]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: x86: Emulator does not calculate address correctly
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
f4124500 34#include <linux/hrtimer.h>
5fdbf976 35#include "kvm_cache_regs.h"
35920a35 36#include "x86.h"
e495606d 37
6aa8b732 38#include <asm/io.h>
3b3be0d1 39#include <asm/desc.h>
13673a90 40#include <asm/vmx.h>
6210e37b 41#include <asm/virtext.h>
a0861c02 42#include <asm/mce.h>
2acf923e
DC
43#include <asm/i387.h>
44#include <asm/xcr.h>
d7cd9796 45#include <asm/perf_event.h>
81908bf4 46#include <asm/debugreg.h>
8f536b76 47#include <asm/kexec.h>
6aa8b732 48
229456fc
MT
49#include "trace.h"
50
4ecac3fd 51#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
52#define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 54
6aa8b732
AK
55MODULE_AUTHOR("Qumranet");
56MODULE_LICENSE("GPL");
57
e9bda3b3
JT
58static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61};
62MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
476bc001 64static bool __read_mostly enable_vpid = 1;
736caefe 65module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 66
476bc001 67static bool __read_mostly flexpriority_enabled = 1;
736caefe 68module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 69
476bc001 70static bool __read_mostly enable_ept = 1;
736caefe 71module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 72
476bc001 73static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
74module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
83c3a331
XH
77static bool __read_mostly enable_ept_ad_bits = 1;
78module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
a27685c3 80static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 81module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 82
476bc001 83static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
84module_param(vmm_exclusive, bool, S_IRUGO);
85
476bc001 86static bool __read_mostly fasteoi = 1;
58fbbf26
KT
87module_param(fasteoi, bool, S_IRUGO);
88
5a71785d 89static bool __read_mostly enable_apicv = 1;
01e439be 90module_param(enable_apicv, bool, S_IRUGO);
83d4c286 91
abc4fc58
AG
92static bool __read_mostly enable_shadow_vmcs = 1;
93module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
94/*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
476bc001 99static bool __read_mostly nested = 0;
801d3424
NHE
100module_param(nested, bool, S_IRUGO);
101
5037878e
GN
102#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
104#define KVM_VM_CR0_ALWAYS_ON \
105 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
106#define KVM_CR4_GUEST_OWNED_BITS \
107 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 108 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 109
cdc0e244
AK
110#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
78ac8b47
AK
113#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
f4124500
JK
115#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
4b8d54f9
ZE
117/*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap: upper bound on the amount of time between two successive
120 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 121 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 * in a PAUSE loop. Tests indicate that most spinlocks are held for
124 * less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
b4a2d31d
RK
128#define KVM_VMX_DEFAULT_PLE_GAP 128
129#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
130#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
131#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
133 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
4b8d54f9
ZE
135static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136module_param(ple_gap, int, S_IRUGO);
137
138static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139module_param(ple_window, int, S_IRUGO);
140
b4a2d31d
RK
141/* Default doubles per-vcpu window every exit. */
142static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143module_param(ple_window_grow, int, S_IRUGO);
144
145/* Default resets per-vcpu window every exit to ple_window. */
146static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147module_param(ple_window_shrink, int, S_IRUGO);
148
149/* Default is to compute the maximum so we can never overflow. */
150static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152module_param(ple_window_max, int, S_IRUGO);
153
83287ea4
AK
154extern const ulong vmx_return;
155
8bf00a52 156#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 157#define VMCS02_POOL_SIZE 1
61d2ef2c 158
a2fa3e9f
GH
159struct vmcs {
160 u32 revision_id;
161 u32 abort;
162 char data[0];
163};
164
d462b819
NHE
165/*
166 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168 * loaded on this CPU (so we can clear them if the CPU goes down).
169 */
170struct loaded_vmcs {
171 struct vmcs *vmcs;
172 int cpu;
173 int launched;
174 struct list_head loaded_vmcss_on_cpu_link;
175};
176
26bb0981
AK
177struct shared_msr_entry {
178 unsigned index;
179 u64 data;
d5696725 180 u64 mask;
26bb0981
AK
181};
182
a9d30f33
NHE
183/*
184 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189 * More than one of these structures may exist, if L1 runs multiple L2 guests.
190 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191 * underlying hardware which will be used to run L2.
192 * This structure is packed to ensure that its layout is identical across
193 * machines (necessary for live migration).
194 * If there are changes in this struct, VMCS12_REVISION must be changed.
195 */
22bd0358 196typedef u64 natural_width;
a9d30f33
NHE
197struct __packed vmcs12 {
198 /* According to the Intel spec, a VMCS region must start with the
199 * following two fields. Then follow implementation-specific data.
200 */
201 u32 revision_id;
202 u32 abort;
22bd0358 203
27d6c865
NHE
204 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205 u32 padding[7]; /* room for future expansion */
206
22bd0358
NHE
207 u64 io_bitmap_a;
208 u64 io_bitmap_b;
209 u64 msr_bitmap;
210 u64 vm_exit_msr_store_addr;
211 u64 vm_exit_msr_load_addr;
212 u64 vm_entry_msr_load_addr;
213 u64 tsc_offset;
214 u64 virtual_apic_page_addr;
215 u64 apic_access_addr;
216 u64 ept_pointer;
217 u64 guest_physical_address;
218 u64 vmcs_link_pointer;
219 u64 guest_ia32_debugctl;
220 u64 guest_ia32_pat;
221 u64 guest_ia32_efer;
222 u64 guest_ia32_perf_global_ctrl;
223 u64 guest_pdptr0;
224 u64 guest_pdptr1;
225 u64 guest_pdptr2;
226 u64 guest_pdptr3;
36be0b9d 227 u64 guest_bndcfgs;
22bd0358
NHE
228 u64 host_ia32_pat;
229 u64 host_ia32_efer;
230 u64 host_ia32_perf_global_ctrl;
231 u64 padding64[8]; /* room for future expansion */
232 /*
233 * To allow migration of L1 (complete with its L2 guests) between
234 * machines of different natural widths (32 or 64 bit), we cannot have
235 * unsigned long fields with no explict size. We use u64 (aliased
236 * natural_width) instead. Luckily, x86 is little-endian.
237 */
238 natural_width cr0_guest_host_mask;
239 natural_width cr4_guest_host_mask;
240 natural_width cr0_read_shadow;
241 natural_width cr4_read_shadow;
242 natural_width cr3_target_value0;
243 natural_width cr3_target_value1;
244 natural_width cr3_target_value2;
245 natural_width cr3_target_value3;
246 natural_width exit_qualification;
247 natural_width guest_linear_address;
248 natural_width guest_cr0;
249 natural_width guest_cr3;
250 natural_width guest_cr4;
251 natural_width guest_es_base;
252 natural_width guest_cs_base;
253 natural_width guest_ss_base;
254 natural_width guest_ds_base;
255 natural_width guest_fs_base;
256 natural_width guest_gs_base;
257 natural_width guest_ldtr_base;
258 natural_width guest_tr_base;
259 natural_width guest_gdtr_base;
260 natural_width guest_idtr_base;
261 natural_width guest_dr7;
262 natural_width guest_rsp;
263 natural_width guest_rip;
264 natural_width guest_rflags;
265 natural_width guest_pending_dbg_exceptions;
266 natural_width guest_sysenter_esp;
267 natural_width guest_sysenter_eip;
268 natural_width host_cr0;
269 natural_width host_cr3;
270 natural_width host_cr4;
271 natural_width host_fs_base;
272 natural_width host_gs_base;
273 natural_width host_tr_base;
274 natural_width host_gdtr_base;
275 natural_width host_idtr_base;
276 natural_width host_ia32_sysenter_esp;
277 natural_width host_ia32_sysenter_eip;
278 natural_width host_rsp;
279 natural_width host_rip;
280 natural_width paddingl[8]; /* room for future expansion */
281 u32 pin_based_vm_exec_control;
282 u32 cpu_based_vm_exec_control;
283 u32 exception_bitmap;
284 u32 page_fault_error_code_mask;
285 u32 page_fault_error_code_match;
286 u32 cr3_target_count;
287 u32 vm_exit_controls;
288 u32 vm_exit_msr_store_count;
289 u32 vm_exit_msr_load_count;
290 u32 vm_entry_controls;
291 u32 vm_entry_msr_load_count;
292 u32 vm_entry_intr_info_field;
293 u32 vm_entry_exception_error_code;
294 u32 vm_entry_instruction_len;
295 u32 tpr_threshold;
296 u32 secondary_vm_exec_control;
297 u32 vm_instruction_error;
298 u32 vm_exit_reason;
299 u32 vm_exit_intr_info;
300 u32 vm_exit_intr_error_code;
301 u32 idt_vectoring_info_field;
302 u32 idt_vectoring_error_code;
303 u32 vm_exit_instruction_len;
304 u32 vmx_instruction_info;
305 u32 guest_es_limit;
306 u32 guest_cs_limit;
307 u32 guest_ss_limit;
308 u32 guest_ds_limit;
309 u32 guest_fs_limit;
310 u32 guest_gs_limit;
311 u32 guest_ldtr_limit;
312 u32 guest_tr_limit;
313 u32 guest_gdtr_limit;
314 u32 guest_idtr_limit;
315 u32 guest_es_ar_bytes;
316 u32 guest_cs_ar_bytes;
317 u32 guest_ss_ar_bytes;
318 u32 guest_ds_ar_bytes;
319 u32 guest_fs_ar_bytes;
320 u32 guest_gs_ar_bytes;
321 u32 guest_ldtr_ar_bytes;
322 u32 guest_tr_ar_bytes;
323 u32 guest_interruptibility_info;
324 u32 guest_activity_state;
325 u32 guest_sysenter_cs;
326 u32 host_ia32_sysenter_cs;
0238ea91
JK
327 u32 vmx_preemption_timer_value;
328 u32 padding32[7]; /* room for future expansion */
22bd0358
NHE
329 u16 virtual_processor_id;
330 u16 guest_es_selector;
331 u16 guest_cs_selector;
332 u16 guest_ss_selector;
333 u16 guest_ds_selector;
334 u16 guest_fs_selector;
335 u16 guest_gs_selector;
336 u16 guest_ldtr_selector;
337 u16 guest_tr_selector;
338 u16 host_es_selector;
339 u16 host_cs_selector;
340 u16 host_ss_selector;
341 u16 host_ds_selector;
342 u16 host_fs_selector;
343 u16 host_gs_selector;
344 u16 host_tr_selector;
a9d30f33
NHE
345};
346
347/*
348 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351 */
352#define VMCS12_REVISION 0x11e57ed0
353
354/*
355 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357 * current implementation, 4K are reserved to avoid future complications.
358 */
359#define VMCS12_SIZE 0x1000
360
ff2f6fe9
NHE
361/* Used to remember the last vmcs02 used for some recently used vmcs12s */
362struct vmcs02_list {
363 struct list_head list;
364 gpa_t vmptr;
365 struct loaded_vmcs vmcs02;
366};
367
ec378aee
NHE
368/*
369 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371 */
372struct nested_vmx {
373 /* Has the level1 guest done vmxon? */
374 bool vmxon;
3573e22c 375 gpa_t vmxon_ptr;
a9d30f33
NHE
376
377 /* The guest-physical address of the current VMCS L1 keeps for L2 */
378 gpa_t current_vmptr;
379 /* The host-usable pointer to the above */
380 struct page *current_vmcs12_page;
381 struct vmcs12 *current_vmcs12;
8de48833 382 struct vmcs *current_shadow_vmcs;
012f83cb
AG
383 /*
384 * Indicates if the shadow vmcs must be updated with the
385 * data hold by vmcs12
386 */
387 bool sync_shadow_vmcs;
ff2f6fe9
NHE
388
389 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
390 struct list_head vmcs02_pool;
391 int vmcs02_num;
fe3ef05c 392 u64 vmcs01_tsc_offset;
644d711a
NHE
393 /* L2 must run next, and mustn't decide to exit to L1. */
394 bool nested_run_pending;
fe3ef05c
NHE
395 /*
396 * Guest pages referred to in vmcs02 with host-physical pointers, so
397 * we must keep them pinned while L2 runs.
398 */
399 struct page *apic_access_page;
a7c0b07d 400 struct page *virtual_apic_page;
b3897a49 401 u64 msr_ia32_feature_control;
f4124500
JK
402
403 struct hrtimer preemption_timer;
404 bool preemption_timer_expired;
2996fca0
JK
405
406 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407 u64 vmcs01_debugctl;
ec378aee
NHE
408};
409
01e439be
YZ
410#define POSTED_INTR_ON 0
411/* Posted-Interrupt Descriptor */
412struct pi_desc {
413 u32 pir[8]; /* Posted interrupt requested */
414 u32 control; /* bit 0 of control is outstanding notification bit */
415 u32 rsvd[7];
416} __aligned(64);
417
a20ed54d
YZ
418static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419{
420 return test_and_set_bit(POSTED_INTR_ON,
421 (unsigned long *)&pi_desc->control);
422}
423
424static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425{
426 return test_and_clear_bit(POSTED_INTR_ON,
427 (unsigned long *)&pi_desc->control);
428}
429
430static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431{
432 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433}
434
a2fa3e9f 435struct vcpu_vmx {
fb3f0f51 436 struct kvm_vcpu vcpu;
313dbd49 437 unsigned long host_rsp;
29bd8a78 438 u8 fail;
9d58b931 439 bool nmi_known_unmasked;
51aa01d1 440 u32 exit_intr_info;
1155f76a 441 u32 idt_vectoring_info;
6de12732 442 ulong rflags;
26bb0981 443 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
444 int nmsrs;
445 int save_nmsrs;
a547c6db 446 unsigned long host_idt_base;
a2fa3e9f 447#ifdef CONFIG_X86_64
44ea2b17
AK
448 u64 msr_host_kernel_gs_base;
449 u64 msr_guest_kernel_gs_base;
a2fa3e9f 450#endif
2961e876
GN
451 u32 vm_entry_controls_shadow;
452 u32 vm_exit_controls_shadow;
d462b819
NHE
453 /*
454 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455 * non-nested (L1) guest, it always points to vmcs01. For a nested
456 * guest (L2), it points to a different VMCS.
457 */
458 struct loaded_vmcs vmcs01;
459 struct loaded_vmcs *loaded_vmcs;
460 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
461 struct msr_autoload {
462 unsigned nr;
463 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465 } msr_autoload;
a2fa3e9f
GH
466 struct {
467 int loaded;
468 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
469#ifdef CONFIG_X86_64
470 u16 ds_sel, es_sel;
471#endif
152d3f2f
LV
472 int gs_ldt_reload_needed;
473 int fs_reload_needed;
da8999d3 474 u64 msr_host_bndcfgs;
d974baa3 475 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 476 } host_state;
9c8cba37 477 struct {
7ffd92c5 478 int vm86_active;
78ac8b47 479 ulong save_rflags;
f5f7b2fe
AK
480 struct kvm_segment segs[8];
481 } rmode;
482 struct {
483 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
484 struct kvm_save_segment {
485 u16 selector;
486 unsigned long base;
487 u32 limit;
488 u32 ar;
f5f7b2fe 489 } seg[8];
2fb92db1 490 } segment_cache;
2384d2b3 491 int vpid;
04fa4d32 492 bool emulation_required;
3b86cd99
JK
493
494 /* Support for vnmi-less CPUs */
495 int soft_vnmi_blocked;
496 ktime_t entry_time;
497 s64 vnmi_blocked_time;
a0861c02 498 u32 exit_reason;
4e47c7a6
SY
499
500 bool rdtscp_enabled;
ec378aee 501
01e439be
YZ
502 /* Posted interrupt descriptor */
503 struct pi_desc pi_desc;
504
ec378aee
NHE
505 /* Support for a guest hypervisor (nested VMX) */
506 struct nested_vmx nested;
a7653ecd
RK
507
508 /* Dynamic PLE window. */
509 int ple_window;
510 bool ple_window_dirty;
a2fa3e9f
GH
511};
512
2fb92db1
AK
513enum segment_cache_field {
514 SEG_FIELD_SEL = 0,
515 SEG_FIELD_BASE = 1,
516 SEG_FIELD_LIMIT = 2,
517 SEG_FIELD_AR = 3,
518
519 SEG_FIELD_NR = 4
520};
521
a2fa3e9f
GH
522static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
523{
fb3f0f51 524 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
525}
526
22bd0358
NHE
527#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
528#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
529#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
530 [number##_HIGH] = VMCS12_OFFSET(name)+4
531
4607c2d7 532
fe2b201b 533static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
534 /*
535 * We do NOT shadow fields that are modified when L0
536 * traps and emulates any vmx instruction (e.g. VMPTRLD,
537 * VMXON...) executed by L1.
538 * For example, VM_INSTRUCTION_ERROR is read
539 * by L1 if a vmx instruction fails (part of the error path).
540 * Note the code assumes this logic. If for some reason
541 * we start shadowing these fields then we need to
542 * force a shadow sync when L0 emulates vmx instructions
543 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
544 * by nested_vmx_failValid)
545 */
546 VM_EXIT_REASON,
547 VM_EXIT_INTR_INFO,
548 VM_EXIT_INSTRUCTION_LEN,
549 IDT_VECTORING_INFO_FIELD,
550 IDT_VECTORING_ERROR_CODE,
551 VM_EXIT_INTR_ERROR_CODE,
552 EXIT_QUALIFICATION,
553 GUEST_LINEAR_ADDRESS,
554 GUEST_PHYSICAL_ADDRESS
555};
fe2b201b 556static int max_shadow_read_only_fields =
4607c2d7
AG
557 ARRAY_SIZE(shadow_read_only_fields);
558
fe2b201b 559static unsigned long shadow_read_write_fields[] = {
a7c0b07d 560 TPR_THRESHOLD,
4607c2d7
AG
561 GUEST_RIP,
562 GUEST_RSP,
563 GUEST_CR0,
564 GUEST_CR3,
565 GUEST_CR4,
566 GUEST_INTERRUPTIBILITY_INFO,
567 GUEST_RFLAGS,
568 GUEST_CS_SELECTOR,
569 GUEST_CS_AR_BYTES,
570 GUEST_CS_LIMIT,
571 GUEST_CS_BASE,
572 GUEST_ES_BASE,
36be0b9d 573 GUEST_BNDCFGS,
4607c2d7
AG
574 CR0_GUEST_HOST_MASK,
575 CR0_READ_SHADOW,
576 CR4_READ_SHADOW,
577 TSC_OFFSET,
578 EXCEPTION_BITMAP,
579 CPU_BASED_VM_EXEC_CONTROL,
580 VM_ENTRY_EXCEPTION_ERROR_CODE,
581 VM_ENTRY_INTR_INFO_FIELD,
582 VM_ENTRY_INSTRUCTION_LEN,
583 VM_ENTRY_EXCEPTION_ERROR_CODE,
584 HOST_FS_BASE,
585 HOST_GS_BASE,
586 HOST_FS_SELECTOR,
587 HOST_GS_SELECTOR
588};
fe2b201b 589static int max_shadow_read_write_fields =
4607c2d7
AG
590 ARRAY_SIZE(shadow_read_write_fields);
591
772e0318 592static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
593 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
594 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
595 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
596 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
597 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
598 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
599 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
600 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
601 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
602 FIELD(HOST_ES_SELECTOR, host_es_selector),
603 FIELD(HOST_CS_SELECTOR, host_cs_selector),
604 FIELD(HOST_SS_SELECTOR, host_ss_selector),
605 FIELD(HOST_DS_SELECTOR, host_ds_selector),
606 FIELD(HOST_FS_SELECTOR, host_fs_selector),
607 FIELD(HOST_GS_SELECTOR, host_gs_selector),
608 FIELD(HOST_TR_SELECTOR, host_tr_selector),
609 FIELD64(IO_BITMAP_A, io_bitmap_a),
610 FIELD64(IO_BITMAP_B, io_bitmap_b),
611 FIELD64(MSR_BITMAP, msr_bitmap),
612 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
613 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
614 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
615 FIELD64(TSC_OFFSET, tsc_offset),
616 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
617 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
618 FIELD64(EPT_POINTER, ept_pointer),
619 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
620 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
621 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
622 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
623 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
624 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
625 FIELD64(GUEST_PDPTR0, guest_pdptr0),
626 FIELD64(GUEST_PDPTR1, guest_pdptr1),
627 FIELD64(GUEST_PDPTR2, guest_pdptr2),
628 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 629 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
630 FIELD64(HOST_IA32_PAT, host_ia32_pat),
631 FIELD64(HOST_IA32_EFER, host_ia32_efer),
632 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
633 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
634 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
635 FIELD(EXCEPTION_BITMAP, exception_bitmap),
636 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
637 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
638 FIELD(CR3_TARGET_COUNT, cr3_target_count),
639 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
640 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
641 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
642 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
643 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
644 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
645 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
646 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
647 FIELD(TPR_THRESHOLD, tpr_threshold),
648 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
649 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
650 FIELD(VM_EXIT_REASON, vm_exit_reason),
651 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
652 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
653 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
654 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
655 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
656 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
657 FIELD(GUEST_ES_LIMIT, guest_es_limit),
658 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
659 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
660 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
661 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
662 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
663 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
664 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
665 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
666 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
667 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
668 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
669 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
670 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
671 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
672 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
673 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
674 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
675 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
676 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
677 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
678 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 679 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
680 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
681 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
682 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
683 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
684 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
685 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
686 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
687 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
688 FIELD(EXIT_QUALIFICATION, exit_qualification),
689 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
690 FIELD(GUEST_CR0, guest_cr0),
691 FIELD(GUEST_CR3, guest_cr3),
692 FIELD(GUEST_CR4, guest_cr4),
693 FIELD(GUEST_ES_BASE, guest_es_base),
694 FIELD(GUEST_CS_BASE, guest_cs_base),
695 FIELD(GUEST_SS_BASE, guest_ss_base),
696 FIELD(GUEST_DS_BASE, guest_ds_base),
697 FIELD(GUEST_FS_BASE, guest_fs_base),
698 FIELD(GUEST_GS_BASE, guest_gs_base),
699 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
700 FIELD(GUEST_TR_BASE, guest_tr_base),
701 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
702 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
703 FIELD(GUEST_DR7, guest_dr7),
704 FIELD(GUEST_RSP, guest_rsp),
705 FIELD(GUEST_RIP, guest_rip),
706 FIELD(GUEST_RFLAGS, guest_rflags),
707 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
708 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
709 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
710 FIELD(HOST_CR0, host_cr0),
711 FIELD(HOST_CR3, host_cr3),
712 FIELD(HOST_CR4, host_cr4),
713 FIELD(HOST_FS_BASE, host_fs_base),
714 FIELD(HOST_GS_BASE, host_gs_base),
715 FIELD(HOST_TR_BASE, host_tr_base),
716 FIELD(HOST_GDTR_BASE, host_gdtr_base),
717 FIELD(HOST_IDTR_BASE, host_idtr_base),
718 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
719 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
720 FIELD(HOST_RSP, host_rsp),
721 FIELD(HOST_RIP, host_rip),
722};
723static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
724
725static inline short vmcs_field_to_offset(unsigned long field)
726{
727 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
728 return -1;
729 return vmcs_field_to_offset_table[field];
730}
731
a9d30f33
NHE
732static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
733{
734 return to_vmx(vcpu)->nested.current_vmcs12;
735}
736
737static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
738{
739 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 740 if (is_error_page(page))
a9d30f33 741 return NULL;
32cad84f 742
a9d30f33
NHE
743 return page;
744}
745
746static void nested_release_page(struct page *page)
747{
748 kvm_release_page_dirty(page);
749}
750
751static void nested_release_page_clean(struct page *page)
752{
753 kvm_release_page_clean(page);
754}
755
bfd0a56b 756static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 757static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
758static void kvm_cpu_vmxon(u64 addr);
759static void kvm_cpu_vmxoff(void);
93c4adc7 760static bool vmx_mpx_supported(void);
776e58ea 761static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
762static void vmx_set_segment(struct kvm_vcpu *vcpu,
763 struct kvm_segment *var, int seg);
764static void vmx_get_segment(struct kvm_vcpu *vcpu,
765 struct kvm_segment *var, int seg);
d99e4152
GN
766static bool guest_state_valid(struct kvm_vcpu *vcpu);
767static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 768static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 769static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 770static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 771static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 772
6aa8b732
AK
773static DEFINE_PER_CPU(struct vmcs *, vmxarea);
774static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
775/*
776 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
777 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
778 */
779static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 780static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 781
3e7c73e9
AK
782static unsigned long *vmx_io_bitmap_a;
783static unsigned long *vmx_io_bitmap_b;
5897297b
AK
784static unsigned long *vmx_msr_bitmap_legacy;
785static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
786static unsigned long *vmx_msr_bitmap_legacy_x2apic;
787static unsigned long *vmx_msr_bitmap_longmode_x2apic;
4607c2d7
AG
788static unsigned long *vmx_vmread_bitmap;
789static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 790
110312c8 791static bool cpu_has_load_ia32_efer;
8bf00a52 792static bool cpu_has_load_perf_global_ctrl;
110312c8 793
2384d2b3
SY
794static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
795static DEFINE_SPINLOCK(vmx_vpid_lock);
796
1c3d14fe 797static struct vmcs_config {
6aa8b732
AK
798 int size;
799 int order;
800 u32 revision_id;
1c3d14fe
YS
801 u32 pin_based_exec_ctrl;
802 u32 cpu_based_exec_ctrl;
f78e0e2e 803 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
804 u32 vmexit_ctrl;
805 u32 vmentry_ctrl;
806} vmcs_config;
6aa8b732 807
efff9e53 808static struct vmx_capability {
d56f546d
SY
809 u32 ept;
810 u32 vpid;
811} vmx_capability;
812
6aa8b732
AK
813#define VMX_SEGMENT_FIELD(seg) \
814 [VCPU_SREG_##seg] = { \
815 .selector = GUEST_##seg##_SELECTOR, \
816 .base = GUEST_##seg##_BASE, \
817 .limit = GUEST_##seg##_LIMIT, \
818 .ar_bytes = GUEST_##seg##_AR_BYTES, \
819 }
820
772e0318 821static const struct kvm_vmx_segment_field {
6aa8b732
AK
822 unsigned selector;
823 unsigned base;
824 unsigned limit;
825 unsigned ar_bytes;
826} kvm_vmx_segment_fields[] = {
827 VMX_SEGMENT_FIELD(CS),
828 VMX_SEGMENT_FIELD(DS),
829 VMX_SEGMENT_FIELD(ES),
830 VMX_SEGMENT_FIELD(FS),
831 VMX_SEGMENT_FIELD(GS),
832 VMX_SEGMENT_FIELD(SS),
833 VMX_SEGMENT_FIELD(TR),
834 VMX_SEGMENT_FIELD(LDTR),
835};
836
26bb0981
AK
837static u64 host_efer;
838
6de4f3ad
AK
839static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
840
4d56c8a7 841/*
8c06585d 842 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
843 * away by decrementing the array size.
844 */
6aa8b732 845static const u32 vmx_msr_index[] = {
05b3e0c2 846#ifdef CONFIG_X86_64
44ea2b17 847 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 848#endif
8c06585d 849 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 850};
6aa8b732 851
31299944 852static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
853{
854 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
855 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 856 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
857}
858
31299944 859static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
860{
861 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
862 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 863 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
864}
865
31299944 866static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
867{
868 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
869 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 870 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
871}
872
31299944 873static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
874{
875 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
876 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
877}
878
31299944 879static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
880{
881 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
882 INTR_INFO_VALID_MASK)) ==
883 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
884}
885
31299944 886static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 887{
04547156 888 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
889}
890
31299944 891static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 892{
04547156 893 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
894}
895
31299944 896static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 897{
04547156 898 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
899}
900
31299944 901static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 902{
04547156
SY
903 return vmcs_config.cpu_based_exec_ctrl &
904 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
905}
906
774ead3a 907static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 908{
04547156
SY
909 return vmcs_config.cpu_based_2nd_exec_ctrl &
910 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
911}
912
8d14695f
YZ
913static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
914{
915 return vmcs_config.cpu_based_2nd_exec_ctrl &
916 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
917}
918
83d4c286
YZ
919static inline bool cpu_has_vmx_apic_register_virt(void)
920{
921 return vmcs_config.cpu_based_2nd_exec_ctrl &
922 SECONDARY_EXEC_APIC_REGISTER_VIRT;
923}
924
c7c9c56c
YZ
925static inline bool cpu_has_vmx_virtual_intr_delivery(void)
926{
927 return vmcs_config.cpu_based_2nd_exec_ctrl &
928 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
929}
930
01e439be
YZ
931static inline bool cpu_has_vmx_posted_intr(void)
932{
933 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
934}
935
936static inline bool cpu_has_vmx_apicv(void)
937{
938 return cpu_has_vmx_apic_register_virt() &&
939 cpu_has_vmx_virtual_intr_delivery() &&
940 cpu_has_vmx_posted_intr();
941}
942
04547156
SY
943static inline bool cpu_has_vmx_flexpriority(void)
944{
945 return cpu_has_vmx_tpr_shadow() &&
946 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
947}
948
e799794e
MT
949static inline bool cpu_has_vmx_ept_execute_only(void)
950{
31299944 951 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
952}
953
954static inline bool cpu_has_vmx_eptp_uncacheable(void)
955{
31299944 956 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
957}
958
959static inline bool cpu_has_vmx_eptp_writeback(void)
960{
31299944 961 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
962}
963
964static inline bool cpu_has_vmx_ept_2m_page(void)
965{
31299944 966 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
967}
968
878403b7
SY
969static inline bool cpu_has_vmx_ept_1g_page(void)
970{
31299944 971 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
972}
973
4bc9b982
SY
974static inline bool cpu_has_vmx_ept_4levels(void)
975{
976 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
977}
978
83c3a331
XH
979static inline bool cpu_has_vmx_ept_ad_bits(void)
980{
981 return vmx_capability.ept & VMX_EPT_AD_BIT;
982}
983
31299944 984static inline bool cpu_has_vmx_invept_context(void)
d56f546d 985{
31299944 986 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
987}
988
31299944 989static inline bool cpu_has_vmx_invept_global(void)
d56f546d 990{
31299944 991 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
992}
993
518c8aee
GJ
994static inline bool cpu_has_vmx_invvpid_single(void)
995{
996 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
997}
998
b9d762fa
GJ
999static inline bool cpu_has_vmx_invvpid_global(void)
1000{
1001 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1002}
1003
31299944 1004static inline bool cpu_has_vmx_ept(void)
d56f546d 1005{
04547156
SY
1006 return vmcs_config.cpu_based_2nd_exec_ctrl &
1007 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1008}
1009
31299944 1010static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1011{
1012 return vmcs_config.cpu_based_2nd_exec_ctrl &
1013 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1014}
1015
31299944 1016static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1017{
1018 return vmcs_config.cpu_based_2nd_exec_ctrl &
1019 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1020}
1021
31299944 1022static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 1023{
6d3e435e 1024 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
1025}
1026
31299944 1027static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1028{
04547156
SY
1029 return vmcs_config.cpu_based_2nd_exec_ctrl &
1030 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1031}
1032
31299944 1033static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1034{
1035 return vmcs_config.cpu_based_2nd_exec_ctrl &
1036 SECONDARY_EXEC_RDTSCP;
1037}
1038
ad756a16
MJ
1039static inline bool cpu_has_vmx_invpcid(void)
1040{
1041 return vmcs_config.cpu_based_2nd_exec_ctrl &
1042 SECONDARY_EXEC_ENABLE_INVPCID;
1043}
1044
31299944 1045static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1046{
1047 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1048}
1049
f5f48ee1
SY
1050static inline bool cpu_has_vmx_wbinvd_exit(void)
1051{
1052 return vmcs_config.cpu_based_2nd_exec_ctrl &
1053 SECONDARY_EXEC_WBINVD_EXITING;
1054}
1055
abc4fc58
AG
1056static inline bool cpu_has_vmx_shadow_vmcs(void)
1057{
1058 u64 vmx_msr;
1059 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1060 /* check if the cpu supports writing r/o exit information fields */
1061 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1062 return false;
1063
1064 return vmcs_config.cpu_based_2nd_exec_ctrl &
1065 SECONDARY_EXEC_SHADOW_VMCS;
1066}
1067
04547156
SY
1068static inline bool report_flexpriority(void)
1069{
1070 return flexpriority_enabled;
1071}
1072
fe3ef05c
NHE
1073static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1074{
1075 return vmcs12->cpu_based_vm_exec_control & bit;
1076}
1077
1078static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1079{
1080 return (vmcs12->cpu_based_vm_exec_control &
1081 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1082 (vmcs12->secondary_vm_exec_control & bit);
1083}
1084
f5c4368f 1085static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1086{
1087 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1088}
1089
f4124500
JK
1090static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1091{
1092 return vmcs12->pin_based_vm_exec_control &
1093 PIN_BASED_VMX_PREEMPTION_TIMER;
1094}
1095
155a97a3
NHE
1096static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1097{
1098 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1099}
1100
644d711a
NHE
1101static inline bool is_exception(u32 intr_info)
1102{
1103 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1104 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1105}
1106
533558bc
JK
1107static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1108 u32 exit_intr_info,
1109 unsigned long exit_qualification);
7c177938
NHE
1110static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1111 struct vmcs12 *vmcs12,
1112 u32 reason, unsigned long qualification);
1113
8b9cf98c 1114static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1115{
1116 int i;
1117
a2fa3e9f 1118 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1119 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1120 return i;
1121 return -1;
1122}
1123
2384d2b3
SY
1124static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1125{
1126 struct {
1127 u64 vpid : 16;
1128 u64 rsvd : 48;
1129 u64 gva;
1130 } operand = { vpid, 0, gva };
1131
4ecac3fd 1132 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1133 /* CF==1 or ZF==1 --> rc = -1 */
1134 "; ja 1f ; ud2 ; 1:"
1135 : : "a"(&operand), "c"(ext) : "cc", "memory");
1136}
1137
1439442c
SY
1138static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1139{
1140 struct {
1141 u64 eptp, gpa;
1142 } operand = {eptp, gpa};
1143
4ecac3fd 1144 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1145 /* CF==1 or ZF==1 --> rc = -1 */
1146 "; ja 1f ; ud2 ; 1:\n"
1147 : : "a" (&operand), "c" (ext) : "cc", "memory");
1148}
1149
26bb0981 1150static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1151{
1152 int i;
1153
8b9cf98c 1154 i = __find_msr_index(vmx, msr);
a75beee6 1155 if (i >= 0)
a2fa3e9f 1156 return &vmx->guest_msrs[i];
8b6d44c7 1157 return NULL;
7725f0ba
AK
1158}
1159
6aa8b732
AK
1160static void vmcs_clear(struct vmcs *vmcs)
1161{
1162 u64 phys_addr = __pa(vmcs);
1163 u8 error;
1164
4ecac3fd 1165 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1166 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1167 : "cc", "memory");
1168 if (error)
1169 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1170 vmcs, phys_addr);
1171}
1172
d462b819
NHE
1173static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1174{
1175 vmcs_clear(loaded_vmcs->vmcs);
1176 loaded_vmcs->cpu = -1;
1177 loaded_vmcs->launched = 0;
1178}
1179
7725b894
DX
1180static void vmcs_load(struct vmcs *vmcs)
1181{
1182 u64 phys_addr = __pa(vmcs);
1183 u8 error;
1184
1185 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1186 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1187 : "cc", "memory");
1188 if (error)
2844d849 1189 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1190 vmcs, phys_addr);
1191}
1192
8f536b76
ZY
1193#ifdef CONFIG_KEXEC
1194/*
1195 * This bitmap is used to indicate whether the vmclear
1196 * operation is enabled on all cpus. All disabled by
1197 * default.
