414static int handle_vmoff(struct kvm_vcpu *vcpu)
5415{
5416 if (!nested_vmx_check_permission(vcpu))
5417 return 1;
5418 free_nested(to_vmx(vcpu));
5419 skip_emulated_instruction(vcpu);
5420 return 1;
5421}
5422
064aea77
NHE
5423/*
5424 * Decode the memory-address operand of a vmx instruction, as recorded on an
5425 * exit caused by such an instruction (run by a guest hypervisor).
5426 * On success, returns 0. When the operand is invalid, returns 1 and throws
5427 * #UD or #GP.
5428 */
5429static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5430 unsigned long exit_qualification,
5431 u32 vmx_instruction_info, gva_t *ret)
5432{
5433 /*
5434 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5435 * Execution", on an exit, vmx_instruction_info holds most of the
5436 * addressing components of the operand. Only the displacement part
5437 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5438 * For how an actual address is calculated from all these components,
5439 * refer to Vol. 1, "Operand Addressing".
5440 */
5441 int scaling = vmx_instruction_info & 3;
5442 int addr_size = (vmx_instruction_info >> 7) & 7;
5443 bool is_reg = vmx_instruction_info & (1u << 10);
5444 int seg_reg = (vmx_instruction_info >> 15) & 7;
5445 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5446 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5447 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5448 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5449
5450 if (is_reg) {
5451 kvm_queue_exception(vcpu, UD_VECTOR);
5452 return 1;
5453 }
5454
5455 /* Addr = segment_base + offset */
5456 /* offset = base + [index * scale] + displacement */
5457 *ret = vmx_get_segment_base(vcpu, seg_reg);
5458 if (base_is_valid)
5459 *ret += kvm_register_read(vcpu, base_reg);
5460 if (index_is_valid)
5461 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5462 *ret += exit_qualification; /* holds the displacement */
5463
5464 if (addr_size == 1) /* 32 bit */
5465 *ret &= 0xffffffff;
5466
5467 /*
5468 * TODO: throw #GP (and return 1) in various cases that the VM*
5469 * instructions require it - e.g., offset beyond segment limit,
5470 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5471 * address, and so on. Currently these are not checked.
5472 */
5473 return 0;
5474}
5475
0140caea
NHE
5476/*
5477 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5478 * set the success or error code of an emulated VMX instruction, as specified
5479 * by Vol 2B, VMX Instruction Reference, "Conventions".
5480 */
5481static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5482{
5483 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5484 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5485 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5486}
5487
5488static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5489{
5490 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5491 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5492 X86_EFLAGS_SF | X86_EFLAGS_OF))
5493 | X86_EFLAGS_CF);
5494}
5495
5496static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5497 u32 vm_instruction_error)
5498{
5499 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5500 /*
5501 * failValid writes the error number to the current VMCS, which
5502 * can't be done there isn't a current VMCS.
5503 */
5504 nested_vmx_failInvalid(vcpu);
5505 return;
5506 }
5507 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5508 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5509 X86_EFLAGS_SF | X86_EFLAGS_OF))
5510 | X86_EFLAGS_ZF);
5511 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5512}
5513
27d6c865
NHE
5514/* Emulate the VMCLEAR instruction */
5515static int handle_vmclear(struct kvm_vcpu *vcpu)
5516{
5517 struct vcpu_vmx *vmx = to_vmx(vcpu);
5518 gva_t gva;
5519 gpa_t vmptr;
5520 struct vmcs12 *vmcs12;
5521 struct page *page;
5522 struct x86_exception e;
5523
5524 if (!nested_vmx_check_permission(vcpu))
5525 return 1;
5526
5527 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5528 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5529 return 1;
5530
5531 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5532 sizeof(vmptr), &e)) {
5533 kvm_inject_page_fault(vcpu, &e);
5534 return 1;
5535 }
5536
5537 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5538 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5539 skip_emulated_instruction(vcpu);
5540 return 1;
5541 }
5542
5543 if (vmptr == vmx->nested.current_vmptr) {
5544 kunmap(vmx->nested.current_vmcs12_page);
5545 nested_release_page(vmx->nested.current_vmcs12_page);
5546 vmx->nested.current_vmptr = -1ull;
5547 vmx->nested.current_vmcs12 = NULL;
5548 }
5549
5550 page = nested_get_page(vcpu, vmptr);
5551 if (page == NULL) {
5552 /*
5553 * For accurate processor emulation, VMCLEAR beyond available
5554 * physical memory should do nothing at all. However, it is
5555 * possible that a nested vmx bug, not a guest hypervisor bug,
5556 * resulted in this case, so let's shut down before doing any
5557 * more damage:
5558 */
5559 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5560 return 1;
5561 }
5562 vmcs12 = kmap(page);
5563 vmcs12->launch_state = 0;
5564 kunmap(page);
5565 nested_release_page(page);
5566
5567 nested_free_vmcs02(vmx, vmptr);
5568
5569 skip_emulated_instruction(vcpu);
5570 nested_vmx_succeed(vcpu);
5571 return 1;
5572}
5573
cd232ad0
NHE
5574static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5575
5576/* Emulate the VMLAUNCH instruction */
5577static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5578{
5579 return nested_vmx_run(vcpu, true);
5580}
5581
5582/* Emulate the VMRESUME instruction */
5583static int handle_vmresume(struct kvm_vcpu *vcpu)
5584{
5585
5586 return nested_vmx_run(vcpu, false);
5587}
5588
49f705c5
NHE
5589enum vmcs_field_type {
5590 VMCS_FIELD_TYPE_U16 = 0,
5591 VMCS_FIELD_TYPE_U64 = 1,
5592 VMCS_FIELD_TYPE_U32 = 2,
5593 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5594};
5595
5596static inline int vmcs_field_type(unsigned long field)
5597{
5598 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5599 return VMCS_FIELD_TYPE_U32;
5600 return (field >> 13) & 0x3 ;
5601}
5602
5603static inline int vmcs_field_readonly(unsigned long field)
5604{
5605 return (((field >> 10) & 0x3) == 1);
5606}
5607
5608/*
5609 * Read a vmcs12 field. Since these can have varying lengths and we return
5610 * one type, we chose the biggest type (u64) and zero-extend the return value
5611 * to that size. Note that the caller, handle_vmread, might need to use only
5612 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5613 * 64-bit fields are to be returned).
5614 */
5615static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5616 unsigned long field, u64 *ret)
5617{
5618 short offset = vmcs_field_to_offset(field);
5619 char *p;
5620
5621 if (offset < 0)
5622 return 0;
5623
5624 p = ((char *)(get_vmcs12(vcpu))) + offset;
5625
5626 switch (vmcs_field_type(field)) {
5627 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5628 *ret = *((natural_width *)p);
5629 return 1;
5630 case VMCS_FIELD_TYPE_U16:
5631 *ret = *((u16 *)p);
5632 return 1;
5633 case VMCS_FIELD_TYPE_U32:
5634 *ret = *((u32 *)p);
5635 return 1;
5636 case VMCS_FIELD_TYPE_U64:
5637 *ret = *((u64 *)p);
5638 return 1;
5639 default:
5640 return 0; /* can never happen. */
5641 }
5642}
5643
5644/*
5645 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5646 * used before) all generate the same failure when it is missing.
5647 */
5648static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5649{
5650 struct vcpu_vmx *vmx = to_vmx(vcpu);
5651 if (vmx->nested.current_vmptr == -1ull) {
5652 nested_vmx_failInvalid(vcpu);
5653 skip_emulated_instruction(vcpu);
5654 return 0;
5655 }
5656 return 1;
5657}
5658
5659static int handle_vmread(struct kvm_vcpu *vcpu)
5660{
5661 unsigned long field;
5662 u64 field_value;
5663 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5664 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5665 gva_t gva = 0;
5666
5667 if (!nested_vmx_check_permission(vcpu) ||
5668 !nested_vmx_check_vmcs12(vcpu))
5669 return 1;
5670
5671 /* Decode instruction info and find the field to read */
5672 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5673 /* Read the field, zero-extended to a u64 field_value */
5674 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5675 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5676 skip_emulated_instruction(vcpu);
5677 return 1;
5678 }
5679 /*
5680 * Now copy part of this value to register or memory, as requested.
5681 * Note that the number of bits actually copied is 32 or 64 depending
5682 * on the guest's mode (32 or 64 bit), not on the given field's length.
