]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: nVMX: Allocate shadow vmcs
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
8f536b76 45#include <asm/kexec.h>
6aa8b732 46
229456fc
MT
47#include "trace.h"
48
4ecac3fd 49#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
50#define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 52
6aa8b732
AK
53MODULE_AUTHOR("Qumranet");
54MODULE_LICENSE("GPL");
55
e9bda3b3
JT
56static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59};
60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
476bc001 62static bool __read_mostly enable_vpid = 1;
736caefe 63module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 64
476bc001 65static bool __read_mostly flexpriority_enabled = 1;
736caefe 66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 67
476bc001 68static bool __read_mostly enable_ept = 1;
736caefe 69module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 70
476bc001 71static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
72module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
83c3a331
XH
75static bool __read_mostly enable_ept_ad_bits = 1;
76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
a27685c3 78static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 80
476bc001 81static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
82module_param(vmm_exclusive, bool, S_IRUGO);
83
476bc001 84static bool __read_mostly fasteoi = 1;
58fbbf26
KT
85module_param(fasteoi, bool, S_IRUGO);
86
5a71785d 87static bool __read_mostly enable_apicv = 1;
01e439be 88module_param(enable_apicv, bool, S_IRUGO);
83d4c286 89
abc4fc58
AG
90static bool __read_mostly enable_shadow_vmcs = 1;
91module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
92/*
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
96 */
476bc001 97static bool __read_mostly nested = 0;
801d3424
NHE
98module_param(nested, bool, S_IRUGO);
99
5037878e
GN
100#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
102#define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
104#define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
107
cdc0e244
AK
108#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
78ac8b47
AK
111#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
4b8d54f9
ZE
113/*
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 117 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 */
00c25bce 124#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
125#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127module_param(ple_gap, int, S_IRUGO);
128
129static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130module_param(ple_window, int, S_IRUGO);
131
83287ea4
AK
132extern const ulong vmx_return;
133
8bf00a52 134#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 135#define VMCS02_POOL_SIZE 1
61d2ef2c 136
a2fa3e9f
GH
137struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
141};
142
d462b819
NHE
143/*
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
147 */
148struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
153};
154
26bb0981
AK
155struct shared_msr_entry {
156 unsigned index;
157 u64 data;
d5696725 158 u64 mask;
26bb0981
AK
159};
160
a9d30f33
NHE
161/*
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 */
22bd0358 174typedef u64 natural_width;
a9d30f33
NHE
175struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
178 */
179 u32 revision_id;
180 u32 abort;
22bd0358 181
27d6c865
NHE
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
184
22bd0358
NHE
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
209 /*
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
214 */
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
0238ea91
JK
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
22bd0358
NHE
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
a9d30f33
NHE
322};
323
324/*
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328 */
329#define VMCS12_REVISION 0x11e57ed0
330
331/*
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
335 */
336#define VMCS12_SIZE 0x1000
337
ff2f6fe9
NHE
338/* Used to remember the last vmcs02 used for some recently used vmcs12s */
339struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
343};
344
ec378aee
NHE
345/*
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 */
349struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
a9d30f33
NHE
352
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
8de48833 358 struct vmcs *current_shadow_vmcs;
ff2f6fe9
NHE
359
360 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
361 struct list_head vmcs02_pool;
362 int vmcs02_num;
fe3ef05c 363 u64 vmcs01_tsc_offset;
644d711a
NHE
364 /* L2 must run next, and mustn't decide to exit to L1. */
365 bool nested_run_pending;
fe3ef05c
NHE
366 /*
367 * Guest pages referred to in vmcs02 with host-physical pointers, so
368 * we must keep them pinned while L2 runs.
369 */
370 struct page *apic_access_page;
ec378aee
NHE
371};
372
01e439be
YZ
373#define POSTED_INTR_ON 0
374/* Posted-Interrupt Descriptor */
375struct pi_desc {
376 u32 pir[8]; /* Posted interrupt requested */
377 u32 control; /* bit 0 of control is outstanding notification bit */
378 u32 rsvd[7];
379} __aligned(64);
380
a20ed54d
YZ
381static bool pi_test_and_set_on(struct pi_desc *pi_desc)
382{
383 return test_and_set_bit(POSTED_INTR_ON,
384 (unsigned long *)&pi_desc->control);
385}
386
387static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
388{
389 return test_and_clear_bit(POSTED_INTR_ON,
390 (unsigned long *)&pi_desc->control);
391}
392
393static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
394{
395 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
396}
397
a2fa3e9f 398struct vcpu_vmx {
fb3f0f51 399 struct kvm_vcpu vcpu;
313dbd49 400 unsigned long host_rsp;
29bd8a78 401 u8 fail;
69c73028 402 u8 cpl;
9d58b931 403 bool nmi_known_unmasked;
51aa01d1 404 u32 exit_intr_info;
1155f76a 405 u32 idt_vectoring_info;
6de12732 406 ulong rflags;
26bb0981 407 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
408 int nmsrs;
409 int save_nmsrs;
a547c6db 410 unsigned long host_idt_base;
a2fa3e9f 411#ifdef CONFIG_X86_64
44ea2b17
AK
412 u64 msr_host_kernel_gs_base;
413 u64 msr_guest_kernel_gs_base;
a2fa3e9f 414#endif
d462b819
NHE
415 /*
416 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
417 * non-nested (L1) guest, it always points to vmcs01. For a nested
418 * guest (L2), it points to a different VMCS.
419 */
420 struct loaded_vmcs vmcs01;
421 struct loaded_vmcs *loaded_vmcs;
422 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
423 struct msr_autoload {
424 unsigned nr;
425 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
426 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
427 } msr_autoload;
a2fa3e9f
GH
428 struct {
429 int loaded;
430 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
431#ifdef CONFIG_X86_64
432 u16 ds_sel, es_sel;
433#endif
152d3f2f
LV
434 int gs_ldt_reload_needed;
435 int fs_reload_needed;
d77c26fc 436 } host_state;
9c8cba37 437 struct {
7ffd92c5 438 int vm86_active;
78ac8b47 439 ulong save_rflags;
f5f7b2fe
AK
440 struct kvm_segment segs[8];
441 } rmode;
442 struct {
443 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
444 struct kvm_save_segment {
445 u16 selector;
446 unsigned long base;
447 u32 limit;
448 u32 ar;
f5f7b2fe 449 } seg[8];
2fb92db1 450 } segment_cache;
2384d2b3 451 int vpid;
04fa4d32 452 bool emulation_required;
3b86cd99
JK
453
454 /* Support for vnmi-less CPUs */
455 int soft_vnmi_blocked;
456 ktime_t entry_time;
457 s64 vnmi_blocked_time;
a0861c02 458 u32 exit_reason;
4e47c7a6
SY
459
460 bool rdtscp_enabled;
ec378aee 461
01e439be
YZ
462 /* Posted interrupt descriptor */
463 struct pi_desc pi_desc;
464
ec378aee
NHE
465 /* Support for a guest hypervisor (nested VMX) */
466 struct nested_vmx nested;
a2fa3e9f
GH
467};
468
2fb92db1
AK
469enum segment_cache_field {
470 SEG_FIELD_SEL = 0,
471 SEG_FIELD_BASE = 1,
472 SEG_FIELD_LIMIT = 2,
473 SEG_FIELD_AR = 3,
474
475 SEG_FIELD_NR = 4
476};
477
a2fa3e9f
GH
478static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
479{
fb3f0f51 480 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
481}
482
22bd0358
NHE
483#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
484#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
485#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
486 [number##_HIGH] = VMCS12_OFFSET(name)+4
487
4607c2d7
AG
488
489static const unsigned long shadow_read_only_fields[] = {
490 /*
491 * We do NOT shadow fields that are modified when L0
492 * traps and emulates any vmx instruction (e.g. VMPTRLD,
493 * VMXON...) executed by L1.
494 * For example, VM_INSTRUCTION_ERROR is read
495 * by L1 if a vmx instruction fails (part of the error path).
496 * Note the code assumes this logic. If for some reason
497 * we start shadowing these fields then we need to
498 * force a shadow sync when L0 emulates vmx instructions
499 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
500 * by nested_vmx_failValid)
501 */
502 VM_EXIT_REASON,
503 VM_EXIT_INTR_INFO,
504 VM_EXIT_INSTRUCTION_LEN,
505 IDT_VECTORING_INFO_FIELD,
506 IDT_VECTORING_ERROR_CODE,
507 VM_EXIT_INTR_ERROR_CODE,
508 EXIT_QUALIFICATION,
509 GUEST_LINEAR_ADDRESS,
510 GUEST_PHYSICAL_ADDRESS
511};
512static const int max_shadow_read_only_fields =
513 ARRAY_SIZE(shadow_read_only_fields);
514
515static const unsigned long shadow_read_write_fields[] = {
516 GUEST_RIP,
517 GUEST_RSP,
518 GUEST_CR0,
519 GUEST_CR3,
520 GUEST_CR4,
521 GUEST_INTERRUPTIBILITY_INFO,
522 GUEST_RFLAGS,
523 GUEST_CS_SELECTOR,
524 GUEST_CS_AR_BYTES,
525 GUEST_CS_LIMIT,
526 GUEST_CS_BASE,
527 GUEST_ES_BASE,
528 CR0_GUEST_HOST_MASK,
529 CR0_READ_SHADOW,
530 CR4_READ_SHADOW,
531 TSC_OFFSET,
532 EXCEPTION_BITMAP,
533 CPU_BASED_VM_EXEC_CONTROL,
534 VM_ENTRY_EXCEPTION_ERROR_CODE,
535 VM_ENTRY_INTR_INFO_FIELD,
536 VM_ENTRY_INSTRUCTION_LEN,
537 VM_ENTRY_EXCEPTION_ERROR_CODE,
538 HOST_FS_BASE,
539 HOST_GS_BASE,
540 HOST_FS_SELECTOR,
541 HOST_GS_SELECTOR
542};
543static const int max_shadow_read_write_fields =
544 ARRAY_SIZE(shadow_read_write_fields);
545
772e0318 546static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
547 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
548 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
549 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
550 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
551 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
552 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
553 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
554 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
555 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
556 FIELD(HOST_ES_SELECTOR, host_es_selector),
557 FIELD(HOST_CS_SELECTOR, host_cs_selector),
558 FIELD(HOST_SS_SELECTOR, host_ss_selector),
559 FIELD(HOST_DS_SELECTOR, host_ds_selector),
560 FIELD(HOST_FS_SELECTOR, host_fs_selector),
561 FIELD(HOST_GS_SELECTOR, host_gs_selector),
562 FIELD(HOST_TR_SELECTOR, host_tr_selector),
563 FIELD64(IO_BITMAP_A, io_bitmap_a),
564 FIELD64(IO_BITMAP_B, io_bitmap_b),
565 FIELD64(MSR_BITMAP, msr_bitmap),
566 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
567 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
568 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
569 FIELD64(TSC_OFFSET, tsc_offset),
570 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
571 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
572 FIELD64(EPT_POINTER, ept_pointer),
573 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
574 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
575 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
576 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
577 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
578 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
579 FIELD64(GUEST_PDPTR0, guest_pdptr0),
580 FIELD64(GUEST_PDPTR1, guest_pdptr1),
581 FIELD64(GUEST_PDPTR2, guest_pdptr2),
582 FIELD64(GUEST_PDPTR3, guest_pdptr3),
583 FIELD64(HOST_IA32_PAT, host_ia32_pat),
584 FIELD64(HOST_IA32_EFER, host_ia32_efer),
585 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
586 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
587 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
588 FIELD(EXCEPTION_BITMAP, exception_bitmap),
589 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
590 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
591 FIELD(CR3_TARGET_COUNT, cr3_target_count),
592 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
593 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
594 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
595 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
596 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
597 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
598 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
599 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
600 FIELD(TPR_THRESHOLD, tpr_threshold),
601 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
602 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
603 FIELD(VM_EXIT_REASON, vm_exit_reason),
604 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
605 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
606 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
607 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
608 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
609 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
610 FIELD(GUEST_ES_LIMIT, guest_es_limit),
611 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
612 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
613 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
614 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
615 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
616 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
617 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
618 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
619 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
620 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
621 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
622 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
623 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
624 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
625 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
626 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
627 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
628 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
629 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
630 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
631 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 632 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
633 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
634 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
635 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
636 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
637 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
638 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
639 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
640 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
641 FIELD(EXIT_QUALIFICATION, exit_qualification),
642 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
643 FIELD(GUEST_CR0, guest_cr0),
644 FIELD(GUEST_CR3, guest_cr3),
645 FIELD(GUEST_CR4, guest_cr4),
646 FIELD(GUEST_ES_BASE, guest_es_base),
647 FIELD(GUEST_CS_BASE, guest_cs_base),
648 FIELD(GUEST_SS_BASE, guest_ss_base),
649 FIELD(GUEST_DS_BASE, guest_ds_base),
650 FIELD(GUEST_FS_BASE, guest_fs_base),
651 FIELD(GUEST_GS_BASE, guest_gs_base),
652 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
653 FIELD(GUEST_TR_BASE, guest_tr_base),
654 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
655 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
656 FIELD(GUEST_DR7, guest_dr7),
657 FIELD(GUEST_RSP, guest_rsp),
658 FIELD(GUEST_RIP, guest_rip),
659 FIELD(GUEST_RFLAGS, guest_rflags),
660 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
661 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
662 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
663 FIELD(HOST_CR0, host_cr0),
664 FIELD(HOST_CR3, host_cr3),
665 FIELD(HOST_CR4, host_cr4),
666 FIELD(HOST_FS_BASE, host_fs_base),
667 FIELD(HOST_GS_BASE, host_gs_base),
668 FIELD(HOST_TR_BASE, host_tr_base),
669 FIELD(HOST_GDTR_BASE, host_gdtr_base),
670 FIELD(HOST_IDTR_BASE, host_idtr_base),
671 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
672 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
673 FIELD(HOST_RSP, host_rsp),
674 FIELD(HOST_RIP, host_rip),
675};
676static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
677
678static inline short vmcs_field_to_offset(unsigned long field)
679{
680 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
681 return -1;
682 return vmcs_field_to_offset_table[field];
683}
684
a9d30f33
NHE
685static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
686{
687 return to_vmx(vcpu)->nested.current_vmcs12;
688}
689
690static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
691{
692 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 693 if (is_error_page(page))
a9d30f33 694 return NULL;
32cad84f 695
a9d30f33
NHE
696 return page;
697}
698
699static void nested_release_page(struct page *page)
700{
701 kvm_release_page_dirty(page);
702}
703
704static void nested_release_page_clean(struct page *page)
705{
706 kvm_release_page_clean(page);
707}
708
4e1096d2 709static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
710static void kvm_cpu_vmxon(u64 addr);
711static void kvm_cpu_vmxoff(void);
aff48baa 712static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 713static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
714static void vmx_set_segment(struct kvm_vcpu *vcpu,
715 struct kvm_segment *var, int seg);
716static void vmx_get_segment(struct kvm_vcpu *vcpu,
717 struct kvm_segment *var, int seg);
d99e4152
GN
718static bool guest_state_valid(struct kvm_vcpu *vcpu);
719static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 720static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
75880a01 721
6aa8b732
AK
722static DEFINE_PER_CPU(struct vmcs *, vmxarea);
723static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
724/*
725 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
726 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
727 */
728static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 729static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 730
3e7c73e9
AK
731static unsigned long *vmx_io_bitmap_a;
732static unsigned long *vmx_io_bitmap_b;
5897297b
AK
733static unsigned long *vmx_msr_bitmap_legacy;
734static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
735static unsigned long *vmx_msr_bitmap_legacy_x2apic;
736static unsigned long *vmx_msr_bitmap_longmode_x2apic;
4607c2d7
AG
737static unsigned long *vmx_vmread_bitmap;
738static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 739
110312c8 740static bool cpu_has_load_ia32_efer;
8bf00a52 741static bool cpu_has_load_perf_global_ctrl;
110312c8 742
2384d2b3
SY
743static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
744static DEFINE_SPINLOCK(vmx_vpid_lock);
745
1c3d14fe 746static struct vmcs_config {
6aa8b732
AK
747 int size;
748 int order;
749 u32 revision_id;
1c3d14fe
YS
750 u32 pin_based_exec_ctrl;
751 u32 cpu_based_exec_ctrl;
f78e0e2e 752 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
753 u32 vmexit_ctrl;
754 u32 vmentry_ctrl;
755} vmcs_config;
6aa8b732 756
efff9e53 757static struct vmx_capability {
d56f546d
SY
758 u32 ept;
759 u32 vpid;
760} vmx_capability;
761
6aa8b732
AK
762#define VMX_SEGMENT_FIELD(seg) \
763 [VCPU_SREG_##seg] = { \
764 .selector = GUEST_##seg##_SELECTOR, \
765 .base = GUEST_##seg##_BASE, \
766 .limit = GUEST_##seg##_LIMIT, \
767 .ar_bytes = GUEST_##seg##_AR_BYTES, \
768 }
769
772e0318 770static const struct kvm_vmx_segment_field {
6aa8b732
AK
771 unsigned selector;
772 unsigned base;
773 unsigned limit;
774 unsigned ar_bytes;
775} kvm_vmx_segment_fields[] = {
776 VMX_SEGMENT_FIELD(CS),
777 VMX_SEGMENT_FIELD(DS),
778 VMX_SEGMENT_FIELD(ES),
779 VMX_SEGMENT_FIELD(FS),
780 VMX_SEGMENT_FIELD(GS),
781 VMX_SEGMENT_FIELD(SS),
782 VMX_SEGMENT_FIELD(TR),
783 VMX_SEGMENT_FIELD(LDTR),
784};
785
26bb0981
AK
786static u64 host_efer;
787
6de4f3ad
AK
788static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
789
4d56c8a7 790/*
8c06585d 791 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
792 * away by decrementing the array size.
793 */
6aa8b732 794static const u32 vmx_msr_index[] = {
05b3e0c2 795#ifdef CONFIG_X86_64
44ea2b17 796 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 797#endif
8c06585d 798 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 799};
9d8f549d 800#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 801
31299944 802static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
803{
804 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
805 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 806 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
807}
808
31299944 809static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
810{
811 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
812 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 813 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
814}
815
31299944 816static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
817{
818 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
819 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 820 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
821}
822
31299944 823static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
824{
825 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
826 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
827}
828
31299944 829static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
830{
831 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
832 INTR_INFO_VALID_MASK)) ==
833 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
834}
835
31299944 836static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 837{
04547156 838 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
839}
840
31299944 841static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 842{
04547156 843 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
844}
845
31299944 846static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 847{
04547156 848 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
849}
850
31299944 851static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 852{
04547156
SY
853 return vmcs_config.cpu_based_exec_ctrl &
854 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
855}
856
774ead3a 857static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 858{
04547156
SY
859 return vmcs_config.cpu_based_2nd_exec_ctrl &
860 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
861}
862
8d14695f
YZ
863static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
864{
865 return vmcs_config.cpu_based_2nd_exec_ctrl &
866 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
867}
868
83d4c286
YZ
869static inline bool cpu_has_vmx_apic_register_virt(void)
870{
871 return vmcs_config.cpu_based_2nd_exec_ctrl &
872 SECONDARY_EXEC_APIC_REGISTER_VIRT;
873}
874
c7c9c56c
YZ
875static inline bool cpu_has_vmx_virtual_intr_delivery(void)
876{
877 return vmcs_config.cpu_based_2nd_exec_ctrl &
878 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
879}
880
01e439be
YZ
881static inline bool cpu_has_vmx_posted_intr(void)
882{
883 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
884}
885
886static inline bool cpu_has_vmx_apicv(void)
887{
888 return cpu_has_vmx_apic_register_virt() &&
889 cpu_has_vmx_virtual_intr_delivery() &&
890 cpu_has_vmx_posted_intr();
891}
892
04547156
SY
893static inline bool cpu_has_vmx_flexpriority(void)
894{
895 return cpu_has_vmx_tpr_shadow() &&
896 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
897}
898
e799794e
MT
899static inline bool cpu_has_vmx_ept_execute_only(void)
900{
31299944 901 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
902}
903
904static inline bool cpu_has_vmx_eptp_uncacheable(void)
905{
31299944 906 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
907}
908
909static inline bool cpu_has_vmx_eptp_writeback(void)
910{
31299944 911 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
912}
913
914static inline bool cpu_has_vmx_ept_2m_page(void)
915{
31299944 916 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
917}
918
878403b7
SY
919static inline bool cpu_has_vmx_ept_1g_page(void)
920{
31299944 921 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
922}
923
4bc9b982
SY
924static inline bool cpu_has_vmx_ept_4levels(void)
925{
926 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
927}
928
83c3a331
XH
929static inline bool cpu_has_vmx_ept_ad_bits(void)
930{
931 return vmx_capability.ept & VMX_EPT_AD_BIT;
932}
933
31299944 934static inline bool cpu_has_vmx_invept_context(void)
d56f546d 935{
31299944 936 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
937}
938
31299944 939static inline bool cpu_has_vmx_invept_global(void)
d56f546d 940{
31299944 941 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
942}
943
518c8aee
GJ
944static inline bool cpu_has_vmx_invvpid_single(void)
945{
946 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
947}
948
b9d762fa
GJ
949static inline bool cpu_has_vmx_invvpid_global(void)
950{
951 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
952}
953
31299944 954static inline bool cpu_has_vmx_ept(void)
d56f546d 955{
04547156
SY
956 return vmcs_config.cpu_based_2nd_exec_ctrl &
957 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
958}
959
31299944 960static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
961{
962 return vmcs_config.cpu_based_2nd_exec_ctrl &
963 SECONDARY_EXEC_UNRESTRICTED_GUEST;
964}
965
31299944 966static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
967{
968 return vmcs_config.cpu_based_2nd_exec_ctrl &
969 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
970}
971
31299944 972static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 973{
6d3e435e 974 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
975}
976
31299944 977static inline bool cpu_has_vmx_vpid(void)
2384d2b3 978{
04547156
SY
979 return vmcs_config.cpu_based_2nd_exec_ctrl &
980 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
981}
982
31299944 983static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
984{
985 return vmcs_config.cpu_based_2nd_exec_ctrl &
986 SECONDARY_EXEC_RDTSCP;
987}
988
ad756a16
MJ
989static inline bool cpu_has_vmx_invpcid(void)
990{
991 return vmcs_config.cpu_based_2nd_exec_ctrl &
992 SECONDARY_EXEC_ENABLE_INVPCID;
993}
994
31299944 995static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
996{
997 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
998}
999
f5f48ee1
SY
1000static inline bool cpu_has_vmx_wbinvd_exit(void)
1001{
1002 return vmcs_config.cpu_based_2nd_exec_ctrl &
1003 SECONDARY_EXEC_WBINVD_EXITING;
1004}
1005
abc4fc58
AG
1006static inline bool cpu_has_vmx_shadow_vmcs(void)
1007{
1008 u64 vmx_msr;
1009 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1010 /* check if the cpu supports writing r/o exit information fields */
1011 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1012 return false;
1013
1014 return vmcs_config.cpu_based_2nd_exec_ctrl &
1015 SECONDARY_EXEC_SHADOW_VMCS;
1016}
1017
04547156
SY
1018static inline bool report_flexpriority(void)
1019{
1020 return flexpriority_enabled;
1021}
1022
fe3ef05c
NHE
1023static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1024{
1025 return vmcs12->cpu_based_vm_exec_control & bit;
1026}
1027
1028static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1029{
1030 return (vmcs12->cpu_based_vm_exec_control &
1031 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1032 (vmcs12->secondary_vm_exec_control & bit);
1033}
1034
644d711a
NHE
1035static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1036 struct kvm_vcpu *vcpu)
1037{
1038 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1039}
1040
1041static inline bool is_exception(u32 intr_info)
1042{
1043 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1044 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1045}
1046
1047static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
1048static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1049 struct vmcs12 *vmcs12,
1050 u32 reason, unsigned long qualification);
1051
8b9cf98c 1052static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1053{
1054 int i;
1055
a2fa3e9f 1056 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1057 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1058 return i;
1059 return -1;
1060}
1061
2384d2b3
SY
1062static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1063{
1064 struct {
1065 u64 vpid : 16;
1066 u64 rsvd : 48;
1067 u64 gva;
1068 } operand = { vpid, 0, gva };
1069
4ecac3fd 1070 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1071 /* CF==1 or ZF==1 --> rc = -1 */
1072 "; ja 1f ; ud2 ; 1:"
1073 : : "a"(&operand), "c"(ext) : "cc", "memory");
1074}
1075
1439442c
SY
1076static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1077{
1078 struct {
1079 u64 eptp, gpa;
1080 } operand = {eptp, gpa};
1081
4ecac3fd 1082 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1083 /* CF==1 or ZF==1 --> rc = -1 */
1084 "; ja 1f ; ud2 ; 1:\n"
1085 : : "a" (&operand), "c" (ext) : "cc", "memory");
1086}
1087
26bb0981 1088static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1089{
1090 int i;
1091
8b9cf98c 1092 i = __find_msr_index(vmx, msr);
a75beee6 1093 if (i >= 0)
a2fa3e9f 1094 return &vmx->guest_msrs[i];
8b6d44c7 1095 return NULL;
7725f0ba
AK
1096}
1097
6aa8b732
AK
1098static void vmcs_clear(struct vmcs *vmcs)
1099{
1100 u64 phys_addr = __pa(vmcs);
1101 u8 error;
1102
4ecac3fd 1103 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1104 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1105 : "cc", "memory");
1106 if (error)
1107 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1108 vmcs, phys_addr);
1109}
1110
d462b819
NHE
1111static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1112{
1113 vmcs_clear(loaded_vmcs->vmcs);
1114 loaded_vmcs->cpu = -1;
1115 loaded_vmcs->launched = 0;
1116}
1117
7725b894
DX
1118static void vmcs_load(struct vmcs *vmcs)
1119{
1120 u64 phys_addr = __pa(vmcs);
1121 u8 error;
1122
1123 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1124 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1125 : "cc", "memory");
1126 if (error)
2844d849 1127 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1128 vmcs, phys_addr);
1129}
1130
8f536b76
ZY
1131#ifdef CONFIG_KEXEC
1132/*
1133 * This bitmap is used to indicate whether the vmclear
1134 * operation is enabled on all cpus. All disabled by
1135 * default.
1136 */
1137static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1138
1139static inline void crash_enable_local_vmclear(int cpu)
1140{
1141 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1142}
1143
1144static inline void crash_disable_local_vmclear(int cpu)
1145{
1146 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1147}
1148
1149static inline int crash_local_vmclear_enabled(int cpu)
1150{
1151 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1152}
1153
1154static void crash_vmclear_local_loaded_vmcss(void)
1155{
1156 int cpu = raw_smp_processor_id();
1157 struct loaded_vmcs *v;
1158
1159 if (!crash_local_vmclear_enabled(cpu))
1160 return;
1161
1162 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1163 loaded_vmcss_on_cpu_link)
1164 vmcs_clear(v->vmcs);
1165}
1166#else
1167static inline void crash_enable_local_vmclear(int cpu) { }
1168static inline void crash_disable_local_vmclear(int cpu) { }
1169#endif /* CONFIG_KEXEC */
1170
d462b819 1171static void __loaded_vmcs_clear(void *arg)
6aa8b732 1172{
d462b819 1173 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1174 int cpu = raw_smp_processor_id();
6aa8b732 1175
d462b819
NHE
1176 if (loaded_vmcs->cpu != cpu)
1177 return; /* vcpu migration can race with cpu offline */
1178 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1179 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1180 crash_disable_local_vmclear(cpu);
d462b819 1181 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1182
1183 /*
1184 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1185 * is before setting loaded_vmcs->vcpu to -1 which is done in
1186 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1187 * then adds the vmcs into percpu list before it is deleted.
