]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: nVMX: Add nested msr load/restore algorithm
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
f4124500 34#include <linux/hrtimer.h>
5fdbf976 35#include "kvm_cache_regs.h"
35920a35 36#include "x86.h"
e495606d 37
6aa8b732 38#include <asm/io.h>
3b3be0d1 39#include <asm/desc.h>
13673a90 40#include <asm/vmx.h>
6210e37b 41#include <asm/virtext.h>
a0861c02 42#include <asm/mce.h>
2acf923e
DC
43#include <asm/i387.h>
44#include <asm/xcr.h>
d7cd9796 45#include <asm/perf_event.h>
81908bf4 46#include <asm/debugreg.h>
8f536b76 47#include <asm/kexec.h>
6aa8b732 48
229456fc
MT
49#include "trace.h"
50
4ecac3fd 51#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
52#define __ex_clear(x, reg) \
53 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 54
6aa8b732
AK
55MODULE_AUTHOR("Qumranet");
56MODULE_LICENSE("GPL");
57
e9bda3b3
JT
58static const struct x86_cpu_id vmx_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 {}
61};
62MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
476bc001 64static bool __read_mostly enable_vpid = 1;
736caefe 65module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 66
476bc001 67static bool __read_mostly flexpriority_enabled = 1;
736caefe 68module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 69
476bc001 70static bool __read_mostly enable_ept = 1;
736caefe 71module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 72
476bc001 73static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
74module_param_named(unrestricted_guest,
75 enable_unrestricted_guest, bool, S_IRUGO);
76
83c3a331
XH
77static bool __read_mostly enable_ept_ad_bits = 1;
78module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
a27685c3 80static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 81module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 82
476bc001 83static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
84module_param(vmm_exclusive, bool, S_IRUGO);
85
476bc001 86static bool __read_mostly fasteoi = 1;
58fbbf26
KT
87module_param(fasteoi, bool, S_IRUGO);
88
5a71785d 89static bool __read_mostly enable_apicv = 1;
01e439be 90module_param(enable_apicv, bool, S_IRUGO);
83d4c286 91
abc4fc58
AG
92static bool __read_mostly enable_shadow_vmcs = 1;
93module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
94/*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
476bc001 99static bool __read_mostly nested = 0;
801d3424
NHE
100module_param(nested, bool, S_IRUGO);
101
20300099
WL
102static u64 __read_mostly host_xss;
103
5037878e
GN
104#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
105#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
106#define KVM_VM_CR0_ALWAYS_ON \
107 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
108#define KVM_CR4_GUEST_OWNED_BITS \
109 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 110 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 111
cdc0e244
AK
112#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
113#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
114
78ac8b47
AK
115#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
116
f4124500
JK
117#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
118
4b8d54f9
ZE
119/*
120 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
121 * ple_gap: upper bound on the amount of time between two successive
122 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 123 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
124 * ple_window: upper bound on the amount of time a guest is allowed to execute
125 * in a PAUSE loop. Tests indicate that most spinlocks are held for
126 * less than 2^12 cycles
127 * Time is measured based on a counter that runs at the same rate as the TSC,
128 * refer SDM volume 3b section 21.6.13 & 22.1.3.
129 */
b4a2d31d
RK
130#define KVM_VMX_DEFAULT_PLE_GAP 128
131#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
132#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
133#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
134#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
135 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
136
4b8d54f9
ZE
137static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
138module_param(ple_gap, int, S_IRUGO);
139
140static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
141module_param(ple_window, int, S_IRUGO);
142
b4a2d31d
RK
143/* Default doubles per-vcpu window every exit. */
144static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
145module_param(ple_window_grow, int, S_IRUGO);
146
147/* Default resets per-vcpu window every exit to ple_window. */
148static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
149module_param(ple_window_shrink, int, S_IRUGO);
150
151/* Default is to compute the maximum so we can never overflow. */
152static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
153static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
154module_param(ple_window_max, int, S_IRUGO);
155
83287ea4
AK
156extern const ulong vmx_return;
157
8bf00a52 158#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 159#define VMCS02_POOL_SIZE 1
61d2ef2c 160
a2fa3e9f
GH
161struct vmcs {
162 u32 revision_id;
163 u32 abort;
164 char data[0];
165};
166
d462b819
NHE
167/*
168 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
169 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
170 * loaded on this CPU (so we can clear them if the CPU goes down).
171 */
172struct loaded_vmcs {
173 struct vmcs *vmcs;
174 int cpu;
175 int launched;
176 struct list_head loaded_vmcss_on_cpu_link;
177};
178
26bb0981
AK
179struct shared_msr_entry {
180 unsigned index;
181 u64 data;
d5696725 182 u64 mask;
26bb0981
AK
183};
184
a9d30f33
NHE
185/*
186 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
187 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
188 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
189 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
190 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
191 * More than one of these structures may exist, if L1 runs multiple L2 guests.
192 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
193 * underlying hardware which will be used to run L2.
194 * This structure is packed to ensure that its layout is identical across
195 * machines (necessary for live migration).
196 * If there are changes in this struct, VMCS12_REVISION must be changed.
197 */
22bd0358 198typedef u64 natural_width;
a9d30f33
NHE
199struct __packed vmcs12 {
200 /* According to the Intel spec, a VMCS region must start with the
201 * following two fields. Then follow implementation-specific data.
202 */
203 u32 revision_id;
204 u32 abort;
22bd0358 205
27d6c865
NHE
206 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
207 u32 padding[7]; /* room for future expansion */
208
22bd0358
NHE
209 u64 io_bitmap_a;
210 u64 io_bitmap_b;
211 u64 msr_bitmap;
212 u64 vm_exit_msr_store_addr;
213 u64 vm_exit_msr_load_addr;
214 u64 vm_entry_msr_load_addr;
215 u64 tsc_offset;
216 u64 virtual_apic_page_addr;
217 u64 apic_access_addr;
218 u64 ept_pointer;
81dc01f7 219 u64 xss_exit_bitmap;
22bd0358
NHE
220 u64 guest_physical_address;
221 u64 vmcs_link_pointer;
222 u64 guest_ia32_debugctl;
223 u64 guest_ia32_pat;
224 u64 guest_ia32_efer;
225 u64 guest_ia32_perf_global_ctrl;
226 u64 guest_pdptr0;
227 u64 guest_pdptr1;
228 u64 guest_pdptr2;
229 u64 guest_pdptr3;
36be0b9d 230 u64 guest_bndcfgs;
22bd0358
NHE
231 u64 host_ia32_pat;
232 u64 host_ia32_efer;
233 u64 host_ia32_perf_global_ctrl;
234 u64 padding64[8]; /* room for future expansion */
235 /*
236 * To allow migration of L1 (complete with its L2 guests) between
237 * machines of different natural widths (32 or 64 bit), we cannot have
238 * unsigned long fields with no explict size. We use u64 (aliased
239 * natural_width) instead. Luckily, x86 is little-endian.
240 */
241 natural_width cr0_guest_host_mask;
242 natural_width cr4_guest_host_mask;
243 natural_width cr0_read_shadow;
244 natural_width cr4_read_shadow;
245 natural_width cr3_target_value0;
246 natural_width cr3_target_value1;
247 natural_width cr3_target_value2;
248 natural_width cr3_target_value3;
249 natural_width exit_qualification;
250 natural_width guest_linear_address;
251 natural_width guest_cr0;
252 natural_width guest_cr3;
253 natural_width guest_cr4;
254 natural_width guest_es_base;
255 natural_width guest_cs_base;
256 natural_width guest_ss_base;
257 natural_width guest_ds_base;
258 natural_width guest_fs_base;
259 natural_width guest_gs_base;
260 natural_width guest_ldtr_base;
261 natural_width guest_tr_base;
262 natural_width guest_gdtr_base;
263 natural_width guest_idtr_base;
264 natural_width guest_dr7;
265 natural_width guest_rsp;
266 natural_width guest_rip;
267 natural_width guest_rflags;
268 natural_width guest_pending_dbg_exceptions;
269 natural_width guest_sysenter_esp;
270 natural_width guest_sysenter_eip;
271 natural_width host_cr0;
272 natural_width host_cr3;
273 natural_width host_cr4;
274 natural_width host_fs_base;
275 natural_width host_gs_base;
276 natural_width host_tr_base;
277 natural_width host_gdtr_base;
278 natural_width host_idtr_base;
279 natural_width host_ia32_sysenter_esp;
280 natural_width host_ia32_sysenter_eip;
281 natural_width host_rsp;
282 natural_width host_rip;
283 natural_width paddingl[8]; /* room for future expansion */
284 u32 pin_based_vm_exec_control;
285 u32 cpu_based_vm_exec_control;
286 u32 exception_bitmap;
287 u32 page_fault_error_code_mask;
288 u32 page_fault_error_code_match;
289 u32 cr3_target_count;
290 u32 vm_exit_controls;
291 u32 vm_exit_msr_store_count;
292 u32 vm_exit_msr_load_count;
293 u32 vm_entry_controls;
294 u32 vm_entry_msr_load_count;
295 u32 vm_entry_intr_info_field;
296 u32 vm_entry_exception_error_code;
297 u32 vm_entry_instruction_len;
298 u32 tpr_threshold;
299 u32 secondary_vm_exec_control;
300 u32 vm_instruction_error;
301 u32 vm_exit_reason;
302 u32 vm_exit_intr_info;
303 u32 vm_exit_intr_error_code;
304 u32 idt_vectoring_info_field;
305 u32 idt_vectoring_error_code;
306 u32 vm_exit_instruction_len;
307 u32 vmx_instruction_info;
308 u32 guest_es_limit;
309 u32 guest_cs_limit;
310 u32 guest_ss_limit;
311 u32 guest_ds_limit;
312 u32 guest_fs_limit;
313 u32 guest_gs_limit;
314 u32 guest_ldtr_limit;
315 u32 guest_tr_limit;
316 u32 guest_gdtr_limit;
317 u32 guest_idtr_limit;
318 u32 guest_es_ar_bytes;
319 u32 guest_cs_ar_bytes;
320 u32 guest_ss_ar_bytes;
321 u32 guest_ds_ar_bytes;
322 u32 guest_fs_ar_bytes;
323 u32 guest_gs_ar_bytes;
324 u32 guest_ldtr_ar_bytes;
325 u32 guest_tr_ar_bytes;
326 u32 guest_interruptibility_info;
327 u32 guest_activity_state;
328 u32 guest_sysenter_cs;
329 u32 host_ia32_sysenter_cs;
0238ea91
JK
330 u32 vmx_preemption_timer_value;
331 u32 padding32[7]; /* room for future expansion */
22bd0358
NHE
332 u16 virtual_processor_id;
333 u16 guest_es_selector;
334 u16 guest_cs_selector;
335 u16 guest_ss_selector;
336 u16 guest_ds_selector;
337 u16 guest_fs_selector;
338 u16 guest_gs_selector;
339 u16 guest_ldtr_selector;
340 u16 guest_tr_selector;
341 u16 host_es_selector;
342 u16 host_cs_selector;
343 u16 host_ss_selector;
344 u16 host_ds_selector;
345 u16 host_fs_selector;
346 u16 host_gs_selector;
347 u16 host_tr_selector;
a9d30f33
NHE
348};
349
350/*
351 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
352 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
353 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
354 */
355#define VMCS12_REVISION 0x11e57ed0
356
357/*
358 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
359 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
360 * current implementation, 4K are reserved to avoid future complications.
361 */
362#define VMCS12_SIZE 0x1000
363
ff2f6fe9
NHE
364/* Used to remember the last vmcs02 used for some recently used vmcs12s */
365struct vmcs02_list {
366 struct list_head list;
367 gpa_t vmptr;
368 struct loaded_vmcs vmcs02;
369};
370
ec378aee
NHE
371/*
372 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
373 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
374 */
375struct nested_vmx {
376 /* Has the level1 guest done vmxon? */
377 bool vmxon;
3573e22c 378 gpa_t vmxon_ptr;
a9d30f33
NHE
379
380 /* The guest-physical address of the current VMCS L1 keeps for L2 */
381 gpa_t current_vmptr;
382 /* The host-usable pointer to the above */
383 struct page *current_vmcs12_page;
384 struct vmcs12 *current_vmcs12;
8de48833 385 struct vmcs *current_shadow_vmcs;
012f83cb
AG
386 /*
387 * Indicates if the shadow vmcs must be updated with the
388 * data hold by vmcs12
389 */
390 bool sync_shadow_vmcs;
ff2f6fe9
NHE
391
392 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
393 struct list_head vmcs02_pool;
394 int vmcs02_num;
fe3ef05c 395 u64 vmcs01_tsc_offset;
644d711a
NHE
396 /* L2 must run next, and mustn't decide to exit to L1. */
397 bool nested_run_pending;
fe3ef05c
NHE
398 /*
399 * Guest pages referred to in vmcs02 with host-physical pointers, so
400 * we must keep them pinned while L2 runs.
401 */
402 struct page *apic_access_page;
a7c0b07d 403 struct page *virtual_apic_page;
b3897a49 404 u64 msr_ia32_feature_control;
f4124500
JK
405
406 struct hrtimer preemption_timer;
407 bool preemption_timer_expired;
2996fca0
JK
408
409 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
410 u64 vmcs01_debugctl;
ec378aee
NHE
411};
412
01e439be
YZ
413#define POSTED_INTR_ON 0
414/* Posted-Interrupt Descriptor */
415struct pi_desc {
416 u32 pir[8]; /* Posted interrupt requested */
417 u32 control; /* bit 0 of control is outstanding notification bit */
418 u32 rsvd[7];
419} __aligned(64);
420
a20ed54d
YZ
421static bool pi_test_and_set_on(struct pi_desc *pi_desc)
422{
423 return test_and_set_bit(POSTED_INTR_ON,
424 (unsigned long *)&pi_desc->control);
425}
426
427static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
428{
429 return test_and_clear_bit(POSTED_INTR_ON,
430 (unsigned long *)&pi_desc->control);
431}
432
433static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
434{
435 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
436}
437
a2fa3e9f 438struct vcpu_vmx {
fb3f0f51 439 struct kvm_vcpu vcpu;
313dbd49 440 unsigned long host_rsp;
29bd8a78 441 u8 fail;
9d58b931 442 bool nmi_known_unmasked;
51aa01d1 443 u32 exit_intr_info;
1155f76a 444 u32 idt_vectoring_info;
6de12732 445 ulong rflags;
26bb0981 446 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
447 int nmsrs;
448 int save_nmsrs;
a547c6db 449 unsigned long host_idt_base;
a2fa3e9f 450#ifdef CONFIG_X86_64
44ea2b17
AK
451 u64 msr_host_kernel_gs_base;
452 u64 msr_guest_kernel_gs_base;
a2fa3e9f 453#endif
2961e876
GN
454 u32 vm_entry_controls_shadow;
455 u32 vm_exit_controls_shadow;
d462b819
NHE
456 /*
457 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
458 * non-nested (L1) guest, it always points to vmcs01. For a nested
459 * guest (L2), it points to a different VMCS.
460 */
461 struct loaded_vmcs vmcs01;
462 struct loaded_vmcs *loaded_vmcs;
463 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
464 struct msr_autoload {
465 unsigned nr;
466 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
467 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
468 } msr_autoload;
a2fa3e9f
GH
469 struct {
470 int loaded;
471 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
472#ifdef CONFIG_X86_64
473 u16 ds_sel, es_sel;
474#endif
152d3f2f
LV
475 int gs_ldt_reload_needed;
476 int fs_reload_needed;
da8999d3 477 u64 msr_host_bndcfgs;
d974baa3 478 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 479 } host_state;
9c8cba37 480 struct {
7ffd92c5 481 int vm86_active;
78ac8b47 482 ulong save_rflags;
f5f7b2fe
AK
483 struct kvm_segment segs[8];
484 } rmode;
485 struct {
486 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
487 struct kvm_save_segment {
488 u16 selector;
489 unsigned long base;
490 u32 limit;
491 u32 ar;
f5f7b2fe 492 } seg[8];
2fb92db1 493 } segment_cache;
2384d2b3 494 int vpid;
04fa4d32 495 bool emulation_required;
3b86cd99
JK
496
497 /* Support for vnmi-less CPUs */
498 int soft_vnmi_blocked;
499 ktime_t entry_time;
500 s64 vnmi_blocked_time;
a0861c02 501 u32 exit_reason;
4e47c7a6
SY
502
503 bool rdtscp_enabled;
ec378aee 504
01e439be
YZ
505 /* Posted interrupt descriptor */
506 struct pi_desc pi_desc;
507
ec378aee
NHE
508 /* Support for a guest hypervisor (nested VMX) */
509 struct nested_vmx nested;
a7653ecd
RK
510
511 /* Dynamic PLE window. */
512 int ple_window;
513 bool ple_window_dirty;
a2fa3e9f
GH
514};
515
2fb92db1
AK
516enum segment_cache_field {
517 SEG_FIELD_SEL = 0,
518 SEG_FIELD_BASE = 1,
519 SEG_FIELD_LIMIT = 2,
520 SEG_FIELD_AR = 3,
521
522 SEG_FIELD_NR = 4
523};
524
a2fa3e9f
GH
525static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
526{
fb3f0f51 527 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
528}
529
22bd0358
NHE
530#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
531#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
532#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
533 [number##_HIGH] = VMCS12_OFFSET(name)+4
534
4607c2d7 535
fe2b201b 536static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
537 /*
538 * We do NOT shadow fields that are modified when L0
539 * traps and emulates any vmx instruction (e.g. VMPTRLD,
540 * VMXON...) executed by L1.
541 * For example, VM_INSTRUCTION_ERROR is read
542 * by L1 if a vmx instruction fails (part of the error path).