5683 */
5684 if (vmx_instruction_info & (1u << 10)) {
5685 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5686 field_value);
5687 } else {
5688 if (get_vmx_mem_address(vcpu, exit_qualification,
5689 vmx_instruction_info, &gva))
5690 return 1;
5691 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5692 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5693 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5694 }
5695
5696 nested_vmx_succeed(vcpu);
5697 skip_emulated_instruction(vcpu);
5698 return 1;
5699}
5700
5701
5702static int handle_vmwrite(struct kvm_vcpu *vcpu)
5703{
5704 unsigned long field;
5705 gva_t gva;
5706 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5707 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5708 char *p;
5709 short offset;
5710 /* The value to write might be 32 or 64 bits, depending on L1's long
5711 * mode, and eventually we need to write that into a field of several
5712 * possible lengths. The code below first zero-extends the value to 64
5713 * bit (field_value), and then copies only the approriate number of
5714 * bits into the vmcs12 field.
5715 */
5716 u64 field_value = 0;
5717 struct x86_exception e;
5718
5719 if (!nested_vmx_check_permission(vcpu) ||
5720 !nested_vmx_check_vmcs12(vcpu))
5721 return 1;
5722
5723 if (vmx_instruction_info & (1u << 10))
5724 field_value = kvm_register_read(vcpu,
5725 (((vmx_instruction_info) >> 3) & 0xf));
5726 else {
5727 if (get_vmx_mem_address(vcpu, exit_qualification,
5728 vmx_instruction_info, &gva))
5729 return 1;
5730 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5731 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5732 kvm_inject_page_fault(vcpu, &e);
5733 return 1;
5734 }
5735 }
5736
5737
5738 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5739 if (vmcs_field_readonly(field)) {
5740 nested_vmx_failValid(vcpu,
5741 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5742 skip_emulated_instruction(vcpu);
5743 return 1;
5744 }
5745
5746 offset = vmcs_field_to_offset(field);
5747 if (offset < 0) {
5748 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5749 skip_emulated_instruction(vcpu);
5750 return 1;
5751 }
5752 p = ((char *) get_vmcs12(vcpu)) + offset;
5753
5754 switch (vmcs_field_type(field)) {
5755 case VMCS_FIELD_TYPE_U16:
5756 *(u16 *)p = field_value;
5757 break;
5758 case VMCS_FIELD_TYPE_U32:
5759 *(u32 *)p = field_value;
5760 break;
5761 case VMCS_FIELD_TYPE_U64:
5762 *(u64 *)p = field_value;
5763 break;
5764 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5765 *(natural_width *)p = field_value;
5766 break;
5767 default:
5768 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5769 skip_emulated_instruction(vcpu);
5770 return 1;
5771 }
5772
5773 nested_vmx_succeed(vcpu);
5774 skip_emulated_instruction(vcpu);
5775 return 1;
5776}
5777
63846663
NHE
5778/* Emulate the VMPTRLD instruction */
5779static int handle_vmptrld(struct kvm_vcpu *vcpu)
5780{
5781 struct vcpu_vmx *vmx = to_vmx(vcpu);
5782 gva_t gva;
5783 gpa_t vmptr;
5784 struct x86_exception e;
5785
5786 if (!nested_vmx_check_permission(vcpu))
5787 return 1;
5788
5789 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5790 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5791 return 1;
5792
5793 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5794 sizeof(vmptr), &e)) {
5795 kvm_inject_page_fault(vcpu, &e);
5796 return 1;
5797 }
5798
5799 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5800 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5801 skip_emulated_instruction(vcpu);
5802 return 1;
5803 }
5804
5805 if (vmx->nested.current_vmptr != vmptr) {
5806 struct vmcs12 *new_vmcs12;
5807 struct page *page;
5808 page = nested_get_page(vcpu, vmptr);
5809 if (page == NULL) {
5810 nested_vmx_failInvalid(vcpu);
5811 skip_emulated_instruction(vcpu);
5812 return 1;
5813 }
5814 new_vmcs12 = kmap(page);
5815 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5816 kunmap(page);
5817 nested_release_page_clean(page);
5818 nested_vmx_failValid(vcpu,
5819 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5820 skip_emulated_instruction(vcpu);
5821 return 1;
5822 }
5823 if (vmx->nested.current_vmptr != -1ull) {
5824 kunmap(vmx->nested.current_vmcs12_page);
5825 nested_release_page(vmx->nested.current_vmcs12_page);
5826 }
5827
5828 vmx->nested.current_vmptr = vmptr;
5829 vmx->nested.current_vmcs12 = new_vmcs12;
5830 vmx->nested.current_vmcs12_page = page;
5831 }
5832
5833 nested_vmx_succeed(vcpu);
5834 skip_emulated_instruction(vcpu);
5835 return 1;
5836}
5837
6a4d7550
NHE
5838/* Emulate the VMPTRST instruction */
5839static int handle_vmptrst(struct kvm_vcpu *vcpu)
5840{
5841 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5842 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5843 gva_t vmcs_gva;
5844 struct x86_exception e;
5845
5846 if (!nested_vmx_check_permission(vcpu))
5847 return 1;
5848
5849 if (get_vmx_mem_address(vcpu, exit_qualification,
5850 vmx_instruction_info, &vmcs_gva))
5851 return 1;
5852 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5853 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5854 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5855 sizeof(u64), &e)) {
5856 kvm_inject_page_fault(vcpu, &e);
5857 return 1;
5858 }
5859 nested_vmx_succeed(vcpu);
5860 skip_emulated_instruction(vcpu);
5861 return 1;
5862}
5863
6aa8b732
AK
5864/*
5865 * The exit handlers return 1 if the exit was handled fully and guest execution
5866 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5867 * to be done to userspace and return 0.
5868 */
772e0318 5869static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5870 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5871 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5872 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5873 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5874 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5875 [EXIT_REASON_CR_ACCESS] = handle_cr,
5876 [EXIT_REASON_DR_ACCESS] = handle_dr,
5877 [EXIT_REASON_CPUID] = handle_cpuid,
5878 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5879 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5880 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5881 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5882 [EXIT_REASON_INVD] = handle_invd,
a7052897 5883 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5884 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5885 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5886 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5887 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5888 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5889 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5890 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5891 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5892 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5893 [EXIT_REASON_VMOFF] = handle_vmoff,
5894 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5895 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5896 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 5897 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 5898 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 5899 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5900 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5901 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5902 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5903 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5904 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5905 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5906 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5907 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5908};
5909
5910static const int kvm_vmx_max_exit_handlers =
50a3485c 5911 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5912
908a7bdd
JK
5913static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5914 struct vmcs12 *vmcs12)
5915{
5916 unsigned long exit_qualification;
5917 gpa_t bitmap, last_bitmap;
5918 unsigned int port;
5919 int size;
5920 u8 b;
5921
5922 if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
5923 return 1;
5924
5925 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5926 return 0;
5927
5928 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5929
5930 port = exit_qualification >> 16;
5931 size = (exit_qualification & 7) + 1;
5932
5933 last_bitmap = (gpa_t)-1;
5934 b = -1;
5935
5936 while (size > 0) {
5937 if (port < 0x8000)
5938 bitmap = vmcs12->io_bitmap_a;
5939 else if (port < 0x10000)
5940 bitmap = vmcs12->io_bitmap_b;
5941 else
5942 return 1;
5943 bitmap += (port & 0x7fff) / 8;
5944
5945 if (last_bitmap != bitmap)
5946 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
5947 return 1;
5948 if (b & (1 << (port & 7)))
5949 return 1;
5950
5951 port++;
5952 size--;
5953 last_bitmap = bitmap;
5954 }
5955
5956 return 0;
5957}
5958
644d711a
NHE
5959/*
5960 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5961 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5962 * disinterest in the current event (read or write a specific MSR) by using an
5963 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5964 */
5965static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5966 struct vmcs12 *vmcs12, u32 exit_reason)
5967{
5968 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5969 gpa_t bitmap;
5970
cbd29cb6 5971 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
5972 return 1;
5973
5974 /*
5975 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5976 * for the four combinations of read/write and low/high MSR numbers.
5977 * First we need to figure out which of the four to use:
5978 */
5979 bitmap = vmcs12->msr_bitmap;
5980 if (exit_reason == EXIT_REASON_MSR_WRITE)
5981 bitmap += 2048;
5982 if (msr_index >= 0xc0000000) {
5983 msr_index -= 0xc0000000;
5984 bitmap += 1024;
5985 }
5986
5987 /* Then read the msr_index'th bit from this bitmap: */
5988 if (msr_index < 1024*8) {
5989 unsigned char b;
bd31a7f5
JK
5990 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
5991 return 1;
644d711a
NHE
5992 return 1 & (b >> (msr_index & 7));
5993 } else
5994 return 1; /* let L1 handle the wrong parameter */
5995}
5996
5997/*
5998 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5999 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6000 * intercept (via guest_host_mask etc.) the current event.