1188 */
1189 smp_wmb();
1190
d462b819 1191 loaded_vmcs_init(loaded_vmcs);
8f536b76 1192 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1193}
1194
d462b819 1195static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1196{
e6c7d321
XG
1197 int cpu = loaded_vmcs->cpu;
1198
1199 if (cpu != -1)
1200 smp_call_function_single(cpu,
1201 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1202}
1203
1760dd49 1204static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1205{
1206 if (vmx->vpid == 0)
1207 return;
1208
518c8aee
GJ
1209 if (cpu_has_vmx_invvpid_single())
1210 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1211}
1212
b9d762fa
GJ
1213static inline void vpid_sync_vcpu_global(void)
1214{
1215 if (cpu_has_vmx_invvpid_global())
1216 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1217}
1218
1219static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1220{
1221 if (cpu_has_vmx_invvpid_single())
1760dd49 1222 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1223 else
1224 vpid_sync_vcpu_global();
1225}
1226
1439442c
SY
1227static inline void ept_sync_global(void)
1228{
1229 if (cpu_has_vmx_invept_global())
1230 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1231}
1232
1233static inline void ept_sync_context(u64 eptp)
1234{
089d034e 1235 if (enable_ept) {
1439442c
SY
1236 if (cpu_has_vmx_invept_context())
1237 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1238 else
1239 ept_sync_global();
1240 }
1241}
1242
96304217 1243static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1244{
5e520e62 1245 unsigned long value;
6aa8b732 1246
5e520e62
AK
1247 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1248 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1249 return value;
1250}
1251
96304217 1252static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1253{
1254 return vmcs_readl(field);
1255}
1256
96304217 1257static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1258{
1259 return vmcs_readl(field);
1260}
1261
96304217 1262static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1263{
05b3e0c2 1264#ifdef CONFIG_X86_64
6aa8b732
AK
1265 return vmcs_readl(field);
1266#else
1267 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1268#endif
1269}
1270
e52de1b8
AK
1271static noinline void vmwrite_error(unsigned long field, unsigned long value)
1272{
1273 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1274 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1275 dump_stack();
1276}
1277
6aa8b732
AK
1278static void vmcs_writel(unsigned long field, unsigned long value)
1279{
1280 u8 error;
1281
4ecac3fd 1282 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1283 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1284 if (unlikely(error))
1285 vmwrite_error(field, value);
6aa8b732
AK
1286}
1287
1288static void vmcs_write16(unsigned long field, u16 value)
1289{
1290 vmcs_writel(field, value);
1291}
1292
1293static void vmcs_write32(unsigned long field, u32 value)
1294{
1295 vmcs_writel(field, value);
1296}
1297
1298static void vmcs_write64(unsigned long field, u64 value)
1299{
6aa8b732 1300 vmcs_writel(field, value);
7682f2d0 1301#ifndef CONFIG_X86_64
6aa8b732
AK
1302 asm volatile ("");
1303 vmcs_writel(field+1, value >> 32);
1304#endif
1305}
1306
2ab455cc
AL
1307static void vmcs_clear_bits(unsigned long field, u32 mask)
1308{
1309 vmcs_writel(field, vmcs_readl(field) & ~mask);
1310}
1311
1312static void vmcs_set_bits(unsigned long field, u32 mask)
1313{
1314 vmcs_writel(field, vmcs_readl(field) | mask);
1315}
1316
2fb92db1
AK
1317static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1318{
1319 vmx->segment_cache.bitmask = 0;
1320}
1321
1322static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1323 unsigned field)
1324{
1325 bool ret;
1326 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1327
1328 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1329 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1330 vmx->segment_cache.bitmask = 0;
1331 }
1332 ret = vmx->segment_cache.bitmask & mask;
1333 vmx->segment_cache.bitmask |= mask;
1334 return ret;
1335}
1336
1337static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1338{
1339 u16 *p = &vmx->segment_cache.seg[seg].selector;
1340
1341 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1342 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1343 return *p;
1344}
1345
1346static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1347{
1348 ulong *p = &vmx->segment_cache.seg[seg].base;
1349
1350 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1351 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1352 return *p;
1353}
1354
1355static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1356{
1357 u32 *p = &vmx->segment_cache.seg[seg].limit;
1358
1359 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1360 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1361 return *p;
1362}
1363
1364static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1365{
1366 u32 *p = &vmx->segment_cache.seg[seg].ar;
1367
1368 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1369 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1370 return *p;
1371}
1372
abd3f2d6
AK
1373static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1374{
1375 u32 eb;
1376
fd7373cc
JK
1377 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1378 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1379 if ((vcpu->guest_debug &
1380 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1381 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1382 eb |= 1u << BP_VECTOR;
7ffd92c5 1383 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1384 eb = ~0;
089d034e 1385 if (enable_ept)
1439442c 1386 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1387 if (vcpu->fpu_active)
1388 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1389
1390 /* When we are running a nested L2 guest and L1 specified for it a
1391 * certain exception bitmap, we must trap the same exceptions and pass
1392 * them to L1. When running L2, we will only handle the exceptions
1393 * specified above if L1 did not want them.
1394 */
1395 if (is_guest_mode(vcpu))
1396 eb |= get_vmcs12(vcpu)->exception_bitmap;
1397
abd3f2d6
AK
1398 vmcs_write32(EXCEPTION_BITMAP, eb);
1399}
1400
8bf00a52
GN
1401static void clear_atomic_switch_msr_special(unsigned long entry,
1402 unsigned long exit)
1403{
1404 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1405 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1406}
1407
61d2ef2c
AK
1408static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1409{
1410 unsigned i;
1411 struct msr_autoload *m = &vmx->msr_autoload;
1412
8bf00a52
GN
1413 switch (msr) {
1414 case MSR_EFER:
1415 if (cpu_has_load_ia32_efer) {
1416 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1417 VM_EXIT_LOAD_IA32_EFER);
1418 return;
1419 }
1420 break;
1421 case MSR_CORE_PERF_GLOBAL_CTRL:
1422 if (cpu_has_load_perf_global_ctrl) {
1423 clear_atomic_switch_msr_special(
1424 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1425 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1426 return;
1427 }
1428 break;
110312c8
AK
1429 }
1430
61d2ef2c
AK
1431 for (i = 0; i < m->nr; ++i)
1432 if (m->guest[i].index == msr)
1433 break;
1434
1435 if (i == m->nr)
1436 return;
1437 --m->nr;
1438 m->guest[i] = m->guest[m->nr];
1439 m->host[i] = m->host[m->nr];
1440 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1441 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1442}
1443
8bf00a52
GN
1444static void add_atomic_switch_msr_special(unsigned long entry,
1445 unsigned long exit, unsigned long guest_val_vmcs,
1446 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1447{
1448 vmcs_write64(guest_val_vmcs, guest_val);
1449 vmcs_write64(host_val_vmcs, host_val);
1450 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1451 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1452}
1453
61d2ef2c
AK
1454static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1455 u64 guest_val, u64 host_val)
1456{
1457 unsigned i;
1458 struct msr_autoload *m = &vmx->msr_autoload;
1459
8bf00a52
GN
1460 switch (msr) {
1461 case MSR_EFER:
1462 if (cpu_has_load_ia32_efer) {
1463 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1464 VM_EXIT_LOAD_IA32_EFER,
1465 GUEST_IA32_EFER,
1466 HOST_IA32_EFER,
1467 guest_val, host_val);
1468 return;
1469 }
1470 break;
1471 case MSR_CORE_PERF_GLOBAL_CTRL:
1472 if (cpu_has_load_perf_global_ctrl) {
1473 add_atomic_switch_msr_special(
1474 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1475 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1476 GUEST_IA32_PERF_GLOBAL_CTRL,
1477 HOST_IA32_PERF_GLOBAL_CTRL,
1478 guest_val, host_val);
1479 return;
1480 }
1481 break;
110312c8
AK
1482 }
1483
61d2ef2c
AK
1484 for (i = 0; i < m->nr; ++i)
1485 if (m->guest[i].index == msr)
1486 break;
1487
e7fc6f93
GN
1488 if (i == NR_AUTOLOAD_MSRS) {
1489 printk_once(KERN_WARNING"Not enough mst switch entries. "
1490 "Can't add msr %x\n", msr);
1491 return;
1492 } else if (i == m->nr) {
61d2ef2c
AK
1493 ++m->nr;
1494 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1495 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1496 }
1497
1498 m->guest[i].index = msr;
1499 m->guest[i].value = guest_val;
1500 m->host[i].index = msr;
1501 m->host[i].value = host_val;
1502}
1503
33ed6329
AK
1504static void reload_tss(void)
1505{
33ed6329
AK
1506 /*
1507 * VT restores TR but not its size. Useless.
1508 */
d359192f 1509 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1510 struct desc_struct *descs;
33ed6329 1511
d359192f 1512 descs = (void *)gdt->address;
33ed6329
AK
1513 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1514 load_TR_desc();
33ed6329
AK
1515}
1516
92c0d900 1517static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1518{
3a34a881 1519 u64 guest_efer;
51c6cf66
AK
1520 u64 ignore_bits;
1521
f6801dff 1522 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1523
51c6cf66 1524 /*
0fa06071 1525 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1526 * outside long mode
1527 */
1528 ignore_bits = EFER_NX | EFER_SCE;
1529#ifdef CONFIG_X86_64
1530 ignore_bits |= EFER_LMA | EFER_LME;
1531 /* SCE is meaningful only in long mode on Intel */
1532 if (guest_efer & EFER_LMA)
1533 ignore_bits &= ~(u64)EFER_SCE;
1534#endif
51c6cf66
AK
1535 guest_efer &= ~ignore_bits;
1536 guest_efer |= host_efer & ignore_bits;
26bb0981 1537 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1538 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1539
1540 clear_atomic_switch_msr(vmx, MSR_EFER);
1541 /* On ept, can't emulate nx, and must switch nx atomically */
1542 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1543 guest_efer = vmx->vcpu.arch.efer;
1544 if (!(guest_efer & EFER_LMA))
1545 guest_efer &= ~EFER_LME;
1546 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1547 return false;
1548 }
1549
26bb0981 1550 return true;
51c6cf66
AK
1551}
1552
2d49ec72
GN
1553static unsigned long segment_base(u16 selector)
1554{
d359192f 1555 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1556 struct desc_struct *d;
1557 unsigned long table_base;
1558 unsigned long v;
1559
1560 if (!(selector & ~3))
1561 return 0;
1562
d359192f 1563 table_base = gdt->address;
2d49ec72
GN
1564
1565 if (selector & 4) { /* from ldt */
1566 u16 ldt_selector = kvm_read_ldt();
1567
1568 if (!(ldt_selector & ~3))
1569 return 0;
1570
1571 table_base = segment_base(ldt_selector);
1572 }
1573 d = (struct desc_struct *)(table_base + (selector & ~7));
1574 v = get_desc_base(d);
1575#ifdef CONFIG_X86_64
1576 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1577 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1578#endif
1579 return v;
1580}
1581
1582static inline unsigned long kvm_read_tr_base(void)
1583{
1584 u16 tr;
1585 asm("str %0" : "=g"(tr));
1586 return segment_base(tr);
1587}
1588
04d2cc77 1589static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1590{
04d2cc77 1591 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1592 int i;
04d2cc77 1593
a2fa3e9f 1594 if (vmx->host_state.loaded)
33ed6329
AK
1595 return;
1596
a2fa3e9f 1597 vmx->host_state.loaded = 1;
33ed6329
AK
1598 /*
1599 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1600 * allow segment selectors with cpl > 0 or ti == 1.
1601 */
d6e88aec 1602 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1603 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1604 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1605 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1606 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1607 vmx->host_state.fs_reload_needed = 0;
1608 } else {
33ed6329 1609 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1610 vmx->host_state.fs_reload_needed = 1;
33ed6329 1611 }
9581d442 1612 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1613 if (!(vmx->host_state.gs_sel & 7))
1614 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1615 else {
1616 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1617 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1618 }
1619
b2da15ac
AK
1620#ifdef CONFIG_X86_64
1621 savesegment(ds, vmx->host_state.ds_sel);
1622 savesegment(es, vmx->host_state.es_sel);
1623#endif
1624
33ed6329
AK
1625#ifdef CONFIG_X86_64
1626 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1627 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1628#else
a2fa3e9f
GH
1629 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1630 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1631#endif
707c0874
AK
1632
1633#ifdef CONFIG_X86_64
c8770e7b
AK
1634 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1635 if (is_long_mode(&vmx->vcpu))
44ea2b17 1636 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1637#endif
26bb0981
AK
1638 for (i = 0; i < vmx->save_nmsrs; ++i)
1639 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1640 vmx->guest_msrs[i].data,
1641 vmx->guest_msrs[i].mask);
33ed6329
AK
1642}
1643
a9b21b62 1644static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1645{
a2fa3e9f 1646 if (!vmx->host_state.loaded)
33ed6329
AK
1647 return;
1648
e1beb1d3 1649 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1650 vmx->host_state.loaded = 0;
c8770e7b
AK
1651#ifdef CONFIG_X86_64
1652 if (is_long_mode(&vmx->vcpu))
1653 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1654#endif
152d3f2f 1655 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1656 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1657#ifdef CONFIG_X86_64
9581d442 1658 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1659#else
1660 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1661#endif
33ed6329 1662 }
0a77fe4c
AK
1663 if (vmx->host_state.fs_reload_needed)
1664 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1665#ifdef CONFIG_X86_64
1666 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1667 loadsegment(ds, vmx->host_state.ds_sel);
1668 loadsegment(es, vmx->host_state.es_sel);
1669 }
b2da15ac 1670#endif
152d3f2f 1671 reload_tss();
44ea2b17 1672#ifdef CONFIG_X86_64
c8770e7b 1673 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1674#endif
b1a74bf8
SS
1675 /*
1676 * If the FPU is not active (through the host task or
1677 * the guest vcpu), then restore the cr0.TS bit.
1678 */
1679 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1680 stts();
3444d7da 1681 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1682}
1683
a9b21b62
AK
1684static void vmx_load_host_state(struct vcpu_vmx *vmx)
1685{
1686 preempt_disable();
1687 __vmx_load_host_state(vmx);
1688 preempt_enable();
1689}
1690
6aa8b732
AK
1691/*
1692 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1693 * vcpu mutex is already taken.
1694 */
15ad7146 1695static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1696{
a2fa3e9f 1697 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1698 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1699
4610c9cc
DX
1700 if (!vmm_exclusive)
1701 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1702 else if (vmx->loaded_vmcs->cpu != cpu)
1703 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1704
d462b819
NHE
1705 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1706 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1707 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1708 }
1709
d462b819 1710 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1711 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1712 unsigned long sysenter_esp;
1713
a8eeb04a 1714 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1715 local_irq_disable();
8f536b76 1716 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1717
1718 /*
1719 * Read loaded_vmcs->cpu should be before fetching
1720 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1721 * See the comments in __loaded_vmcs_clear().
1722 */
1723 smp_rmb();
1724
d462b819
NHE
1725 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1726 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1727 crash_enable_local_vmclear(cpu);
92fe13be
DX
1728 local_irq_enable();
1729
6aa8b732
AK
1730 /*
1731 * Linux uses per-cpu TSS and GDT, so set these when switching
1732 * processors.
1733 */
d6e88aec 1734 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1735 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1736
1737 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1738 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1739 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1740 }
6aa8b732
AK
1741}
1742
1743static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1744{
a9b21b62 1745 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1746 if (!vmm_exclusive) {
d462b819
NHE
1747 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1748 vcpu->cpu = -1;
4610c9cc
DX
1749 kvm_cpu_vmxoff();
1750 }
6aa8b732
AK
1751}
1752
5fd86fcf
AK
1753static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1754{
81231c69
AK
1755 ulong cr0;
1756
5fd86fcf
AK
1757 if (vcpu->fpu_active)
1758 return;
1759 vcpu->fpu_active = 1;
81231c69
AK
1760 cr0 = vmcs_readl(GUEST_CR0);
1761 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1762 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1763 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1764 update_exception_bitmap(vcpu);
edcafe3c 1765 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1766 if (is_guest_mode(vcpu))
1767 vcpu->arch.cr0_guest_owned_bits &=
1768 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1769 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1770}
1771
edcafe3c
AK
1772static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1773
fe3ef05c
NHE
1774/*
1775 * Return the cr0 value that a nested guest would read. This is a combination
1776 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1777 * its hypervisor (cr0_read_shadow).
1778 */
1779static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1780{
1781 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1782 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1783}
1784static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1785{
1786 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1787 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1788}
1789
5fd86fcf
AK
1790static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1791{
36cf24e0
NHE
1792 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1793 * set this *before* calling this function.
1794 */
edcafe3c 1795 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1796 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1797 update_exception_bitmap(vcpu);
edcafe3c
AK
1798 vcpu->arch.cr0_guest_owned_bits = 0;
1799 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1800 if (is_guest_mode(vcpu)) {
1801 /*
1802 * L1's specified read shadow might not contain the TS bit,
1803 * so now that we turned on shadowing of this bit, we need to
1804 * set this bit of the shadow. Like in nested_vmx_run we need
1805 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1806 * up-to-date here because we just decached cr0.TS (and we'll
1807 * only update vmcs12->guest_cr0 on nested exit).
1808 */
1809 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1810 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1811 (vcpu->arch.cr0 & X86_CR0_TS);
1812 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1813 } else
1814 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1815}
1816
6aa8b732
AK
1817static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1818{
78ac8b47 1819 unsigned long rflags, save_rflags;
345dcaa8 1820
6de12732
AK
1821 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1822 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1823 rflags = vmcs_readl(GUEST_RFLAGS);
1824 if (to_vmx(vcpu)->rmode.vm86_active) {
1825 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1826 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1827 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1828 }
1829 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1830 }
6de12732 1831 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1832}
1833
1834static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1835{
6de12732
AK
1836 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1837 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1838 if (to_vmx(vcpu)->rmode.vm86_active) {
1839 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1840 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1841 }
6aa8b732
AK
1842 vmcs_writel(GUEST_RFLAGS, rflags);
1843}
1844
2809f5d2
GC
1845static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1846{
1847 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1848 int ret = 0;
1849
1850 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1851 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1852 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1853 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1854
1855 return ret & mask;
1856}
1857
1858static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1859{
1860 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1861 u32 interruptibility = interruptibility_old;
1862
1863 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1864
48005f64 1865 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1866 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1867 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1868 interruptibility |= GUEST_INTR_STATE_STI;
1869
1870 if ((interruptibility != interruptibility_old))
1871 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1872}
1873
6aa8b732
AK
1874static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1875{
1876 unsigned long rip;
6aa8b732 1877
5fdbf976 1878 rip = kvm_rip_read(vcpu);
6aa8b732 1879 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1880 kvm_rip_write(vcpu, rip);
6aa8b732 1881
2809f5d2
GC
1882 /* skipping an emulated instruction also counts */
1883 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1884}
1885
0b6ac343
NHE
1886/*
1887 * KVM wants to inject page-faults which it got to the guest. This function
1888 * checks whether in a nested guest, we need to inject them to L1 or L2.
1889 * This function assumes it is called with the exit reason in vmcs02 being
1890 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1891 * is running).
1892 */
1893static int nested_pf_handled(struct kvm_vcpu *vcpu)
1894{
1895 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1896
1897 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1898 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1899 return 0;
1900
1901 nested_vmx_vmexit(vcpu);
1902 return 1;
1903}
1904
298101da 1905static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1906 bool has_error_code, u32 error_code,
1907 bool reinject)
298101da 1908{
77ab6db0 1909 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1910 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1911
0b6ac343
NHE
1912 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1913 nested_pf_handled(vcpu))
1914 return;
1915
8ab2d2e2 1916 if (has_error_code) {
77ab6db0 1917 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1918 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1919 }
77ab6db0 1920
7ffd92c5 1921 if (vmx->rmode.vm86_active) {
71f9833b
SH
1922 int inc_eip = 0;
1923 if (kvm_exception_is_soft(nr))
1924 inc_eip = vcpu->arch.event_exit_inst_len;
1925 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1926 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1927 return;
1928 }
1929
66fd3f7f
GN
1930 if (kvm_exception_is_soft(nr)) {
1931 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1932 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1933 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1934 } else
1935 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1936
1937 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1938}
1939
4e47c7a6
SY
1940static bool vmx_rdtscp_supported(void)
1941{
1942 return cpu_has_vmx_rdtscp();
1943}
1944
ad756a16
MJ
1945static bool vmx_invpcid_supported(void)
1946{
1947 return cpu_has_vmx_invpcid() && enable_ept;
1948}
1949
a75beee6
ED
1950/*
1951 * Swap MSR entry in host/guest MSR entry array.
1952 */
8b9cf98c 1953static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1954{
26bb0981 1955 struct shared_msr_entry tmp;
a2fa3e9f
GH
1956
1957 tmp = vmx->guest_msrs[to];
1958 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1959 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1960}
1961
8d14695f
YZ
1962static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1963{
1964 unsigned long *msr_bitmap;
1965
1966 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1967 if (is_long_mode(vcpu))
1968 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1969 else
1970 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1971 } else {
1972 if (is_long_mode(vcpu))
1973 msr_bitmap = vmx_msr_bitmap_longmode;
1974 else
1975 msr_bitmap = vmx_msr_bitmap_legacy;
1976 }
1977
1978 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1979}
1980
e38aea3e
AK
1981/*
1982 * Set up the vmcs to automatically save and restore system
1983 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1984 * mode, as fiddling with msrs is very expensive.
1985 */
8b9cf98c 1986static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1987{
26bb0981 1988 int save_nmsrs, index;
e38aea3e 1989
a75beee6
ED
1990 save_nmsrs = 0;
1991#ifdef CONFIG_X86_64
8b9cf98c 1992 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1993 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1994 if (index >= 0)
8b9cf98c
RR
1995 move_msr_up(vmx, index, save_nmsrs++);
1996 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1997 if (index >= 0)
8b9cf98c
RR
1998 move_msr_up(vmx, index, save_nmsrs++);
1999 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2000 if (index >= 0)
8b9cf98c 2001 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2002 index = __find_msr_index(vmx, MSR_TSC_AUX);
2003 if (index >= 0 && vmx->rdtscp_enabled)
2004 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2005 /*
8c06585d 2006 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2007 * if efer.sce is enabled.
2008 */
8c06585d 2009 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2010 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2011 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2012 }
2013#endif
92c0d900
AK
2014 index = __find_msr_index(vmx, MSR_EFER);
2015 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2016 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2017
26bb0981 2018 vmx->save_nmsrs = save_nmsrs;
5897297b 2019
8d14695f
YZ
2020 if (cpu_has_vmx_msr_bitmap())
2021 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2022}
2023
6aa8b732
AK
2024/*
2025 * reads and returns guest's timestamp counter "register"
2026 * guest_tsc = host_tsc + tsc_offset -- 21.3
2027 */
2028static u64 guest_read_tsc(void)
2029{
2030 u64 host_tsc, tsc_offset;
2031
2032 rdtscll(host_tsc);
2033 tsc_offset = vmcs_read64(TSC_OFFSET);
2034 return host_tsc + tsc_offset;
2035}
2036
d5c1785d
NHE
2037/*
2038 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2039 * counter, even if a nested guest (L2) is currently running.
2040 */
886b470c 2041u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2042{
886b470c 2043 u64 tsc_offset;
d5c1785d 2044
d5c1785d
NHE
2045 tsc_offset = is_guest_mode(vcpu) ?
2046 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2047 vmcs_read64(TSC_OFFSET);
2048 return host_tsc + tsc_offset;
2049}
2050
4051b188 2051/*
cc578287
ZA
2052 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2053 * software catchup for faster rates on slower CPUs.
4051b188 2054 */
cc578287 2055static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2056{
cc578287
ZA
2057 if (!scale)
2058 return;
2059
2060 if (user_tsc_khz > tsc_khz) {
2061 vcpu->arch.tsc_catchup = 1;
2062 vcpu->arch.tsc_always_catchup = 1;
2063 } else
2064 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2065}
2066
ba904635
WA
2067static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2068{
2069 return vmcs_read64(TSC_OFFSET);
2070}
2071
6aa8b732 2072/*
99e3e30a 2073 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2074 */
99e3e30a 2075static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2076{
27fc51b2 2077 if (is_guest_mode(vcpu)) {
7991825b 2078 /*
27fc51b2
NHE
2079 * We're here if L1 chose not to trap WRMSR to TSC. According
2080 * to the spec, this should set L1's TSC; The offset that L1
2081 * set for L2 remains unchanged, and still needs to be added
2082 * to the newly set TSC to get L2's TSC.
7991825b 2083 */
27fc51b2
NHE
2084 struct vmcs12 *vmcs12;
2085 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2086 /* recalculate vmcs02.TSC_OFFSET: */
2087 vmcs12 = get_vmcs12(vcpu);
2088 vmcs_write64(TSC_OFFSET, offset +
2089 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2090 vmcs12->tsc_offset : 0));
2091 } else {
2092 vmcs_write64(TSC_OFFSET, offset);
2093 }
6aa8b732
AK
2094}
2095
f1e2b260 2096static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2097{
2098 u64 offset = vmcs_read64(TSC_OFFSET);
2099 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2100 if (is_guest_mode(vcpu)) {
2101 /* Even when running L2, the adjustment needs to apply to L1 */
2102 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2103 }
e48672fa
ZA
2104}
2105
857e4099
JR
2106static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2107{
2108 return target_tsc - native_read_tsc();
2109}
2110
801d3424
NHE
2111static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2112{
2113 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2114 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2115}
2116
2117/*
2118 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2119 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2120 * all guests if the "nested" module option is off, and can also be disabled
2121 * for a single guest by disabling its VMX cpuid bit.
2122 */
2123static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2124{
2125 return nested && guest_cpuid_has_vmx(vcpu);
2126}
2127
b87a51ae
NHE
2128/*
2129 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2130 * returned for the various VMX controls MSRs when nested VMX is enabled.
2131 * The same values should also be used to verify that vmcs12 control fields are
2132 * valid during nested entry from L1 to L2.
2133 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2134 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2135 * bit in the high half is on if the corresponding bit in the control field
2136 * may be on. See also vmx_control_verify().
2137 * TODO: allow these variables to be modified (downgraded) by module options
2138 * or other means.
2139 */
2140static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2141static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2142static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2143static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2144static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
c18911a2 2145static u32 nested_vmx_misc_low, nested_vmx_misc_high;
b87a51ae
NHE
2146static __init void nested_vmx_setup_ctls_msrs(void)
2147{
2148 /*
2149 * Note that as a general rule, the high half of the MSRs (bits in
2150 * the control fields which may be 1) should be initialized by the
2151 * intersection of the underlying hardware's MSR (i.e., features which
2152 * can be supported) and the list of features we want to expose -
2153 * because they are known to be properly supported in our code.
2154 * Also, usually, the low half of the MSRs (bits which must be 1) can
2155 * be set to 0, meaning that L1 may turn off any of these bits. The
2156 * reason is that if one of these bits is necessary, it will appear
2157 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2158 * fields of vmcs01 and vmcs02, will turn these bits off - and
2159 * nested_vmx_exit_handled() will not pass related exits to L1.
2160 * These rules have exceptions below.
2161 */
2162
2163 /* pin-based controls */
eabeaacc
JK
2164 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2165 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2166 /*
2167 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2168 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2169 */
eabeaacc
JK
2170 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2171 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
0238ea91
JK
2172 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2173 PIN_BASED_VMX_PREEMPTION_TIMER;
eabeaacc 2174 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2175
33fb20c3
JK
2176 /*
2177 * Exit controls
2178 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2179 * 17 must be 1.
2180 */
2181 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b6f1250e 2182 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
2183#ifdef CONFIG_X86_64
2184 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2185#else
2186 nested_vmx_exit_ctls_high = 0;
2187#endif
33fb20c3 2188 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2189
2190 /* entry controls */
2191 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2192 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
33fb20c3
JK
2193 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2194 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2195 nested_vmx_entry_ctls_high &=
2196 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
33fb20c3 2197 nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2198
2199 /* cpu-based controls */
2200 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2201 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2202 nested_vmx_procbased_ctls_low = 0;
2203 nested_vmx_procbased_ctls_high &=
2204 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2205 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2206 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2207 CPU_BASED_CR3_STORE_EXITING |
2208#ifdef CONFIG_X86_64
2209 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2210#endif
2211 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2212 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2213 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
d6851fbe 2214 CPU_BASED_PAUSE_EXITING |
b87a51ae
NHE
2215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2216 /*
2217 * We can allow some features even when not supported by the
2218 * hardware. For example, L1 can specify an MSR bitmap - and we
2219 * can use it to avoid exits to L1 - even when L0 runs L2
2220 * without MSR bitmaps.
2221 */
2222 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2223
2224 /* secondary cpu-based controls */
2225 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2226 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2227 nested_vmx_secondary_ctls_low = 0;
2228 nested_vmx_secondary_ctls_high &=
d6851fbe
JK
2229 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2230 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2
JK
2231
2232 /* miscellaneous data */
2233 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
0238ea91
JK
2234 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2235 VMX_MISC_SAVE_EFER_LMA;
c18911a2 2236 nested_vmx_misc_high = 0;
b87a51ae
NHE
2237}
2238
2239static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2240{
2241 /*
2242 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2243 */
2244 return ((control & high) | low) == control;
2245}
2246
2247static inline u64 vmx_control_msr(u32 low, u32 high)
2248{
2249 return low | ((u64)high << 32);
2250}
2251
2252/*
2253 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2254 * also let it use VMX-specific MSRs.