543 * Note the code assumes this logic. If for some reason
544 * we start shadowing these fields then we need to
545 * force a shadow sync when L0 emulates vmx instructions
546 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
547 * by nested_vmx_failValid)
548 */
549 VM_EXIT_REASON,
550 VM_EXIT_INTR_INFO,
551 VM_EXIT_INSTRUCTION_LEN,
552 IDT_VECTORING_INFO_FIELD,
553 IDT_VECTORING_ERROR_CODE,
554 VM_EXIT_INTR_ERROR_CODE,
555 EXIT_QUALIFICATION,
556 GUEST_LINEAR_ADDRESS,
557 GUEST_PHYSICAL_ADDRESS
558};
fe2b201b 559static int max_shadow_read_only_fields =
4607c2d7
AG
560 ARRAY_SIZE(shadow_read_only_fields);
561
fe2b201b 562static unsigned long shadow_read_write_fields[] = {
a7c0b07d 563 TPR_THRESHOLD,
4607c2d7
AG
564 GUEST_RIP,
565 GUEST_RSP,
566 GUEST_CR0,
567 GUEST_CR3,
568 GUEST_CR4,
569 GUEST_INTERRUPTIBILITY_INFO,
570 GUEST_RFLAGS,
571 GUEST_CS_SELECTOR,
572 GUEST_CS_AR_BYTES,
573 GUEST_CS_LIMIT,
574 GUEST_CS_BASE,
575 GUEST_ES_BASE,
36be0b9d 576 GUEST_BNDCFGS,
4607c2d7
AG
577 CR0_GUEST_HOST_MASK,
578 CR0_READ_SHADOW,
579 CR4_READ_SHADOW,
580 TSC_OFFSET,
581 EXCEPTION_BITMAP,
582 CPU_BASED_VM_EXEC_CONTROL,
583 VM_ENTRY_EXCEPTION_ERROR_CODE,
584 VM_ENTRY_INTR_INFO_FIELD,
585 VM_ENTRY_INSTRUCTION_LEN,
586 VM_ENTRY_EXCEPTION_ERROR_CODE,
587 HOST_FS_BASE,
588 HOST_GS_BASE,
589 HOST_FS_SELECTOR,
590 HOST_GS_SELECTOR
591};
fe2b201b 592static int max_shadow_read_write_fields =
4607c2d7
AG
593 ARRAY_SIZE(shadow_read_write_fields);
594
772e0318 595static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
596 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
597 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
598 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
599 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
600 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
601 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
602 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
603 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
604 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
605 FIELD(HOST_ES_SELECTOR, host_es_selector),
606 FIELD(HOST_CS_SELECTOR, host_cs_selector),
607 FIELD(HOST_SS_SELECTOR, host_ss_selector),
608 FIELD(HOST_DS_SELECTOR, host_ds_selector),
609 FIELD(HOST_FS_SELECTOR, host_fs_selector),
610 FIELD(HOST_GS_SELECTOR, host_gs_selector),
611 FIELD(HOST_TR_SELECTOR, host_tr_selector),
612 FIELD64(IO_BITMAP_A, io_bitmap_a),
613 FIELD64(IO_BITMAP_B, io_bitmap_b),
614 FIELD64(MSR_BITMAP, msr_bitmap),
615 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
616 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
617 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
618 FIELD64(TSC_OFFSET, tsc_offset),
619 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
620 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
621 FIELD64(EPT_POINTER, ept_pointer),
81dc01f7 622 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
623 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
624 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
625 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
626 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
627 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
628 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
629 FIELD64(GUEST_PDPTR0, guest_pdptr0),
630 FIELD64(GUEST_PDPTR1, guest_pdptr1),
631 FIELD64(GUEST_PDPTR2, guest_pdptr2),
632 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 633 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
634 FIELD64(HOST_IA32_PAT, host_ia32_pat),
635 FIELD64(HOST_IA32_EFER, host_ia32_efer),
636 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
637 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
638 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
639 FIELD(EXCEPTION_BITMAP, exception_bitmap),
640 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
641 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
642 FIELD(CR3_TARGET_COUNT, cr3_target_count),
643 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
644 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
645 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
646 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
647 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
648 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
649 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
650 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
651 FIELD(TPR_THRESHOLD, tpr_threshold),
652 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
653 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
654 FIELD(VM_EXIT_REASON, vm_exit_reason),
655 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
656 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
657 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
658 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
659 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
660 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
661 FIELD(GUEST_ES_LIMIT, guest_es_limit),
662 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
663 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
664 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
665 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
666 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
667 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
668 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
669 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
670 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
671 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
672 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
673 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
674 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
675 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
676 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
677 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
678 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
679 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
680 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
681 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
682 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 683 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
684 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
685 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
686 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
687 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
688 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
689 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
690 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
691 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
692 FIELD(EXIT_QUALIFICATION, exit_qualification),
693 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
694 FIELD(GUEST_CR0, guest_cr0),
695 FIELD(GUEST_CR3, guest_cr3),
696 FIELD(GUEST_CR4, guest_cr4),
697 FIELD(GUEST_ES_BASE, guest_es_base),
698 FIELD(GUEST_CS_BASE, guest_cs_base),
699 FIELD(GUEST_SS_BASE, guest_ss_base),
700 FIELD(GUEST_DS_BASE, guest_ds_base),
701 FIELD(GUEST_FS_BASE, guest_fs_base),
702 FIELD(GUEST_GS_BASE, guest_gs_base),
703 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
704 FIELD(GUEST_TR_BASE, guest_tr_base),
705 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
706 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
707 FIELD(GUEST_DR7, guest_dr7),
708 FIELD(GUEST_RSP, guest_rsp),
709 FIELD(GUEST_RIP, guest_rip),
710 FIELD(GUEST_RFLAGS, guest_rflags),
711 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
712 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
713 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
714 FIELD(HOST_CR0, host_cr0),
715 FIELD(HOST_CR3, host_cr3),
716 FIELD(HOST_CR4, host_cr4),
717 FIELD(HOST_FS_BASE, host_fs_base),
718 FIELD(HOST_GS_BASE, host_gs_base),
719 FIELD(HOST_TR_BASE, host_tr_base),
720 FIELD(HOST_GDTR_BASE, host_gdtr_base),
721 FIELD(HOST_IDTR_BASE, host_idtr_base),
722 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
723 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
724 FIELD(HOST_RSP, host_rsp),
725 FIELD(HOST_RIP, host_rip),
726};
22bd0358
NHE
727
728static inline short vmcs_field_to_offset(unsigned long field)
729{
a2ae9df7
PB
730 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
731
732 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
733 vmcs_field_to_offset_table[field] == 0)
734 return -ENOENT;
735
22bd0358
NHE
736 return vmcs_field_to_offset_table[field];
737}
738
a9d30f33
NHE
739static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
740{
741 return to_vmx(vcpu)->nested.current_vmcs12;
742}
743
744static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
745{
746 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 747 if (is_error_page(page))
a9d30f33 748 return NULL;
32cad84f 749
a9d30f33
NHE
750 return page;
751}
752
753static void nested_release_page(struct page *page)
754{
755 kvm_release_page_dirty(page);
756}
757
758static void nested_release_page_clean(struct page *page)
759{
760 kvm_release_page_clean(page);
761}
762
bfd0a56b 763static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 764static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
765static void kvm_cpu_vmxon(u64 addr);
766static void kvm_cpu_vmxoff(void);
93c4adc7 767static bool vmx_mpx_supported(void);
f53cd63c 768static bool vmx_xsaves_supported(void);
776e58ea 769static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
770static void vmx_set_segment(struct kvm_vcpu *vcpu,
771 struct kvm_segment *var, int seg);
772static void vmx_get_segment(struct kvm_vcpu *vcpu,
773 struct kvm_segment *var, int seg);
d99e4152
GN
774static bool guest_state_valid(struct kvm_vcpu *vcpu);
775static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 776static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 777static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 778static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 779static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 780
6aa8b732
AK
781static DEFINE_PER_CPU(struct vmcs *, vmxarea);
782static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
783/*
784 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
785 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
786 */
787static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 788static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 789
3e7c73e9
AK
790static unsigned long *vmx_io_bitmap_a;
791static unsigned long *vmx_io_bitmap_b;
5897297b
AK
792static unsigned long *vmx_msr_bitmap_legacy;
793static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
794static unsigned long *vmx_msr_bitmap_legacy_x2apic;
795static unsigned long *vmx_msr_bitmap_longmode_x2apic;
4607c2d7
AG
796static unsigned long *vmx_vmread_bitmap;
797static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 798
110312c8 799static bool cpu_has_load_ia32_efer;
8bf00a52 800static bool cpu_has_load_perf_global_ctrl;
110312c8 801
2384d2b3
SY
802static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
803static DEFINE_SPINLOCK(vmx_vpid_lock);
804
1c3d14fe 805static struct vmcs_config {
6aa8b732
AK
806 int size;
807 int order;
808 u32 revision_id;
1c3d14fe
YS
809 u32 pin_based_exec_ctrl;
810 u32 cpu_based_exec_ctrl;
f78e0e2e 811 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
812 u32 vmexit_ctrl;
813 u32 vmentry_ctrl;
814} vmcs_config;
6aa8b732 815
efff9e53 816static struct vmx_capability {
d56f546d
SY
817 u32 ept;
818 u32 vpid;
819} vmx_capability;
820
6aa8b732
AK
821#define VMX_SEGMENT_FIELD(seg) \
822 [VCPU_SREG_##seg] = { \
823 .selector = GUEST_##seg##_SELECTOR, \
824 .base = GUEST_##seg##_BASE, \
825 .limit = GUEST_##seg##_LIMIT, \
826 .ar_bytes = GUEST_##seg##_AR_BYTES, \
827 }
828
772e0318 829static const struct kvm_vmx_segment_field {
6aa8b732
AK
830 unsigned selector;
831 unsigned base;
832 unsigned limit;
833 unsigned ar_bytes;
834} kvm_vmx_segment_fields[] = {
835 VMX_SEGMENT_FIELD(CS),
836 VMX_SEGMENT_FIELD(DS),
837 VMX_SEGMENT_FIELD(ES),
838 VMX_SEGMENT_FIELD(FS),
839 VMX_SEGMENT_FIELD(GS),
840 VMX_SEGMENT_FIELD(SS),
841 VMX_SEGMENT_FIELD(TR),
842 VMX_SEGMENT_FIELD(LDTR),
843};
844
26bb0981
AK
845static u64 host_efer;
846
6de4f3ad
AK
847static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
848
4d56c8a7 849/*
8c06585d 850 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
851 * away by decrementing the array size.
852 */
6aa8b732 853static const u32 vmx_msr_index[] = {
05b3e0c2 854#ifdef CONFIG_X86_64
44ea2b17 855 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 856#endif
8c06585d 857 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 858};
6aa8b732 859
31299944 860static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
861{
862 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
863 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 864 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
865}
866
31299944 867static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
868{
869 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
870 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 871 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
872}
873
31299944 874static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
875{
876 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
877 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 878 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
879}
880
31299944 881static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
882{
883 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
884 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
885}
886
31299944 887static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
888{
889 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
890 INTR_INFO_VALID_MASK)) ==
891 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
892}
893
31299944 894static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 895{
04547156 896 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
897}
898
31299944 899static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 900{
04547156 901 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
902}
903
31299944 904static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 905{
04547156 906 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
907}
908
31299944 909static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 910{
04547156
SY
911 return vmcs_config.cpu_based_exec_ctrl &
912 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
913}
914
774ead3a 915static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 916{
04547156
SY
917 return vmcs_config.cpu_based_2nd_exec_ctrl &
918 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
919}
920
8d14695f
YZ
921static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
922{
923 return vmcs_config.cpu_based_2nd_exec_ctrl &
924 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
925}
926
83d4c286
YZ
927static inline bool cpu_has_vmx_apic_register_virt(void)
928{
929 return vmcs_config.cpu_based_2nd_exec_ctrl &
930 SECONDARY_EXEC_APIC_REGISTER_VIRT;
931}
932
c7c9c56c
YZ
933static inline bool cpu_has_vmx_virtual_intr_delivery(void)
934{
935 return vmcs_config.cpu_based_2nd_exec_ctrl &
936 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
937}
938
01e439be
YZ
939static inline bool cpu_has_vmx_posted_intr(void)
940{
941 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
942}
943
944static inline bool cpu_has_vmx_apicv(void)
945{
946 return cpu_has_vmx_apic_register_virt() &&
947 cpu_has_vmx_virtual_intr_delivery() &&
948 cpu_has_vmx_posted_intr();
949}
950
04547156
SY
951static inline bool cpu_has_vmx_flexpriority(void)
952{
953 return cpu_has_vmx_tpr_shadow() &&
954 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
955}
956
e799794e
MT
957static inline bool cpu_has_vmx_ept_execute_only(void)
958{
31299944 959 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
960}
961
962static inline bool cpu_has_vmx_eptp_uncacheable(void)
963{
31299944 964 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
965}
966
967static inline bool cpu_has_vmx_eptp_writeback(void)
968{
31299944 969 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
970}
971
972static inline bool cpu_has_vmx_ept_2m_page(void)
973{
31299944 974 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
975}
976
878403b7
SY
977static inline bool cpu_has_vmx_ept_1g_page(void)
978{
31299944 979 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
980}
981
4bc9b982
SY
982static inline bool cpu_has_vmx_ept_4levels(void)
983{
984 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
985}
986
83c3a331
XH
987static inline bool cpu_has_vmx_ept_ad_bits(void)
988{
989 return vmx_capability.ept & VMX_EPT_AD_BIT;
990}
991
31299944 992static inline bool cpu_has_vmx_invept_context(void)
d56f546d 993{
31299944 994 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
995}
996
31299944 997static inline bool cpu_has_vmx_invept_global(void)
d56f546d 998{
31299944 999 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1000}
1001
518c8aee
GJ
1002static inline bool cpu_has_vmx_invvpid_single(void)
1003{
1004 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1005}
1006
b9d762fa
GJ
1007static inline bool cpu_has_vmx_invvpid_global(void)
1008{
1009 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1010}
1011
31299944 1012static inline bool cpu_has_vmx_ept(void)
d56f546d 1013{
04547156
SY
1014 return vmcs_config.cpu_based_2nd_exec_ctrl &
1015 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1016}
1017
31299944 1018static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1019{
1020 return vmcs_config.cpu_based_2nd_exec_ctrl &
1021 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1022}
1023
31299944 1024static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1025{
1026 return vmcs_config.cpu_based_2nd_exec_ctrl &
1027 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1028}
1029
31299944 1030static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 1031{
6d3e435e 1032 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
1033}
1034
31299944 1035static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1036{
04547156
SY
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1039}
1040
31299944 1041static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1042{
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_RDTSCP;
1045}
1046
ad756a16
MJ
1047static inline bool cpu_has_vmx_invpcid(void)
1048{
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_ENABLE_INVPCID;
1051}
1052
31299944 1053static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1054{
1055 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1056}
1057
f5f48ee1
SY
1058static inline bool cpu_has_vmx_wbinvd_exit(void)
1059{
1060 return vmcs_config.cpu_based_2nd_exec_ctrl &
1061 SECONDARY_EXEC_WBINVD_EXITING;
1062}
1063
abc4fc58
AG
1064static inline bool cpu_has_vmx_shadow_vmcs(void)
1065{
1066 u64 vmx_msr;
1067 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1068 /* check if the cpu supports writing r/o exit information fields */
1069 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1070 return false;
1071
1072 return vmcs_config.cpu_based_2nd_exec_ctrl &
1073 SECONDARY_EXEC_SHADOW_VMCS;
1074}
1075
04547156
SY
1076static inline bool report_flexpriority(void)
1077{
1078 return flexpriority_enabled;
1079}
1080
fe3ef05c
NHE
1081static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1082{
1083 return vmcs12->cpu_based_vm_exec_control & bit;
1084}
1085
1086static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1087{
1088 return (vmcs12->cpu_based_vm_exec_control &
1089 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1090 (vmcs12->secondary_vm_exec_control & bit);
1091}
1092
f5c4368f 1093static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1094{
1095 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1096}
1097
f4124500
JK
1098static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1099{
1100 return vmcs12->pin_based_vm_exec_control &
1101 PIN_BASED_VMX_PREEMPTION_TIMER;
1102}
1103
155a97a3
NHE
1104static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1105{
1106 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1107}
1108
81dc01f7
WL
1109static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1110{
1111 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1112 vmx_xsaves_supported();
1113}
1114
644d711a
NHE
1115static inline bool is_exception(u32 intr_info)
1116{
1117 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1118 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1119}
1120
533558bc
JK
1121static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1122 u32 exit_intr_info,
1123 unsigned long exit_qualification);
7c177938
NHE
1124static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1125 struct vmcs12 *vmcs12,
1126 u32 reason, unsigned long qualification);
1127
8b9cf98c 1128static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1129{
1130 int i;
1131
a2fa3e9f 1132 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1133 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1134 return i;
1135 return -1;
1136}
1137
2384d2b3
SY
1138static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1139{
1140 struct {
1141 u64 vpid : 16;
1142 u64 rsvd : 48;
1143 u64 gva;
1144 } operand = { vpid, 0, gva };
1145
4ecac3fd 1146 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1147 /* CF==1 or ZF==1 --> rc = -1 */
1148 "; ja 1f ; ud2 ; 1:"
1149 : : "a"(&operand), "c"(ext) : "cc", "memory");
1150}
1151
1439442c
SY
1152static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1153{
1154 struct {
1155 u64 eptp, gpa;
1156 } operand = {eptp, gpa};
1157
4ecac3fd 1158 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1159 /* CF==1 or ZF==1 --> rc = -1 */
1160 "; ja 1f ; ud2 ; 1:\n"
1161 : : "a" (&operand), "c" (ext) : "cc", "memory");
1162}
1163
26bb0981 1164static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1165{
1166 int i;
1167
8b9cf98c 1168 i = __find_msr_index(vmx, msr);
a75beee6 1169 if (i >= 0)
a2fa3e9f 1170 return &vmx->guest_msrs[i];
8b6d44c7 1171 return NULL;
7725f0ba
AK
1172}
1173
6aa8b732
AK
1174static void vmcs_clear(struct vmcs *vmcs)
1175{
1176 u64 phys_addr = __pa(vmcs);
1177 u8 error;
1178
4ecac3fd 1179 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1180 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1181 : "cc", "memory");
1182 if (error)
1183 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1184 vmcs, phys_addr);
1185}
1186
d462b819
NHE
1187static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1188{
1189 vmcs_clear(loaded_vmcs->vmcs);
1190 loaded_vmcs->cpu = -1;
1191 loaded_vmcs->launched = 0;
1192}
1193
7725b894
DX
1194static void vmcs_load(struct vmcs *vmcs)
1195{
1196 u64 phys_addr = __pa(vmcs);
1197 u8 error;
1198
1199 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1200 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1201 : "cc", "memory");
1202 if (error)
2844d849 1203 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1204 vmcs, phys_addr);
1205}
1206
8f536b76
ZY
1207#ifdef CONFIG_KEXEC
1208/*
1209 * This bitmap is used to indicate whether the vmclear
1210 * operation is enabled on all cpus. All disabled by
1211 * default.