6001 */
6002static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6003 struct vmcs12 *vmcs12)
6004{
6005 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6006 int cr = exit_qualification & 15;
6007 int reg = (exit_qualification >> 8) & 15;
6008 unsigned long val = kvm_register_read(vcpu, reg);
6009
6010 switch ((exit_qualification >> 4) & 3) {
6011 case 0: /* mov to cr */
6012 switch (cr) {
6013 case 0:
6014 if (vmcs12->cr0_guest_host_mask &
6015 (val ^ vmcs12->cr0_read_shadow))
6016 return 1;
6017 break;
6018 case 3:
6019 if ((vmcs12->cr3_target_count >= 1 &&
6020 vmcs12->cr3_target_value0 == val) ||
6021 (vmcs12->cr3_target_count >= 2 &&
6022 vmcs12->cr3_target_value1 == val) ||
6023 (vmcs12->cr3_target_count >= 3 &&
6024 vmcs12->cr3_target_value2 == val) ||
6025 (vmcs12->cr3_target_count >= 4 &&
6026 vmcs12->cr3_target_value3 == val))
6027 return 0;
6028 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6029 return 1;
6030 break;
6031 case 4:
6032 if (vmcs12->cr4_guest_host_mask &
6033 (vmcs12->cr4_read_shadow ^ val))
6034 return 1;
6035 break;
6036 case 8:
6037 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6038 return 1;
6039 break;
6040 }
6041 break;
6042 case 2: /* clts */
6043 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6044 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6045 return 1;
6046 break;
6047 case 1: /* mov from cr */
6048 switch (cr) {
6049 case 3:
6050 if (vmcs12->cpu_based_vm_exec_control &
6051 CPU_BASED_CR3_STORE_EXITING)
6052 return 1;
6053 break;
6054 case 8:
6055 if (vmcs12->cpu_based_vm_exec_control &
6056 CPU_BASED_CR8_STORE_EXITING)
6057 return 1;
6058 break;
6059 }
6060 break;
6061 case 3: /* lmsw */
6062 /*
6063 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6064 * cr0. Other attempted changes are ignored, with no exit.
6065 */
6066 if (vmcs12->cr0_guest_host_mask & 0xe &
6067 (val ^ vmcs12->cr0_read_shadow))
6068 return 1;
6069 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6070 !(vmcs12->cr0_read_shadow & 0x1) &&
6071 (val & 0x1))
6072 return 1;
6073 break;
6074 }
6075 return 0;
6076}
6077
6078/*
6079 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6080 * should handle it ourselves in L0 (and then continue L2). Only call this
6081 * when in is_guest_mode (L2).
6082 */
6083static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6084{
6085 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
6086 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6087 struct vcpu_vmx *vmx = to_vmx(vcpu);
6088 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6089
6090 if (vmx->nested.nested_run_pending)
6091 return 0;
6092
6093 if (unlikely(vmx->fail)) {
bd80158a
JK
6094 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6095 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
6096 return 1;
6097 }
6098
6099 switch (exit_reason) {
6100 case EXIT_REASON_EXCEPTION_NMI:
6101 if (!is_exception(intr_info))
6102 return 0;
6103 else if (is_page_fault(intr_info))
6104 return enable_ept;
6105 return vmcs12->exception_bitmap &
6106 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6107 case EXIT_REASON_EXTERNAL_INTERRUPT:
6108 return 0;
6109 case EXIT_REASON_TRIPLE_FAULT:
6110 return 1;
6111 case EXIT_REASON_PENDING_INTERRUPT:
6112 case EXIT_REASON_NMI_WINDOW:
6113 /*
6114 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
6115 * (aka Interrupt Window Exiting) only when L1 turned it on,
6116 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
6117 * Same for NMI Window Exiting.
6118 */
6119 return 1;
6120 case EXIT_REASON_TASK_SWITCH:
6121 return 1;
6122 case EXIT_REASON_CPUID:
6123 return 1;
6124 case EXIT_REASON_HLT:
6125 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6126 case EXIT_REASON_INVD:
6127 return 1;
6128 case EXIT_REASON_INVLPG:
6129 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6130 case EXIT_REASON_RDPMC:
6131 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6132 case EXIT_REASON_RDTSC:
6133 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6134 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6135 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6136 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6137 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6138 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6139 /*
6140 * VMX instructions trap unconditionally. This allows L1 to
6141 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6142 */
6143 return 1;
6144 case EXIT_REASON_CR_ACCESS:
6145 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6146 case EXIT_REASON_DR_ACCESS:
6147 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6148 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 6149 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
6150 case EXIT_REASON_MSR_READ:
6151 case EXIT_REASON_MSR_WRITE:
6152 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6153 case EXIT_REASON_INVALID_STATE:
6154 return 1;
6155 case EXIT_REASON_MWAIT_INSTRUCTION:
6156 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6157 case EXIT_REASON_MONITOR_INSTRUCTION:
6158 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6159 case EXIT_REASON_PAUSE_INSTRUCTION:
6160 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6161 nested_cpu_has2(vmcs12,
6162 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6163 case EXIT_REASON_MCE_DURING_VMENTRY:
6164 return 0;
6165 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6166 return 1;
6167 case EXIT_REASON_APIC_ACCESS:
6168 return nested_cpu_has2(vmcs12,
6169 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6170 case EXIT_REASON_EPT_VIOLATION:
6171 case EXIT_REASON_EPT_MISCONFIG:
6172 return 0;
6173 case EXIT_REASON_WBINVD:
6174 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6175 case EXIT_REASON_XSETBV:
6176 return 1;
6177 default:
6178 return 1;
6179 }
6180}
6181
586f9607
AK
6182static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6183{
6184 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6185 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6186}
6187
6aa8b732
AK
6188/*
6189 * The guest has exited. See if we can fix it or if we need userspace
6190 * assistance.
6191 */
851ba692 6192static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 6193{
29bd8a78 6194 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 6195 u32 exit_reason = vmx->exit_reason;
1155f76a 6196 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 6197
80ced186 6198 /* If guest state is invalid, start emulating */
14168786 6199 if (vmx->emulation_required)
80ced186 6200 return handle_invalid_guest_state(vcpu);
1d5a4d9b 6201
b6f1250e
NHE
6202 /*
6203 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6204 * we did not inject a still-pending event to L1 now because of
6205 * nested_run_pending, we need to re-enable this bit.
6206 */
6207 if (vmx->nested.nested_run_pending)
6208 kvm_make_request(KVM_REQ_EVENT, vcpu);
6209
509c75ea
NHE
6210 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6211 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
6212 vmx->nested.nested_run_pending = 1;
6213 else
6214 vmx->nested.nested_run_pending = 0;
6215
6216 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6217 nested_vmx_vmexit(vcpu);
6218 return 1;
6219 }
6220
5120702e
MG
6221 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6222 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6223 vcpu->run->fail_entry.hardware_entry_failure_reason
6224 = exit_reason;
6225 return 0;
6226 }
6227
29bd8a78 6228 if (unlikely(vmx->fail)) {
851ba692
AK
6229 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6230 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6231 = vmcs_read32(VM_INSTRUCTION_ERROR);
6232 return 0;
6233 }
6aa8b732 6234
b9bf6882
XG
6235 /*
6236 * Note:
6237 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6238 * delivery event since it indicates guest is accessing MMIO.
6239 * The vm-exit can be triggered again after return to guest that
6240 * will cause infinite loop.
6241 */
d77c26fc 6242 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6243 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 6244 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
6245 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6246 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6247 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6248 vcpu->run->internal.ndata = 2;
6249 vcpu->run->internal.data[0] = vectoring_info;
6250 vcpu->run->internal.data[1] = exit_reason;
6251 return 0;
6252 }
3b86cd99 6253
644d711a
NHE
6254 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6255 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6256 get_vmcs12(vcpu), vcpu)))) {
c4282df9 6257 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6258 vmx->soft_vnmi_blocked = 0;
3b86cd99 6259 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6260 vcpu->arch.nmi_pending) {
3b86cd99
JK
6261 /*
6262 * This CPU don't support us in finding the end of an
6263 * NMI-blocked window if the guest runs with IRQs
6264 * disabled. So we pull the trigger after 1 s of
6265 * futile waiting, but inform the user about this.