2255 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2256 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2257 * like all other MSRs).
2258 */
2259static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2260{
2261 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2262 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2263 /*
2264 * According to the spec, processors which do not support VMX
2265 * should throw a #GP(0) when VMX capability MSRs are read.
2266 */
2267 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2268 return 1;
2269 }
2270
2271 switch (msr_index) {
2272 case MSR_IA32_FEATURE_CONTROL:
2273 *pdata = 0;
2274 break;
2275 case MSR_IA32_VMX_BASIC:
2276 /*
2277 * This MSR reports some information about VMX support. We
2278 * should return information about the VMX we emulate for the
2279 * guest, and the VMCS structure we give it - not about the
2280 * VMX support of the underlying hardware.
2281 */
2282 *pdata = VMCS12_REVISION |
2283 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2284 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2285 break;
2286 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2287 case MSR_IA32_VMX_PINBASED_CTLS:
2288 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2289 nested_vmx_pinbased_ctls_high);
2290 break;
2291 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2292 case MSR_IA32_VMX_PROCBASED_CTLS:
2293 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2294 nested_vmx_procbased_ctls_high);
2295 break;
2296 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2297 case MSR_IA32_VMX_EXIT_CTLS:
2298 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2299 nested_vmx_exit_ctls_high);
2300 break;
2301 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2302 case MSR_IA32_VMX_ENTRY_CTLS:
2303 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2304 nested_vmx_entry_ctls_high);
2305 break;
2306 case MSR_IA32_VMX_MISC:
c18911a2
JK
2307 *pdata = vmx_control_msr(nested_vmx_misc_low,
2308 nested_vmx_misc_high);
b87a51ae
NHE
2309 break;
2310 /*
2311 * These MSRs specify bits which the guest must keep fixed (on or off)
2312 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2313 * We picked the standard core2 setting.
2314 */
2315#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2316#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2317 case MSR_IA32_VMX_CR0_FIXED0:
2318 *pdata = VMXON_CR0_ALWAYSON;
2319 break;
2320 case MSR_IA32_VMX_CR0_FIXED1:
2321 *pdata = -1ULL;
2322 break;
2323 case MSR_IA32_VMX_CR4_FIXED0:
2324 *pdata = VMXON_CR4_ALWAYSON;
2325 break;
2326 case MSR_IA32_VMX_CR4_FIXED1:
2327 *pdata = -1ULL;
2328 break;
2329 case MSR_IA32_VMX_VMCS_ENUM:
2330 *pdata = 0x1f;
2331 break;
2332 case MSR_IA32_VMX_PROCBASED_CTLS2:
2333 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2334 nested_vmx_secondary_ctls_high);
2335 break;
2336 case MSR_IA32_VMX_EPT_VPID_CAP:
2337 /* Currently, no nested ept or nested vpid */
2338 *pdata = 0;
2339 break;
2340 default:
2341 return 0;
2342 }
2343
2344 return 1;
2345}
2346
2347static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2348{
2349 if (!nested_vmx_allowed(vcpu))
2350 return 0;
2351
2352 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2353 /* TODO: the right thing. */
2354 return 1;
2355 /*
2356 * No need to treat VMX capability MSRs specially: If we don't handle
2357 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2358 */
2359 return 0;
2360}
2361
6aa8b732
AK
2362/*
2363 * Reads an msr value (of 'msr_index') into 'pdata'.
2364 * Returns 0 on success, non-0 otherwise.
2365 * Assumes vcpu_load() was already called.
2366 */
2367static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2368{
2369 u64 data;
26bb0981 2370 struct shared_msr_entry *msr;
6aa8b732
AK
2371
2372 if (!pdata) {
2373 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2374 return -EINVAL;
2375 }
2376
2377 switch (msr_index) {
05b3e0c2 2378#ifdef CONFIG_X86_64
6aa8b732
AK
2379 case MSR_FS_BASE:
2380 data = vmcs_readl(GUEST_FS_BASE);
2381 break;
2382 case MSR_GS_BASE:
2383 data = vmcs_readl(GUEST_GS_BASE);
2384 break;
44ea2b17
AK
2385 case MSR_KERNEL_GS_BASE:
2386 vmx_load_host_state(to_vmx(vcpu));
2387 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2388 break;
26bb0981 2389#endif
6aa8b732 2390 case MSR_EFER:
3bab1f5d 2391 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2392 case MSR_IA32_TSC:
6aa8b732
AK
2393 data = guest_read_tsc();
2394 break;
2395 case MSR_IA32_SYSENTER_CS:
2396 data = vmcs_read32(GUEST_SYSENTER_CS);
2397 break;
2398 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2399 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2400 break;
2401 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2402 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2403 break;
4e47c7a6
SY
2404 case MSR_TSC_AUX:
2405 if (!to_vmx(vcpu)->rdtscp_enabled)
2406 return 1;
2407 /* Otherwise falls through */
6aa8b732 2408 default:
b87a51ae
NHE
2409 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2410 return 0;
8b9cf98c 2411 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2412 if (msr) {
2413 data = msr->data;
2414 break;
6aa8b732 2415 }
3bab1f5d 2416 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2417 }
2418
2419 *pdata = data;
2420 return 0;
2421}
2422
2423/*
2424 * Writes msr value into into the appropriate "register".
2425 * Returns 0 on success, non-0 otherwise.
2426 * Assumes vcpu_load() was already called.
2427 */
8fe8ab46 2428static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2429{
a2fa3e9f 2430 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2431 struct shared_msr_entry *msr;
2cc51560 2432 int ret = 0;
8fe8ab46
WA
2433 u32 msr_index = msr_info->index;
2434 u64 data = msr_info->data;
2cc51560 2435
6aa8b732 2436 switch (msr_index) {
3bab1f5d 2437 case MSR_EFER:
8fe8ab46 2438 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2439 break;
16175a79 2440#ifdef CONFIG_X86_64
6aa8b732 2441 case MSR_FS_BASE:
2fb92db1 2442 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2443 vmcs_writel(GUEST_FS_BASE, data);
2444 break;
2445 case MSR_GS_BASE:
2fb92db1 2446 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2447 vmcs_writel(GUEST_GS_BASE, data);
2448 break;
44ea2b17
AK
2449 case MSR_KERNEL_GS_BASE:
2450 vmx_load_host_state(vmx);
2451 vmx->msr_guest_kernel_gs_base = data;
2452 break;
6aa8b732
AK
2453#endif
2454 case MSR_IA32_SYSENTER_CS:
2455 vmcs_write32(GUEST_SYSENTER_CS, data);
2456 break;
2457 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2458 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2459 break;
2460 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2461 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2462 break;
af24a4e4 2463 case MSR_IA32_TSC:
8fe8ab46 2464 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2465 break;
468d472f
SY
2466 case MSR_IA32_CR_PAT:
2467 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2468 vmcs_write64(GUEST_IA32_PAT, data);
2469 vcpu->arch.pat = data;
2470 break;
2471 }
8fe8ab46 2472 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2473 break;
ba904635
WA
2474 case MSR_IA32_TSC_ADJUST:
2475 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6
SY
2476 break;
2477 case MSR_TSC_AUX:
2478 if (!vmx->rdtscp_enabled)
2479 return 1;
2480 /* Check reserved bit, higher 32 bits should be zero */
2481 if ((data >> 32) != 0)
2482 return 1;
2483 /* Otherwise falls through */
6aa8b732 2484 default:
b87a51ae
NHE
2485 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2486 break;
8b9cf98c 2487 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2488 if (msr) {
2489 msr->data = data;
2225fd56
AK
2490 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2491 preempt_disable();
9ee73970
AK
2492 kvm_set_shared_msr(msr->index, msr->data,
2493 msr->mask);
2225fd56
AK
2494 preempt_enable();
2495 }
3bab1f5d 2496 break;
6aa8b732 2497 }
8fe8ab46 2498 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2499 }
2500
2cc51560 2501 return ret;
6aa8b732
AK
2502}
2503
5fdbf976 2504static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2505{
5fdbf976
MT
2506 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2507 switch (reg) {
2508 case VCPU_REGS_RSP:
2509 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2510 break;
2511 case VCPU_REGS_RIP:
2512 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2513 break;
6de4f3ad
AK
2514 case VCPU_EXREG_PDPTR:
2515 if (enable_ept)
2516 ept_save_pdptrs(vcpu);
2517 break;
5fdbf976
MT
2518 default:
2519 break;
2520 }
6aa8b732
AK
2521}
2522
6aa8b732
AK
2523static __init int cpu_has_kvm_support(void)
2524{
6210e37b 2525 return cpu_has_vmx();
6aa8b732
AK
2526}
2527
2528static __init int vmx_disabled_by_bios(void)
2529{
2530 u64 msr;
2531
2532 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2533 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2534 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2535 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2536 && tboot_enabled())
2537 return 1;
23f3e991 2538 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2539 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2540 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2541 && !tboot_enabled()) {
2542 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2543 "activate TXT before enabling KVM\n");
cafd6659 2544 return 1;
f9335afe 2545 }
23f3e991
JC
2546 /* launched w/o TXT and VMX disabled */
2547 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2548 && !tboot_enabled())
2549 return 1;
cafd6659
SW
2550 }
2551
2552 return 0;
6aa8b732
AK
2553}
2554
7725b894
DX
2555static void kvm_cpu_vmxon(u64 addr)
2556{
2557 asm volatile (ASM_VMX_VMXON_RAX
2558 : : "a"(&addr), "m"(addr)
2559 : "memory", "cc");
2560}
2561
10474ae8 2562static int hardware_enable(void *garbage)
6aa8b732
AK
2563{
2564 int cpu = raw_smp_processor_id();
2565 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2566 u64 old, test_bits;
6aa8b732 2567
10474ae8
AG
2568 if (read_cr4() & X86_CR4_VMXE)
2569 return -EBUSY;
2570
d462b819 2571 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2572
2573 /*
2574 * Now we can enable the vmclear operation in kdump
2575 * since the loaded_vmcss_on_cpu list on this cpu
2576 * has been initialized.
2577 *
2578 * Though the cpu is not in VMX operation now, there
2579 * is no problem to enable the vmclear operation
2580 * for the loaded_vmcss_on_cpu list is empty!
2581 */
2582 crash_enable_local_vmclear(cpu);
2583
6aa8b732 2584 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2585
2586 test_bits = FEATURE_CONTROL_LOCKED;
2587 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2588 if (tboot_enabled())
2589 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2590
2591 if ((old & test_bits) != test_bits) {
6aa8b732 2592 /* enable and lock */
cafd6659
SW
2593 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2594 }
66aee91a 2595 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2596
4610c9cc
DX
2597 if (vmm_exclusive) {
2598 kvm_cpu_vmxon(phys_addr);
2599 ept_sync_global();
2600 }
10474ae8 2601
3444d7da
AK
2602 store_gdt(&__get_cpu_var(host_gdt));
2603
10474ae8 2604 return 0;
6aa8b732
AK
2605}
2606
d462b819 2607static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2608{
2609 int cpu = raw_smp_processor_id();
d462b819 2610 struct loaded_vmcs *v, *n;
543e4243 2611
d462b819
NHE
2612 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2613 loaded_vmcss_on_cpu_link)
2614 __loaded_vmcs_clear(v);
543e4243
AK
2615}
2616
710ff4a8
EH
2617
2618/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2619 * tricks.
2620 */
2621static void kvm_cpu_vmxoff(void)
6aa8b732 2622{
4ecac3fd 2623 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2624}
2625
710ff4a8
EH
2626static void hardware_disable(void *garbage)
2627{
4610c9cc 2628 if (vmm_exclusive) {
d462b819 2629 vmclear_local_loaded_vmcss();
4610c9cc
DX
2630 kvm_cpu_vmxoff();
2631 }
7725b894 2632 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2633}
2634
1c3d14fe 2635static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2636 u32 msr, u32 *result)
1c3d14fe
YS
2637{
2638 u32 vmx_msr_low, vmx_msr_high;
2639 u32 ctl = ctl_min | ctl_opt;
2640
2641 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2642
2643 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2644 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2645
2646 /* Ensure minimum (required) set of control bits are supported. */
2647 if (ctl_min & ~ctl)
002c7f7c 2648 return -EIO;
1c3d14fe
YS
2649
2650 *result = ctl;
2651 return 0;
2652}
2653
110312c8
AK
2654static __init bool allow_1_setting(u32 msr, u32 ctl)
2655{
2656 u32 vmx_msr_low, vmx_msr_high;
2657
2658 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2659 return vmx_msr_high & ctl;
2660}
2661
002c7f7c 2662static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2663{
2664 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2665 u32 min, opt, min2, opt2;
1c3d14fe
YS
2666 u32 _pin_based_exec_control = 0;
2667 u32 _cpu_based_exec_control = 0;
f78e0e2e 2668 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2669 u32 _vmexit_control = 0;
2670 u32 _vmentry_control = 0;
2671
10166744 2672 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2673#ifdef CONFIG_X86_64
2674 CPU_BASED_CR8_LOAD_EXITING |
2675 CPU_BASED_CR8_STORE_EXITING |
2676#endif
d56f546d
SY
2677 CPU_BASED_CR3_LOAD_EXITING |
2678 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2679 CPU_BASED_USE_IO_BITMAPS |
2680 CPU_BASED_MOV_DR_EXITING |
a7052897 2681 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2682 CPU_BASED_MWAIT_EXITING |
2683 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2684 CPU_BASED_INVLPG_EXITING |
2685 CPU_BASED_RDPMC_EXITING;
443381a8 2686
f78e0e2e 2687 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2688 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2689 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2690 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2691 &_cpu_based_exec_control) < 0)
002c7f7c 2692 return -EIO;
6e5d865c
YS
2693#ifdef CONFIG_X86_64
2694 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2695 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2696 ~CPU_BASED_CR8_STORE_EXITING;
2697#endif
f78e0e2e 2698 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2699 min2 = 0;
2700 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2701 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2702 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2703 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2704 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2705 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2706 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2707 SECONDARY_EXEC_RDTSCP |
83d4c286 2708 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 2709 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58
AG
2710 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2711 SECONDARY_EXEC_SHADOW_VMCS;
d56f546d
SY
2712 if (adjust_vmx_controls(min2, opt2,
2713 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2714 &_cpu_based_2nd_exec_control) < 0)
2715 return -EIO;
2716 }
2717#ifndef CONFIG_X86_64
2718 if (!(_cpu_based_2nd_exec_control &
2719 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2720 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2721#endif
83d4c286
YZ
2722
2723 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2724 _cpu_based_2nd_exec_control &= ~(
8d14695f 2725 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2726 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2727 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2728
d56f546d 2729 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2730 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2731 enabled */
5fff7d27
GN
2732 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2733 CPU_BASED_CR3_STORE_EXITING |
2734 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2735 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2736 vmx_capability.ept, vmx_capability.vpid);
2737 }
1c3d14fe
YS
2738
2739 min = 0;
2740#ifdef CONFIG_X86_64
2741 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2742#endif
a547c6db
YZ
2743 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2744 VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
2745 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2746 &_vmexit_control) < 0)
002c7f7c 2747 return -EIO;
1c3d14fe 2748
01e439be
YZ
2749 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2750 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2751 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2752 &_pin_based_exec_control) < 0)
2753 return -EIO;
2754
2755 if (!(_cpu_based_2nd_exec_control &
2756 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2757 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2758 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2759
468d472f
SY
2760 min = 0;
2761 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2762 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2763 &_vmentry_control) < 0)
002c7f7c 2764 return -EIO;
6aa8b732 2765
c68876fd 2766 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2767
2768 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2769 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2770 return -EIO;
1c3d14fe
YS
2771
2772#ifdef CONFIG_X86_64
2773 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2774 if (vmx_msr_high & (1u<<16))
002c7f7c 2775 return -EIO;
1c3d14fe
YS
2776#endif
2777
2778 /* Require Write-Back (WB) memory type for VMCS accesses. */
2779 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2780 return -EIO;
1c3d14fe 2781
002c7f7c
YS
2782 vmcs_conf->size = vmx_msr_high & 0x1fff;
2783 vmcs_conf->order = get_order(vmcs_config.size);
2784 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2785
002c7f7c
YS
2786 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2787 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2788 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2789 vmcs_conf->vmexit_ctrl = _vmexit_control;
2790 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2791
110312c8
AK
2792 cpu_has_load_ia32_efer =
2793 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2794 VM_ENTRY_LOAD_IA32_EFER)
2795 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2796 VM_EXIT_LOAD_IA32_EFER);
2797
8bf00a52
GN
2798 cpu_has_load_perf_global_ctrl =
2799 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2800 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2801 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2802 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2803
2804 /*
2805 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2806 * but due to arrata below it can't be used. Workaround is to use
2807 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2808 *
2809 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2810 *
2811 * AAK155 (model 26)
2812 * AAP115 (model 30)
2813 * AAT100 (model 37)
2814 * BC86,AAY89,BD102 (model 44)
2815 * BA97 (model 46)
2816 *
2817 */
2818 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2819 switch (boot_cpu_data.x86_model) {
2820 case 26:
2821 case 30:
2822 case 37:
2823 case 44:
2824 case 46:
2825 cpu_has_load_perf_global_ctrl = false;
2826 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2827 "does not work properly. Using workaround\n");
2828 break;
2829 default:
2830 break;
2831 }
2832 }
2833
1c3d14fe 2834 return 0;
c68876fd 2835}
6aa8b732
AK
2836
2837static struct vmcs *alloc_vmcs_cpu(int cpu)
2838{
2839 int node = cpu_to_node(cpu);
2840 struct page *pages;
2841 struct vmcs *vmcs;
2842
6484eb3e 2843 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2844 if (!pages)
2845 return NULL;
2846 vmcs = page_address(pages);
1c3d14fe
YS
2847 memset(vmcs, 0, vmcs_config.size);
2848 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2849 return vmcs;
2850}
2851
2852static struct vmcs *alloc_vmcs(void)
2853{
d3b2c338 2854 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2855}
2856
2857static void free_vmcs(struct vmcs *vmcs)
2858{
1c3d14fe 2859 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2860}
2861
d462b819
NHE
2862/*
2863 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2864 */
2865static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2866{
2867 if (!loaded_vmcs->vmcs)
2868 return;
2869 loaded_vmcs_clear(loaded_vmcs);
2870 free_vmcs(loaded_vmcs->vmcs);
2871 loaded_vmcs->vmcs = NULL;
2872}
2873
39959588 2874static void free_kvm_area(void)
6aa8b732
AK
2875{
2876 int cpu;
2877
3230bb47 2878 for_each_possible_cpu(cpu) {
6aa8b732 2879 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2880 per_cpu(vmxarea, cpu) = NULL;
2881 }
6aa8b732
AK
2882}
2883
6aa8b732
AK
2884static __init int alloc_kvm_area(void)
2885{
2886 int cpu;
2887
3230bb47 2888 for_each_possible_cpu(cpu) {
6aa8b732
AK
2889 struct vmcs *vmcs;
2890
2891 vmcs = alloc_vmcs_cpu(cpu);
2892 if (!vmcs) {
2893 free_kvm_area();
2894 return -ENOMEM;
2895 }
2896
2897 per_cpu(vmxarea, cpu) = vmcs;
2898 }
2899 return 0;
2900}
2901
2902static __init int hardware_setup(void)
2903{
002c7f7c
YS
2904 if (setup_vmcs_config(&vmcs_config) < 0)
2905 return -EIO;
50a37eb4
JR
2906
2907 if (boot_cpu_has(X86_FEATURE_NX))
2908 kvm_enable_efer_bits(EFER_NX);
2909
93ba03c2
SY
2910 if (!cpu_has_vmx_vpid())
2911 enable_vpid = 0;
abc4fc58
AG
2912 if (!cpu_has_vmx_shadow_vmcs())
2913 enable_shadow_vmcs = 0;
93ba03c2 2914
4bc9b982
SY
2915 if (!cpu_has_vmx_ept() ||
2916 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2917 enable_ept = 0;
3a624e29 2918 enable_unrestricted_guest = 0;
83c3a331 2919 enable_ept_ad_bits = 0;
3a624e29
NK
2920 }
2921
83c3a331
XH
2922 if (!cpu_has_vmx_ept_ad_bits())
2923 enable_ept_ad_bits = 0;
2924
3a624e29
NK
2925 if (!cpu_has_vmx_unrestricted_guest())
2926 enable_unrestricted_guest = 0;
93ba03c2
SY
2927
2928 if (!cpu_has_vmx_flexpriority())
2929 flexpriority_enabled = 0;
2930
95ba8273
GN
2931 if (!cpu_has_vmx_tpr_shadow())
2932 kvm_x86_ops->update_cr8_intercept = NULL;
2933
54dee993
MT
2934 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2935 kvm_disable_largepages();
2936
4b8d54f9
ZE
2937 if (!cpu_has_vmx_ple())
2938 ple_gap = 0;
2939
01e439be
YZ
2940 if (!cpu_has_vmx_apicv())
2941 enable_apicv = 0;
c7c9c56c 2942
01e439be 2943 if (enable_apicv)
c7c9c56c 2944 kvm_x86_ops->update_cr8_intercept = NULL;
a20ed54d 2945 else {
c7c9c56c 2946 kvm_x86_ops->hwapic_irr_update = NULL;
a20ed54d
YZ
2947 kvm_x86_ops->deliver_posted_interrupt = NULL;
2948 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2949 }
83d4c286 2950
b87a51ae
NHE
2951 if (nested)
2952 nested_vmx_setup_ctls_msrs();
2953
6aa8b732
AK
2954 return alloc_kvm_area();
2955}
2956
2957static __exit void hardware_unsetup(void)
2958{
2959 free_kvm_area();
2960}
2961
14168786
GN
2962static bool emulation_required(struct kvm_vcpu *vcpu)
2963{
2964 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2965}
2966
91b0aa2c 2967static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 2968 struct kvm_segment *save)
6aa8b732 2969{
d99e4152
GN
2970 if (!emulate_invalid_guest_state) {
2971 /*
2972 * CS and SS RPL should be equal during guest entry according
2973 * to VMX spec, but in reality it is not always so. Since vcpu
2974 * is in the middle of the transition from real mode to
2975 * protected mode it is safe to assume that RPL 0 is a good
2976 * default value.
2977 */
2978 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2979 save->selector &= ~SELECTOR_RPL_MASK;
2980 save->dpl = save->selector & SELECTOR_RPL_MASK;
2981 save->s = 1;
6aa8b732 2982 }
d99e4152 2983 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
2984}
2985
2986static void enter_pmode(struct kvm_vcpu *vcpu)
2987{
2988 unsigned long flags;
a89a8fb9 2989 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2990
d99e4152
GN
2991 /*
2992 * Update real mode segment cache. It may be not up-to-date if sement
2993 * register was written while vcpu was in a guest mode.
2994 */
2995 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2996 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2997 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2998 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2999 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3000 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3001
7ffd92c5 3002 vmx->rmode.vm86_active = 0;
6aa8b732 3003
2fb92db1
AK
3004 vmx_segment_cache_clear(vmx);
3005
f5f7b2fe 3006 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3007
3008 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3009 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3010 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3011 vmcs_writel(GUEST_RFLAGS, flags);
3012
66aee91a
RR
3013 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3014 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3015
3016 update_exception_bitmap(vcpu);
3017
91b0aa2c
GN
3018 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3019 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3020 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3021 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3022 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3023 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
1f3141e8
GN
3024
3025 /* CPL is always 0 when CPU enters protected mode */
3026 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3027 vmx->cpl = 0;
6aa8b732
AK
3028}
3029
f5f7b2fe 3030static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3031{
772e0318 3032 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3033 struct kvm_segment var = *save;
3034
3035 var.dpl = 0x3;
3036 if (seg == VCPU_SREG_CS)
3037 var.type = 0x3;
3038
3039 if (!emulate_invalid_guest_state) {
3040 var.selector = var.base >> 4;
3041 var.base = var.base & 0xffff0;
3042 var.limit = 0xffff;
3043 var.g = 0;
3044 var.db = 0;
3045 var.present = 1;
3046 var.s = 1;
3047 var.l = 0;
3048 var.unusable = 0;
3049 var.type = 0x3;
3050 var.avl = 0;
3051 if (save->base & 0xf)
3052 printk_once(KERN_WARNING "kvm: segment base is not "
3053 "paragraph aligned when entering "
3054 "protected mode (seg=%d)", seg);
3055 }
6aa8b732 3056
d99e4152
GN
3057 vmcs_write16(sf->selector, var.selector);
3058 vmcs_write32(sf->base, var.base);
3059 vmcs_write32(sf->limit, var.limit);
3060 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3061}
3062
3063static void enter_rmode(struct kvm_vcpu *vcpu)
3064{
3065 unsigned long flags;
a89a8fb9 3066 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3067
f5f7b2fe
AK
3068 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3069 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3070 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3071 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3072 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3073 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3074 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3075
7ffd92c5 3076 vmx->rmode.vm86_active = 1;
6aa8b732 3077
776e58ea
GN
3078 /*
3079 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3080 * vcpu. Warn the user that an update is overdue.
776e58ea 3081 */
4918c6ca 3082 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3083 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3084 "called before entering vcpu\n");
776e58ea 3085
2fb92db1
AK
3086 vmx_segment_cache_clear(vmx);
3087
4918c6ca 3088 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3089 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3090 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3091
3092 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3093 vmx->rmode.save_rflags = flags;
6aa8b732 3094
053de044 3095 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3096
3097 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3098 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3099 update_exception_bitmap(vcpu);
3100
d99e4152
GN
3101 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3102 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3103 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3104 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3105 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3106 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3107
8668a3c4 3108 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3109}
3110
401d10de
AS
3111static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3112{
3113 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3114 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3115
3116 if (!msr)
3117 return;
401d10de 3118
44ea2b17
AK
3119 /*
3120 * Force kernel_gs_base reloading before EFER changes, as control
3121 * of this msr depends on is_long_mode().