1198 */
1199static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1200
1201static inline void crash_enable_local_vmclear(int cpu)
1202{
1203 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1204}
1205
1206static inline void crash_disable_local_vmclear(int cpu)
1207{
1208 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1209}
1210
1211static inline int crash_local_vmclear_enabled(int cpu)
1212{
1213 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1214}
1215
1216static void crash_vmclear_local_loaded_vmcss(void)
1217{
1218 int cpu = raw_smp_processor_id();
1219 struct loaded_vmcs *v;
1220
1221 if (!crash_local_vmclear_enabled(cpu))
1222 return;
1223
1224 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1225 loaded_vmcss_on_cpu_link)
1226 vmcs_clear(v->vmcs);
1227}
1228#else
1229static inline void crash_enable_local_vmclear(int cpu) { }
1230static inline void crash_disable_local_vmclear(int cpu) { }
1231#endif /* CONFIG_KEXEC */
1232
d462b819 1233static void __loaded_vmcs_clear(void *arg)
6aa8b732 1234{
d462b819 1235 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1236 int cpu = raw_smp_processor_id();
6aa8b732 1237
d462b819
NHE
1238 if (loaded_vmcs->cpu != cpu)
1239 return; /* vcpu migration can race with cpu offline */
1240 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1241 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1242 crash_disable_local_vmclear(cpu);
d462b819 1243 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1244
1245 /*
1246 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1247 * is before setting loaded_vmcs->vcpu to -1 which is done in
1248 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1249 * then adds the vmcs into percpu list before it is deleted.
1250 */
1251 smp_wmb();
1252
d462b819 1253 loaded_vmcs_init(loaded_vmcs);
8f536b76 1254 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1255}
1256
d462b819 1257static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1258{
e6c7d321
XG
1259 int cpu = loaded_vmcs->cpu;
1260
1261 if (cpu != -1)
1262 smp_call_function_single(cpu,
1263 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1264}
1265
1760dd49 1266static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1267{
1268 if (vmx->vpid == 0)
1269 return;
1270
518c8aee
GJ
1271 if (cpu_has_vmx_invvpid_single())
1272 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1273}
1274
b9d762fa
GJ
1275static inline void vpid_sync_vcpu_global(void)
1276{
1277 if (cpu_has_vmx_invvpid_global())
1278 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1279}
1280
1281static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1282{
1283 if (cpu_has_vmx_invvpid_single())
1760dd49 1284 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1285 else
1286 vpid_sync_vcpu_global();
1287}
1288
1439442c
SY
1289static inline void ept_sync_global(void)
1290{
1291 if (cpu_has_vmx_invept_global())
1292 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1293}
1294
1295static inline void ept_sync_context(u64 eptp)
1296{
089d034e 1297 if (enable_ept) {
1439442c
SY
1298 if (cpu_has_vmx_invept_context())
1299 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1300 else
1301 ept_sync_global();
1302 }
1303}
1304
96304217 1305static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1306{
5e520e62 1307 unsigned long value;
6aa8b732 1308
5e520e62
AK
1309 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1310 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1311 return value;
1312}
1313
96304217 1314static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1315{
1316 return vmcs_readl(field);
1317}
1318
96304217 1319static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1320{
1321 return vmcs_readl(field);
1322}
1323
96304217 1324static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1325{
05b3e0c2 1326#ifdef CONFIG_X86_64
6aa8b732
AK
1327 return vmcs_readl(field);
1328#else
1329 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1330#endif
1331}
1332
e52de1b8
AK
1333static noinline void vmwrite_error(unsigned long field, unsigned long value)
1334{
1335 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1336 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1337 dump_stack();
1338}
1339
6aa8b732
AK
1340static void vmcs_writel(unsigned long field, unsigned long value)
1341{
1342 u8 error;
1343
4ecac3fd 1344 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1345 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1346 if (unlikely(error))
1347 vmwrite_error(field, value);
6aa8b732
AK
1348}
1349
1350static void vmcs_write16(unsigned long field, u16 value)
1351{
1352 vmcs_writel(field, value);
1353}
1354
1355static void vmcs_write32(unsigned long field, u32 value)
1356{
1357 vmcs_writel(field, value);
1358}
1359
1360static void vmcs_write64(unsigned long field, u64 value)
1361{
6aa8b732 1362 vmcs_writel(field, value);
7682f2d0 1363#ifndef CONFIG_X86_64
6aa8b732
AK
1364 asm volatile ("");
1365 vmcs_writel(field+1, value >> 32);
1366#endif
1367}
1368
2ab455cc
AL
1369static void vmcs_clear_bits(unsigned long field, u32 mask)
1370{
1371 vmcs_writel(field, vmcs_readl(field) & ~mask);
1372}
1373
1374static void vmcs_set_bits(unsigned long field, u32 mask)
1375{
1376 vmcs_writel(field, vmcs_readl(field) | mask);
1377}
1378
2961e876
GN
1379static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1380{
1381 vmcs_write32(VM_ENTRY_CONTROLS, val);
1382 vmx->vm_entry_controls_shadow = val;
1383}
1384
1385static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1386{
1387 if (vmx->vm_entry_controls_shadow != val)
1388 vm_entry_controls_init(vmx, val);
1389}
1390
1391static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1392{
1393 return vmx->vm_entry_controls_shadow;
1394}
1395
1396
1397static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1398{
1399 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1400}
1401
1402static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1403{
1404 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1405}
1406
1407static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1408{
1409 vmcs_write32(VM_EXIT_CONTROLS, val);
1410 vmx->vm_exit_controls_shadow = val;
1411}
1412
1413static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1414{
1415 if (vmx->vm_exit_controls_shadow != val)
1416 vm_exit_controls_init(vmx, val);
1417}
1418
1419static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1420{
1421 return vmx->vm_exit_controls_shadow;
1422}
1423
1424
1425static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1426{
1427 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1428}
1429
1430static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1431{
1432 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1433}
1434
2fb92db1
AK
1435static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1436{
1437 vmx->segment_cache.bitmask = 0;
1438}
1439
1440static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1441 unsigned field)
1442{
1443 bool ret;
1444 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1445
1446 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1447 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1448 vmx->segment_cache.bitmask = 0;
1449 }
1450 ret = vmx->segment_cache.bitmask & mask;
1451 vmx->segment_cache.bitmask |= mask;
1452 return ret;
1453}
1454
1455static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1456{
1457 u16 *p = &vmx->segment_cache.seg[seg].selector;
1458
1459 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1460 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1461 return *p;
1462}
1463
1464static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1465{
1466 ulong *p = &vmx->segment_cache.seg[seg].base;
1467
1468 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1469 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1470 return *p;
1471}
1472
1473static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1474{
1475 u32 *p = &vmx->segment_cache.seg[seg].limit;
1476
1477 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1478 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1479 return *p;
1480}
1481
1482static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1483{
1484 u32 *p = &vmx->segment_cache.seg[seg].ar;
1485
1486 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1487 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1488 return *p;
1489}
1490
abd3f2d6
AK
1491static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1492{
1493 u32 eb;
1494
fd7373cc
JK
1495 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1496 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1497 if ((vcpu->guest_debug &
1498 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1499 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1500 eb |= 1u << BP_VECTOR;
7ffd92c5 1501 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1502 eb = ~0;
089d034e 1503 if (enable_ept)
1439442c 1504 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1505 if (vcpu->fpu_active)
1506 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1507
1508 /* When we are running a nested L2 guest and L1 specified for it a
1509 * certain exception bitmap, we must trap the same exceptions and pass
1510 * them to L1. When running L2, we will only handle the exceptions
1511 * specified above if L1 did not want them.
1512 */
1513 if (is_guest_mode(vcpu))
1514 eb |= get_vmcs12(vcpu)->exception_bitmap;
1515
abd3f2d6
AK
1516 vmcs_write32(EXCEPTION_BITMAP, eb);
1517}
1518
2961e876
GN
1519static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1520 unsigned long entry, unsigned long exit)
8bf00a52 1521{
2961e876
GN
1522 vm_entry_controls_clearbit(vmx, entry);
1523 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1524}
1525
61d2ef2c
AK
1526static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1527{
1528 unsigned i;
1529 struct msr_autoload *m = &vmx->msr_autoload;
1530
8bf00a52
GN
1531 switch (msr) {
1532 case MSR_EFER:
1533 if (cpu_has_load_ia32_efer) {
2961e876
GN
1534 clear_atomic_switch_msr_special(vmx,
1535 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1536 VM_EXIT_LOAD_IA32_EFER);
1537 return;
1538 }
1539 break;
1540 case MSR_CORE_PERF_GLOBAL_CTRL:
1541 if (cpu_has_load_perf_global_ctrl) {
2961e876 1542 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1543 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1544 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1545 return;
1546 }
1547 break;
110312c8
AK
1548 }
1549
61d2ef2c
AK
1550 for (i = 0; i < m->nr; ++i)
1551 if (m->guest[i].index == msr)
1552 break;
1553
1554 if (i == m->nr)
1555 return;
1556 --m->nr;
1557 m->guest[i] = m->guest[m->nr];
1558 m->host[i] = m->host[m->nr];
1559 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1560 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1561}
1562
2961e876
GN
1563static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1564 unsigned long entry, unsigned long exit,
1565 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1566 u64 guest_val, u64 host_val)
8bf00a52
GN
1567{
1568 vmcs_write64(guest_val_vmcs, guest_val);
1569 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1570 vm_entry_controls_setbit(vmx, entry);
1571 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1572}
1573
61d2ef2c
AK
1574static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1575 u64 guest_val, u64 host_val)
1576{
1577 unsigned i;
1578 struct msr_autoload *m = &vmx->msr_autoload;
1579
8bf00a52
GN
1580 switch (msr) {
1581 case MSR_EFER:
1582 if (cpu_has_load_ia32_efer) {
2961e876
GN
1583 add_atomic_switch_msr_special(vmx,
1584 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1585 VM_EXIT_LOAD_IA32_EFER,
1586 GUEST_IA32_EFER,
1587 HOST_IA32_EFER,
1588 guest_val, host_val);
1589 return;
1590 }
1591 break;
1592 case MSR_CORE_PERF_GLOBAL_CTRL:
1593 if (cpu_has_load_perf_global_ctrl) {
2961e876 1594 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1595 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1596 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1597 GUEST_IA32_PERF_GLOBAL_CTRL,
1598 HOST_IA32_PERF_GLOBAL_CTRL,
1599 guest_val, host_val);
1600 return;
1601 }
1602 break;
110312c8
AK
1603 }
1604
61d2ef2c
AK
1605 for (i = 0; i < m->nr; ++i)
1606 if (m->guest[i].index == msr)
1607 break;
1608
e7fc6f93 1609 if (i == NR_AUTOLOAD_MSRS) {
60266204 1610 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1611 "Can't add msr %x\n", msr);
1612 return;
1613 } else if (i == m->nr) {
61d2ef2c
AK
1614 ++m->nr;
1615 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1616 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1617 }
1618
1619 m->guest[i].index = msr;
1620 m->guest[i].value = guest_val;
1621 m->host[i].index = msr;
1622 m->host[i].value = host_val;
1623}
1624
33ed6329
AK
1625static void reload_tss(void)
1626{
33ed6329
AK
1627 /*
1628 * VT restores TR but not its size. Useless.
1629 */
89cbc767 1630 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1631 struct desc_struct *descs;
33ed6329 1632
d359192f 1633 descs = (void *)gdt->address;
33ed6329
AK
1634 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1635 load_TR_desc();
33ed6329
AK
1636}
1637
92c0d900 1638static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1639{
3a34a881 1640 u64 guest_efer;
51c6cf66
AK
1641 u64 ignore_bits;
1642
f6801dff 1643 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1644
51c6cf66 1645 /*
0fa06071 1646 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1647 * outside long mode
1648 */
1649 ignore_bits = EFER_NX | EFER_SCE;
1650#ifdef CONFIG_X86_64
1651 ignore_bits |= EFER_LMA | EFER_LME;
1652 /* SCE is meaningful only in long mode on Intel */
1653 if (guest_efer & EFER_LMA)
1654 ignore_bits &= ~(u64)EFER_SCE;
1655#endif
51c6cf66
AK
1656 guest_efer &= ~ignore_bits;
1657 guest_efer |= host_efer & ignore_bits;
26bb0981 1658 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1659 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1660
1661 clear_atomic_switch_msr(vmx, MSR_EFER);
1662 /* On ept, can't emulate nx, and must switch nx atomically */
1663 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1664 guest_efer = vmx->vcpu.arch.efer;
1665 if (!(guest_efer & EFER_LMA))
1666 guest_efer &= ~EFER_LME;
1667 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1668 return false;
1669 }
1670
26bb0981 1671 return true;
51c6cf66
AK
1672}
1673
2d49ec72
GN
1674static unsigned long segment_base(u16 selector)
1675{
89cbc767 1676 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1677 struct desc_struct *d;
1678 unsigned long table_base;
1679 unsigned long v;
1680
1681 if (!(selector & ~3))
1682 return 0;
1683
d359192f 1684 table_base = gdt->address;
2d49ec72
GN
1685
1686 if (selector & 4) { /* from ldt */
1687 u16 ldt_selector = kvm_read_ldt();
1688
1689 if (!(ldt_selector & ~3))
1690 return 0;
1691
1692 table_base = segment_base(ldt_selector);
1693 }
1694 d = (struct desc_struct *)(table_base + (selector & ~7));
1695 v = get_desc_base(d);
1696#ifdef CONFIG_X86_64
1697 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1698 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1699#endif
1700 return v;
1701}
1702
1703static inline unsigned long kvm_read_tr_base(void)
1704{
1705 u16 tr;
1706 asm("str %0" : "=g"(tr));
1707 return segment_base(tr);
1708}
1709
04d2cc77 1710static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1711{
04d2cc77 1712 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1713 int i;
04d2cc77 1714
a2fa3e9f 1715 if (vmx->host_state.loaded)
33ed6329
AK
1716 return;
1717
a2fa3e9f 1718 vmx->host_state.loaded = 1;
33ed6329
AK
1719 /*
1720 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1721 * allow segment selectors with cpl > 0 or ti == 1.
1722 */
d6e88aec 1723 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1724 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1725 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1726 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1727 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1728 vmx->host_state.fs_reload_needed = 0;
1729 } else {
33ed6329 1730 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1731 vmx->host_state.fs_reload_needed = 1;
33ed6329 1732 }
9581d442 1733 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1734 if (!(vmx->host_state.gs_sel & 7))
1735 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1736 else {
1737 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1738 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1739 }
1740
b2da15ac
AK
1741#ifdef CONFIG_X86_64
1742 savesegment(ds, vmx->host_state.ds_sel);
1743 savesegment(es, vmx->host_state.es_sel);
1744#endif
1745
33ed6329
AK
1746#ifdef CONFIG_X86_64
1747 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1748 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1749#else
a2fa3e9f
GH
1750 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1751 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1752#endif
707c0874
AK
1753
1754#ifdef CONFIG_X86_64
c8770e7b
AK
1755 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1756 if (is_long_mode(&vmx->vcpu))
44ea2b17 1757 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1758#endif
da8999d3
LJ
1759 if (boot_cpu_has(X86_FEATURE_MPX))
1760 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1761 for (i = 0; i < vmx->save_nmsrs; ++i)
1762 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1763 vmx->guest_msrs[i].data,
1764 vmx->guest_msrs[i].mask);
33ed6329
AK
1765}
1766
a9b21b62 1767static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1768{
a2fa3e9f 1769 if (!vmx->host_state.loaded)
33ed6329
AK
1770 return;
1771
e1beb1d3 1772 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1773 vmx->host_state.loaded = 0;
c8770e7b
AK
1774#ifdef CONFIG_X86_64
1775 if (is_long_mode(&vmx->vcpu))
1776 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1777#endif
152d3f2f 1778 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1779 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1780#ifdef CONFIG_X86_64
9581d442 1781 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1782#else
1783 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1784#endif
33ed6329 1785 }
0a77fe4c
AK
1786 if (vmx->host_state.fs_reload_needed)
1787 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1788#ifdef CONFIG_X86_64
1789 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1790 loadsegment(ds, vmx->host_state.ds_sel);
1791 loadsegment(es, vmx->host_state.es_sel);
1792 }
b2da15ac 1793#endif
152d3f2f 1794 reload_tss();
44ea2b17 1795#ifdef CONFIG_X86_64
c8770e7b 1796 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1797#endif
da8999d3
LJ
1798 if (vmx->host_state.msr_host_bndcfgs)
1799 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1800 /*
1801 * If the FPU is not active (through the host task or
1802 * the guest vcpu), then restore the cr0.TS bit.
1803 */
1804 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1805 stts();
89cbc767 1806 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
1807}
1808
a9b21b62
AK
1809static void vmx_load_host_state(struct vcpu_vmx *vmx)
1810{
1811 preempt_disable();
1812 __vmx_load_host_state(vmx);
1813 preempt_enable();
1814}
1815
6aa8b732
AK
1816/*
1817 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1818 * vcpu mutex is already taken.
1819 */
15ad7146 1820static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1821{
a2fa3e9f 1822 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1823 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1824
4610c9cc
DX
1825 if (!vmm_exclusive)
1826 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1827 else if (vmx->loaded_vmcs->cpu != cpu)
1828 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1829
d462b819
NHE
1830 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1831 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1832 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1833 }
1834
d462b819 1835 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 1836 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
1837 unsigned long sysenter_esp;
1838
a8eeb04a 1839 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1840 local_irq_disable();
8f536b76 1841 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1842
1843 /*
1844 * Read loaded_vmcs->cpu should be before fetching
1845 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1846 * See the comments in __loaded_vmcs_clear().
1847 */
1848 smp_rmb();
1849
d462b819
NHE
1850 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1851 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1852 crash_enable_local_vmclear(cpu);
92fe13be
DX
1853 local_irq_enable();
1854
6aa8b732
AK
1855 /*
1856 * Linux uses per-cpu TSS and GDT, so set these when switching
1857 * processors.
1858 */
d6e88aec 1859 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1860 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1861
1862 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1863 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1864 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1865 }
6aa8b732
AK
1866}
1867
1868static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1869{
a9b21b62 1870 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1871 if (!vmm_exclusive) {
d462b819
NHE
1872 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1873 vcpu->cpu = -1;
4610c9cc
DX
1874 kvm_cpu_vmxoff();
1875 }
6aa8b732
AK
1876}
1877
5fd86fcf
AK
1878static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1879{
81231c69
AK
1880 ulong cr0;
1881
5fd86fcf
AK
1882 if (vcpu->fpu_active)
1883 return;
1884 vcpu->fpu_active = 1;
81231c69
AK
1885 cr0 = vmcs_readl(GUEST_CR0);
1886 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1887 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1888 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1889 update_exception_bitmap(vcpu);
edcafe3c 1890 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1891 if (is_guest_mode(vcpu))
1892 vcpu->arch.cr0_guest_owned_bits &=
1893 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1894 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1895}
1896
edcafe3c
AK
1897static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1898
fe3ef05c
NHE
1899/*
1900 * Return the cr0 value that a nested guest would read. This is a combination
1901 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1902 * its hypervisor (cr0_read_shadow).
1903 */
1904static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1905{
1906 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1907 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1908}
1909static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1910{
1911 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1912 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1913}
1914
5fd86fcf
AK
1915static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1916{
36cf24e0
NHE
1917 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1918 * set this *before* calling this function.
1919 */
edcafe3c 1920 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1921 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1922 update_exception_bitmap(vcpu);
edcafe3c
AK
1923 vcpu->arch.cr0_guest_owned_bits = 0;
1924 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1925 if (is_guest_mode(vcpu)) {
1926 /*
1927 * L1's specified read shadow might not contain the TS bit,
1928 * so now that we turned on shadowing of this bit, we need to
1929 * set this bit of the shadow. Like in nested_vmx_run we need
1930 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1931 * up-to-date here because we just decached cr0.TS (and we'll
1932 * only update vmcs12->guest_cr0 on nested exit).
1933 */
1934 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1936 (vcpu->arch.cr0 & X86_CR0_TS);
1937 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1938 } else
1939 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1940}
1941
6aa8b732
AK
1942static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1943{
78ac8b47 1944 unsigned long rflags, save_rflags;
345dcaa8 1945
6de12732
AK
1946 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1947 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1948 rflags = vmcs_readl(GUEST_RFLAGS);
1949 if (to_vmx(vcpu)->rmode.vm86_active) {
1950 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1951 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1952 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1953 }
1954 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1955 }
6de12732 1956 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1957}
1958
1959static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1960{
6de12732
AK
1961 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1962 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1963 if (to_vmx(vcpu)->rmode.vm86_active) {
1964 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1965 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1966 }
6aa8b732
AK
1967 vmcs_writel(GUEST_RFLAGS, rflags);
1968}
1969
37ccdcbe 1970static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
1971{
1972 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1973 int ret = 0;
1974
1975 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1976 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1977 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1978 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 1979
37ccdcbe 1980 return ret;
2809f5d2
GC
1981}
1982
1983static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1984{
1985 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1986 u32 interruptibility = interruptibility_old;
1987
1988 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1989
48005f64 1990 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1991 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1992 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1993 interruptibility |= GUEST_INTR_STATE_STI;
1994
1995 if ((interruptibility != interruptibility_old))
1996 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1997}
1998
6aa8b732
AK
1999static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2000{
2001 unsigned long rip;
6aa8b732 2002
5fdbf976 2003 rip = kvm_rip_read(vcpu);
6aa8b732 2004 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2005 kvm_rip_write(vcpu, rip);
6aa8b732 2006
2809f5d2
GC
2007 /* skipping an emulated instruction also counts */
2008 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2009}
2010
0b6ac343
NHE
2011/*
2012 * KVM wants to inject page-faults which it got to the guest. This function
2013 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2014 */
e011c663 2015static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2016{
2017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018
e011c663 2019 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2020 return 0;
2021
533558bc
JK
2022 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2023 vmcs_read32(VM_EXIT_INTR_INFO),
2024 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2025 return 1;
2026}
2027
298101da 2028static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2029 bool has_error_code, u32 error_code,
2030 bool reinject)
298101da 2031{
77ab6db0 2032 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2033 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2034
e011c663
GN
2035 if (!reinject && is_guest_mode(vcpu) &&
2036 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2037 return;
2038
8ab2d2e2 2039 if (has_error_code) {
77ab6db0 2040 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2041 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2042 }
77ab6db0 2043
7ffd92c5 2044 if (vmx->rmode.vm86_active) {
71f9833b
SH
2045 int inc_eip = 0;
2046 if (kvm_exception_is_soft(nr))
2047 inc_eip = vcpu->arch.event_exit_inst_len;
2048 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2049 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2050 return;
2051 }
2052
66fd3f7f
GN
2053 if (kvm_exception_is_soft(nr)) {
2054 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2055 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2056 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2057 } else
2058 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2059
2060 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2061}
2062
4e47c7a6
SY
2063static bool vmx_rdtscp_supported(void)
2064{
2065 return cpu_has_vmx_rdtscp();
2066}
2067
ad756a16
MJ
2068static bool vmx_invpcid_supported(void)
2069{
2070 return cpu_has_vmx_invpcid() && enable_ept;
2071}
2072
a75beee6
ED
2073/*
2074 * Swap MSR entry in host/guest MSR entry array.
2075 */
8b9cf98c 2076static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2077{
26bb0981 2078 struct shared_msr_entry tmp;
a2fa3e9f
GH
2079
2080 tmp = vmx->guest_msrs[to];
2081 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2082 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2083}
2084
8d14695f
YZ
2085static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2086{
2087 unsigned long *msr_bitmap;
2088
2089 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2090 if (is_long_mode(vcpu))
2091 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2092 else
2093 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2094 } else {
2095 if (is_long_mode(vcpu))
2096 msr_bitmap = vmx_msr_bitmap_longmode;
2097 else
2098 msr_bitmap = vmx_msr_bitmap_legacy;
2099 }
2100
2101 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2102}
2103
e38aea3e
AK
2104/*
2105 * Set up the vmcs to automatically save and restore system
2106 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2107 * mode, as fiddling with msrs is very expensive.
2108 */
8b9cf98c 2109static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2110{
26bb0981 2111 int save_nmsrs, index;
e38aea3e 2112
a75beee6
ED
2113 save_nmsrs = 0;
2114#ifdef CONFIG_X86_64
8b9cf98c 2115 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2116 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2117 if (index >= 0)
8b9cf98c
RR
2118 move_msr_up(vmx, index, save_nmsrs++);
2119 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2120 if (index >= 0)
8b9cf98c
RR
2121 move_msr_up(vmx, index, save_nmsrs++);
2122 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2123 if (index >= 0)
8b9cf98c 2124 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2125 index = __find_msr_index(vmx, MSR_TSC_AUX);
2126 if (index >= 0 && vmx->rdtscp_enabled)
2127 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2128 /*
8c06585d 2129 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2130 * if efer.sce is enabled.
2131 */
8c06585d 2132 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2133 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2134 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2135 }
2136#endif
92c0d900
AK
2137 index = __find_msr_index(vmx, MSR_EFER);
2138 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2139 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2140
26bb0981 2141 vmx->save_nmsrs = save_nmsrs;
5897297b 2142
8d14695f
YZ
2143 if (cpu_has_vmx_msr_bitmap())
2144 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2145}
2146
6aa8b732
AK
2147/*
2148 * reads and returns guest's timestamp counter "register"
2149 * guest_tsc = host_tsc + tsc_offset -- 21.3
2150 */
2151static u64 guest_read_tsc(void)
2152{
2153 u64 host_tsc, tsc_offset;
2154
2155 rdtscll(host_tsc);
2156 tsc_offset = vmcs_read64(TSC_OFFSET);
2157 return host_tsc + tsc_offset;
2158}
2159
d5c1785d
NHE
2160/*
2161 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2162 * counter, even if a nested guest (L2) is currently running.
2163 */
48d89b92 2164static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2165{
886b470c 2166 u64 tsc_offset;
d5c1785d 2167
d5c1785d
NHE
2168 tsc_offset = is_guest_mode(vcpu) ?
2169 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2170 vmcs_read64(TSC_OFFSET);
2171 return host_tsc + tsc_offset;
2172}
2173
4051b188 2174/*
cc578287
ZA
2175 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2176 * software catchup for faster rates on slower CPUs.
4051b188 2177 */
cc578287 2178static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2179{
cc578287
ZA
2180 if (!scale)
2181 return;
2182
2183 if (user_tsc_khz > tsc_khz) {
2184 vcpu->arch.tsc_catchup = 1;
2185 vcpu->arch.tsc_always_catchup = 1;
2186 } else
2187 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2188}
2189
ba904635
WA
2190static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2191{
2192 return vmcs_read64(TSC_OFFSET);
2193}
2194
6aa8b732 2195/*
99e3e30a 2196 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2197 */
99e3e30a 2198static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2199{
27fc51b2 2200 if (is_guest_mode(vcpu)) {
7991825b 2201 /*
27fc51b2
NHE
2202 * We're here if L1 chose not to trap WRMSR to TSC. According
2203 * to the spec, this should set L1's TSC; The offset that L1
2204 * set for L2 remains unchanged, and still needs to be added
2205 * to the newly set TSC to get L2's TSC.
7991825b 2206 */
27fc51b2
NHE
2207 struct vmcs12 *vmcs12;
2208 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2209 /* recalculate vmcs02.TSC_OFFSET: */
2210 vmcs12 = get_vmcs12(vcpu);
2211 vmcs_write64(TSC_OFFSET, offset +
2212 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2213 vmcs12->tsc_offset : 0));
2214 } else {
489223ed
YY
2215 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2216 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2217 vmcs_write64(TSC_OFFSET, offset);
2218 }
6aa8b732
AK
2219}
2220
f1e2b260 2221static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2222{
2223 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2224
e48672fa 2225 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2226 if (is_guest_mode(vcpu)) {
2227 /* Even when running L2, the adjustment needs to apply to L1 */
2228 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2229 } else
2230 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2231 offset + adjustment);
e48672fa
ZA
2232}
2233
857e4099
JR
2234static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2235{
2236 return target_tsc - native_read_tsc();
2237}
2238
801d3424
NHE
2239static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2240{
2241 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2242 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2243}
2244
2245/*
2246 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2247 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2248 * all guests if the "nested" module option is off, and can also be disabled
2249 * for a single guest by disabling its VMX cpuid bit.
2250 */
2251static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2252{
2253 return nested && guest_cpuid_has_vmx(vcpu);
2254}
2255
b87a51ae
NHE
2256/*
2257 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2258 * returned for the various VMX controls MSRs when nested VMX is enabled.
2259 * The same values should also be used to verify that vmcs12 control fields are
2260 * valid during nested entry from L1 to L2.
2261 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2262 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2263 * bit in the high half is on if the corresponding bit in the control field
2264 * may be on. See also vmx_control_verify().
2265 * TODO: allow these variables to be modified (downgraded) by module options
2266 * or other means.
2267 */
2268static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
3dcdf3ec 2269static u32 nested_vmx_true_procbased_ctls_low;
b87a51ae
NHE
2270static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2271static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2272static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2996fca0 2273static u32 nested_vmx_true_exit_ctls_low;
b87a51ae 2274static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2996fca0 2275static u32 nested_vmx_true_entry_ctls_low;
c18911a2 2276static u32 nested_vmx_misc_low, nested_vmx_misc_high;
bfd0a56b 2277static u32 nested_vmx_ept_caps;
b87a51ae
NHE
2278static __init void nested_vmx_setup_ctls_msrs(void)
2279{
2280 /*
2281 * Note that as a general rule, the high half of the MSRs (bits in
2282 * the control fields which may be 1) should be initialized by the
2283 * intersection of the underlying hardware's MSR (i.e., features which
2284 * can be supported) and the list of features we want to expose -
2285 * because they are known to be properly supported in our code.
2286 * Also, usually, the low half of the MSRs (bits which must be 1) can
2287 * be set to 0, meaning that L1 may turn off any of these bits. The
2288 * reason is that if one of these bits is necessary, it will appear
2289 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2290 * fields of vmcs01 and vmcs02, will turn these bits off - and
2291 * nested_vmx_exit_handled() will not pass related exits to L1.
2292 * These rules have exceptions below.
2293 */
2294
2295 /* pin-based controls */
eabeaacc
JK
2296 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2297 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
eabeaacc
JK
2298 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2299 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
f4124500
JK
2300 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2301 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2302 PIN_BASED_VMX_PREEMPTION_TIMER;
b87a51ae 2303
3dbcd8da 2304 /* exit controls */
c0dfee58
ACL
2305 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2306 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
33fb20c3 2307 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2308
c0dfee58 2309 nested_vmx_exit_ctls_high &=
b87a51ae 2310#ifdef CONFIG_X86_64
c0dfee58 2311 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2312#endif
f4124500
JK
2313 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2314 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2315 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2316 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2317
36be0b9d
PB
2318 if (vmx_mpx_supported())
2319 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2320
2996fca0
JK
2321 /* We support free control of debug control saving. */
2322 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2323 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2324
b87a51ae
NHE
2325 /* entry controls */
2326 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2327 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
33fb20c3 2328 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2329 nested_vmx_entry_ctls_high &=
57435349
JK
2330#ifdef CONFIG_X86_64
2331 VM_ENTRY_IA32E_MODE |
2332#endif
2333 VM_ENTRY_LOAD_IA32_PAT;
8049d651
NHE
2334 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2335 VM_ENTRY_LOAD_IA32_EFER);
36be0b9d
PB
2336 if (vmx_mpx_supported())
2337 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2338
2996fca0
JK
2339 /* We support free control of debug control loading. */
2340 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2341 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2342
b87a51ae
NHE
2343 /* cpu-based controls */
2344 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2345 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
560b7ee1 2346 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2347 nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2348 CPU_BASED_VIRTUAL_INTR_PENDING |
2349 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2350 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2351 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2352 CPU_BASED_CR3_STORE_EXITING |
2353#ifdef CONFIG_X86_64
2354 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2355#endif
2356 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2357 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2358 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
a7c0b07d 2359 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
b87a51ae
NHE
2360 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2361 /*
2362 * We can allow some features even when not supported by the
2363 * hardware. For example, L1 can specify an MSR bitmap - and we
2364 * can use it to avoid exits to L1 - even when L0 runs L2
2365 * without MSR bitmaps.