6266 */
6267 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6268 "state on VCPU %d after 1 s timeout\n",
6269 __func__, vcpu->vcpu_id);
6270 vmx->soft_vnmi_blocked = 0;
3b86cd99 6271 }
3b86cd99
JK
6272 }
6273
6aa8b732
AK
6274 if (exit_reason < kvm_vmx_max_exit_handlers
6275 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6276 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6277 else {
851ba692
AK
6278 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6279 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6280 }
6281 return 0;
6282}
6283
95ba8273 6284static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6285{
95ba8273 6286 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6287 vmcs_write32(TPR_THRESHOLD, 0);
6288 return;
6289 }
6290
95ba8273 6291 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6292}
6293
8d14695f
YZ
6294static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6295{
6296 u32 sec_exec_control;
6297
6298 /*
6299 * There is not point to enable virtualize x2apic without enable
6300 * apicv
6301 */
c7c9c56c
YZ
6302 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6303 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
6304 return;
6305
6306 if (!vm_need_tpr_shadow(vcpu->kvm))
6307 return;
6308
6309 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6310
6311 if (set) {
6312 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6313 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6314 } else {
6315 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6316 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6317 }
6318 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6319
6320 vmx_set_msr_bitmap(vcpu);
6321}
6322
c7c9c56c
YZ
6323static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6324{
6325 u16 status;
6326 u8 old;
6327
6328 if (!vmx_vm_has_apicv(kvm))
6329 return;
6330
6331 if (isr == -1)
6332 isr = 0;
6333
6334 status = vmcs_read16(GUEST_INTR_STATUS);
6335 old = status >> 8;
6336 if (isr != old) {
6337 status &= 0xff;
6338 status |= isr << 8;
6339 vmcs_write16(GUEST_INTR_STATUS, status);
6340 }
6341}
6342
6343static void vmx_set_rvi(int vector)
6344{
6345 u16 status;
6346 u8 old;
6347
6348 status = vmcs_read16(GUEST_INTR_STATUS);
6349 old = (u8)status & 0xff;
6350 if ((u8)vector != old) {
6351 status &= ~0xff;
6352 status |= (u8)vector;
6353 vmcs_write16(GUEST_INTR_STATUS, status);
6354 }
6355}
6356
6357static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6358{
6359 if (max_irr == -1)
6360 return;
6361
6362 vmx_set_rvi(max_irr);
6363}
6364
6365static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6366{
6367 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6368 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6369 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6370 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6371}
6372
51aa01d1 6373static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 6374{
00eba012
AK
6375 u32 exit_intr_info;
6376
6377 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6378 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6379 return;
6380
c5ca8e57 6381 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 6382 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
6383
6384 /* Handle machine checks before interrupts are enabled */
00eba012 6385 if (is_machine_check(exit_intr_info))
a0861c02
AK
6386 kvm_machine_check();
6387
20f65983 6388 /* We need to handle NMIs before interrupts are enabled */
00eba012 6389 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
6390 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6391 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 6392 asm("int $2");
ff9d07a0
ZY
6393 kvm_after_handle_nmi(&vmx->vcpu);
6394 }
51aa01d1 6395}
20f65983 6396
51aa01d1
AK
6397static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6398{
c5ca8e57 6399 u32 exit_intr_info;
51aa01d1
AK
6400 bool unblock_nmi;
6401 u8 vector;
6402 bool idtv_info_valid;
6403
6404 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 6405
cf393f75 6406 if (cpu_has_virtual_nmis()) {
9d58b931
AK
6407 if (vmx->nmi_known_unmasked)
6408 return;
c5ca8e57
AK
6409 /*
6410 * Can't use vmx->exit_intr_info since we're not sure what
6411 * the exit reason is.
6412 */
6413 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
6414 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6415 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6416 /*
7b4a25cb 6417 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
6418 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6419 * a guest IRET fault.
7b4a25cb
GN
6420 * SDM 3: 23.2.2 (September 2008)
6421 * Bit 12 is undefined in any of the following cases:
6422 * If the VM exit sets the valid bit in the IDT-vectoring
6423 * information field.
6424 * If the VM exit is due to a double fault.
cf393f75 6425 */
7b4a25cb
GN
6426 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6427 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
6428 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6429 GUEST_INTR_STATE_NMI);
9d58b931
AK
6430 else
6431 vmx->nmi_known_unmasked =
6432 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6433 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
6434 } else if (unlikely(vmx->soft_vnmi_blocked))
6435 vmx->vnmi_blocked_time +=
6436 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
6437}
6438
83422e17
AK
6439static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6440 u32 idt_vectoring_info,
6441 int instr_len_field,
6442 int error_code_field)
51aa01d1 6443{
51aa01d1
AK
6444 u8 vector;
6445 int type;
6446 bool idtv_info_valid;
6447
6448 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6449
37b96e98
GN
6450 vmx->vcpu.arch.nmi_injected = false;
6451 kvm_clear_exception_queue(&vmx->vcpu);
6452 kvm_clear_interrupt_queue(&vmx->vcpu);
6453
6454 if (!idtv_info_valid)
6455 return;
6456
3842d135
AK
6457 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6458
668f612f
AK
6459 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6460 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6461
64a7ec06 6462 switch (type) {
37b96e98
GN
6463 case INTR_TYPE_NMI_INTR:
6464 vmx->vcpu.arch.nmi_injected = true;
668f612f 6465 /*
7b4a25cb 6466 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6467 * Clear bit "block by NMI" before VM entry if a NMI
6468 * delivery faulted.
668f612f 6469 */
654f06fc 6470 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6471 break;
37b96e98 6472 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6473 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6474 vmcs_read32(instr_len_field);
66fd3f7f
GN
6475 /* fall through */
6476 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6477 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6478 u32 err = vmcs_read32(error_code_field);
37b96e98 6479 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6480 } else
6481 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6482 break;
66fd3f7f
GN
6483 case INTR_TYPE_SOFT_INTR:
6484 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6485 vmcs_read32(instr_len_field);
66fd3f7f 6486 /* fall through */
37b96e98 6487 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6488 kvm_queue_interrupt(&vmx->vcpu, vector,
6489 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6490 break;
6491 default:
6492 break;
f7d9238f 6493 }
cf393f75
AK
6494}
6495
83422e17
AK
6496static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6497{
66c78ae4
NHE
6498 if (is_guest_mode(&vmx->vcpu))
6499 return;
83422e17
AK
6500 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6501 VM_EXIT_INSTRUCTION_LEN,
6502 IDT_VECTORING_ERROR_CODE);
6503}
6504
b463a6f7
AK
6505static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6506{
66c78ae4
NHE
6507 if (is_guest_mode(vcpu))
6508 return;
b463a6f7
AK
6509 __vmx_complete_interrupts(to_vmx(vcpu),
6510 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6511 VM_ENTRY_INSTRUCTION_LEN,
6512 VM_ENTRY_EXCEPTION_ERROR_CODE);
6513
6514 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6515}
6516
d7cd9796
GN
6517static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6518{
6519 int i, nr_msrs;
6520 struct perf_guest_switch_msr *msrs;
6521
6522 msrs = perf_guest_get_msrs(&nr_msrs);
6523
6524 if (!msrs)
6525 return;
6526
6527 for (i = 0; i < nr_msrs; i++)
6528 if (msrs[i].host == msrs[i].guest)
6529 clear_atomic_switch_msr(vmx, msrs[i].msr);
6530 else
6531 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6532 msrs[i].host);
6533}
6534
a3b5ba49 6535static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6536{
a2fa3e9f 6537 struct vcpu_vmx *vmx = to_vmx(vcpu);
2a7921b7 6538 unsigned long debugctlmsr;
104f226b 6539
66c78ae4
NHE
6540 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6541 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6542 if (vmcs12->idt_vectoring_info_field &
6543 VECTORING_INFO_VALID_MASK) {
6544 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6545 vmcs12->idt_vectoring_info_field);
6546 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6547 vmcs12->vm_exit_instruction_len);
6548 if (vmcs12->idt_vectoring_info_field &
6549 VECTORING_INFO_DELIVER_CODE_MASK)
6550 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6551 vmcs12->idt_vectoring_error_code);
6552 }
6553 }
6554
104f226b
AK
6555 /* Record the guest's net vcpu time for enforced NMI injections. */
6556 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6557 vmx->entry_time = ktime_get();
6558
6559 /* Don't enter VMX if guest state is invalid, let the exit handler
6560 start emulation until we arrive back to a valid state */
14168786 6561 if (vmx->emulation_required)
104f226b
AK
6562 return;
6563
6564 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6565 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6566 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6567 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6568
6569 /* When single-stepping over STI and MOV SS, we must clear the
6570 * corresponding interruptibility bits in the guest state. Otherwise
6571 * vmentry fails as it then expects bit 14 (BS) in pending debug
6572 * exceptions being set, but that's not correct for the guest debugging
6573 * case. */