1212 */
1213static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1214
1215static inline void crash_enable_local_vmclear(int cpu)
1216{
1217 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1218}
1219
1220static inline void crash_disable_local_vmclear(int cpu)
1221{
1222 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1223}
1224
1225static inline int crash_local_vmclear_enabled(int cpu)
1226{
1227 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1228}
1229
1230static void crash_vmclear_local_loaded_vmcss(void)
1231{
1232 int cpu = raw_smp_processor_id();
1233 struct loaded_vmcs *v;
1234
1235 if (!crash_local_vmclear_enabled(cpu))
1236 return;
1237
1238 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1239 loaded_vmcss_on_cpu_link)
1240 vmcs_clear(v->vmcs);
1241}
1242#else
1243static inline void crash_enable_local_vmclear(int cpu) { }
1244static inline void crash_disable_local_vmclear(int cpu) { }
1245#endif /* CONFIG_KEXEC */
1246
d462b819 1247static void __loaded_vmcs_clear(void *arg)
6aa8b732 1248{
d462b819 1249 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1250 int cpu = raw_smp_processor_id();
6aa8b732 1251
d462b819
NHE
1252 if (loaded_vmcs->cpu != cpu)
1253 return; /* vcpu migration can race with cpu offline */
1254 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1255 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1256 crash_disable_local_vmclear(cpu);
d462b819 1257 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1258
1259 /*
1260 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1261 * is before setting loaded_vmcs->vcpu to -1 which is done in
1262 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1263 * then adds the vmcs into percpu list before it is deleted.
1264 */
1265 smp_wmb();
1266
d462b819 1267 loaded_vmcs_init(loaded_vmcs);
8f536b76 1268 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1269}
1270
d462b819 1271static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1272{
e6c7d321
XG
1273 int cpu = loaded_vmcs->cpu;
1274
1275 if (cpu != -1)
1276 smp_call_function_single(cpu,
1277 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1278}
1279
1760dd49 1280static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1281{
1282 if (vmx->vpid == 0)
1283 return;
1284
518c8aee
GJ
1285 if (cpu_has_vmx_invvpid_single())
1286 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1287}
1288
b9d762fa
GJ
1289static inline void vpid_sync_vcpu_global(void)
1290{
1291 if (cpu_has_vmx_invvpid_global())
1292 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1293}
1294
1295static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1296{
1297 if (cpu_has_vmx_invvpid_single())
1760dd49 1298 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1299 else
1300 vpid_sync_vcpu_global();
1301}
1302
1439442c
SY
1303static inline void ept_sync_global(void)
1304{
1305 if (cpu_has_vmx_invept_global())
1306 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1307}
1308
1309static inline void ept_sync_context(u64 eptp)
1310{
089d034e 1311 if (enable_ept) {
1439442c
SY
1312 if (cpu_has_vmx_invept_context())
1313 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1314 else
1315 ept_sync_global();
1316 }
1317}
1318
96304217 1319static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1320{
5e520e62 1321 unsigned long value;
6aa8b732 1322
5e520e62
AK
1323 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1324 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1325 return value;
1326}
1327
96304217 1328static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1329{
1330 return vmcs_readl(field);
1331}
1332
96304217 1333static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1334{
1335 return vmcs_readl(field);
1336}
1337
96304217 1338static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1339{
05b3e0c2 1340#ifdef CONFIG_X86_64
6aa8b732
AK
1341 return vmcs_readl(field);
1342#else
1343 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1344#endif
1345}
1346
e52de1b8
AK
1347static noinline void vmwrite_error(unsigned long field, unsigned long value)
1348{
1349 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1350 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1351 dump_stack();
1352}
1353
6aa8b732
AK
1354static void vmcs_writel(unsigned long field, unsigned long value)
1355{
1356 u8 error;
1357
4ecac3fd 1358 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1359 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1360 if (unlikely(error))
1361 vmwrite_error(field, value);
6aa8b732
AK
1362}
1363
1364static void vmcs_write16(unsigned long field, u16 value)
1365{
1366 vmcs_writel(field, value);
1367}
1368
1369static void vmcs_write32(unsigned long field, u32 value)
1370{
1371 vmcs_writel(field, value);
1372}
1373
1374static void vmcs_write64(unsigned long field, u64 value)
1375{
6aa8b732 1376 vmcs_writel(field, value);
7682f2d0 1377#ifndef CONFIG_X86_64
6aa8b732
AK
1378 asm volatile ("");
1379 vmcs_writel(field+1, value >> 32);
1380#endif
1381}
1382
2ab455cc
AL
1383static void vmcs_clear_bits(unsigned long field, u32 mask)
1384{
1385 vmcs_writel(field, vmcs_readl(field) & ~mask);
1386}
1387
1388static void vmcs_set_bits(unsigned long field, u32 mask)
1389{
1390 vmcs_writel(field, vmcs_readl(field) | mask);
1391}
1392
2961e876
GN
1393static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1394{
1395 vmcs_write32(VM_ENTRY_CONTROLS, val);
1396 vmx->vm_entry_controls_shadow = val;
1397}
1398
1399static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1400{
1401 if (vmx->vm_entry_controls_shadow != val)
1402 vm_entry_controls_init(vmx, val);
1403}
1404
1405static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1406{
1407 return vmx->vm_entry_controls_shadow;
1408}
1409
1410
1411static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1412{
1413 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1414}
1415
1416static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1417{
1418 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1419}
1420
1421static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1422{
1423 vmcs_write32(VM_EXIT_CONTROLS, val);
1424 vmx->vm_exit_controls_shadow = val;
1425}
1426
1427static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1428{
1429 if (vmx->vm_exit_controls_shadow != val)
1430 vm_exit_controls_init(vmx, val);
1431}
1432
1433static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1434{
1435 return vmx->vm_exit_controls_shadow;
1436}
1437
1438
1439static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1440{
1441 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1442}
1443
1444static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1445{
1446 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1447}
1448
2fb92db1
AK
1449static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1450{
1451 vmx->segment_cache.bitmask = 0;
1452}
1453
1454static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1455 unsigned field)
1456{
1457 bool ret;
1458 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1459
1460 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1461 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1462 vmx->segment_cache.bitmask = 0;
1463 }
1464 ret = vmx->segment_cache.bitmask & mask;
1465 vmx->segment_cache.bitmask |= mask;
1466 return ret;
1467}
1468
1469static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1470{
1471 u16 *p = &vmx->segment_cache.seg[seg].selector;
1472
1473 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1474 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1475 return *p;
1476}
1477
1478static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1479{
1480 ulong *p = &vmx->segment_cache.seg[seg].base;
1481
1482 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1483 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1484 return *p;
1485}
1486
1487static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1488{
1489 u32 *p = &vmx->segment_cache.seg[seg].limit;
1490
1491 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1492 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1493 return *p;
1494}
1495
1496static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1497{
1498 u32 *p = &vmx->segment_cache.seg[seg].ar;
1499
1500 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1501 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1502 return *p;
1503}
1504
abd3f2d6
AK
1505static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1506{
1507 u32 eb;
1508
fd7373cc
JK
1509 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1510 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1511 if ((vcpu->guest_debug &
1512 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1513 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1514 eb |= 1u << BP_VECTOR;
7ffd92c5 1515 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1516 eb = ~0;
089d034e 1517 if (enable_ept)
1439442c 1518 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1519 if (vcpu->fpu_active)
1520 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1521
1522 /* When we are running a nested L2 guest and L1 specified for it a
1523 * certain exception bitmap, we must trap the same exceptions and pass
1524 * them to L1. When running L2, we will only handle the exceptions
1525 * specified above if L1 did not want them.
1526 */
1527 if (is_guest_mode(vcpu))
1528 eb |= get_vmcs12(vcpu)->exception_bitmap;
1529
abd3f2d6
AK
1530 vmcs_write32(EXCEPTION_BITMAP, eb);
1531}
1532
2961e876
GN
1533static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1534 unsigned long entry, unsigned long exit)
8bf00a52 1535{
2961e876
GN
1536 vm_entry_controls_clearbit(vmx, entry);
1537 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1538}
1539
61d2ef2c
AK
1540static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1541{
1542 unsigned i;
1543 struct msr_autoload *m = &vmx->msr_autoload;
1544
8bf00a52
GN
1545 switch (msr) {
1546 case MSR_EFER:
1547 if (cpu_has_load_ia32_efer) {
2961e876
GN
1548 clear_atomic_switch_msr_special(vmx,
1549 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1550 VM_EXIT_LOAD_IA32_EFER);
1551 return;
1552 }
1553 break;
1554 case MSR_CORE_PERF_GLOBAL_CTRL:
1555 if (cpu_has_load_perf_global_ctrl) {
2961e876 1556 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1557 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1558 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1559 return;
1560 }
1561 break;
110312c8
AK
1562 }
1563
61d2ef2c
AK
1564 for (i = 0; i < m->nr; ++i)
1565 if (m->guest[i].index == msr)
1566 break;
1567
1568 if (i == m->nr)
1569 return;
1570 --m->nr;
1571 m->guest[i] = m->guest[m->nr];
1572 m->host[i] = m->host[m->nr];
1573 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1574 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1575}
1576
2961e876
GN
1577static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1578 unsigned long entry, unsigned long exit,
1579 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1580 u64 guest_val, u64 host_val)
8bf00a52
GN
1581{
1582 vmcs_write64(guest_val_vmcs, guest_val);
1583 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1584 vm_entry_controls_setbit(vmx, entry);
1585 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1586}
1587
61d2ef2c
AK
1588static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1589 u64 guest_val, u64 host_val)
1590{
1591 unsigned i;
1592 struct msr_autoload *m = &vmx->msr_autoload;
1593
8bf00a52
GN
1594 switch (msr) {
1595 case MSR_EFER:
1596 if (cpu_has_load_ia32_efer) {
2961e876
GN
1597 add_atomic_switch_msr_special(vmx,
1598 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1599 VM_EXIT_LOAD_IA32_EFER,
1600 GUEST_IA32_EFER,
1601 HOST_IA32_EFER,
1602 guest_val, host_val);
1603 return;
1604 }
1605 break;
1606 case MSR_CORE_PERF_GLOBAL_CTRL:
1607 if (cpu_has_load_perf_global_ctrl) {
2961e876 1608 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1609 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1610 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1611 GUEST_IA32_PERF_GLOBAL_CTRL,
1612 HOST_IA32_PERF_GLOBAL_CTRL,
1613 guest_val, host_val);
1614 return;
1615 }
1616 break;
110312c8
AK
1617 }
1618
61d2ef2c
AK
1619 for (i = 0; i < m->nr; ++i)
1620 if (m->guest[i].index == msr)
1621 break;
1622
e7fc6f93 1623 if (i == NR_AUTOLOAD_MSRS) {
60266204 1624 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1625 "Can't add msr %x\n", msr);
1626 return;
1627 } else if (i == m->nr) {
61d2ef2c
AK
1628 ++m->nr;
1629 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1630 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1631 }
1632
1633 m->guest[i].index = msr;
1634 m->guest[i].value = guest_val;
1635 m->host[i].index = msr;
1636 m->host[i].value = host_val;
1637}
1638
33ed6329
AK
1639static void reload_tss(void)
1640{
33ed6329
AK
1641 /*
1642 * VT restores TR but not its size. Useless.
1643 */
89cbc767 1644 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1645 struct desc_struct *descs;
33ed6329 1646
d359192f 1647 descs = (void *)gdt->address;
33ed6329
AK
1648 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1649 load_TR_desc();
33ed6329
AK
1650}
1651
92c0d900 1652static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1653{
3a34a881 1654 u64 guest_efer;
51c6cf66
AK
1655 u64 ignore_bits;
1656
f6801dff 1657 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1658
51c6cf66 1659 /*
0fa06071 1660 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1661 * outside long mode
1662 */
1663 ignore_bits = EFER_NX | EFER_SCE;
1664#ifdef CONFIG_X86_64
1665 ignore_bits |= EFER_LMA | EFER_LME;
1666 /* SCE is meaningful only in long mode on Intel */
1667 if (guest_efer & EFER_LMA)
1668 ignore_bits &= ~(u64)EFER_SCE;
1669#endif
51c6cf66
AK
1670 guest_efer &= ~ignore_bits;
1671 guest_efer |= host_efer & ignore_bits;
26bb0981 1672 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1673 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1674
1675 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1676
1677 /*
1678 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1679 * On CPUs that support "load IA32_EFER", always switch EFER
1680 * atomically, since it's faster than switching it manually.
1681 */
1682 if (cpu_has_load_ia32_efer ||
1683 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1684 guest_efer = vmx->vcpu.arch.efer;
1685 if (!(guest_efer & EFER_LMA))
1686 guest_efer &= ~EFER_LME;
54b98bff
AL
1687 if (guest_efer != host_efer)
1688 add_atomic_switch_msr(vmx, MSR_EFER,
1689 guest_efer, host_efer);
84ad33ef
AK
1690 return false;
1691 }
1692
26bb0981 1693 return true;
51c6cf66
AK
1694}
1695
2d49ec72
GN
1696static unsigned long segment_base(u16 selector)
1697{
89cbc767 1698 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1699 struct desc_struct *d;
1700 unsigned long table_base;
1701 unsigned long v;
1702
1703 if (!(selector & ~3))
1704 return 0;
1705
d359192f 1706 table_base = gdt->address;
2d49ec72
GN
1707
1708 if (selector & 4) { /* from ldt */
1709 u16 ldt_selector = kvm_read_ldt();
1710
1711 if (!(ldt_selector & ~3))
1712 return 0;
1713
1714 table_base = segment_base(ldt_selector);
1715 }
1716 d = (struct desc_struct *)(table_base + (selector & ~7));
1717 v = get_desc_base(d);
1718#ifdef CONFIG_X86_64
1719 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1720 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1721#endif
1722 return v;
1723}
1724
1725static inline unsigned long kvm_read_tr_base(void)
1726{
1727 u16 tr;
1728 asm("str %0" : "=g"(tr));
1729 return segment_base(tr);
1730}
1731
04d2cc77 1732static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1733{
04d2cc77 1734 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1735 int i;
04d2cc77 1736
a2fa3e9f 1737 if (vmx->host_state.loaded)
33ed6329
AK
1738 return;
1739
a2fa3e9f 1740 vmx->host_state.loaded = 1;
33ed6329
AK
1741 /*
1742 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1743 * allow segment selectors with cpl > 0 or ti == 1.
1744 */
d6e88aec 1745 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1746 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1747 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1748 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1749 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1750 vmx->host_state.fs_reload_needed = 0;
1751 } else {
33ed6329 1752 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1753 vmx->host_state.fs_reload_needed = 1;
33ed6329 1754 }
9581d442 1755 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1756 if (!(vmx->host_state.gs_sel & 7))
1757 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1758 else {
1759 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1760 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1761 }
1762
b2da15ac
AK
1763#ifdef CONFIG_X86_64
1764 savesegment(ds, vmx->host_state.ds_sel);
1765 savesegment(es, vmx->host_state.es_sel);
1766#endif
1767
33ed6329
AK
1768#ifdef CONFIG_X86_64
1769 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1770 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1771#else
a2fa3e9f
GH
1772 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1773 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1774#endif
707c0874
AK
1775
1776#ifdef CONFIG_X86_64
c8770e7b
AK
1777 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1778 if (is_long_mode(&vmx->vcpu))
44ea2b17 1779 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1780#endif
da8999d3
LJ
1781 if (boot_cpu_has(X86_FEATURE_MPX))
1782 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1783 for (i = 0; i < vmx->save_nmsrs; ++i)
1784 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1785 vmx->guest_msrs[i].data,
1786 vmx->guest_msrs[i].mask);
33ed6329
AK
1787}
1788
a9b21b62 1789static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1790{
a2fa3e9f 1791 if (!vmx->host_state.loaded)
33ed6329
AK
1792 return;
1793
e1beb1d3 1794 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1795 vmx->host_state.loaded = 0;
c8770e7b
AK
1796#ifdef CONFIG_X86_64
1797 if (is_long_mode(&vmx->vcpu))
1798 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1799#endif
152d3f2f 1800 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1801 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1802#ifdef CONFIG_X86_64
9581d442 1803 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1804#else
1805 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1806#endif
33ed6329 1807 }
0a77fe4c
AK
1808 if (vmx->host_state.fs_reload_needed)
1809 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1810#ifdef CONFIG_X86_64
1811 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1812 loadsegment(ds, vmx->host_state.ds_sel);
1813 loadsegment(es, vmx->host_state.es_sel);
1814 }
b2da15ac 1815#endif
152d3f2f 1816 reload_tss();
44ea2b17 1817#ifdef CONFIG_X86_64
c8770e7b 1818 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1819#endif
da8999d3
LJ
1820 if (vmx->host_state.msr_host_bndcfgs)
1821 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1822 /*
1823 * If the FPU is not active (through the host task or
1824 * the guest vcpu), then restore the cr0.TS bit.
1825 */
1826 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1827 stts();
89cbc767 1828 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
1829}
1830
a9b21b62
AK
1831static void vmx_load_host_state(struct vcpu_vmx *vmx)
1832{
1833 preempt_disable();
1834 __vmx_load_host_state(vmx);
1835 preempt_enable();
1836}
1837
6aa8b732
AK
1838/*
1839 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1840 * vcpu mutex is already taken.