3122 */
3123 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3124 vcpu->arch.efer = efer;
401d10de
AS
3125 if (efer & EFER_LMA) {
3126 vmcs_write32(VM_ENTRY_CONTROLS,
3127 vmcs_read32(VM_ENTRY_CONTROLS) |
3128 VM_ENTRY_IA32E_MODE);
3129 msr->data = efer;
3130 } else {
3131 vmcs_write32(VM_ENTRY_CONTROLS,
3132 vmcs_read32(VM_ENTRY_CONTROLS) &
3133 ~VM_ENTRY_IA32E_MODE);
3134
3135 msr->data = efer & ~EFER_LME;
3136 }
3137 setup_msrs(vmx);
3138}
3139
05b3e0c2 3140#ifdef CONFIG_X86_64
6aa8b732
AK
3141
3142static void enter_lmode(struct kvm_vcpu *vcpu)
3143{
3144 u32 guest_tr_ar;
3145
2fb92db1
AK
3146 vmx_segment_cache_clear(to_vmx(vcpu));
3147
6aa8b732
AK
3148 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3149 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3150 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3151 __func__);
6aa8b732
AK
3152 vmcs_write32(GUEST_TR_AR_BYTES,
3153 (guest_tr_ar & ~AR_TYPE_MASK)
3154 | AR_TYPE_BUSY_64_TSS);
3155 }
da38f438 3156 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3157}
3158
3159static void exit_lmode(struct kvm_vcpu *vcpu)
3160{
6aa8b732
AK
3161 vmcs_write32(VM_ENTRY_CONTROLS,
3162 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 3163 & ~VM_ENTRY_IA32E_MODE);
da38f438 3164 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3165}
3166
3167#endif
3168
2384d2b3
SY
3169static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3170{
b9d762fa 3171 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3172 if (enable_ept) {
3173 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3174 return;
4e1096d2 3175 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3176 }
2384d2b3
SY
3177}
3178
e8467fda
AK
3179static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3180{
3181 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3182
3183 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3184 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3185}
3186
aff48baa
AK
3187static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3188{
3189 if (enable_ept && is_paging(vcpu))
3190 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3191 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3192}
3193
25c4c276 3194static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3195{
fc78f519
AK
3196 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3197
3198 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3199 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3200}
3201
1439442c
SY
3202static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3203{
6de4f3ad
AK
3204 if (!test_bit(VCPU_EXREG_PDPTR,
3205 (unsigned long *)&vcpu->arch.regs_dirty))
3206 return;
3207
1439442c 3208 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3209 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3210 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3211 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3212 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
3213 }
3214}
3215
8f5d549f
AK
3216static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3217{
3218 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3219 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3220 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3221 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3222 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3223 }
6de4f3ad
AK
3224
3225 __set_bit(VCPU_EXREG_PDPTR,
3226 (unsigned long *)&vcpu->arch.regs_avail);
3227 __set_bit(VCPU_EXREG_PDPTR,
3228 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3229}
3230
5e1746d6 3231static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3232
3233static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3234 unsigned long cr0,
3235 struct kvm_vcpu *vcpu)
3236{
5233dd51
MT
3237 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3238 vmx_decache_cr3(vcpu);
1439442c
SY
3239 if (!(cr0 & X86_CR0_PG)) {
3240 /* From paging/starting to nonpaging */
3241 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3242 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3243 (CPU_BASED_CR3_LOAD_EXITING |
3244 CPU_BASED_CR3_STORE_EXITING));
3245 vcpu->arch.cr0 = cr0;
fc78f519 3246 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3247 } else if (!is_paging(vcpu)) {
3248 /* From nonpaging to paging */
3249 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3250 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3251 ~(CPU_BASED_CR3_LOAD_EXITING |
3252 CPU_BASED_CR3_STORE_EXITING));
3253 vcpu->arch.cr0 = cr0;
fc78f519 3254 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3255 }
95eb84a7
SY
3256
3257 if (!(cr0 & X86_CR0_WP))
3258 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3259}
3260
6aa8b732
AK
3261static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3262{
7ffd92c5 3263 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3264 unsigned long hw_cr0;
3265
5037878e 3266 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3267 if (enable_unrestricted_guest)
5037878e 3268 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3269 else {
5037878e 3270 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3271
218e763f
GN
3272 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3273 enter_pmode(vcpu);
6aa8b732 3274
218e763f
GN
3275 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3276 enter_rmode(vcpu);
3277 }
6aa8b732 3278
05b3e0c2 3279#ifdef CONFIG_X86_64
f6801dff 3280 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3281 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3282 enter_lmode(vcpu);
707d92fa 3283 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3284 exit_lmode(vcpu);
3285 }
3286#endif
3287
089d034e 3288 if (enable_ept)
1439442c
SY
3289 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3290
02daab21 3291 if (!vcpu->fpu_active)
81231c69 3292 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3293
6aa8b732 3294 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3295 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3296 vcpu->arch.cr0 = cr0;
14168786
GN
3297
3298 /* depends on vcpu->arch.cr0 to be set to a new value */
3299 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3300}
3301
1439442c
SY
3302static u64 construct_eptp(unsigned long root_hpa)
3303{
3304 u64 eptp;
3305
3306 /* TODO write the value reading from MSR */
3307 eptp = VMX_EPT_DEFAULT_MT |
3308 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3309 if (enable_ept_ad_bits)
3310 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3311 eptp |= (root_hpa & PAGE_MASK);
3312
3313 return eptp;
3314}
3315
6aa8b732
AK
3316static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3317{
1439442c
SY
3318 unsigned long guest_cr3;
3319 u64 eptp;
3320
3321 guest_cr3 = cr3;
089d034e 3322 if (enable_ept) {
1439442c
SY
3323 eptp = construct_eptp(cr3);
3324 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3325 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3326 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3327 ept_load_pdptrs(vcpu);
1439442c
SY
3328 }
3329
2384d2b3 3330 vmx_flush_tlb(vcpu);
1439442c 3331 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3332}
3333
5e1746d6 3334static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3335{
7ffd92c5 3336 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3337 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3338
5e1746d6
NHE
3339 if (cr4 & X86_CR4_VMXE) {
3340 /*
3341 * To use VMXON (and later other VMX instructions), a guest
3342 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3343 * So basically the check on whether to allow nested VMX
3344 * is here.
3345 */
3346 if (!nested_vmx_allowed(vcpu))
3347 return 1;
1a0d74e6
JK
3348 }
3349 if (to_vmx(vcpu)->nested.vmxon &&
3350 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3351 return 1;
3352
ad312c7c 3353 vcpu->arch.cr4 = cr4;
bc23008b
AK
3354 if (enable_ept) {
3355 if (!is_paging(vcpu)) {
3356 hw_cr4 &= ~X86_CR4_PAE;
3357 hw_cr4 |= X86_CR4_PSE;
c08800a5
DX
3358 /*
3359 * SMEP is disabled if CPU is in non-paging mode in
3360 * hardware. However KVM always uses paging mode to
3361 * emulate guest non-paging mode with TDP.
3362 * To emulate this behavior, SMEP needs to be manually
3363 * disabled when guest switches to non-paging mode.
3364 */
3365 hw_cr4 &= ~X86_CR4_SMEP;
bc23008b
AK
3366 } else if (!(cr4 & X86_CR4_PAE)) {
3367 hw_cr4 &= ~X86_CR4_PAE;
3368 }
3369 }
1439442c
SY
3370
3371 vmcs_writel(CR4_READ_SHADOW, cr4);
3372 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3373 return 0;
6aa8b732
AK
3374}
3375
6aa8b732
AK
3376static void vmx_get_segment(struct kvm_vcpu *vcpu,
3377 struct kvm_segment *var, int seg)
3378{
a9179499 3379 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3380 u32 ar;
3381
c6ad1153 3382 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3383 *var = vmx->rmode.segs[seg];
a9179499 3384 if (seg == VCPU_SREG_TR
2fb92db1 3385 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3386 return;
1390a28b
AK
3387 var->base = vmx_read_guest_seg_base(vmx, seg);
3388 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3389 return;
a9179499 3390 }
2fb92db1
AK
3391 var->base = vmx_read_guest_seg_base(vmx, seg);
3392 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3393 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3394 ar = vmx_read_guest_seg_ar(vmx, seg);
6aa8b732
AK
3395 var->type = ar & 15;
3396 var->s = (ar >> 4) & 1;
3397 var->dpl = (ar >> 5) & 3;
3398 var->present = (ar >> 7) & 1;
3399 var->avl = (ar >> 12) & 1;
3400 var->l = (ar >> 13) & 1;
3401 var->db = (ar >> 14) & 1;
3402 var->g = (ar >> 15) & 1;
3403 var->unusable = (ar >> 16) & 1;
3404}
3405
a9179499
AK
3406static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3407{
a9179499
AK
3408 struct kvm_segment s;
3409
3410 if (to_vmx(vcpu)->rmode.vm86_active) {
3411 vmx_get_segment(vcpu, &s, seg);
3412 return s.base;
3413 }
2fb92db1 3414 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3415}
3416
b09408d0 3417static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3418{
b09408d0
MT
3419 struct vcpu_vmx *vmx = to_vmx(vcpu);
3420
3eeb3288 3421 if (!is_protmode(vcpu))
2e4d2653
IE
3422 return 0;
3423
f4c63e5d
AK
3424 if (!is_long_mode(vcpu)
3425 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3426 return 3;
3427
69c73028
AK
3428 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3429 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
b09408d0 3430 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
69c73028 3431 }
d881e6f6
AK
3432
3433 return vmx->cpl;
69c73028
AK
3434}
3435
3436
653e3108 3437static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3438{
6aa8b732
AK
3439 u32 ar;
3440
f0495f9b 3441 if (var->unusable || !var->present)
6aa8b732
AK
3442 ar = 1 << 16;
3443 else {
3444 ar = var->type & 15;
3445 ar |= (var->s & 1) << 4;
3446 ar |= (var->dpl & 3) << 5;
3447 ar |= (var->present & 1) << 7;
3448 ar |= (var->avl & 1) << 12;
3449 ar |= (var->l & 1) << 13;
3450 ar |= (var->db & 1) << 14;
3451 ar |= (var->g & 1) << 15;
3452 }
653e3108
AK
3453
3454 return ar;
3455}
3456
3457static void vmx_set_segment(struct kvm_vcpu *vcpu,
3458 struct kvm_segment *var, int seg)
3459{
7ffd92c5 3460 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3461 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3462
2fb92db1 3463 vmx_segment_cache_clear(vmx);
2f143240
GN
3464 if (seg == VCPU_SREG_CS)
3465 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2fb92db1 3466
1ecd50a9
GN
3467 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3468 vmx->rmode.segs[seg] = *var;
3469 if (seg == VCPU_SREG_TR)
3470 vmcs_write16(sf->selector, var->selector);
3471 else if (var->s)
3472 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3473 goto out;
653e3108 3474 }
1ecd50a9 3475
653e3108
AK
3476 vmcs_writel(sf->base, var->base);
3477 vmcs_write32(sf->limit, var->limit);
3478 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3479
3480 /*
3481 * Fix the "Accessed" bit in AR field of segment registers for older
3482 * qemu binaries.
3483 * IA32 arch specifies that at the time of processor reset the
3484 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3485 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3486 * state vmexit when "unrestricted guest" mode is turned on.
3487 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3488 * tree. Newer qemu binaries with that qemu fix would not need this
3489 * kvm hack.
3490 */
3491 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3492 var->type |= 0x1; /* Accessed */
3a624e29 3493
f924d66d 3494 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3495
3496out:
14168786 3497 vmx->emulation_required |= emulation_required(vcpu);
6aa8b732
AK
3498}
3499
6aa8b732
AK
3500static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3501{
2fb92db1 3502 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3503
3504 *db = (ar >> 14) & 1;
3505 *l = (ar >> 13) & 1;
3506}
3507
89a27f4d 3508static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3509{
89a27f4d
GN
3510 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3511 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3512}
3513
89a27f4d 3514static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3515{
89a27f4d
GN
3516 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3517 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3518}
3519
89a27f4d 3520static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3521{
89a27f4d
GN
3522 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3523 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3524}
3525
89a27f4d 3526static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3527{
89a27f4d
GN
3528 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3529 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3530}
3531
648dfaa7
MG
3532static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3533{
3534 struct kvm_segment var;
3535 u32 ar;
3536
3537 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3538 var.dpl = 0x3;
0647f4aa
GN
3539 if (seg == VCPU_SREG_CS)
3540 var.type = 0x3;
648dfaa7
MG
3541 ar = vmx_segment_access_rights(&var);
3542
3543 if (var.base != (var.selector << 4))
3544 return false;
89efbed0 3545 if (var.limit != 0xffff)
648dfaa7 3546 return false;
07f42f5f 3547 if (ar != 0xf3)
648dfaa7
MG
3548 return false;
3549
3550 return true;
3551}
3552
3553static bool code_segment_valid(struct kvm_vcpu *vcpu)
3554{
3555 struct kvm_segment cs;
3556 unsigned int cs_rpl;
3557
3558 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3559 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3560
1872a3f4
AK
3561 if (cs.unusable)
3562 return false;
648dfaa7
MG
3563 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3564 return false;
3565 if (!cs.s)
3566 return false;
1872a3f4 3567 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3568 if (cs.dpl > cs_rpl)
3569 return false;
1872a3f4 3570 } else {
648dfaa7
MG
3571 if (cs.dpl != cs_rpl)
3572 return false;
3573 }
3574 if (!cs.present)
3575 return false;
3576
3577 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3578 return true;
3579}
3580
3581static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3582{
3583 struct kvm_segment ss;
3584 unsigned int ss_rpl;
3585
3586 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3587 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3588
1872a3f4
AK
3589 if (ss.unusable)
3590 return true;
3591 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3592 return false;
3593 if (!ss.s)
3594 return false;
3595 if (ss.dpl != ss_rpl) /* DPL != RPL */
3596 return false;
3597 if (!ss.present)
3598 return false;
3599
3600 return true;
3601}
3602
3603static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3604{
3605 struct kvm_segment var;
3606 unsigned int rpl;
3607
3608 vmx_get_segment(vcpu, &var, seg);
3609 rpl = var.selector & SELECTOR_RPL_MASK;
3610
1872a3f4
AK
3611 if (var.unusable)
3612 return true;
648dfaa7
MG
3613 if (!var.s)
3614 return false;
3615 if (!var.present)
3616 return false;
3617 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3618 if (var.dpl < rpl) /* DPL < RPL */
3619 return false;
3620 }
3621
3622 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3623 * rights flags
3624 */
3625 return true;
3626}
3627
3628static bool tr_valid(struct kvm_vcpu *vcpu)
3629{
3630 struct kvm_segment tr;
3631
3632 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3633
1872a3f4
AK
3634 if (tr.unusable)
3635 return false;
648dfaa7
MG
3636 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3637 return false;
1872a3f4 3638 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3639 return false;
3640 if (!tr.present)
3641 return false;
3642
3643 return true;
3644}
3645
3646static bool ldtr_valid(struct kvm_vcpu *vcpu)
3647{
3648 struct kvm_segment ldtr;
3649
3650 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3651
1872a3f4
AK
3652 if (ldtr.unusable)
3653 return true;
648dfaa7
MG
3654 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3655 return false;
3656 if (ldtr.type != 2)
3657 return false;
3658 if (!ldtr.present)
3659 return false;
3660
3661 return true;
3662}
3663
3664static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3665{
3666 struct kvm_segment cs, ss;
3667
3668 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3669 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3670
3671 return ((cs.selector & SELECTOR_RPL_MASK) ==
3672 (ss.selector & SELECTOR_RPL_MASK));
3673}
3674
3675/*
3676 * Check if guest state is valid. Returns true if valid, false if
3677 * not.
3678 * We assume that registers are always usable
3679 */
3680static bool guest_state_valid(struct kvm_vcpu *vcpu)
3681{
c5e97c80
GN
3682 if (enable_unrestricted_guest)
3683 return true;
3684
648dfaa7 3685 /* real mode guest state checks */
f13882d8 3686 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3687 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3688 return false;
3689 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3690 return false;
3691 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3692 return false;
3693 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3694 return false;
3695 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3696 return false;
3697 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3698 return false;
3699 } else {
3700 /* protected mode guest state checks */
3701 if (!cs_ss_rpl_check(vcpu))
3702 return false;
3703 if (!code_segment_valid(vcpu))
3704 return false;
3705 if (!stack_segment_valid(vcpu))
3706 return false;
3707 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3708 return false;
3709 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3710 return false;
3711 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3712 return false;
3713 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3714 return false;
3715 if (!tr_valid(vcpu))
3716 return false;
3717 if (!ldtr_valid(vcpu))
3718 return false;
3719 }
3720 /* TODO:
3721 * - Add checks on RIP
3722 * - Add checks on RFLAGS
3723 */
3724
3725 return true;
3726}
3727
d77c26fc 3728static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3729{
40dcaa9f 3730 gfn_t fn;
195aefde 3731 u16 data = 0;
40dcaa9f 3732 int r, idx, ret = 0;
6aa8b732 3733
40dcaa9f 3734 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 3735 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
3736 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3737 if (r < 0)
10589a46 3738 goto out;
195aefde 3739 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3740 r = kvm_write_guest_page(kvm, fn++, &data,
3741 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3742 if (r < 0)
10589a46 3743 goto out;
195aefde
IE
3744 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3745 if (r < 0)
10589a46 3746 goto out;
195aefde
IE
3747 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3748 if (r < 0)
10589a46 3749 goto out;
195aefde 3750 data = ~0;
10589a46
MT
3751 r = kvm_write_guest_page(kvm, fn, &data,
3752 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3753 sizeof(u8));
195aefde 3754 if (r < 0)
10589a46
MT
3755 goto out;
3756
3757 ret = 1;
3758out:
40dcaa9f 3759 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3760 return ret;
6aa8b732
AK
3761}
3762
b7ebfb05
SY
3763static int init_rmode_identity_map(struct kvm *kvm)
3764{
40dcaa9f 3765 int i, idx, r, ret;
b7ebfb05
SY
3766 pfn_t identity_map_pfn;
3767 u32 tmp;
3768
089d034e 3769 if (!enable_ept)
b7ebfb05
SY
3770 return 1;
3771 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3772 printk(KERN_ERR "EPT: identity-mapping pagetable "
3773 "haven't been allocated!\n");
3774 return 0;
3775 }
3776 if (likely(kvm->arch.ept_identity_pagetable_done))
3777 return 1;
3778 ret = 0;
b927a3ce 3779 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3780 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3781 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3782 if (r < 0)
3783 goto out;
3784 /* Set up identity-mapping pagetable for EPT in real mode */
3785 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3786 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3787 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3788 r = kvm_write_guest_page(kvm, identity_map_pfn,
3789 &tmp, i * sizeof(tmp), sizeof(tmp));
3790 if (r < 0)
3791 goto out;
3792 }
3793 kvm->arch.ept_identity_pagetable_done = true;
3794 ret = 1;
3795out:
40dcaa9f 3796 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3797 return ret;
3798}
3799
6aa8b732
AK
3800static void seg_setup(int seg)
3801{
772e0318 3802 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3803 unsigned int ar;
6aa8b732
AK
3804
3805 vmcs_write16(sf->selector, 0);
3806 vmcs_writel(sf->base, 0);
3807 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
3808 ar = 0x93;
3809 if (seg == VCPU_SREG_CS)
3810 ar |= 0x08; /* code segment */
3a624e29
NK
3811
3812 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3813}
3814
f78e0e2e
SY
3815static int alloc_apic_access_page(struct kvm *kvm)
3816{
4484141a 3817 struct page *page;
f78e0e2e
SY
3818 struct kvm_userspace_memory_region kvm_userspace_mem;
3819 int r = 0;
3820
79fac95e 3821 mutex_lock(&kvm->slots_lock);
bfc6d222 3822 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3823 goto out;
3824 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3825 kvm_userspace_mem.flags = 0;
3826 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3827 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3828 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
3829 if (r)
3830 goto out;
72dc67a6 3831
4484141a
XG
3832 page = gfn_to_page(kvm, 0xfee00);
3833 if (is_error_page(page)) {
3834 r = -EFAULT;
3835 goto out;
3836 }
3837
3838 kvm->arch.apic_access_page = page;
f78e0e2e 3839out:
79fac95e 3840 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3841 return r;
3842}
3843
b7ebfb05
SY
3844static int alloc_identity_pagetable(struct kvm *kvm)
3845{
4484141a 3846 struct page *page;
b7ebfb05
SY
3847 struct kvm_userspace_memory_region kvm_userspace_mem;
3848 int r = 0;
3849
79fac95e 3850 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3851 if (kvm->arch.ept_identity_pagetable)
3852 goto out;
3853 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3854 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3855 kvm_userspace_mem.guest_phys_addr =
3856 kvm->arch.ept_identity_map_addr;
b7ebfb05 3857 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3858 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05
SY
3859 if (r)
3860 goto out;
3861
4484141a
XG
3862 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3863 if (is_error_page(page)) {
3864 r = -EFAULT;
3865 goto out;
3866 }
3867
3868 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 3869out:
79fac95e 3870 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3871 return r;
3872}
3873
2384d2b3
SY
3874static void allocate_vpid(struct vcpu_vmx *vmx)
3875{
3876 int vpid;
3877
3878 vmx->vpid = 0;
919818ab 3879 if (!enable_vpid)
2384d2b3
SY
3880 return;
3881 spin_lock(&vmx_vpid_lock);
3882 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3883 if (vpid < VMX_NR_VPIDS) {
3884 vmx->vpid = vpid;
3885 __set_bit(vpid, vmx_vpid_bitmap);
3886 }
3887 spin_unlock(&vmx_vpid_lock);
3888}
3889
cdbecfc3
LJ
3890static void free_vpid(struct vcpu_vmx *vmx)
3891{
3892 if (!enable_vpid)
3893 return;
3894 spin_lock(&vmx_vpid_lock);
3895 if (vmx->vpid != 0)
3896 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3897 spin_unlock(&vmx_vpid_lock);
3898}
3899
8d14695f
YZ
3900#define MSR_TYPE_R 1
3901#define MSR_TYPE_W 2
3902static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3903 u32 msr, int type)
25c5f225 3904{
3e7c73e9 3905 int f = sizeof(unsigned long);
25c5f225
SY
3906
3907 if (!cpu_has_vmx_msr_bitmap())
3908 return;
3909
3910 /*
3911 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3912 * have the write-low and read-high bitmap offsets the wrong way round.
3913 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3914 */
25c5f225 3915 if (msr <= 0x1fff) {
8d14695f
YZ
3916 if (type & MSR_TYPE_R)
3917 /* read-low */
3918 __clear_bit(msr, msr_bitmap + 0x000 / f);
3919
3920 if (type & MSR_TYPE_W)
3921 /* write-low */
3922 __clear_bit(msr, msr_bitmap + 0x800 / f);
3923
25c5f225
SY
3924 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3925 msr &= 0x1fff;
8d14695f
YZ
3926 if (type & MSR_TYPE_R)
3927 /* read-high */
3928 __clear_bit(msr, msr_bitmap + 0x400 / f);
3929
3930 if (type & MSR_TYPE_W)
3931 /* write-high */
3932 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3933
3934 }
3935}
3936
3937static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3938 u32 msr, int type)
3939{
3940 int f = sizeof(unsigned long);
3941
3942 if (!cpu_has_vmx_msr_bitmap())
3943 return;
3944
3945 /*
3946 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3947 * have the write-low and read-high bitmap offsets the wrong way round.
3948 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3949 */
3950 if (msr <= 0x1fff) {
3951 if (type & MSR_TYPE_R)
3952 /* read-low */
3953 __set_bit(msr, msr_bitmap + 0x000 / f);
3954
3955 if (type & MSR_TYPE_W)
3956 /* write-low */
3957 __set_bit(msr, msr_bitmap + 0x800 / f);
3958
3959 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3960 msr &= 0x1fff;
3961 if (type & MSR_TYPE_R)
3962 /* read-high */
3963 __set_bit(msr, msr_bitmap + 0x400 / f);
3964
3965 if (type & MSR_TYPE_W)
3966 /* write-high */
3967 __set_bit(msr, msr_bitmap + 0xc00 / f);
3968
25c5f225 3969 }
25c5f225
SY
3970}
3971
5897297b
AK
3972static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3973{
3974 if (!longmode_only)
8d14695f
YZ
3975 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3976 msr, MSR_TYPE_R | MSR_TYPE_W);
3977 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3978 msr, MSR_TYPE_R | MSR_TYPE_W);
3979}
3980
3981static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3982{
3983 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3984 msr, MSR_TYPE_R);
3985 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3986 msr, MSR_TYPE_R);
3987}
3988
3989static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3990{
3991 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3992 msr, MSR_TYPE_R);
3993 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3994 msr, MSR_TYPE_R);
3995}
3996
3997static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
3998{
3999 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4000 msr, MSR_TYPE_W);
4001 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4002 msr, MSR_TYPE_W);
5897297b
AK
4003}
4004
01e439be
YZ
4005static int vmx_vm_has_apicv(struct kvm *kvm)
4006{
4007 return enable_apicv && irqchip_in_kernel(kvm);
4008}
4009
a20ed54d
YZ
4010/*
4011 * Send interrupt to vcpu via posted interrupt way.
4012 * 1. If target vcpu is running(non-root mode), send posted interrupt
4013 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4014 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4015 * interrupt from PIR in next vmentry.
4016 */
4017static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4018{
4019 struct vcpu_vmx *vmx = to_vmx(vcpu);
4020 int r;
4021
4022 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4023 return;
4024
4025 r = pi_test_and_set_on(&vmx->pi_desc);
4026 kvm_make_request(KVM_REQ_EVENT, vcpu);
6ffbbbba 4027#ifdef CONFIG_SMP
a20ed54d
YZ
4028 if (!r && (vcpu->mode == IN_GUEST_MODE))
4029 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4030 POSTED_INTR_VECTOR);
4031 else
6ffbbbba 4032#endif
a20ed54d
YZ
4033 kvm_vcpu_kick(vcpu);
4034}
4035
4036static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4037{
4038 struct vcpu_vmx *vmx = to_vmx(vcpu);
4039
4040 if (!pi_test_and_clear_on(&vmx->pi_desc))
4041 return;
4042
4043 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4044}
4045
4046static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4047{
4048 return;
4049}
4050
a3a8ff8e
NHE
4051/*
4052 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4053 * will not change in the lifetime of the guest.
4054 * Note that host-state that does change is set elsewhere. E.g., host-state
4055 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4056 */
a547c6db 4057static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4058{
4059 u32 low32, high32;
4060 unsigned long tmpl;
4061 struct desc_ptr dt;
4062
b1a74bf8 4063 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4064 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4065 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4066
4067 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4068#ifdef CONFIG_X86_64
4069 /*
4070 * Load null selectors, so we can avoid reloading them in
4071 * __vmx_load_host_state(), in case userspace uses the null selectors
4072 * too (the expected case).
4073 */
4074 vmcs_write16(HOST_DS_SELECTOR, 0);
4075 vmcs_write16(HOST_ES_SELECTOR, 0);
4076#else
a3a8ff8e
NHE
4077 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4078 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4079#endif
a3a8ff8e
NHE
4080 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4081 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4082
4083 native_store_idt(&dt);
4084 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4085 vmx->host_idt_base = dt.address;
a3a8ff8e 4086
83287ea4 4087 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4088
4089 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4090 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4091 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4092 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4093
4094 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4095 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4096 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4097 }
4098}
4099
bf8179a0
NHE
4100static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4101{
4102 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4103 if (enable_ept)
4104 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4105 if (is_guest_mode(&vmx->vcpu))
4106 vmx->vcpu.arch.cr4_guest_owned_bits &=
4107 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4108 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4109}
4110
01e439be
YZ
4111static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4112{
4113 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4114
4115 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4116 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4117 return pin_based_exec_ctrl;
4118}
4119
bf8179a0
NHE
4120static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4121{
4122 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4123 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4124 exec_control &= ~CPU_BASED_TPR_SHADOW;
4125#ifdef CONFIG_X86_64
4126 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4127 CPU_BASED_CR8_LOAD_EXITING;
4128#endif
4129 }
4130 if (!enable_ept)
4131 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4132 CPU_BASED_CR3_LOAD_EXITING |
4133 CPU_BASED_INVLPG_EXITING;
4134 return exec_control;
4135}
4136
4137static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4138{
4139 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4140 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4141 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4142 if (vmx->vpid == 0)
4143 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4144 if (!enable_ept) {
4145 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4146 enable_unrestricted_guest = 0;
ad756a16
MJ
4147 /* Enable INVPCID for non-ept guests may cause performance regression. */
4148 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4149 }
4150 if (!enable_unrestricted_guest)
4151 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4152 if (!ple_gap)
4153 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4154 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4155 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4156 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4157 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4158 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4159 (handle_vmptrld).
4160 We can NOT enable shadow_vmcs here because we don't have yet
4161 a current VMCS12
4162 */
4163 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
bf8179a0
NHE
4164 return exec_control;
4165}
4166
ce88decf
XG
4167static void ept_set_mmio_spte_mask(void)
4168{
4169 /*
4170 * EPT Misconfigurations can be generated if the value of bits 2:0
4171 * of an EPT paging-structure entry is 110b (write/execute).
4172 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
4173 * spte.
4174 */
4175 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
4176}
4177
6aa8b732
AK
4178/*
4179 * Sets up the vmcs for emulated real mode.