6574 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6575 vmx_set_interrupt_shadow(vcpu, 0);
6576
d7cd9796 6577 atomic_switch_perf_msrs(vmx);
2a7921b7 6578 debugctlmsr = get_debugctlmsr();
d7cd9796 6579
d462b819 6580 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6581 asm(
6aa8b732 6582 /* Store host registers */
b188c81f
AK
6583 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6584 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6585 "push %%" _ASM_CX " \n\t"
6586 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 6587 "je 1f \n\t"
b188c81f 6588 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 6589 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6590 "1: \n\t"
d3edefc0 6591 /* Reload cr2 if changed */
b188c81f
AK
6592 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6593 "mov %%cr2, %%" _ASM_DX " \n\t"
6594 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 6595 "je 2f \n\t"
b188c81f 6596 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 6597 "2: \n\t"
6aa8b732 6598 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6599 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6600 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
6601 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6602 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6603 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6604 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6605 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6606 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 6607#ifdef CONFIG_X86_64
e08aa78a
AK
6608 "mov %c[r8](%0), %%r8 \n\t"
6609 "mov %c[r9](%0), %%r9 \n\t"
6610 "mov %c[r10](%0), %%r10 \n\t"
6611 "mov %c[r11](%0), %%r11 \n\t"
6612 "mov %c[r12](%0), %%r12 \n\t"
6613 "mov %c[r13](%0), %%r13 \n\t"
6614 "mov %c[r14](%0), %%r14 \n\t"
6615 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6616#endif
b188c81f 6617 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 6618
6aa8b732 6619 /* Enter guest mode */
83287ea4 6620 "jne 1f \n\t"
4ecac3fd 6621 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
6622 "jmp 2f \n\t"
6623 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6624 "2: "
6aa8b732 6625 /* Save guest registers, load host registers, keep flags */
b188c81f 6626 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 6627 "pop %0 \n\t"
b188c81f
AK
6628 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6629 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6630 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6631 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6632 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6633 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6634 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 6635#ifdef CONFIG_X86_64
e08aa78a
AK
6636 "mov %%r8, %c[r8](%0) \n\t"
6637 "mov %%r9, %c[r9](%0) \n\t"
6638 "mov %%r10, %c[r10](%0) \n\t"
6639 "mov %%r11, %c[r11](%0) \n\t"
6640 "mov %%r12, %c[r12](%0) \n\t"
6641 "mov %%r13, %c[r13](%0) \n\t"
6642 "mov %%r14, %c[r14](%0) \n\t"
6643 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6644#endif
b188c81f
AK
6645 "mov %%cr2, %%" _ASM_AX " \n\t"
6646 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 6647
b188c81f 6648 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 6649 "setbe %c[fail](%0) \n\t"
83287ea4
AK
6650 ".pushsection .rodata \n\t"
6651 ".global vmx_return \n\t"
6652 "vmx_return: " _ASM_PTR " 2b \n\t"
6653 ".popsection"
e08aa78a 6654 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6655 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6656 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6657 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6658 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6659 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6660 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6661 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6662 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6663 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6664 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6665#ifdef CONFIG_X86_64
ad312c7c
ZX
6666 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6667 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6668 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6669 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6670 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6671 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6672 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6673 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6674#endif
40712fae
AK
6675 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6676 [wordsize]"i"(sizeof(ulong))
c2036300
LV
6677 : "cc", "memory"
6678#ifdef CONFIG_X86_64
b188c81f 6679 , "rax", "rbx", "rdi", "rsi"
c2036300 6680 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
6681#else
6682 , "eax", "ebx", "edi", "esi"
c2036300
LV
6683#endif
6684 );
6aa8b732 6685
2a7921b7
GN
6686 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6687 if (debugctlmsr)
6688 update_debugctlmsr(debugctlmsr);
6689
aa67f609
AK
6690#ifndef CONFIG_X86_64
6691 /*
6692 * The sysexit path does not restore ds/es, so we must set them to
6693 * a reasonable value ourselves.
6694 *
6695 * We can't defer this to vmx_load_host_state() since that function
6696 * may be executed in interrupt context, which saves and restore segments
6697 * around it, nullifying its effect.
6698 */
6699 loadsegment(ds, __USER_DS);
6700 loadsegment(es, __USER_DS);
6701#endif
6702
6de4f3ad 6703 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6704 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6705 | (1 << VCPU_EXREG_CPL)
aff48baa 6706 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6707 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6708 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6709 vcpu->arch.regs_dirty = 0;
6710
1155f76a
AK
6711 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6712
66c78ae4
NHE
6713 if (is_guest_mode(vcpu)) {
6714 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6715 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6716 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6717 vmcs12->idt_vectoring_error_code =
6718 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6719 vmcs12->vm_exit_instruction_len =
6720 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6721 }
6722 }
6723
d462b819 6724 vmx->loaded_vmcs->launched = 1;
1b6269db 6725
51aa01d1 6726 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6727 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6728
6729 vmx_complete_atomic_exit(vmx);
6730 vmx_recover_nmi_blocking(vmx);
cf393f75 6731 vmx_complete_interrupts(vmx);
6aa8b732
AK
6732}
6733
6aa8b732
AK
6734static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6735{
fb3f0f51
RR
6736 struct vcpu_vmx *vmx = to_vmx(vcpu);
6737
cdbecfc3 6738 free_vpid(vmx);
ec378aee 6739 free_nested(vmx);
d462b819 6740 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6741 kfree(vmx->guest_msrs);
6742 kvm_vcpu_uninit(vcpu);
a4770347 6743 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6744}
6745
fb3f0f51 6746static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6747{
fb3f0f51 6748 int err;
c16f862d 6749 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6750 int cpu;
6aa8b732 6751
a2fa3e9f 6752 if (!vmx)
fb3f0f51
RR
6753 return ERR_PTR(-ENOMEM);
6754
2384d2b3
SY
6755 allocate_vpid(vmx);
6756
fb3f0f51
RR
6757 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6758 if (err)
6759 goto free_vcpu;
965b58a5 6760
a2fa3e9f 6761 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6762 err = -ENOMEM;
fb3f0f51 6763 if (!vmx->guest_msrs) {
fb3f0f51
RR
6764 goto uninit_vcpu;
6765 }
965b58a5 6766
d462b819
NHE
6767 vmx->loaded_vmcs = &vmx->vmcs01;
6768 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6769 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6770 goto free_msrs;
d462b819
NHE
6771 if (!vmm_exclusive)
6772 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6773 loaded_vmcs_init(vmx->loaded_vmcs);
6774 if (!vmm_exclusive)
6775 kvm_cpu_vmxoff();
a2fa3e9f 6776
15ad7146
AK
6777 cpu = get_cpu();
6778 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6779 vmx->vcpu.cpu = cpu;
8b9cf98c 6780 err = vmx_vcpu_setup(vmx);
fb3f0f51 6781 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6782 put_cpu();
fb3f0f51
RR
6783 if (err)
6784 goto free_vmcs;
5e4a0b3c 6785 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6786 err = alloc_apic_access_page(kvm);
6787 if (err)
5e4a0b3c 6788 goto free_vmcs;
fb3f0f51 6789
b927a3ce
SY
6790 if (enable_ept) {
6791 if (!kvm->arch.ept_identity_map_addr)
6792 kvm->arch.ept_identity_map_addr =
6793 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6794 err = -ENOMEM;
b7ebfb05
SY
6795 if (alloc_identity_pagetable(kvm) != 0)
6796 goto free_vmcs;
93ea5388
GN
6797 if (!init_rmode_identity_map(kvm))
6798 goto free_vmcs;
b927a3ce 6799 }
b7ebfb05 6800
a9d30f33
NHE
6801 vmx->nested.current_vmptr = -1ull;
6802 vmx->nested.current_vmcs12 = NULL;
6803
fb3f0f51
RR
6804 return &vmx->vcpu;
6805
6806free_vmcs:
5f3fbc34 6807 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 6808free_msrs:
fb3f0f51
RR
6809 kfree(vmx->guest_msrs);
6810uninit_vcpu:
6811 kvm_vcpu_uninit(&vmx->vcpu);
6812free_vcpu:
cdbecfc3 6813 free_vpid(vmx);
a4770347 6814 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6815 return ERR_PTR(err);
6aa8b732
AK
6816}
6817
002c7f7c
YS
6818static void __init vmx_check_processor_compat(void *rtn)
6819{
6820 struct vmcs_config vmcs_conf;
6821
6822 *(int *)rtn = 0;
6823 if (setup_vmcs_config(&vmcs_conf) < 0)
6824 *(int *)rtn = -EIO;
6825 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6826 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6827 smp_processor_id());
6828 *(int *)rtn = -EIO;
6829 }
6830}
6831
67253af5
SY
6832static int get_ept_level(void)
6833{
6834 return VMX_EPT_DEFAULT_GAW + 1;
6835}
6836
4b12f0de 6837static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6838{
4b12f0de
SY
6839 u64 ret;
6840
522c68c4
SY
6841 /* For VT-d and EPT combination
6842 * 1. MMIO: always map as UC
6843 * 2. EPT with VT-d:
6844 * a. VT-d without snooping control feature: can't guarantee the
6845 * result, try to trust guest.