2366 */
560b7ee1
JK
2367 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2368 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2369
3dcdf3ec
JK
2370 /* We support free control of CR3 access interception. */
2371 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2372 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2373
b87a51ae
NHE
2374 /* secondary cpu-based controls */
2375 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2376 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2377 nested_vmx_secondary_ctls_low = 0;
2378 nested_vmx_secondary_ctls_high &=
d6851fbe 2379 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
92fbc7b1 2380 SECONDARY_EXEC_UNRESTRICTED_GUEST |
d6851fbe 2381 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2382
afa61f75
NHE
2383 if (enable_ept) {
2384 /* nested EPT: emulate EPT also to L1 */
2385 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
ca72d970 2386 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2387 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2388 VMX_EPT_INVEPT_BIT;
afa61f75
NHE
2389 nested_vmx_ept_caps &= vmx_capability.ept;
2390 /*
4b855078
BD
2391 * For nested guests, we don't do anything specific
2392 * for single context invalidation. Hence, only advertise
2393 * support for global context invalidation.
afa61f75 2394 */
4b855078 2395 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75
NHE
2396 } else
2397 nested_vmx_ept_caps = 0;
2398
c18911a2
JK
2399 /* miscellaneous data */
2400 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
f4124500
JK
2401 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2402 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2403 VMX_MISC_ACTIVITY_HLT;
c18911a2 2404 nested_vmx_misc_high = 0;
b87a51ae
NHE
2405}
2406
2407static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2408{
2409 /*
2410 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2411 */
2412 return ((control & high) | low) == control;
2413}
2414
2415static inline u64 vmx_control_msr(u32 low, u32 high)
2416{
2417 return low | ((u64)high << 32);
2418}
2419
cae50139 2420/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2421static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2422{
b87a51ae 2423 switch (msr_index) {
b87a51ae
NHE
2424 case MSR_IA32_VMX_BASIC:
2425 /*
2426 * This MSR reports some information about VMX support. We
2427 * should return information about the VMX we emulate for the
2428 * guest, and the VMCS structure we give it - not about the
2429 * VMX support of the underlying hardware.
2430 */
3dbcd8da 2431 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2432 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2433 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2434 break;
2435 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2436 case MSR_IA32_VMX_PINBASED_CTLS:
2437 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2438 nested_vmx_pinbased_ctls_high);
2439 break;
2440 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3dcdf3ec
JK
2441 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2442 nested_vmx_procbased_ctls_high);
2443 break;
b87a51ae
NHE
2444 case MSR_IA32_VMX_PROCBASED_CTLS:
2445 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2446 nested_vmx_procbased_ctls_high);
2447 break;
2448 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2996fca0
JK
2449 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2450 nested_vmx_exit_ctls_high);
2451 break;
b87a51ae
NHE
2452 case MSR_IA32_VMX_EXIT_CTLS:
2453 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2454 nested_vmx_exit_ctls_high);
2455 break;
2456 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2996fca0
JK
2457 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2458 nested_vmx_entry_ctls_high);
2459 break;
b87a51ae
NHE
2460 case MSR_IA32_VMX_ENTRY_CTLS:
2461 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2462 nested_vmx_entry_ctls_high);
2463 break;
2464 case MSR_IA32_VMX_MISC:
c18911a2
JK
2465 *pdata = vmx_control_msr(nested_vmx_misc_low,
2466 nested_vmx_misc_high);
b87a51ae
NHE
2467 break;
2468 /*
2469 * These MSRs specify bits which the guest must keep fixed (on or off)
2470 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2471 * We picked the standard core2 setting.
2472 */
2473#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2474#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2475 case MSR_IA32_VMX_CR0_FIXED0:
2476 *pdata = VMXON_CR0_ALWAYSON;
2477 break;
2478 case MSR_IA32_VMX_CR0_FIXED1:
2479 *pdata = -1ULL;
2480 break;
2481 case MSR_IA32_VMX_CR4_FIXED0:
2482 *pdata = VMXON_CR4_ALWAYSON;
2483 break;
2484 case MSR_IA32_VMX_CR4_FIXED1:
2485 *pdata = -1ULL;
2486 break;
2487 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2488 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2489 break;
2490 case MSR_IA32_VMX_PROCBASED_CTLS2:
2491 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2492 nested_vmx_secondary_ctls_high);
2493 break;
2494 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75
NHE
2495 /* Currently, no nested vpid support */
2496 *pdata = nested_vmx_ept_caps;
b87a51ae
NHE
2497 break;
2498 default:
b87a51ae 2499 return 1;
b3897a49
NHE
2500 }
2501
b87a51ae
NHE
2502 return 0;
2503}
2504
6aa8b732
AK
2505/*
2506 * Reads an msr value (of 'msr_index') into 'pdata'.
2507 * Returns 0 on success, non-0 otherwise.
2508 * Assumes vcpu_load() was already called.
2509 */
2510static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2511{
2512 u64 data;
26bb0981 2513 struct shared_msr_entry *msr;
6aa8b732
AK
2514
2515 if (!pdata) {
2516 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2517 return -EINVAL;
2518 }
2519
2520 switch (msr_index) {
05b3e0c2 2521#ifdef CONFIG_X86_64
6aa8b732
AK
2522 case MSR_FS_BASE:
2523 data = vmcs_readl(GUEST_FS_BASE);
2524 break;
2525 case MSR_GS_BASE:
2526 data = vmcs_readl(GUEST_GS_BASE);
2527 break;
44ea2b17
AK
2528 case MSR_KERNEL_GS_BASE:
2529 vmx_load_host_state(to_vmx(vcpu));
2530 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2531 break;
26bb0981 2532#endif
6aa8b732 2533 case MSR_EFER:
3bab1f5d 2534 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2535 case MSR_IA32_TSC:
6aa8b732
AK
2536 data = guest_read_tsc();
2537 break;
2538 case MSR_IA32_SYSENTER_CS:
2539 data = vmcs_read32(GUEST_SYSENTER_CS);
2540 break;
2541 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2542 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2543 break;
2544 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2545 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2546 break;
0dd376e7 2547 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2548 if (!vmx_mpx_supported())
2549 return 1;
0dd376e7
LJ
2550 data = vmcs_read64(GUEST_BNDCFGS);
2551 break;
cae50139
JK
2552 case MSR_IA32_FEATURE_CONTROL:
2553 if (!nested_vmx_allowed(vcpu))
2554 return 1;
2555 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2556 break;
2557 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2558 if (!nested_vmx_allowed(vcpu))
2559 return 1;
2560 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
4e47c7a6
SY
2561 case MSR_TSC_AUX:
2562 if (!to_vmx(vcpu)->rdtscp_enabled)
2563 return 1;
2564 /* Otherwise falls through */
6aa8b732 2565 default:
8b9cf98c 2566 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2567 if (msr) {
2568 data = msr->data;
2569 break;
6aa8b732 2570 }
3bab1f5d 2571 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2572 }
2573
2574 *pdata = data;
2575 return 0;
2576}
2577
cae50139
JK
2578static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2579
6aa8b732
AK
2580/*
2581 * Writes msr value into into the appropriate "register".
2582 * Returns 0 on success, non-0 otherwise.
2583 * Assumes vcpu_load() was already called.
2584 */
8fe8ab46 2585static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2586{
a2fa3e9f 2587 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2588 struct shared_msr_entry *msr;
2cc51560 2589 int ret = 0;
8fe8ab46
WA
2590 u32 msr_index = msr_info->index;
2591 u64 data = msr_info->data;
2cc51560 2592
6aa8b732 2593 switch (msr_index) {
3bab1f5d 2594 case MSR_EFER:
8fe8ab46 2595 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2596 break;
16175a79 2597#ifdef CONFIG_X86_64
6aa8b732 2598 case MSR_FS_BASE:
2fb92db1 2599 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2600 vmcs_writel(GUEST_FS_BASE, data);
2601 break;
2602 case MSR_GS_BASE:
2fb92db1 2603 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2604 vmcs_writel(GUEST_GS_BASE, data);
2605 break;
44ea2b17
AK
2606 case MSR_KERNEL_GS_BASE:
2607 vmx_load_host_state(vmx);
2608 vmx->msr_guest_kernel_gs_base = data;
2609 break;
6aa8b732
AK
2610#endif
2611 case MSR_IA32_SYSENTER_CS:
2612 vmcs_write32(GUEST_SYSENTER_CS, data);
2613 break;
2614 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2615 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2616 break;
2617 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2618 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2619 break;
0dd376e7 2620 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2621 if (!vmx_mpx_supported())
2622 return 1;
0dd376e7
LJ
2623 vmcs_write64(GUEST_BNDCFGS, data);
2624 break;
af24a4e4 2625 case MSR_IA32_TSC:
8fe8ab46 2626 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2627 break;
468d472f
SY
2628 case MSR_IA32_CR_PAT:
2629 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2630 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2631 return 1;
468d472f
SY
2632 vmcs_write64(GUEST_IA32_PAT, data);
2633 vcpu->arch.pat = data;
2634 break;
2635 }
8fe8ab46 2636 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2637 break;
ba904635
WA
2638 case MSR_IA32_TSC_ADJUST:
2639 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2640 break;
cae50139
JK
2641 case MSR_IA32_FEATURE_CONTROL:
2642 if (!nested_vmx_allowed(vcpu) ||
2643 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2644 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2645 return 1;
2646 vmx->nested.msr_ia32_feature_control = data;
2647 if (msr_info->host_initiated && data == 0)
2648 vmx_leave_nested(vcpu);
2649 break;
2650 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2651 return 1; /* they are read-only */
4e47c7a6
SY
2652 case MSR_TSC_AUX:
2653 if (!vmx->rdtscp_enabled)
2654 return 1;
2655 /* Check reserved bit, higher 32 bits should be zero */
2656 if ((data >> 32) != 0)
2657 return 1;
2658 /* Otherwise falls through */
6aa8b732 2659 default:
8b9cf98c 2660 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2661 if (msr) {
8b3c3104 2662 u64 old_msr_data = msr->data;
3bab1f5d 2663 msr->data = data;
2225fd56
AK
2664 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2665 preempt_disable();
8b3c3104
AH
2666 ret = kvm_set_shared_msr(msr->index, msr->data,
2667 msr->mask);
2225fd56 2668 preempt_enable();
8b3c3104
AH
2669 if (ret)
2670 msr->data = old_msr_data;
2225fd56 2671 }
3bab1f5d 2672 break;
6aa8b732 2673 }
8fe8ab46 2674 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2675 }
2676
2cc51560 2677 return ret;
6aa8b732
AK
2678}
2679
5fdbf976 2680static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2681{
5fdbf976
MT
2682 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2683 switch (reg) {
2684 case VCPU_REGS_RSP:
2685 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2686 break;
2687 case VCPU_REGS_RIP:
2688 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2689 break;
6de4f3ad
AK
2690 case VCPU_EXREG_PDPTR:
2691 if (enable_ept)
2692 ept_save_pdptrs(vcpu);
2693 break;
5fdbf976
MT
2694 default:
2695 break;
2696 }
6aa8b732
AK
2697}
2698
6aa8b732
AK
2699static __init int cpu_has_kvm_support(void)
2700{
6210e37b 2701 return cpu_has_vmx();
6aa8b732
AK
2702}
2703
2704static __init int vmx_disabled_by_bios(void)
2705{
2706 u64 msr;
2707
2708 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2709 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2710 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2711 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2712 && tboot_enabled())
2713 return 1;
23f3e991 2714 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2715 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2716 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2717 && !tboot_enabled()) {
2718 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2719 "activate TXT before enabling KVM\n");
cafd6659 2720 return 1;
f9335afe 2721 }
23f3e991
JC
2722 /* launched w/o TXT and VMX disabled */
2723 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2724 && !tboot_enabled())
2725 return 1;
cafd6659
SW
2726 }
2727
2728 return 0;
6aa8b732
AK
2729}
2730
7725b894
DX
2731static void kvm_cpu_vmxon(u64 addr)
2732{
2733 asm volatile (ASM_VMX_VMXON_RAX
2734 : : "a"(&addr), "m"(addr)
2735 : "memory", "cc");
2736}
2737
13a34e06 2738static int hardware_enable(void)
6aa8b732
AK
2739{
2740 int cpu = raw_smp_processor_id();
2741 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2742 u64 old, test_bits;
6aa8b732 2743
10474ae8
AG
2744 if (read_cr4() & X86_CR4_VMXE)
2745 return -EBUSY;
2746
d462b819 2747 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2748
2749 /*
2750 * Now we can enable the vmclear operation in kdump
2751 * since the loaded_vmcss_on_cpu list on this cpu
2752 * has been initialized.
2753 *
2754 * Though the cpu is not in VMX operation now, there
2755 * is no problem to enable the vmclear operation
2756 * for the loaded_vmcss_on_cpu list is empty!
2757 */
2758 crash_enable_local_vmclear(cpu);
2759
6aa8b732 2760 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2761
2762 test_bits = FEATURE_CONTROL_LOCKED;
2763 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2764 if (tboot_enabled())
2765 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2766
2767 if ((old & test_bits) != test_bits) {
6aa8b732 2768 /* enable and lock */
cafd6659
SW
2769 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2770 }
66aee91a 2771 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2772
4610c9cc
DX
2773 if (vmm_exclusive) {
2774 kvm_cpu_vmxon(phys_addr);
2775 ept_sync_global();
2776 }
10474ae8 2777
89cbc767 2778 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 2779
10474ae8 2780 return 0;
6aa8b732
AK
2781}
2782
d462b819 2783static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2784{
2785 int cpu = raw_smp_processor_id();
d462b819 2786 struct loaded_vmcs *v, *n;
543e4243 2787
d462b819
NHE
2788 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2789 loaded_vmcss_on_cpu_link)
2790 __loaded_vmcs_clear(v);
543e4243
AK
2791}
2792
710ff4a8
EH
2793
2794/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2795 * tricks.
2796 */
2797static void kvm_cpu_vmxoff(void)
6aa8b732 2798{
4ecac3fd 2799 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2800}
2801
13a34e06 2802static void hardware_disable(void)
710ff4a8 2803{
4610c9cc 2804 if (vmm_exclusive) {
d462b819 2805 vmclear_local_loaded_vmcss();
4610c9cc
DX
2806 kvm_cpu_vmxoff();
2807 }
7725b894 2808 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2809}
2810
1c3d14fe 2811static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2812 u32 msr, u32 *result)
1c3d14fe
YS
2813{
2814 u32 vmx_msr_low, vmx_msr_high;
2815 u32 ctl = ctl_min | ctl_opt;
2816
2817 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2818
2819 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2820 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2821
2822 /* Ensure minimum (required) set of control bits are supported. */
2823 if (ctl_min & ~ctl)
002c7f7c 2824 return -EIO;
1c3d14fe
YS
2825
2826 *result = ctl;
2827 return 0;
2828}
2829
110312c8
AK
2830static __init bool allow_1_setting(u32 msr, u32 ctl)
2831{
2832 u32 vmx_msr_low, vmx_msr_high;
2833
2834 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2835 return vmx_msr_high & ctl;
2836}
2837
002c7f7c 2838static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2839{
2840 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2841 u32 min, opt, min2, opt2;
1c3d14fe
YS
2842 u32 _pin_based_exec_control = 0;
2843 u32 _cpu_based_exec_control = 0;
f78e0e2e 2844 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2845 u32 _vmexit_control = 0;
2846 u32 _vmentry_control = 0;
2847
10166744 2848 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2849#ifdef CONFIG_X86_64
2850 CPU_BASED_CR8_LOAD_EXITING |
2851 CPU_BASED_CR8_STORE_EXITING |
2852#endif
d56f546d
SY
2853 CPU_BASED_CR3_LOAD_EXITING |
2854 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2855 CPU_BASED_USE_IO_BITMAPS |
2856 CPU_BASED_MOV_DR_EXITING |
a7052897 2857 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2858 CPU_BASED_MWAIT_EXITING |
2859 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2860 CPU_BASED_INVLPG_EXITING |
2861 CPU_BASED_RDPMC_EXITING;
443381a8 2862
f78e0e2e 2863 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2864 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2865 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2866 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2867 &_cpu_based_exec_control) < 0)
002c7f7c 2868 return -EIO;
6e5d865c
YS
2869#ifdef CONFIG_X86_64
2870 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2871 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2872 ~CPU_BASED_CR8_STORE_EXITING;
2873#endif
f78e0e2e 2874 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2875 min2 = 0;
2876 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2877 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2878 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2879 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2880 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2881 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2882 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2883 SECONDARY_EXEC_RDTSCP |
83d4c286 2884 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 2885 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58
AG
2886 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2887 SECONDARY_EXEC_SHADOW_VMCS;
d56f546d
SY
2888 if (adjust_vmx_controls(min2, opt2,
2889 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2890 &_cpu_based_2nd_exec_control) < 0)
2891 return -EIO;
2892 }
2893#ifndef CONFIG_X86_64
2894 if (!(_cpu_based_2nd_exec_control &
2895 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2896 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2897#endif
83d4c286
YZ
2898
2899 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2900 _cpu_based_2nd_exec_control &= ~(
8d14695f 2901 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2902 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2903 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2904
d56f546d 2905 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2906 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2907 enabled */
5fff7d27
GN
2908 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2909 CPU_BASED_CR3_STORE_EXITING |
2910 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2911 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2912 vmx_capability.ept, vmx_capability.vpid);
2913 }
1c3d14fe 2914
81908bf4 2915 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
2916#ifdef CONFIG_X86_64
2917 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2918#endif
a547c6db 2919 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 2920 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
2921 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2922 &_vmexit_control) < 0)
002c7f7c 2923 return -EIO;
1c3d14fe 2924
01e439be
YZ
2925 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2926 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2927 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2928 &_pin_based_exec_control) < 0)
2929 return -EIO;
2930
2931 if (!(_cpu_based_2nd_exec_control &
2932 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2933 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2934 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2935
c845f9c6 2936 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 2937 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
2938 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2939 &_vmentry_control) < 0)
002c7f7c 2940 return -EIO;
6aa8b732 2941
c68876fd 2942 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2943
2944 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2945 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2946 return -EIO;
1c3d14fe
YS
2947
2948#ifdef CONFIG_X86_64
2949 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2950 if (vmx_msr_high & (1u<<16))
002c7f7c 2951 return -EIO;
1c3d14fe
YS
2952#endif
2953
2954 /* Require Write-Back (WB) memory type for VMCS accesses. */
2955 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2956 return -EIO;
1c3d14fe 2957
002c7f7c
YS
2958 vmcs_conf->size = vmx_msr_high & 0x1fff;
2959 vmcs_conf->order = get_order(vmcs_config.size);
2960 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2961
002c7f7c
YS
2962 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2963 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2964 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2965 vmcs_conf->vmexit_ctrl = _vmexit_control;
2966 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2967
110312c8
AK
2968 cpu_has_load_ia32_efer =
2969 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2970 VM_ENTRY_LOAD_IA32_EFER)
2971 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2972 VM_EXIT_LOAD_IA32_EFER);
2973
8bf00a52
GN
2974 cpu_has_load_perf_global_ctrl =
2975 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2976 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2977 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2978 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2979
2980 /*
2981 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2982 * but due to arrata below it can't be used. Workaround is to use
2983 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2984 *
2985 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2986 *
2987 * AAK155 (model 26)
2988 * AAP115 (model 30)
2989 * AAT100 (model 37)
2990 * BC86,AAY89,BD102 (model 44)
2991 * BA97 (model 46)
2992 *
2993 */
2994 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2995 switch (boot_cpu_data.x86_model) {
2996 case 26:
2997 case 30:
2998 case 37:
2999 case 44:
3000 case 46:
3001 cpu_has_load_perf_global_ctrl = false;
3002 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3003 "does not work properly. Using workaround\n");
3004 break;
3005 default:
3006 break;
3007 }
3008 }
3009
1c3d14fe 3010 return 0;
c68876fd 3011}
6aa8b732
AK
3012
3013static struct vmcs *alloc_vmcs_cpu(int cpu)
3014{
3015 int node = cpu_to_node(cpu);
3016 struct page *pages;
3017 struct vmcs *vmcs;
3018
6484eb3e 3019 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3020 if (!pages)
3021 return NULL;
3022 vmcs = page_address(pages);
1c3d14fe
YS
3023 memset(vmcs, 0, vmcs_config.size);
3024 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3025 return vmcs;
3026}
3027
3028static struct vmcs *alloc_vmcs(void)
3029{
d3b2c338 3030 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3031}
3032
3033static void free_vmcs(struct vmcs *vmcs)
3034{
1c3d14fe 3035 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3036}
3037
d462b819
NHE
3038/*
3039 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3040 */
3041static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3042{
3043 if (!loaded_vmcs->vmcs)
3044 return;
3045 loaded_vmcs_clear(loaded_vmcs);
3046 free_vmcs(loaded_vmcs->vmcs);
3047 loaded_vmcs->vmcs = NULL;
3048}
3049
39959588 3050static void free_kvm_area(void)
6aa8b732
AK
3051{
3052 int cpu;
3053
3230bb47 3054 for_each_possible_cpu(cpu) {
6aa8b732 3055 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3056 per_cpu(vmxarea, cpu) = NULL;
3057 }
6aa8b732
AK
3058}
3059
fe2b201b
BD
3060static void init_vmcs_shadow_fields(void)
3061{
3062 int i, j;
3063
3064 /* No checks for read only fields yet */
3065
3066 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3067 switch (shadow_read_write_fields[i]) {
3068 case GUEST_BNDCFGS:
3069 if (!vmx_mpx_supported())
3070 continue;
3071 break;
3072 default:
3073 break;
3074 }
3075
3076 if (j < i)
3077 shadow_read_write_fields[j] =
3078 shadow_read_write_fields[i];
3079 j++;
3080 }
3081 max_shadow_read_write_fields = j;
3082
3083 /* shadowed fields guest access without vmexit */
3084 for (i = 0; i < max_shadow_read_write_fields; i++) {
3085 clear_bit(shadow_read_write_fields[i],
3086 vmx_vmwrite_bitmap);
3087 clear_bit(shadow_read_write_fields[i],
3088 vmx_vmread_bitmap);
3089 }
3090 for (i = 0; i < max_shadow_read_only_fields; i++)
3091 clear_bit(shadow_read_only_fields[i],
3092 vmx_vmread_bitmap);
3093}
3094
6aa8b732
AK
3095static __init int alloc_kvm_area(void)
3096{
3097 int cpu;
3098
3230bb47 3099 for_each_possible_cpu(cpu) {
6aa8b732
AK
3100 struct vmcs *vmcs;
3101
3102 vmcs = alloc_vmcs_cpu(cpu);
3103 if (!vmcs) {
3104 free_kvm_area();
3105 return -ENOMEM;
3106 }
3107
3108 per_cpu(vmxarea, cpu) = vmcs;
3109 }
3110 return 0;
3111}
3112
3113static __init int hardware_setup(void)
3114{
002c7f7c
YS
3115 if (setup_vmcs_config(&vmcs_config) < 0)
3116 return -EIO;
50a37eb4
JR
3117
3118 if (boot_cpu_has(X86_FEATURE_NX))
3119 kvm_enable_efer_bits(EFER_NX);
3120
93ba03c2
SY
3121 if (!cpu_has_vmx_vpid())
3122 enable_vpid = 0;
abc4fc58
AG
3123 if (!cpu_has_vmx_shadow_vmcs())
3124 enable_shadow_vmcs = 0;
fe2b201b
BD
3125 if (enable_shadow_vmcs)
3126 init_vmcs_shadow_fields();
93ba03c2 3127
4bc9b982
SY
3128 if (!cpu_has_vmx_ept() ||
3129 !cpu_has_vmx_ept_4levels()) {
93ba03c2 3130 enable_ept = 0;
3a624e29 3131 enable_unrestricted_guest = 0;
83c3a331 3132 enable_ept_ad_bits = 0;
3a624e29
NK
3133 }
3134
83c3a331
XH
3135 if (!cpu_has_vmx_ept_ad_bits())
3136 enable_ept_ad_bits = 0;
3137
3a624e29
NK
3138 if (!cpu_has_vmx_unrestricted_guest())
3139 enable_unrestricted_guest = 0;
93ba03c2 3140
38b99173 3141 if (!cpu_has_vmx_flexpriority()) {
93ba03c2
SY
3142 flexpriority_enabled = 0;
3143
38b99173
TC
3144 /*
3145 * set_apic_access_page_addr() is used to reload apic access
3146 * page upon invalidation. No need to do anything if the
3147 * processor does not have the APIC_ACCESS_ADDR VMCS field.
3148 */
3149 kvm_x86_ops->set_apic_access_page_addr = NULL;
3150 }
3151
95ba8273
GN
3152 if (!cpu_has_vmx_tpr_shadow())
3153 kvm_x86_ops->update_cr8_intercept = NULL;
3154
54dee993
MT
3155 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3156 kvm_disable_largepages();
3157
4b8d54f9
ZE
3158 if (!cpu_has_vmx_ple())
3159 ple_gap = 0;
3160
01e439be
YZ
3161 if (!cpu_has_vmx_apicv())
3162 enable_apicv = 0;
c7c9c56c 3163
01e439be 3164 if (enable_apicv)
c7c9c56c 3165 kvm_x86_ops->update_cr8_intercept = NULL;
a20ed54d 3166 else {
c7c9c56c 3167 kvm_x86_ops->hwapic_irr_update = NULL;
a20ed54d
YZ
3168 kvm_x86_ops->deliver_posted_interrupt = NULL;
3169 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3170 }
83d4c286 3171
b87a51ae
NHE
3172 if (nested)
3173 nested_vmx_setup_ctls_msrs();
3174
6aa8b732
AK
3175 return alloc_kvm_area();
3176}
3177
3178static __exit void hardware_unsetup(void)
3179{
3180 free_kvm_area();
3181}
3182
14168786
GN
3183static bool emulation_required(struct kvm_vcpu *vcpu)
3184{
3185 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3186}
3187
91b0aa2c 3188static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3189 struct kvm_segment *save)
6aa8b732 3190{
d99e4152
GN
3191 if (!emulate_invalid_guest_state) {
3192 /*
3193 * CS and SS RPL should be equal during guest entry according
3194 * to VMX spec, but in reality it is not always so. Since vcpu
3195 * is in the middle of the transition from real mode to
3196 * protected mode it is safe to assume that RPL 0 is a good
3197 * default value.
3198 */
3199 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3200 save->selector &= ~SELECTOR_RPL_MASK;
3201 save->dpl = save->selector & SELECTOR_RPL_MASK;
3202 save->s = 1;
6aa8b732 3203 }
d99e4152 3204 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3205}
3206
3207static void enter_pmode(struct kvm_vcpu *vcpu)
3208{
3209 unsigned long flags;
a89a8fb9 3210 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3211
d99e4152
GN
3212 /*
3213 * Update real mode segment cache. It may be not up-to-date if sement
3214 * register was written while vcpu was in a guest mode.
3215 */
3216 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3217 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3218 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3219 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3220 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3221 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3222
7ffd92c5 3223 vmx->rmode.vm86_active = 0;
6aa8b732 3224
2fb92db1
AK
3225 vmx_segment_cache_clear(vmx);
3226
f5f7b2fe 3227 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3228
3229 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3230 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3231 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3232 vmcs_writel(GUEST_RFLAGS, flags);
3233
66aee91a
RR
3234 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3235 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3236
3237 update_exception_bitmap(vcpu);
3238
91b0aa2c
GN
3239 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3240 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3241 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3242 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3243 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3244 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3245}
3246
f5f7b2fe 3247static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3248{
772e0318 3249 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3250 struct kvm_segment var = *save;
3251
3252 var.dpl = 0x3;
3253 if (seg == VCPU_SREG_CS)
3254 var.type = 0x3;
3255
3256 if (!emulate_invalid_guest_state) {
3257 var.selector = var.base >> 4;
3258 var.base = var.base & 0xffff0;
3259 var.limit = 0xffff;
3260 var.g = 0;
3261 var.db = 0;
3262 var.present = 1;
3263 var.s = 1;
3264 var.l = 0;
3265 var.unusable = 0;
3266 var.type = 0x3;
3267 var.avl = 0;
3268 if (save->base & 0xf)
3269 printk_once(KERN_WARNING "kvm: segment base is not "
3270 "paragraph aligned when entering "
3271 "protected mode (seg=%d)", seg);
3272 }
6aa8b732 3273
d99e4152
GN
3274 vmcs_write16(sf->selector, var.selector);
3275 vmcs_write32(sf->base, var.base);
3276 vmcs_write32(sf->limit, var.limit);
3277 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3278}
3279
3280static void enter_rmode(struct kvm_vcpu *vcpu)
3281{
3282 unsigned long flags;
a89a8fb9 3283 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3284
f5f7b2fe
AK
3285 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3286 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3287 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3288 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3289 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3290 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3291 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3292
7ffd92c5 3293 vmx->rmode.vm86_active = 1;
6aa8b732 3294
776e58ea
GN
3295 /*
3296 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3297 * vcpu. Warn the user that an update is overdue.
776e58ea 3298 */
4918c6ca 3299 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3300 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3301 "called before entering vcpu\n");
776e58ea 3302
2fb92db1
AK
3303 vmx_segment_cache_clear(vmx);
3304
4918c6ca 3305 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3306 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3307 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3308
3309 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3310 vmx->rmode.save_rflags = flags;
6aa8b732 3311
053de044 3312 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3313
3314 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3315 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3316 update_exception_bitmap(vcpu);
3317
d99e4152
GN
3318 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3319 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3320 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3321 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3322 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3323 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3324
8668a3c4 3325 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3326}
3327
401d10de
AS
3328static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3329{
3330 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3331 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3332
3333 if (!msr)
3334 return;
401d10de 3335
44ea2b17
AK
3336 /*
3337 * Force kernel_gs_base reloading before EFER changes, as control
3338 * of this msr depends on is_long_mode().
3339 */
3340 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3341 vcpu->arch.efer = efer;
401d10de 3342 if (efer & EFER_LMA) {
2961e876 3343 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3344 msr->data = efer;
3345 } else {
2961e876 3346 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3347
3348 msr->data = efer & ~EFER_LME;
3349 }
3350 setup_msrs(vmx);
3351}
3352
05b3e0c2 3353#ifdef CONFIG_X86_64
6aa8b732
AK
3354
3355static void enter_lmode(struct kvm_vcpu *vcpu)
3356{
3357 u32 guest_tr_ar;
3358
2fb92db1
AK
3359 vmx_segment_cache_clear(to_vmx(vcpu));
3360
6aa8b732
AK
3361 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3362 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3363 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3364 __func__);
6aa8b732
AK
3365 vmcs_write32(GUEST_TR_AR_BYTES,
3366 (guest_tr_ar & ~AR_TYPE_MASK)
3367 | AR_TYPE_BUSY_64_TSS);
3368 }
da38f438 3369 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3370}
3371
3372static void exit_lmode(struct kvm_vcpu *vcpu)
3373{
2961e876 3374 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3375 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3376}
3377
3378#endif
3379
2384d2b3
SY
3380static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3381{
b9d762fa 3382 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3383 if (enable_ept) {
3384 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3385 return;
4e1096d2 3386 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3387 }
2384d2b3
SY
3388}
3389
e8467fda
AK
3390static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3391{
3392 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3393
3394 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3395 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3396}
3397
aff48baa
AK
3398static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3399{
3400 if (enable_ept && is_paging(vcpu))
3401 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3402 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3403}
3404
25c4c276 3405static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3406{
fc78f519
AK
3407 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3408
3409 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3410 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3411}
3412
1439442c
SY
3413static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3414{
d0d538b9
GN
3415 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3416
6de4f3ad
AK
3417 if (!test_bit(VCPU_EXREG_PDPTR,
3418 (unsigned long *)&vcpu->arch.regs_dirty))
3419 return;
3420
1439442c 3421 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3422 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3423 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3424 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3425 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3426 }
3427}
3428
8f5d549f
AK
3429static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3430{
d0d538b9
GN
3431 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3432
8f5d549f 3433 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3434 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3435 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3436 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3437 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3438 }
6de4f3ad
AK
3439
3440 __set_bit(VCPU_EXREG_PDPTR,
3441 (unsigned long *)&vcpu->arch.regs_avail);
3442 __set_bit(VCPU_EXREG_PDPTR,
3443 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3444}
3445
5e1746d6 3446static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3447
3448static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3449 unsigned long cr0,
3450 struct kvm_vcpu *vcpu)
3451{
5233dd51
MT
3452 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3453 vmx_decache_cr3(vcpu);
1439442c
SY
3454 if (!(cr0 & X86_CR0_PG)) {
3455 /* From paging/starting to nonpaging */
3456 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3457 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3458 (CPU_BASED_CR3_LOAD_EXITING |
3459 CPU_BASED_CR3_STORE_EXITING));
3460 vcpu->arch.cr0 = cr0;
fc78f519 3461 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3462 } else if (!is_paging(vcpu)) {
3463 /* From nonpaging to paging */
3464 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3465 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3466 ~(CPU_BASED_CR3_LOAD_EXITING |
3467 CPU_BASED_CR3_STORE_EXITING));
3468 vcpu->arch.cr0 = cr0;
fc78f519 3469 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3470 }
95eb84a7
SY
3471
3472 if (!(cr0 & X86_CR0_WP))
3473 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3474}
3475
6aa8b732
AK
3476static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3477{
7ffd92c5 3478 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3479 unsigned long hw_cr0;
3480
5037878e 3481 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3482 if (enable_unrestricted_guest)
5037878e 3483 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3484 else {
5037878e 3485 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3486
218e763f
GN
3487 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3488 enter_pmode(vcpu);
6aa8b732 3489
218e763f
GN
3490 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3491 enter_rmode(vcpu);
3492 }
6aa8b732 3493
05b3e0c2 3494#ifdef CONFIG_X86_64
f6801dff 3495 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3496 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3497 enter_lmode(vcpu);
707d92fa 3498 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3499 exit_lmode(vcpu);
3500 }
3501#endif
3502
089d034e 3503 if (enable_ept)
1439442c
SY
3504 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3505
02daab21 3506 if (!vcpu->fpu_active)
81231c69 3507 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3508
6aa8b732 3509 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3510 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3511 vcpu->arch.cr0 = cr0;
14168786
GN
3512
3513 /* depends on vcpu->arch.cr0 to be set to a new value */
3514 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3515}
3516
1439442c
SY
3517static u64 construct_eptp(unsigned long root_hpa)
3518{
3519 u64 eptp;
3520
3521 /* TODO write the value reading from MSR */
3522 eptp = VMX_EPT_DEFAULT_MT |
3523 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3524 if (enable_ept_ad_bits)
3525 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3526 eptp |= (root_hpa & PAGE_MASK);
3527
3528 return eptp;
3529}
3530
6aa8b732
AK
3531static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3532{
1439442c
SY
3533 unsigned long guest_cr3;
3534 u64 eptp;
3535
3536 guest_cr3 = cr3;
089d034e 3537 if (enable_ept) {
1439442c
SY
3538 eptp = construct_eptp(cr3);
3539 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3540 if (is_paging(vcpu) || is_guest_mode(vcpu))
3541 guest_cr3 = kvm_read_cr3(vcpu);
3542 else
3543 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3544 ept_load_pdptrs(vcpu);
1439442c
SY
3545 }
3546
2384d2b3 3547 vmx_flush_tlb(vcpu);
1439442c 3548 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3549}
3550
5e1746d6 3551static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3552{
7ffd92c5 3553 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3554 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3555
5e1746d6
NHE
3556 if (cr4 & X86_CR4_VMXE) {
3557 /*
3558 * To use VMXON (and later other VMX instructions), a guest
3559 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3560 * So basically the check on whether to allow nested VMX
3561 * is here.