1841 */
15ad7146 1842static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1843{
a2fa3e9f 1844 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1845 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1846
4610c9cc
DX
1847 if (!vmm_exclusive)
1848 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1849 else if (vmx->loaded_vmcs->cpu != cpu)
1850 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1851
d462b819
NHE
1852 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1853 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1854 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1855 }
1856
d462b819 1857 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 1858 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
1859 unsigned long sysenter_esp;
1860
a8eeb04a 1861 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1862 local_irq_disable();
8f536b76 1863 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1864
1865 /*
1866 * Read loaded_vmcs->cpu should be before fetching
1867 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1868 * See the comments in __loaded_vmcs_clear().
1869 */
1870 smp_rmb();
1871
d462b819
NHE
1872 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1873 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1874 crash_enable_local_vmclear(cpu);
92fe13be
DX
1875 local_irq_enable();
1876
6aa8b732
AK
1877 /*
1878 * Linux uses per-cpu TSS and GDT, so set these when switching
1879 * processors.
1880 */
d6e88aec 1881 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1882 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1883
1884 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1885 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1886 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1887 }
6aa8b732
AK
1888}
1889
1890static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1891{
a9b21b62 1892 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1893 if (!vmm_exclusive) {
d462b819
NHE
1894 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1895 vcpu->cpu = -1;
4610c9cc
DX
1896 kvm_cpu_vmxoff();
1897 }
6aa8b732
AK
1898}
1899
5fd86fcf
AK
1900static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1901{
81231c69
AK
1902 ulong cr0;
1903
5fd86fcf
AK
1904 if (vcpu->fpu_active)
1905 return;
1906 vcpu->fpu_active = 1;
81231c69
AK
1907 cr0 = vmcs_readl(GUEST_CR0);
1908 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1909 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1910 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1911 update_exception_bitmap(vcpu);
edcafe3c 1912 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1913 if (is_guest_mode(vcpu))
1914 vcpu->arch.cr0_guest_owned_bits &=
1915 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1916 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1917}
1918
edcafe3c
AK
1919static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1920
fe3ef05c
NHE
1921/*
1922 * Return the cr0 value that a nested guest would read. This is a combination
1923 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1924 * its hypervisor (cr0_read_shadow).
1925 */
1926static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1927{
1928 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1929 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1930}
1931static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1932{
1933 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1934 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1935}
1936
5fd86fcf
AK
1937static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1938{
36cf24e0
NHE
1939 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1940 * set this *before* calling this function.
1941 */
edcafe3c 1942 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1943 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1944 update_exception_bitmap(vcpu);
edcafe3c
AK
1945 vcpu->arch.cr0_guest_owned_bits = 0;
1946 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1947 if (is_guest_mode(vcpu)) {
1948 /*
1949 * L1's specified read shadow might not contain the TS bit,
1950 * so now that we turned on shadowing of this bit, we need to
1951 * set this bit of the shadow. Like in nested_vmx_run we need
1952 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1953 * up-to-date here because we just decached cr0.TS (and we'll
1954 * only update vmcs12->guest_cr0 on nested exit).
1955 */
1956 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1957 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1958 (vcpu->arch.cr0 & X86_CR0_TS);
1959 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1960 } else
1961 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1962}
1963
6aa8b732
AK
1964static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1965{
78ac8b47 1966 unsigned long rflags, save_rflags;
345dcaa8 1967
6de12732
AK
1968 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1969 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1970 rflags = vmcs_readl(GUEST_RFLAGS);
1971 if (to_vmx(vcpu)->rmode.vm86_active) {
1972 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1973 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1974 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1975 }
1976 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1977 }
6de12732 1978 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1979}
1980
1981static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1982{
6de12732
AK
1983 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1984 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1985 if (to_vmx(vcpu)->rmode.vm86_active) {
1986 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1987 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1988 }
6aa8b732
AK
1989 vmcs_writel(GUEST_RFLAGS, rflags);
1990}
1991
37ccdcbe 1992static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
1993{
1994 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1995 int ret = 0;
1996
1997 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1998 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1999 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2000 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2001
37ccdcbe 2002 return ret;
2809f5d2
GC
2003}
2004
2005static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2006{
2007 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2008 u32 interruptibility = interruptibility_old;
2009
2010 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2011
48005f64 2012 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2013 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2014 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2015 interruptibility |= GUEST_INTR_STATE_STI;
2016
2017 if ((interruptibility != interruptibility_old))
2018 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2019}
2020
6aa8b732
AK
2021static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2022{
2023 unsigned long rip;
6aa8b732 2024
5fdbf976 2025 rip = kvm_rip_read(vcpu);
6aa8b732 2026 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2027 kvm_rip_write(vcpu, rip);
6aa8b732 2028
2809f5d2
GC
2029 /* skipping an emulated instruction also counts */
2030 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2031}
2032
0b6ac343
NHE
2033/*
2034 * KVM wants to inject page-faults which it got to the guest. This function
2035 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2036 */
e011c663 2037static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2038{
2039 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2040
e011c663 2041 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2042 return 0;
2043
533558bc
JK
2044 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2045 vmcs_read32(VM_EXIT_INTR_INFO),
2046 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2047 return 1;
2048}
2049
298101da 2050static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2051 bool has_error_code, u32 error_code,
2052 bool reinject)
298101da 2053{
77ab6db0 2054 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2055 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2056
e011c663
GN
2057 if (!reinject && is_guest_mode(vcpu) &&
2058 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2059 return;
2060
8ab2d2e2 2061 if (has_error_code) {
77ab6db0 2062 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2063 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2064 }
77ab6db0 2065
7ffd92c5 2066 if (vmx->rmode.vm86_active) {
71f9833b
SH
2067 int inc_eip = 0;
2068 if (kvm_exception_is_soft(nr))
2069 inc_eip = vcpu->arch.event_exit_inst_len;
2070 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2071 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2072 return;
2073 }
2074
66fd3f7f
GN
2075 if (kvm_exception_is_soft(nr)) {
2076 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2077 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2078 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2079 } else
2080 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2081
2082 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2083}
2084
4e47c7a6
SY
2085static bool vmx_rdtscp_supported(void)
2086{
2087 return cpu_has_vmx_rdtscp();
2088}
2089
ad756a16
MJ
2090static bool vmx_invpcid_supported(void)
2091{
2092 return cpu_has_vmx_invpcid() && enable_ept;
2093}
2094
a75beee6
ED
2095/*
2096 * Swap MSR entry in host/guest MSR entry array.
2097 */
8b9cf98c 2098static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2099{
26bb0981 2100 struct shared_msr_entry tmp;
a2fa3e9f
GH
2101
2102 tmp = vmx->guest_msrs[to];
2103 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2104 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2105}
2106
8d14695f
YZ
2107static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2108{
2109 unsigned long *msr_bitmap;
2110
2111 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2112 if (is_long_mode(vcpu))
2113 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2114 else
2115 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2116 } else {
2117 if (is_long_mode(vcpu))
2118 msr_bitmap = vmx_msr_bitmap_longmode;
2119 else
2120 msr_bitmap = vmx_msr_bitmap_legacy;
2121 }
2122
2123 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2124}
2125
e38aea3e
AK
2126/*
2127 * Set up the vmcs to automatically save and restore system
2128 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2129 * mode, as fiddling with msrs is very expensive.
2130 */
8b9cf98c 2131static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2132{
26bb0981 2133 int save_nmsrs, index;
e38aea3e 2134
a75beee6
ED
2135 save_nmsrs = 0;
2136#ifdef CONFIG_X86_64
8b9cf98c 2137 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2138 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2139 if (index >= 0)
8b9cf98c
RR
2140 move_msr_up(vmx, index, save_nmsrs++);
2141 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2142 if (index >= 0)
8b9cf98c
RR
2143 move_msr_up(vmx, index, save_nmsrs++);
2144 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2145 if (index >= 0)
8b9cf98c 2146 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2147 index = __find_msr_index(vmx, MSR_TSC_AUX);
2148 if (index >= 0 && vmx->rdtscp_enabled)
2149 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2150 /*
8c06585d 2151 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2152 * if efer.sce is enabled.
2153 */
8c06585d 2154 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2155 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2156 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2157 }
2158#endif
92c0d900
AK
2159 index = __find_msr_index(vmx, MSR_EFER);
2160 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2161 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2162
26bb0981 2163 vmx->save_nmsrs = save_nmsrs;
5897297b 2164
8d14695f
YZ
2165 if (cpu_has_vmx_msr_bitmap())
2166 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2167}
2168
6aa8b732
AK
2169/*
2170 * reads and returns guest's timestamp counter "register"
2171 * guest_tsc = host_tsc + tsc_offset -- 21.3
2172 */
2173static u64 guest_read_tsc(void)
2174{
2175 u64 host_tsc, tsc_offset;
2176
2177 rdtscll(host_tsc);
2178 tsc_offset = vmcs_read64(TSC_OFFSET);
2179 return host_tsc + tsc_offset;
2180}
2181
d5c1785d
NHE
2182/*
2183 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2184 * counter, even if a nested guest (L2) is currently running.
2185 */
48d89b92 2186static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2187{
886b470c 2188 u64 tsc_offset;
d5c1785d 2189
d5c1785d
NHE
2190 tsc_offset = is_guest_mode(vcpu) ?
2191 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2192 vmcs_read64(TSC_OFFSET);
2193 return host_tsc + tsc_offset;
2194}
2195
4051b188 2196/*
cc578287
ZA
2197 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2198 * software catchup for faster rates on slower CPUs.
4051b188 2199 */
cc578287 2200static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2201{
cc578287
ZA
2202 if (!scale)
2203 return;
2204
2205 if (user_tsc_khz > tsc_khz) {
2206 vcpu->arch.tsc_catchup = 1;
2207 vcpu->arch.tsc_always_catchup = 1;
2208 } else
2209 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2210}
2211
ba904635
WA
2212static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2213{
2214 return vmcs_read64(TSC_OFFSET);
2215}
2216
6aa8b732 2217/*
99e3e30a 2218 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2219 */
99e3e30a 2220static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2221{
27fc51b2 2222 if (is_guest_mode(vcpu)) {
7991825b 2223 /*
27fc51b2
NHE
2224 * We're here if L1 chose not to trap WRMSR to TSC. According
2225 * to the spec, this should set L1's TSC; The offset that L1
2226 * set for L2 remains unchanged, and still needs to be added
2227 * to the newly set TSC to get L2's TSC.
7991825b 2228 */
27fc51b2
NHE
2229 struct vmcs12 *vmcs12;
2230 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2231 /* recalculate vmcs02.TSC_OFFSET: */
2232 vmcs12 = get_vmcs12(vcpu);
2233 vmcs_write64(TSC_OFFSET, offset +
2234 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2235 vmcs12->tsc_offset : 0));
2236 } else {
489223ed
YY
2237 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2238 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2239 vmcs_write64(TSC_OFFSET, offset);
2240 }
6aa8b732
AK
2241}
2242
f1e2b260 2243static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2244{
2245 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2246
e48672fa 2247 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2248 if (is_guest_mode(vcpu)) {
2249 /* Even when running L2, the adjustment needs to apply to L1 */
2250 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2251 } else
2252 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2253 offset + adjustment);
e48672fa
ZA
2254}
2255
857e4099
JR
2256static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2257{
2258 return target_tsc - native_read_tsc();
2259}
2260
801d3424
NHE
2261static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2262{
2263 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2264 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2265}
2266
2267/*
2268 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2269 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2270 * all guests if the "nested" module option is off, and can also be disabled
2271 * for a single guest by disabling its VMX cpuid bit.
2272 */
2273static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2274{
2275 return nested && guest_cpuid_has_vmx(vcpu);
2276}
2277
b87a51ae
NHE
2278/*
2279 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2280 * returned for the various VMX controls MSRs when nested VMX is enabled.
2281 * The same values should also be used to verify that vmcs12 control fields are
2282 * valid during nested entry from L1 to L2.
2283 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2284 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2285 * bit in the high half is on if the corresponding bit in the control field
2286 * may be on. See also vmx_control_verify().
2287 * TODO: allow these variables to be modified (downgraded) by module options
2288 * or other means.
2289 */
2290static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
3dcdf3ec 2291static u32 nested_vmx_true_procbased_ctls_low;
b87a51ae
NHE
2292static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2293static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2294static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2996fca0 2295static u32 nested_vmx_true_exit_ctls_low;
b87a51ae 2296static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2996fca0 2297static u32 nested_vmx_true_entry_ctls_low;
c18911a2 2298static u32 nested_vmx_misc_low, nested_vmx_misc_high;
bfd0a56b 2299static u32 nested_vmx_ept_caps;
b87a51ae
NHE
2300static __init void nested_vmx_setup_ctls_msrs(void)
2301{
2302 /*
2303 * Note that as a general rule, the high half of the MSRs (bits in
2304 * the control fields which may be 1) should be initialized by the
2305 * intersection of the underlying hardware's MSR (i.e., features which
2306 * can be supported) and the list of features we want to expose -
2307 * because they are known to be properly supported in our code.
2308 * Also, usually, the low half of the MSRs (bits which must be 1) can
2309 * be set to 0, meaning that L1 may turn off any of these bits. The
2310 * reason is that if one of these bits is necessary, it will appear
2311 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2312 * fields of vmcs01 and vmcs02, will turn these bits off - and
2313 * nested_vmx_exit_handled() will not pass related exits to L1.
2314 * These rules have exceptions below.
2315 */
2316
2317 /* pin-based controls */
eabeaacc
JK
2318 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2319 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
eabeaacc
JK
2320 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2321 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
f4124500
JK
2322 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2323 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2324 PIN_BASED_VMX_PREEMPTION_TIMER;
b87a51ae 2325
3dbcd8da 2326 /* exit controls */
c0dfee58
ACL
2327 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2328 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
33fb20c3 2329 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2330
c0dfee58 2331 nested_vmx_exit_ctls_high &=
b87a51ae 2332#ifdef CONFIG_X86_64
c0dfee58 2333 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2334#endif
f4124500
JK
2335 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2336 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2337 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2338 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2339
36be0b9d
PB
2340 if (vmx_mpx_supported())
2341 nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2342
2996fca0
JK
2343 /* We support free control of debug control saving. */
2344 nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2345 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2346
b87a51ae
NHE
2347 /* entry controls */
2348 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2349 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
33fb20c3 2350 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2351 nested_vmx_entry_ctls_high &=
57435349
JK
2352#ifdef CONFIG_X86_64
2353 VM_ENTRY_IA32E_MODE |
2354#endif
2355 VM_ENTRY_LOAD_IA32_PAT;
8049d651
NHE
2356 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2357 VM_ENTRY_LOAD_IA32_EFER);
36be0b9d
PB
2358 if (vmx_mpx_supported())
2359 nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2360
2996fca0
JK
2361 /* We support free control of debug control loading. */
2362 nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2363 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2364
b87a51ae
NHE
2365 /* cpu-based controls */
2366 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2367 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
560b7ee1 2368 nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2369 nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2370 CPU_BASED_VIRTUAL_INTR_PENDING |
2371 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2372 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2373 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2374 CPU_BASED_CR3_STORE_EXITING |
2375#ifdef CONFIG_X86_64
2376 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2377#endif
2378 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2379 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2380 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
a7c0b07d 2381 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
b87a51ae
NHE
2382 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2383 /*
2384 * We can allow some features even when not supported by the
2385 * hardware. For example, L1 can specify an MSR bitmap - and we
2386 * can use it to avoid exits to L1 - even when L0 runs L2
2387 * without MSR bitmaps.
2388 */
560b7ee1
JK
2389 nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2390 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2391
3dcdf3ec
JK
2392 /* We support free control of CR3 access interception. */
2393 nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2394 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2395
b87a51ae
NHE
2396 /* secondary cpu-based controls */
2397 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2398 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2399 nested_vmx_secondary_ctls_low = 0;
2400 nested_vmx_secondary_ctls_high &=
d6851fbe 2401 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
81dc01f7
WL
2402 SECONDARY_EXEC_WBINVD_EXITING |
2403 SECONDARY_EXEC_XSAVES;
c18911a2 2404
afa61f75
NHE
2405 if (enable_ept) {
2406 /* nested EPT: emulate EPT also to L1 */
78051e3b
BD
2407 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT |
2408 SECONDARY_EXEC_UNRESTRICTED_GUEST;
ca72d970 2409 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2410 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2411 VMX_EPT_INVEPT_BIT;
afa61f75
NHE
2412 nested_vmx_ept_caps &= vmx_capability.ept;
2413 /*
4b855078
BD
2414 * For nested guests, we don't do anything specific
2415 * for single context invalidation. Hence, only advertise
2416 * support for global context invalidation.
afa61f75 2417 */
4b855078 2418 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75
NHE
2419 } else
2420 nested_vmx_ept_caps = 0;
2421
c18911a2
JK
2422 /* miscellaneous data */
2423 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
f4124500
JK
2424 nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2425 nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2426 VMX_MISC_ACTIVITY_HLT;
c18911a2 2427 nested_vmx_misc_high = 0;
b87a51ae
NHE
2428}
2429
2430static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2431{
2432 /*
2433 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2434 */
2435 return ((control & high) | low) == control;
2436}
2437
2438static inline u64 vmx_control_msr(u32 low, u32 high)
2439{
2440 return low | ((u64)high << 32);
2441}
2442
cae50139 2443/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2444static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2445{
b87a51ae 2446 switch (msr_index) {
b87a51ae
NHE
2447 case MSR_IA32_VMX_BASIC:
2448 /*
2449 * This MSR reports some information about VMX support. We
2450 * should return information about the VMX we emulate for the
2451 * guest, and the VMCS structure we give it - not about the
2452 * VMX support of the underlying hardware.