4180 */
8b9cf98c 4181static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4182{
2e4ce7f5 4183#ifdef CONFIG_X86_64
6aa8b732 4184 unsigned long a;
2e4ce7f5 4185#endif
6aa8b732 4186 int i;
6aa8b732 4187
6aa8b732 4188 /* I/O */
3e7c73e9
AK
4189 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4190 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4191
4607c2d7
AG
4192 if (enable_shadow_vmcs) {
4193 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4194 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4195 }
25c5f225 4196 if (cpu_has_vmx_msr_bitmap())
5897297b 4197 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4198
6aa8b732
AK
4199 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4200
6aa8b732 4201 /* Control */
01e439be 4202 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4203
bf8179a0 4204 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4205
83ff3b9d 4206 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4207 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4208 vmx_secondary_exec_control(vmx));
83ff3b9d 4209 }
f78e0e2e 4210
01e439be 4211 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4212 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4213 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4214 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4215 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4216
4217 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4218
4219 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4220 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4221 }
4222
4b8d54f9
ZE
4223 if (ple_gap) {
4224 vmcs_write32(PLE_GAP, ple_gap);
4225 vmcs_write32(PLE_WINDOW, ple_window);
4226 }
4227
c3707958
XG
4228 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4229 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4230 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4231
9581d442
AK
4232 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4233 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4234 vmx_set_constant_host_state(vmx);
05b3e0c2 4235#ifdef CONFIG_X86_64
6aa8b732
AK
4236 rdmsrl(MSR_FS_BASE, a);
4237 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4238 rdmsrl(MSR_GS_BASE, a);
4239 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4240#else
4241 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4242 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4243#endif
4244
2cc51560
ED
4245 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4246 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4247 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4248 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4249 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4250
468d472f 4251 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4252 u32 msr_low, msr_high;
4253 u64 host_pat;
468d472f
SY
4254 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4255 host_pat = msr_low | ((u64) msr_high << 32);
4256 /* Write the default value follow host pat */
4257 vmcs_write64(GUEST_IA32_PAT, host_pat);
4258 /* Keep arch.pat sync with GUEST_IA32_PAT */
4259 vmx->vcpu.arch.pat = host_pat;
4260 }
4261
6aa8b732
AK
4262 for (i = 0; i < NR_VMX_MSR; ++i) {
4263 u32 index = vmx_msr_index[i];
4264 u32 data_low, data_high;
a2fa3e9f 4265 int j = vmx->nmsrs;
6aa8b732
AK
4266
4267 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4268 continue;
432bd6cb
AK
4269 if (wrmsr_safe(index, data_low, data_high) < 0)
4270 continue;
26bb0981
AK
4271 vmx->guest_msrs[j].index = i;
4272 vmx->guest_msrs[j].data = 0;
d5696725 4273 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4274 ++vmx->nmsrs;
6aa8b732 4275 }
6aa8b732 4276
1c3d14fe 4277 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4278
4279 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
4280 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4281
e00c8cf2 4282 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4283 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
4284
4285 return 0;
4286}
4287
57f252f2 4288static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4289{
4290 struct vcpu_vmx *vmx = to_vmx(vcpu);
4291 u64 msr;
e00c8cf2 4292
7ffd92c5 4293 vmx->rmode.vm86_active = 0;
e00c8cf2 4294
3b86cd99
JK
4295 vmx->soft_vnmi_blocked = 0;
4296
ad312c7c 4297 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4298 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 4299 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4300 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
4301 msr |= MSR_IA32_APICBASE_BSP;
4302 kvm_set_apic_base(&vmx->vcpu, msr);
4303
2fb92db1
AK
4304 vmx_segment_cache_clear(vmx);
4305
5706be0d 4306 seg_setup(VCPU_SREG_CS);
66450a21 4307 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4308 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4309
4310 seg_setup(VCPU_SREG_DS);
4311 seg_setup(VCPU_SREG_ES);
4312 seg_setup(VCPU_SREG_FS);
4313 seg_setup(VCPU_SREG_GS);
4314 seg_setup(VCPU_SREG_SS);
4315
4316 vmcs_write16(GUEST_TR_SELECTOR, 0);
4317 vmcs_writel(GUEST_TR_BASE, 0);
4318 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4319 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4320
4321 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4322 vmcs_writel(GUEST_LDTR_BASE, 0);
4323 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4324 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4325
4326 vmcs_write32(GUEST_SYSENTER_CS, 0);
4327 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4328 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4329
4330 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4331 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4332
e00c8cf2
AK
4333 vmcs_writel(GUEST_GDTR_BASE, 0);
4334 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4335
4336 vmcs_writel(GUEST_IDTR_BASE, 0);
4337 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4338
443381a8 4339 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4340 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4341 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4342
e00c8cf2
AK
4343 /* Special registers */
4344 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4345
4346 setup_msrs(vmx);
4347
6aa8b732
AK
4348 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4349
f78e0e2e
SY
4350 if (cpu_has_vmx_tpr_shadow()) {
4351 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4352 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4353 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4354 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4355 vmcs_write32(TPR_THRESHOLD, 0);
4356 }
4357
4358 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4359 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4360 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4361
01e439be
YZ
4362 if (vmx_vm_has_apicv(vcpu->kvm))
4363 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4364
2384d2b3
SY
4365 if (vmx->vpid != 0)
4366 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4367
fa40052c 4368 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4369 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4370 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4371 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4372 vmx_fpu_activate(&vmx->vcpu);
4373 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4374
b9d762fa 4375 vpid_sync_context(vmx);
6aa8b732
AK
4376}
4377
b6f1250e
NHE
4378/*
4379 * In nested virtualization, check if L1 asked to exit on external interrupts.
4380 * For most existing hypervisors, this will always return true.
4381 */
4382static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4383{
4384 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4385 PIN_BASED_EXT_INTR_MASK;
4386}
4387
3b86cd99
JK
4388static void enable_irq_window(struct kvm_vcpu *vcpu)
4389{
4390 u32 cpu_based_vm_exec_control;
d6185f20
NHE
4391 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4392 /*
4393 * We get here if vmx_interrupt_allowed() said we can't
4394 * inject to L1 now because L2 must run. Ask L2 to exit
4395 * right after entry, so we can inject to L1 more promptly.
b6f1250e 4396 */
d6185f20 4397 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 4398 return;
d6185f20 4399 }
3b86cd99
JK
4400
4401 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4402 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4403 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4404}
4405
4406static void enable_nmi_window(struct kvm_vcpu *vcpu)
4407{
4408 u32 cpu_based_vm_exec_control;
4409
4410 if (!cpu_has_virtual_nmis()) {
4411 enable_irq_window(vcpu);
4412 return;
4413 }
4414
30bd0c4c
AK
4415 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4416 enable_irq_window(vcpu);
4417 return;
4418 }
3b86cd99
JK
4419 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4420 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4421 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4422}
4423
66fd3f7f 4424static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4425{
9c8cba37 4426 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4427 uint32_t intr;
4428 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4429
229456fc 4430 trace_kvm_inj_virq(irq);
2714d1d3 4431
fa89a817 4432 ++vcpu->stat.irq_injections;
7ffd92c5 4433 if (vmx->rmode.vm86_active) {
71f9833b
SH
4434 int inc_eip = 0;
4435 if (vcpu->arch.interrupt.soft)
4436 inc_eip = vcpu->arch.event_exit_inst_len;
4437 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4438 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4439 return;
4440 }
66fd3f7f
GN
4441 intr = irq | INTR_INFO_VALID_MASK;
4442 if (vcpu->arch.interrupt.soft) {
4443 intr |= INTR_TYPE_SOFT_INTR;
4444 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4445 vmx->vcpu.arch.event_exit_inst_len);
4446 } else
4447 intr |= INTR_TYPE_EXT_INTR;
4448 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4449}
4450
f08864b4
SY
4451static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4452{
66a5a347
JK
4453 struct vcpu_vmx *vmx = to_vmx(vcpu);
4454
0b6ac343
NHE
4455 if (is_guest_mode(vcpu))
4456 return;
4457
3b86cd99
JK
4458 if (!cpu_has_virtual_nmis()) {
4459 /*
4460 * Tracking the NMI-blocked state in software is built upon
4461 * finding the next open IRQ window. This, in turn, depends on
4462 * well-behaving guests: They have to keep IRQs disabled at
4463 * least as long as the NMI handler runs. Otherwise we may
4464 * cause NMI nesting, maybe breaking the guest. But as this is
4465 * highly unlikely, we can live with the residual risk.
4466 */
4467 vmx->soft_vnmi_blocked = 1;
4468 vmx->vnmi_blocked_time = 0;
4469 }
4470
487b391d 4471 ++vcpu->stat.nmi_injections;
9d58b931 4472 vmx->nmi_known_unmasked = false;
7ffd92c5 4473 if (vmx->rmode.vm86_active) {
71f9833b 4474 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4475 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4476 return;
4477 }
f08864b4
SY
4478 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4479 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4480}
4481
c4282df9 4482static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4483{
3b86cd99 4484 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4485 return 0;
33f089ca 4486
c4282df9 4487 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4488 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4489 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4490}
4491
3cfc3092
JK
4492static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4493{
4494 if (!cpu_has_virtual_nmis())
4495 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4496 if (to_vmx(vcpu)->nmi_known_unmasked)
4497 return false;
c332c83a 4498 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4499}
4500
4501static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4502{
4503 struct vcpu_vmx *vmx = to_vmx(vcpu);
4504
4505 if (!cpu_has_virtual_nmis()) {
4506 if (vmx->soft_vnmi_blocked != masked) {
4507 vmx->soft_vnmi_blocked = masked;
4508 vmx->vnmi_blocked_time = 0;
4509 }
4510 } else {
9d58b931 4511 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4512 if (masked)
4513 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4514 GUEST_INTR_STATE_NMI);
4515 else
4516 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4517 GUEST_INTR_STATE_NMI);
4518 }
4519}
4520
78646121
GN
4521static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4522{
e8457c67 4523 if (is_guest_mode(vcpu)) {
51cfe38e 4524 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
e8457c67
JK
4525
4526 if (to_vmx(vcpu)->nested.nested_run_pending)
b6f1250e 4527 return 0;
e8457c67
JK
4528 if (nested_exit_on_intr(vcpu)) {
4529 nested_vmx_vmexit(vcpu);
4530 vmcs12->vm_exit_reason =
4531 EXIT_REASON_EXTERNAL_INTERRUPT;
4532 vmcs12->vm_exit_intr_info = 0;
4533 /*
4534 * fall through to normal code, but now in L1, not L2
4535 */
4536 }
b6f1250e
NHE
4537 }
4538
c4282df9
GN
4539 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4540 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4541 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4542}
4543
cbc94022
IE
4544static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4545{
4546 int ret;
4547 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4548 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4549 .guest_phys_addr = addr,
4550 .memory_size = PAGE_SIZE * 3,
4551 .flags = 0,
4552 };
4553
47ae31e2 4554 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4555 if (ret)
4556 return ret;
bfc6d222 4557 kvm->arch.tss_addr = addr;
93ea5388
GN
4558 if (!init_rmode_tss(kvm))
4559 return -ENOMEM;
4560
cbc94022
IE
4561 return 0;
4562}
4563
0ca1b4f4 4564static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4565{
77ab6db0 4566 switch (vec) {
77ab6db0 4567 case BP_VECTOR:
c573cd22
JK
4568 /*
4569 * Update instruction length as we may reinject the exception
4570 * from user space while in guest debugging mode.
4571 */
4572 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4573 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4574 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4575 return false;
4576 /* fall through */
4577 case DB_VECTOR:
4578 if (vcpu->guest_debug &
4579 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4580 return false;
d0bfb940
JK
4581 /* fall through */
4582 case DE_VECTOR:
77ab6db0
JK
4583 case OF_VECTOR:
4584 case BR_VECTOR:
4585 case UD_VECTOR:
4586 case DF_VECTOR:
4587 case SS_VECTOR:
4588 case GP_VECTOR:
4589 case MF_VECTOR:
0ca1b4f4
GN
4590 return true;
4591 break;
77ab6db0 4592 }
0ca1b4f4
GN
4593 return false;
4594}
4595
4596static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4597 int vec, u32 err_code)
4598{
4599 /*
4600 * Instruction with address size override prefix opcode 0x67
4601 * Cause the #SS fault with 0 error code in VM86 mode.
4602 */
4603 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4604 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4605 if (vcpu->arch.halt_request) {
4606 vcpu->arch.halt_request = 0;
4607 return kvm_emulate_halt(vcpu);
4608 }
4609 return 1;
4610 }
4611 return 0;
4612 }
4613
4614 /*
4615 * Forward all other exceptions that are valid in real mode.
4616 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4617 * the required debugging infrastructure rework.
4618 */
4619 kvm_queue_exception(vcpu, vec);
4620 return 1;
6aa8b732
AK
4621}
4622
a0861c02
AK
4623/*
4624 * Trigger machine check on the host. We assume all the MSRs are already set up
4625 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4626 * We pass a fake environment to the machine check handler because we want
4627 * the guest to be always treated like user space, no matter what context
4628 * it used internally.
4629 */
4630static void kvm_machine_check(void)
4631{
4632#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4633 struct pt_regs regs = {
4634 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4635 .flags = X86_EFLAGS_IF,
4636 };
4637
4638 do_machine_check(&regs, 0);
4639#endif
4640}
4641
851ba692 4642static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4643{
4644 /* already handled by vcpu_run */
4645 return 1;
4646}
4647
851ba692 4648static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4649{
1155f76a 4650 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4651 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4652 u32 intr_info, ex_no, error_code;
42dbaa5a 4653 unsigned long cr2, rip, dr6;
6aa8b732
AK
4654 u32 vect_info;
4655 enum emulation_result er;
4656
1155f76a 4657 vect_info = vmx->idt_vectoring_info;
88786475 4658 intr_info = vmx->exit_intr_info;
6aa8b732 4659
a0861c02 4660 if (is_machine_check(intr_info))
851ba692 4661 return handle_machine_check(vcpu);
a0861c02 4662
e4a41889 4663 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4664 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4665
4666 if (is_no_device(intr_info)) {
5fd86fcf 4667 vmx_fpu_activate(vcpu);
2ab455cc
AL
4668 return 1;
4669 }
4670
7aa81cc0 4671 if (is_invalid_opcode(intr_info)) {
51d8b661 4672 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4673 if (er != EMULATE_DONE)
7ee5d940 4674 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4675 return 1;
4676 }
4677
6aa8b732 4678 error_code = 0;
2e11384c 4679 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4680 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4681
4682 /*
4683 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4684 * MMIO, it is better to report an internal error.
4685 * See the comments in vmx_handle_exit.
4686 */
4687 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4688 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4689 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4690 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4691 vcpu->run->internal.ndata = 2;
4692 vcpu->run->internal.data[0] = vect_info;
4693 vcpu->run->internal.data[1] = intr_info;
4694 return 0;
4695 }
4696
6aa8b732 4697 if (is_page_fault(intr_info)) {
1439442c 4698 /* EPT won't cause page fault directly */
cf3ace79 4699 BUG_ON(enable_ept);
6aa8b732 4700 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4701 trace_kvm_page_fault(cr2, error_code);
4702
3298b75c 4703 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4704 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4705 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4706 }
4707
d0bfb940 4708 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4709
4710 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4711 return handle_rmode_exception(vcpu, ex_no, error_code);
4712
42dbaa5a
JK
4713 switch (ex_no) {
4714 case DB_VECTOR:
4715 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4716 if (!(vcpu->guest_debug &
4717 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4718 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4719 kvm_queue_exception(vcpu, DB_VECTOR);
4720 return 1;
4721 }
4722 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4723 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4724 /* fall through */
4725 case BP_VECTOR:
c573cd22
JK
4726 /*
4727 * Update instruction length as we may reinject #BP from
4728 * user space while in guest debugging mode. Reading it for
4729 * #DB as well causes no harm, it is not used in that case.
4730 */
4731 vmx->vcpu.arch.event_exit_inst_len =
4732 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4733 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4734 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4735 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4736 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4737 break;
4738 default:
d0bfb940
JK
4739 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4740 kvm_run->ex.exception = ex_no;
4741 kvm_run->ex.error_code = error_code;
42dbaa5a 4742 break;
6aa8b732 4743 }
6aa8b732
AK
4744 return 0;
4745}
4746
851ba692 4747static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4748{
1165f5fe 4749 ++vcpu->stat.irq_exits;
6aa8b732
AK
4750 return 1;
4751}
4752
851ba692 4753static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4754{
851ba692 4755 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4756 return 0;
4757}
6aa8b732 4758
851ba692 4759static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4760{
bfdaab09 4761 unsigned long exit_qualification;
34c33d16 4762 int size, in, string;
039576c0 4763 unsigned port;
6aa8b732 4764
bfdaab09 4765 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4766 string = (exit_qualification & 16) != 0;
cf8f70bf 4767 in = (exit_qualification & 8) != 0;
e70669ab 4768
cf8f70bf 4769 ++vcpu->stat.io_exits;
e70669ab 4770
cf8f70bf 4771 if (string || in)
51d8b661 4772 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4773
cf8f70bf
GN
4774 port = exit_qualification >> 16;
4775 size = (exit_qualification & 7) + 1;
e93f36bc 4776 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4777
4778 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4779}
4780
102d8325
IM
4781static void
4782vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4783{
4784 /*
4785 * Patch in the VMCALL instruction:
4786 */
4787 hypercall[0] = 0x0f;
4788 hypercall[1] = 0x01;
4789 hypercall[2] = 0xc1;
102d8325
IM
4790}
4791
0fa06071 4792/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
4793static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4794{
eeadf9e7 4795 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4796 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4797 unsigned long orig_val = val;
4798
eeadf9e7
NHE
4799 /*
4800 * We get here when L2 changed cr0 in a way that did not change
4801 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
4802 * but did change L0 shadowed bits. So we first calculate the
4803 * effective cr0 value that L1 would like to write into the
4804 * hardware. It consists of the L2-owned bits from the new
4805 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 4806 */
1a0d74e6
JK
4807 val = (val & ~vmcs12->cr0_guest_host_mask) |
4808 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4809
4810 /* TODO: will have to take unrestricted guest mode into
4811 * account */
4812 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
eeadf9e7 4813 return 1;
1a0d74e6
JK
4814
4815 if (kvm_set_cr0(vcpu, val))
4816 return 1;
4817 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 4818 return 0;
1a0d74e6
JK
4819 } else {
4820 if (to_vmx(vcpu)->nested.vmxon &&
4821 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4822 return 1;
eeadf9e7 4823 return kvm_set_cr0(vcpu, val);
1a0d74e6 4824 }
eeadf9e7
NHE
4825}
4826
4827static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4828{
4829 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4830 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4831 unsigned long orig_val = val;
4832
4833 /* analogously to handle_set_cr0 */
4834 val = (val & ~vmcs12->cr4_guest_host_mask) |
4835 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4836 if (kvm_set_cr4(vcpu, val))
eeadf9e7 4837 return 1;
1a0d74e6 4838 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
4839 return 0;
4840 } else
4841 return kvm_set_cr4(vcpu, val);
4842}
4843
4844/* called to set cr0 as approriate for clts instruction exit. */
4845static void handle_clts(struct kvm_vcpu *vcpu)
4846{
4847 if (is_guest_mode(vcpu)) {
4848 /*
4849 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4850 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4851 * just pretend it's off (also in arch.cr0 for fpu_activate).
4852 */
4853 vmcs_writel(CR0_READ_SHADOW,
4854 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4855 vcpu->arch.cr0 &= ~X86_CR0_TS;
4856 } else
4857 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4858}
4859
851ba692 4860static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4861{
229456fc 4862 unsigned long exit_qualification, val;
6aa8b732
AK
4863 int cr;
4864 int reg;
49a9b07e 4865 int err;
6aa8b732 4866
bfdaab09 4867 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4868 cr = exit_qualification & 15;
4869 reg = (exit_qualification >> 8) & 15;
4870 switch ((exit_qualification >> 4) & 3) {
4871 case 0: /* mov to cr */
229456fc
MT
4872 val = kvm_register_read(vcpu, reg);
4873 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4874 switch (cr) {
4875 case 0:
eeadf9e7 4876 err = handle_set_cr0(vcpu, val);
db8fcefa 4877 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4878 return 1;
4879 case 3:
2390218b 4880 err = kvm_set_cr3(vcpu, val);
db8fcefa 4881 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4882 return 1;
4883 case 4:
eeadf9e7 4884 err = handle_set_cr4(vcpu, val);
db8fcefa 4885 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4886 return 1;
0a5fff19
GN
4887 case 8: {
4888 u8 cr8_prev = kvm_get_cr8(vcpu);
4889 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4890 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4891 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4892 if (irqchip_in_kernel(vcpu->kvm))
4893 return 1;
4894 if (cr8_prev <= cr8)
4895 return 1;
851ba692 4896 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4897 return 0;
4898 }
4b8073e4 4899 }
6aa8b732 4900 break;
25c4c276 4901 case 2: /* clts */
eeadf9e7 4902 handle_clts(vcpu);
4d4ec087 4903 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4904 skip_emulated_instruction(vcpu);
6b52d186 4905 vmx_fpu_activate(vcpu);
25c4c276 4906 return 1;
6aa8b732
AK
4907 case 1: /*mov from cr*/
4908 switch (cr) {
4909 case 3:
9f8fe504
AK
4910 val = kvm_read_cr3(vcpu);
4911 kvm_register_write(vcpu, reg, val);
4912 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4913 skip_emulated_instruction(vcpu);
4914 return 1;
4915 case 8:
229456fc
MT
4916 val = kvm_get_cr8(vcpu);
4917 kvm_register_write(vcpu, reg, val);
4918 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4919 skip_emulated_instruction(vcpu);
4920 return 1;
4921 }
4922 break;
4923 case 3: /* lmsw */
a1f83a74 4924 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4925 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4926 kvm_lmsw(vcpu, val);
6aa8b732
AK
4927
4928 skip_emulated_instruction(vcpu);
4929 return 1;
4930 default:
4931 break;
4932 }
851ba692 4933 vcpu->run->exit_reason = 0;
a737f256 4934 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4935 (int)(exit_qualification >> 4) & 3, cr);
4936 return 0;
4937}
4938
851ba692 4939static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4940{
bfdaab09 4941 unsigned long exit_qualification;
6aa8b732
AK
4942 int dr, reg;
4943
f2483415 4944 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4945 if (!kvm_require_cpl(vcpu, 0))
4946 return 1;
42dbaa5a
JK
4947 dr = vmcs_readl(GUEST_DR7);
4948 if (dr & DR7_GD) {
4949 /*
4950 * As the vm-exit takes precedence over the debug trap, we
4951 * need to emulate the latter, either for the host or the
4952 * guest debugging itself.
4953 */
4954 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4955 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4956 vcpu->run->debug.arch.dr7 = dr;
4957 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4958 vmcs_readl(GUEST_CS_BASE) +
4959 vmcs_readl(GUEST_RIP);
851ba692
AK
4960 vcpu->run->debug.arch.exception = DB_VECTOR;
4961 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4962 return 0;
4963 } else {
4964 vcpu->arch.dr7 &= ~DR7_GD;
4965 vcpu->arch.dr6 |= DR6_BD;
4966 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4967 kvm_queue_exception(vcpu, DB_VECTOR);
4968 return 1;
4969 }
4970 }
4971
bfdaab09 4972 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4973 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4974 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4975 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4976 unsigned long val;
4977 if (!kvm_get_dr(vcpu, dr, &val))
4978 kvm_register_write(vcpu, reg, val);
4979 } else
4980 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4981 skip_emulated_instruction(vcpu);
4982 return 1;
4983}
4984
020df079
GN
4985static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4986{
4987 vmcs_writel(GUEST_DR7, val);
4988}
4989
851ba692 4990static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4991{
06465c5a
AK
4992 kvm_emulate_cpuid(vcpu);
4993 return 1;
6aa8b732
AK
4994}
4995
851ba692 4996static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4997{
ad312c7c 4998 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4999 u64 data;
5000
5001 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5002 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5003 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5004 return 1;
5005 }
5006
229456fc 5007 trace_kvm_msr_read(ecx, data);
2714d1d3 5008
6aa8b732 5009 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5010 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5011 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5012 skip_emulated_instruction(vcpu);
5013 return 1;
5014}
5015
851ba692 5016static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5017{
8fe8ab46 5018 struct msr_data msr;
ad312c7c
ZX
5019 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5020 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5021 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5022
8fe8ab46
WA
5023 msr.data = data;
5024 msr.index = ecx;
5025 msr.host_initiated = false;
5026 if (vmx_set_msr(vcpu, &msr) != 0) {
59200273 5027 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5028 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5029 return 1;
5030 }
5031
59200273 5032 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5033 skip_emulated_instruction(vcpu);
5034 return 1;
5035}
5036
851ba692 5037static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5038{
3842d135 5039 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5040 return 1;
5041}
5042
851ba692 5043static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5044{
85f455f7
ED
5045 u32 cpu_based_vm_exec_control;
5046
5047 /* clear pending irq */
5048 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5049 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5050 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5051
3842d135
AK
5052 kvm_make_request(KVM_REQ_EVENT, vcpu);
5053
a26bf12a 5054 ++vcpu->stat.irq_window_exits;
2714d1d3 5055
c1150d8c
DL
5056 /*
5057 * If the user space waits to inject interrupts, exit as soon as
5058 * possible
5059 */
8061823a 5060 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5061 vcpu->run->request_interrupt_window &&
8061823a 5062 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5063 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5064 return 0;
5065 }
6aa8b732
AK
5066 return 1;
5067}
5068
851ba692 5069static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
5070{
5071 skip_emulated_instruction(vcpu);
d3bef15f 5072 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5073}
5074
851ba692 5075static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5076{
510043da 5077 skip_emulated_instruction(vcpu);
7aa81cc0
AL
5078 kvm_emulate_hypercall(vcpu);
5079 return 1;
c21415e8
IM
5080}
5081
ec25d5e6
GN
5082static int handle_invd(struct kvm_vcpu *vcpu)
5083{
51d8b661 5084 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5085}
5086
851ba692 5087static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5088{
f9c617f6 5089 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5090
5091 kvm_mmu_invlpg(vcpu, exit_qualification);
5092 skip_emulated_instruction(vcpu);
5093 return 1;
5094}
5095
fee84b07
AK
5096static int handle_rdpmc(struct kvm_vcpu *vcpu)
5097{
5098 int err;
5099
5100 err = kvm_rdpmc(vcpu);
5101 kvm_complete_insn_gp(vcpu, err);
5102
5103 return 1;
5104}
5105
851ba692 5106static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
5107{
5108 skip_emulated_instruction(vcpu);
f5f48ee1 5109 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5110 return 1;
5111}
5112
2acf923e
DC
5113static int handle_xsetbv(struct kvm_vcpu *vcpu)
5114{
5115 u64 new_bv = kvm_read_edx_eax(vcpu);
5116 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5117
5118 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5119 skip_emulated_instruction(vcpu);
5120 return 1;
5121}
5122
851ba692 5123static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5124{
58fbbf26
KT
5125 if (likely(fasteoi)) {
5126 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5127 int access_type, offset;
5128
5129 access_type = exit_qualification & APIC_ACCESS_TYPE;
5130 offset = exit_qualification & APIC_ACCESS_OFFSET;
5131 /*
5132 * Sane guest uses MOV to write EOI, with written value
5133 * not cared. So make a short-circuit here by avoiding
5134 * heavy instruction emulation.
5135 */
5136 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5137 (offset == APIC_EOI)) {
5138 kvm_lapic_set_eoi(vcpu);
5139 skip_emulated_instruction(vcpu);
5140 return 1;
5141 }
5142 }
51d8b661 5143 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5144}
5145
c7c9c56c
YZ
5146static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5147{
5148 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5149 int vector = exit_qualification & 0xff;
5150
5151 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5152 kvm_apic_set_eoi_accelerated(vcpu, vector);
5153 return 1;
5154}
5155
83d4c286
YZ
5156static int handle_apic_write(struct kvm_vcpu *vcpu)
5157{
5158 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5159 u32 offset = exit_qualification & 0xfff;
5160
5161 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5162 kvm_apic_write_nodecode(vcpu, offset);
5163 return 1;
5164}
5165
851ba692 5166static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5167{
60637aac 5168 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5169 unsigned long exit_qualification;
e269fb21
JK
5170 bool has_error_code = false;
5171 u32 error_code = 0;
37817f29 5172 u16 tss_selector;
7f3d35fd 5173 int reason, type, idt_v, idt_index;
64a7ec06
GN
5174
5175 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5176 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5177 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5178
5179 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5180
5181 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5182 if (reason == TASK_SWITCH_GATE && idt_v) {
5183 switch (type) {
5184 case INTR_TYPE_NMI_INTR:
5185 vcpu->arch.nmi_injected = false;
654f06fc 5186 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5187 break;
5188 case INTR_TYPE_EXT_INTR:
66fd3f7f 5189 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5190 kvm_clear_interrupt_queue(vcpu);
5191 break;
5192 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5193 if (vmx->idt_vectoring_info &
5194 VECTORING_INFO_DELIVER_CODE_MASK) {
5195 has_error_code = true;
5196 error_code =
5197 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5198 }
5199 /* fall through */
64a7ec06
GN
5200 case INTR_TYPE_SOFT_EXCEPTION:
5201 kvm_clear_exception_queue(vcpu);
5202 break;
5203 default:
5204 break;
5205 }
60637aac 5206 }
37817f29
IE
5207 tss_selector = exit_qualification;
5208
64a7ec06
GN
5209 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5210 type != INTR_TYPE_EXT_INTR &&
5211 type != INTR_TYPE_NMI_INTR))
5212 skip_emulated_instruction(vcpu);
5213
7f3d35fd
KW
5214 if (kvm_task_switch(vcpu, tss_selector,
5215 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5216 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5217 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5218 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5219 vcpu->run->internal.ndata = 0;
42dbaa5a 5220 return 0;
acb54517 5221 }
42dbaa5a
JK
5222
5223 /* clear all local breakpoint enable flags */
5224 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5225
5226 /*
5227 * TODO: What about debug traps on tss switch?