3562 */
3563 if (!nested_vmx_allowed(vcpu))
3564 return 1;
1a0d74e6
JK
3565 }
3566 if (to_vmx(vcpu)->nested.vmxon &&
3567 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3568 return 1;
3569
ad312c7c 3570 vcpu->arch.cr4 = cr4;
bc23008b
AK
3571 if (enable_ept) {
3572 if (!is_paging(vcpu)) {
3573 hw_cr4 &= ~X86_CR4_PAE;
3574 hw_cr4 |= X86_CR4_PSE;
c08800a5 3575 /*
e1e746b3
FW
3576 * SMEP/SMAP is disabled if CPU is in non-paging mode
3577 * in hardware. However KVM always uses paging mode to
c08800a5 3578 * emulate guest non-paging mode with TDP.
e1e746b3
FW
3579 * To emulate this behavior, SMEP/SMAP needs to be
3580 * manually disabled when guest switches to non-paging
3581 * mode.
c08800a5 3582 */
e1e746b3 3583 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
bc23008b
AK
3584 } else if (!(cr4 & X86_CR4_PAE)) {
3585 hw_cr4 &= ~X86_CR4_PAE;
3586 }
3587 }
1439442c
SY
3588
3589 vmcs_writel(CR4_READ_SHADOW, cr4);
3590 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3591 return 0;
6aa8b732
AK
3592}
3593
6aa8b732
AK
3594static void vmx_get_segment(struct kvm_vcpu *vcpu,
3595 struct kvm_segment *var, int seg)
3596{
a9179499 3597 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3598 u32 ar;
3599
c6ad1153 3600 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3601 *var = vmx->rmode.segs[seg];
a9179499 3602 if (seg == VCPU_SREG_TR
2fb92db1 3603 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3604 return;
1390a28b
AK
3605 var->base = vmx_read_guest_seg_base(vmx, seg);
3606 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3607 return;
a9179499 3608 }
2fb92db1
AK
3609 var->base = vmx_read_guest_seg_base(vmx, seg);
3610 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3611 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3612 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3613 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3614 var->type = ar & 15;
3615 var->s = (ar >> 4) & 1;
3616 var->dpl = (ar >> 5) & 3;
03617c18
GN
3617 /*
3618 * Some userspaces do not preserve unusable property. Since usable
3619 * segment has to be present according to VMX spec we can use present
3620 * property to amend userspace bug by making unusable segment always
3621 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3622 * segment as unusable.
3623 */
3624 var->present = !var->unusable;
6aa8b732
AK
3625 var->avl = (ar >> 12) & 1;
3626 var->l = (ar >> 13) & 1;
3627 var->db = (ar >> 14) & 1;
3628 var->g = (ar >> 15) & 1;
6aa8b732
AK
3629}
3630
a9179499
AK
3631static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3632{
a9179499
AK
3633 struct kvm_segment s;
3634
3635 if (to_vmx(vcpu)->rmode.vm86_active) {
3636 vmx_get_segment(vcpu, &s, seg);
3637 return s.base;
3638 }
2fb92db1 3639 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3640}
3641
b09408d0 3642static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3643{
b09408d0
MT
3644 struct vcpu_vmx *vmx = to_vmx(vcpu);
3645
ae9fedc7 3646 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3647 return 0;
ae9fedc7
PB
3648 else {
3649 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3650 return AR_DPL(ar);
69c73028 3651 }
69c73028
AK
3652}
3653
653e3108 3654static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3655{
6aa8b732
AK
3656 u32 ar;
3657
f0495f9b 3658 if (var->unusable || !var->present)
6aa8b732
AK
3659 ar = 1 << 16;
3660 else {
3661 ar = var->type & 15;
3662 ar |= (var->s & 1) << 4;
3663 ar |= (var->dpl & 3) << 5;
3664 ar |= (var->present & 1) << 7;
3665 ar |= (var->avl & 1) << 12;
3666 ar |= (var->l & 1) << 13;
3667 ar |= (var->db & 1) << 14;
3668 ar |= (var->g & 1) << 15;
3669 }
653e3108
AK
3670
3671 return ar;
3672}
3673
3674static void vmx_set_segment(struct kvm_vcpu *vcpu,
3675 struct kvm_segment *var, int seg)
3676{
7ffd92c5 3677 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3678 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3679
2fb92db1
AK
3680 vmx_segment_cache_clear(vmx);
3681
1ecd50a9
GN
3682 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3683 vmx->rmode.segs[seg] = *var;
3684 if (seg == VCPU_SREG_TR)
3685 vmcs_write16(sf->selector, var->selector);
3686 else if (var->s)
3687 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3688 goto out;
653e3108 3689 }
1ecd50a9 3690
653e3108
AK
3691 vmcs_writel(sf->base, var->base);
3692 vmcs_write32(sf->limit, var->limit);
3693 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3694
3695 /*
3696 * Fix the "Accessed" bit in AR field of segment registers for older
3697 * qemu binaries.
3698 * IA32 arch specifies that at the time of processor reset the
3699 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3700 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3701 * state vmexit when "unrestricted guest" mode is turned on.
3702 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3703 * tree. Newer qemu binaries with that qemu fix would not need this
3704 * kvm hack.
3705 */
3706 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3707 var->type |= 0x1; /* Accessed */
3a624e29 3708
f924d66d 3709 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3710
3711out:
98eb2f8b 3712 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3713}
3714
6aa8b732
AK
3715static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3716{
2fb92db1 3717 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3718
3719 *db = (ar >> 14) & 1;
3720 *l = (ar >> 13) & 1;
3721}
3722
89a27f4d 3723static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3724{
89a27f4d
GN
3725 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3726 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3727}
3728
89a27f4d 3729static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3730{
89a27f4d
GN
3731 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3732 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3733}
3734
89a27f4d 3735static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3736{
89a27f4d
GN
3737 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3738 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3739}
3740
89a27f4d 3741static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3742{
89a27f4d
GN
3743 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3744 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3745}
3746
648dfaa7
MG
3747static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3748{
3749 struct kvm_segment var;
3750 u32 ar;
3751
3752 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3753 var.dpl = 0x3;
0647f4aa
GN
3754 if (seg == VCPU_SREG_CS)
3755 var.type = 0x3;
648dfaa7
MG
3756 ar = vmx_segment_access_rights(&var);
3757
3758 if (var.base != (var.selector << 4))
3759 return false;
89efbed0 3760 if (var.limit != 0xffff)
648dfaa7 3761 return false;
07f42f5f 3762 if (ar != 0xf3)
648dfaa7
MG
3763 return false;
3764
3765 return true;
3766}
3767
3768static bool code_segment_valid(struct kvm_vcpu *vcpu)
3769{
3770 struct kvm_segment cs;
3771 unsigned int cs_rpl;
3772
3773 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3774 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3775
1872a3f4
AK
3776 if (cs.unusable)
3777 return false;
648dfaa7
MG
3778 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3779 return false;
3780 if (!cs.s)
3781 return false;
1872a3f4 3782 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3783 if (cs.dpl > cs_rpl)
3784 return false;
1872a3f4 3785 } else {
648dfaa7
MG
3786 if (cs.dpl != cs_rpl)
3787 return false;
3788 }
3789 if (!cs.present)
3790 return false;
3791
3792 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3793 return true;
3794}
3795
3796static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3797{
3798 struct kvm_segment ss;
3799 unsigned int ss_rpl;
3800
3801 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3802 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3803
1872a3f4
AK
3804 if (ss.unusable)
3805 return true;
3806 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3807 return false;
3808 if (!ss.s)
3809 return false;
3810 if (ss.dpl != ss_rpl) /* DPL != RPL */
3811 return false;
3812 if (!ss.present)
3813 return false;
3814
3815 return true;
3816}
3817
3818static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3819{
3820 struct kvm_segment var;
3821 unsigned int rpl;
3822
3823 vmx_get_segment(vcpu, &var, seg);
3824 rpl = var.selector & SELECTOR_RPL_MASK;
3825
1872a3f4
AK
3826 if (var.unusable)
3827 return true;
648dfaa7
MG
3828 if (!var.s)
3829 return false;
3830 if (!var.present)
3831 return false;
3832 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3833 if (var.dpl < rpl) /* DPL < RPL */
3834 return false;
3835 }
3836
3837 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3838 * rights flags
3839 */
3840 return true;
3841}
3842
3843static bool tr_valid(struct kvm_vcpu *vcpu)
3844{
3845 struct kvm_segment tr;
3846
3847 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3848
1872a3f4
AK
3849 if (tr.unusable)
3850 return false;
648dfaa7
MG
3851 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3852 return false;
1872a3f4 3853 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3854 return false;
3855 if (!tr.present)
3856 return false;
3857
3858 return true;
3859}
3860
3861static bool ldtr_valid(struct kvm_vcpu *vcpu)
3862{
3863 struct kvm_segment ldtr;
3864
3865 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3866
1872a3f4
AK
3867 if (ldtr.unusable)
3868 return true;
648dfaa7
MG
3869 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3870 return false;
3871 if (ldtr.type != 2)
3872 return false;
3873 if (!ldtr.present)
3874 return false;
3875
3876 return true;
3877}
3878
3879static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3880{
3881 struct kvm_segment cs, ss;
3882
3883 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3884 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3885
3886 return ((cs.selector & SELECTOR_RPL_MASK) ==
3887 (ss.selector & SELECTOR_RPL_MASK));
3888}
3889
3890/*
3891 * Check if guest state is valid. Returns true if valid, false if
3892 * not.
3893 * We assume that registers are always usable
3894 */
3895static bool guest_state_valid(struct kvm_vcpu *vcpu)
3896{
c5e97c80
GN
3897 if (enable_unrestricted_guest)
3898 return true;
3899
648dfaa7 3900 /* real mode guest state checks */
f13882d8 3901 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3902 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3903 return false;
3904 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3905 return false;
3906 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3907 return false;
3908 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3909 return false;
3910 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3911 return false;
3912 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3913 return false;
3914 } else {
3915 /* protected mode guest state checks */
3916 if (!cs_ss_rpl_check(vcpu))
3917 return false;
3918 if (!code_segment_valid(vcpu))
3919 return false;
3920 if (!stack_segment_valid(vcpu))
3921 return false;
3922 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3923 return false;
3924 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3925 return false;
3926 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3927 return false;
3928 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3929 return false;
3930 if (!tr_valid(vcpu))
3931 return false;
3932 if (!ldtr_valid(vcpu))
3933 return false;
3934 }
3935 /* TODO:
3936 * - Add checks on RIP
3937 * - Add checks on RFLAGS
3938 */
3939
3940 return true;
3941}
3942
d77c26fc 3943static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3944{
40dcaa9f 3945 gfn_t fn;
195aefde 3946 u16 data = 0;
1f755a82 3947 int idx, r;
6aa8b732 3948
40dcaa9f 3949 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 3950 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
3951 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3952 if (r < 0)
10589a46 3953 goto out;
195aefde 3954 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3955 r = kvm_write_guest_page(kvm, fn++, &data,
3956 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3957 if (r < 0)
10589a46 3958 goto out;
195aefde
IE
3959 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3960 if (r < 0)
10589a46 3961 goto out;
195aefde
IE
3962 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3963 if (r < 0)
10589a46 3964 goto out;
195aefde 3965 data = ~0;
10589a46
MT
3966 r = kvm_write_guest_page(kvm, fn, &data,
3967 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3968 sizeof(u8));
10589a46 3969out:
40dcaa9f 3970 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 3971 return r;
6aa8b732
AK
3972}
3973
b7ebfb05
SY
3974static int init_rmode_identity_map(struct kvm *kvm)
3975{
f51770ed 3976 int i, idx, r = 0;
b7ebfb05
SY
3977 pfn_t identity_map_pfn;
3978 u32 tmp;
3979
089d034e 3980 if (!enable_ept)
f51770ed 3981 return 0;
a255d479
TC
3982
3983 /* Protect kvm->arch.ept_identity_pagetable_done. */
3984 mutex_lock(&kvm->slots_lock);
3985
f51770ed 3986 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 3987 goto out2;
a255d479 3988
b927a3ce 3989 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
3990
3991 r = alloc_identity_pagetable(kvm);
f51770ed 3992 if (r < 0)
a255d479
TC
3993 goto out2;
3994
40dcaa9f 3995 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3996 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3997 if (r < 0)
3998 goto out;
3999 /* Set up identity-mapping pagetable for EPT in real mode */
4000 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4001 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4002 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4003 r = kvm_write_guest_page(kvm, identity_map_pfn,
4004 &tmp, i * sizeof(tmp), sizeof(tmp));
4005 if (r < 0)
4006 goto out;
4007 }
4008 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4009
b7ebfb05 4010out:
40dcaa9f 4011 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4012
4013out2:
4014 mutex_unlock(&kvm->slots_lock);
f51770ed 4015 return r;
b7ebfb05
SY
4016}
4017
6aa8b732
AK
4018static void seg_setup(int seg)
4019{
772e0318 4020 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4021 unsigned int ar;
6aa8b732
AK
4022
4023 vmcs_write16(sf->selector, 0);
4024 vmcs_writel(sf->base, 0);
4025 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4026 ar = 0x93;
4027 if (seg == VCPU_SREG_CS)
4028 ar |= 0x08; /* code segment */
3a624e29
NK
4029
4030 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4031}
4032
f78e0e2e
SY
4033static int alloc_apic_access_page(struct kvm *kvm)
4034{
4484141a 4035 struct page *page;
f78e0e2e
SY
4036 struct kvm_userspace_memory_region kvm_userspace_mem;
4037 int r = 0;
4038
79fac95e 4039 mutex_lock(&kvm->slots_lock);
c24ae0dc 4040 if (kvm->arch.apic_access_page_done)
f78e0e2e
SY
4041 goto out;
4042 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4043 kvm_userspace_mem.flags = 0;
73a6d941 4044 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
f78e0e2e 4045 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 4046 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
4047 if (r)
4048 goto out;
72dc67a6 4049
73a6d941 4050 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4051 if (is_error_page(page)) {
4052 r = -EFAULT;
4053 goto out;
4054 }
4055
c24ae0dc
TC
4056 /*
4057 * Do not pin the page in memory, so that memory hot-unplug
4058 * is able to migrate it.
4059 */
4060 put_page(page);
4061 kvm->arch.apic_access_page_done = true;
f78e0e2e 4062out:
79fac95e 4063 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4064 return r;
4065}
4066
b7ebfb05
SY
4067static int alloc_identity_pagetable(struct kvm *kvm)
4068{
a255d479
TC
4069 /* Called with kvm->slots_lock held. */
4070
b7ebfb05
SY
4071 struct kvm_userspace_memory_region kvm_userspace_mem;
4072 int r = 0;
4073
a255d479
TC
4074 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4075
b7ebfb05
SY
4076 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4077 kvm_userspace_mem.flags = 0;
b927a3ce
SY
4078 kvm_userspace_mem.guest_phys_addr =
4079 kvm->arch.ept_identity_map_addr;
b7ebfb05 4080 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 4081 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05 4082
b7ebfb05
SY
4083 return r;
4084}
4085
2384d2b3
SY
4086static void allocate_vpid(struct vcpu_vmx *vmx)
4087{
4088 int vpid;
4089
4090 vmx->vpid = 0;
919818ab 4091 if (!enable_vpid)
2384d2b3
SY
4092 return;
4093 spin_lock(&vmx_vpid_lock);
4094 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4095 if (vpid < VMX_NR_VPIDS) {
4096 vmx->vpid = vpid;
4097 __set_bit(vpid, vmx_vpid_bitmap);
4098 }
4099 spin_unlock(&vmx_vpid_lock);
4100}
4101
cdbecfc3
LJ
4102static void free_vpid(struct vcpu_vmx *vmx)
4103{
4104 if (!enable_vpid)
4105 return;
4106 spin_lock(&vmx_vpid_lock);
4107 if (vmx->vpid != 0)
4108 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4109 spin_unlock(&vmx_vpid_lock);
4110}
4111
8d14695f
YZ
4112#define MSR_TYPE_R 1
4113#define MSR_TYPE_W 2
4114static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4115 u32 msr, int type)
25c5f225 4116{
3e7c73e9 4117 int f = sizeof(unsigned long);
25c5f225
SY
4118
4119 if (!cpu_has_vmx_msr_bitmap())
4120 return;
4121
4122 /*
4123 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4124 * have the write-low and read-high bitmap offsets the wrong way round.
4125 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4126 */
25c5f225 4127 if (msr <= 0x1fff) {
8d14695f
YZ
4128 if (type & MSR_TYPE_R)
4129 /* read-low */
4130 __clear_bit(msr, msr_bitmap + 0x000 / f);
4131
4132 if (type & MSR_TYPE_W)
4133 /* write-low */
4134 __clear_bit(msr, msr_bitmap + 0x800 / f);
4135
25c5f225
SY
4136 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4137 msr &= 0x1fff;
8d14695f
YZ
4138 if (type & MSR_TYPE_R)
4139 /* read-high */
4140 __clear_bit(msr, msr_bitmap + 0x400 / f);
4141
4142 if (type & MSR_TYPE_W)
4143 /* write-high */
4144 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4145
4146 }
4147}
4148
4149static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4150 u32 msr, int type)
4151{
4152 int f = sizeof(unsigned long);
4153
4154 if (!cpu_has_vmx_msr_bitmap())
4155 return;
4156
4157 /*
4158 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4159 * have the write-low and read-high bitmap offsets the wrong way round.
4160 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4161 */
4162 if (msr <= 0x1fff) {
4163 if (type & MSR_TYPE_R)
4164 /* read-low */
4165 __set_bit(msr, msr_bitmap + 0x000 / f);
4166
4167 if (type & MSR_TYPE_W)
4168 /* write-low */
4169 __set_bit(msr, msr_bitmap + 0x800 / f);
4170
4171 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4172 msr &= 0x1fff;
4173 if (type & MSR_TYPE_R)
4174 /* read-high */
4175 __set_bit(msr, msr_bitmap + 0x400 / f);
4176
4177 if (type & MSR_TYPE_W)
4178 /* write-high */
4179 __set_bit(msr, msr_bitmap + 0xc00 / f);
4180
25c5f225 4181 }
25c5f225
SY
4182}
4183
5897297b
AK
4184static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4185{
4186 if (!longmode_only)
8d14695f
YZ
4187 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4188 msr, MSR_TYPE_R | MSR_TYPE_W);
4189 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4190 msr, MSR_TYPE_R | MSR_TYPE_W);
4191}
4192
4193static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4194{
4195 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4196 msr, MSR_TYPE_R);
4197 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4198 msr, MSR_TYPE_R);
4199}
4200
4201static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4202{
4203 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4204 msr, MSR_TYPE_R);
4205 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4206 msr, MSR_TYPE_R);
4207}
4208
4209static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4210{
4211 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4212 msr, MSR_TYPE_W);
4213 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4214 msr, MSR_TYPE_W);
5897297b
AK
4215}
4216
01e439be
YZ
4217static int vmx_vm_has_apicv(struct kvm *kvm)
4218{
4219 return enable_apicv && irqchip_in_kernel(kvm);
4220}
4221
a20ed54d
YZ
4222/*
4223 * Send interrupt to vcpu via posted interrupt way.
4224 * 1. If target vcpu is running(non-root mode), send posted interrupt
4225 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4226 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4227 * interrupt from PIR in next vmentry.
4228 */
4229static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4230{
4231 struct vcpu_vmx *vmx = to_vmx(vcpu);
4232 int r;
4233
4234 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4235 return;
4236
4237 r = pi_test_and_set_on(&vmx->pi_desc);
4238 kvm_make_request(KVM_REQ_EVENT, vcpu);
6ffbbbba 4239#ifdef CONFIG_SMP
a20ed54d
YZ
4240 if (!r && (vcpu->mode == IN_GUEST_MODE))
4241 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4242 POSTED_INTR_VECTOR);
4243 else
6ffbbbba 4244#endif
a20ed54d
YZ
4245 kvm_vcpu_kick(vcpu);
4246}
4247
4248static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4249{
4250 struct vcpu_vmx *vmx = to_vmx(vcpu);
4251
4252 if (!pi_test_and_clear_on(&vmx->pi_desc))
4253 return;
4254
4255 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4256}
4257
4258static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4259{
4260 return;
4261}
4262
a3a8ff8e
NHE
4263/*
4264 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4265 * will not change in the lifetime of the guest.
4266 * Note that host-state that does change is set elsewhere. E.g., host-state
4267 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4268 */
a547c6db 4269static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4270{
4271 u32 low32, high32;
4272 unsigned long tmpl;
4273 struct desc_ptr dt;
d974baa3 4274 unsigned long cr4;
a3a8ff8e 4275
b1a74bf8 4276 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4277 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4278
d974baa3
AL
4279 /* Save the most likely value for this task's CR4 in the VMCS. */
4280 cr4 = read_cr4();
4281 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4282 vmx->host_state.vmcs_host_cr4 = cr4;
4283
a3a8ff8e 4284 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4285#ifdef CONFIG_X86_64
4286 /*
4287 * Load null selectors, so we can avoid reloading them in
4288 * __vmx_load_host_state(), in case userspace uses the null selectors
4289 * too (the expected case).
4290 */
4291 vmcs_write16(HOST_DS_SELECTOR, 0);
4292 vmcs_write16(HOST_ES_SELECTOR, 0);
4293#else
a3a8ff8e
NHE
4294 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4295 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4296#endif
a3a8ff8e
NHE
4297 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4298 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4299
4300 native_store_idt(&dt);
4301 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4302 vmx->host_idt_base = dt.address;
a3a8ff8e 4303
83287ea4 4304 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4305
4306 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4307 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4308 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4309 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4310
4311 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4312 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4313 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4314 }
4315}
4316
bf8179a0
NHE
4317static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4318{
4319 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4320 if (enable_ept)
4321 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4322 if (is_guest_mode(&vmx->vcpu))
4323 vmx->vcpu.arch.cr4_guest_owned_bits &=
4324 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4325 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4326}
4327
01e439be
YZ
4328static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4329{
4330 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4331
4332 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4333 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4334 return pin_based_exec_ctrl;
4335}
4336
bf8179a0
NHE
4337static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4338{
4339 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4340
4341 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4342 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4343
bf8179a0
NHE
4344 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4345 exec_control &= ~CPU_BASED_TPR_SHADOW;
4346#ifdef CONFIG_X86_64
4347 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4348 CPU_BASED_CR8_LOAD_EXITING;
4349#endif
4350 }
4351 if (!enable_ept)
4352 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4353 CPU_BASED_CR3_LOAD_EXITING |
4354 CPU_BASED_INVLPG_EXITING;
4355 return exec_control;
4356}
4357
4358static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4359{
4360 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4361 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4362 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4363 if (vmx->vpid == 0)
4364 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4365 if (!enable_ept) {
4366 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4367 enable_unrestricted_guest = 0;
ad756a16
MJ
4368 /* Enable INVPCID for non-ept guests may cause performance regression. */
4369 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4370 }
4371 if (!enable_unrestricted_guest)
4372 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4373 if (!ple_gap)
4374 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4375 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4376 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4377 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4378 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4379 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4380 (handle_vmptrld).
4381 We can NOT enable shadow_vmcs here because we don't have yet
4382 a current VMCS12
4383 */
4384 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
bf8179a0
NHE
4385 return exec_control;
4386}
4387
ce88decf
XG
4388static void ept_set_mmio_spte_mask(void)
4389{
4390 /*
4391 * EPT Misconfigurations can be generated if the value of bits 2:0
4392 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4393 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4394 * spte.
4395 */
885032b9 4396 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4397}
4398
6aa8b732
AK
4399/*
4400 * Sets up the vmcs for emulated real mode.
4401 */
8b9cf98c 4402static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4403{
2e4ce7f5 4404#ifdef CONFIG_X86_64
6aa8b732 4405 unsigned long a;
2e4ce7f5 4406#endif
6aa8b732 4407 int i;
6aa8b732 4408
6aa8b732 4409 /* I/O */
3e7c73e9
AK
4410 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4411 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4412
4607c2d7
AG
4413 if (enable_shadow_vmcs) {
4414 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4415 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4416 }
25c5f225 4417 if (cpu_has_vmx_msr_bitmap())
5897297b 4418 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4419
6aa8b732
AK
4420 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4421
6aa8b732 4422 /* Control */
01e439be 4423 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4424
bf8179a0 4425 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4426
83ff3b9d 4427 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4428 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4429 vmx_secondary_exec_control(vmx));
83ff3b9d 4430 }
f78e0e2e 4431
01e439be 4432 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4433 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4434 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4435 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4436 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4437
4438 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4439
4440 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4441 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4442 }
4443
4b8d54f9
ZE
4444 if (ple_gap) {
4445 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4446 vmx->ple_window = ple_window;
4447 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4448 }
4449
c3707958
XG
4450 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4451 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4452 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4453
9581d442
AK
4454 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4455 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4456 vmx_set_constant_host_state(vmx);
05b3e0c2 4457#ifdef CONFIG_X86_64
6aa8b732
AK
4458 rdmsrl(MSR_FS_BASE, a);
4459 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4460 rdmsrl(MSR_GS_BASE, a);
4461 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4462#else
4463 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4464 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4465#endif
4466
2cc51560
ED
4467 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4468 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4469 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4470 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4471 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4472
468d472f 4473 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4474 u32 msr_low, msr_high;
4475 u64 host_pat;
468d472f
SY
4476 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4477 host_pat = msr_low | ((u64) msr_high << 32);
4478 /* Write the default value follow host pat */
4479 vmcs_write64(GUEST_IA32_PAT, host_pat);
4480 /* Keep arch.pat sync with GUEST_IA32_PAT */
4481 vmx->vcpu.arch.pat = host_pat;
4482 }
4483
03916db9 4484 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4485 u32 index = vmx_msr_index[i];
4486 u32 data_low, data_high;
a2fa3e9f 4487 int j = vmx->nmsrs;
6aa8b732
AK
4488
4489 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4490 continue;
432bd6cb
AK
4491 if (wrmsr_safe(index, data_low, data_high) < 0)
4492 continue;
26bb0981
AK
4493 vmx->guest_msrs[j].index = i;
4494 vmx->guest_msrs[j].data = 0;
d5696725 4495 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4496 ++vmx->nmsrs;
6aa8b732 4497 }
6aa8b732 4498
2961e876
GN
4499
4500 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4501
4502 /* 22.2.1, 20.8.1 */
2961e876 4503 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4504
e00c8cf2 4505 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4506 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
4507
4508 return 0;
4509}
4510
57f252f2 4511static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4512{
4513 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4514 struct msr_data apic_base_msr;
e00c8cf2 4515
7ffd92c5 4516 vmx->rmode.vm86_active = 0;
e00c8cf2 4517
3b86cd99
JK
4518 vmx->soft_vnmi_blocked = 0;
4519
ad312c7c 4520 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4521 kvm_set_cr8(&vmx->vcpu, 0);
73a6d941 4522 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4523 if (kvm_vcpu_is_bsp(&vmx->vcpu))
58cb628d
JK
4524 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4525 apic_base_msr.host_initiated = true;
4526 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
e00c8cf2 4527
2fb92db1
AK
4528 vmx_segment_cache_clear(vmx);
4529
5706be0d 4530 seg_setup(VCPU_SREG_CS);
66450a21 4531 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4532 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4533
4534 seg_setup(VCPU_SREG_DS);
4535 seg_setup(VCPU_SREG_ES);
4536 seg_setup(VCPU_SREG_FS);
4537 seg_setup(VCPU_SREG_GS);
4538 seg_setup(VCPU_SREG_SS);
4539
4540 vmcs_write16(GUEST_TR_SELECTOR, 0);
4541 vmcs_writel(GUEST_TR_BASE, 0);
4542 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4543 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4544
4545 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4546 vmcs_writel(GUEST_LDTR_BASE, 0);
4547 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4548 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4549
4550 vmcs_write32(GUEST_SYSENTER_CS, 0);
4551 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4552 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4553
4554 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4555 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4556
e00c8cf2
AK
4557 vmcs_writel(GUEST_GDTR_BASE, 0);
4558 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4559
4560 vmcs_writel(GUEST_IDTR_BASE, 0);
4561 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4562
443381a8 4563 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4564 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4565 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4566
e00c8cf2
AK
4567 /* Special registers */
4568 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4569
4570 setup_msrs(vmx);
4571
6aa8b732
AK
4572 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4573
f78e0e2e
SY
4574 if (cpu_has_vmx_tpr_shadow()) {
4575 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4576 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4577 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4578 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4579 vmcs_write32(TPR_THRESHOLD, 0);
4580 }
4581
a73896cb 4582 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 4583
01e439be
YZ
4584 if (vmx_vm_has_apicv(vcpu->kvm))
4585 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4586
2384d2b3
SY
4587 if (vmx->vpid != 0)
4588 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4589
fa40052c 4590 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4591 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4592 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4593 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4594 vmx_fpu_activate(&vmx->vcpu);
4595 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4596
b9d762fa 4597 vpid_sync_context(vmx);
6aa8b732
AK
4598}
4599
b6f1250e
NHE
4600/*
4601 * In nested virtualization, check if L1 asked to exit on external interrupts.
4602 * For most existing hypervisors, this will always return true.
4603 */
4604static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4605{
4606 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4607 PIN_BASED_EXT_INTR_MASK;
4608}
4609
77b0f5d6
BD
4610/*
4611 * In nested virtualization, check if L1 has set
4612 * VM_EXIT_ACK_INTR_ON_EXIT
4613 */
4614static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4615{
4616 return get_vmcs12(vcpu)->vm_exit_controls &
4617 VM_EXIT_ACK_INTR_ON_EXIT;
4618}
4619
ea8ceb83
JK
4620static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4621{
4622 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4623 PIN_BASED_NMI_EXITING;
4624}
4625
c9a7953f 4626static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4627{
4628 u32 cpu_based_vm_exec_control;
730dca42 4629
3b86cd99
JK
4630 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4631 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4632 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4633}
4634
c9a7953f 4635static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4636{
4637 u32 cpu_based_vm_exec_control;
4638
c9a7953f
JK
4639 if (!cpu_has_virtual_nmis() ||
4640 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4641 enable_irq_window(vcpu);
4642 return;
4643 }
3b86cd99
JK
4644
4645 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4646 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4647 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4648}
4649
66fd3f7f 4650static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4651{
9c8cba37 4652 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4653 uint32_t intr;
4654 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4655
229456fc 4656 trace_kvm_inj_virq(irq);
2714d1d3 4657
fa89a817 4658 ++vcpu->stat.irq_injections;
7ffd92c5 4659 if (vmx->rmode.vm86_active) {
71f9833b
SH
4660 int inc_eip = 0;
4661 if (vcpu->arch.interrupt.soft)
4662 inc_eip = vcpu->arch.event_exit_inst_len;
4663 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4664 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4665 return;
4666 }
66fd3f7f
GN
4667 intr = irq | INTR_INFO_VALID_MASK;
4668 if (vcpu->arch.interrupt.soft) {
4669 intr |= INTR_TYPE_SOFT_INTR;
4670 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4671 vmx->vcpu.arch.event_exit_inst_len);
4672 } else
4673 intr |= INTR_TYPE_EXT_INTR;
4674 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4675}
4676
f08864b4
SY
4677static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4678{
66a5a347
JK
4679 struct vcpu_vmx *vmx = to_vmx(vcpu);
4680
0b6ac343
NHE
4681 if (is_guest_mode(vcpu))
4682 return;
4683
3b86cd99
JK
4684 if (!cpu_has_virtual_nmis()) {
4685 /*
4686 * Tracking the NMI-blocked state in software is built upon
4687 * finding the next open IRQ window. This, in turn, depends on
4688 * well-behaving guests: They have to keep IRQs disabled at
4689 * least as long as the NMI handler runs. Otherwise we may
4690 * cause NMI nesting, maybe breaking the guest. But as this is
4691 * highly unlikely, we can live with the residual risk.