2453 */
3dbcd8da 2454 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2455 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2456 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2457 break;
2458 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2459 case MSR_IA32_VMX_PINBASED_CTLS:
2460 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2461 nested_vmx_pinbased_ctls_high);
2462 break;
2463 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3dcdf3ec
JK
2464 *pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2465 nested_vmx_procbased_ctls_high);
2466 break;
b87a51ae
NHE
2467 case MSR_IA32_VMX_PROCBASED_CTLS:
2468 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2469 nested_vmx_procbased_ctls_high);
2470 break;
2471 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2996fca0
JK
2472 *pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2473 nested_vmx_exit_ctls_high);
2474 break;
b87a51ae
NHE
2475 case MSR_IA32_VMX_EXIT_CTLS:
2476 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2477 nested_vmx_exit_ctls_high);
2478 break;
2479 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2996fca0
JK
2480 *pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2481 nested_vmx_entry_ctls_high);
2482 break;
b87a51ae
NHE
2483 case MSR_IA32_VMX_ENTRY_CTLS:
2484 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2485 nested_vmx_entry_ctls_high);
2486 break;
2487 case MSR_IA32_VMX_MISC:
c18911a2
JK
2488 *pdata = vmx_control_msr(nested_vmx_misc_low,
2489 nested_vmx_misc_high);
b87a51ae
NHE
2490 break;
2491 /*
2492 * These MSRs specify bits which the guest must keep fixed (on or off)
2493 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2494 * We picked the standard core2 setting.
2495 */
2496#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2497#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2498 case MSR_IA32_VMX_CR0_FIXED0:
2499 *pdata = VMXON_CR0_ALWAYSON;
2500 break;
2501 case MSR_IA32_VMX_CR0_FIXED1:
2502 *pdata = -1ULL;
2503 break;
2504 case MSR_IA32_VMX_CR4_FIXED0:
2505 *pdata = VMXON_CR4_ALWAYSON;
2506 break;
2507 case MSR_IA32_VMX_CR4_FIXED1:
2508 *pdata = -1ULL;
2509 break;
2510 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2511 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2512 break;
2513 case MSR_IA32_VMX_PROCBASED_CTLS2:
2514 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2515 nested_vmx_secondary_ctls_high);
2516 break;
2517 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75
NHE
2518 /* Currently, no nested vpid support */
2519 *pdata = nested_vmx_ept_caps;
b87a51ae
NHE
2520 break;
2521 default:
b87a51ae 2522 return 1;
b3897a49
NHE
2523 }
2524
b87a51ae
NHE
2525 return 0;
2526}
2527
6aa8b732
AK
2528/*
2529 * Reads an msr value (of 'msr_index') into 'pdata'.
2530 * Returns 0 on success, non-0 otherwise.
2531 * Assumes vcpu_load() was already called.
2532 */
2533static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2534{
2535 u64 data;
26bb0981 2536 struct shared_msr_entry *msr;
6aa8b732
AK
2537
2538 if (!pdata) {
2539 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2540 return -EINVAL;
2541 }
2542
2543 switch (msr_index) {
05b3e0c2 2544#ifdef CONFIG_X86_64
6aa8b732
AK
2545 case MSR_FS_BASE:
2546 data = vmcs_readl(GUEST_FS_BASE);
2547 break;
2548 case MSR_GS_BASE:
2549 data = vmcs_readl(GUEST_GS_BASE);
2550 break;
44ea2b17
AK
2551 case MSR_KERNEL_GS_BASE:
2552 vmx_load_host_state(to_vmx(vcpu));
2553 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2554 break;
26bb0981 2555#endif
6aa8b732 2556 case MSR_EFER:
3bab1f5d 2557 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2558 case MSR_IA32_TSC:
6aa8b732
AK
2559 data = guest_read_tsc();
2560 break;
2561 case MSR_IA32_SYSENTER_CS:
2562 data = vmcs_read32(GUEST_SYSENTER_CS);
2563 break;
2564 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2565 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2566 break;
2567 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2568 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2569 break;
0dd376e7 2570 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2571 if (!vmx_mpx_supported())
2572 return 1;
0dd376e7
LJ
2573 data = vmcs_read64(GUEST_BNDCFGS);
2574 break;
cae50139
JK
2575 case MSR_IA32_FEATURE_CONTROL:
2576 if (!nested_vmx_allowed(vcpu))
2577 return 1;
2578 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2579 break;
2580 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2581 if (!nested_vmx_allowed(vcpu))
2582 return 1;
2583 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
20300099
WL
2584 case MSR_IA32_XSS:
2585 if (!vmx_xsaves_supported())
2586 return 1;
2587 data = vcpu->arch.ia32_xss;
2588 break;
4e47c7a6
SY
2589 case MSR_TSC_AUX:
2590 if (!to_vmx(vcpu)->rdtscp_enabled)
2591 return 1;
2592 /* Otherwise falls through */
6aa8b732 2593 default:
8b9cf98c 2594 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2595 if (msr) {
2596 data = msr->data;
2597 break;
6aa8b732 2598 }
3bab1f5d 2599 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2600 }
2601
2602 *pdata = data;
2603 return 0;
2604}
2605
cae50139
JK
2606static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2607
6aa8b732
AK
2608/*
2609 * Writes msr value into into the appropriate "register".
2610 * Returns 0 on success, non-0 otherwise.
2611 * Assumes vcpu_load() was already called.
2612 */
8fe8ab46 2613static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2614{
a2fa3e9f 2615 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2616 struct shared_msr_entry *msr;
2cc51560 2617 int ret = 0;
8fe8ab46
WA
2618 u32 msr_index = msr_info->index;
2619 u64 data = msr_info->data;
2cc51560 2620
6aa8b732 2621 switch (msr_index) {
3bab1f5d 2622 case MSR_EFER:
8fe8ab46 2623 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2624 break;
16175a79 2625#ifdef CONFIG_X86_64
6aa8b732 2626 case MSR_FS_BASE:
2fb92db1 2627 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2628 vmcs_writel(GUEST_FS_BASE, data);
2629 break;
2630 case MSR_GS_BASE:
2fb92db1 2631 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2632 vmcs_writel(GUEST_GS_BASE, data);
2633 break;
44ea2b17
AK
2634 case MSR_KERNEL_GS_BASE:
2635 vmx_load_host_state(vmx);
2636 vmx->msr_guest_kernel_gs_base = data;
2637 break;
6aa8b732
AK
2638#endif
2639 case MSR_IA32_SYSENTER_CS:
2640 vmcs_write32(GUEST_SYSENTER_CS, data);
2641 break;
2642 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2643 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2644 break;
2645 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2646 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2647 break;
0dd376e7 2648 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2649 if (!vmx_mpx_supported())
2650 return 1;
0dd376e7
LJ
2651 vmcs_write64(GUEST_BNDCFGS, data);
2652 break;
af24a4e4 2653 case MSR_IA32_TSC:
8fe8ab46 2654 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2655 break;
468d472f
SY
2656 case MSR_IA32_CR_PAT:
2657 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2658 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2659 return 1;
468d472f
SY
2660 vmcs_write64(GUEST_IA32_PAT, data);
2661 vcpu->arch.pat = data;
2662 break;
2663 }
8fe8ab46 2664 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2665 break;
ba904635
WA
2666 case MSR_IA32_TSC_ADJUST:
2667 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2668 break;
cae50139
JK
2669 case MSR_IA32_FEATURE_CONTROL:
2670 if (!nested_vmx_allowed(vcpu) ||
2671 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2672 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2673 return 1;
2674 vmx->nested.msr_ia32_feature_control = data;
2675 if (msr_info->host_initiated && data == 0)
2676 vmx_leave_nested(vcpu);
2677 break;
2678 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2679 return 1; /* they are read-only */
20300099
WL
2680 case MSR_IA32_XSS:
2681 if (!vmx_xsaves_supported())
2682 return 1;
2683 /*
2684 * The only supported bit as of Skylake is bit 8, but
2685 * it is not supported on KVM.
2686 */
2687 if (data != 0)
2688 return 1;
2689 vcpu->arch.ia32_xss = data;
2690 if (vcpu->arch.ia32_xss != host_xss)
2691 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2692 vcpu->arch.ia32_xss, host_xss);
2693 else
2694 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2695 break;
4e47c7a6
SY
2696 case MSR_TSC_AUX:
2697 if (!vmx->rdtscp_enabled)
2698 return 1;
2699 /* Check reserved bit, higher 32 bits should be zero */
2700 if ((data >> 32) != 0)
2701 return 1;
2702 /* Otherwise falls through */
6aa8b732 2703 default:
8b9cf98c 2704 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2705 if (msr) {
8b3c3104 2706 u64 old_msr_data = msr->data;
3bab1f5d 2707 msr->data = data;
2225fd56
AK
2708 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2709 preempt_disable();
8b3c3104
AH
2710 ret = kvm_set_shared_msr(msr->index, msr->data,
2711 msr->mask);
2225fd56 2712 preempt_enable();
8b3c3104
AH
2713 if (ret)
2714 msr->data = old_msr_data;
2225fd56 2715 }
3bab1f5d 2716 break;
6aa8b732 2717 }
8fe8ab46 2718 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2719 }
2720
2cc51560 2721 return ret;
6aa8b732
AK
2722}
2723
5fdbf976 2724static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2725{
5fdbf976
MT
2726 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2727 switch (reg) {
2728 case VCPU_REGS_RSP:
2729 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2730 break;
2731 case VCPU_REGS_RIP:
2732 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2733 break;
6de4f3ad
AK
2734 case VCPU_EXREG_PDPTR:
2735 if (enable_ept)
2736 ept_save_pdptrs(vcpu);
2737 break;
5fdbf976
MT
2738 default:
2739 break;
2740 }
6aa8b732
AK
2741}
2742
6aa8b732
AK
2743static __init int cpu_has_kvm_support(void)
2744{
6210e37b 2745 return cpu_has_vmx();
6aa8b732
AK
2746}
2747
2748static __init int vmx_disabled_by_bios(void)
2749{
2750 u64 msr;
2751
2752 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2753 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2754 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2755 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2756 && tboot_enabled())
2757 return 1;
23f3e991 2758 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2759 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2760 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2761 && !tboot_enabled()) {
2762 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2763 "activate TXT before enabling KVM\n");
cafd6659 2764 return 1;
f9335afe 2765 }
23f3e991
JC
2766 /* launched w/o TXT and VMX disabled */
2767 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2768 && !tboot_enabled())
2769 return 1;
cafd6659
SW
2770 }
2771
2772 return 0;
6aa8b732
AK
2773}
2774
7725b894
DX
2775static void kvm_cpu_vmxon(u64 addr)
2776{
2777 asm volatile (ASM_VMX_VMXON_RAX
2778 : : "a"(&addr), "m"(addr)
2779 : "memory", "cc");
2780}
2781
13a34e06 2782static int hardware_enable(void)
6aa8b732
AK
2783{
2784 int cpu = raw_smp_processor_id();
2785 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2786 u64 old, test_bits;
6aa8b732 2787
10474ae8
AG
2788 if (read_cr4() & X86_CR4_VMXE)
2789 return -EBUSY;
2790
d462b819 2791 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2792
2793 /*
2794 * Now we can enable the vmclear operation in kdump
2795 * since the loaded_vmcss_on_cpu list on this cpu
2796 * has been initialized.
2797 *
2798 * Though the cpu is not in VMX operation now, there
2799 * is no problem to enable the vmclear operation
2800 * for the loaded_vmcss_on_cpu list is empty!
2801 */
2802 crash_enable_local_vmclear(cpu);
2803
6aa8b732 2804 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2805
2806 test_bits = FEATURE_CONTROL_LOCKED;
2807 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2808 if (tboot_enabled())
2809 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2810
2811 if ((old & test_bits) != test_bits) {
6aa8b732 2812 /* enable and lock */
cafd6659
SW
2813 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2814 }
66aee91a 2815 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2816
4610c9cc
DX
2817 if (vmm_exclusive) {
2818 kvm_cpu_vmxon(phys_addr);
2819 ept_sync_global();
2820 }
10474ae8 2821
89cbc767 2822 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 2823
10474ae8 2824 return 0;
6aa8b732
AK
2825}
2826
d462b819 2827static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2828{
2829 int cpu = raw_smp_processor_id();
d462b819 2830 struct loaded_vmcs *v, *n;
543e4243 2831
d462b819
NHE
2832 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2833 loaded_vmcss_on_cpu_link)
2834 __loaded_vmcs_clear(v);
543e4243
AK
2835}
2836
710ff4a8
EH
2837
2838/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2839 * tricks.
2840 */
2841static void kvm_cpu_vmxoff(void)
6aa8b732 2842{
4ecac3fd 2843 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2844}
2845
13a34e06 2846static void hardware_disable(void)
710ff4a8 2847{
4610c9cc 2848 if (vmm_exclusive) {
d462b819 2849 vmclear_local_loaded_vmcss();
4610c9cc
DX
2850 kvm_cpu_vmxoff();
2851 }
7725b894 2852 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2853}
2854
1c3d14fe 2855static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2856 u32 msr, u32 *result)
1c3d14fe
YS
2857{
2858 u32 vmx_msr_low, vmx_msr_high;
2859 u32 ctl = ctl_min | ctl_opt;
2860
2861 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2862
2863 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2864 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2865
2866 /* Ensure minimum (required) set of control bits are supported. */
2867 if (ctl_min & ~ctl)
002c7f7c 2868 return -EIO;
1c3d14fe
YS
2869
2870 *result = ctl;
2871 return 0;
2872}
2873
110312c8
AK
2874static __init bool allow_1_setting(u32 msr, u32 ctl)
2875{
2876 u32 vmx_msr_low, vmx_msr_high;
2877
2878 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2879 return vmx_msr_high & ctl;
2880}
2881
002c7f7c 2882static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2883{
2884 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2885 u32 min, opt, min2, opt2;
1c3d14fe
YS
2886 u32 _pin_based_exec_control = 0;
2887 u32 _cpu_based_exec_control = 0;
f78e0e2e 2888 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2889 u32 _vmexit_control = 0;
2890 u32 _vmentry_control = 0;
2891
10166744 2892 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2893#ifdef CONFIG_X86_64
2894 CPU_BASED_CR8_LOAD_EXITING |
2895 CPU_BASED_CR8_STORE_EXITING |
2896#endif
d56f546d
SY
2897 CPU_BASED_CR3_LOAD_EXITING |
2898 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2899 CPU_BASED_USE_IO_BITMAPS |
2900 CPU_BASED_MOV_DR_EXITING |
a7052897 2901 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2902 CPU_BASED_MWAIT_EXITING |
2903 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2904 CPU_BASED_INVLPG_EXITING |
2905 CPU_BASED_RDPMC_EXITING;
443381a8 2906
f78e0e2e 2907 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2908 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2909 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2910 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2911 &_cpu_based_exec_control) < 0)
002c7f7c 2912 return -EIO;
6e5d865c
YS
2913#ifdef CONFIG_X86_64
2914 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2915 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2916 ~CPU_BASED_CR8_STORE_EXITING;
2917#endif
f78e0e2e 2918 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2919 min2 = 0;
2920 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2921 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2922 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2923 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2924 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2925 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2926 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2927 SECONDARY_EXEC_RDTSCP |
83d4c286 2928 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 2929 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 2930 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099
WL
2931 SECONDARY_EXEC_SHADOW_VMCS |
2932 SECONDARY_EXEC_XSAVES;
d56f546d
SY
2933 if (adjust_vmx_controls(min2, opt2,
2934 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2935 &_cpu_based_2nd_exec_control) < 0)
2936 return -EIO;
2937 }
2938#ifndef CONFIG_X86_64
2939 if (!(_cpu_based_2nd_exec_control &
2940 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2941 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2942#endif
83d4c286
YZ
2943
2944 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2945 _cpu_based_2nd_exec_control &= ~(
8d14695f 2946 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2947 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2948 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2949
d56f546d 2950 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2951 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2952 enabled */
5fff7d27
GN
2953 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2954 CPU_BASED_CR3_STORE_EXITING |
2955 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2956 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2957 vmx_capability.ept, vmx_capability.vpid);
2958 }
1c3d14fe 2959
81908bf4 2960 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
2961#ifdef CONFIG_X86_64
2962 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2963#endif
a547c6db 2964 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 2965 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
2966 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2967 &_vmexit_control) < 0)
002c7f7c 2968 return -EIO;
1c3d14fe 2969
01e439be
YZ
2970 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2971 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2972 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2973 &_pin_based_exec_control) < 0)
2974 return -EIO;
2975
2976 if (!(_cpu_based_2nd_exec_control &
2977 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2978 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2979 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2980
c845f9c6 2981 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 2982 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
2983 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2984 &_vmentry_control) < 0)
002c7f7c 2985 return -EIO;
6aa8b732 2986
c68876fd 2987 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2988
2989 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2990 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2991 return -EIO;
1c3d14fe
YS
2992
2993#ifdef CONFIG_X86_64
2994 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2995 if (vmx_msr_high & (1u<<16))
002c7f7c 2996 return -EIO;
1c3d14fe
YS
2997#endif
2998
2999 /* Require Write-Back (WB) memory type for VMCS accesses. */
3000 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3001 return -EIO;
1c3d14fe 3002
002c7f7c
YS
3003 vmcs_conf->size = vmx_msr_high & 0x1fff;
3004 vmcs_conf->order = get_order(vmcs_config.size);
3005 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3006
002c7f7c
YS
3007 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3008 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3009 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3010 vmcs_conf->vmexit_ctrl = _vmexit_control;
3011 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3012
110312c8
AK
3013 cpu_has_load_ia32_efer =
3014 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3015 VM_ENTRY_LOAD_IA32_EFER)
3016 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3017 VM_EXIT_LOAD_IA32_EFER);
3018
8bf00a52
GN
3019 cpu_has_load_perf_global_ctrl =
3020 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3021 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3022 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3023 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3024
3025 /*
3026 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3027 * but due to arrata below it can't be used. Workaround is to use
3028 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3029 *
3030 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3031 *
3032 * AAK155 (model 26)
3033 * AAP115 (model 30)
3034 * AAT100 (model 37)
3035 * BC86,AAY89,BD102 (model 44)
3036 * BA97 (model 46)
3037 *
3038 */
3039 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3040 switch (boot_cpu_data.x86_model) {
3041 case 26:
3042 case 30:
3043 case 37:
3044 case 44:
3045 case 46:
3046 cpu_has_load_perf_global_ctrl = false;
3047 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3048 "does not work properly. Using workaround\n");
3049 break;
3050 default:
3051 break;
3052 }
3053 }
3054
20300099
WL
3055 if (cpu_has_xsaves)
3056 rdmsrl(MSR_IA32_XSS, host_xss);
3057
1c3d14fe 3058 return 0;
c68876fd 3059}
6aa8b732
AK
3060
3061static struct vmcs *alloc_vmcs_cpu(int cpu)
3062{
3063 int node = cpu_to_node(cpu);
3064 struct page *pages;
3065 struct vmcs *vmcs;
3066
6484eb3e 3067 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3068 if (!pages)
3069 return NULL;
3070 vmcs = page_address(pages);
1c3d14fe
YS
3071 memset(vmcs, 0, vmcs_config.size);
3072 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3073 return vmcs;
3074}
3075
3076static struct vmcs *alloc_vmcs(void)
3077{
d3b2c338 3078 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3079}
3080
3081static void free_vmcs(struct vmcs *vmcs)
3082{
1c3d14fe 3083 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3084}
3085
d462b819
NHE
3086/*
3087 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3088 */
3089static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3090{
3091 if (!loaded_vmcs->vmcs)
3092 return;
3093 loaded_vmcs_clear(loaded_vmcs);
3094 free_vmcs(loaded_vmcs->vmcs);
3095 loaded_vmcs->vmcs = NULL;
3096}
3097
39959588 3098static void free_kvm_area(void)
6aa8b732
AK
3099{
3100 int cpu;
3101
3230bb47 3102 for_each_possible_cpu(cpu) {
6aa8b732 3103 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3104 per_cpu(vmxarea, cpu) = NULL;
3105 }
6aa8b732
AK
3106}
3107
fe2b201b
BD
3108static void init_vmcs_shadow_fields(void)
3109{
3110 int i, j;
3111
3112 /* No checks for read only fields yet */
3113
3114 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3115 switch (shadow_read_write_fields[i]) {
3116 case GUEST_BNDCFGS:
3117 if (!vmx_mpx_supported())
3118 continue;
3119 break;
3120 default:
3121 break;
3122 }
3123
3124 if (j < i)
3125 shadow_read_write_fields[j] =
3126 shadow_read_write_fields[i];
3127 j++;
3128 }
3129 max_shadow_read_write_fields = j;
3130
3131 /* shadowed fields guest access without vmexit */
3132 for (i = 0; i < max_shadow_read_write_fields; i++) {
3133 clear_bit(shadow_read_write_fields[i],
3134 vmx_vmwrite_bitmap);
3135 clear_bit(shadow_read_write_fields[i],
3136 vmx_vmread_bitmap);
3137 }
3138 for (i = 0; i < max_shadow_read_only_fields; i++)
3139 clear_bit(shadow_read_only_fields[i],
3140 vmx_vmread_bitmap);
3141}
3142
6aa8b732
AK
3143static __init int alloc_kvm_area(void)
3144{
3145 int cpu;
3146
3230bb47 3147 for_each_possible_cpu(cpu) {
6aa8b732
AK
3148 struct vmcs *vmcs;
3149
3150 vmcs = alloc_vmcs_cpu(cpu);
3151 if (!vmcs) {
3152 free_kvm_area();
3153 return -ENOMEM;
3154 }
3155
3156 per_cpu(vmxarea, cpu) = vmcs;
3157 }
3158 return 0;
3159}
3160
14168786
GN
3161static bool emulation_required(struct kvm_vcpu *vcpu)
3162{
3163 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3164}
3165
91b0aa2c 3166static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3167 struct kvm_segment *save)
6aa8b732 3168{
d99e4152
GN
3169 if (!emulate_invalid_guest_state) {
3170 /*
3171 * CS and SS RPL should be equal during guest entry according
3172 * to VMX spec, but in reality it is not always so. Since vcpu
3173 * is in the middle of the transition from real mode to
3174 * protected mode it is safe to assume that RPL 0 is a good
3175 * default value.