6846 * b. VT-d with snooping control feature: snooping control feature of
6847 * VT-d engine can guarantee the cache correctness. Just set it
6848 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6849 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6850 * consistent with host MTRR
6851 */
4b12f0de
SY
6852 if (is_mmio)
6853 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6854 else if (vcpu->kvm->arch.iommu_domain &&
6855 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6856 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6857 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6858 else
522c68c4 6859 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6860 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6861
6862 return ret;
64d4d521
SY
6863}
6864
17cc3935 6865static int vmx_get_lpage_level(void)
344f414f 6866{
878403b7
SY
6867 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6868 return PT_DIRECTORY_LEVEL;
6869 else
6870 /* For shadow and EPT supported 1GB page */
6871 return PT_PDPE_LEVEL;
344f414f
JR
6872}
6873
0e851880
SY
6874static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6875{
4e47c7a6
SY
6876 struct kvm_cpuid_entry2 *best;
6877 struct vcpu_vmx *vmx = to_vmx(vcpu);
6878 u32 exec_control;
6879
6880 vmx->rdtscp_enabled = false;
6881 if (vmx_rdtscp_supported()) {
6882 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6883 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6884 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6885 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6886 vmx->rdtscp_enabled = true;
6887 else {
6888 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6889 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6890 exec_control);
6891 }
6892 }
6893 }
ad756a16 6894
ad756a16
MJ
6895 /* Exposing INVPCID only when PCID is exposed */
6896 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6897 if (vmx_invpcid_supported() &&
4f977045 6898 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 6899 guest_cpuid_has_pcid(vcpu)) {
29282fde 6900 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
6901 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6902 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6903 exec_control);
6904 } else {
29282fde
TI
6905 if (cpu_has_secondary_exec_ctrls()) {
6906 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6907 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6908 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6909 exec_control);
6910 }
ad756a16 6911 if (best)
4f977045 6912 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 6913 }
0e851880
SY
6914}
6915
d4330ef2
JR
6916static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6917{
7b8050f5
NHE
6918 if (func == 1 && nested)
6919 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6920}
6921
fe3ef05c
NHE
6922/*
6923 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6924 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6925 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6926 * guest in a way that will both be appropriate to L1's requests, and our
6927 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6928 * function also has additional necessary side-effects, like setting various
6929 * vcpu->arch fields.
6930 */
6931static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6932{
6933 struct vcpu_vmx *vmx = to_vmx(vcpu);
6934 u32 exec_control;
6935
6936 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6937 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6938 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6939 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6940 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6941 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6942 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6943 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6944 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6945 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6946 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6947 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6948 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6949 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6950 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6951 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6952 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6953 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6954 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6955 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6956 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6957 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6958 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6959 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6960 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6961 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6962 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6963 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6964 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6965 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6966 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6967 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6968 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6969 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6970 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6971 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6972
6973 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6974 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6975 vmcs12->vm_entry_intr_info_field);
6976 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6977 vmcs12->vm_entry_exception_error_code);
6978 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6979 vmcs12->vm_entry_instruction_len);
6980 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6981 vmcs12->guest_interruptibility_info);
6982 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6983 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6984 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6985 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6986 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6987 vmcs12->guest_pending_dbg_exceptions);
6988 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6989 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6990
6991 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6992
6993 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6994 (vmcs_config.pin_based_exec_ctrl |
6995 vmcs12->pin_based_vm_exec_control));
6996
6997 /*
6998 * Whether page-faults are trapped is determined by a combination of
6999 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7000 * If enable_ept, L0 doesn't care about page faults and we should
7001 * set all of these to L1's desires. However, if !enable_ept, L0 does
7002 * care about (at least some) page faults, and because it is not easy
7003 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7004 * to exit on each and every L2 page fault. This is done by setting
7005 * MASK=MATCH=0 and (see below) EB.PF=1.
7006 * Note that below we don't need special code to set EB.PF beyond the
7007 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7008 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7009 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7010 *
7011 * A problem with this approach (when !enable_ept) is that L1 may be
7012 * injected with more page faults than it asked for. This could have
7013 * caused problems, but in practice existing hypervisors don't care.
7014 * To fix this, we will need to emulate the PFEC checking (on the L1
7015 * page tables), using walk_addr(), when injecting PFs to L1.
7016 */
7017 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7018 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7019 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7020 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7021
7022 if (cpu_has_secondary_exec_ctrls()) {
7023 u32 exec_control = vmx_secondary_exec_control(vmx);
7024 if (!vmx->rdtscp_enabled)
7025 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7026 /* Take the following fields only from vmcs12 */
7027 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7028 if (nested_cpu_has(vmcs12,
7029 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7030 exec_control |= vmcs12->secondary_vm_exec_control;
7031
7032 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7033 /*
7034 * Translate L1 physical address to host physical
7035 * address for vmcs02. Keep the page pinned, so this
7036 * physical address remains valid. We keep a reference
7037 * to it so we can release it later.
7038 */
7039 if (vmx->nested.apic_access_page) /* shouldn't happen */
7040 nested_release_page(vmx->nested.apic_access_page);
7041 vmx->nested.apic_access_page =
7042 nested_get_page(vcpu, vmcs12->apic_access_addr);
7043 /*
7044 * If translation failed, no matter: This feature asks
7045 * to exit when accessing the given address, and if it
7046 * can never be accessed, this feature won't do
7047 * anything anyway.
7048 */
7049 if (!vmx->nested.apic_access_page)
7050 exec_control &=
7051 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7052 else
7053 vmcs_write64(APIC_ACCESS_ADDR,
7054 page_to_phys(vmx->nested.apic_access_page));
7055 }
7056
7057 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7058 }
7059
7060
7061 /*
7062 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7063 * Some constant fields are set here by vmx_set_constant_host_state().
7064 * Other fields are different per CPU, and will be set later when
7065 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7066 */
7067 vmx_set_constant_host_state();
7068
7069 /*
7070 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7071 * entry, but only if the current (host) sp changed from the value
7072 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7073 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7074 * here we just force the write to happen on entry.
7075 */
7076 vmx->host_rsp = 0;
7077
7078 exec_control = vmx_exec_control(vmx); /* L0's desires */
7079 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7080 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7081 exec_control &= ~CPU_BASED_TPR_SHADOW;
7082 exec_control |= vmcs12->cpu_based_vm_exec_control;
7083 /*
7084 * Merging of IO and MSR bitmaps not currently supported.
7085 * Rather, exit every time.
7086 */
7087 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7088 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7089 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7090
7091 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7092
7093 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7094 * bitwise-or of what L1 wants to trap for L2, and what we want to
7095 * trap. Note that CR0.TS also needs updating - we do this later.
7096 */
7097 update_exception_bitmap(vcpu);
7098 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7099 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7100
7101 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7102 vmcs_write32(VM_EXIT_CONTROLS,
7103 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7104 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7105 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7106
7107 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7108 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7109 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7110 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7111
7112
7113 set_cr4_guest_host_mask(vmx);
7114
27fc51b2
NHE
7115 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7116 vmcs_write64(TSC_OFFSET,
7117 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7118 else
7119 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
7120
7121 if (enable_vpid) {
7122 /*
7123 * Trivially support vpid by letting L2s share their parent
7124 * L1's vpid. TODO: move to a more elaborate solution, giving
7125 * each L2 its own vpid and exposing the vpid feature to L1.
7126 */
7127 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7128 vmx_flush_tlb(vcpu);
7129 }
7130
7131 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7132 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7133 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7134 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7135 else
7136 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7137 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7138 vmx_set_efer(vcpu, vcpu->arch.efer);
7139
7140 /*
7141 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7142 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7143 * The CR0_READ_SHADOW is what L2 should have expected to read given
7144 * the specifications by L1; It's not enough to take
7145 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7146 * have more bits than L1 expected.
7147 */
7148 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7149 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7150
7151 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7152 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7153
7154 /* shadow page tables on either EPT or shadow page tables */
7155 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7156 kvm_mmu_reset_context(vcpu);
7157
7158 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7159 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7160}
7161
cd232ad0
NHE
7162/*
7163 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7164 * for running an L2 nested guest.
7165 */
7166static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7167{
7168 struct vmcs12 *vmcs12;
7169 struct vcpu_vmx *vmx = to_vmx(vcpu);
7170 int cpu;
7171 struct loaded_vmcs *vmcs02;
7172
7173 if (!nested_vmx_check_permission(vcpu) ||
7174 !nested_vmx_check_vmcs12(vcpu))
7175 return 1;
7176
7177 skip_emulated_instruction(vcpu);
7178 vmcs12 = get_vmcs12(vcpu);
7179
7c177938
NHE
7180 /*
7181 * The nested entry process starts with enforcing various prerequisites
7182 * on vmcs12 as required by the Intel SDM, and act appropriately when
7183 * they fail: As the SDM explains, some conditions should cause the
7184 * instruction to fail, while others will cause the instruction to seem
7185 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7186 * To speed up the normal (success) code path, we should avoid checking
7187 * for misconfigurations which will anyway be caught by the processor
7188 * when using the merged vmcs02.