4692 */
4693 vmx->soft_vnmi_blocked = 1;
4694 vmx->vnmi_blocked_time = 0;
4695 }
4696
487b391d 4697 ++vcpu->stat.nmi_injections;
9d58b931 4698 vmx->nmi_known_unmasked = false;
7ffd92c5 4699 if (vmx->rmode.vm86_active) {
71f9833b 4700 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4701 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4702 return;
4703 }
f08864b4
SY
4704 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4705 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4706}
4707
3cfc3092
JK
4708static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4709{
4710 if (!cpu_has_virtual_nmis())
4711 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4712 if (to_vmx(vcpu)->nmi_known_unmasked)
4713 return false;
c332c83a 4714 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4715}
4716
4717static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4718{
4719 struct vcpu_vmx *vmx = to_vmx(vcpu);
4720
4721 if (!cpu_has_virtual_nmis()) {
4722 if (vmx->soft_vnmi_blocked != masked) {
4723 vmx->soft_vnmi_blocked = masked;
4724 vmx->vnmi_blocked_time = 0;
4725 }
4726 } else {
9d58b931 4727 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4728 if (masked)
4729 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4730 GUEST_INTR_STATE_NMI);
4731 else
4732 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4733 GUEST_INTR_STATE_NMI);
4734 }
4735}
4736
2505dc9f
JK
4737static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4738{
b6b8a145
JK
4739 if (to_vmx(vcpu)->nested.nested_run_pending)
4740 return 0;
ea8ceb83 4741
2505dc9f
JK
4742 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4743 return 0;
4744
4745 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4746 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4747 | GUEST_INTR_STATE_NMI));
4748}
4749
78646121
GN
4750static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4751{
b6b8a145
JK
4752 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4753 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
4754 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4755 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4756}
4757
cbc94022
IE
4758static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4759{
4760 int ret;
4761 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4762 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4763 .guest_phys_addr = addr,
4764 .memory_size = PAGE_SIZE * 3,
4765 .flags = 0,
4766 };
4767
47ae31e2 4768 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4769 if (ret)
4770 return ret;
bfc6d222 4771 kvm->arch.tss_addr = addr;
1f755a82 4772 return init_rmode_tss(kvm);
cbc94022
IE
4773}
4774
0ca1b4f4 4775static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4776{
77ab6db0 4777 switch (vec) {
77ab6db0 4778 case BP_VECTOR:
c573cd22
JK
4779 /*
4780 * Update instruction length as we may reinject the exception
4781 * from user space while in guest debugging mode.
4782 */
4783 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4784 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4785 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4786 return false;
4787 /* fall through */
4788 case DB_VECTOR:
4789 if (vcpu->guest_debug &
4790 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4791 return false;
d0bfb940
JK
4792 /* fall through */
4793 case DE_VECTOR:
77ab6db0
JK
4794 case OF_VECTOR:
4795 case BR_VECTOR:
4796 case UD_VECTOR:
4797 case DF_VECTOR:
4798 case SS_VECTOR:
4799 case GP_VECTOR:
4800 case MF_VECTOR:
0ca1b4f4
GN
4801 return true;
4802 break;
77ab6db0 4803 }
0ca1b4f4
GN
4804 return false;
4805}
4806
4807static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4808 int vec, u32 err_code)
4809{
4810 /*
4811 * Instruction with address size override prefix opcode 0x67
4812 * Cause the #SS fault with 0 error code in VM86 mode.
4813 */
4814 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4815 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4816 if (vcpu->arch.halt_request) {
4817 vcpu->arch.halt_request = 0;
4818 return kvm_emulate_halt(vcpu);
4819 }
4820 return 1;
4821 }
4822 return 0;
4823 }
4824
4825 /*
4826 * Forward all other exceptions that are valid in real mode.
4827 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4828 * the required debugging infrastructure rework.
4829 */
4830 kvm_queue_exception(vcpu, vec);
4831 return 1;
6aa8b732
AK
4832}
4833
a0861c02
AK
4834/*
4835 * Trigger machine check on the host. We assume all the MSRs are already set up
4836 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4837 * We pass a fake environment to the machine check handler because we want
4838 * the guest to be always treated like user space, no matter what context
4839 * it used internally.
4840 */
4841static void kvm_machine_check(void)
4842{
4843#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4844 struct pt_regs regs = {
4845 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4846 .flags = X86_EFLAGS_IF,
4847 };
4848
4849 do_machine_check(&regs, 0);
4850#endif
4851}
4852
851ba692 4853static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4854{
4855 /* already handled by vcpu_run */
4856 return 1;
4857}
4858
851ba692 4859static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4860{
1155f76a 4861 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4862 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4863 u32 intr_info, ex_no, error_code;
42dbaa5a 4864 unsigned long cr2, rip, dr6;
6aa8b732
AK
4865 u32 vect_info;
4866 enum emulation_result er;
4867
1155f76a 4868 vect_info = vmx->idt_vectoring_info;
88786475 4869 intr_info = vmx->exit_intr_info;
6aa8b732 4870
a0861c02 4871 if (is_machine_check(intr_info))
851ba692 4872 return handle_machine_check(vcpu);
a0861c02 4873
e4a41889 4874 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4875 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4876
4877 if (is_no_device(intr_info)) {
5fd86fcf 4878 vmx_fpu_activate(vcpu);
2ab455cc
AL
4879 return 1;
4880 }
4881
7aa81cc0 4882 if (is_invalid_opcode(intr_info)) {
51d8b661 4883 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4884 if (er != EMULATE_DONE)
7ee5d940 4885 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4886 return 1;
4887 }
4888
6aa8b732 4889 error_code = 0;
2e11384c 4890 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4891 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4892
4893 /*
4894 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4895 * MMIO, it is better to report an internal error.
4896 * See the comments in vmx_handle_exit.
4897 */
4898 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4899 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4900 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4901 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4902 vcpu->run->internal.ndata = 2;
4903 vcpu->run->internal.data[0] = vect_info;
4904 vcpu->run->internal.data[1] = intr_info;
4905 return 0;
4906 }
4907
6aa8b732 4908 if (is_page_fault(intr_info)) {
1439442c 4909 /* EPT won't cause page fault directly */
cf3ace79 4910 BUG_ON(enable_ept);
6aa8b732 4911 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4912 trace_kvm_page_fault(cr2, error_code);
4913
3298b75c 4914 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4915 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4916 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4917 }
4918
d0bfb940 4919 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4920
4921 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4922 return handle_rmode_exception(vcpu, ex_no, error_code);
4923
42dbaa5a
JK
4924 switch (ex_no) {
4925 case DB_VECTOR:
4926 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4927 if (!(vcpu->guest_debug &
4928 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 4929 vcpu->arch.dr6 &= ~15;
6f43ed01 4930 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
4931 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4932 skip_emulated_instruction(vcpu);
4933
42dbaa5a
JK
4934 kvm_queue_exception(vcpu, DB_VECTOR);
4935 return 1;
4936 }
4937 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4938 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4939 /* fall through */
4940 case BP_VECTOR:
c573cd22
JK
4941 /*
4942 * Update instruction length as we may reinject #BP from
4943 * user space while in guest debugging mode. Reading it for
4944 * #DB as well causes no harm, it is not used in that case.
4945 */
4946 vmx->vcpu.arch.event_exit_inst_len =
4947 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4948 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4949 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4950 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4951 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4952 break;
4953 default:
d0bfb940
JK
4954 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4955 kvm_run->ex.exception = ex_no;
4956 kvm_run->ex.error_code = error_code;
42dbaa5a 4957 break;
6aa8b732 4958 }
6aa8b732
AK
4959 return 0;
4960}
4961
851ba692 4962static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4963{
1165f5fe 4964 ++vcpu->stat.irq_exits;
6aa8b732
AK
4965 return 1;
4966}
4967
851ba692 4968static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4969{
851ba692 4970 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4971 return 0;
4972}
6aa8b732 4973
851ba692 4974static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4975{
bfdaab09 4976 unsigned long exit_qualification;
34c33d16 4977 int size, in, string;
039576c0 4978 unsigned port;
6aa8b732 4979
bfdaab09 4980 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4981 string = (exit_qualification & 16) != 0;
cf8f70bf 4982 in = (exit_qualification & 8) != 0;
e70669ab 4983
cf8f70bf 4984 ++vcpu->stat.io_exits;
e70669ab 4985
cf8f70bf 4986 if (string || in)
51d8b661 4987 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4988
cf8f70bf
GN
4989 port = exit_qualification >> 16;
4990 size = (exit_qualification & 7) + 1;
e93f36bc 4991 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4992
4993 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4994}
4995
102d8325
IM
4996static void
4997vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4998{
4999 /*
5000 * Patch in the VMCALL instruction:
5001 */
5002 hypercall[0] = 0x0f;
5003 hypercall[1] = 0x01;
5004 hypercall[2] = 0xc1;
102d8325
IM
5005}
5006
92fbc7b1
JK
5007static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
5008{
5009 unsigned long always_on = VMXON_CR0_ALWAYSON;
5010
5011 if (nested_vmx_secondary_ctls_high &
5012 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5013 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5014 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5015 return (val & always_on) == always_on;
5016}
5017
0fa06071 5018/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5019static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5020{
eeadf9e7 5021 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5022 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023 unsigned long orig_val = val;
5024
eeadf9e7
NHE
5025 /*
5026 * We get here when L2 changed cr0 in a way that did not change
5027 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5028 * but did change L0 shadowed bits. So we first calculate the
5029 * effective cr0 value that L1 would like to write into the
5030 * hardware. It consists of the L2-owned bits from the new
5031 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5032 */
1a0d74e6
JK
5033 val = (val & ~vmcs12->cr0_guest_host_mask) |
5034 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5035
92fbc7b1 5036 if (!nested_cr0_valid(vmcs12, val))
eeadf9e7 5037 return 1;
1a0d74e6
JK
5038
5039 if (kvm_set_cr0(vcpu, val))
5040 return 1;
5041 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5042 return 0;
1a0d74e6
JK
5043 } else {
5044 if (to_vmx(vcpu)->nested.vmxon &&
5045 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5046 return 1;
eeadf9e7 5047 return kvm_set_cr0(vcpu, val);
1a0d74e6 5048 }
eeadf9e7
NHE
5049}
5050
5051static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5052{
5053 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5054 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5055 unsigned long orig_val = val;
5056
5057 /* analogously to handle_set_cr0 */
5058 val = (val & ~vmcs12->cr4_guest_host_mask) |
5059 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5060 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5061 return 1;
1a0d74e6 5062 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5063 return 0;
5064 } else
5065 return kvm_set_cr4(vcpu, val);
5066}
5067
5068/* called to set cr0 as approriate for clts instruction exit. */
5069static void handle_clts(struct kvm_vcpu *vcpu)
5070{
5071 if (is_guest_mode(vcpu)) {
5072 /*
5073 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5074 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5075 * just pretend it's off (also in arch.cr0 for fpu_activate).
5076 */
5077 vmcs_writel(CR0_READ_SHADOW,
5078 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5079 vcpu->arch.cr0 &= ~X86_CR0_TS;
5080 } else
5081 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5082}
5083
851ba692 5084static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5085{
229456fc 5086 unsigned long exit_qualification, val;
6aa8b732
AK
5087 int cr;
5088 int reg;
49a9b07e 5089 int err;
6aa8b732 5090
bfdaab09 5091 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5092 cr = exit_qualification & 15;
5093 reg = (exit_qualification >> 8) & 15;
5094 switch ((exit_qualification >> 4) & 3) {
5095 case 0: /* mov to cr */
1e32c079 5096 val = kvm_register_readl(vcpu, reg);
229456fc 5097 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5098 switch (cr) {
5099 case 0:
eeadf9e7 5100 err = handle_set_cr0(vcpu, val);
db8fcefa 5101 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5102 return 1;
5103 case 3:
2390218b 5104 err = kvm_set_cr3(vcpu, val);
db8fcefa 5105 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5106 return 1;
5107 case 4:
eeadf9e7 5108 err = handle_set_cr4(vcpu, val);
db8fcefa 5109 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5110 return 1;
0a5fff19
GN
5111 case 8: {
5112 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5113 u8 cr8 = (u8)val;
eea1cff9 5114 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5115 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5116 if (irqchip_in_kernel(vcpu->kvm))
5117 return 1;
5118 if (cr8_prev <= cr8)
5119 return 1;
851ba692 5120 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5121 return 0;
5122 }
4b8073e4 5123 }
6aa8b732 5124 break;
25c4c276 5125 case 2: /* clts */
eeadf9e7 5126 handle_clts(vcpu);
4d4ec087 5127 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5128 skip_emulated_instruction(vcpu);
6b52d186 5129 vmx_fpu_activate(vcpu);
25c4c276 5130 return 1;
6aa8b732
AK
5131 case 1: /*mov from cr*/
5132 switch (cr) {
5133 case 3:
9f8fe504
AK
5134 val = kvm_read_cr3(vcpu);
5135 kvm_register_write(vcpu, reg, val);
5136 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5137 skip_emulated_instruction(vcpu);
5138 return 1;
5139 case 8:
229456fc
MT
5140 val = kvm_get_cr8(vcpu);
5141 kvm_register_write(vcpu, reg, val);
5142 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5143 skip_emulated_instruction(vcpu);
5144 return 1;
5145 }
5146 break;
5147 case 3: /* lmsw */
a1f83a74 5148 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5149 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5150 kvm_lmsw(vcpu, val);
6aa8b732
AK
5151
5152 skip_emulated_instruction(vcpu);
5153 return 1;
5154 default:
5155 break;
5156 }
851ba692 5157 vcpu->run->exit_reason = 0;
a737f256 5158 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5159 (int)(exit_qualification >> 4) & 3, cr);
5160 return 0;
5161}
5162
851ba692 5163static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5164{
bfdaab09 5165 unsigned long exit_qualification;
6aa8b732
AK
5166 int dr, reg;
5167
f2483415 5168 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5169 if (!kvm_require_cpl(vcpu, 0))
5170 return 1;
42dbaa5a
JK
5171 dr = vmcs_readl(GUEST_DR7);
5172 if (dr & DR7_GD) {
5173 /*
5174 * As the vm-exit takes precedence over the debug trap, we
5175 * need to emulate the latter, either for the host or the
5176 * guest debugging itself.
5177 */
5178 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
5179 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5180 vcpu->run->debug.arch.dr7 = dr;
5181 vcpu->run->debug.arch.pc =
42dbaa5a
JK
5182 vmcs_readl(GUEST_CS_BASE) +
5183 vmcs_readl(GUEST_RIP);
851ba692
AK
5184 vcpu->run->debug.arch.exception = DB_VECTOR;
5185 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5186 return 0;
5187 } else {
6f43ed01 5188 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5189 kvm_queue_exception(vcpu, DB_VECTOR);
5190 return 1;
5191 }
5192 }
5193
81908bf4
PB
5194 if (vcpu->guest_debug == 0) {
5195 u32 cpu_based_vm_exec_control;
5196
5197 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5198 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5199 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5200
5201 /*
5202 * No more DR vmexits; force a reload of the debug registers
5203 * and reenter on this instruction. The next vmexit will
5204 * retrieve the full state of the debug registers.
5205 */
5206 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5207 return 1;
5208 }
5209
bfdaab09 5210 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
5211 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5212 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5213 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5214 unsigned long val;
4c4d563b
JK
5215
5216 if (kvm_get_dr(vcpu, dr, &val))
5217 return 1;
5218 kvm_register_write(vcpu, reg, val);
020df079 5219 } else
5777392e 5220 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5221 return 1;
5222
6aa8b732
AK
5223 skip_emulated_instruction(vcpu);
5224 return 1;
5225}
5226
73aaf249
JK
5227static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5228{
5229 return vcpu->arch.dr6;
5230}
5231
5232static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5233{
5234}
5235
81908bf4
PB
5236static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5237{
5238 u32 cpu_based_vm_exec_control;
5239
5240 get_debugreg(vcpu->arch.db[0], 0);
5241 get_debugreg(vcpu->arch.db[1], 1);
5242 get_debugreg(vcpu->arch.db[2], 2);
5243 get_debugreg(vcpu->arch.db[3], 3);
5244 get_debugreg(vcpu->arch.dr6, 6);
5245 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5246
5247 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5248
5249 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5250 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5251 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5252}
5253
020df079
GN
5254static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5255{
5256 vmcs_writel(GUEST_DR7, val);
5257}
5258
851ba692 5259static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5260{
06465c5a
AK
5261 kvm_emulate_cpuid(vcpu);
5262 return 1;
6aa8b732
AK
5263}
5264
851ba692 5265static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5266{
ad312c7c 5267 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
5268 u64 data;
5269
5270 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5271 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5272 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5273 return 1;
5274 }
5275
229456fc 5276 trace_kvm_msr_read(ecx, data);
2714d1d3 5277
6aa8b732 5278 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5279 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5280 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5281 skip_emulated_instruction(vcpu);
5282 return 1;
5283}
5284
851ba692 5285static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5286{
8fe8ab46 5287 struct msr_data msr;
ad312c7c
ZX
5288 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5289 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5290 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5291
8fe8ab46
WA
5292 msr.data = data;
5293 msr.index = ecx;
5294 msr.host_initiated = false;
854e8bb1 5295 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5296 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5297 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5298 return 1;
5299 }
5300
59200273 5301 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5302 skip_emulated_instruction(vcpu);
5303 return 1;
5304}
5305
851ba692 5306static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5307{
3842d135 5308 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5309 return 1;
5310}
5311
851ba692 5312static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5313{
85f455f7
ED
5314 u32 cpu_based_vm_exec_control;
5315
5316 /* clear pending irq */
5317 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5318 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5319 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5320
3842d135
AK
5321 kvm_make_request(KVM_REQ_EVENT, vcpu);
5322
a26bf12a 5323 ++vcpu->stat.irq_window_exits;
2714d1d3 5324
c1150d8c
DL
5325 /*
5326 * If the user space waits to inject interrupts, exit as soon as
5327 * possible
5328 */
8061823a 5329 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5330 vcpu->run->request_interrupt_window &&
8061823a 5331 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5332 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5333 return 0;
5334 }
6aa8b732
AK
5335 return 1;
5336}
5337
851ba692 5338static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
5339{
5340 skip_emulated_instruction(vcpu);
d3bef15f 5341 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5342}
5343
851ba692 5344static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5345{
510043da 5346 skip_emulated_instruction(vcpu);
7aa81cc0
AL
5347 kvm_emulate_hypercall(vcpu);
5348 return 1;
c21415e8
IM
5349}
5350
ec25d5e6
GN
5351static int handle_invd(struct kvm_vcpu *vcpu)
5352{
51d8b661 5353 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5354}
5355
851ba692 5356static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5357{
f9c617f6 5358 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5359
5360 kvm_mmu_invlpg(vcpu, exit_qualification);
5361 skip_emulated_instruction(vcpu);
5362 return 1;
5363}
5364
fee84b07
AK
5365static int handle_rdpmc(struct kvm_vcpu *vcpu)
5366{
5367 int err;
5368
5369 err = kvm_rdpmc(vcpu);
5370 kvm_complete_insn_gp(vcpu, err);
5371
5372 return 1;
5373}
5374
851ba692 5375static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
5376{
5377 skip_emulated_instruction(vcpu);
f5f48ee1 5378 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5379 return 1;
5380}
5381
2acf923e
DC
5382static int handle_xsetbv(struct kvm_vcpu *vcpu)
5383{
5384 u64 new_bv = kvm_read_edx_eax(vcpu);
5385 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5386
5387 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5388 skip_emulated_instruction(vcpu);
5389 return 1;
5390}
5391
851ba692 5392static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5393{
58fbbf26
KT
5394 if (likely(fasteoi)) {
5395 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5396 int access_type, offset;
5397
5398 access_type = exit_qualification & APIC_ACCESS_TYPE;
5399 offset = exit_qualification & APIC_ACCESS_OFFSET;
5400 /*
5401 * Sane guest uses MOV to write EOI, with written value
5402 * not cared. So make a short-circuit here by avoiding
5403 * heavy instruction emulation.
5404 */
5405 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5406 (offset == APIC_EOI)) {
5407 kvm_lapic_set_eoi(vcpu);
5408 skip_emulated_instruction(vcpu);
5409 return 1;
5410 }
5411 }
51d8b661 5412 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5413}
5414
c7c9c56c
YZ
5415static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5416{
5417 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418 int vector = exit_qualification & 0xff;
5419
5420 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5421 kvm_apic_set_eoi_accelerated(vcpu, vector);
5422 return 1;
5423}
5424
83d4c286
YZ
5425static int handle_apic_write(struct kvm_vcpu *vcpu)
5426{
5427 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5428 u32 offset = exit_qualification & 0xfff;
5429
5430 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5431 kvm_apic_write_nodecode(vcpu, offset);
5432 return 1;
5433}
5434
851ba692 5435static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5436{
60637aac 5437 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5438 unsigned long exit_qualification;
e269fb21
JK
5439 bool has_error_code = false;
5440 u32 error_code = 0;
37817f29 5441 u16 tss_selector;
7f3d35fd 5442 int reason, type, idt_v, idt_index;
64a7ec06
GN
5443
5444 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5445 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5446 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5447
5448 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5449
5450 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5451 if (reason == TASK_SWITCH_GATE && idt_v) {
5452 switch (type) {
5453 case INTR_TYPE_NMI_INTR:
5454 vcpu->arch.nmi_injected = false;
654f06fc 5455 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5456 break;
5457 case INTR_TYPE_EXT_INTR:
66fd3f7f 5458 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5459 kvm_clear_interrupt_queue(vcpu);
5460 break;
5461 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5462 if (vmx->idt_vectoring_info &
5463 VECTORING_INFO_DELIVER_CODE_MASK) {
5464 has_error_code = true;
5465 error_code =
5466 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5467 }
5468 /* fall through */
64a7ec06
GN
5469 case INTR_TYPE_SOFT_EXCEPTION:
5470 kvm_clear_exception_queue(vcpu);
5471 break;
5472 default:
5473 break;
5474 }
60637aac 5475 }
37817f29
IE
5476 tss_selector = exit_qualification;
5477
64a7ec06
GN
5478 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5479 type != INTR_TYPE_EXT_INTR &&
5480 type != INTR_TYPE_NMI_INTR))
5481 skip_emulated_instruction(vcpu);
5482
7f3d35fd
KW
5483 if (kvm_task_switch(vcpu, tss_selector,
5484 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5485 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5486 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5487 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5488 vcpu->run->internal.ndata = 0;
42dbaa5a 5489 return 0;
acb54517 5490 }
42dbaa5a
JK
5491
5492 /* clear all local breakpoint enable flags */
1f854112 5493 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
42dbaa5a
JK
5494
5495 /*
5496 * TODO: What about debug traps on tss switch?
5497 * Are we supposed to inject them and update dr6?
5498 */
5499
5500 return 1;
37817f29
IE
5501}
5502
851ba692 5503static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5504{
f9c617f6 5505 unsigned long exit_qualification;
1439442c 5506 gpa_t gpa;
4f5982a5 5507 u32 error_code;
1439442c 5508 int gla_validity;
1439442c 5509
f9c617f6 5510 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5511
1439442c
SY
5512 gla_validity = (exit_qualification >> 7) & 0x3;
5513 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5514 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5515 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5516 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5517 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5518 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5519 (long unsigned int)exit_qualification);
851ba692
AK
5520 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5521 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5522 return 0;
1439442c
SY
5523 }
5524
0be9c7a8
GN
5525 /*
5526 * EPT violation happened while executing iret from NMI,
5527 * "blocked by NMI" bit has to be set before next VM entry.
5528 * There are errata that may cause this bit to not be set:
5529 * AAK134, BY25.
5530 */
bcd1c294
GN
5531 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5532 cpu_has_virtual_nmis() &&
5533 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5535
1439442c 5536 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5537 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5538
5539 /* It is a write fault? */
5540 error_code = exit_qualification & (1U << 1);
25d92081
YZ
5541 /* It is a fetch fault? */
5542 error_code |= (exit_qualification & (1U << 2)) << 2;
4f5982a5
XG
5543 /* ept page table is present? */
5544 error_code |= (exit_qualification >> 3) & 0x1;
5545
25d92081
YZ
5546 vcpu->arch.exit_qualification = exit_qualification;
5547
4f5982a5 5548 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5549}
5550
68f89400
MT
5551static u64 ept_rsvd_mask(u64 spte, int level)
5552{
5553 int i;
5554 u64 mask = 0;
5555
5556 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5557 mask |= (1ULL << i);
5558
a32e8459 5559 if (level == 4)
68f89400
MT
5560 /* bits 7:3 reserved */
5561 mask |= 0xf8;
a32e8459
WL
5562 else if (spte & (1ULL << 7))
5563 /*
5564 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5565 * level == 1 if the hypervisor is using the ignored bit 7.
5566 */
5567 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5568 else if (level > 1)
5569 /* bits 6:3 reserved */
5570 mask |= 0x78;
68f89400
MT
5571
5572 return mask;
5573}
5574
5575static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5576 int level)
5577{
5578 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5579
5580 /* 010b (write-only) */
5581 WARN_ON((spte & 0x7) == 0x2);
5582
5583 /* 110b (write/execute) */
5584 WARN_ON((spte & 0x7) == 0x6);
5585
5586 /* 100b (execute-only) and value not supported by logical processor */
5587 if (!cpu_has_vmx_ept_execute_only())
5588 WARN_ON((spte & 0x7) == 0x4);
5589
5590 /* not 000b */
5591 if ((spte & 0x7)) {
5592 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5593
5594 if (rsvd_bits != 0) {
5595 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5596 __func__, rsvd_bits);
5597 WARN_ON(1);
5598 }
5599
a32e8459
WL
5600 /* bits 5:3 are _not_ reserved for large page or leaf page */
5601 if ((rsvd_bits & 0x38) == 0) {
68f89400
MT
5602 u64 ept_mem_type = (spte & 0x38) >> 3;
5603
5604 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5605 ept_mem_type == 7) {
5606 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5607 __func__, ept_mem_type);
5608 WARN_ON(1);
5609 }
5610 }
5611 }
5612}
5613
851ba692 5614static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5615{
5616 u64 sptes[4];
ce88decf 5617 int nr_sptes, i, ret;
68f89400
MT
5618 gpa_t gpa;
5619
5620 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
68c3b4d1
MT
5621 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5622 skip_emulated_instruction(vcpu);
5623 return 1;
5624 }
68f89400 5625
ce88decf 5626 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
b37fbea6 5627 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5628 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5629 EMULATE_DONE;
f8f55942
XG
5630
5631 if (unlikely(ret == RET_MMIO_PF_INVALID))
5632 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5633
b37fbea6 5634 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5635 return 1;
5636
5637 /* It is the real ept misconfig */
68f89400
MT
5638 printk(KERN_ERR "EPT: Misconfiguration.\n");
5639 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5640
5641 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5642
5643 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5644 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5645
851ba692
AK
5646 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5647 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5648
5649 return 0;
5650}
5651
851ba692 5652static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5653{
5654 u32 cpu_based_vm_exec_control;
5655
5656 /* clear pending NMI */
5657 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5658 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5660 ++vcpu->stat.nmi_window_exits;
3842d135 5661 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5662
5663 return 1;
5664}
5665
80ced186 5666static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5667{
8b3079a5
AK
5668 struct vcpu_vmx *vmx = to_vmx(vcpu);
5669 enum emulation_result err = EMULATE_DONE;
80ced186 5670 int ret = 1;
49e9d557
AK
5671 u32 cpu_exec_ctrl;
5672 bool intr_window_requested;
b8405c18 5673 unsigned count = 130;
49e9d557
AK
5674
5675 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5676 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5677
98eb2f8b 5678 while (vmx->emulation_required && count-- != 0) {
bdea48e3 5679 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5680 return handle_interrupt_window(&vmx->vcpu);
5681
de87dcdd
AK
5682 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5683 return 1;
5684
991eebf9 5685 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5686
ac0a48c3 5687 if (err == EMULATE_USER_EXIT) {
94452b9e 5688 ++vcpu->stat.mmio_exits;
80ced186
MG
5689 ret = 0;
5690 goto out;
5691 }
1d5a4d9b 5692
de5f70e0
AK
5693 if (err != EMULATE_DONE) {
5694 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5695 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5696 vcpu->run->internal.ndata = 0;
6d77dbfc 5697 return 0;
de5f70e0 5698 }
ea953ef0 5699
8d76c49e
GN
5700 if (vcpu->arch.halt_request) {
5701 vcpu->arch.halt_request = 0;
5702 ret = kvm_emulate_halt(vcpu);
5703 goto out;
5704 }
5705
ea953ef0 5706 if (signal_pending(current))
80ced186 5707 goto out;
ea953ef0
MG
5708 if (need_resched())
5709 schedule();
5710 }
5711
80ced186
MG
5712out:
5713 return ret;
ea953ef0
MG
5714}
5715
b4a2d31d
RK
5716static int __grow_ple_window(int val)
5717{
5718 if (ple_window_grow < 1)
5719 return ple_window;
5720
5721 val = min(val, ple_window_actual_max);
5722
5723 if (ple_window_grow < ple_window)
5724 val *= ple_window_grow;
5725 else
5726 val += ple_window_grow;
5727
5728 return val;
5729}
5730
5731static int __shrink_ple_window(int val, int modifier, int minimum)
5732{
5733 if (modifier < 1)
5734 return ple_window;
5735
5736 if (modifier < ple_window)
5737 val /= modifier;
5738 else
5739 val -= modifier;
5740
5741 return max(val, minimum);
5742}
5743
5744static void grow_ple_window(struct kvm_vcpu *vcpu)
5745{
5746 struct vcpu_vmx *vmx = to_vmx(vcpu);
5747 int old = vmx->ple_window;
5748
5749 vmx->ple_window = __grow_ple_window(old);
5750
5751 if (vmx->ple_window != old)
5752 vmx->ple_window_dirty = true;
7b46268d
RK
5753
5754 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5755}
5756
5757static void shrink_ple_window(struct kvm_vcpu *vcpu)
5758{
5759 struct vcpu_vmx *vmx = to_vmx(vcpu);
5760 int old = vmx->ple_window;
5761
5762 vmx->ple_window = __shrink_ple_window(old,
5763 ple_window_shrink, ple_window);
5764
5765 if (vmx->ple_window != old)
5766 vmx->ple_window_dirty = true;
7b46268d
RK
5767
5768 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5769}
5770
5771/*
5772 * ple_window_actual_max is computed to be one grow_ple_window() below
5773 * ple_window_max. (See __grow_ple_window for the reason.)
5774 * This prevents overflows, because ple_window_max is int.
5775 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5776 * this process.
5777 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5778 */
5779static void update_ple_window_actual_max(void)
5780{
5781 ple_window_actual_max =
5782 __shrink_ple_window(max(ple_window_max, ple_window),
5783 ple_window_grow, INT_MIN);
5784}
5785
4b8d54f9
ZE
5786/*
5787 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5788 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5789 */
9fb41ba8 5790static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 5791{
b4a2d31d
RK
5792 if (ple_gap)
5793 grow_ple_window(vcpu);
5794
4b8d54f9
ZE
5795 skip_emulated_instruction(vcpu);
5796 kvm_vcpu_on_spin(vcpu);
5797
5798 return 1;
5799}
5800
87c00572 5801static int handle_nop(struct kvm_vcpu *vcpu)
59708670 5802{
87c00572 5803 skip_emulated_instruction(vcpu);
59708670
SY
5804 return 1;
5805}
5806
87c00572
GS
5807static int handle_mwait(struct kvm_vcpu *vcpu)
5808{
5809 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5810 return handle_nop(vcpu);
5811}
5812
5813static int handle_monitor(struct kvm_vcpu *vcpu)
5814{
5815 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5816 return handle_nop(vcpu);
5817}
5818
ff2f6fe9
NHE
5819/*
5820 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5821 * We could reuse a single VMCS for all the L2 guests, but we also want the
5822 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5823 * allows keeping them loaded on the processor, and in the future will allow
5824 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5825 * every entry if they never change.
5826 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5827 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5828 *
5829 * The following functions allocate and free a vmcs02 in this pool.
5830 */
5831
5832/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5833static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5834{
5835 struct vmcs02_list *item;
5836 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5837 if (item->vmptr == vmx->nested.current_vmptr) {
5838 list_move(&item->list, &vmx->nested.vmcs02_pool);
5839 return &item->vmcs02;
5840 }
5841
5842 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5843 /* Recycle the least recently used VMCS. */
5844 item = list_entry(vmx->nested.vmcs02_pool.prev,
5845 struct vmcs02_list, list);
5846 item->vmptr = vmx->nested.current_vmptr;
5847 list_move(&item->list, &vmx->nested.vmcs02_pool);
5848 return &item->vmcs02;
5849 }
5850
5851 /* Create a new VMCS */
0fa24ce3 5852 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
5853 if (!item)
5854 return NULL;
5855 item->vmcs02.vmcs = alloc_vmcs();
5856 if (!item->vmcs02.vmcs) {
5857 kfree(item);
5858 return NULL;
5859 }
5860 loaded_vmcs_init(&item->vmcs02);
5861 item->vmptr = vmx->nested.current_vmptr;
5862 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5863 vmx->nested.vmcs02_num++;
5864 return &item->vmcs02;
5865}
5866
5867/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5868static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5869{
5870 struct vmcs02_list *item;
5871 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5872 if (item->vmptr == vmptr) {
5873 free_loaded_vmcs(&item->vmcs02);
5874 list_del(&item->list);
5875 kfree(item);
5876 vmx->nested.vmcs02_num--;
5877 return;
5878 }
5879}
5880
5881/*
5882 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
5883 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5884 * must be &vmx->vmcs01.
ff2f6fe9
NHE
5885 */
5886static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5887{
5888 struct vmcs02_list *item, *n;
4fa7734c
PB
5889
5890 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 5891 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
5892 /*
5893 * Something will leak if the above WARN triggers. Better than
5894 * a use-after-free.
5895 */
5896 if (vmx->loaded_vmcs == &item->vmcs02)
5897 continue;
5898
5899 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
5900 list_del(&item->list);
5901 kfree(item);
4fa7734c 5902 vmx->nested.vmcs02_num--;
ff2f6fe9 5903 }
ff2f6fe9
NHE
5904}
5905
0658fbaa
ACL
5906/*
5907 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5908 * set the success or error code of an emulated VMX instruction, as specified
5909 * by Vol 2B, VMX Instruction Reference, "Conventions".