3176 */
3177 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3178 save->selector &= ~SELECTOR_RPL_MASK;
3179 save->dpl = save->selector & SELECTOR_RPL_MASK;
3180 save->s = 1;
6aa8b732 3181 }
d99e4152 3182 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3183}
3184
3185static void enter_pmode(struct kvm_vcpu *vcpu)
3186{
3187 unsigned long flags;
a89a8fb9 3188 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3189
d99e4152
GN
3190 /*
3191 * Update real mode segment cache. It may be not up-to-date if sement
3192 * register was written while vcpu was in a guest mode.
3193 */
3194 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3195 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3196 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3197 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3198 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3199 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3200
7ffd92c5 3201 vmx->rmode.vm86_active = 0;
6aa8b732 3202
2fb92db1
AK
3203 vmx_segment_cache_clear(vmx);
3204
f5f7b2fe 3205 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3206
3207 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3208 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3209 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3210 vmcs_writel(GUEST_RFLAGS, flags);
3211
66aee91a
RR
3212 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3213 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3214
3215 update_exception_bitmap(vcpu);
3216
91b0aa2c
GN
3217 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3218 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3219 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3220 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3221 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3222 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3223}
3224
f5f7b2fe 3225static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3226{
772e0318 3227 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3228 struct kvm_segment var = *save;
3229
3230 var.dpl = 0x3;
3231 if (seg == VCPU_SREG_CS)
3232 var.type = 0x3;
3233
3234 if (!emulate_invalid_guest_state) {
3235 var.selector = var.base >> 4;
3236 var.base = var.base & 0xffff0;
3237 var.limit = 0xffff;
3238 var.g = 0;
3239 var.db = 0;
3240 var.present = 1;
3241 var.s = 1;
3242 var.l = 0;
3243 var.unusable = 0;
3244 var.type = 0x3;
3245 var.avl = 0;
3246 if (save->base & 0xf)
3247 printk_once(KERN_WARNING "kvm: segment base is not "
3248 "paragraph aligned when entering "
3249 "protected mode (seg=%d)", seg);
3250 }
6aa8b732 3251
d99e4152
GN
3252 vmcs_write16(sf->selector, var.selector);
3253 vmcs_write32(sf->base, var.base);
3254 vmcs_write32(sf->limit, var.limit);
3255 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3256}
3257
3258static void enter_rmode(struct kvm_vcpu *vcpu)
3259{
3260 unsigned long flags;
a89a8fb9 3261 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3262
f5f7b2fe
AK
3263 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3264 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3265 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3266 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3267 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3268 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3269 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3270
7ffd92c5 3271 vmx->rmode.vm86_active = 1;
6aa8b732 3272
776e58ea
GN
3273 /*
3274 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3275 * vcpu. Warn the user that an update is overdue.
776e58ea 3276 */
4918c6ca 3277 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3278 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3279 "called before entering vcpu\n");
776e58ea 3280
2fb92db1
AK
3281 vmx_segment_cache_clear(vmx);
3282
4918c6ca 3283 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3284 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3285 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3286
3287 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3288 vmx->rmode.save_rflags = flags;
6aa8b732 3289
053de044 3290 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3291
3292 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3293 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3294 update_exception_bitmap(vcpu);
3295
d99e4152
GN
3296 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3297 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3298 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3299 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3300 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3301 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3302
8668a3c4 3303 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3304}
3305
401d10de
AS
3306static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3307{
3308 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3309 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3310
3311 if (!msr)
3312 return;
401d10de 3313
44ea2b17
AK
3314 /*
3315 * Force kernel_gs_base reloading before EFER changes, as control
3316 * of this msr depends on is_long_mode().
3317 */
3318 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3319 vcpu->arch.efer = efer;
401d10de 3320 if (efer & EFER_LMA) {
2961e876 3321 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3322 msr->data = efer;
3323 } else {
2961e876 3324 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3325
3326 msr->data = efer & ~EFER_LME;
3327 }
3328 setup_msrs(vmx);
3329}
3330
05b3e0c2 3331#ifdef CONFIG_X86_64
6aa8b732
AK
3332
3333static void enter_lmode(struct kvm_vcpu *vcpu)
3334{
3335 u32 guest_tr_ar;
3336
2fb92db1
AK
3337 vmx_segment_cache_clear(to_vmx(vcpu));
3338
6aa8b732
AK
3339 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3340 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3341 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3342 __func__);
6aa8b732
AK
3343 vmcs_write32(GUEST_TR_AR_BYTES,
3344 (guest_tr_ar & ~AR_TYPE_MASK)
3345 | AR_TYPE_BUSY_64_TSS);
3346 }
da38f438 3347 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3348}
3349
3350static void exit_lmode(struct kvm_vcpu *vcpu)
3351{
2961e876 3352 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3353 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3354}
3355
3356#endif
3357
2384d2b3
SY
3358static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3359{
b9d762fa 3360 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3361 if (enable_ept) {
3362 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3363 return;
4e1096d2 3364 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3365 }
2384d2b3
SY
3366}
3367
e8467fda
AK
3368static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3369{
3370 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3371
3372 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3373 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3374}
3375
aff48baa
AK
3376static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3377{
3378 if (enable_ept && is_paging(vcpu))
3379 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3380 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3381}
3382
25c4c276 3383static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3384{
fc78f519
AK
3385 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3386
3387 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3388 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3389}
3390
1439442c
SY
3391static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3392{
d0d538b9
GN
3393 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3394
6de4f3ad
AK
3395 if (!test_bit(VCPU_EXREG_PDPTR,
3396 (unsigned long *)&vcpu->arch.regs_dirty))
3397 return;
3398
1439442c 3399 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3400 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3401 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3402 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3403 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3404 }
3405}
3406
8f5d549f
AK
3407static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3408{
d0d538b9
GN
3409 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3410
8f5d549f 3411 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3412 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3413 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3414 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3415 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3416 }
6de4f3ad
AK
3417
3418 __set_bit(VCPU_EXREG_PDPTR,
3419 (unsigned long *)&vcpu->arch.regs_avail);
3420 __set_bit(VCPU_EXREG_PDPTR,
3421 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3422}
3423
5e1746d6 3424static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3425
3426static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3427 unsigned long cr0,
3428 struct kvm_vcpu *vcpu)
3429{
5233dd51
MT
3430 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3431 vmx_decache_cr3(vcpu);
1439442c
SY
3432 if (!(cr0 & X86_CR0_PG)) {
3433 /* From paging/starting to nonpaging */
3434 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3435 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3436 (CPU_BASED_CR3_LOAD_EXITING |
3437 CPU_BASED_CR3_STORE_EXITING));
3438 vcpu->arch.cr0 = cr0;
fc78f519 3439 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3440 } else if (!is_paging(vcpu)) {
3441 /* From nonpaging to paging */
3442 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3443 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3444 ~(CPU_BASED_CR3_LOAD_EXITING |
3445 CPU_BASED_CR3_STORE_EXITING));
3446 vcpu->arch.cr0 = cr0;
fc78f519 3447 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3448 }
95eb84a7
SY
3449
3450 if (!(cr0 & X86_CR0_WP))
3451 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3452}
3453
6aa8b732
AK
3454static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3455{
7ffd92c5 3456 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3457 unsigned long hw_cr0;
3458
5037878e 3459 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3460 if (enable_unrestricted_guest)
5037878e 3461 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3462 else {
5037878e 3463 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3464
218e763f
GN
3465 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3466 enter_pmode(vcpu);
6aa8b732 3467
218e763f
GN
3468 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3469 enter_rmode(vcpu);
3470 }
6aa8b732 3471
05b3e0c2 3472#ifdef CONFIG_X86_64
f6801dff 3473 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3474 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3475 enter_lmode(vcpu);
707d92fa 3476 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3477 exit_lmode(vcpu);
3478 }
3479#endif
3480
089d034e 3481 if (enable_ept)
1439442c
SY
3482 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3483
02daab21 3484 if (!vcpu->fpu_active)
81231c69 3485 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3486
6aa8b732 3487 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3488 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3489 vcpu->arch.cr0 = cr0;
14168786
GN
3490
3491 /* depends on vcpu->arch.cr0 to be set to a new value */
3492 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3493}
3494
1439442c
SY
3495static u64 construct_eptp(unsigned long root_hpa)
3496{
3497 u64 eptp;
3498
3499 /* TODO write the value reading from MSR */
3500 eptp = VMX_EPT_DEFAULT_MT |
3501 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3502 if (enable_ept_ad_bits)
3503 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3504 eptp |= (root_hpa & PAGE_MASK);
3505
3506 return eptp;
3507}
3508
6aa8b732
AK
3509static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3510{
1439442c
SY
3511 unsigned long guest_cr3;
3512 u64 eptp;
3513
3514 guest_cr3 = cr3;
089d034e 3515 if (enable_ept) {
1439442c
SY
3516 eptp = construct_eptp(cr3);
3517 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3518 if (is_paging(vcpu) || is_guest_mode(vcpu))
3519 guest_cr3 = kvm_read_cr3(vcpu);
3520 else
3521 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3522 ept_load_pdptrs(vcpu);
1439442c
SY
3523 }
3524
2384d2b3 3525 vmx_flush_tlb(vcpu);
1439442c 3526 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3527}
3528
5e1746d6 3529static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3530{
7ffd92c5 3531 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3532 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3533
5e1746d6
NHE
3534 if (cr4 & X86_CR4_VMXE) {
3535 /*
3536 * To use VMXON (and later other VMX instructions), a guest
3537 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3538 * So basically the check on whether to allow nested VMX
3539 * is here.
3540 */
3541 if (!nested_vmx_allowed(vcpu))
3542 return 1;
1a0d74e6
JK
3543 }
3544 if (to_vmx(vcpu)->nested.vmxon &&
3545 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3546 return 1;
3547
ad312c7c 3548 vcpu->arch.cr4 = cr4;
bc23008b
AK
3549 if (enable_ept) {
3550 if (!is_paging(vcpu)) {
3551 hw_cr4 &= ~X86_CR4_PAE;
3552 hw_cr4 |= X86_CR4_PSE;
c08800a5 3553 /*
e1e746b3
FW
3554 * SMEP/SMAP is disabled if CPU is in non-paging mode
3555 * in hardware. However KVM always uses paging mode to
c08800a5 3556 * emulate guest non-paging mode with TDP.
e1e746b3
FW
3557 * To emulate this behavior, SMEP/SMAP needs to be
3558 * manually disabled when guest switches to non-paging
3559 * mode.
c08800a5 3560 */
e1e746b3 3561 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
bc23008b
AK
3562 } else if (!(cr4 & X86_CR4_PAE)) {
3563 hw_cr4 &= ~X86_CR4_PAE;
3564 }
3565 }
1439442c
SY
3566
3567 vmcs_writel(CR4_READ_SHADOW, cr4);
3568 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3569 return 0;
6aa8b732
AK
3570}
3571
6aa8b732
AK
3572static void vmx_get_segment(struct kvm_vcpu *vcpu,
3573 struct kvm_segment *var, int seg)
3574{
a9179499 3575 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3576 u32 ar;
3577
c6ad1153 3578 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3579 *var = vmx->rmode.segs[seg];
a9179499 3580 if (seg == VCPU_SREG_TR
2fb92db1 3581 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3582 return;
1390a28b
AK
3583 var->base = vmx_read_guest_seg_base(vmx, seg);
3584 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3585 return;
a9179499 3586 }
2fb92db1
AK
3587 var->base = vmx_read_guest_seg_base(vmx, seg);
3588 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3589 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3590 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3591 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3592 var->type = ar & 15;
3593 var->s = (ar >> 4) & 1;
3594 var->dpl = (ar >> 5) & 3;
03617c18
GN
3595 /*
3596 * Some userspaces do not preserve unusable property. Since usable
3597 * segment has to be present according to VMX spec we can use present
3598 * property to amend userspace bug by making unusable segment always
3599 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3600 * segment as unusable.
3601 */
3602 var->present = !var->unusable;
6aa8b732
AK
3603 var->avl = (ar >> 12) & 1;
3604 var->l = (ar >> 13) & 1;
3605 var->db = (ar >> 14) & 1;
3606 var->g = (ar >> 15) & 1;
6aa8b732
AK
3607}
3608
a9179499
AK
3609static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3610{
a9179499
AK
3611 struct kvm_segment s;
3612
3613 if (to_vmx(vcpu)->rmode.vm86_active) {
3614 vmx_get_segment(vcpu, &s, seg);
3615 return s.base;
3616 }
2fb92db1 3617 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3618}
3619
b09408d0 3620static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3621{
b09408d0
MT
3622 struct vcpu_vmx *vmx = to_vmx(vcpu);
3623
ae9fedc7 3624 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3625 return 0;
ae9fedc7
PB
3626 else {
3627 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3628 return AR_DPL(ar);
69c73028 3629 }
69c73028
AK
3630}
3631
653e3108 3632static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3633{
6aa8b732
AK
3634 u32 ar;
3635
f0495f9b 3636 if (var->unusable || !var->present)
6aa8b732
AK
3637 ar = 1 << 16;
3638 else {
3639 ar = var->type & 15;
3640 ar |= (var->s & 1) << 4;
3641 ar |= (var->dpl & 3) << 5;
3642 ar |= (var->present & 1) << 7;
3643 ar |= (var->avl & 1) << 12;
3644 ar |= (var->l & 1) << 13;
3645 ar |= (var->db & 1) << 14;
3646 ar |= (var->g & 1) << 15;
3647 }
653e3108
AK
3648
3649 return ar;
3650}
3651
3652static void vmx_set_segment(struct kvm_vcpu *vcpu,
3653 struct kvm_segment *var, int seg)
3654{
7ffd92c5 3655 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3656 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3657
2fb92db1
AK
3658 vmx_segment_cache_clear(vmx);
3659
1ecd50a9
GN
3660 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3661 vmx->rmode.segs[seg] = *var;
3662 if (seg == VCPU_SREG_TR)
3663 vmcs_write16(sf->selector, var->selector);
3664 else if (var->s)
3665 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3666 goto out;
653e3108 3667 }
1ecd50a9 3668
653e3108
AK
3669 vmcs_writel(sf->base, var->base);
3670 vmcs_write32(sf->limit, var->limit);
3671 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3672
3673 /*
3674 * Fix the "Accessed" bit in AR field of segment registers for older
3675 * qemu binaries.