5228 * Are we supposed to inject them and update dr6?
5229 */
5230
5231 return 1;
37817f29
IE
5232}
5233
851ba692 5234static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5235{
f9c617f6 5236 unsigned long exit_qualification;
1439442c 5237 gpa_t gpa;
4f5982a5 5238 u32 error_code;
1439442c 5239 int gla_validity;
1439442c 5240
f9c617f6 5241 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5242
1439442c
SY
5243 gla_validity = (exit_qualification >> 7) & 0x3;
5244 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5245 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5246 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5247 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5248 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5249 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5250 (long unsigned int)exit_qualification);
851ba692
AK
5251 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5252 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5253 return 0;
1439442c
SY
5254 }
5255
5256 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5257 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5258
5259 /* It is a write fault? */
5260 error_code = exit_qualification & (1U << 1);
5261 /* ept page table is present? */
5262 error_code |= (exit_qualification >> 3) & 0x1;
5263
5264 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5265}
5266
68f89400
MT
5267static u64 ept_rsvd_mask(u64 spte, int level)
5268{
5269 int i;
5270 u64 mask = 0;
5271
5272 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5273 mask |= (1ULL << i);
5274
5275 if (level > 2)
5276 /* bits 7:3 reserved */
5277 mask |= 0xf8;
5278 else if (level == 2) {
5279 if (spte & (1ULL << 7))
5280 /* 2MB ref, bits 20:12 reserved */
5281 mask |= 0x1ff000;
5282 else
5283 /* bits 6:3 reserved */
5284 mask |= 0x78;
5285 }
5286
5287 return mask;
5288}
5289
5290static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5291 int level)
5292{
5293 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5294
5295 /* 010b (write-only) */
5296 WARN_ON((spte & 0x7) == 0x2);
5297
5298 /* 110b (write/execute) */
5299 WARN_ON((spte & 0x7) == 0x6);
5300
5301 /* 100b (execute-only) and value not supported by logical processor */
5302 if (!cpu_has_vmx_ept_execute_only())
5303 WARN_ON((spte & 0x7) == 0x4);
5304
5305 /* not 000b */
5306 if ((spte & 0x7)) {
5307 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5308
5309 if (rsvd_bits != 0) {
5310 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5311 __func__, rsvd_bits);
5312 WARN_ON(1);
5313 }
5314
5315 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5316 u64 ept_mem_type = (spte & 0x38) >> 3;
5317
5318 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5319 ept_mem_type == 7) {
5320 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5321 __func__, ept_mem_type);
5322 WARN_ON(1);
5323 }
5324 }
5325 }
5326}
5327
851ba692 5328static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5329{
5330 u64 sptes[4];
ce88decf 5331 int nr_sptes, i, ret;
68f89400
MT
5332 gpa_t gpa;
5333
5334 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5335
ce88decf
XG
5336 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5337 if (likely(ret == 1))
5338 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5339 EMULATE_DONE;
5340 if (unlikely(!ret))
5341 return 1;
5342
5343 /* It is the real ept misconfig */
68f89400
MT
5344 printk(KERN_ERR "EPT: Misconfiguration.\n");
5345 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5346
5347 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5348
5349 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5350 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5351
851ba692
AK
5352 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5353 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5354
5355 return 0;
5356}
5357
851ba692 5358static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5359{
5360 u32 cpu_based_vm_exec_control;
5361
5362 /* clear pending NMI */
5363 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5364 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5365 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5366 ++vcpu->stat.nmi_window_exits;
3842d135 5367 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5368
5369 return 1;
5370}
5371
80ced186 5372static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5373{
8b3079a5
AK
5374 struct vcpu_vmx *vmx = to_vmx(vcpu);
5375 enum emulation_result err = EMULATE_DONE;
80ced186 5376 int ret = 1;
49e9d557
AK
5377 u32 cpu_exec_ctrl;
5378 bool intr_window_requested;
b8405c18 5379 unsigned count = 130;
49e9d557
AK
5380
5381 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5382 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5383
b8405c18 5384 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5385 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5386 return handle_interrupt_window(&vmx->vcpu);
5387
de87dcdd
AK
5388 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5389 return 1;
5390
991eebf9 5391 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5392
80ced186
MG
5393 if (err == EMULATE_DO_MMIO) {
5394 ret = 0;
5395 goto out;
5396 }
1d5a4d9b 5397
de5f70e0
AK
5398 if (err != EMULATE_DONE) {
5399 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5400 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5401 vcpu->run->internal.ndata = 0;
6d77dbfc 5402 return 0;
de5f70e0 5403 }
ea953ef0
MG
5404
5405 if (signal_pending(current))
80ced186 5406 goto out;
ea953ef0
MG
5407 if (need_resched())
5408 schedule();
5409 }
5410
14168786 5411 vmx->emulation_required = emulation_required(vcpu);
80ced186
MG
5412out:
5413 return ret;
ea953ef0
MG
5414}
5415
4b8d54f9
ZE
5416/*
5417 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5418 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5419 */
9fb41ba8 5420static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5421{
5422 skip_emulated_instruction(vcpu);
5423 kvm_vcpu_on_spin(vcpu);
5424
5425 return 1;
5426}
5427
59708670
SY
5428static int handle_invalid_op(struct kvm_vcpu *vcpu)
5429{
5430 kvm_queue_exception(vcpu, UD_VECTOR);
5431 return 1;
5432}
5433
ff2f6fe9
NHE
5434/*
5435 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5436 * We could reuse a single VMCS for all the L2 guests, but we also want the
5437 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5438 * allows keeping them loaded on the processor, and in the future will allow
5439 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5440 * every entry if they never change.
5441 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5442 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5443 *
5444 * The following functions allocate and free a vmcs02 in this pool.
5445 */
5446
5447/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5448static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5449{
5450 struct vmcs02_list *item;
5451 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5452 if (item->vmptr == vmx->nested.current_vmptr) {
5453 list_move(&item->list, &vmx->nested.vmcs02_pool);
5454 return &item->vmcs02;
5455 }
5456
5457 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5458 /* Recycle the least recently used VMCS. */
5459 item = list_entry(vmx->nested.vmcs02_pool.prev,
5460 struct vmcs02_list, list);
5461 item->vmptr = vmx->nested.current_vmptr;
5462 list_move(&item->list, &vmx->nested.vmcs02_pool);
5463 return &item->vmcs02;
5464 }
5465
5466 /* Create a new VMCS */
0fa24ce3 5467 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
5468 if (!item)
5469 return NULL;
5470 item->vmcs02.vmcs = alloc_vmcs();
5471 if (!item->vmcs02.vmcs) {
5472 kfree(item);
5473 return NULL;
5474 }
5475 loaded_vmcs_init(&item->vmcs02);
5476 item->vmptr = vmx->nested.current_vmptr;
5477 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5478 vmx->nested.vmcs02_num++;
5479 return &item->vmcs02;
5480}
5481
5482/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5483static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5484{
5485 struct vmcs02_list *item;
5486 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5487 if (item->vmptr == vmptr) {
5488 free_loaded_vmcs(&item->vmcs02);
5489 list_del(&item->list);
5490 kfree(item);
5491 vmx->nested.vmcs02_num--;
5492 return;
5493 }
5494}
5495
5496/*
5497 * Free all VMCSs saved for this vcpu, except the one pointed by
5498 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5499 * currently used, if running L2), and vmcs01 when running L2.
5500 */
5501static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5502{
5503 struct vmcs02_list *item, *n;
5504 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5505 if (vmx->loaded_vmcs != &item->vmcs02)
5506 free_loaded_vmcs(&item->vmcs02);
5507 list_del(&item->list);
5508 kfree(item);
5509 }
5510 vmx->nested.vmcs02_num = 0;
5511
5512 if (vmx->loaded_vmcs != &vmx->vmcs01)
5513 free_loaded_vmcs(&vmx->vmcs01);
5514}
5515
145c28dd
AG
5516static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5517 u32 vm_instruction_error);
5518
ec378aee
NHE
5519/*
5520 * Emulate the VMXON instruction.
5521 * Currently, we just remember that VMX is active, and do not save or even
5522 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5523 * do not currently need to store anything in that guest-allocated memory
5524 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5525 * argument is different from the VMXON pointer (which the spec says they do).
5526 */
5527static int handle_vmon(struct kvm_vcpu *vcpu)
5528{
5529 struct kvm_segment cs;
5530 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 5531 struct vmcs *shadow_vmcs;
ec378aee
NHE
5532
5533 /* The Intel VMX Instruction Reference lists a bunch of bits that
5534 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5535 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5536 * Otherwise, we should fail with #UD. We test these now:
5537 */
5538 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5539 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5540 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5541 kvm_queue_exception(vcpu, UD_VECTOR);
5542 return 1;
5543 }
5544
5545 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5546 if (is_long_mode(vcpu) && !cs.l) {
5547 kvm_queue_exception(vcpu, UD_VECTOR);
5548 return 1;
5549 }
5550
5551 if (vmx_get_cpl(vcpu)) {
5552 kvm_inject_gp(vcpu, 0);
5553 return 1;
5554 }
145c28dd
AG
5555 if (vmx->nested.vmxon) {
5556 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5557 skip_emulated_instruction(vcpu);
5558 return 1;
5559 }
8de48833
AG
5560 if (enable_shadow_vmcs) {
5561 shadow_vmcs = alloc_vmcs();
5562 if (!shadow_vmcs)
5563 return -ENOMEM;
5564 /* mark vmcs as shadow */
5565 shadow_vmcs->revision_id |= (1u << 31);
5566 /* init shadow vmcs */
5567 vmcs_clear(shadow_vmcs);
5568 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5569 }
ec378aee 5570
ff2f6fe9
NHE
5571 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5572 vmx->nested.vmcs02_num = 0;
5573
ec378aee
NHE
5574 vmx->nested.vmxon = true;
5575
5576 skip_emulated_instruction(vcpu);
5577 return 1;
5578}
5579
5580/*
5581 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5582 * for running VMX instructions (except VMXON, whose prerequisites are
5583 * slightly different). It also specifies what exception to inject otherwise.
5584 */
5585static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5586{
5587 struct kvm_segment cs;
5588 struct vcpu_vmx *vmx = to_vmx(vcpu);
5589
5590 if (!vmx->nested.vmxon) {
5591 kvm_queue_exception(vcpu, UD_VECTOR);
5592 return 0;
5593 }
5594
5595 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5596 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5597 (is_long_mode(vcpu) && !cs.l)) {
5598 kvm_queue_exception(vcpu, UD_VECTOR);
5599 return 0;
5600 }
5601
5602 if (vmx_get_cpl(vcpu)) {
5603 kvm_inject_gp(vcpu, 0);
5604 return 0;
5605 }
5606
5607 return 1;
5608}
5609
5610/*
5611 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5612 * just stops using VMX.
5613 */
5614static void free_nested(struct vcpu_vmx *vmx)
5615{
5616 if (!vmx->nested.vmxon)
5617 return;
5618 vmx->nested.vmxon = false;
a9d30f33
NHE
5619 if (vmx->nested.current_vmptr != -1ull) {
5620 kunmap(vmx->nested.current_vmcs12_page);
5621 nested_release_page(vmx->nested.current_vmcs12_page);
5622 vmx->nested.current_vmptr = -1ull;
5623 vmx->nested.current_vmcs12 = NULL;
5624 }
fe3ef05c
NHE
5625 /* Unpin physical memory we referred to in current vmcs02 */
5626 if (vmx->nested.apic_access_page) {
5627 nested_release_page(vmx->nested.apic_access_page);
5628 vmx->nested.apic_access_page = 0;
5629 }
ff2f6fe9
NHE
5630
5631 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5632}
5633
5634/* Emulate the VMXOFF instruction */
5635static int handle_vmoff(struct kvm_vcpu *vcpu)
5636{
5637 if (!nested_vmx_check_permission(vcpu))
5638 return 1;
5639 free_nested(to_vmx(vcpu));
5640 skip_emulated_instruction(vcpu);
5641 return 1;
5642}
5643
064aea77
NHE
5644/*
5645 * Decode the memory-address operand of a vmx instruction, as recorded on an
5646 * exit caused by such an instruction (run by a guest hypervisor).
5647 * On success, returns 0. When the operand is invalid, returns 1 and throws
5648 * #UD or #GP.
5649 */
5650static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5651 unsigned long exit_qualification,
5652 u32 vmx_instruction_info, gva_t *ret)
5653{
5654 /*
5655 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5656 * Execution", on an exit, vmx_instruction_info holds most of the
5657 * addressing components of the operand. Only the displacement part
5658 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5659 * For how an actual address is calculated from all these components,
5660 * refer to Vol. 1, "Operand Addressing".
5661 */
5662 int scaling = vmx_instruction_info & 3;
5663 int addr_size = (vmx_instruction_info >> 7) & 7;
5664 bool is_reg = vmx_instruction_info & (1u << 10);
5665 int seg_reg = (vmx_instruction_info >> 15) & 7;
5666 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5667 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5668 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5669 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5670
5671 if (is_reg) {
5672 kvm_queue_exception(vcpu, UD_VECTOR);
5673 return 1;
5674 }
5675
5676 /* Addr = segment_base + offset */
5677 /* offset = base + [index * scale] + displacement */
5678 *ret = vmx_get_segment_base(vcpu, seg_reg);
5679 if (base_is_valid)
5680 *ret += kvm_register_read(vcpu, base_reg);
5681 if (index_is_valid)
5682 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5683 *ret += exit_qualification; /* holds the displacement */
5684
5685 if (addr_size == 1) /* 32 bit */
5686 *ret &= 0xffffffff;
5687
5688 /*
5689 * TODO: throw #GP (and return 1) in various cases that the VM*
5690 * instructions require it - e.g., offset beyond segment limit,
5691 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5692 * address, and so on. Currently these are not checked.
5693 */
5694 return 0;
5695}
5696
0140caea
NHE
5697/*
5698 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5699 * set the success or error code of an emulated VMX instruction, as specified
5700 * by Vol 2B, VMX Instruction Reference, "Conventions".
5701 */
5702static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5703{
5704 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5705 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5706 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5707}
5708
5709static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5710{
5711 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5712 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5713 X86_EFLAGS_SF | X86_EFLAGS_OF))
5714 | X86_EFLAGS_CF);
5715}
5716
5717static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5718 u32 vm_instruction_error)
5719{
5720 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5721 /*
5722 * failValid writes the error number to the current VMCS, which
5723 * can't be done there isn't a current VMCS.
5724 */
5725 nested_vmx_failInvalid(vcpu);
5726 return;
5727 }
5728 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5729 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5730 X86_EFLAGS_SF | X86_EFLAGS_OF))
5731 | X86_EFLAGS_ZF);
5732 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5733}
5734
27d6c865
NHE
5735/* Emulate the VMCLEAR instruction */
5736static int handle_vmclear(struct kvm_vcpu *vcpu)
5737{
5738 struct vcpu_vmx *vmx = to_vmx(vcpu);
5739 gva_t gva;
5740 gpa_t vmptr;
5741 struct vmcs12 *vmcs12;
5742 struct page *page;
5743 struct x86_exception e;
5744
5745 if (!nested_vmx_check_permission(vcpu))
5746 return 1;
5747
5748 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5749 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5750 return 1;
5751
5752 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5753 sizeof(vmptr), &e)) {
5754 kvm_inject_page_fault(vcpu, &e);
5755 return 1;
5756 }
5757
5758 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5759 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5760 skip_emulated_instruction(vcpu);
5761 return 1;
5762 }
5763
5764 if (vmptr == vmx->nested.current_vmptr) {
5765 kunmap(vmx->nested.current_vmcs12_page);
5766 nested_release_page(vmx->nested.current_vmcs12_page);
5767 vmx->nested.current_vmptr = -1ull;
5768 vmx->nested.current_vmcs12 = NULL;
5769 }
5770
5771 page = nested_get_page(vcpu, vmptr);
5772 if (page == NULL) {
5773 /*
5774 * For accurate processor emulation, VMCLEAR beyond available
5775 * physical memory should do nothing at all. However, it is
5776 * possible that a nested vmx bug, not a guest hypervisor bug,
5777 * resulted in this case, so let's shut down before doing any
5778 * more damage:
5779 */
5780 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5781 return 1;
5782 }
5783 vmcs12 = kmap(page);
5784 vmcs12->launch_state = 0;
5785 kunmap(page);
5786 nested_release_page(page);
5787
5788 nested_free_vmcs02(vmx, vmptr);
5789
5790 skip_emulated_instruction(vcpu);
5791 nested_vmx_succeed(vcpu);
5792 return 1;
5793}
5794
cd232ad0
NHE
5795static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5796
5797/* Emulate the VMLAUNCH instruction */
5798static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5799{
5800 return nested_vmx_run(vcpu, true);
5801}
5802
5803/* Emulate the VMRESUME instruction */
5804static int handle_vmresume(struct kvm_vcpu *vcpu)
5805{
5806
5807 return nested_vmx_run(vcpu, false);
5808}
5809
49f705c5
NHE
5810enum vmcs_field_type {
5811 VMCS_FIELD_TYPE_U16 = 0,
5812 VMCS_FIELD_TYPE_U64 = 1,
5813 VMCS_FIELD_TYPE_U32 = 2,
5814 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5815};
5816
5817static inline int vmcs_field_type(unsigned long field)
5818{
5819 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5820 return VMCS_FIELD_TYPE_U32;
5821 return (field >> 13) & 0x3 ;
5822}
5823
5824static inline int vmcs_field_readonly(unsigned long field)
5825{
5826 return (((field >> 10) & 0x3) == 1);
5827}
5828
5829/*
5830 * Read a vmcs12 field. Since these can have varying lengths and we return
5831 * one type, we chose the biggest type (u64) and zero-extend the return value
5832 * to that size. Note that the caller, handle_vmread, might need to use only
5833 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5834 * 64-bit fields are to be returned).
5835 */
5836static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5837 unsigned long field, u64 *ret)
5838{
5839 short offset = vmcs_field_to_offset(field);
5840 char *p;
5841
5842 if (offset < 0)
5843 return 0;
5844
5845 p = ((char *)(get_vmcs12(vcpu))) + offset;
5846
5847 switch (vmcs_field_type(field)) {
5848 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5849 *ret = *((natural_width *)p);
5850 return 1;
5851 case VMCS_FIELD_TYPE_U16:
5852 *ret = *((u16 *)p);
5853 return 1;
5854 case VMCS_FIELD_TYPE_U32:
5855 *ret = *((u32 *)p);
5856 return 1;
5857 case VMCS_FIELD_TYPE_U64:
5858 *ret = *((u64 *)p);
5859 return 1;
5860 default:
5861 return 0; /* can never happen. */
5862 }
5863}
5864
20b97fea
AG
5865
5866static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5867 unsigned long field, u64 field_value){
5868 short offset = vmcs_field_to_offset(field);
5869 char *p = ((char *) get_vmcs12(vcpu)) + offset;
5870 if (offset < 0)
5871 return false;
5872
5873 switch (vmcs_field_type(field)) {
5874 case VMCS_FIELD_TYPE_U16:
5875 *(u16 *)p = field_value;
5876 return true;
5877 case VMCS_FIELD_TYPE_U32:
5878 *(u32 *)p = field_value;
5879 return true;
5880 case VMCS_FIELD_TYPE_U64:
5881 *(u64 *)p = field_value;
5882 return true;
5883 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5884 *(natural_width *)p = field_value;
5885 return true;
5886 default:
5887 return false; /* can never happen. */
5888 }
5889
5890}
5891
49f705c5
NHE
5892/*
5893 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5894 * used before) all generate the same failure when it is missing.
5895 */
5896static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5897{
5898 struct vcpu_vmx *vmx = to_vmx(vcpu);
5899 if (vmx->nested.current_vmptr == -1ull) {
5900 nested_vmx_failInvalid(vcpu);
5901 skip_emulated_instruction(vcpu);
5902 return 0;
5903 }
5904 return 1;
5905}
5906
5907static int handle_vmread(struct kvm_vcpu *vcpu)
5908{
5909 unsigned long field;
5910 u64 field_value;
5911 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5912 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5913 gva_t gva = 0;
5914
5915 if (!nested_vmx_check_permission(vcpu) ||
5916 !nested_vmx_check_vmcs12(vcpu))
5917 return 1;
5918
5919 /* Decode instruction info and find the field to read */
5920 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5921 /* Read the field, zero-extended to a u64 field_value */
5922 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5923 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5924 skip_emulated_instruction(vcpu);
5925 return 1;
5926 }
5927 /*
5928 * Now copy part of this value to register or memory, as requested.
5929 * Note that the number of bits actually copied is 32 or 64 depending
5930 * on the guest's mode (32 or 64 bit), not on the given field's length.
5931 */
5932 if (vmx_instruction_info & (1u << 10)) {
5933 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5934 field_value);
5935 } else {
5936 if (get_vmx_mem_address(vcpu, exit_qualification,
5937 vmx_instruction_info, &gva))
5938 return 1;
5939 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5940 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5941 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5942 }
5943
5944 nested_vmx_succeed(vcpu);
5945 skip_emulated_instruction(vcpu);
5946 return 1;
5947}
5948
5949
5950static int handle_vmwrite(struct kvm_vcpu *vcpu)
5951{
5952 unsigned long field;
5953 gva_t gva;
5954 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5955 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
5956 /* The value to write might be 32 or 64 bits, depending on L1's long
5957 * mode, and eventually we need to write that into a field of several
5958 * possible lengths. The code below first zero-extends the value to 64
5959 * bit (field_value), and then copies only the approriate number of
5960 * bits into the vmcs12 field.
5961 */
5962 u64 field_value = 0;
5963 struct x86_exception e;
5964
5965 if (!nested_vmx_check_permission(vcpu) ||
5966 !nested_vmx_check_vmcs12(vcpu))
5967 return 1;
5968
5969 if (vmx_instruction_info & (1u << 10))
5970 field_value = kvm_register_read(vcpu,
5971 (((vmx_instruction_info) >> 3) & 0xf));
5972 else {
5973 if (get_vmx_mem_address(vcpu, exit_qualification,
5974 vmx_instruction_info, &gva))
5975 return 1;
5976 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5977 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5978 kvm_inject_page_fault(vcpu, &e);
5979 return 1;
5980 }
5981 }
5982
5983
5984 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5985 if (vmcs_field_readonly(field)) {
5986 nested_vmx_failValid(vcpu,
5987 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5988 skip_emulated_instruction(vcpu);
5989 return 1;
5990 }
5991
20b97fea 5992 if (!vmcs12_write_any(vcpu, field, field_value)) {
49f705c5
NHE
5993 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5994 skip_emulated_instruction(vcpu);
5995 return 1;
5996 }
5997
5998 nested_vmx_succeed(vcpu);
5999 skip_emulated_instruction(vcpu);
6000 return 1;
6001}
6002
63846663
NHE
6003/* Emulate the VMPTRLD instruction */
6004static int handle_vmptrld(struct kvm_vcpu *vcpu)
6005{
6006 struct vcpu_vmx *vmx = to_vmx(vcpu);
6007 gva_t gva;
6008 gpa_t vmptr;
6009 struct x86_exception e;
6010
6011 if (!nested_vmx_check_permission(vcpu))
6012 return 1;
6013
6014 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6015 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6016 return 1;
6017
6018 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6019 sizeof(vmptr), &e)) {
6020 kvm_inject_page_fault(vcpu, &e);
6021 return 1;
6022 }
6023
6024 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6025 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6026 skip_emulated_instruction(vcpu);
6027 return 1;
6028 }
6029
6030 if (vmx->nested.current_vmptr != vmptr) {
6031 struct vmcs12 *new_vmcs12;
6032 struct page *page;
6033 page = nested_get_page(vcpu, vmptr);
6034 if (page == NULL) {
6035 nested_vmx_failInvalid(vcpu);
6036 skip_emulated_instruction(vcpu);
6037 return 1;
6038 }
6039 new_vmcs12 = kmap(page);
6040 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6041 kunmap(page);
6042 nested_release_page_clean(page);
6043 nested_vmx_failValid(vcpu,
6044 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6045 skip_emulated_instruction(vcpu);
6046 return 1;
6047 }
6048 if (vmx->nested.current_vmptr != -1ull) {
6049 kunmap(vmx->nested.current_vmcs12_page);
6050 nested_release_page(vmx->nested.current_vmcs12_page);
6051 }
6052
6053 vmx->nested.current_vmptr = vmptr;
6054 vmx->nested.current_vmcs12 = new_vmcs12;
6055 vmx->nested.current_vmcs12_page = page;
6056 }
6057
6058 nested_vmx_succeed(vcpu);
6059 skip_emulated_instruction(vcpu);
6060 return 1;
6061}
6062
6a4d7550
NHE
6063/* Emulate the VMPTRST instruction */
6064static int handle_vmptrst(struct kvm_vcpu *vcpu)
6065{
6066 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6067 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6068 gva_t vmcs_gva;
6069 struct x86_exception e;
6070
6071 if (!nested_vmx_check_permission(vcpu))
6072 return 1;
6073
6074 if (get_vmx_mem_address(vcpu, exit_qualification,
6075 vmx_instruction_info, &vmcs_gva))
6076 return 1;
6077 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6078 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6079 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6080 sizeof(u64), &e)) {
6081 kvm_inject_page_fault(vcpu, &e);
6082 return 1;
6083 }
6084 nested_vmx_succeed(vcpu);
6085 skip_emulated_instruction(vcpu);
6086 return 1;
6087}
6088
6aa8b732
AK
6089/*
6090 * The exit handlers return 1 if the exit was handled fully and guest execution
6091 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6092 * to be done to userspace and return 0.
6093 */
772e0318 6094static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
6095 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6096 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 6097 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 6098 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 6099 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
6100 [EXIT_REASON_CR_ACCESS] = handle_cr,
6101 [EXIT_REASON_DR_ACCESS] = handle_dr,
6102 [EXIT_REASON_CPUID] = handle_cpuid,
6103 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6104 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6105 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6106 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 6107 [EXIT_REASON_INVD] = handle_invd,
a7052897 6108 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 6109 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 6110 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 6111 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 6112 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 6113 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 6114 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 6115 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 6116 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 6117 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
6118 [EXIT_REASON_VMOFF] = handle_vmoff,
6119 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
6120 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6121 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 6122 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 6123 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 6124 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 6125 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 6126 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 6127 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
6128 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6129 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 6130 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
6131 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6132 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
6133};
6134
6135static const int kvm_vmx_max_exit_handlers =
50a3485c 6136 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 6137
908a7bdd
JK
6138static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6139 struct vmcs12 *vmcs12)
6140{
6141 unsigned long exit_qualification;
6142 gpa_t bitmap, last_bitmap;
6143 unsigned int port;
6144 int size;
6145 u8 b;
6146
6147 if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6148 return 1;
6149
6150 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6151 return 0;
6152
6153 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6154
6155 port = exit_qualification >> 16;
6156 size = (exit_qualification & 7) + 1;
6157
6158 last_bitmap = (gpa_t)-1;
6159 b = -1;
6160
6161 while (size > 0) {
6162 if (port < 0x8000)
6163 bitmap = vmcs12->io_bitmap_a;
6164 else if (port < 0x10000)
6165 bitmap = vmcs12->io_bitmap_b;
6166 else
6167 return 1;
6168 bitmap += (port & 0x7fff) / 8;
6169
6170 if (last_bitmap != bitmap)
6171 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6172 return 1;
6173 if (b & (1 << (port & 7)))
6174 return 1;
6175
6176 port++;
6177 size--;
6178 last_bitmap = bitmap;
6179 }
6180
6181 return 0;
6182}
6183
644d711a
NHE
6184/*
6185 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6186 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6187 * disinterest in the current event (read or write a specific MSR) by using an
6188 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6189 */
6190static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6191 struct vmcs12 *vmcs12, u32 exit_reason)
6192{
6193 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6194 gpa_t bitmap;
6195
cbd29cb6 6196 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
6197 return 1;
6198
6199 /*
6200 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6201 * for the four combinations of read/write and low/high MSR numbers.
6202 * First we need to figure out which of the four to use:
6203 */
6204 bitmap = vmcs12->msr_bitmap;
6205 if (exit_reason == EXIT_REASON_MSR_WRITE)
6206 bitmap += 2048;
6207 if (msr_index >= 0xc0000000) {
6208 msr_index -= 0xc0000000;
6209 bitmap += 1024;
6210 }
6211
6212 /* Then read the msr_index'th bit from this bitmap: */
6213 if (msr_index < 1024*8) {
6214 unsigned char b;
bd31a7f5
JK
6215 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6216 return 1;
644d711a
NHE
6217 return 1 & (b >> (msr_index & 7));
6218 } else
6219 return 1; /* let L1 handle the wrong parameter */
6220}
6221
6222/*
6223 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6224 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6225 * intercept (via guest_host_mask etc.) the current event.