7189 */
7190 if (vmcs12->launch_state == launch) {
7191 nested_vmx_failValid(vcpu,
7192 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7193 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7194 return 1;
7195 }
7196
7197 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7198 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7199 /*TODO: Also verify bits beyond physical address width are 0*/
7200 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7201 return 1;
7202 }
7203
7204 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7205 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7206 /*TODO: Also verify bits beyond physical address width are 0*/
7207 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7208 return 1;
7209 }
7210
7211 if (vmcs12->vm_entry_msr_load_count > 0 ||
7212 vmcs12->vm_exit_msr_load_count > 0 ||
7213 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
7214 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7215 __func__);
7c177938
NHE
7216 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7217 return 1;
7218 }
7219
7220 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7221 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7222 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7223 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7224 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7225 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7226 !vmx_control_verify(vmcs12->vm_exit_controls,
7227 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7228 !vmx_control_verify(vmcs12->vm_entry_controls,
7229 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7230 {
7231 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7232 return 1;
7233 }
7234
7235 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7236 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7237 nested_vmx_failValid(vcpu,
7238 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7239 return 1;
7240 }
7241
7242 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7243 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7244 nested_vmx_entry_failure(vcpu, vmcs12,
7245 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7246 return 1;
7247 }
7248 if (vmcs12->vmcs_link_pointer != -1ull) {
7249 nested_vmx_entry_failure(vcpu, vmcs12,
7250 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7251 return 1;
7252 }
7253
7254 /*
7255 * We're finally done with prerequisite checking, and can start with
7256 * the nested entry.
7257 */
7258
cd232ad0
NHE
7259 vmcs02 = nested_get_current_vmcs02(vmx);
7260 if (!vmcs02)
7261 return -ENOMEM;
7262
7263 enter_guest_mode(vcpu);
7264
7265 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7266
7267 cpu = get_cpu();
7268 vmx->loaded_vmcs = vmcs02;
7269 vmx_vcpu_put(vcpu);
7270 vmx_vcpu_load(vcpu, cpu);
7271 vcpu->cpu = cpu;
7272 put_cpu();
7273
7274 vmcs12->launch_state = 1;
7275
7276 prepare_vmcs02(vcpu, vmcs12);
7277
7278 /*
7279 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7280 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7281 * returned as far as L1 is concerned. It will only return (and set
7282 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7283 */
7284 return 1;
7285}
7286
4704d0be
NHE
7287/*
7288 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7289 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7290 * This function returns the new value we should put in vmcs12.guest_cr0.
7291 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7292 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7293 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7294 * didn't trap the bit, because if L1 did, so would L0).
7295 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7296 * been modified by L2, and L1 knows it. So just leave the old value of
7297 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7298 * isn't relevant, because if L0 traps this bit it can set it to anything.
7299 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7300 * changed these bits, and therefore they need to be updated, but L0
7301 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7302 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7303 */
7304static inline unsigned long
7305vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7306{
7307 return
7308 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7309 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7310 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7311 vcpu->arch.cr0_guest_owned_bits));
7312}
7313
7314static inline unsigned long
7315vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7316{
7317 return
7318 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7319 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7320 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7321 vcpu->arch.cr4_guest_owned_bits));
7322}
7323
7324/*
7325 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7326 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7327 * and this function updates it to reflect the changes to the guest state while
7328 * L2 was running (and perhaps made some exits which were handled directly by L0
7329 * without going back to L1), and to reflect the exit reason.
7330 * Note that we do not have to copy here all VMCS fields, just those that
7331 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7332 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7333 * which already writes to vmcs12 directly.
7334 */
733568f9 7335static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be
NHE
7336{
7337 /* update guest state fields: */
7338 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7339 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7340
7341 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7342 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7343 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7344 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7345
7346 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7347 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7348 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7349 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7350 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7351 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7352 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7353 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7354 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7355 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7356 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7357 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7358 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7359 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7360 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7361 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7362 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7363 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7364 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7365 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7366 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7367 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7368 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7369 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7370 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7371 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7372 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7373 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7374 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7375 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7376 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7377 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7378 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7379 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7380 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7381 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7382
7383 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7384 vmcs12->guest_interruptibility_info =
7385 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7386 vmcs12->guest_pending_dbg_exceptions =
7387 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7388
7389 /* TODO: These cannot have changed unless we have MSR bitmaps and
7390 * the relevant bit asks not to trap the change */
7391 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7392 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7393 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7394 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7395 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7396 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7397
7398 /* update exit information fields: */
7399
7400 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
7401 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7402
7403 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7404 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7405 vmcs12->idt_vectoring_info_field =
7406 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7407 vmcs12->idt_vectoring_error_code =
7408 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7409 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7410 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7411
7412 /* clear vm-entry fields which are to be cleared on exit */
7413 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7414 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7415}
7416
7417/*
7418 * A part of what we need to when the nested L2 guest exits and we want to
7419 * run its L1 parent, is to reset L1's guest state to the host state specified
7420 * in vmcs12.
7421 * This function is to be called not only on normal nested exit, but also on
7422 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7423 * Failures During or After Loading Guest State").
7424 * This function should be called when the active VMCS is L1's (vmcs01).
7425 */
733568f9
JK
7426static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7427 struct vmcs12 *vmcs12)
4704d0be
NHE
7428{
7429 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7430 vcpu->arch.efer = vmcs12->host_ia32_efer;
7431 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7432 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7433 else
7434 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7435 vmx_set_efer(vcpu, vcpu->arch.efer);
7436
7437 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7438 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7439 /*
7440 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7441 * actually changed, because it depends on the current state of
7442 * fpu_active (which may have changed).
7443 * Note that vmx_set_cr0 refers to efer set above.
7444 */
7445 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7446 /*
7447 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7448 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7449 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7450 */
7451 update_exception_bitmap(vcpu);
7452 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7453 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7454
7455 /*
7456 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7457 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7458 */
7459 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7460 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7461
7462 /* shadow page tables on either EPT or shadow page tables */
7463 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7464 kvm_mmu_reset_context(vcpu);
7465
7466 if (enable_vpid) {
7467 /*
7468 * Trivially support vpid by letting L2s share their parent
7469 * L1's vpid. TODO: move to a more elaborate solution, giving
7470 * each L2 its own vpid and exposing the vpid feature to L1.
7471 */
7472 vmx_flush_tlb(vcpu);
7473 }
7474
7475
7476 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7477 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7478 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7479 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7480 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7481 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7482 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7483 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7484 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7485 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7486 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7487 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7488 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7489 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7490 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7491
7492 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7493 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7494 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7495 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7496 vmcs12->host_ia32_perf_global_ctrl);
7497}
7498
7499/*
7500 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7501 * and modify vmcs12 to make it see what it would expect to see there if
7502 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7503 */
7504static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7505{
7506 struct vcpu_vmx *vmx = to_vmx(vcpu);
7507 int cpu;
7508 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7509
7510 leave_guest_mode(vcpu);
7511 prepare_vmcs12(vcpu, vmcs12);
7512
7513 cpu = get_cpu();
7514 vmx->loaded_vmcs = &vmx->vmcs01;
7515 vmx_vcpu_put(vcpu);
7516 vmx_vcpu_load(vcpu, cpu);
7517 vcpu->cpu = cpu;
7518 put_cpu();
7519
7520 /* if no vmcs02 cache requested, remove the one we used */
7521 if (VMCS02_POOL_SIZE == 0)
7522 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7523
7524 load_vmcs12_host_state(vcpu, vmcs12);
7525
27fc51b2 7526 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7527 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7528
7529 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7530 vmx->host_rsp = 0;
7531
7532 /* Unpin physical memory we referred to in vmcs02 */
7533 if (vmx->nested.apic_access_page) {
7534 nested_release_page(vmx->nested.apic_access_page);
7535 vmx->nested.apic_access_page = 0;
7536 }
7537
7538 /*
7539 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7540 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7541 * success or failure flag accordingly.
7542 */
7543 if (unlikely(vmx->fail)) {
7544 vmx->fail = 0;
7545 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7546 } else
7547 nested_vmx_succeed(vcpu);
7548}
7549
7c177938
NHE
7550/*
7551 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7552 * 23.7 "VM-entry failures during or after loading guest state" (this also
7553 * lists the acceptable exit-reason and exit-qualification parameters).