5910 */
5911static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5912{
5913 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5914 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5915 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5916}
5917
5918static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5919{
5920 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5921 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5922 X86_EFLAGS_SF | X86_EFLAGS_OF))
5923 | X86_EFLAGS_CF);
5924}
5925
145c28dd 5926static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
5927 u32 vm_instruction_error)
5928{
5929 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5930 /*
5931 * failValid writes the error number to the current VMCS, which
5932 * can't be done there isn't a current VMCS.
5933 */
5934 nested_vmx_failInvalid(vcpu);
5935 return;
5936 }
5937 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5938 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5939 X86_EFLAGS_SF | X86_EFLAGS_OF))
5940 | X86_EFLAGS_ZF);
5941 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5942 /*
5943 * We don't need to force a shadow sync because
5944 * VM_INSTRUCTION_ERROR is not shadowed
5945 */
5946}
145c28dd 5947
f4124500
JK
5948static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5949{
5950 struct vcpu_vmx *vmx =
5951 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5952
5953 vmx->nested.preemption_timer_expired = true;
5954 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5955 kvm_vcpu_kick(&vmx->vcpu);
5956
5957 return HRTIMER_NORESTART;
5958}
5959
19677e32
BD
5960/*
5961 * Decode the memory-address operand of a vmx instruction, as recorded on an
5962 * exit caused by such an instruction (run by a guest hypervisor).
5963 * On success, returns 0. When the operand is invalid, returns 1 and throws
5964 * #UD or #GP.
5965 */
5966static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5967 unsigned long exit_qualification,
5968 u32 vmx_instruction_info, gva_t *ret)
5969{
5970 /*
5971 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5972 * Execution", on an exit, vmx_instruction_info holds most of the
5973 * addressing components of the operand. Only the displacement part
5974 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5975 * For how an actual address is calculated from all these components,
5976 * refer to Vol. 1, "Operand Addressing".
5977 */
5978 int scaling = vmx_instruction_info & 3;
5979 int addr_size = (vmx_instruction_info >> 7) & 7;
5980 bool is_reg = vmx_instruction_info & (1u << 10);
5981 int seg_reg = (vmx_instruction_info >> 15) & 7;
5982 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5983 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5984 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5985 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5986
5987 if (is_reg) {
5988 kvm_queue_exception(vcpu, UD_VECTOR);
5989 return 1;
5990 }
5991
5992 /* Addr = segment_base + offset */
5993 /* offset = base + [index * scale] + displacement */
5994 *ret = vmx_get_segment_base(vcpu, seg_reg);
5995 if (base_is_valid)
5996 *ret += kvm_register_read(vcpu, base_reg);
5997 if (index_is_valid)
5998 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5999 *ret += exit_qualification; /* holds the displacement */
6000
6001 if (addr_size == 1) /* 32 bit */
6002 *ret &= 0xffffffff;
6003
6004 /*
6005 * TODO: throw #GP (and return 1) in various cases that the VM*
6006 * instructions require it - e.g., offset beyond segment limit,
6007 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6008 * address, and so on. Currently these are not checked.
6009 */
6010 return 0;
6011}
6012
3573e22c
BD
6013/*
6014 * This function performs the various checks including
6015 * - if it's 4KB aligned
6016 * - No bits beyond the physical address width are set
6017 * - Returns 0 on success or else 1
4291b588 6018 * (Intel SDM Section 30.3)
3573e22c 6019 */
4291b588
BD
6020static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6021 gpa_t *vmpointer)
3573e22c
BD
6022{
6023 gva_t gva;
6024 gpa_t vmptr;
6025 struct x86_exception e;
6026 struct page *page;
6027 struct vcpu_vmx *vmx = to_vmx(vcpu);
6028 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6029
6030 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6031 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6032 return 1;
6033
6034 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6035 sizeof(vmptr), &e)) {
6036 kvm_inject_page_fault(vcpu, &e);
6037 return 1;
6038 }
6039
6040 switch (exit_reason) {
6041 case EXIT_REASON_VMON:
6042 /*
6043 * SDM 3: 24.11.5
6044 * The first 4 bytes of VMXON region contain the supported
6045 * VMCS revision identifier
6046 *
6047 * Note - IA32_VMX_BASIC[48] will never be 1
6048 * for the nested case;
6049 * which replaces physical address width with 32
6050 *
6051 */
bc39c4db 6052 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6053 nested_vmx_failInvalid(vcpu);
6054 skip_emulated_instruction(vcpu);
6055 return 1;
6056 }
6057
6058 page = nested_get_page(vcpu, vmptr);
6059 if (page == NULL ||
6060 *(u32 *)kmap(page) != VMCS12_REVISION) {
6061 nested_vmx_failInvalid(vcpu);
6062 kunmap(page);
6063 skip_emulated_instruction(vcpu);
6064 return 1;
6065 }
6066 kunmap(page);
6067 vmx->nested.vmxon_ptr = vmptr;
6068 break;
4291b588 6069 case EXIT_REASON_VMCLEAR:
bc39c4db 6070 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6071 nested_vmx_failValid(vcpu,
6072 VMXERR_VMCLEAR_INVALID_ADDRESS);
6073 skip_emulated_instruction(vcpu);
6074 return 1;
6075 }
6076
6077 if (vmptr == vmx->nested.vmxon_ptr) {
6078 nested_vmx_failValid(vcpu,
6079 VMXERR_VMCLEAR_VMXON_POINTER);
6080 skip_emulated_instruction(vcpu);
6081 return 1;
6082 }
6083 break;
6084 case EXIT_REASON_VMPTRLD:
bc39c4db 6085 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6086 nested_vmx_failValid(vcpu,
6087 VMXERR_VMPTRLD_INVALID_ADDRESS);
6088 skip_emulated_instruction(vcpu);
6089 return 1;
6090 }
3573e22c 6091
4291b588
BD
6092 if (vmptr == vmx->nested.vmxon_ptr) {
6093 nested_vmx_failValid(vcpu,
6094 VMXERR_VMCLEAR_VMXON_POINTER);
6095 skip_emulated_instruction(vcpu);
6096 return 1;
6097 }
6098 break;
3573e22c
BD
6099 default:
6100 return 1; /* shouldn't happen */
6101 }
6102
4291b588
BD
6103 if (vmpointer)
6104 *vmpointer = vmptr;
3573e22c
BD
6105 return 0;
6106}
6107
ec378aee
NHE
6108/*
6109 * Emulate the VMXON instruction.
6110 * Currently, we just remember that VMX is active, and do not save or even
6111 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6112 * do not currently need to store anything in that guest-allocated memory
6113 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6114 * argument is different from the VMXON pointer (which the spec says they do).
6115 */
6116static int handle_vmon(struct kvm_vcpu *vcpu)
6117{
6118 struct kvm_segment cs;
6119 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6120 struct vmcs *shadow_vmcs;
b3897a49
NHE
6121 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6122 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6123
6124 /* The Intel VMX Instruction Reference lists a bunch of bits that
6125 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6126 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6127 * Otherwise, we should fail with #UD. We test these now:
6128 */
6129 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6130 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6131 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6132 kvm_queue_exception(vcpu, UD_VECTOR);
6133 return 1;
6134 }
6135
6136 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6137 if (is_long_mode(vcpu) && !cs.l) {
6138 kvm_queue_exception(vcpu, UD_VECTOR);
6139 return 1;
6140 }
6141
6142 if (vmx_get_cpl(vcpu)) {
6143 kvm_inject_gp(vcpu, 0);
6144 return 1;
6145 }
3573e22c 6146
4291b588 6147 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6148 return 1;
6149
145c28dd
AG
6150 if (vmx->nested.vmxon) {
6151 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6152 skip_emulated_instruction(vcpu);
6153 return 1;
6154 }
b3897a49
NHE
6155
6156 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6157 != VMXON_NEEDED_FEATURES) {
6158 kvm_inject_gp(vcpu, 0);
6159 return 1;
6160 }
6161
8de48833
AG
6162 if (enable_shadow_vmcs) {
6163 shadow_vmcs = alloc_vmcs();
6164 if (!shadow_vmcs)
6165 return -ENOMEM;
6166 /* mark vmcs as shadow */
6167 shadow_vmcs->revision_id |= (1u << 31);
6168 /* init shadow vmcs */
6169 vmcs_clear(shadow_vmcs);
6170 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6171 }
ec378aee 6172
ff2f6fe9
NHE
6173 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6174 vmx->nested.vmcs02_num = 0;
6175
f4124500
JK
6176 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6177 HRTIMER_MODE_REL);
6178 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6179
ec378aee
NHE
6180 vmx->nested.vmxon = true;
6181
6182 skip_emulated_instruction(vcpu);
a25eb114 6183 nested_vmx_succeed(vcpu);
ec378aee
NHE
6184 return 1;
6185}
6186
6187/*
6188 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6189 * for running VMX instructions (except VMXON, whose prerequisites are
6190 * slightly different). It also specifies what exception to inject otherwise.
6191 */
6192static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6193{
6194 struct kvm_segment cs;
6195 struct vcpu_vmx *vmx = to_vmx(vcpu);
6196
6197 if (!vmx->nested.vmxon) {
6198 kvm_queue_exception(vcpu, UD_VECTOR);
6199 return 0;
6200 }
6201
6202 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6203 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6204 (is_long_mode(vcpu) && !cs.l)) {
6205 kvm_queue_exception(vcpu, UD_VECTOR);
6206 return 0;
6207 }
6208
6209 if (vmx_get_cpl(vcpu)) {
6210 kvm_inject_gp(vcpu, 0);
6211 return 0;
6212 }
6213
6214 return 1;
6215}
6216
e7953d7f
AG
6217static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6218{
8a1b9dd0 6219 u32 exec_control;
9a2a05b9
PB
6220 if (vmx->nested.current_vmptr == -1ull)
6221 return;
6222
6223 /* current_vmptr and current_vmcs12 are always set/reset together */
6224 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6225 return;
6226
012f83cb 6227 if (enable_shadow_vmcs) {
9a2a05b9
PB
6228 /* copy to memory all shadowed fields in case
6229 they were modified */
6230 copy_shadow_to_vmcs12(vmx);
6231 vmx->nested.sync_shadow_vmcs = false;
6232 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6233 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6234 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6235 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6236 }
e7953d7f
AG
6237 kunmap(vmx->nested.current_vmcs12_page);
6238 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6239 vmx->nested.current_vmptr = -1ull;
6240 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6241}
6242
ec378aee
NHE
6243/*
6244 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6245 * just stops using VMX.
6246 */
6247static void free_nested(struct vcpu_vmx *vmx)
6248{
6249 if (!vmx->nested.vmxon)
6250 return;
9a2a05b9 6251
ec378aee 6252 vmx->nested.vmxon = false;
9a2a05b9 6253 nested_release_vmcs12(vmx);
e7953d7f
AG
6254 if (enable_shadow_vmcs)
6255 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6256 /* Unpin physical memory we referred to in current vmcs02 */
6257 if (vmx->nested.apic_access_page) {
6258 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6259 vmx->nested.apic_access_page = NULL;
fe3ef05c 6260 }
a7c0b07d
WL
6261 if (vmx->nested.virtual_apic_page) {
6262 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6263 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6264 }
ff2f6fe9
NHE
6265
6266 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6267}
6268
6269/* Emulate the VMXOFF instruction */
6270static int handle_vmoff(struct kvm_vcpu *vcpu)
6271{
6272 if (!nested_vmx_check_permission(vcpu))
6273 return 1;
6274 free_nested(to_vmx(vcpu));
6275 skip_emulated_instruction(vcpu);
a25eb114 6276 nested_vmx_succeed(vcpu);
ec378aee
NHE
6277 return 1;
6278}
6279
27d6c865
NHE
6280/* Emulate the VMCLEAR instruction */
6281static int handle_vmclear(struct kvm_vcpu *vcpu)
6282{
6283 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6284 gpa_t vmptr;
6285 struct vmcs12 *vmcs12;
6286 struct page *page;
27d6c865
NHE
6287
6288 if (!nested_vmx_check_permission(vcpu))
6289 return 1;
6290
4291b588 6291 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6292 return 1;
27d6c865 6293
9a2a05b9 6294 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6295 nested_release_vmcs12(vmx);
27d6c865
NHE
6296
6297 page = nested_get_page(vcpu, vmptr);
6298 if (page == NULL) {
6299 /*
6300 * For accurate processor emulation, VMCLEAR beyond available
6301 * physical memory should do nothing at all. However, it is
6302 * possible that a nested vmx bug, not a guest hypervisor bug,
6303 * resulted in this case, so let's shut down before doing any
6304 * more damage:
6305 */
6306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6307 return 1;
6308 }
6309 vmcs12 = kmap(page);
6310 vmcs12->launch_state = 0;
6311 kunmap(page);
6312 nested_release_page(page);
6313
6314 nested_free_vmcs02(vmx, vmptr);
6315
6316 skip_emulated_instruction(vcpu);
6317 nested_vmx_succeed(vcpu);
6318 return 1;
6319}
6320
cd232ad0
NHE
6321static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6322
6323/* Emulate the VMLAUNCH instruction */
6324static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6325{
6326 return nested_vmx_run(vcpu, true);
6327}
6328
6329/* Emulate the VMRESUME instruction */
6330static int handle_vmresume(struct kvm_vcpu *vcpu)
6331{
6332
6333 return nested_vmx_run(vcpu, false);
6334}
6335
49f705c5
NHE
6336enum vmcs_field_type {
6337 VMCS_FIELD_TYPE_U16 = 0,
6338 VMCS_FIELD_TYPE_U64 = 1,
6339 VMCS_FIELD_TYPE_U32 = 2,
6340 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6341};
6342
6343static inline int vmcs_field_type(unsigned long field)
6344{
6345 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6346 return VMCS_FIELD_TYPE_U32;
6347 return (field >> 13) & 0x3 ;
6348}
6349
6350static inline int vmcs_field_readonly(unsigned long field)
6351{
6352 return (((field >> 10) & 0x3) == 1);
6353}
6354
6355/*
6356 * Read a vmcs12 field. Since these can have varying lengths and we return
6357 * one type, we chose the biggest type (u64) and zero-extend the return value
6358 * to that size. Note that the caller, handle_vmread, might need to use only
6359 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6360 * 64-bit fields are to be returned).
6361 */
6362static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6363 unsigned long field, u64 *ret)
6364{
6365 short offset = vmcs_field_to_offset(field);
6366 char *p;
6367
6368 if (offset < 0)
6369 return 0;
6370
6371 p = ((char *)(get_vmcs12(vcpu))) + offset;
6372
6373 switch (vmcs_field_type(field)) {
6374 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6375 *ret = *((natural_width *)p);
6376 return 1;
6377 case VMCS_FIELD_TYPE_U16:
6378 *ret = *((u16 *)p);
6379 return 1;
6380 case VMCS_FIELD_TYPE_U32:
6381 *ret = *((u32 *)p);
6382 return 1;
6383 case VMCS_FIELD_TYPE_U64:
6384 *ret = *((u64 *)p);
6385 return 1;
6386 default:
6387 return 0; /* can never happen. */
6388 }
6389}
6390
20b97fea
AG
6391
6392static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6393 unsigned long field, u64 field_value){
6394 short offset = vmcs_field_to_offset(field);
6395 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6396 if (offset < 0)
6397 return false;
6398
6399 switch (vmcs_field_type(field)) {
6400 case VMCS_FIELD_TYPE_U16:
6401 *(u16 *)p = field_value;
6402 return true;
6403 case VMCS_FIELD_TYPE_U32:
6404 *(u32 *)p = field_value;
6405 return true;
6406 case VMCS_FIELD_TYPE_U64:
6407 *(u64 *)p = field_value;
6408 return true;
6409 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6410 *(natural_width *)p = field_value;
6411 return true;
6412 default:
6413 return false; /* can never happen. */
6414 }
6415
6416}
6417
16f5b903
AG
6418static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6419{
6420 int i;
6421 unsigned long field;
6422 u64 field_value;
6423 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
6424 const unsigned long *fields = shadow_read_write_fields;
6425 const int num_fields = max_shadow_read_write_fields;
16f5b903 6426
282da870
JK
6427 preempt_disable();
6428
16f5b903
AG
6429 vmcs_load(shadow_vmcs);
6430
6431 for (i = 0; i < num_fields; i++) {
6432 field = fields[i];
6433 switch (vmcs_field_type(field)) {
6434 case VMCS_FIELD_TYPE_U16:
6435 field_value = vmcs_read16(field);
6436 break;
6437 case VMCS_FIELD_TYPE_U32:
6438 field_value = vmcs_read32(field);
6439 break;
6440 case VMCS_FIELD_TYPE_U64:
6441 field_value = vmcs_read64(field);
6442 break;
6443 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6444 field_value = vmcs_readl(field);
6445 break;
6446 }
6447 vmcs12_write_any(&vmx->vcpu, field, field_value);
6448 }
6449
6450 vmcs_clear(shadow_vmcs);
6451 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
6452
6453 preempt_enable();
16f5b903
AG
6454}
6455
c3114420
AG
6456static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6457{
c2bae893
MK
6458 const unsigned long *fields[] = {
6459 shadow_read_write_fields,
6460 shadow_read_only_fields
c3114420 6461 };
c2bae893 6462 const int max_fields[] = {
c3114420
AG
6463 max_shadow_read_write_fields,
6464 max_shadow_read_only_fields
6465 };
6466 int i, q;
6467 unsigned long field;
6468 u64 field_value = 0;
6469 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6470
6471 vmcs_load(shadow_vmcs);
6472
c2bae893 6473 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
6474 for (i = 0; i < max_fields[q]; i++) {
6475 field = fields[q][i];
6476 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6477
6478 switch (vmcs_field_type(field)) {
6479 case VMCS_FIELD_TYPE_U16:
6480 vmcs_write16(field, (u16)field_value);
6481 break;
6482 case VMCS_FIELD_TYPE_U32:
6483 vmcs_write32(field, (u32)field_value);
6484 break;
6485 case VMCS_FIELD_TYPE_U64:
6486 vmcs_write64(field, (u64)field_value);
6487 break;
6488 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6489 vmcs_writel(field, (long)field_value);
6490 break;
6491 }
6492 }
6493 }
6494
6495 vmcs_clear(shadow_vmcs);
6496 vmcs_load(vmx->loaded_vmcs->vmcs);
6497}
6498
49f705c5
NHE
6499/*
6500 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6501 * used before) all generate the same failure when it is missing.
6502 */
6503static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6504{
6505 struct vcpu_vmx *vmx = to_vmx(vcpu);
6506 if (vmx->nested.current_vmptr == -1ull) {
6507 nested_vmx_failInvalid(vcpu);
6508 skip_emulated_instruction(vcpu);
6509 return 0;
6510 }
6511 return 1;
6512}
6513
6514static int handle_vmread(struct kvm_vcpu *vcpu)
6515{
6516 unsigned long field;
6517 u64 field_value;
6518 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6519 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6520 gva_t gva = 0;
6521
6522 if (!nested_vmx_check_permission(vcpu) ||
6523 !nested_vmx_check_vmcs12(vcpu))
6524 return 1;
6525
6526 /* Decode instruction info and find the field to read */
27e6fb5d 6527 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
6528 /* Read the field, zero-extended to a u64 field_value */
6529 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6530 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6531 skip_emulated_instruction(vcpu);
6532 return 1;
6533 }
6534 /*
6535 * Now copy part of this value to register or memory, as requested.
6536 * Note that the number of bits actually copied is 32 or 64 depending
6537 * on the guest's mode (32 or 64 bit), not on the given field's length.
6538 */
6539 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 6540 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
6541 field_value);
6542 } else {
6543 if (get_vmx_mem_address(vcpu, exit_qualification,
6544 vmx_instruction_info, &gva))
6545 return 1;
6546 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6547 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6548 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6549 }
6550
6551 nested_vmx_succeed(vcpu);
6552 skip_emulated_instruction(vcpu);
6553 return 1;
6554}
6555
6556
6557static int handle_vmwrite(struct kvm_vcpu *vcpu)
6558{
6559 unsigned long field;
6560 gva_t gva;
6561 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6562 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
6563 /* The value to write might be 32 or 64 bits, depending on L1's long
6564 * mode, and eventually we need to write that into a field of several
6565 * possible lengths. The code below first zero-extends the value to 64
6566 * bit (field_value), and then copies only the approriate number of
6567 * bits into the vmcs12 field.
6568 */
6569 u64 field_value = 0;
6570 struct x86_exception e;
6571
6572 if (!nested_vmx_check_permission(vcpu) ||
6573 !nested_vmx_check_vmcs12(vcpu))
6574 return 1;
6575
6576 if (vmx_instruction_info & (1u << 10))
27e6fb5d 6577 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
6578 (((vmx_instruction_info) >> 3) & 0xf));
6579 else {
6580 if (get_vmx_mem_address(vcpu, exit_qualification,
6581 vmx_instruction_info, &gva))
6582 return 1;
6583 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 6584 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
6585 kvm_inject_page_fault(vcpu, &e);
6586 return 1;
6587 }
6588 }
6589
6590
27e6fb5d 6591 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
6592 if (vmcs_field_readonly(field)) {
6593 nested_vmx_failValid(vcpu,
6594 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6595 skip_emulated_instruction(vcpu);
6596 return 1;
6597 }
6598
20b97fea 6599 if (!vmcs12_write_any(vcpu, field, field_value)) {
49f705c5
NHE
6600 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6601 skip_emulated_instruction(vcpu);
6602 return 1;
6603 }
6604
6605 nested_vmx_succeed(vcpu);
6606 skip_emulated_instruction(vcpu);
6607 return 1;
6608}
6609
63846663
NHE
6610/* Emulate the VMPTRLD instruction */
6611static int handle_vmptrld(struct kvm_vcpu *vcpu)
6612{
6613 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 6614 gpa_t vmptr;
8a1b9dd0 6615 u32 exec_control;
63846663
NHE
6616
6617 if (!nested_vmx_check_permission(vcpu))
6618 return 1;
6619
4291b588 6620 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 6621 return 1;
63846663
NHE
6622
6623 if (vmx->nested.current_vmptr != vmptr) {
6624 struct vmcs12 *new_vmcs12;
6625 struct page *page;
6626 page = nested_get_page(vcpu, vmptr);
6627 if (page == NULL) {
6628 nested_vmx_failInvalid(vcpu);
6629 skip_emulated_instruction(vcpu);
6630 return 1;
6631 }
6632 new_vmcs12 = kmap(page);
6633 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6634 kunmap(page);
6635 nested_release_page_clean(page);
6636 nested_vmx_failValid(vcpu,
6637 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6638 skip_emulated_instruction(vcpu);
6639 return 1;
6640 }
63846663 6641
9a2a05b9 6642 nested_release_vmcs12(vmx);
63846663
NHE
6643 vmx->nested.current_vmptr = vmptr;
6644 vmx->nested.current_vmcs12 = new_vmcs12;
6645 vmx->nested.current_vmcs12_page = page;
012f83cb 6646 if (enable_shadow_vmcs) {
8a1b9dd0
AG
6647 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6648 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6649 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6650 vmcs_write64(VMCS_LINK_POINTER,
6651 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
6652 vmx->nested.sync_shadow_vmcs = true;
6653 }
63846663
NHE
6654 }
6655
6656 nested_vmx_succeed(vcpu);
6657 skip_emulated_instruction(vcpu);
6658 return 1;
6659}
6660
6a4d7550
NHE
6661/* Emulate the VMPTRST instruction */
6662static int handle_vmptrst(struct kvm_vcpu *vcpu)
6663{
6664 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6665 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6666 gva_t vmcs_gva;
6667 struct x86_exception e;
6668
6669 if (!nested_vmx_check_permission(vcpu))
6670 return 1;
6671
6672 if (get_vmx_mem_address(vcpu, exit_qualification,
6673 vmx_instruction_info, &vmcs_gva))
6674 return 1;
6675 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6676 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6677 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6678 sizeof(u64), &e)) {
6679 kvm_inject_page_fault(vcpu, &e);
6680 return 1;
6681 }
6682 nested_vmx_succeed(vcpu);
6683 skip_emulated_instruction(vcpu);
6684 return 1;
6685}
6686
bfd0a56b
NHE
6687/* Emulate the INVEPT instruction */
6688static int handle_invept(struct kvm_vcpu *vcpu)
6689{
6690 u32 vmx_instruction_info, types;
6691 unsigned long type;
6692 gva_t gva;
6693 struct x86_exception e;
6694 struct {
6695 u64 eptp, gpa;
6696 } operand;
bfd0a56b
NHE
6697
6698 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6699 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6700 kvm_queue_exception(vcpu, UD_VECTOR);
6701 return 1;
6702 }
6703
6704 if (!nested_vmx_check_permission(vcpu))
6705 return 1;
6706
6707 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6708 kvm_queue_exception(vcpu, UD_VECTOR);
6709 return 1;
6710 }
6711
6712 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 6713 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b
NHE
6714
6715 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6716
6717 if (!(types & (1UL << type))) {
6718 nested_vmx_failValid(vcpu,
6719 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6720 return 1;
6721 }
6722
6723 /* According to the Intel VMX instruction reference, the memory
6724 * operand is read even if it isn't needed (e.g., for type==global)
6725 */
6726 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6727 vmx_instruction_info, &gva))
6728 return 1;
6729 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6730 sizeof(operand), &e)) {
6731 kvm_inject_page_fault(vcpu, &e);
6732 return 1;
6733 }
6734
6735 switch (type) {
bfd0a56b
NHE
6736 case VMX_EPT_EXTENT_GLOBAL:
6737 kvm_mmu_sync_roots(vcpu);
77c3913b 6738 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
6739 nested_vmx_succeed(vcpu);
6740 break;
6741 default:
4b855078 6742 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
6743 BUG_ON(1);
6744 break;
6745 }
6746
6747 skip_emulated_instruction(vcpu);
6748 return 1;
6749}
6750
a642fc30
PM
6751static int handle_invvpid(struct kvm_vcpu *vcpu)
6752{
6753 kvm_queue_exception(vcpu, UD_VECTOR);
6754 return 1;
6755}
6756
6aa8b732
AK
6757/*
6758 * The exit handlers return 1 if the exit was handled fully and guest execution
6759 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6760 * to be done to userspace and return 0.
6761 */
772e0318 6762static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
6763 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6764 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 6765 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 6766 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 6767 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
6768 [EXIT_REASON_CR_ACCESS] = handle_cr,
6769 [EXIT_REASON_DR_ACCESS] = handle_dr,
6770 [EXIT_REASON_CPUID] = handle_cpuid,
6771 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6772 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6773 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6774 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 6775 [EXIT_REASON_INVD] = handle_invd,
a7052897 6776 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 6777 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 6778 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 6779 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 6780 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 6781 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 6782 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 6783 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 6784 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 6785 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
6786 [EXIT_REASON_VMOFF] = handle_vmoff,
6787 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
6788 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6789 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 6790 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 6791 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 6792 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 6793 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 6794 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 6795 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
6796 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6797 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 6798 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572
GS
6799 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
6800 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 6801 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 6802 [EXIT_REASON_INVVPID] = handle_invvpid,
6aa8b732
AK
6803};
6804
6805static const int kvm_vmx_max_exit_handlers =
50a3485c 6806 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 6807
908a7bdd
JK
6808static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6809 struct vmcs12 *vmcs12)
6810{
6811 unsigned long exit_qualification;
6812 gpa_t bitmap, last_bitmap;
6813 unsigned int port;
6814 int size;
6815 u8 b;
6816
908a7bdd 6817 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 6818 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
6819
6820 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6821
6822 port = exit_qualification >> 16;
6823 size = (exit_qualification & 7) + 1;
6824
6825 last_bitmap = (gpa_t)-1;
6826 b = -1;
6827
6828 while (size > 0) {
6829 if (port < 0x8000)
6830 bitmap = vmcs12->io_bitmap_a;
6831 else if (port < 0x10000)
6832 bitmap = vmcs12->io_bitmap_b;
6833 else
6834 return 1;
6835 bitmap += (port & 0x7fff) / 8;
6836
6837 if (last_bitmap != bitmap)
6838 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6839 return 1;
6840 if (b & (1 << (port & 7)))
6841 return 1;
6842
6843 port++;
6844 size--;
6845 last_bitmap = bitmap;
6846 }
6847
6848 return 0;
6849}
6850
644d711a
NHE
6851/*
6852 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6853 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6854 * disinterest in the current event (read or write a specific MSR) by using an
6855 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6856 */
6857static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6858 struct vmcs12 *vmcs12, u32 exit_reason)
6859{
6860 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6861 gpa_t bitmap;
6862
cbd29cb6 6863 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
6864 return 1;
6865
6866 /*
6867 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6868 * for the four combinations of read/write and low/high MSR numbers.
6869 * First we need to figure out which of the four to use:
6870 */
6871 bitmap = vmcs12->msr_bitmap;
6872 if (exit_reason == EXIT_REASON_MSR_WRITE)
6873 bitmap += 2048;
6874 if (msr_index >= 0xc0000000) {
6875 msr_index -= 0xc0000000;
6876 bitmap += 1024;
6877 }
6878
6879 /* Then read the msr_index'th bit from this bitmap: */
6880 if (msr_index < 1024*8) {
6881 unsigned char b;
bd31a7f5
JK
6882 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6883 return 1;
644d711a
NHE
6884 return 1 & (b >> (msr_index & 7));
6885 } else
6886 return 1; /* let L1 handle the wrong parameter */
6887}
6888
6889/*
6890 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6891 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6892 * intercept (via guest_host_mask etc.) the current event.
6893 */
6894static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6895 struct vmcs12 *vmcs12)
6896{
6897 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6898 int cr = exit_qualification & 15;
6899 int reg = (exit_qualification >> 8) & 15;
1e32c079 6900 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
6901
6902 switch ((exit_qualification >> 4) & 3) {
6903 case 0: /* mov to cr */
6904 switch (cr) {
6905 case 0:
6906 if (vmcs12->cr0_guest_host_mask &
6907 (val ^ vmcs12->cr0_read_shadow))
6908 return 1;
6909 break;
6910 case 3:
6911 if ((vmcs12->cr3_target_count >= 1 &&
6912 vmcs12->cr3_target_value0 == val) ||
6913 (vmcs12->cr3_target_count >= 2 &&
6914 vmcs12->cr3_target_value1 == val) ||
6915 (vmcs12->cr3_target_count >= 3 &&
6916 vmcs12->cr3_target_value2 == val) ||
6917 (vmcs12->cr3_target_count >= 4 &&
6918 vmcs12->cr3_target_value3 == val))
6919 return 0;
6920 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6921 return 1;
6922 break;
6923 case 4:
6924 if (vmcs12->cr4_guest_host_mask &
6925 (vmcs12->cr4_read_shadow ^ val))
6926 return 1;
6927 break;
6928 case 8:
6929 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6930 return 1;
6931 break;
6932 }
6933 break;
6934 case 2: /* clts */
6935 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6936 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6937 return 1;
6938 break;
6939 case 1: /* mov from cr */
6940 switch (cr) {
6941 case 3:
6942 if (vmcs12->cpu_based_vm_exec_control &
6943 CPU_BASED_CR3_STORE_EXITING)
6944 return 1;
6945 break;
6946 case 8:
6947 if (vmcs12->cpu_based_vm_exec_control &
6948 CPU_BASED_CR8_STORE_EXITING)
6949 return 1;
6950 break;
6951 }
6952 break;
6953 case 3: /* lmsw */
6954 /*
6955 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6956 * cr0. Other attempted changes are ignored, with no exit.
6957 */
6958 if (vmcs12->cr0_guest_host_mask & 0xe &
6959 (val ^ vmcs12->cr0_read_shadow))
6960 return 1;
6961 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6962 !(vmcs12->cr0_read_shadow & 0x1) &&
6963 (val & 0x1))
6964 return 1;
6965 break;
6966 }
6967 return 0;
6968}
6969
6970/*
6971 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6972 * should handle it ourselves in L0 (and then continue L2). Only call this
6973 * when in is_guest_mode (L2).
6974 */
6975static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6976{
644d711a
NHE
6977 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6978 struct vcpu_vmx *vmx = to_vmx(vcpu);
6979 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 6980 u32 exit_reason = vmx->exit_reason;
644d711a 6981
542060ea
JK
6982 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6983 vmcs_readl(EXIT_QUALIFICATION),
6984 vmx->idt_vectoring_info,
6985 intr_info,
6986 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6987 KVM_ISA_VMX);
6988
644d711a
NHE
6989 if (vmx->nested.nested_run_pending)
6990 return 0;
6991
6992 if (unlikely(vmx->fail)) {
bd80158a
JK
6993 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6994 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
6995 return 1;
6996 }
6997
6998 switch (exit_reason) {
6999 case EXIT_REASON_EXCEPTION_NMI:
7000 if (!is_exception(intr_info))
7001 return 0;
7002 else if (is_page_fault(intr_info))
7003 return enable_ept;
e504c909 7004 else if (is_no_device(intr_info) &&
ccf9844e 7005 !(vmcs12->guest_cr0 & X86_CR0_TS))
e504c909 7006 return 0;
644d711a
NHE
7007 return vmcs12->exception_bitmap &
7008 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7009 case EXIT_REASON_EXTERNAL_INTERRUPT:
7010 return 0;
7011 case EXIT_REASON_TRIPLE_FAULT:
7012 return 1;
7013 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7014 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7015 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7016 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
7017 case EXIT_REASON_TASK_SWITCH:
7018 return 1;
7019 case EXIT_REASON_CPUID:
bc613494
MT
7020 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7021 return 0;
644d711a
NHE
7022 return 1;
7023 case EXIT_REASON_HLT:
7024 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7025 case EXIT_REASON_INVD:
7026 return 1;
7027 case EXIT_REASON_INVLPG:
7028 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7029 case EXIT_REASON_RDPMC:
7030 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7031 case EXIT_REASON_RDTSC:
7032 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7033 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7034 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7035 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7036 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7037 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7038 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7039 /*
7040 * VMX instructions trap unconditionally. This allows L1 to
7041 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7042 */
7043 return 1;
7044 case EXIT_REASON_CR_ACCESS:
7045 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7046 case EXIT_REASON_DR_ACCESS:
7047 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7048 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7049 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7050 case EXIT_REASON_MSR_READ:
7051 case EXIT_REASON_MSR_WRITE:
7052 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7053 case EXIT_REASON_INVALID_STATE:
7054 return 1;
7055 case EXIT_REASON_MWAIT_INSTRUCTION:
7056 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7057 case EXIT_REASON_MONITOR_INSTRUCTION:
7058 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7059 case EXIT_REASON_PAUSE_INSTRUCTION:
7060 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7061 nested_cpu_has2(vmcs12,
7062 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7063 case EXIT_REASON_MCE_DURING_VMENTRY:
7064 return 0;
7065 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7066 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7067 case EXIT_REASON_APIC_ACCESS:
7068 return nested_cpu_has2(vmcs12,
7069 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7070 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7071 /*
7072 * L0 always deals with the EPT violation. If nested EPT is
7073 * used, and the nested mmu code discovers that the address is
7074 * missing in the guest EPT table (EPT12), the EPT violation
7075 * will be injected with nested_ept_inject_page_fault()
7076 */
7077 return 0;
644d711a 7078 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7079 /*
7080 * L2 never uses directly L1's EPT, but rather L0's own EPT
7081 * table (shadow on EPT) or a merged EPT table that L0 built
7082 * (EPT on EPT). So any problems with the structure of the
7083 * table is L0's fault.