6226 */
6227static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6228 struct vmcs12 *vmcs12)
6229{
6230 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6231 int cr = exit_qualification & 15;
6232 int reg = (exit_qualification >> 8) & 15;
6233 unsigned long val = kvm_register_read(vcpu, reg);
6234
6235 switch ((exit_qualification >> 4) & 3) {
6236 case 0: /* mov to cr */
6237 switch (cr) {
6238 case 0:
6239 if (vmcs12->cr0_guest_host_mask &
6240 (val ^ vmcs12->cr0_read_shadow))
6241 return 1;
6242 break;
6243 case 3:
6244 if ((vmcs12->cr3_target_count >= 1 &&
6245 vmcs12->cr3_target_value0 == val) ||
6246 (vmcs12->cr3_target_count >= 2 &&
6247 vmcs12->cr3_target_value1 == val) ||
6248 (vmcs12->cr3_target_count >= 3 &&
6249 vmcs12->cr3_target_value2 == val) ||
6250 (vmcs12->cr3_target_count >= 4 &&
6251 vmcs12->cr3_target_value3 == val))
6252 return 0;
6253 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6254 return 1;
6255 break;
6256 case 4:
6257 if (vmcs12->cr4_guest_host_mask &
6258 (vmcs12->cr4_read_shadow ^ val))
6259 return 1;
6260 break;
6261 case 8:
6262 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6263 return 1;
6264 break;
6265 }
6266 break;
6267 case 2: /* clts */
6268 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6269 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6270 return 1;
6271 break;
6272 case 1: /* mov from cr */
6273 switch (cr) {
6274 case 3:
6275 if (vmcs12->cpu_based_vm_exec_control &
6276 CPU_BASED_CR3_STORE_EXITING)
6277 return 1;
6278 break;
6279 case 8:
6280 if (vmcs12->cpu_based_vm_exec_control &
6281 CPU_BASED_CR8_STORE_EXITING)
6282 return 1;
6283 break;
6284 }
6285 break;
6286 case 3: /* lmsw */
6287 /*
6288 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6289 * cr0. Other attempted changes are ignored, with no exit.
6290 */
6291 if (vmcs12->cr0_guest_host_mask & 0xe &
6292 (val ^ vmcs12->cr0_read_shadow))
6293 return 1;
6294 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6295 !(vmcs12->cr0_read_shadow & 0x1) &&
6296 (val & 0x1))
6297 return 1;
6298 break;
6299 }
6300 return 0;
6301}
6302
6303/*
6304 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6305 * should handle it ourselves in L0 (and then continue L2). Only call this
6306 * when in is_guest_mode (L2).
6307 */
6308static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6309{
644d711a
NHE
6310 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6311 struct vcpu_vmx *vmx = to_vmx(vcpu);
6312 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 6313 u32 exit_reason = vmx->exit_reason;
644d711a
NHE
6314
6315 if (vmx->nested.nested_run_pending)
6316 return 0;
6317
6318 if (unlikely(vmx->fail)) {
bd80158a
JK
6319 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6320 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
6321 return 1;
6322 }
6323
6324 switch (exit_reason) {
6325 case EXIT_REASON_EXCEPTION_NMI:
6326 if (!is_exception(intr_info))
6327 return 0;
6328 else if (is_page_fault(intr_info))
6329 return enable_ept;
6330 return vmcs12->exception_bitmap &
6331 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6332 case EXIT_REASON_EXTERNAL_INTERRUPT:
6333 return 0;
6334 case EXIT_REASON_TRIPLE_FAULT:
6335 return 1;
6336 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 6337 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 6338 case EXIT_REASON_NMI_WINDOW:
3b656cf7 6339 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
6340 case EXIT_REASON_TASK_SWITCH:
6341 return 1;
6342 case EXIT_REASON_CPUID:
6343 return 1;
6344 case EXIT_REASON_HLT:
6345 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6346 case EXIT_REASON_INVD:
6347 return 1;
6348 case EXIT_REASON_INVLPG:
6349 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6350 case EXIT_REASON_RDPMC:
6351 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6352 case EXIT_REASON_RDTSC:
6353 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6354 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6355 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6356 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6357 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6358 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6359 /*
6360 * VMX instructions trap unconditionally. This allows L1 to
6361 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6362 */
6363 return 1;
6364 case EXIT_REASON_CR_ACCESS:
6365 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6366 case EXIT_REASON_DR_ACCESS:
6367 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6368 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 6369 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
6370 case EXIT_REASON_MSR_READ:
6371 case EXIT_REASON_MSR_WRITE:
6372 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6373 case EXIT_REASON_INVALID_STATE:
6374 return 1;
6375 case EXIT_REASON_MWAIT_INSTRUCTION:
6376 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6377 case EXIT_REASON_MONITOR_INSTRUCTION:
6378 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6379 case EXIT_REASON_PAUSE_INSTRUCTION:
6380 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6381 nested_cpu_has2(vmcs12,
6382 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6383 case EXIT_REASON_MCE_DURING_VMENTRY:
6384 return 0;
6385 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6386 return 1;
6387 case EXIT_REASON_APIC_ACCESS:
6388 return nested_cpu_has2(vmcs12,
6389 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6390 case EXIT_REASON_EPT_VIOLATION:
6391 case EXIT_REASON_EPT_MISCONFIG:
6392 return 0;
0238ea91
JK
6393 case EXIT_REASON_PREEMPTION_TIMER:
6394 return vmcs12->pin_based_vm_exec_control &
6395 PIN_BASED_VMX_PREEMPTION_TIMER;
644d711a
NHE
6396 case EXIT_REASON_WBINVD:
6397 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6398 case EXIT_REASON_XSETBV:
6399 return 1;
6400 default:
6401 return 1;
6402 }
6403}
6404
586f9607
AK
6405static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6406{
6407 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6408 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6409}
6410
6aa8b732
AK
6411/*
6412 * The guest has exited. See if we can fix it or if we need userspace
6413 * assistance.
6414 */
851ba692 6415static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 6416{
29bd8a78 6417 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 6418 u32 exit_reason = vmx->exit_reason;
1155f76a 6419 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 6420
80ced186 6421 /* If guest state is invalid, start emulating */
14168786 6422 if (vmx->emulation_required)
80ced186 6423 return handle_invalid_guest_state(vcpu);
1d5a4d9b 6424
b6f1250e
NHE
6425 /*
6426 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6427 * we did not inject a still-pending event to L1 now because of
6428 * nested_run_pending, we need to re-enable this bit.
6429 */
6430 if (vmx->nested.nested_run_pending)
6431 kvm_make_request(KVM_REQ_EVENT, vcpu);
6432
509c75ea
NHE
6433 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6434 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
6435 vmx->nested.nested_run_pending = 1;
6436 else
6437 vmx->nested.nested_run_pending = 0;
6438
6439 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6440 nested_vmx_vmexit(vcpu);
6441 return 1;
6442 }
6443
5120702e
MG
6444 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6445 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6446 vcpu->run->fail_entry.hardware_entry_failure_reason
6447 = exit_reason;
6448 return 0;
6449 }
6450
29bd8a78 6451 if (unlikely(vmx->fail)) {
851ba692
AK
6452 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6453 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6454 = vmcs_read32(VM_INSTRUCTION_ERROR);
6455 return 0;
6456 }
6aa8b732 6457
b9bf6882
XG
6458 /*
6459 * Note:
6460 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6461 * delivery event since it indicates guest is accessing MMIO.
6462 * The vm-exit can be triggered again after return to guest that
6463 * will cause infinite loop.
6464 */
d77c26fc 6465 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6466 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 6467 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
6468 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6469 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6470 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6471 vcpu->run->internal.ndata = 2;
6472 vcpu->run->internal.data[0] = vectoring_info;
6473 vcpu->run->internal.data[1] = exit_reason;
6474 return 0;
6475 }
3b86cd99 6476
644d711a
NHE
6477 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6478 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6479 get_vmcs12(vcpu), vcpu)))) {
c4282df9 6480 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6481 vmx->soft_vnmi_blocked = 0;
3b86cd99 6482 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6483 vcpu->arch.nmi_pending) {
3b86cd99
JK
6484 /*
6485 * This CPU don't support us in finding the end of an
6486 * NMI-blocked window if the guest runs with IRQs
6487 * disabled. So we pull the trigger after 1 s of
6488 * futile waiting, but inform the user about this.
6489 */
6490 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6491 "state on VCPU %d after 1 s timeout\n",
6492 __func__, vcpu->vcpu_id);
6493 vmx->soft_vnmi_blocked = 0;
3b86cd99 6494 }
3b86cd99
JK
6495 }
6496
6aa8b732
AK
6497 if (exit_reason < kvm_vmx_max_exit_handlers
6498 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6499 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6500 else {
851ba692
AK
6501 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6502 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6503 }
6504 return 0;
6505}
6506
95ba8273 6507static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6508{
95ba8273 6509 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6510 vmcs_write32(TPR_THRESHOLD, 0);
6511 return;
6512 }
6513
95ba8273 6514 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6515}
6516
8d14695f
YZ
6517static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6518{
6519 u32 sec_exec_control;
6520
6521 /*
6522 * There is not point to enable virtualize x2apic without enable
6523 * apicv
6524 */
c7c9c56c
YZ
6525 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6526 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
6527 return;
6528
6529 if (!vm_need_tpr_shadow(vcpu->kvm))
6530 return;
6531
6532 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6533
6534 if (set) {
6535 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6536 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6537 } else {
6538 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6539 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6540 }
6541 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6542
6543 vmx_set_msr_bitmap(vcpu);
6544}
6545
c7c9c56c
YZ
6546static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6547{
6548 u16 status;
6549 u8 old;
6550
6551 if (!vmx_vm_has_apicv(kvm))
6552 return;
6553
6554 if (isr == -1)
6555 isr = 0;
6556
6557 status = vmcs_read16(GUEST_INTR_STATUS);
6558 old = status >> 8;
6559 if (isr != old) {
6560 status &= 0xff;
6561 status |= isr << 8;
6562 vmcs_write16(GUEST_INTR_STATUS, status);
6563 }
6564}
6565
6566static void vmx_set_rvi(int vector)
6567{
6568 u16 status;
6569 u8 old;
6570
6571 status = vmcs_read16(GUEST_INTR_STATUS);
6572 old = (u8)status & 0xff;
6573 if ((u8)vector != old) {
6574 status &= ~0xff;
6575 status |= (u8)vector;
6576 vmcs_write16(GUEST_INTR_STATUS, status);
6577 }
6578}
6579
6580static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6581{
6582 if (max_irr == -1)
6583 return;
6584
6585 vmx_set_rvi(max_irr);
6586}
6587
6588static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6589{
3d81bc7e
YZ
6590 if (!vmx_vm_has_apicv(vcpu->kvm))
6591 return;
6592
c7c9c56c
YZ
6593 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6594 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6595 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6596 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6597}
6598
51aa01d1 6599static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 6600{
00eba012
AK
6601 u32 exit_intr_info;
6602
6603 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6604 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6605 return;
6606
c5ca8e57 6607 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 6608 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
6609
6610 /* Handle machine checks before interrupts are enabled */
00eba012 6611 if (is_machine_check(exit_intr_info))
a0861c02
AK
6612 kvm_machine_check();
6613
20f65983 6614 /* We need to handle NMIs before interrupts are enabled */
00eba012 6615 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
6616 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6617 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 6618 asm("int $2");
ff9d07a0
ZY
6619 kvm_after_handle_nmi(&vmx->vcpu);
6620 }
51aa01d1 6621}
20f65983 6622
a547c6db
YZ
6623static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6624{
6625 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6626
6627 /*
6628 * If external interrupt exists, IF bit is set in rflags/eflags on the
6629 * interrupt stack frame, and interrupt will be enabled on a return
6630 * from interrupt handler.
6631 */
6632 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6633 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6634 unsigned int vector;
6635 unsigned long entry;
6636 gate_desc *desc;
6637 struct vcpu_vmx *vmx = to_vmx(vcpu);
6638#ifdef CONFIG_X86_64
6639 unsigned long tmp;
6640#endif
6641
6642 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6643 desc = (gate_desc *)vmx->host_idt_base + vector;
6644 entry = gate_offset(*desc);
6645 asm volatile(
6646#ifdef CONFIG_X86_64
6647 "mov %%" _ASM_SP ", %[sp]\n\t"
6648 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6649 "push $%c[ss]\n\t"
6650 "push %[sp]\n\t"
6651#endif
6652 "pushf\n\t"
6653 "orl $0x200, (%%" _ASM_SP ")\n\t"
6654 __ASM_SIZE(push) " $%c[cs]\n\t"
6655 "call *%[entry]\n\t"
6656 :
6657#ifdef CONFIG_X86_64
6658 [sp]"=&r"(tmp)
6659#endif
6660 :
6661 [entry]"r"(entry),
6662 [ss]"i"(__KERNEL_DS),
6663 [cs]"i"(__KERNEL_CS)
6664 );
6665 } else
6666 local_irq_enable();
6667}
6668
51aa01d1
AK
6669static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6670{
c5ca8e57 6671 u32 exit_intr_info;
51aa01d1
AK
6672 bool unblock_nmi;
6673 u8 vector;
6674 bool idtv_info_valid;
6675
6676 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 6677
cf393f75 6678 if (cpu_has_virtual_nmis()) {
9d58b931
AK
6679 if (vmx->nmi_known_unmasked)
6680 return;
c5ca8e57
AK
6681 /*
6682 * Can't use vmx->exit_intr_info since we're not sure what
6683 * the exit reason is.
6684 */
6685 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
6686 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6687 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6688 /*
7b4a25cb 6689 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
6690 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6691 * a guest IRET fault.
7b4a25cb
GN
6692 * SDM 3: 23.2.2 (September 2008)
6693 * Bit 12 is undefined in any of the following cases:
6694 * If the VM exit sets the valid bit in the IDT-vectoring
6695 * information field.
6696 * If the VM exit is due to a double fault.
cf393f75 6697 */
7b4a25cb
GN
6698 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6699 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
6700 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6701 GUEST_INTR_STATE_NMI);
9d58b931
AK
6702 else
6703 vmx->nmi_known_unmasked =
6704 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6705 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
6706 } else if (unlikely(vmx->soft_vnmi_blocked))
6707 vmx->vnmi_blocked_time +=
6708 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
6709}
6710
3ab66e8a 6711static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
6712 u32 idt_vectoring_info,
6713 int instr_len_field,
6714 int error_code_field)
51aa01d1 6715{
51aa01d1
AK
6716 u8 vector;
6717 int type;
6718 bool idtv_info_valid;
6719
6720 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6721
3ab66e8a
JK
6722 vcpu->arch.nmi_injected = false;
6723 kvm_clear_exception_queue(vcpu);
6724 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
6725
6726 if (!idtv_info_valid)
6727 return;
6728
3ab66e8a 6729 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 6730
668f612f
AK
6731 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6732 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6733
64a7ec06 6734 switch (type) {
37b96e98 6735 case INTR_TYPE_NMI_INTR:
3ab66e8a 6736 vcpu->arch.nmi_injected = true;
668f612f 6737 /*
7b4a25cb 6738 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6739 * Clear bit "block by NMI" before VM entry if a NMI
6740 * delivery faulted.
668f612f 6741 */
3ab66e8a 6742 vmx_set_nmi_mask(vcpu, false);
37b96e98 6743 break;
37b96e98 6744 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 6745 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
6746 /* fall through */
6747 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6748 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6749 u32 err = vmcs_read32(error_code_field);
3ab66e8a 6750 kvm_queue_exception_e(vcpu, vector, err);
35920a35 6751 } else
3ab66e8a 6752 kvm_queue_exception(vcpu, vector);
37b96e98 6753 break;
66fd3f7f 6754 case INTR_TYPE_SOFT_INTR:
3ab66e8a 6755 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 6756 /* fall through */
37b96e98 6757 case INTR_TYPE_EXT_INTR:
3ab66e8a 6758 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6759 break;
6760 default:
6761 break;
f7d9238f 6762 }
cf393f75
AK
6763}
6764
83422e17
AK
6765static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6766{
3ab66e8a 6767 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
6768 VM_EXIT_INSTRUCTION_LEN,
6769 IDT_VECTORING_ERROR_CODE);
6770}
6771
b463a6f7
AK
6772static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6773{
3ab66e8a 6774 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
6775 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6776 VM_ENTRY_INSTRUCTION_LEN,
6777 VM_ENTRY_EXCEPTION_ERROR_CODE);
6778
6779 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6780}
6781
d7cd9796
GN
6782static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6783{
6784 int i, nr_msrs;
6785 struct perf_guest_switch_msr *msrs;
6786
6787 msrs = perf_guest_get_msrs(&nr_msrs);
6788
6789 if (!msrs)
6790 return;
6791
6792 for (i = 0; i < nr_msrs; i++)
6793 if (msrs[i].host == msrs[i].guest)
6794 clear_atomic_switch_msr(vmx, msrs[i].msr);
6795 else
6796 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6797 msrs[i].host);
6798}
6799
a3b5ba49 6800static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6801{
a2fa3e9f 6802 struct vcpu_vmx *vmx = to_vmx(vcpu);
2a7921b7 6803 unsigned long debugctlmsr;
104f226b
AK
6804
6805 /* Record the guest's net vcpu time for enforced NMI injections. */
6806 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6807 vmx->entry_time = ktime_get();
6808
6809 /* Don't enter VMX if guest state is invalid, let the exit handler
6810 start emulation until we arrive back to a valid state */
14168786 6811 if (vmx->emulation_required)
104f226b
AK
6812 return;
6813
6814 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6815 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6816 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6817 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6818
6819 /* When single-stepping over STI and MOV SS, we must clear the
6820 * corresponding interruptibility bits in the guest state. Otherwise
6821 * vmentry fails as it then expects bit 14 (BS) in pending debug
6822 * exceptions being set, but that's not correct for the guest debugging
6823 * case. */
6824 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6825 vmx_set_interrupt_shadow(vcpu, 0);
6826
d7cd9796 6827 atomic_switch_perf_msrs(vmx);
2a7921b7 6828 debugctlmsr = get_debugctlmsr();
d7cd9796 6829
d462b819 6830 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6831 asm(
6aa8b732 6832 /* Store host registers */
b188c81f
AK
6833 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6834 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6835 "push %%" _ASM_CX " \n\t"
6836 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 6837 "je 1f \n\t"
b188c81f 6838 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 6839 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6840 "1: \n\t"
d3edefc0 6841 /* Reload cr2 if changed */
b188c81f
AK
6842 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6843 "mov %%cr2, %%" _ASM_DX " \n\t"
6844 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 6845 "je 2f \n\t"
b188c81f 6846 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 6847 "2: \n\t"
6aa8b732 6848 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6849 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6850 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
6851 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
6852 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
6853 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
6854 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
6855 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
6856 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 6857#ifdef CONFIG_X86_64
e08aa78a
AK
6858 "mov %c[r8](%0), %%r8 \n\t"
6859 "mov %c[r9](%0), %%r9 \n\t"
6860 "mov %c[r10](%0), %%r10 \n\t"
6861 "mov %c[r11](%0), %%r11 \n\t"
6862 "mov %c[r12](%0), %%r12 \n\t"
6863 "mov %c[r13](%0), %%r13 \n\t"
6864 "mov %c[r14](%0), %%r14 \n\t"
6865 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6866#endif
b188c81f 6867 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 6868
6aa8b732 6869 /* Enter guest mode */
83287ea4 6870 "jne 1f \n\t"
4ecac3fd 6871 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
6872 "jmp 2f \n\t"
6873 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
6874 "2: "
6aa8b732 6875 /* Save guest registers, load host registers, keep flags */
b188c81f 6876 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 6877 "pop %0 \n\t"
b188c81f
AK
6878 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
6879 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
6880 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
6881 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
6882 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
6883 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
6884 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 6885#ifdef CONFIG_X86_64
e08aa78a
AK
6886 "mov %%r8, %c[r8](%0) \n\t"
6887 "mov %%r9, %c[r9](%0) \n\t"
6888 "mov %%r10, %c[r10](%0) \n\t"
6889 "mov %%r11, %c[r11](%0) \n\t"
6890 "mov %%r12, %c[r12](%0) \n\t"
6891 "mov %%r13, %c[r13](%0) \n\t"
6892 "mov %%r14, %c[r14](%0) \n\t"
6893 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6894#endif
b188c81f
AK
6895 "mov %%cr2, %%" _ASM_AX " \n\t"
6896 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 6897
b188c81f 6898 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 6899 "setbe %c[fail](%0) \n\t"
83287ea4
AK
6900 ".pushsection .rodata \n\t"
6901 ".global vmx_return \n\t"
6902 "vmx_return: " _ASM_PTR " 2b \n\t"
6903 ".popsection"
e08aa78a 6904 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6905 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6906 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6907 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6908 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6909 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6910 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6911 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6912 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6913 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6914 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6915#ifdef CONFIG_X86_64
ad312c7c
ZX
6916 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6917 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6918 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6919 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6920 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6921 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6922 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6923 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6924#endif
40712fae
AK
6925 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6926 [wordsize]"i"(sizeof(ulong))
c2036300
LV
6927 : "cc", "memory"
6928#ifdef CONFIG_X86_64
b188c81f 6929 , "rax", "rbx", "rdi", "rsi"
c2036300 6930 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
6931#else
6932 , "eax", "ebx", "edi", "esi"
c2036300
LV
6933#endif
6934 );
6aa8b732 6935
2a7921b7
GN
6936 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6937 if (debugctlmsr)
6938 update_debugctlmsr(debugctlmsr);
6939
aa67f609
AK
6940#ifndef CONFIG_X86_64
6941 /*
6942 * The sysexit path does not restore ds/es, so we must set them to
6943 * a reasonable value ourselves.
6944 *
6945 * We can't defer this to vmx_load_host_state() since that function
6946 * may be executed in interrupt context, which saves and restore segments
6947 * around it, nullifying its effect.
6948 */
6949 loadsegment(ds, __USER_DS);
6950 loadsegment(es, __USER_DS);
6951#endif
6952
6de4f3ad 6953 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6954 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6955 | (1 << VCPU_EXREG_CPL)
aff48baa 6956 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6957 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6958 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6959 vcpu->arch.regs_dirty = 0;
6960
1155f76a
AK
6961 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6962
d462b819 6963 vmx->loaded_vmcs->launched = 1;
1b6269db 6964
51aa01d1 6965 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6966 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6967
6968 vmx_complete_atomic_exit(vmx);
6969 vmx_recover_nmi_blocking(vmx);
cf393f75 6970 vmx_complete_interrupts(vmx);
6aa8b732
AK
6971}
6972
6aa8b732
AK
6973static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6974{
fb3f0f51
RR
6975 struct vcpu_vmx *vmx = to_vmx(vcpu);
6976
cdbecfc3 6977 free_vpid(vmx);
ec378aee 6978 free_nested(vmx);
d462b819 6979 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6980 kfree(vmx->guest_msrs);
6981 kvm_vcpu_uninit(vcpu);
a4770347 6982 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6983}
6984
fb3f0f51 6985static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6986{
fb3f0f51 6987 int err;
c16f862d 6988 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6989 int cpu;
6aa8b732 6990
a2fa3e9f 6991 if (!vmx)
fb3f0f51
RR
6992 return ERR_PTR(-ENOMEM);
6993
2384d2b3
SY
6994 allocate_vpid(vmx);
6995
fb3f0f51
RR
6996 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6997 if (err)
6998 goto free_vcpu;
965b58a5 6999
a2fa3e9f 7000 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 7001 err = -ENOMEM;
fb3f0f51 7002 if (!vmx->guest_msrs) {
fb3f0f51
RR
7003 goto uninit_vcpu;
7004 }
965b58a5 7005
d462b819
NHE
7006 vmx->loaded_vmcs = &vmx->vmcs01;
7007 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7008 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 7009 goto free_msrs;
d462b819
NHE
7010 if (!vmm_exclusive)
7011 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7012 loaded_vmcs_init(vmx->loaded_vmcs);
7013 if (!vmm_exclusive)
7014 kvm_cpu_vmxoff();
a2fa3e9f 7015
15ad7146
AK
7016 cpu = get_cpu();
7017 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 7018 vmx->vcpu.cpu = cpu;
8b9cf98c 7019 err = vmx_vcpu_setup(vmx);
fb3f0f51 7020 vmx_vcpu_put(&vmx->vcpu);
15ad7146 7021 put_cpu();
fb3f0f51
RR
7022 if (err)
7023 goto free_vmcs;
a63cb560 7024 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
7025 err = alloc_apic_access_page(kvm);
7026 if (err)
5e4a0b3c 7027 goto free_vmcs;
a63cb560 7028 }
fb3f0f51 7029
b927a3ce
SY
7030 if (enable_ept) {
7031 if (!kvm->arch.ept_identity_map_addr)
7032 kvm->arch.ept_identity_map_addr =
7033 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 7034 err = -ENOMEM;
b7ebfb05
SY
7035 if (alloc_identity_pagetable(kvm) != 0)
7036 goto free_vmcs;
93ea5388
GN
7037 if (!init_rmode_identity_map(kvm))
7038 goto free_vmcs;
b927a3ce 7039 }
b7ebfb05 7040
a9d30f33
NHE
7041 vmx->nested.current_vmptr = -1ull;
7042 vmx->nested.current_vmcs12 = NULL;
7043
fb3f0f51
RR
7044 return &vmx->vcpu;
7045
7046free_vmcs:
5f3fbc34 7047 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 7048free_msrs:
fb3f0f51
RR
7049 kfree(vmx->guest_msrs);
7050uninit_vcpu:
7051 kvm_vcpu_uninit(&vmx->vcpu);
7052free_vcpu:
cdbecfc3 7053 free_vpid(vmx);
a4770347 7054 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 7055 return ERR_PTR(err);
6aa8b732
AK
7056}
7057
002c7f7c
YS
7058static void __init vmx_check_processor_compat(void *rtn)
7059{
7060 struct vmcs_config vmcs_conf;
7061
7062 *(int *)rtn = 0;
7063 if (setup_vmcs_config(&vmcs_conf) < 0)
7064 *(int *)rtn = -EIO;
7065 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7066 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7067 smp_processor_id());
7068 *(int *)rtn = -EIO;
7069 }
7070}
7071
67253af5
SY
7072static int get_ept_level(void)
7073{
7074 return VMX_EPT_DEFAULT_GAW + 1;
7075}
7076
4b12f0de 7077static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 7078{
4b12f0de
SY
7079 u64 ret;
7080
522c68c4
SY
7081 /* For VT-d and EPT combination
7082 * 1. MMIO: always map as UC
7083 * 2. EPT with VT-d:
7084 * a. VT-d without snooping control feature: can't guarantee the
7085 * result, try to trust guest.
7086 * b. VT-d with snooping control feature: snooping control feature of
7087 * VT-d engine can guarantee the cache correctness. Just set it
7088 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 7089 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
7090 * consistent with host MTRR
7091 */
4b12f0de
SY
7092 if (is_mmio)
7093 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
7094 else if (vcpu->kvm->arch.iommu_domain &&
7095 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7096 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7097 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 7098 else
522c68c4 7099 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 7100 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
7101
7102 return ret;
64d4d521
SY
7103}
7104
17cc3935 7105static int vmx_get_lpage_level(void)
344f414f 7106{
878403b7
SY
7107 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7108 return PT_DIRECTORY_LEVEL;
7109 else
7110 /* For shadow and EPT supported 1GB page */
7111 return PT_PDPE_LEVEL;
344f414f
JR
7112}
7113
0e851880
SY
7114static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7115{
4e47c7a6
SY
7116 struct kvm_cpuid_entry2 *best;
7117 struct vcpu_vmx *vmx = to_vmx(vcpu);
7118 u32 exec_control;
7119
7120 vmx->rdtscp_enabled = false;
7121 if (vmx_rdtscp_supported()) {
7122 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7123 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7124 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7125 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7126 vmx->rdtscp_enabled = true;
7127 else {
7128 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7129 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7130 exec_control);
7131 }
7132 }
7133 }
ad756a16 7134
ad756a16
MJ
7135 /* Exposing INVPCID only when PCID is exposed */
7136 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7137 if (vmx_invpcid_supported() &&
4f977045 7138 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 7139 guest_cpuid_has_pcid(vcpu)) {
29282fde 7140 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
7141 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7142 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7143 exec_control);
7144 } else {
29282fde
TI
7145 if (cpu_has_secondary_exec_ctrls()) {
7146 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7147 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7148 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7149 exec_control);
7150 }
ad756a16 7151 if (best)
4f977045 7152 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 7153 }
0e851880
SY
7154}
7155
d4330ef2
JR
7156static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7157{
7b8050f5
NHE
7158 if (func == 1 && nested)
7159 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
7160}
7161
fe3ef05c
NHE
7162/*
7163 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7164 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7165 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7166 * guest in a way that will both be appropriate to L1's requests, and our
7167 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7168 * function also has additional necessary side-effects, like setting various
7169 * vcpu->arch fields.