3676 * IA32 arch specifies that at the time of processor reset the
3677 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3678 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3679 * state vmexit when "unrestricted guest" mode is turned on.
3680 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3681 * tree. Newer qemu binaries with that qemu fix would not need this
3682 * kvm hack.
3683 */
3684 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3685 var->type |= 0x1; /* Accessed */
3a624e29 3686
f924d66d 3687 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3688
3689out:
98eb2f8b 3690 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3691}
3692
6aa8b732
AK
3693static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3694{
2fb92db1 3695 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3696
3697 *db = (ar >> 14) & 1;
3698 *l = (ar >> 13) & 1;
3699}
3700
89a27f4d 3701static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3702{
89a27f4d
GN
3703 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3704 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3705}
3706
89a27f4d 3707static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3708{
89a27f4d
GN
3709 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3710 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3711}
3712
89a27f4d 3713static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3714{
89a27f4d
GN
3715 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3716 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3717}
3718
89a27f4d 3719static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3720{
89a27f4d
GN
3721 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3722 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3723}
3724
648dfaa7
MG
3725static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3726{
3727 struct kvm_segment var;
3728 u32 ar;
3729
3730 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3731 var.dpl = 0x3;
0647f4aa
GN
3732 if (seg == VCPU_SREG_CS)
3733 var.type = 0x3;
648dfaa7
MG
3734 ar = vmx_segment_access_rights(&var);
3735
3736 if (var.base != (var.selector << 4))
3737 return false;
89efbed0 3738 if (var.limit != 0xffff)
648dfaa7 3739 return false;
07f42f5f 3740 if (ar != 0xf3)
648dfaa7
MG
3741 return false;
3742
3743 return true;
3744}
3745
3746static bool code_segment_valid(struct kvm_vcpu *vcpu)
3747{
3748 struct kvm_segment cs;
3749 unsigned int cs_rpl;
3750
3751 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3752 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3753
1872a3f4
AK
3754 if (cs.unusable)
3755 return false;
648dfaa7
MG
3756 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3757 return false;
3758 if (!cs.s)
3759 return false;
1872a3f4 3760 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3761 if (cs.dpl > cs_rpl)
3762 return false;
1872a3f4 3763 } else {
648dfaa7
MG
3764 if (cs.dpl != cs_rpl)
3765 return false;
3766 }
3767 if (!cs.present)
3768 return false;
3769
3770 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3771 return true;
3772}
3773
3774static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3775{
3776 struct kvm_segment ss;
3777 unsigned int ss_rpl;
3778
3779 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3780 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3781
1872a3f4
AK
3782 if (ss.unusable)
3783 return true;
3784 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3785 return false;
3786 if (!ss.s)
3787 return false;
3788 if (ss.dpl != ss_rpl) /* DPL != RPL */
3789 return false;
3790 if (!ss.present)
3791 return false;
3792
3793 return true;
3794}
3795
3796static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3797{
3798 struct kvm_segment var;
3799 unsigned int rpl;
3800
3801 vmx_get_segment(vcpu, &var, seg);
3802 rpl = var.selector & SELECTOR_RPL_MASK;
3803
1872a3f4
AK
3804 if (var.unusable)
3805 return true;
648dfaa7
MG
3806 if (!var.s)
3807 return false;
3808 if (!var.present)
3809 return false;
3810 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3811 if (var.dpl < rpl) /* DPL < RPL */
3812 return false;
3813 }
3814
3815 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3816 * rights flags
3817 */
3818 return true;
3819}
3820
3821static bool tr_valid(struct kvm_vcpu *vcpu)
3822{
3823 struct kvm_segment tr;
3824
3825 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3826
1872a3f4
AK
3827 if (tr.unusable)
3828 return false;
648dfaa7
MG
3829 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3830 return false;
1872a3f4 3831 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3832 return false;
3833 if (!tr.present)
3834 return false;
3835
3836 return true;
3837}
3838
3839static bool ldtr_valid(struct kvm_vcpu *vcpu)
3840{
3841 struct kvm_segment ldtr;
3842
3843 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3844
1872a3f4
AK
3845 if (ldtr.unusable)
3846 return true;
648dfaa7
MG
3847 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3848 return false;
3849 if (ldtr.type != 2)
3850 return false;
3851 if (!ldtr.present)
3852 return false;
3853
3854 return true;
3855}
3856
3857static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3858{
3859 struct kvm_segment cs, ss;
3860
3861 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3862 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3863
3864 return ((cs.selector & SELECTOR_RPL_MASK) ==
3865 (ss.selector & SELECTOR_RPL_MASK));
3866}
3867
3868/*
3869 * Check if guest state is valid. Returns true if valid, false if
3870 * not.
3871 * We assume that registers are always usable
3872 */
3873static bool guest_state_valid(struct kvm_vcpu *vcpu)
3874{
c5e97c80
GN
3875 if (enable_unrestricted_guest)
3876 return true;
3877
648dfaa7 3878 /* real mode guest state checks */
f13882d8 3879 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3880 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3881 return false;
3882 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3883 return false;
3884 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3885 return false;
3886 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3887 return false;
3888 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3889 return false;
3890 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3891 return false;
3892 } else {
3893 /* protected mode guest state checks */
3894 if (!cs_ss_rpl_check(vcpu))
3895 return false;
3896 if (!code_segment_valid(vcpu))
3897 return false;
3898 if (!stack_segment_valid(vcpu))
3899 return false;
3900 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3901 return false;
3902 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3903 return false;
3904 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3905 return false;
3906 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3907 return false;
3908 if (!tr_valid(vcpu))
3909 return false;
3910 if (!ldtr_valid(vcpu))
3911 return false;
3912 }
3913 /* TODO:
3914 * - Add checks on RIP
3915 * - Add checks on RFLAGS
3916 */
3917
3918 return true;
3919}
3920
d77c26fc 3921static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3922{
40dcaa9f 3923 gfn_t fn;
195aefde 3924 u16 data = 0;
1f755a82 3925 int idx, r;
6aa8b732 3926
40dcaa9f 3927 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 3928 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
3929 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3930 if (r < 0)
10589a46 3931 goto out;
195aefde 3932 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3933 r = kvm_write_guest_page(kvm, fn++, &data,
3934 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3935 if (r < 0)
10589a46 3936 goto out;
195aefde
IE
3937 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3938 if (r < 0)
10589a46 3939 goto out;
195aefde
IE
3940 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3941 if (r < 0)
10589a46 3942 goto out;
195aefde 3943 data = ~0;
10589a46
MT
3944 r = kvm_write_guest_page(kvm, fn, &data,
3945 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3946 sizeof(u8));
10589a46 3947out:
40dcaa9f 3948 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 3949 return r;
6aa8b732
AK
3950}
3951
b7ebfb05
SY
3952static int init_rmode_identity_map(struct kvm *kvm)
3953{
f51770ed 3954 int i, idx, r = 0;
b7ebfb05
SY
3955 pfn_t identity_map_pfn;
3956 u32 tmp;
3957
089d034e 3958 if (!enable_ept)
f51770ed 3959 return 0;
a255d479
TC
3960
3961 /* Protect kvm->arch.ept_identity_pagetable_done. */
3962 mutex_lock(&kvm->slots_lock);
3963
f51770ed 3964 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 3965 goto out2;
a255d479 3966
b927a3ce 3967 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
3968
3969 r = alloc_identity_pagetable(kvm);
f51770ed 3970 if (r < 0)
a255d479
TC
3971 goto out2;
3972
40dcaa9f 3973 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3974 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3975 if (r < 0)
3976 goto out;
3977 /* Set up identity-mapping pagetable for EPT in real mode */
3978 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3979 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3980 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3981 r = kvm_write_guest_page(kvm, identity_map_pfn,
3982 &tmp, i * sizeof(tmp), sizeof(tmp));
3983 if (r < 0)
3984 goto out;
3985 }
3986 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 3987
b7ebfb05 3988out:
40dcaa9f 3989 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
3990
3991out2:
3992 mutex_unlock(&kvm->slots_lock);
f51770ed 3993 return r;
b7ebfb05
SY
3994}
3995
6aa8b732
AK
3996static void seg_setup(int seg)
3997{
772e0318 3998 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3999 unsigned int ar;
6aa8b732
AK
4000
4001 vmcs_write16(sf->selector, 0);
4002 vmcs_writel(sf->base, 0);
4003 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4004 ar = 0x93;
4005 if (seg == VCPU_SREG_CS)
4006 ar |= 0x08; /* code segment */
3a624e29
NK
4007
4008 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4009}
4010
f78e0e2e
SY
4011static int alloc_apic_access_page(struct kvm *kvm)
4012{
4484141a 4013 struct page *page;
f78e0e2e
SY
4014 struct kvm_userspace_memory_region kvm_userspace_mem;
4015 int r = 0;
4016
79fac95e 4017 mutex_lock(&kvm->slots_lock);
c24ae0dc 4018 if (kvm->arch.apic_access_page_done)
f78e0e2e
SY
4019 goto out;
4020 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4021 kvm_userspace_mem.flags = 0;
73a6d941 4022 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
f78e0e2e 4023 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 4024 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
4025 if (r)
4026 goto out;
72dc67a6 4027
73a6d941 4028 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4029 if (is_error_page(page)) {
4030 r = -EFAULT;
4031 goto out;
4032 }
4033
c24ae0dc
TC
4034 /*
4035 * Do not pin the page in memory, so that memory hot-unplug
4036 * is able to migrate it.
4037 */
4038 put_page(page);
4039 kvm->arch.apic_access_page_done = true;
f78e0e2e 4040out:
79fac95e 4041 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4042 return r;
4043}
4044
b7ebfb05
SY
4045static int alloc_identity_pagetable(struct kvm *kvm)
4046{
a255d479
TC
4047 /* Called with kvm->slots_lock held. */
4048
b7ebfb05
SY
4049 struct kvm_userspace_memory_region kvm_userspace_mem;
4050 int r = 0;
4051
a255d479
TC
4052 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4053
b7ebfb05
SY
4054 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4055 kvm_userspace_mem.flags = 0;
b927a3ce
SY
4056 kvm_userspace_mem.guest_phys_addr =
4057 kvm->arch.ept_identity_map_addr;
b7ebfb05 4058 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 4059 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05 4060
b7ebfb05
SY
4061 return r;
4062}
4063
2384d2b3
SY
4064static void allocate_vpid(struct vcpu_vmx *vmx)
4065{
4066 int vpid;
4067
4068 vmx->vpid = 0;
919818ab 4069 if (!enable_vpid)
2384d2b3
SY
4070 return;
4071 spin_lock(&vmx_vpid_lock);
4072 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4073 if (vpid < VMX_NR_VPIDS) {
4074 vmx->vpid = vpid;
4075 __set_bit(vpid, vmx_vpid_bitmap);
4076 }
4077 spin_unlock(&vmx_vpid_lock);
4078}
4079
cdbecfc3
LJ
4080static void free_vpid(struct vcpu_vmx *vmx)
4081{
4082 if (!enable_vpid)
4083 return;
4084 spin_lock(&vmx_vpid_lock);
4085 if (vmx->vpid != 0)
4086 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4087 spin_unlock(&vmx_vpid_lock);
4088}
4089
8d14695f
YZ
4090#define MSR_TYPE_R 1
4091#define MSR_TYPE_W 2
4092static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4093 u32 msr, int type)
25c5f225 4094{
3e7c73e9 4095 int f = sizeof(unsigned long);
25c5f225
SY
4096
4097 if (!cpu_has_vmx_msr_bitmap())
4098 return;
4099
4100 /*
4101 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4102 * have the write-low and read-high bitmap offsets the wrong way round.
4103 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4104 */
25c5f225 4105 if (msr <= 0x1fff) {
8d14695f
YZ
4106 if (type & MSR_TYPE_R)
4107 /* read-low */
4108 __clear_bit(msr, msr_bitmap + 0x000 / f);
4109
4110 if (type & MSR_TYPE_W)
4111 /* write-low */
4112 __clear_bit(msr, msr_bitmap + 0x800 / f);
4113
25c5f225
SY
4114 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4115 msr &= 0x1fff;
8d14695f
YZ
4116 if (type & MSR_TYPE_R)
4117 /* read-high */
4118 __clear_bit(msr, msr_bitmap + 0x400 / f);
4119
4120 if (type & MSR_TYPE_W)
4121 /* write-high */
4122 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4123
4124 }
4125}
4126
4127static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4128 u32 msr, int type)
4129{
4130 int f = sizeof(unsigned long);
4131
4132 if (!cpu_has_vmx_msr_bitmap())
4133 return;
4134
4135 /*
4136 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4137 * have the write-low and read-high bitmap offsets the wrong way round.
4138 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4139 */
4140 if (msr <= 0x1fff) {
4141 if (type & MSR_TYPE_R)
4142 /* read-low */
4143 __set_bit(msr, msr_bitmap + 0x000 / f);
4144
4145 if (type & MSR_TYPE_W)
4146 /* write-low */
4147 __set_bit(msr, msr_bitmap + 0x800 / f);
4148
4149 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4150 msr &= 0x1fff;
4151 if (type & MSR_TYPE_R)
4152 /* read-high */
4153 __set_bit(msr, msr_bitmap + 0x400 / f);
4154
4155 if (type & MSR_TYPE_W)
4156 /* write-high */
4157 __set_bit(msr, msr_bitmap + 0xc00 / f);
4158
25c5f225 4159 }
25c5f225
SY
4160}
4161
5897297b
AK
4162static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4163{
4164 if (!longmode_only)
8d14695f
YZ
4165 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4166 msr, MSR_TYPE_R | MSR_TYPE_W);
4167 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4168 msr, MSR_TYPE_R | MSR_TYPE_W);
4169}
4170
4171static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4172{
4173 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4174 msr, MSR_TYPE_R);
4175 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4176 msr, MSR_TYPE_R);
4177}
4178
4179static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4180{
4181 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4182 msr, MSR_TYPE_R);
4183 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4184 msr, MSR_TYPE_R);
4185}
4186
4187static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4188{
4189 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4190 msr, MSR_TYPE_W);
4191 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4192 msr, MSR_TYPE_W);
5897297b
AK
4193}
4194
01e439be
YZ
4195static int vmx_vm_has_apicv(struct kvm *kvm)
4196{
4197 return enable_apicv && irqchip_in_kernel(kvm);
4198}
4199
a20ed54d
YZ
4200/*
4201 * Send interrupt to vcpu via posted interrupt way.
4202 * 1. If target vcpu is running(non-root mode), send posted interrupt
4203 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4204 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4205 * interrupt from PIR in next vmentry.
4206 */
4207static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4208{
4209 struct vcpu_vmx *vmx = to_vmx(vcpu);
4210 int r;
4211
4212 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4213 return;
4214
4215 r = pi_test_and_set_on(&vmx->pi_desc);
4216 kvm_make_request(KVM_REQ_EVENT, vcpu);
6ffbbbba 4217#ifdef CONFIG_SMP
a20ed54d
YZ
4218 if (!r && (vcpu->mode == IN_GUEST_MODE))
4219 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4220 POSTED_INTR_VECTOR);
4221 else
6ffbbbba 4222#endif
a20ed54d
YZ
4223 kvm_vcpu_kick(vcpu);
4224}
4225
4226static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4227{
4228 struct vcpu_vmx *vmx = to_vmx(vcpu);
4229
4230 if (!pi_test_and_clear_on(&vmx->pi_desc))
4231 return;
4232
4233 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4234}
4235
4236static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4237{
4238 return;
4239}
4240
a3a8ff8e
NHE
4241/*
4242 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4243 * will not change in the lifetime of the guest.
4244 * Note that host-state that does change is set elsewhere. E.g., host-state
4245 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4246 */
a547c6db 4247static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4248{
4249 u32 low32, high32;
4250 unsigned long tmpl;
4251 struct desc_ptr dt;
d974baa3 4252 unsigned long cr4;
a3a8ff8e 4253
b1a74bf8 4254 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4255 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4256
d974baa3
AL
4257 /* Save the most likely value for this task's CR4 in the VMCS. */
4258 cr4 = read_cr4();
4259 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4260 vmx->host_state.vmcs_host_cr4 = cr4;
4261
a3a8ff8e 4262 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4263#ifdef CONFIG_X86_64
4264 /*
4265 * Load null selectors, so we can avoid reloading them in
4266 * __vmx_load_host_state(), in case userspace uses the null selectors
4267 * too (the expected case).
4268 */
4269 vmcs_write16(HOST_DS_SELECTOR, 0);
4270 vmcs_write16(HOST_ES_SELECTOR, 0);
4271#else
a3a8ff8e
NHE
4272 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4273 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4274#endif
a3a8ff8e
NHE
4275 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4276 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4277
4278 native_store_idt(&dt);
4279 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4280 vmx->host_idt_base = dt.address;
a3a8ff8e 4281
83287ea4 4282 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4283
4284 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4285 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4286 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4287 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4288
4289 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4290 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4291 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4292 }
4293}
4294
bf8179a0
NHE
4295static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4296{
4297 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4298 if (enable_ept)
4299 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4300 if (is_guest_mode(&vmx->vcpu))
4301 vmx->vcpu.arch.cr4_guest_owned_bits &=
4302 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4303 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4304}
4305
01e439be
YZ
4306static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4307{
4308 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4309
4310 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4311 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4312 return pin_based_exec_ctrl;
4313}
4314
bf8179a0
NHE
4315static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4316{
4317 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4318
4319 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4320 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4321
bf8179a0
NHE
4322 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4323 exec_control &= ~CPU_BASED_TPR_SHADOW;
4324#ifdef CONFIG_X86_64
4325 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4326 CPU_BASED_CR8_LOAD_EXITING;
4327#endif
4328 }
4329 if (!enable_ept)
4330 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4331 CPU_BASED_CR3_LOAD_EXITING |
4332 CPU_BASED_INVLPG_EXITING;
4333 return exec_control;
4334}
4335
4336static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4337{
4338 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4339 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4340 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4341 if (vmx->vpid == 0)
4342 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4343 if (!enable_ept) {
4344 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4345 enable_unrestricted_guest = 0;
ad756a16
MJ
4346 /* Enable INVPCID for non-ept guests may cause performance regression. */
4347 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4348 }
4349 if (!enable_unrestricted_guest)
4350 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4351 if (!ple_gap)
4352 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4353 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4354 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4355 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4356 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4357 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4358 (handle_vmptrld).