7554 * It should only be called before L2 actually succeeded to run, and when
7555 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7556 */
7557static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7558 struct vmcs12 *vmcs12,
7559 u32 reason, unsigned long qualification)
7560{
7561 load_vmcs12_host_state(vcpu, vmcs12);
7562 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7563 vmcs12->exit_qualification = qualification;
7564 nested_vmx_succeed(vcpu);
7565}
7566
8a76d7f2
JR
7567static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7568 struct x86_instruction_info *info,
7569 enum x86_intercept_stage stage)
7570{
7571 return X86EMUL_CONTINUE;
7572}
7573
cbdd1bea 7574static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7575 .cpu_has_kvm_support = cpu_has_kvm_support,
7576 .disabled_by_bios = vmx_disabled_by_bios,
7577 .hardware_setup = hardware_setup,
7578 .hardware_unsetup = hardware_unsetup,
002c7f7c 7579 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7580 .hardware_enable = hardware_enable,
7581 .hardware_disable = hardware_disable,
04547156 7582 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7583
7584 .vcpu_create = vmx_create_vcpu,
7585 .vcpu_free = vmx_free_vcpu,
04d2cc77 7586 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7587
04d2cc77 7588 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7589 .vcpu_load = vmx_vcpu_load,
7590 .vcpu_put = vmx_vcpu_put,
7591
c8639010 7592 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
7593 .get_msr = vmx_get_msr,
7594 .set_msr = vmx_set_msr,
7595 .get_segment_base = vmx_get_segment_base,
7596 .get_segment = vmx_get_segment,
7597 .set_segment = vmx_set_segment,
2e4d2653 7598 .get_cpl = vmx_get_cpl,
6aa8b732 7599 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7600 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7601 .decache_cr3 = vmx_decache_cr3,
25c4c276 7602 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7603 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7604 .set_cr3 = vmx_set_cr3,
7605 .set_cr4 = vmx_set_cr4,
6aa8b732 7606 .set_efer = vmx_set_efer,
6aa8b732
AK
7607 .get_idt = vmx_get_idt,
7608 .set_idt = vmx_set_idt,
7609 .get_gdt = vmx_get_gdt,
7610 .set_gdt = vmx_set_gdt,
020df079 7611 .set_dr7 = vmx_set_dr7,
5fdbf976 7612 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7613 .get_rflags = vmx_get_rflags,
7614 .set_rflags = vmx_set_rflags,
ebcbab4c 7615 .fpu_activate = vmx_fpu_activate,
02daab21 7616 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7617
7618 .tlb_flush = vmx_flush_tlb,
6aa8b732 7619
6aa8b732 7620 .run = vmx_vcpu_run,
6062d012 7621 .handle_exit = vmx_handle_exit,
6aa8b732 7622 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7623 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7624 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7625 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7626 .set_irq = vmx_inject_irq,
95ba8273 7627 .set_nmi = vmx_inject_nmi,
298101da 7628 .queue_exception = vmx_queue_exception,
b463a6f7 7629 .cancel_injection = vmx_cancel_injection,
78646121 7630 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7631 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7632 .get_nmi_mask = vmx_get_nmi_mask,
7633 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7634 .enable_nmi_window = enable_nmi_window,
7635 .enable_irq_window = enable_irq_window,
7636 .update_cr8_intercept = update_cr8_intercept,
8d14695f 7637 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
c7c9c56c
YZ
7638 .vm_has_apicv = vmx_vm_has_apicv,
7639 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7640 .hwapic_irr_update = vmx_hwapic_irr_update,
7641 .hwapic_isr_update = vmx_hwapic_isr_update,
95ba8273 7642
cbc94022 7643 .set_tss_addr = vmx_set_tss_addr,
67253af5 7644 .get_tdp_level = get_ept_level,
4b12f0de 7645 .get_mt_mask = vmx_get_mt_mask,
229456fc 7646
586f9607 7647 .get_exit_info = vmx_get_exit_info,
586f9607 7648
17cc3935 7649 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7650
7651 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7652
7653 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 7654 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
7655
7656 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7657
7658 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7659
4051b188 7660 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 7661 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 7662 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7663 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7664 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7665 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7666
7667 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7668
7669 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7670};
7671
7672static int __init vmx_init(void)
7673{
8d14695f 7674 int r, i, msr;
26bb0981
AK
7675
7676 rdmsrl_safe(MSR_EFER, &host_efer);
7677
7678 for (i = 0; i < NR_VMX_MSR; ++i)
7679 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7680
3e7c73e9 7681 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7682 if (!vmx_io_bitmap_a)
7683 return -ENOMEM;
7684
2106a548
GC
7685 r = -ENOMEM;
7686
3e7c73e9 7687 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7688 if (!vmx_io_bitmap_b)
fdef3ad1 7689 goto out;
fdef3ad1 7690
5897297b 7691 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7692 if (!vmx_msr_bitmap_legacy)
25c5f225 7693 goto out1;
2106a548 7694
8d14695f
YZ
7695 vmx_msr_bitmap_legacy_x2apic =
7696 (unsigned long *)__get_free_page(GFP_KERNEL);
7697 if (!vmx_msr_bitmap_legacy_x2apic)
7698 goto out2;
25c5f225 7699
5897297b 7700 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 7701 if (!vmx_msr_bitmap_longmode)
8d14695f 7702 goto out3;
2106a548 7703
8d14695f
YZ
7704 vmx_msr_bitmap_longmode_x2apic =
7705 (unsigned long *)__get_free_page(GFP_KERNEL);
7706 if (!vmx_msr_bitmap_longmode_x2apic)
7707 goto out4;
5897297b 7708
fdef3ad1
HQ
7709 /*
7710 * Allow direct access to the PC debug port (it is often used for I/O
7711 * delays, but the vmexits simply slow things down).
7712 */
3e7c73e9
AK
7713 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7714 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7715
3e7c73e9 7716 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7717
5897297b
AK
7718 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7719 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7720
2384d2b3
SY
7721 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7722
0ee75bea
AK
7723 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7724 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7725 if (r)
5897297b 7726 goto out3;
25c5f225 7727
8f536b76
ZY
7728#ifdef CONFIG_KEXEC
7729 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7730 crash_vmclear_local_loaded_vmcss);
7731#endif
7732
5897297b
AK
7733 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7734 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7735 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7736 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7737 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7738 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8d14695f
YZ
7739 memcpy(vmx_msr_bitmap_legacy_x2apic,
7740 vmx_msr_bitmap_legacy, PAGE_SIZE);
7741 memcpy(vmx_msr_bitmap_longmode_x2apic,
7742 vmx_msr_bitmap_longmode, PAGE_SIZE);
7743
c7c9c56c 7744 if (enable_apicv_reg_vid) {
8d14695f
YZ
7745 for (msr = 0x800; msr <= 0x8ff; msr++)
7746 vmx_disable_intercept_msr_read_x2apic(msr);
7747
7748 /* According SDM, in x2apic mode, the whole id reg is used.
7749 * But in KVM, it only use the highest eight bits. Need to
7750 * intercept it */
7751 vmx_enable_intercept_msr_read_x2apic(0x802);
7752 /* TMCCT */
7753 vmx_enable_intercept_msr_read_x2apic(0x839);
7754 /* TPR */
7755 vmx_disable_intercept_msr_write_x2apic(0x808);
c7c9c56c
YZ
7756 /* EOI */
7757 vmx_disable_intercept_msr_write_x2apic(0x80b);
7758 /* SELF-IPI */
7759 vmx_disable_intercept_msr_write_x2apic(0x83f);
8d14695f 7760 }
fdef3ad1 7761
089d034e 7762 if (enable_ept) {
3f6d8c8a
XH
7763 kvm_mmu_set_mask_ptes(0ull,
7764 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7765 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7766 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 7767 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7768 kvm_enable_tdp();
7769 } else
7770 kvm_disable_tdp();
1439442c 7771
fdef3ad1
HQ
7772 return 0;
7773
8d14695f 7774out4:
5897297b 7775 free_page((unsigned long)vmx_msr_bitmap_longmode);
8d14695f
YZ
7776out3:
7777 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
25c5f225 7778out2:
5897297b 7779 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7780out1:
3e7c73e9 7781 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7782out:
3e7c73e9 7783 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7784 return r;
6aa8b732
AK
7785}
7786
7787static void __exit vmx_exit(void)
7788{
8d14695f
YZ
7789 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
7790 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5897297b
AK
7791 free_page((unsigned long)vmx_msr_bitmap_legacy);
7792 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7793 free_page((unsigned long)vmx_io_bitmap_b);
7794 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7795
8f536b76
ZY
7796#ifdef CONFIG_KEXEC
7797 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
7798 synchronize_rcu();
7799#endif
7800
cb498ea2 7801 kvm_exit();
6aa8b732
AK
7802}
7803
7804module_init(vmx_init)
7805module_exit(vmx_exit)