7170 */
7171static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7172{
7173 struct vcpu_vmx *vmx = to_vmx(vcpu);
7174 u32 exec_control;
7175
7176 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7177 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7178 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7179 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7180 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7181 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7182 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7183 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7184 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7185 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7186 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7187 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7188 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7189 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7190 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7191 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7192 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7193 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7194 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7195 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7196 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7197 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7198 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7199 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7200 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7201 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7202 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7203 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7204 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7205 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7206 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7207 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7208 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7209 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7210 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7211 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7212
7213 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7214 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7215 vmcs12->vm_entry_intr_info_field);
7216 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7217 vmcs12->vm_entry_exception_error_code);
7218 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7219 vmcs12->vm_entry_instruction_len);
7220 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7221 vmcs12->guest_interruptibility_info);
fe3ef05c 7222 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
503cd0c5 7223 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
fe3ef05c
NHE
7224 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
7225 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7226 vmcs12->guest_pending_dbg_exceptions);
7227 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7228 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7229
7230 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7231
7232 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7233 (vmcs_config.pin_based_exec_ctrl |
7234 vmcs12->pin_based_vm_exec_control));
7235
0238ea91
JK
7236 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7237 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7238 vmcs12->vmx_preemption_timer_value);
7239
fe3ef05c
NHE
7240 /*
7241 * Whether page-faults are trapped is determined by a combination of
7242 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7243 * If enable_ept, L0 doesn't care about page faults and we should
7244 * set all of these to L1's desires. However, if !enable_ept, L0 does
7245 * care about (at least some) page faults, and because it is not easy
7246 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7247 * to exit on each and every L2 page fault. This is done by setting
7248 * MASK=MATCH=0 and (see below) EB.PF=1.
7249 * Note that below we don't need special code to set EB.PF beyond the
7250 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7251 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7252 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7253 *
7254 * A problem with this approach (when !enable_ept) is that L1 may be
7255 * injected with more page faults than it asked for. This could have
7256 * caused problems, but in practice existing hypervisors don't care.
7257 * To fix this, we will need to emulate the PFEC checking (on the L1
7258 * page tables), using walk_addr(), when injecting PFs to L1.
7259 */
7260 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7261 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7262 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7263 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7264
7265 if (cpu_has_secondary_exec_ctrls()) {
7266 u32 exec_control = vmx_secondary_exec_control(vmx);
7267 if (!vmx->rdtscp_enabled)
7268 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7269 /* Take the following fields only from vmcs12 */
7270 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7271 if (nested_cpu_has(vmcs12,
7272 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7273 exec_control |= vmcs12->secondary_vm_exec_control;
7274
7275 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7276 /*
7277 * Translate L1 physical address to host physical
7278 * address for vmcs02. Keep the page pinned, so this
7279 * physical address remains valid. We keep a reference
7280 * to it so we can release it later.
7281 */
7282 if (vmx->nested.apic_access_page) /* shouldn't happen */
7283 nested_release_page(vmx->nested.apic_access_page);
7284 vmx->nested.apic_access_page =
7285 nested_get_page(vcpu, vmcs12->apic_access_addr);
7286 /*
7287 * If translation failed, no matter: This feature asks
7288 * to exit when accessing the given address, and if it
7289 * can never be accessed, this feature won't do
7290 * anything anyway.
7291 */
7292 if (!vmx->nested.apic_access_page)
7293 exec_control &=
7294 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7295 else
7296 vmcs_write64(APIC_ACCESS_ADDR,
7297 page_to_phys(vmx->nested.apic_access_page));
7298 }
7299
7300 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7301 }
7302
7303
7304 /*
7305 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7306 * Some constant fields are set here by vmx_set_constant_host_state().
7307 * Other fields are different per CPU, and will be set later when
7308 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7309 */
a547c6db 7310 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
7311
7312 /*
7313 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7314 * entry, but only if the current (host) sp changed from the value
7315 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7316 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7317 * here we just force the write to happen on entry.
7318 */
7319 vmx->host_rsp = 0;
7320
7321 exec_control = vmx_exec_control(vmx); /* L0's desires */
7322 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7323 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7324 exec_control &= ~CPU_BASED_TPR_SHADOW;
7325 exec_control |= vmcs12->cpu_based_vm_exec_control;
7326 /*
7327 * Merging of IO and MSR bitmaps not currently supported.
7328 * Rather, exit every time.
7329 */
7330 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7331 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7332 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7333
7334 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7335
7336 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7337 * bitwise-or of what L1 wants to trap for L2, and what we want to
7338 * trap. Note that CR0.TS also needs updating - we do this later.
7339 */
7340 update_exception_bitmap(vcpu);
7341 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7342 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7343
7344 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7345 vmcs_write32(VM_EXIT_CONTROLS,
7346 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7347 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7348 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7349
7350 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7351 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7352 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7353 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7354
7355
7356 set_cr4_guest_host_mask(vmx);
7357
27fc51b2
NHE
7358 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7359 vmcs_write64(TSC_OFFSET,
7360 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7361 else
7362 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
7363
7364 if (enable_vpid) {
7365 /*
7366 * Trivially support vpid by letting L2s share their parent
7367 * L1's vpid. TODO: move to a more elaborate solution, giving
7368 * each L2 its own vpid and exposing the vpid feature to L1.
7369 */
7370 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7371 vmx_flush_tlb(vcpu);
7372 }
7373
7374 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7375 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7376 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7377 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7378 else
7379 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7380 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7381 vmx_set_efer(vcpu, vcpu->arch.efer);
7382
7383 /*
7384 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7385 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7386 * The CR0_READ_SHADOW is what L2 should have expected to read given
7387 * the specifications by L1; It's not enough to take
7388 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7389 * have more bits than L1 expected.
7390 */
7391 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7392 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7393
7394 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7395 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7396
7397 /* shadow page tables on either EPT or shadow page tables */
7398 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7399 kvm_mmu_reset_context(vcpu);
7400
7401 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7402 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7403}
7404
cd232ad0
NHE
7405/*
7406 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7407 * for running an L2 nested guest.
7408 */
7409static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7410{
7411 struct vmcs12 *vmcs12;
7412 struct vcpu_vmx *vmx = to_vmx(vcpu);
7413 int cpu;
7414 struct loaded_vmcs *vmcs02;
7415
7416 if (!nested_vmx_check_permission(vcpu) ||
7417 !nested_vmx_check_vmcs12(vcpu))
7418 return 1;
7419
7420 skip_emulated_instruction(vcpu);
7421 vmcs12 = get_vmcs12(vcpu);
7422
7c177938
NHE
7423 /*
7424 * The nested entry process starts with enforcing various prerequisites
7425 * on vmcs12 as required by the Intel SDM, and act appropriately when
7426 * they fail: As the SDM explains, some conditions should cause the
7427 * instruction to fail, while others will cause the instruction to seem
7428 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7429 * To speed up the normal (success) code path, we should avoid checking
7430 * for misconfigurations which will anyway be caught by the processor
7431 * when using the merged vmcs02.
7432 */
7433 if (vmcs12->launch_state == launch) {
7434 nested_vmx_failValid(vcpu,
7435 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7436 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7437 return 1;
7438 }
7439
26539bd0
PB
7440 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7441 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7442 return 1;
7443 }
7444
7c177938
NHE
7445 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7446 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7447 /*TODO: Also verify bits beyond physical address width are 0*/
7448 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7449 return 1;
7450 }
7451
7452 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7453 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7454 /*TODO: Also verify bits beyond physical address width are 0*/
7455 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7456 return 1;
7457 }
7458
7459 if (vmcs12->vm_entry_msr_load_count > 0 ||
7460 vmcs12->vm_exit_msr_load_count > 0 ||
7461 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
7462 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7463 __func__);
7c177938
NHE
7464 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7465 return 1;
7466 }
7467
7468 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7469 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7470 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7471 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7472 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7473 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7474 !vmx_control_verify(vmcs12->vm_exit_controls,
7475 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7476 !vmx_control_verify(vmcs12->vm_entry_controls,
7477 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7478 {
7479 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7480 return 1;
7481 }
7482
7483 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7484 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7485 nested_vmx_failValid(vcpu,
7486 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7487 return 1;
7488 }
7489
7490 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7491 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7492 nested_vmx_entry_failure(vcpu, vmcs12,
7493 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7494 return 1;
7495 }
7496 if (vmcs12->vmcs_link_pointer != -1ull) {
7497 nested_vmx_entry_failure(vcpu, vmcs12,
7498 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7499 return 1;
7500 }
7501
7502 /*
7503 * We're finally done with prerequisite checking, and can start with
7504 * the nested entry.
7505 */
7506
cd232ad0
NHE
7507 vmcs02 = nested_get_current_vmcs02(vmx);
7508 if (!vmcs02)
7509 return -ENOMEM;
7510
7511 enter_guest_mode(vcpu);
7512
7513 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7514
7515 cpu = get_cpu();
7516 vmx->loaded_vmcs = vmcs02;
7517 vmx_vcpu_put(vcpu);
7518 vmx_vcpu_load(vcpu, cpu);
7519 vcpu->cpu = cpu;
7520 put_cpu();
7521
36c3cc42
JK
7522 vmx_segment_cache_clear(vmx);
7523
cd232ad0
NHE
7524 vmcs12->launch_state = 1;
7525
7526 prepare_vmcs02(vcpu, vmcs12);
7527
7528 /*
7529 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7530 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7531 * returned as far as L1 is concerned. It will only return (and set
7532 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7533 */
7534 return 1;
7535}
7536
4704d0be
NHE
7537/*
7538 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7539 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7540 * This function returns the new value we should put in vmcs12.guest_cr0.
7541 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7542 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7543 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7544 * didn't trap the bit, because if L1 did, so would L0).
7545 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7546 * been modified by L2, and L1 knows it. So just leave the old value of
7547 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7548 * isn't relevant, because if L0 traps this bit it can set it to anything.
7549 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7550 * changed these bits, and therefore they need to be updated, but L0
7551 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7552 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7553 */
7554static inline unsigned long
7555vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7556{
7557 return
7558 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7559 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7560 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7561 vcpu->arch.cr0_guest_owned_bits));
7562}
7563
7564static inline unsigned long
7565vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7566{
7567 return
7568 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7569 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7570 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7571 vcpu->arch.cr4_guest_owned_bits));
7572}
7573
5f3d5799
JK
7574static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7575 struct vmcs12 *vmcs12)
7576{
7577 u32 idt_vectoring;
7578 unsigned int nr;
7579
7580 if (vcpu->arch.exception.pending) {
7581 nr = vcpu->arch.exception.nr;
7582 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7583
7584 if (kvm_exception_is_soft(nr)) {
7585 vmcs12->vm_exit_instruction_len =
7586 vcpu->arch.event_exit_inst_len;
7587 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7588 } else
7589 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7590
7591 if (vcpu->arch.exception.has_error_code) {
7592 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7593 vmcs12->idt_vectoring_error_code =
7594 vcpu->arch.exception.error_code;
7595 }
7596
7597 vmcs12->idt_vectoring_info_field = idt_vectoring;
7598 } else if (vcpu->arch.nmi_pending) {
7599 vmcs12->idt_vectoring_info_field =
7600 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7601 } else if (vcpu->arch.interrupt.pending) {
7602 nr = vcpu->arch.interrupt.nr;
7603 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7604
7605 if (vcpu->arch.interrupt.soft) {
7606 idt_vectoring |= INTR_TYPE_SOFT_INTR;
7607 vmcs12->vm_entry_instruction_len =
7608 vcpu->arch.event_exit_inst_len;
7609 } else
7610 idt_vectoring |= INTR_TYPE_EXT_INTR;
7611
7612 vmcs12->idt_vectoring_info_field = idt_vectoring;
7613 }
7614}
7615
4704d0be
NHE
7616/*
7617 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7618 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7619 * and this function updates it to reflect the changes to the guest state while
7620 * L2 was running (and perhaps made some exits which were handled directly by L0
7621 * without going back to L1), and to reflect the exit reason.
7622 * Note that we do not have to copy here all VMCS fields, just those that
7623 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7624 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7625 * which already writes to vmcs12 directly.
7626 */
733568f9 7627static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be
NHE
7628{
7629 /* update guest state fields: */
7630 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7631 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7632
7633 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7634 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7635 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7636 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7637
7638 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7639 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7640 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7641 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7642 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7643 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7644 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7645 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7646 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7647 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7648 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7649 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7650 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7651 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7652 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7653 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7654 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7655 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7656 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7657 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7658 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7659 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7660 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7661 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7662 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7663 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7664 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7665 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7666 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7667 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7668 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7669 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7670 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7671 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7672 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7673 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7674
4704d0be
NHE
7675 vmcs12->guest_interruptibility_info =
7676 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7677 vmcs12->guest_pending_dbg_exceptions =
7678 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7679
c18911a2
JK
7680 vmcs12->vm_entry_controls =
7681 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
7682 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
7683
4704d0be
NHE
7684 /* TODO: These cannot have changed unless we have MSR bitmaps and
7685 * the relevant bit asks not to trap the change */
7686 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
b8c07d55 7687 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be
NHE
7688 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7689 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7690 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7691 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7692
7693 /* update exit information fields: */
7694
957c897e 7695 vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
4704d0be
NHE
7696 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7697
7698 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
c0d1c770
JK
7699 if ((vmcs12->vm_exit_intr_info &
7700 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
7701 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
7702 vmcs12->vm_exit_intr_error_code =
7703 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 7704 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
7705 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7706 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7707
5f3d5799
JK
7708 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7709 /* vm_entry_intr_info_field is cleared on exit. Emulate this
7710 * instead of reading the real value. */
4704d0be 7711 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
7712
7713 /*
7714 * Transfer the event that L0 or L1 may wanted to inject into
7715 * L2 to IDT_VECTORING_INFO_FIELD.
7716 */
7717 vmcs12_save_pending_event(vcpu, vmcs12);
7718 }
7719
7720 /*
7721 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
7722 * preserved above and would only end up incorrectly in L1.
7723 */
7724 vcpu->arch.nmi_injected = false;
7725 kvm_clear_exception_queue(vcpu);
7726 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
7727}
7728
7729/*
7730 * A part of what we need to when the nested L2 guest exits and we want to
7731 * run its L1 parent, is to reset L1's guest state to the host state specified
7732 * in vmcs12.
7733 * This function is to be called not only on normal nested exit, but also on
7734 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7735 * Failures During or After Loading Guest State").
7736 * This function should be called when the active VMCS is L1's (vmcs01).
7737 */
733568f9
JK
7738static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7739 struct vmcs12 *vmcs12)
4704d0be
NHE
7740{
7741 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7742 vcpu->arch.efer = vmcs12->host_ia32_efer;
7743 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7744 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7745 else
7746 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7747 vmx_set_efer(vcpu, vcpu->arch.efer);
7748
7749 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7750 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
c4627c72 7751 vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
4704d0be
NHE
7752 /*
7753 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7754 * actually changed, because it depends on the current state of
7755 * fpu_active (which may have changed).
7756 * Note that vmx_set_cr0 refers to efer set above.
7757 */
7758 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7759 /*
7760 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7761 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7762 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7763 */
7764 update_exception_bitmap(vcpu);
7765 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7766 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7767
7768 /*
7769 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7770 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7771 */
7772 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7773 kvm_set_cr4(vcpu, vmcs12->host_cr4);
7774
7775 /* shadow page tables on either EPT or shadow page tables */
7776 kvm_set_cr3(vcpu, vmcs12->host_cr3);
7777 kvm_mmu_reset_context(vcpu);
7778
7779 if (enable_vpid) {
7780 /*
7781 * Trivially support vpid by letting L2s share their parent
7782 * L1's vpid. TODO: move to a more elaborate solution, giving
7783 * each L2 its own vpid and exposing the vpid feature to L1.
7784 */
7785 vmx_flush_tlb(vcpu);
7786 }
7787
7788
7789 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7790 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7791 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7792 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7793 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7794 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7795 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7796 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7797 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7798 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7799 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7800 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7801 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7802 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7803 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7804
7805 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7806 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7807 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7808 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7809 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5
JK
7810
7811 kvm_set_dr(vcpu, 7, 0x400);
7812 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4704d0be
NHE
7813}
7814
7815/*
7816 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7817 * and modify vmcs12 to make it see what it would expect to see there if
7818 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7819 */
7820static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7821{
7822 struct vcpu_vmx *vmx = to_vmx(vcpu);
7823 int cpu;
7824 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7825
5f3d5799
JK
7826 /* trying to cancel vmlaunch/vmresume is a bug */
7827 WARN_ON_ONCE(vmx->nested.nested_run_pending);
7828
4704d0be
NHE
7829 leave_guest_mode(vcpu);
7830 prepare_vmcs12(vcpu, vmcs12);
7831
7832 cpu = get_cpu();
7833 vmx->loaded_vmcs = &vmx->vmcs01;
7834 vmx_vcpu_put(vcpu);
7835 vmx_vcpu_load(vcpu, cpu);
7836 vcpu->cpu = cpu;
7837 put_cpu();
7838
36c3cc42
JK
7839 vmx_segment_cache_clear(vmx);
7840
4704d0be
NHE
7841 /* if no vmcs02 cache requested, remove the one we used */
7842 if (VMCS02_POOL_SIZE == 0)
7843 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7844
7845 load_vmcs12_host_state(vcpu, vmcs12);
7846
27fc51b2 7847 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7848 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7849
7850 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7851 vmx->host_rsp = 0;
7852
7853 /* Unpin physical memory we referred to in vmcs02 */
7854 if (vmx->nested.apic_access_page) {
7855 nested_release_page(vmx->nested.apic_access_page);
7856 vmx->nested.apic_access_page = 0;
7857 }
7858
7859 /*
7860 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7861 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7862 * success or failure flag accordingly.
7863 */
7864 if (unlikely(vmx->fail)) {
7865 vmx->fail = 0;
7866 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7867 } else
7868 nested_vmx_succeed(vcpu);
7869}
7870
7c177938
NHE
7871/*
7872 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7873 * 23.7 "VM-entry failures during or after loading guest state" (this also
7874 * lists the acceptable exit-reason and exit-qualification parameters).
7875 * It should only be called before L2 actually succeeded to run, and when
7876 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7877 */
7878static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7879 struct vmcs12 *vmcs12,
7880 u32 reason, unsigned long qualification)
7881{
7882 load_vmcs12_host_state(vcpu, vmcs12);
7883 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7884 vmcs12->exit_qualification = qualification;
7885 nested_vmx_succeed(vcpu);
7886}
7887
8a76d7f2
JR
7888static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7889 struct x86_instruction_info *info,
7890 enum x86_intercept_stage stage)
7891{
7892 return X86EMUL_CONTINUE;
7893}
7894
cbdd1bea 7895static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7896 .cpu_has_kvm_support = cpu_has_kvm_support,
7897 .disabled_by_bios = vmx_disabled_by_bios,
7898 .hardware_setup = hardware_setup,
7899 .hardware_unsetup = hardware_unsetup,
002c7f7c 7900 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7901 .hardware_enable = hardware_enable,
7902 .hardware_disable = hardware_disable,
04547156 7903 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7904
7905 .vcpu_create = vmx_create_vcpu,
7906 .vcpu_free = vmx_free_vcpu,
04d2cc77 7907 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7908
04d2cc77 7909 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7910 .vcpu_load = vmx_vcpu_load,
7911 .vcpu_put = vmx_vcpu_put,
7912
c8639010 7913 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
7914 .get_msr = vmx_get_msr,
7915 .set_msr = vmx_set_msr,
7916 .get_segment_base = vmx_get_segment_base,
7917 .get_segment = vmx_get_segment,
7918 .set_segment = vmx_set_segment,
2e4d2653 7919 .get_cpl = vmx_get_cpl,
6aa8b732 7920 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7921 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7922 .decache_cr3 = vmx_decache_cr3,
25c4c276 7923 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7924 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7925 .set_cr3 = vmx_set_cr3,
7926 .set_cr4 = vmx_set_cr4,
6aa8b732 7927 .set_efer = vmx_set_efer,
6aa8b732
AK
7928 .get_idt = vmx_get_idt,
7929 .set_idt = vmx_set_idt,
7930 .get_gdt = vmx_get_gdt,
7931 .set_gdt = vmx_set_gdt,
020df079 7932 .set_dr7 = vmx_set_dr7,
5fdbf976 7933 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7934 .get_rflags = vmx_get_rflags,
7935 .set_rflags = vmx_set_rflags,
ebcbab4c 7936 .fpu_activate = vmx_fpu_activate,
02daab21 7937 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7938
7939 .tlb_flush = vmx_flush_tlb,
6aa8b732 7940
6aa8b732 7941 .run = vmx_vcpu_run,
6062d012 7942 .handle_exit = vmx_handle_exit,
6aa8b732 7943 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7944 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7945 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7946 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7947 .set_irq = vmx_inject_irq,
95ba8273 7948 .set_nmi = vmx_inject_nmi,
298101da 7949 .queue_exception = vmx_queue_exception,
b463a6f7 7950 .cancel_injection = vmx_cancel_injection,
78646121 7951 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7952 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7953 .get_nmi_mask = vmx_get_nmi_mask,
7954 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7955 .enable_nmi_window = enable_nmi_window,
7956 .enable_irq_window = enable_irq_window,
7957 .update_cr8_intercept = update_cr8_intercept,
8d14695f 7958 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
c7c9c56c
YZ
7959 .vm_has_apicv = vmx_vm_has_apicv,
7960 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7961 .hwapic_irr_update = vmx_hwapic_irr_update,
7962 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
7963 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7964 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 7965
cbc94022 7966 .set_tss_addr = vmx_set_tss_addr,
67253af5 7967 .get_tdp_level = get_ept_level,
4b12f0de 7968 .get_mt_mask = vmx_get_mt_mask,
229456fc 7969
586f9607 7970 .get_exit_info = vmx_get_exit_info,
586f9607 7971
17cc3935 7972 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7973
7974 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7975
7976 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 7977 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
7978
7979 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7980
7981 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7982
4051b188 7983 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 7984 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 7985 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7986 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7987 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7988 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7989
7990 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7991
7992 .check_intercept = vmx_check_intercept,
a547c6db 7993 .handle_external_intr = vmx_handle_external_intr,
6aa8b732
AK
7994};
7995
7996static int __init vmx_init(void)
7997{
8d14695f 7998 int r, i, msr;
26bb0981
AK
7999
8000 rdmsrl_safe(MSR_EFER, &host_efer);
8001
8002 for (i = 0; i < NR_VMX_MSR; ++i)
8003 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 8004
3e7c73e9 8005 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
8006 if (!vmx_io_bitmap_a)
8007 return -ENOMEM;
8008
2106a548
GC
8009 r = -ENOMEM;
8010
3e7c73e9 8011 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8012 if (!vmx_io_bitmap_b)
fdef3ad1 8013 goto out;
fdef3ad1 8014
5897297b 8015 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8016 if (!vmx_msr_bitmap_legacy)
25c5f225 8017 goto out1;
2106a548 8018
8d14695f
YZ
8019 vmx_msr_bitmap_legacy_x2apic =
8020 (unsigned long *)__get_free_page(GFP_KERNEL);
8021 if (!vmx_msr_bitmap_legacy_x2apic)
8022 goto out2;
25c5f225 8023
5897297b 8024 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8025 if (!vmx_msr_bitmap_longmode)
8d14695f 8026 goto out3;
2106a548 8027
8d14695f
YZ
8028 vmx_msr_bitmap_longmode_x2apic =
8029 (unsigned long *)__get_free_page(GFP_KERNEL);
8030 if (!vmx_msr_bitmap_longmode_x2apic)
8031 goto out4;
4607c2d7
AG
8032 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8033 if (!vmx_vmread_bitmap)
8034 goto out5;
8035
8036 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8037 if (!vmx_vmwrite_bitmap)
8038 goto out6;
8039
8040 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8041 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8042 /* shadowed read/write fields */
8043 for (i = 0; i < max_shadow_read_write_fields; i++) {
8044 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8045 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8046 }
8047 /* shadowed read only fields */
8048 for (i = 0; i < max_shadow_read_only_fields; i++)
8049 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
5897297b 8050
fdef3ad1
HQ
8051 /*
8052 * Allow direct access to the PC debug port (it is often used for I/O
8053 * delays, but the vmexits simply slow things down).
8054 */
3e7c73e9
AK
8055 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8056 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 8057
3e7c73e9 8058 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 8059
5897297b
AK
8060 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8061 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 8062
2384d2b3
SY
8063 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8064
0ee75bea
AK
8065 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8066 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 8067 if (r)
4607c2d7 8068 goto out7;
25c5f225 8069
8f536b76
ZY
8070#ifdef CONFIG_KEXEC
8071 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8072 crash_vmclear_local_loaded_vmcss);
8073#endif
8074
5897297b
AK
8075 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8076 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8077 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8078 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8079 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8080 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8d14695f
YZ
8081 memcpy(vmx_msr_bitmap_legacy_x2apic,
8082 vmx_msr_bitmap_legacy, PAGE_SIZE);
8083 memcpy(vmx_msr_bitmap_longmode_x2apic,
8084 vmx_msr_bitmap_longmode, PAGE_SIZE);
8085
01e439be 8086 if (enable_apicv) {
8d14695f
YZ
8087 for (msr = 0x800; msr <= 0x8ff; msr++)
8088 vmx_disable_intercept_msr_read_x2apic(msr);
8089
8090 /* According SDM, in x2apic mode, the whole id reg is used.
8091 * But in KVM, it only use the highest eight bits. Need to
8092 * intercept it */
8093 vmx_enable_intercept_msr_read_x2apic(0x802);
8094 /* TMCCT */
8095 vmx_enable_intercept_msr_read_x2apic(0x839);
8096 /* TPR */
8097 vmx_disable_intercept_msr_write_x2apic(0x808);
c7c9c56c
YZ
8098 /* EOI */
8099 vmx_disable_intercept_msr_write_x2apic(0x80b);
8100 /* SELF-IPI */
8101 vmx_disable_intercept_msr_write_x2apic(0x83f);
8d14695f 8102 }
fdef3ad1 8103
089d034e 8104 if (enable_ept) {
3f6d8c8a
XH
8105 kvm_mmu_set_mask_ptes(0ull,
8106 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8107 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8108 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 8109 ept_set_mmio_spte_mask();
5fdbcb9d
SY
8110 kvm_enable_tdp();
8111 } else
8112 kvm_disable_tdp();
1439442c 8113
fdef3ad1
HQ
8114 return 0;
8115
4607c2d7
AG
8116out7:
8117 free_page((unsigned long)vmx_vmwrite_bitmap);
8118out6:
8119 free_page((unsigned long)vmx_vmread_bitmap);
458f212e
YZ
8120out5:
8121 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8d14695f 8122out4:
5897297b 8123 free_page((unsigned long)vmx_msr_bitmap_longmode);
8d14695f
YZ
8124out3:
8125 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
25c5f225 8126out2:
5897297b 8127 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 8128out1:
3e7c73e9 8129 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 8130out:
3e7c73e9 8131 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 8132 return r;
6aa8b732
AK
8133}
8134
8135static void __exit vmx_exit(void)
8136{
8d14695f
YZ
8137 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8138 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5897297b
AK
8139 free_page((unsigned long)vmx_msr_bitmap_legacy);
8140 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
8141 free_page((unsigned long)vmx_io_bitmap_b);
8142 free_page((unsigned long)vmx_io_bitmap_a);
4607c2d7
AG
8143 free_page((unsigned long)vmx_vmwrite_bitmap);
8144 free_page((unsigned long)vmx_vmread_bitmap);
fdef3ad1 8145
8f536b76
ZY
8146#ifdef CONFIG_KEXEC
8147 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8148 synchronize_rcu();
8149#endif
8150
cb498ea2 8151 kvm_exit();
6aa8b732
AK
8152}
8153
8154module_init(vmx_init)
8155module_exit(vmx_exit)