7084 */
644d711a
NHE
7085 return 0;
7086 case EXIT_REASON_WBINVD:
7087 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7088 case EXIT_REASON_XSETBV:
7089 return 1;
7090 default:
7091 return 1;
7092 }
7093}
7094
586f9607
AK
7095static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7096{
7097 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7098 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7099}
7100
6aa8b732
AK
7101/*
7102 * The guest has exited. See if we can fix it or if we need userspace
7103 * assistance.
7104 */
851ba692 7105static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 7106{
29bd8a78 7107 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 7108 u32 exit_reason = vmx->exit_reason;
1155f76a 7109 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 7110
80ced186 7111 /* If guest state is invalid, start emulating */
14168786 7112 if (vmx->emulation_required)
80ced186 7113 return handle_invalid_guest_state(vcpu);
1d5a4d9b 7114
644d711a 7115 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
7116 nested_vmx_vmexit(vcpu, exit_reason,
7117 vmcs_read32(VM_EXIT_INTR_INFO),
7118 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
7119 return 1;
7120 }
7121
5120702e
MG
7122 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7123 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7124 vcpu->run->fail_entry.hardware_entry_failure_reason
7125 = exit_reason;
7126 return 0;
7127 }
7128
29bd8a78 7129 if (unlikely(vmx->fail)) {
851ba692
AK
7130 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7131 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
7132 = vmcs_read32(VM_INSTRUCTION_ERROR);
7133 return 0;
7134 }
6aa8b732 7135
b9bf6882
XG
7136 /*
7137 * Note:
7138 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7139 * delivery event since it indicates guest is accessing MMIO.
7140 * The vm-exit can be triggered again after return to guest that
7141 * will cause infinite loop.
7142 */
d77c26fc 7143 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 7144 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 7145 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
7146 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7147 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7148 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7149 vcpu->run->internal.ndata = 2;
7150 vcpu->run->internal.data[0] = vectoring_info;
7151 vcpu->run->internal.data[1] = exit_reason;
7152 return 0;
7153 }
3b86cd99 7154
644d711a
NHE
7155 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7156 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 7157 get_vmcs12(vcpu))))) {
c4282df9 7158 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 7159 vmx->soft_vnmi_blocked = 0;
3b86cd99 7160 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 7161 vcpu->arch.nmi_pending) {
3b86cd99
JK
7162 /*
7163 * This CPU don't support us in finding the end of an
7164 * NMI-blocked window if the guest runs with IRQs
7165 * disabled. So we pull the trigger after 1 s of
7166 * futile waiting, but inform the user about this.
7167 */
7168 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7169 "state on VCPU %d after 1 s timeout\n",
7170 __func__, vcpu->vcpu_id);
7171 vmx->soft_vnmi_blocked = 0;
3b86cd99 7172 }
3b86cd99
JK
7173 }
7174
6aa8b732
AK
7175 if (exit_reason < kvm_vmx_max_exit_handlers
7176 && kvm_vmx_exit_handlers[exit_reason])
851ba692 7177 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 7178 else {
2bc19dc3
MT
7179 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7180 kvm_queue_exception(vcpu, UD_VECTOR);
7181 return 1;
6aa8b732 7182 }
6aa8b732
AK
7183}
7184
95ba8273 7185static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 7186{
a7c0b07d
WL
7187 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7188
7189 if (is_guest_mode(vcpu) &&
7190 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7191 return;
7192
95ba8273 7193 if (irr == -1 || tpr < irr) {
6e5d865c
YS
7194 vmcs_write32(TPR_THRESHOLD, 0);
7195 return;
7196 }
7197
95ba8273 7198 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
7199}
7200
8d14695f
YZ
7201static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7202{
7203 u32 sec_exec_control;
7204
7205 /*
7206 * There is not point to enable virtualize x2apic without enable
7207 * apicv
7208 */
c7c9c56c
YZ
7209 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7210 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
7211 return;
7212
7213 if (!vm_need_tpr_shadow(vcpu->kvm))
7214 return;
7215
7216 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7217
7218 if (set) {
7219 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7220 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7221 } else {
7222 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7223 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7224 }
7225 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7226
7227 vmx_set_msr_bitmap(vcpu);
7228}
7229
38b99173
TC
7230static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7231{
7232 struct vcpu_vmx *vmx = to_vmx(vcpu);
7233
7234 /*
7235 * Currently we do not handle the nested case where L2 has an
7236 * APIC access page of its own; that page is still pinned.
7237 * Hence, we skip the case where the VCPU is in guest mode _and_
7238 * L1 prepared an APIC access page for L2.
7239 *
7240 * For the case where L1 and L2 share the same APIC access page
7241 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7242 * in the vmcs12), this function will only update either the vmcs01
7243 * or the vmcs02. If the former, the vmcs02 will be updated by
7244 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7245 * the next L2->L1 exit.
7246 */
7247 if (!is_guest_mode(vcpu) ||
7248 !nested_cpu_has2(vmx->nested.current_vmcs12,
7249 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7250 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7251}
7252
c7c9c56c
YZ
7253static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7254{
7255 u16 status;
7256 u8 old;
7257
7258 if (!vmx_vm_has_apicv(kvm))
7259 return;
7260
7261 if (isr == -1)
7262 isr = 0;
7263
7264 status = vmcs_read16(GUEST_INTR_STATUS);
7265 old = status >> 8;
7266 if (isr != old) {
7267 status &= 0xff;
7268 status |= isr << 8;
7269 vmcs_write16(GUEST_INTR_STATUS, status);
7270 }
7271}
7272
7273static void vmx_set_rvi(int vector)
7274{
7275 u16 status;
7276 u8 old;
7277
7278 status = vmcs_read16(GUEST_INTR_STATUS);
7279 old = (u8)status & 0xff;
7280 if ((u8)vector != old) {
7281 status &= ~0xff;
7282 status |= (u8)vector;
7283 vmcs_write16(GUEST_INTR_STATUS, status);
7284 }
7285}
7286
7287static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7288{
7289 if (max_irr == -1)
7290 return;
7291
963fee16
WL
7292 /*
7293 * If a vmexit is needed, vmx_check_nested_events handles it.
7294 */
7295 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7296 return;
7297
7298 if (!is_guest_mode(vcpu)) {
7299 vmx_set_rvi(max_irr);
7300 return;
7301 }
7302
7303 /*
7304 * Fall back to pre-APICv interrupt injection since L2
7305 * is run without virtual interrupt delivery.
7306 */
7307 if (!kvm_event_needs_reinjection(vcpu) &&
7308 vmx_interrupt_allowed(vcpu)) {
7309 kvm_queue_interrupt(vcpu, max_irr, false);
7310 vmx_inject_irq(vcpu);
7311 }
c7c9c56c
YZ
7312}
7313
7314static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7315{
3d81bc7e
YZ
7316 if (!vmx_vm_has_apicv(vcpu->kvm))
7317 return;
7318
c7c9c56c
YZ
7319 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7320 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7321 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7322 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7323}
7324
51aa01d1 7325static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 7326{
00eba012
AK
7327 u32 exit_intr_info;
7328
7329 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7330 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7331 return;
7332
c5ca8e57 7333 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 7334 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
7335
7336 /* Handle machine checks before interrupts are enabled */
00eba012 7337 if (is_machine_check(exit_intr_info))
a0861c02
AK
7338 kvm_machine_check();
7339
20f65983 7340 /* We need to handle NMIs before interrupts are enabled */
00eba012 7341 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
7342 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7343 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 7344 asm("int $2");
ff9d07a0
ZY
7345 kvm_after_handle_nmi(&vmx->vcpu);
7346 }
51aa01d1 7347}
20f65983 7348
a547c6db
YZ
7349static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7350{
7351 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7352
7353 /*
7354 * If external interrupt exists, IF bit is set in rflags/eflags on the
7355 * interrupt stack frame, and interrupt will be enabled on a return
7356 * from interrupt handler.
7357 */
7358 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7359 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7360 unsigned int vector;
7361 unsigned long entry;
7362 gate_desc *desc;
7363 struct vcpu_vmx *vmx = to_vmx(vcpu);
7364#ifdef CONFIG_X86_64
7365 unsigned long tmp;
7366#endif
7367
7368 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7369 desc = (gate_desc *)vmx->host_idt_base + vector;
7370 entry = gate_offset(*desc);
7371 asm volatile(
7372#ifdef CONFIG_X86_64
7373 "mov %%" _ASM_SP ", %[sp]\n\t"
7374 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7375 "push $%c[ss]\n\t"
7376 "push %[sp]\n\t"
7377#endif
7378 "pushf\n\t"
7379 "orl $0x200, (%%" _ASM_SP ")\n\t"
7380 __ASM_SIZE(push) " $%c[cs]\n\t"
7381 "call *%[entry]\n\t"
7382 :
7383#ifdef CONFIG_X86_64
7384 [sp]"=&r"(tmp)
7385#endif
7386 :
7387 [entry]"r"(entry),
7388 [ss]"i"(__KERNEL_DS),
7389 [cs]"i"(__KERNEL_CS)
7390 );
7391 } else
7392 local_irq_enable();
7393}
7394
da8999d3
LJ
7395static bool vmx_mpx_supported(void)
7396{
7397 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7398 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7399}
7400
51aa01d1
AK
7401static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7402{
c5ca8e57 7403 u32 exit_intr_info;
51aa01d1
AK
7404 bool unblock_nmi;
7405 u8 vector;
7406 bool idtv_info_valid;
7407
7408 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 7409
cf393f75 7410 if (cpu_has_virtual_nmis()) {
9d58b931
AK
7411 if (vmx->nmi_known_unmasked)
7412 return;
c5ca8e57
AK
7413 /*
7414 * Can't use vmx->exit_intr_info since we're not sure what
7415 * the exit reason is.
7416 */
7417 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
7418 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7419 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7420 /*
7b4a25cb 7421 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
7422 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7423 * a guest IRET fault.
7b4a25cb
GN
7424 * SDM 3: 23.2.2 (September 2008)
7425 * Bit 12 is undefined in any of the following cases:
7426 * If the VM exit sets the valid bit in the IDT-vectoring
7427 * information field.
7428 * If the VM exit is due to a double fault.
cf393f75 7429 */
7b4a25cb
GN
7430 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7431 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
7432 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7433 GUEST_INTR_STATE_NMI);
9d58b931
AK
7434 else
7435 vmx->nmi_known_unmasked =
7436 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7437 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
7438 } else if (unlikely(vmx->soft_vnmi_blocked))
7439 vmx->vnmi_blocked_time +=
7440 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
7441}
7442
3ab66e8a 7443static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
7444 u32 idt_vectoring_info,
7445 int instr_len_field,
7446 int error_code_field)
51aa01d1 7447{
51aa01d1
AK
7448 u8 vector;
7449 int type;
7450 bool idtv_info_valid;
7451
7452 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 7453
3ab66e8a
JK
7454 vcpu->arch.nmi_injected = false;
7455 kvm_clear_exception_queue(vcpu);
7456 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
7457
7458 if (!idtv_info_valid)
7459 return;
7460
3ab66e8a 7461 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 7462
668f612f
AK
7463 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7464 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 7465
64a7ec06 7466 switch (type) {
37b96e98 7467 case INTR_TYPE_NMI_INTR:
3ab66e8a 7468 vcpu->arch.nmi_injected = true;
668f612f 7469 /*
7b4a25cb 7470 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
7471 * Clear bit "block by NMI" before VM entry if a NMI
7472 * delivery faulted.
668f612f 7473 */
3ab66e8a 7474 vmx_set_nmi_mask(vcpu, false);
37b96e98 7475 break;
37b96e98 7476 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 7477 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
7478 /* fall through */
7479 case INTR_TYPE_HARD_EXCEPTION:
35920a35 7480 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 7481 u32 err = vmcs_read32(error_code_field);
851eb667 7482 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 7483 } else
851eb667 7484 kvm_requeue_exception(vcpu, vector);
37b96e98 7485 break;
66fd3f7f 7486 case INTR_TYPE_SOFT_INTR:
3ab66e8a 7487 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 7488 /* fall through */
37b96e98 7489 case INTR_TYPE_EXT_INTR:
3ab66e8a 7490 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
7491 break;
7492 default:
7493 break;
f7d9238f 7494 }
cf393f75
AK
7495}
7496
83422e17
AK
7497static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7498{
3ab66e8a 7499 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
7500 VM_EXIT_INSTRUCTION_LEN,
7501 IDT_VECTORING_ERROR_CODE);
7502}
7503
b463a6f7
AK
7504static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7505{
3ab66e8a 7506 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
7507 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7508 VM_ENTRY_INSTRUCTION_LEN,
7509 VM_ENTRY_EXCEPTION_ERROR_CODE);
7510
7511 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7512}
7513
d7cd9796
GN
7514static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7515{
7516 int i, nr_msrs;
7517 struct perf_guest_switch_msr *msrs;
7518
7519 msrs = perf_guest_get_msrs(&nr_msrs);
7520
7521 if (!msrs)
7522 return;
7523
7524 for (i = 0; i < nr_msrs; i++)
7525 if (msrs[i].host == msrs[i].guest)
7526 clear_atomic_switch_msr(vmx, msrs[i].msr);
7527 else
7528 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7529 msrs[i].host);
7530}
7531
a3b5ba49 7532static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 7533{
a2fa3e9f 7534 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 7535 unsigned long debugctlmsr, cr4;
104f226b
AK
7536
7537 /* Record the guest's net vcpu time for enforced NMI injections. */
7538 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7539 vmx->entry_time = ktime_get();
7540
7541 /* Don't enter VMX if guest state is invalid, let the exit handler
7542 start emulation until we arrive back to a valid state */
14168786 7543 if (vmx->emulation_required)
104f226b
AK
7544 return;
7545
a7653ecd
RK
7546 if (vmx->ple_window_dirty) {
7547 vmx->ple_window_dirty = false;
7548 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7549 }
7550
012f83cb
AG
7551 if (vmx->nested.sync_shadow_vmcs) {
7552 copy_vmcs12_to_shadow(vmx);
7553 vmx->nested.sync_shadow_vmcs = false;
7554 }
7555
104f226b
AK
7556 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7557 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7558 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7559 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7560
d974baa3
AL
7561 cr4 = read_cr4();
7562 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7563 vmcs_writel(HOST_CR4, cr4);
7564 vmx->host_state.vmcs_host_cr4 = cr4;
7565 }
7566
104f226b
AK
7567 /* When single-stepping over STI and MOV SS, we must clear the
7568 * corresponding interruptibility bits in the guest state. Otherwise
7569 * vmentry fails as it then expects bit 14 (BS) in pending debug
7570 * exceptions being set, but that's not correct for the guest debugging
7571 * case. */
7572 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7573 vmx_set_interrupt_shadow(vcpu, 0);
7574
d7cd9796 7575 atomic_switch_perf_msrs(vmx);
2a7921b7 7576 debugctlmsr = get_debugctlmsr();
d7cd9796 7577
d462b819 7578 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 7579 asm(
6aa8b732 7580 /* Store host registers */
b188c81f
AK
7581 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7582 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7583 "push %%" _ASM_CX " \n\t"
7584 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 7585 "je 1f \n\t"
b188c81f 7586 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 7587 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 7588 "1: \n\t"
d3edefc0 7589 /* Reload cr2 if changed */
b188c81f
AK
7590 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7591 "mov %%cr2, %%" _ASM_DX " \n\t"
7592 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 7593 "je 2f \n\t"
b188c81f 7594 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 7595 "2: \n\t"
6aa8b732 7596 /* Check if vmlaunch of vmresume is needed */
e08aa78a 7597 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 7598 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
7599 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7600 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7601 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7602 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7603 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7604 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 7605#ifdef CONFIG_X86_64
e08aa78a
AK
7606 "mov %c[r8](%0), %%r8 \n\t"
7607 "mov %c[r9](%0), %%r9 \n\t"
7608 "mov %c[r10](%0), %%r10 \n\t"
7609 "mov %c[r11](%0), %%r11 \n\t"
7610 "mov %c[r12](%0), %%r12 \n\t"
7611 "mov %c[r13](%0), %%r13 \n\t"
7612 "mov %c[r14](%0), %%r14 \n\t"
7613 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 7614#endif
b188c81f 7615 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 7616
6aa8b732 7617 /* Enter guest mode */
83287ea4 7618 "jne 1f \n\t"
4ecac3fd 7619 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
7620 "jmp 2f \n\t"
7621 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7622 "2: "
6aa8b732 7623 /* Save guest registers, load host registers, keep flags */
b188c81f 7624 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 7625 "pop %0 \n\t"
b188c81f
AK
7626 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7627 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7628 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7629 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7630 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7631 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7632 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 7633#ifdef CONFIG_X86_64
e08aa78a
AK
7634 "mov %%r8, %c[r8](%0) \n\t"
7635 "mov %%r9, %c[r9](%0) \n\t"
7636 "mov %%r10, %c[r10](%0) \n\t"
7637 "mov %%r11, %c[r11](%0) \n\t"
7638 "mov %%r12, %c[r12](%0) \n\t"
7639 "mov %%r13, %c[r13](%0) \n\t"
7640 "mov %%r14, %c[r14](%0) \n\t"
7641 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 7642#endif
b188c81f
AK
7643 "mov %%cr2, %%" _ASM_AX " \n\t"
7644 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 7645
b188c81f 7646 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 7647 "setbe %c[fail](%0) \n\t"
83287ea4
AK
7648 ".pushsection .rodata \n\t"
7649 ".global vmx_return \n\t"
7650 "vmx_return: " _ASM_PTR " 2b \n\t"
7651 ".popsection"
e08aa78a 7652 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 7653 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 7654 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 7655 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
7656 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7657 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7658 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7659 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7660 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7661 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7662 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 7663#ifdef CONFIG_X86_64
ad312c7c
ZX
7664 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7665 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7666 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7667 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7668 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7669 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7670 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7671 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 7672#endif
40712fae
AK
7673 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7674 [wordsize]"i"(sizeof(ulong))
c2036300
LV
7675 : "cc", "memory"
7676#ifdef CONFIG_X86_64
b188c81f 7677 , "rax", "rbx", "rdi", "rsi"
c2036300 7678 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
7679#else
7680 , "eax", "ebx", "edi", "esi"
c2036300
LV
7681#endif
7682 );
6aa8b732 7683
2a7921b7
GN
7684 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7685 if (debugctlmsr)
7686 update_debugctlmsr(debugctlmsr);
7687
aa67f609
AK
7688#ifndef CONFIG_X86_64
7689 /*
7690 * The sysexit path does not restore ds/es, so we must set them to
7691 * a reasonable value ourselves.
7692 *
7693 * We can't defer this to vmx_load_host_state() since that function
7694 * may be executed in interrupt context, which saves and restore segments
7695 * around it, nullifying its effect.
7696 */
7697 loadsegment(ds, __USER_DS);
7698 loadsegment(es, __USER_DS);
7699#endif
7700
6de4f3ad 7701 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 7702 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 7703 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 7704 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 7705 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
7706 vcpu->arch.regs_dirty = 0;
7707
1155f76a
AK
7708 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7709
d462b819 7710 vmx->loaded_vmcs->launched = 1;
1b6269db 7711
51aa01d1 7712 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 7713 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 7714
e0b890d3
GN
7715 /*
7716 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7717 * we did not inject a still-pending event to L1 now because of
7718 * nested_run_pending, we need to re-enable this bit.
7719 */
7720 if (vmx->nested.nested_run_pending)
7721 kvm_make_request(KVM_REQ_EVENT, vcpu);
7722
7723 vmx->nested.nested_run_pending = 0;
7724
51aa01d1
AK
7725 vmx_complete_atomic_exit(vmx);
7726 vmx_recover_nmi_blocking(vmx);
cf393f75 7727 vmx_complete_interrupts(vmx);
6aa8b732
AK
7728}
7729
4fa7734c
PB
7730static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7731{
7732 struct vcpu_vmx *vmx = to_vmx(vcpu);
7733 int cpu;
7734
7735 if (vmx->loaded_vmcs == &vmx->vmcs01)
7736 return;
7737
7738 cpu = get_cpu();
7739 vmx->loaded_vmcs = &vmx->vmcs01;
7740 vmx_vcpu_put(vcpu);
7741 vmx_vcpu_load(vcpu, cpu);
7742 vcpu->cpu = cpu;
7743 put_cpu();
7744}
7745
6aa8b732
AK
7746static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7747{
fb3f0f51
RR
7748 struct vcpu_vmx *vmx = to_vmx(vcpu);
7749
cdbecfc3 7750 free_vpid(vmx);
4fa7734c
PB
7751 leave_guest_mode(vcpu);
7752 vmx_load_vmcs01(vcpu);
26a865f4 7753 free_nested(vmx);
4fa7734c 7754 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
7755 kfree(vmx->guest_msrs);
7756 kvm_vcpu_uninit(vcpu);
a4770347 7757 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
7758}
7759
fb3f0f51 7760static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 7761{
fb3f0f51 7762 int err;
c16f862d 7763 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 7764 int cpu;
6aa8b732 7765
a2fa3e9f 7766 if (!vmx)
fb3f0f51
RR
7767 return ERR_PTR(-ENOMEM);
7768
2384d2b3
SY
7769 allocate_vpid(vmx);
7770
fb3f0f51
RR
7771 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7772 if (err)
7773 goto free_vcpu;
965b58a5 7774
a2fa3e9f 7775 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
7776 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7777 > PAGE_SIZE);
0123be42 7778
be6d05cf 7779 err = -ENOMEM;
fb3f0f51 7780 if (!vmx->guest_msrs) {
fb3f0f51
RR
7781 goto uninit_vcpu;
7782 }
965b58a5 7783
d462b819
NHE
7784 vmx->loaded_vmcs = &vmx->vmcs01;
7785 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7786 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 7787 goto free_msrs;
d462b819
NHE
7788 if (!vmm_exclusive)
7789 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7790 loaded_vmcs_init(vmx->loaded_vmcs);
7791 if (!vmm_exclusive)
7792 kvm_cpu_vmxoff();
a2fa3e9f 7793
15ad7146
AK
7794 cpu = get_cpu();
7795 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 7796 vmx->vcpu.cpu = cpu;
8b9cf98c 7797 err = vmx_vcpu_setup(vmx);
fb3f0f51 7798 vmx_vcpu_put(&vmx->vcpu);
15ad7146 7799 put_cpu();
fb3f0f51
RR
7800 if (err)
7801 goto free_vmcs;
a63cb560 7802 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
7803 err = alloc_apic_access_page(kvm);
7804 if (err)
5e4a0b3c 7805 goto free_vmcs;
a63cb560 7806 }
fb3f0f51 7807
b927a3ce
SY
7808 if (enable_ept) {
7809 if (!kvm->arch.ept_identity_map_addr)
7810 kvm->arch.ept_identity_map_addr =
7811 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
7812 err = init_rmode_identity_map(kvm);
7813 if (err)
93ea5388 7814 goto free_vmcs;
b927a3ce 7815 }
b7ebfb05 7816
a9d30f33
NHE
7817 vmx->nested.current_vmptr = -1ull;
7818 vmx->nested.current_vmcs12 = NULL;
7819
fb3f0f51
RR
7820 return &vmx->vcpu;
7821
7822free_vmcs:
5f3fbc34 7823 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 7824free_msrs:
fb3f0f51
RR
7825 kfree(vmx->guest_msrs);
7826uninit_vcpu:
7827 kvm_vcpu_uninit(&vmx->vcpu);
7828free_vcpu:
cdbecfc3 7829 free_vpid(vmx);
a4770347 7830 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 7831 return ERR_PTR(err);
6aa8b732
AK
7832}
7833
002c7f7c
YS
7834static void __init vmx_check_processor_compat(void *rtn)
7835{
7836 struct vmcs_config vmcs_conf;
7837
7838 *(int *)rtn = 0;
7839 if (setup_vmcs_config(&vmcs_conf) < 0)
7840 *(int *)rtn = -EIO;
7841 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7842 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7843 smp_processor_id());
7844 *(int *)rtn = -EIO;
7845 }
7846}
7847
67253af5
SY
7848static int get_ept_level(void)
7849{
7850 return VMX_EPT_DEFAULT_GAW + 1;
7851}
7852
4b12f0de 7853static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 7854{
4b12f0de
SY
7855 u64 ret;
7856
522c68c4
SY
7857 /* For VT-d and EPT combination
7858 * 1. MMIO: always map as UC
7859 * 2. EPT with VT-d:
7860 * a. VT-d without snooping control feature: can't guarantee the
7861 * result, try to trust guest.
7862 * b. VT-d with snooping control feature: snooping control feature of
7863 * VT-d engine can guarantee the cache correctness. Just set it
7864 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 7865 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
7866 * consistent with host MTRR
7867 */
4b12f0de
SY
7868 if (is_mmio)
7869 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
e0f0bbc5 7870 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
522c68c4
SY
7871 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7872 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 7873 else
522c68c4 7874 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 7875 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
7876
7877 return ret;
64d4d521
SY
7878}
7879
17cc3935 7880static int vmx_get_lpage_level(void)
344f414f 7881{
878403b7
SY
7882 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7883 return PT_DIRECTORY_LEVEL;
7884 else
7885 /* For shadow and EPT supported 1GB page */
7886 return PT_PDPE_LEVEL;
344f414f
JR
7887}
7888
0e851880
SY
7889static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7890{
4e47c7a6
SY
7891 struct kvm_cpuid_entry2 *best;
7892 struct vcpu_vmx *vmx = to_vmx(vcpu);
7893 u32 exec_control;
7894
7895 vmx->rdtscp_enabled = false;
7896 if (vmx_rdtscp_supported()) {
7897 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7898 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7899 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7900 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7901 vmx->rdtscp_enabled = true;
7902 else {
7903 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7904 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7905 exec_control);
7906 }
7907 }
7908 }
ad756a16 7909
ad756a16
MJ
7910 /* Exposing INVPCID only when PCID is exposed */
7911 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7912 if (vmx_invpcid_supported() &&
4f977045 7913 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 7914 guest_cpuid_has_pcid(vcpu)) {
29282fde 7915 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
7916 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7917 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7918 exec_control);
7919 } else {
29282fde
TI
7920 if (cpu_has_secondary_exec_ctrls()) {
7921 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7922 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7923 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7924 exec_control);
7925 }
ad756a16 7926 if (best)
4f977045 7927 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 7928 }
0e851880
SY
7929}
7930
d4330ef2
JR
7931static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7932{
7b8050f5
NHE
7933 if (func == 1 && nested)
7934 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
7935}
7936
25d92081
YZ
7937static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7938 struct x86_exception *fault)
7939{
533558bc
JK
7940 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7941 u32 exit_reason;
25d92081
YZ
7942
7943 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 7944 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 7945 else
533558bc
JK
7946 exit_reason = EXIT_REASON_EPT_VIOLATION;
7947 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
7948 vmcs12->guest_physical_address = fault->address;
7949}
7950
155a97a3
NHE
7951/* Callbacks for nested_ept_init_mmu_context: */
7952
7953static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7954{
7955 /* return the page table to be shadowed - in our case, EPT12 */
7956 return get_vmcs12(vcpu)->ept_pointer;
7957}
7958
8a3c1a33 7959static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 7960{
8a3c1a33 7961 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
155a97a3
NHE
7962 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7963
7964 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7965 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7966 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7967
7968 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
7969}
7970
7971static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7972{
7973 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7974}
7975
feaf0c7d
GN
7976static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7977 struct x86_exception *fault)
7978{
7979 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7980
7981 WARN_ON(!is_guest_mode(vcpu));
7982
7983 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7984 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
533558bc
JK
7985 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7986 vmcs_read32(VM_EXIT_INTR_INFO),
7987 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
7988 else
7989 kvm_inject_page_fault(vcpu, fault);
7990}
7991
a2bcba50
WL
7992static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
7993 struct vmcs12 *vmcs12)
7994{
7995 struct vcpu_vmx *vmx = to_vmx(vcpu);
7996
7997 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a7c0b07d 7998 /* TODO: Also verify bits beyond physical address width are 0 */
a2bcba50 7999 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
a2bcba50
WL
8000 return false;
8001
8002 /*
8003 * Translate L1 physical address to host physical
8004 * address for vmcs02. Keep the page pinned, so this
8005 * physical address remains valid. We keep a reference
8006 * to it so we can release it later.
8007 */
8008 if (vmx->nested.apic_access_page) /* shouldn't happen */
8009 nested_release_page(vmx->nested.apic_access_page);
8010 vmx->nested.apic_access_page =
8011 nested_get_page(vcpu, vmcs12->apic_access_addr);
8012 }
a7c0b07d
WL
8013
8014 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8015 /* TODO: Also verify bits beyond physical address width are 0 */
8016 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8017 return false;
8018
8019 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8020 nested_release_page(vmx->nested.virtual_apic_page);
8021 vmx->nested.virtual_apic_page =
8022 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8023
8024 /*
8025 * Failing the vm entry is _not_ what the processor does
8026 * but it's basically the only possibility we have.
8027 * We could still enter the guest if CR8 load exits are
8028 * enabled, CR8 store exits are enabled, and virtualize APIC
8029 * access is disabled; in this case the processor would never
8030 * use the TPR shadow and we could simply clear the bit from
8031 * the execution control. But such a configuration is useless,
8032 * so let's keep the code simple.
8033 */
8034 if (!vmx->nested.virtual_apic_page)
8035 return false;
8036 }
8037
a2bcba50
WL
8038 return true;
8039}
8040
f4124500
JK
8041static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8042{
8043 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8044 struct vcpu_vmx *vmx = to_vmx(vcpu);
8045
8046 if (vcpu->arch.virtual_tsc_khz == 0)
8047 return;
8048
8049 /* Make sure short timeouts reliably trigger an immediate vmexit.
8050 * hrtimer_start does not guarantee this. */
8051 if (preemption_timeout <= 1) {
8052 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8053 return;
8054 }
8055
8056 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8057 preemption_timeout *= 1000000;
8058 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8059 hrtimer_start(&vmx->nested.preemption_timer,
8060 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8061}
8062
fe3ef05c
NHE
8063/*
8064 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8065 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 8066 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
8067 * guest in a way that will both be appropriate to L1's requests, and our
8068 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8069 * function also has additional necessary side-effects, like setting various
8070 * vcpu->arch fields.
8071 */
8072static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8073{
8074 struct vcpu_vmx *vmx = to_vmx(vcpu);
8075 u32 exec_control;
8076
8077 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8078 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8079 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8080 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8081 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8082 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8083 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8084 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8085 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8086 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8087 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8088 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8089 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8090 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8091 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8092 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8093 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8094 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8095 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8096 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8097 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8098 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8099 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8100 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8101 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8102 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8103 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8104 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8105 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8106 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8107 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8108 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8109 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8110 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8111 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8112 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8113
2996fca0
JK
8114 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8115 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8116 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8117 } else {
8118 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8119 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8120 }
fe3ef05c
NHE
8121 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8122 vmcs12->vm_entry_intr_info_field);
8123 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8124 vmcs12->vm_entry_exception_error_code);
8125 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8126 vmcs12->vm_entry_instruction_len);
8127 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8128 vmcs12->guest_interruptibility_info);
fe3ef05c 8129 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 8130 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
8131 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8132 vmcs12->guest_pending_dbg_exceptions);
8133 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8134 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8135
8136 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8137
f4124500
JK
8138 exec_control = vmcs12->pin_based_vm_exec_control;
8139 exec_control |= vmcs_config.pin_based_exec_ctrl;
696dfd95
PB
8140 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8141 PIN_BASED_POSTED_INTR);
f4124500 8142 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 8143
f4124500
JK
8144 vmx->nested.preemption_timer_expired = false;
8145 if (nested_cpu_has_preemption_timer(vmcs12))
8146 vmx_start_preemption_timer(vcpu);
0238ea91 8147
fe3ef05c
NHE
8148 /*
8149 * Whether page-faults are trapped is determined by a combination of
8150 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8151 * If enable_ept, L0 doesn't care about page faults and we should
8152 * set all of these to L1's desires. However, if !enable_ept, L0 does
8153 * care about (at least some) page faults, and because it is not easy
8154 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8155 * to exit on each and every L2 page fault. This is done by setting
8156 * MASK=MATCH=0 and (see below) EB.PF=1.
8157 * Note that below we don't need special code to set EB.PF beyond the
8158 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8159 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8160 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8161 *
8162 * A problem with this approach (when !enable_ept) is that L1 may be
8163 * injected with more page faults than it asked for. This could have
8164 * caused problems, but in practice existing hypervisors don't care.
8165 * To fix this, we will need to emulate the PFEC checking (on the L1
8166 * page tables), using walk_addr(), when injecting PFs to L1.
8167 */
8168 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8169 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8170 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8171 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8172
8173 if (cpu_has_secondary_exec_ctrls()) {
f4124500 8174 exec_control = vmx_secondary_exec_control(vmx);
fe3ef05c
NHE
8175 if (!vmx->rdtscp_enabled)
8176 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8177 /* Take the following fields only from vmcs12 */
696dfd95
PB
8178 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8179 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8180 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
8181 if (nested_cpu_has(vmcs12,
8182 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8183 exec_control |= vmcs12->secondary_vm_exec_control;
8184
8185 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
8186 /*
8187 * If translation failed, no matter: This feature asks
8188 * to exit when accessing the given address, and if it
8189 * can never be accessed, this feature won't do
8190 * anything anyway.
8191 */
8192 if (!vmx->nested.apic_access_page)
8193 exec_control &=
8194 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8195 else
8196 vmcs_write64(APIC_ACCESS_ADDR,
8197 page_to_phys(vmx->nested.apic_access_page));
ca3f257a
JK
8198 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8199 exec_control |=
8200 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 8201 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
8202 }
8203
8204 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8205 }
8206
8207
8208 /*
8209 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8210 * Some constant fields are set here by vmx_set_constant_host_state().
8211 * Other fields are different per CPU, and will be set later when
8212 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8213 */
a547c6db 8214 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
8215
8216 /*
8217 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8218 * entry, but only if the current (host) sp changed from the value
8219 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8220 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8221 * here we just force the write to happen on entry.
8222 */
8223 vmx->host_rsp = 0;
8224
8225 exec_control = vmx_exec_control(vmx); /* L0's desires */
8226 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8227 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8228 exec_control &= ~CPU_BASED_TPR_SHADOW;
8229 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
8230
8231 if (exec_control & CPU_BASED_TPR_SHADOW) {
8232 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8233 page_to_phys(vmx->nested.virtual_apic_page));
8234 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8235 }
8236
fe3ef05c
NHE
8237 /*
8238 * Merging of IO and MSR bitmaps not currently supported.
8239 * Rather, exit every time.
8240 */
8241 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8242 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8243 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8244
8245 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8246
8247 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8248 * bitwise-or of what L1 wants to trap for L2, and what we want to
8249 * trap. Note that CR0.TS also needs updating - we do this later.
8250 */
8251 update_exception_bitmap(vcpu);
8252 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8253 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8254
8049d651
NHE
8255 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8256 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8257 * bits are further modified by vmx_set_efer() below.
8258 */
f4124500 8259 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
8260
8261 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8262 * emulated by vmx_set_efer(), below.
8263 */
2961e876 8264 vm_entry_controls_init(vmx,
8049d651
NHE
8265 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8266 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
8267 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8268
44811c02 8269 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 8270 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
8271 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8272 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
8273 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8274
8275
8276 set_cr4_guest_host_mask(vmx);
8277
36be0b9d
PB
8278 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8279 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8280
27fc51b2
NHE
8281 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8282 vmcs_write64(TSC_OFFSET,
8283 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8284 else
8285 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
8286
8287 if (enable_vpid) {
8288 /*
8289 * Trivially support vpid by letting L2s share their parent
8290 * L1's vpid. TODO: move to a more elaborate solution, giving
8291 * each L2 its own vpid and exposing the vpid feature to L1.
8292 */
8293 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8294 vmx_flush_tlb(vcpu);
8295 }
8296
155a97a3
NHE
8297 if (nested_cpu_has_ept(vmcs12)) {
8298 kvm_mmu_unload(vcpu);
8299 nested_ept_init_mmu_context(vcpu);
8300 }
8301
fe3ef05c
NHE
8302 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8303 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 8304 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
8305 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8306 else
8307 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8308 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8309 vmx_set_efer(vcpu, vcpu->arch.efer);
8310
8311 /*
8312 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8313 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8314 * The CR0_READ_SHADOW is what L2 should have expected to read given
8315 * the specifications by L1; It's not enough to take
8316 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8317 * have more bits than L1 expected.
8318 */
8319 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8320 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8321
8322 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8323 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8324
8325 /* shadow page tables on either EPT or shadow page tables */
8326 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8327 kvm_mmu_reset_context(vcpu);
8328
feaf0c7d
GN
8329 if (!enable_ept)
8330 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8331
3633cfc3
NHE
8332 /*
8333 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8334 */
8335 if (enable_ept) {
8336 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8337 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8338 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8339 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8340 }
8341
fe3ef05c
NHE
8342 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8343 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8344}
8345
cd232ad0
NHE
8346/*
8347 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8348 * for running an L2 nested guest.
8349 */
8350static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8351{
8352 struct vmcs12 *vmcs12;
8353 struct vcpu_vmx *vmx = to_vmx(vcpu);
8354 int cpu;
8355 struct loaded_vmcs *vmcs02;
384bb783 8356 bool ia32e;
cd232ad0
NHE
8357
8358 if (!nested_vmx_check_permission(vcpu) ||
8359 !nested_vmx_check_vmcs12(vcpu))
8360 return 1;
8361
8362 skip_emulated_instruction(vcpu);
8363 vmcs12 = get_vmcs12(vcpu);
8364
012f83cb
AG
8365 if (enable_shadow_vmcs)
8366 copy_shadow_to_vmcs12(vmx);
8367
7c177938
NHE
8368 /*
8369 * The nested entry process starts with enforcing various prerequisites
8370 * on vmcs12 as required by the Intel SDM, and act appropriately when
8371 * they fail: As the SDM explains, some conditions should cause the
8372 * instruction to fail, while others will cause the instruction to seem
8373 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8374 * To speed up the normal (success) code path, we should avoid checking
8375 * for misconfigurations which will anyway be caught by the processor
8376 * when using the merged vmcs02.
8377 */
8378 if (vmcs12->launch_state == launch) {
8379 nested_vmx_failValid(vcpu,
8380 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8381 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8382 return 1;
8383 }
8384
6dfacadd
JK
8385 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8386 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
8387 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8388 return 1;
8389 }
8390
7c177938 8391 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
bc39c4db 8392 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
7c177938
NHE
8393 /*TODO: Also verify bits beyond physical address width are 0*/
8394 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8395 return 1;
8396 }
8397
a2bcba50 8398 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
8399 /*TODO: Also verify bits beyond physical address width are 0*/
8400 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8401 return 1;
8402 }
8403
8404 if (vmcs12->vm_entry_msr_load_count > 0 ||
8405 vmcs12->vm_exit_msr_load_count > 0 ||
8406 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
8407 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8408 __func__);
7c177938
NHE
8409 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8410 return 1;
8411 }
8412
8413 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
3dcdf3ec
JK
8414 nested_vmx_true_procbased_ctls_low,
8415 nested_vmx_procbased_ctls_high) ||
7c177938
NHE
8416 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8417 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8418 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8419 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8420 !vmx_control_verify(vmcs12->vm_exit_controls,
2996fca0
JK
8421 nested_vmx_true_exit_ctls_low,
8422 nested_vmx_exit_ctls_high) ||
7c177938 8423 !vmx_control_verify(vmcs12->vm_entry_controls,
2996fca0
JK
8424 nested_vmx_true_entry_ctls_low,
8425 nested_vmx_entry_ctls_high))
7c177938
NHE
8426 {
8427 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8428 return 1;
8429 }
8430
8431 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8432 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8433 nested_vmx_failValid(vcpu,
8434 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8435 return 1;
8436 }
8437
92fbc7b1 8438 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
7c177938
NHE
8439 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8440 nested_vmx_entry_failure(vcpu, vmcs12,
8441 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8442 return 1;
8443 }
8444 if (vmcs12->vmcs_link_pointer != -1ull) {
8445 nested_vmx_entry_failure(vcpu, vmcs12,
8446 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8447 return 1;
8448 }
8449
384bb783 8450 /*
cb0c8cda 8451 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
8452 * are performed on the field for the IA32_EFER MSR:
8453 * - Bits reserved in the IA32_EFER MSR must be 0.
8454 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8455 * the IA-32e mode guest VM-exit control. It must also be identical
8456 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8457 * CR0.PG) is 1.
8458 */
8459 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8460 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8461 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8462 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8463 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8464 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8465 nested_vmx_entry_failure(vcpu, vmcs12,
8466 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8467 return 1;
8468 }
8469 }
8470
8471 /*
8472 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8473 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8474 * the values of the LMA and LME bits in the field must each be that of
8475 * the host address-space size VM-exit control.
8476 */
8477 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8478 ia32e = (vmcs12->vm_exit_controls &
8479 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8480 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8481 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8482 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8483 nested_vmx_entry_failure(vcpu, vmcs12,
8484 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8485 return 1;
8486 }
8487 }
8488
7c177938
NHE
8489 /*
8490 * We're finally done with prerequisite checking, and can start with
8491 * the nested entry.
8492 */
8493
cd232ad0
NHE
8494 vmcs02 = nested_get_current_vmcs02(vmx);
8495 if (!vmcs02)
8496 return -ENOMEM;
8497
8498 enter_guest_mode(vcpu);
8499
8500 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8501
2996fca0
JK
8502 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8503 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8504
cd232ad0
NHE
8505 cpu = get_cpu();
8506 vmx->loaded_vmcs = vmcs02;
8507 vmx_vcpu_put(vcpu);
8508 vmx_vcpu_load(vcpu, cpu);
8509 vcpu->cpu = cpu;
8510 put_cpu();
8511
36c3cc42
JK
8512 vmx_segment_cache_clear(vmx);
8513
cd232ad0
NHE
8514 vmcs12->launch_state = 1;
8515
8516 prepare_vmcs02(vcpu, vmcs12);
8517
6dfacadd
JK
8518 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8519 return kvm_emulate_halt(vcpu);
8520
7af40ad3
JK
8521 vmx->nested.nested_run_pending = 1;
8522
cd232ad0
NHE
8523 /*
8524 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8525 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8526 * returned as far as L1 is concerned. It will only return (and set
8527 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8528 */
8529 return 1;
8530}
8531
4704d0be
NHE
8532/*
8533 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8534 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8535 * This function returns the new value we should put in vmcs12.guest_cr0.
8536 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8537 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8538 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8539 * didn't trap the bit, because if L1 did, so would L0).
8540 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8541 * been modified by L2, and L1 knows it. So just leave the old value of
8542 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8543 * isn't relevant, because if L0 traps this bit it can set it to anything.
8544 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8545 * changed these bits, and therefore they need to be updated, but L0
8546 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8547 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8548 */
8549static inline unsigned long
8550vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8551{
8552 return
8553 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8554 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8555 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8556 vcpu->arch.cr0_guest_owned_bits));
8557}
8558
8559static inline unsigned long
8560vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8561{
8562 return
8563 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8564 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8565 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8566 vcpu->arch.cr4_guest_owned_bits));
8567}
8568
5f3d5799
JK
8569static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8570 struct vmcs12 *vmcs12)
8571{
8572 u32 idt_vectoring;
8573 unsigned int nr;
8574
851eb667 8575 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
8576 nr = vcpu->arch.exception.nr;
8577 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8578
8579 if (kvm_exception_is_soft(nr)) {
8580 vmcs12->vm_exit_instruction_len =
8581 vcpu->arch.event_exit_inst_len;
8582 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8583 } else
8584 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8585
8586 if (vcpu->arch.exception.has_error_code) {
8587 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8588 vmcs12->idt_vectoring_error_code =
8589 vcpu->arch.exception.error_code;
8590 }
8591
8592 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 8593 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
8594 vmcs12->idt_vectoring_info_field =
8595 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8596 } else if (vcpu->arch.interrupt.pending) {
8597 nr = vcpu->arch.interrupt.nr;
8598 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8599
8600 if (vcpu->arch.interrupt.soft) {
8601 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8602 vmcs12->vm_entry_instruction_len =
8603 vcpu->arch.event_exit_inst_len;
8604 } else
8605 idt_vectoring |= INTR_TYPE_EXT_INTR;
8606
8607 vmcs12->idt_vectoring_info_field = idt_vectoring;
8608 }
8609}
8610
b6b8a145
JK
8611static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8612{
8613 struct vcpu_vmx *vmx = to_vmx(vcpu);
8614
f4124500
JK
8615 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8616 vmx->nested.preemption_timer_expired) {
8617 if (vmx->nested.nested_run_pending)
8618 return -EBUSY;
8619 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8620 return 0;
8621 }
8622
b6b8a145 8623 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
8624 if (vmx->nested.nested_run_pending ||
8625 vcpu->arch.interrupt.pending)
b6b8a145
JK
8626 return -EBUSY;
8627 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8628 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8629 INTR_INFO_VALID_MASK, 0);
8630 /*
8631 * The NMI-triggered VM exit counts as injection:
8632 * clear this one and block further NMIs.
8633 */
8634 vcpu->arch.nmi_pending = 0;
8635 vmx_set_nmi_mask(vcpu, true);
8636 return 0;
8637 }
8638
8639 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8640 nested_exit_on_intr(vcpu)) {
8641 if (vmx->nested.nested_run_pending)
8642 return -EBUSY;
8643 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8644 }
8645
8646 return 0;
8647}
8648
f4124500
JK
8649static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8650{
8651 ktime_t remaining =
8652 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8653 u64 value;
8654
8655 if (ktime_to_ns(remaining) <= 0)
8656 return 0;
8657
8658 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8659 do_div(value, 1000000);
8660 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8661}
8662
4704d0be
NHE
8663/*
8664 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8665 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8666 * and this function updates it to reflect the changes to the guest state while
8667 * L2 was running (and perhaps made some exits which were handled directly by L0
8668 * without going back to L1), and to reflect the exit reason.
8669 * Note that we do not have to copy here all VMCS fields, just those that
8670 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8671 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8672 * which already writes to vmcs12 directly.
8673 */
533558bc
JK
8674static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8675 u32 exit_reason, u32 exit_intr_info,
8676 unsigned long exit_qualification)
4704d0be
NHE
8677{
8678 /* update guest state fields: */
8679 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8680 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8681
4704d0be
NHE
8682 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8683 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8684 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8685
8686 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8687 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8688 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8689 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8690 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8691 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8692 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8693 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8694 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8695 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8696 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8697 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8698 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8699 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8700 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8701 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8702 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8703 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8704 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8705 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8706 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8707 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8708 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8709 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8710 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8711 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8712 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8713 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8714 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8715 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8716 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8717 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8718 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8719 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8720 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8721 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8722
4704d0be
NHE
8723 vmcs12->guest_interruptibility_info =
8724 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8725 vmcs12->guest_pending_dbg_exceptions =
8726 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
8727 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8728 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8729 else
8730 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 8731
f4124500
JK
8732 if (nested_cpu_has_preemption_timer(vmcs12)) {
8733 if (vmcs12->vm_exit_controls &
8734 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8735 vmcs12->vmx_preemption_timer_value =
8736 vmx_get_preemption_timer_value(vcpu);
8737 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8738 }
7854cbca 8739
3633cfc3
NHE
8740 /*
8741 * In some cases (usually, nested EPT), L2 is allowed to change its
8742 * own CR3 without exiting. If it has changed it, we must keep it.
8743 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8744 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8745 *
8746 * Additionally, restore L2's PDPTR to vmcs12.
8747 */
8748 if (enable_ept) {
8749 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8750 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8751 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8752 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8753 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8754 }
8755
c18911a2
JK
8756 vmcs12->vm_entry_controls =
8757 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 8758 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 8759
2996fca0
JK
8760 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8761 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8762 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8763 }
8764
4704d0be
NHE
8765 /* TODO: These cannot have changed unless we have MSR bitmaps and
8766 * the relevant bit asks not to trap the change */
b8c07d55 8767 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 8768 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
8769 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8770 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
8771 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8772 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8773 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
8774 if (vmx_mpx_supported())
8775 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4704d0be
NHE
8776
8777 /* update exit information fields: */
8778
533558bc
JK
8779 vmcs12->vm_exit_reason = exit_reason;
8780 vmcs12->exit_qualification = exit_qualification;
4704d0be 8781
533558bc 8782 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
8783 if ((vmcs12->vm_exit_intr_info &
8784 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8785 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8786 vmcs12->vm_exit_intr_error_code =
8787 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 8788 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
8789 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8790 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8791
5f3d5799
JK
8792 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8793 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8794 * instead of reading the real value. */
4704d0be 8795 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
8796
8797 /*
8798 * Transfer the event that L0 or L1 may wanted to inject into
8799 * L2 to IDT_VECTORING_INFO_FIELD.
8800 */
8801 vmcs12_save_pending_event(vcpu, vmcs12);
8802 }
8803
8804 /*
8805 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8806 * preserved above and would only end up incorrectly in L1.
8807 */
8808 vcpu->arch.nmi_injected = false;
8809 kvm_clear_exception_queue(vcpu);
8810 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
8811}
8812
8813/*
8814 * A part of what we need to when the nested L2 guest exits and we want to
8815 * run its L1 parent, is to reset L1's guest state to the host state specified
8816 * in vmcs12.
8817 * This function is to be called not only on normal nested exit, but also on
8818 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8819 * Failures During or After Loading Guest State").
8820 * This function should be called when the active VMCS is L1's (vmcs01).
8821 */
733568f9
JK
8822static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8823 struct vmcs12 *vmcs12)
4704d0be 8824{
21feb4eb
ACL
8825 struct kvm_segment seg;
8826
4704d0be
NHE
8827 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8828 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 8829 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
8830 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8831 else
8832 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8833 vmx_set_efer(vcpu, vcpu->arch.efer);
8834
8835 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8836 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 8837 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
8838 /*
8839 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8840 * actually changed, because it depends on the current state of
8841 * fpu_active (which may have changed).
8842 * Note that vmx_set_cr0 refers to efer set above.
8843 */
9e3e4dbf 8844 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
8845 /*
8846 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8847 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8848 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8849 */
8850 update_exception_bitmap(vcpu);
8851 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8852 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8853
8854 /*
8855 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8856 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8857 */
8858 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8859 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8860
29bf08f1 8861 nested_ept_uninit_mmu_context(vcpu);
155a97a3 8862
4704d0be
NHE
8863 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8864 kvm_mmu_reset_context(vcpu);
8865
feaf0c7d
GN
8866 if (!enable_ept)
8867 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8868
4704d0be
NHE
8869 if (enable_vpid) {
8870 /*
8871 * Trivially support vpid by letting L2s share their parent
8872 * L1's vpid. TODO: move to a more elaborate solution, giving
8873 * each L2 its own vpid and exposing the vpid feature to L1.
8874 */
8875 vmx_flush_tlb(vcpu);
8876 }
8877
8878
8879 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8880 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8881 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8882 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8883 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 8884
36be0b9d
PB
8885 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
8886 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8887 vmcs_write64(GUEST_BNDCFGS, 0);
8888
44811c02 8889 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 8890 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
8891 vcpu->arch.pat = vmcs12->host_ia32_pat;
8892 }
4704d0be
NHE
8893 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8894 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8895 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 8896
21feb4eb
ACL
8897 /* Set L1 segment info according to Intel SDM
8898 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8899 seg = (struct kvm_segment) {
8900 .base = 0,
8901 .limit = 0xFFFFFFFF,
8902 .selector = vmcs12->host_cs_selector,
8903 .type = 11,
8904 .present = 1,
8905 .s = 1,
8906 .g = 1
8907 };
8908 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8909 seg.l = 1;
8910 else
8911 seg.db = 1;
8912 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8913 seg = (struct kvm_segment) {
8914 .base = 0,
8915 .limit = 0xFFFFFFFF,
8916 .type = 3,
8917 .present = 1,
8918 .s = 1,
8919 .db = 1,
8920 .g = 1
8921 };
8922 seg.selector = vmcs12->host_ds_selector;
8923 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8924 seg.selector = vmcs12->host_es_selector;
8925 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8926 seg.selector = vmcs12->host_ss_selector;
8927 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8928 seg.selector = vmcs12->host_fs_selector;
8929 seg.base = vmcs12->host_fs_base;
8930 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8931 seg.selector = vmcs12->host_gs_selector;
8932 seg.base = vmcs12->host_gs_base;
8933 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8934 seg = (struct kvm_segment) {
205befd9 8935 .base = vmcs12->host_tr_base,
21feb4eb
ACL
8936 .limit = 0x67,
8937 .selector = vmcs12->host_tr_selector,
8938 .type = 11,
8939 .present = 1
8940 };
8941 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8942
503cd0c5
JK
8943 kvm_set_dr(vcpu, 7, 0x400);
8944 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4704d0be
NHE
8945}
8946
8947/*
8948 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8949 * and modify vmcs12 to make it see what it would expect to see there if
8950 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8951 */
533558bc
JK
8952static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8953 u32 exit_intr_info,
8954 unsigned long exit_qualification)
4704d0be
NHE
8955{
8956 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
8957 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8958
5f3d5799
JK
8959 /* trying to cancel vmlaunch/vmresume is a bug */
8960 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8961
4704d0be 8962 leave_guest_mode(vcpu);
533558bc
JK
8963 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8964 exit_qualification);
4704d0be 8965
f3380ca5
WL
8966 vmx_load_vmcs01(vcpu);
8967
77b0f5d6
BD
8968 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8969 && nested_exit_intr_ack_set(vcpu)) {
8970 int irq = kvm_cpu_get_interrupt(vcpu);
8971 WARN_ON(irq < 0);
8972 vmcs12->vm_exit_intr_info = irq |
8973 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8974 }
8975
542060ea
JK
8976 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8977 vmcs12->exit_qualification,
8978 vmcs12->idt_vectoring_info_field,
8979 vmcs12->vm_exit_intr_info,
8980 vmcs12->vm_exit_intr_error_code,
8981 KVM_ISA_VMX);
4704d0be 8982
2961e876
GN
8983 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8984 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
8985 vmx_segment_cache_clear(vmx);
8986
4704d0be
NHE
8987 /* if no vmcs02 cache requested, remove the one we used */
8988 if (VMCS02_POOL_SIZE == 0)
8989 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8990
8991 load_vmcs12_host_state(vcpu, vmcs12);
8992
27fc51b2 8993 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
8994 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8995
8996 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8997 vmx->host_rsp = 0;
8998
8999 /* Unpin physical memory we referred to in vmcs02 */
9000 if (vmx->nested.apic_access_page) {
9001 nested_release_page(vmx->nested.apic_access_page);
48d89b92 9002 vmx->nested.apic_access_page = NULL;
4704d0be 9003 }
a7c0b07d
WL
9004 if (vmx->nested.virtual_apic_page) {
9005 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 9006 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 9007 }
4704d0be 9008
38b99173
TC
9009 /*
9010 * We are now running in L2, mmu_notifier will force to reload the
9011 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9012 */
9013 kvm_vcpu_reload_apic_access_page(vcpu);
9014
4704d0be
NHE
9015 /*
9016 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9017 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9018 * success or failure flag accordingly.
9019 */
9020 if (unlikely(vmx->fail)) {
9021 vmx->fail = 0;
9022 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9023 } else
9024 nested_vmx_succeed(vcpu);
012f83cb
AG
9025 if (enable_shadow_vmcs)
9026 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
9027
9028 /* in case we halted in L2 */
9029 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
9030}
9031
42124925
JK
9032/*
9033 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9034 */
9035static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9036{
9037 if (is_guest_mode(vcpu))
533558bc 9038 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
9039 free_nested(to_vmx(vcpu));
9040}
9041
7c177938
NHE
9042/*
9043 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9044 * 23.7 "VM-entry failures during or after loading guest state" (this also
9045 * lists the acceptable exit-reason and exit-qualification parameters).
9046 * It should only be called before L2 actually succeeded to run, and when
9047 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9048 */
9049static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9050 struct vmcs12 *vmcs12,
9051 u32 reason, unsigned long qualification)
9052{
9053 load_vmcs12_host_state(vcpu, vmcs12);
9054 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9055 vmcs12->exit_qualification = qualification;
9056 nested_vmx_succeed(vcpu);
012f83cb
AG
9057 if (enable_shadow_vmcs)
9058 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
9059}
9060
8a76d7f2
JR
9061static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9062 struct x86_instruction_info *info,
9063 enum x86_intercept_stage stage)
9064{
9065 return X86EMUL_CONTINUE;
9066}
9067
48d89b92 9068static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 9069{
b4a2d31d
RK
9070 if (ple_gap)
9071 shrink_ple_window(vcpu);
ae97a3b8
RK
9072}
9073
cbdd1bea 9074static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
9075 .cpu_has_kvm_support = cpu_has_kvm_support,
9076 .disabled_by_bios = vmx_disabled_by_bios,
9077 .hardware_setup = hardware_setup,
9078 .hardware_unsetup = hardware_unsetup,
002c7f7c 9079 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
9080 .hardware_enable = hardware_enable,
9081 .hardware_disable = hardware_disable,
04547156 9082 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
9083
9084 .vcpu_create = vmx_create_vcpu,
9085 .vcpu_free = vmx_free_vcpu,
04d2cc77 9086 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 9087
04d2cc77 9088 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
9089 .vcpu_load = vmx_vcpu_load,
9090 .vcpu_put = vmx_vcpu_put,
9091
c8639010 9092 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
9093 .get_msr = vmx_get_msr,
9094 .set_msr = vmx_set_msr,
9095 .get_segment_base = vmx_get_segment_base,
9096 .get_segment = vmx_get_segment,
9097 .set_segment = vmx_set_segment,
2e4d2653 9098 .get_cpl = vmx_get_cpl,
6aa8b732 9099 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 9100 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 9101 .decache_cr3 = vmx_decache_cr3,
25c4c276 9102 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 9103 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
9104 .set_cr3 = vmx_set_cr3,
9105 .set_cr4 = vmx_set_cr4,
6aa8b732 9106 .set_efer = vmx_set_efer,
6aa8b732
AK
9107 .get_idt = vmx_get_idt,
9108 .set_idt = vmx_set_idt,
9109 .get_gdt = vmx_get_gdt,
9110 .set_gdt = vmx_set_gdt,
73aaf249
JK
9111 .get_dr6 = vmx_get_dr6,
9112 .set_dr6 = vmx_set_dr6,
020df079 9113 .set_dr7 = vmx_set_dr7,
81908bf4 9114 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 9115 .cache_reg = vmx_cache_reg,
6aa8b732
AK
9116 .get_rflags = vmx_get_rflags,
9117 .set_rflags = vmx_set_rflags,
02daab21 9118 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
9119
9120 .tlb_flush = vmx_flush_tlb,
6aa8b732 9121
6aa8b732 9122 .run = vmx_vcpu_run,
6062d012 9123 .handle_exit = vmx_handle_exit,
6aa8b732 9124 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
9125 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9126 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 9127 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 9128 .set_irq = vmx_inject_irq,
95ba8273 9129 .set_nmi = vmx_inject_nmi,
298101da 9130 .queue_exception = vmx_queue_exception,
b463a6f7 9131 .cancel_injection = vmx_cancel_injection,
78646121 9132 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 9133 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
9134 .get_nmi_mask = vmx_get_nmi_mask,
9135 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
9136 .enable_nmi_window = enable_nmi_window,
9137 .enable_irq_window = enable_irq_window,
9138 .update_cr8_intercept = update_cr8_intercept,
8d14695f 9139 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 9140 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
c7c9c56c
YZ
9141 .vm_has_apicv = vmx_vm_has_apicv,
9142 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9143 .hwapic_irr_update = vmx_hwapic_irr_update,
9144 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
9145 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9146 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 9147
cbc94022 9148 .set_tss_addr = vmx_set_tss_addr,
67253af5 9149 .get_tdp_level = get_ept_level,
4b12f0de 9150 .get_mt_mask = vmx_get_mt_mask,
229456fc 9151
586f9607 9152 .get_exit_info = vmx_get_exit_info,
586f9607 9153
17cc3935 9154 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
9155
9156 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
9157
9158 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 9159 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
9160
9161 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
9162
9163 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 9164
4051b188 9165 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 9166 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 9167 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 9168 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 9169 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 9170 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
9171
9172 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
9173
9174 .check_intercept = vmx_check_intercept,
a547c6db 9175 .handle_external_intr = vmx_handle_external_intr,
da8999d3 9176 .mpx_supported = vmx_mpx_supported,
b6b8a145
JK
9177
9178 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
9179
9180 .sched_in = vmx_sched_in,
6aa8b732
AK
9181};
9182
9183static int __init vmx_init(void)
9184{
8d14695f 9185 int r, i, msr;
26bb0981
AK
9186
9187 rdmsrl_safe(MSR_EFER, &host_efer);
9188
03916db9 9189 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
26bb0981 9190 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 9191
3e7c73e9 9192 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
9193 if (!vmx_io_bitmap_a)
9194 return -ENOMEM;
9195
2106a548
GC
9196 r = -ENOMEM;
9197
3e7c73e9 9198 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 9199 if (!vmx_io_bitmap_b)
fdef3ad1 9200 goto out;
fdef3ad1 9201
5897297b 9202 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 9203 if (!vmx_msr_bitmap_legacy)
25c5f225 9204 goto out1;
2106a548 9205
8d14695f
YZ
9206 vmx_msr_bitmap_legacy_x2apic =
9207 (unsigned long *)__get_free_page(GFP_KERNEL);
9208 if (!vmx_msr_bitmap_legacy_x2apic)
9209 goto out2;
25c5f225 9210
5897297b 9211 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 9212 if (!vmx_msr_bitmap_longmode)
8d14695f 9213 goto out3;
2106a548 9214
8d14695f
YZ
9215 vmx_msr_bitmap_longmode_x2apic =
9216 (unsigned long *)__get_free_page(GFP_KERNEL);
9217 if (!vmx_msr_bitmap_longmode_x2apic)
9218 goto out4;
4607c2d7
AG
9219 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9220 if (!vmx_vmread_bitmap)
9221 goto out5;
9222
9223 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9224 if (!vmx_vmwrite_bitmap)
9225 goto out6;
9226
9227 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9228 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5897297b 9229
fdef3ad1
HQ
9230 /*
9231 * Allow direct access to the PC debug port (it is often used for I/O
9232 * delays, but the vmexits simply slow things down).
9233 */
3e7c73e9
AK
9234 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9235 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 9236
3e7c73e9 9237 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 9238
5897297b
AK
9239 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9240 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 9241
2384d2b3
SY
9242 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9243
0ee75bea
AK
9244 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9245 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 9246 if (r)
4607c2d7 9247 goto out7;
25c5f225 9248
8f536b76
ZY
9249#ifdef CONFIG_KEXEC
9250 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9251 crash_vmclear_local_loaded_vmcss);
9252#endif
9253
5897297b
AK
9254 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9255 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9256 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9257 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9258 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9259 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
da8999d3
LJ
9260 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9261
8d14695f
YZ
9262 memcpy(vmx_msr_bitmap_legacy_x2apic,
9263 vmx_msr_bitmap_legacy, PAGE_SIZE);
9264 memcpy(vmx_msr_bitmap_longmode_x2apic,
9265 vmx_msr_bitmap_longmode, PAGE_SIZE);
9266
01e439be 9267 if (enable_apicv) {
8d14695f
YZ
9268 for (msr = 0x800; msr <= 0x8ff; msr++)
9269 vmx_disable_intercept_msr_read_x2apic(msr);
9270
9271 /* According SDM, in x2apic mode, the whole id reg is used.
9272 * But in KVM, it only use the highest eight bits. Need to
9273 * intercept it */
9274 vmx_enable_intercept_msr_read_x2apic(0x802);
9275 /* TMCCT */
9276 vmx_enable_intercept_msr_read_x2apic(0x839);
9277 /* TPR */
9278 vmx_disable_intercept_msr_write_x2apic(0x808);
c7c9c56c
YZ
9279 /* EOI */
9280 vmx_disable_intercept_msr_write_x2apic(0x80b);
9281 /* SELF-IPI */
9282 vmx_disable_intercept_msr_write_x2apic(0x83f);
8d14695f 9283 }
fdef3ad1 9284
089d034e 9285 if (enable_ept) {
3f6d8c8a
XH
9286 kvm_mmu_set_mask_ptes(0ull,
9287 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9288 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9289 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 9290 ept_set_mmio_spte_mask();
5fdbcb9d
SY
9291 kvm_enable_tdp();
9292 } else
9293 kvm_disable_tdp();
1439442c 9294
b4a2d31d
RK
9295 update_ple_window_actual_max();
9296
fdef3ad1
HQ
9297 return 0;
9298
4607c2d7
AG
9299out7:
9300 free_page((unsigned long)vmx_vmwrite_bitmap);
9301out6:
9302 free_page((unsigned long)vmx_vmread_bitmap);
458f212e
YZ
9303out5:
9304 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8d14695f 9305out4:
5897297b 9306 free_page((unsigned long)vmx_msr_bitmap_longmode);
8d14695f
YZ
9307out3:
9308 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
25c5f225 9309out2:
5897297b 9310 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 9311out1:
3e7c73e9 9312 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 9313out:
3e7c73e9 9314 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 9315 return r;
6aa8b732
AK
9316}
9317
9318static void __exit vmx_exit(void)
9319{
8d14695f
YZ
9320 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9321 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5897297b
AK
9322 free_page((unsigned long)vmx_msr_bitmap_legacy);
9323 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
9324 free_page((unsigned long)vmx_io_bitmap_b);
9325 free_page((unsigned long)vmx_io_bitmap_a);
4607c2d7
AG
9326 free_page((unsigned long)vmx_vmwrite_bitmap);
9327 free_page((unsigned long)vmx_vmread_bitmap);
fdef3ad1 9328
8f536b76 9329#ifdef CONFIG_KEXEC
3b63a43f 9330 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
9331 synchronize_rcu();
9332#endif
9333
cb498ea2 9334 kvm_exit();
6aa8b732
AK
9335}
9336
9337module_init(vmx_init)
9338module_exit(vmx_exit)