4359 We can NOT enable shadow_vmcs here because we don't have yet
4360 a current VMCS12
4361 */
4362 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
bf8179a0
NHE
4363 return exec_control;
4364}
4365
ce88decf
XG
4366static void ept_set_mmio_spte_mask(void)
4367{
4368 /*
4369 * EPT Misconfigurations can be generated if the value of bits 2:0
4370 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4371 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4372 * spte.
4373 */
885032b9 4374 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4375}
4376
f53cd63c 4377#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4378/*
4379 * Sets up the vmcs for emulated real mode.
4380 */
8b9cf98c 4381static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4382{
2e4ce7f5 4383#ifdef CONFIG_X86_64
6aa8b732 4384 unsigned long a;
2e4ce7f5 4385#endif
6aa8b732 4386 int i;
6aa8b732 4387
6aa8b732 4388 /* I/O */
3e7c73e9
AK
4389 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4390 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4391
4607c2d7
AG
4392 if (enable_shadow_vmcs) {
4393 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4394 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4395 }
25c5f225 4396 if (cpu_has_vmx_msr_bitmap())
5897297b 4397 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4398
6aa8b732
AK
4399 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4400
6aa8b732 4401 /* Control */
01e439be 4402 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4403
bf8179a0 4404 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4405
83ff3b9d 4406 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4407 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4408 vmx_secondary_exec_control(vmx));
83ff3b9d 4409 }
f78e0e2e 4410
01e439be 4411 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4412 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4413 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4414 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4415 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4416
4417 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4418
4419 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4420 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4421 }
4422
4b8d54f9
ZE
4423 if (ple_gap) {
4424 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4425 vmx->ple_window = ple_window;
4426 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4427 }
4428
c3707958
XG
4429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4430 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4431 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4432
9581d442
AK
4433 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4434 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4435 vmx_set_constant_host_state(vmx);
05b3e0c2 4436#ifdef CONFIG_X86_64
6aa8b732
AK
4437 rdmsrl(MSR_FS_BASE, a);
4438 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4439 rdmsrl(MSR_GS_BASE, a);
4440 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4441#else
4442 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4443 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4444#endif
4445
2cc51560
ED
4446 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4447 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4448 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4449 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4450 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4451
468d472f 4452 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4453 u32 msr_low, msr_high;
4454 u64 host_pat;
468d472f
SY
4455 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4456 host_pat = msr_low | ((u64) msr_high << 32);
4457 /* Write the default value follow host pat */
4458 vmcs_write64(GUEST_IA32_PAT, host_pat);
4459 /* Keep arch.pat sync with GUEST_IA32_PAT */
4460 vmx->vcpu.arch.pat = host_pat;
4461 }
4462
03916db9 4463 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4464 u32 index = vmx_msr_index[i];
4465 u32 data_low, data_high;
a2fa3e9f 4466 int j = vmx->nmsrs;
6aa8b732
AK
4467
4468 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4469 continue;
432bd6cb
AK
4470 if (wrmsr_safe(index, data_low, data_high) < 0)
4471 continue;
26bb0981
AK
4472 vmx->guest_msrs[j].index = i;
4473 vmx->guest_msrs[j].data = 0;
d5696725 4474 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4475 ++vmx->nmsrs;
6aa8b732 4476 }
6aa8b732 4477
2961e876
GN
4478
4479 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4480
4481 /* 22.2.1, 20.8.1 */
2961e876 4482 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4483
e00c8cf2 4484 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4485 set_cr4_guest_host_mask(vmx);
e00c8cf2 4486
f53cd63c
WL
4487 if (vmx_xsaves_supported())
4488 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4489
e00c8cf2
AK
4490 return 0;
4491}
4492
57f252f2 4493static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4494{
4495 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4496 struct msr_data apic_base_msr;
e00c8cf2 4497
7ffd92c5 4498 vmx->rmode.vm86_active = 0;
e00c8cf2 4499
3b86cd99
JK
4500 vmx->soft_vnmi_blocked = 0;
4501
ad312c7c 4502 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4503 kvm_set_cr8(&vmx->vcpu, 0);
73a6d941 4504 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4505 if (kvm_vcpu_is_bsp(&vmx->vcpu))
58cb628d
JK
4506 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4507 apic_base_msr.host_initiated = true;
4508 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
e00c8cf2 4509
2fb92db1
AK
4510 vmx_segment_cache_clear(vmx);
4511
5706be0d 4512 seg_setup(VCPU_SREG_CS);
66450a21 4513 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4514 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4515
4516 seg_setup(VCPU_SREG_DS);
4517 seg_setup(VCPU_SREG_ES);
4518 seg_setup(VCPU_SREG_FS);
4519 seg_setup(VCPU_SREG_GS);
4520 seg_setup(VCPU_SREG_SS);
4521
4522 vmcs_write16(GUEST_TR_SELECTOR, 0);
4523 vmcs_writel(GUEST_TR_BASE, 0);
4524 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4525 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4526
4527 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4528 vmcs_writel(GUEST_LDTR_BASE, 0);
4529 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4530 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4531
4532 vmcs_write32(GUEST_SYSENTER_CS, 0);
4533 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4534 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4535
4536 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4537 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4538
e00c8cf2
AK
4539 vmcs_writel(GUEST_GDTR_BASE, 0);
4540 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4541
4542 vmcs_writel(GUEST_IDTR_BASE, 0);
4543 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4544
443381a8 4545 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4546 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4547 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4548
e00c8cf2
AK
4549 /* Special registers */
4550 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4551
4552 setup_msrs(vmx);
4553
6aa8b732
AK
4554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4555
f78e0e2e
SY
4556 if (cpu_has_vmx_tpr_shadow()) {
4557 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4558 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4559 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4560 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4561 vmcs_write32(TPR_THRESHOLD, 0);
4562 }
4563
a73896cb 4564 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 4565
01e439be
YZ
4566 if (vmx_vm_has_apicv(vcpu->kvm))
4567 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4568
2384d2b3
SY
4569 if (vmx->vpid != 0)
4570 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4571
fa40052c 4572 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4573 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4574 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4575 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4576 vmx_fpu_activate(&vmx->vcpu);
4577 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4578
b9d762fa 4579 vpid_sync_context(vmx);
6aa8b732
AK
4580}
4581
b6f1250e
NHE
4582/*
4583 * In nested virtualization, check if L1 asked to exit on external interrupts.
4584 * For most existing hypervisors, this will always return true.
4585 */
4586static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4587{
4588 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4589 PIN_BASED_EXT_INTR_MASK;
4590}
4591
77b0f5d6
BD
4592/*
4593 * In nested virtualization, check if L1 has set
4594 * VM_EXIT_ACK_INTR_ON_EXIT
4595 */
4596static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4597{
4598 return get_vmcs12(vcpu)->vm_exit_controls &
4599 VM_EXIT_ACK_INTR_ON_EXIT;
4600}
4601
ea8ceb83
JK
4602static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4603{
4604 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4605 PIN_BASED_NMI_EXITING;
4606}
4607
c9a7953f 4608static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4609{
4610 u32 cpu_based_vm_exec_control;
730dca42 4611
3b86cd99
JK
4612 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4613 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4614 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4615}
4616
c9a7953f 4617static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4618{
4619 u32 cpu_based_vm_exec_control;
4620
c9a7953f
JK
4621 if (!cpu_has_virtual_nmis() ||
4622 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4623 enable_irq_window(vcpu);
4624 return;
4625 }
3b86cd99
JK
4626
4627 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4628 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4629 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4630}
4631
66fd3f7f 4632static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4633{
9c8cba37 4634 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4635 uint32_t intr;
4636 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4637
229456fc 4638 trace_kvm_inj_virq(irq);
2714d1d3 4639
fa89a817 4640 ++vcpu->stat.irq_injections;
7ffd92c5 4641 if (vmx->rmode.vm86_active) {
71f9833b
SH
4642 int inc_eip = 0;
4643 if (vcpu->arch.interrupt.soft)
4644 inc_eip = vcpu->arch.event_exit_inst_len;
4645 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4646 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4647 return;
4648 }
66fd3f7f
GN
4649 intr = irq | INTR_INFO_VALID_MASK;
4650 if (vcpu->arch.interrupt.soft) {
4651 intr |= INTR_TYPE_SOFT_INTR;
4652 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4653 vmx->vcpu.arch.event_exit_inst_len);
4654 } else
4655 intr |= INTR_TYPE_EXT_INTR;
4656 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4657}
4658
f08864b4
SY
4659static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4660{
66a5a347
JK
4661 struct vcpu_vmx *vmx = to_vmx(vcpu);
4662
0b6ac343
NHE
4663 if (is_guest_mode(vcpu))
4664 return;
4665
3b86cd99
JK
4666 if (!cpu_has_virtual_nmis()) {
4667 /*
4668 * Tracking the NMI-blocked state in software is built upon
4669 * finding the next open IRQ window. This, in turn, depends on
4670 * well-behaving guests: They have to keep IRQs disabled at
4671 * least as long as the NMI handler runs. Otherwise we may
4672 * cause NMI nesting, maybe breaking the guest. But as this is
4673 * highly unlikely, we can live with the residual risk.
4674 */
4675 vmx->soft_vnmi_blocked = 1;
4676 vmx->vnmi_blocked_time = 0;
4677 }
4678
487b391d 4679 ++vcpu->stat.nmi_injections;
9d58b931 4680 vmx->nmi_known_unmasked = false;
7ffd92c5 4681 if (vmx->rmode.vm86_active) {
71f9833b 4682 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4683 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4684 return;
4685 }
f08864b4
SY
4686 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4687 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4688}
4689
3cfc3092
JK
4690static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4691{
4692 if (!cpu_has_virtual_nmis())
4693 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4694 if (to_vmx(vcpu)->nmi_known_unmasked)
4695 return false;
c332c83a 4696 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4697}
4698
4699static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4700{
4701 struct vcpu_vmx *vmx = to_vmx(vcpu);
4702
4703 if (!cpu_has_virtual_nmis()) {
4704 if (vmx->soft_vnmi_blocked != masked) {
4705 vmx->soft_vnmi_blocked = masked;
4706 vmx->vnmi_blocked_time = 0;
4707 }
4708 } else {
9d58b931 4709 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4710 if (masked)
4711 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4712 GUEST_INTR_STATE_NMI);
4713 else
4714 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4715 GUEST_INTR_STATE_NMI);
4716 }
4717}
4718
2505dc9f
JK
4719static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4720{
b6b8a145
JK
4721 if (to_vmx(vcpu)->nested.nested_run_pending)
4722 return 0;
ea8ceb83 4723
2505dc9f
JK
4724 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4725 return 0;
4726
4727 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4728 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4729 | GUEST_INTR_STATE_NMI));
4730}
4731
78646121
GN
4732static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4733{
b6b8a145
JK
4734 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4735 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
4736 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4737 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4738}
4739
cbc94022
IE
4740static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4741{
4742 int ret;
4743 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4744 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4745 .guest_phys_addr = addr,
4746 .memory_size = PAGE_SIZE * 3,
4747 .flags = 0,
4748 };
4749
47ae31e2 4750 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4751 if (ret)
4752 return ret;
bfc6d222 4753 kvm->arch.tss_addr = addr;
1f755a82 4754 return init_rmode_tss(kvm);
cbc94022
IE
4755}
4756
0ca1b4f4 4757static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4758{
77ab6db0 4759 switch (vec) {
77ab6db0 4760 case BP_VECTOR:
c573cd22
JK
4761 /*
4762 * Update instruction length as we may reinject the exception
4763 * from user space while in guest debugging mode.
4764 */
4765 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4766 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4767 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4768 return false;
4769 /* fall through */
4770 case DB_VECTOR:
4771 if (vcpu->guest_debug &
4772 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4773 return false;
d0bfb940
JK
4774 /* fall through */
4775 case DE_VECTOR:
77ab6db0
JK
4776 case OF_VECTOR:
4777 case BR_VECTOR:
4778 case UD_VECTOR:
4779 case DF_VECTOR:
4780 case SS_VECTOR:
4781 case GP_VECTOR:
4782 case MF_VECTOR:
0ca1b4f4
GN
4783 return true;
4784 break;
77ab6db0 4785 }
0ca1b4f4
GN
4786 return false;
4787}
4788
4789static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4790 int vec, u32 err_code)
4791{
4792 /*
4793 * Instruction with address size override prefix opcode 0x67
4794 * Cause the #SS fault with 0 error code in VM86 mode.
4795 */
4796 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4797 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4798 if (vcpu->arch.halt_request) {
4799 vcpu->arch.halt_request = 0;
4800 return kvm_emulate_halt(vcpu);
4801 }
4802 return 1;
4803 }
4804 return 0;
4805 }
4806
4807 /*
4808 * Forward all other exceptions that are valid in real mode.
4809 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4810 * the required debugging infrastructure rework.
4811 */
4812 kvm_queue_exception(vcpu, vec);
4813 return 1;
6aa8b732
AK
4814}
4815
a0861c02
AK
4816/*
4817 * Trigger machine check on the host. We assume all the MSRs are already set up
4818 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4819 * We pass a fake environment to the machine check handler because we want
4820 * the guest to be always treated like user space, no matter what context
4821 * it used internally.
4822 */
4823static void kvm_machine_check(void)
4824{
4825#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4826 struct pt_regs regs = {
4827 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4828 .flags = X86_EFLAGS_IF,
4829 };
4830
4831 do_machine_check(&regs, 0);
4832#endif
4833}
4834
851ba692 4835static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4836{
4837 /* already handled by vcpu_run */
4838 return 1;
4839}
4840
851ba692 4841static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4842{
1155f76a 4843 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4844 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4845 u32 intr_info, ex_no, error_code;
42dbaa5a 4846 unsigned long cr2, rip, dr6;
6aa8b732
AK
4847 u32 vect_info;
4848 enum emulation_result er;
4849
1155f76a 4850 vect_info = vmx->idt_vectoring_info;
88786475 4851 intr_info = vmx->exit_intr_info;
6aa8b732 4852
a0861c02 4853 if (is_machine_check(intr_info))
851ba692 4854 return handle_machine_check(vcpu);
a0861c02 4855
e4a41889 4856 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4857 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4858
4859 if (is_no_device(intr_info)) {
5fd86fcf 4860 vmx_fpu_activate(vcpu);
2ab455cc
AL
4861 return 1;
4862 }
4863
7aa81cc0 4864 if (is_invalid_opcode(intr_info)) {
51d8b661 4865 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4866 if (er != EMULATE_DONE)
7ee5d940 4867 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4868 return 1;
4869 }
4870
6aa8b732 4871 error_code = 0;
2e11384c 4872 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4873 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4874
4875 /*
4876 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4877 * MMIO, it is better to report an internal error.
4878 * See the comments in vmx_handle_exit.
4879 */
4880 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4881 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4882 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4883 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4884 vcpu->run->internal.ndata = 2;
4885 vcpu->run->internal.data[0] = vect_info;
4886 vcpu->run->internal.data[1] = intr_info;
4887 return 0;
4888 }
4889
6aa8b732 4890 if (is_page_fault(intr_info)) {
1439442c 4891 /* EPT won't cause page fault directly */
cf3ace79 4892 BUG_ON(enable_ept);
6aa8b732 4893 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4894 trace_kvm_page_fault(cr2, error_code);
4895
3298b75c 4896 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4897 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4898 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4899 }
4900
d0bfb940 4901 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4902
4903 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4904 return handle_rmode_exception(vcpu, ex_no, error_code);
4905
42dbaa5a
JK
4906 switch (ex_no) {
4907 case DB_VECTOR:
4908 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4909 if (!(vcpu->guest_debug &
4910 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 4911 vcpu->arch.dr6 &= ~15;
6f43ed01 4912 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
4913 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4914 skip_emulated_instruction(vcpu);
4915
42dbaa5a
JK
4916 kvm_queue_exception(vcpu, DB_VECTOR);
4917 return 1;
4918 }
4919 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4920 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4921 /* fall through */
4922 case BP_VECTOR:
c573cd22
JK
4923 /*
4924 * Update instruction length as we may reinject #BP from
4925 * user space while in guest debugging mode. Reading it for
4926 * #DB as well causes no harm, it is not used in that case.
4927 */
4928 vmx->vcpu.arch.event_exit_inst_len =
4929 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4930 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4931 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4932 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4933 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4934 break;
4935 default:
d0bfb940
JK
4936 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4937 kvm_run->ex.exception = ex_no;
4938 kvm_run->ex.error_code = error_code;
42dbaa5a 4939 break;
6aa8b732 4940 }
6aa8b732
AK
4941 return 0;
4942}
4943
851ba692 4944static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4945{
1165f5fe 4946 ++vcpu->stat.irq_exits;
6aa8b732
AK
4947 return 1;
4948}
4949
851ba692 4950static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4951{
851ba692 4952 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4953 return 0;
4954}
6aa8b732 4955
851ba692 4956static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4957{
bfdaab09 4958 unsigned long exit_qualification;
34c33d16 4959 int size, in, string;
039576c0 4960 unsigned port;
6aa8b732 4961
bfdaab09 4962 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4963 string = (exit_qualification & 16) != 0;
cf8f70bf 4964 in = (exit_qualification & 8) != 0;
e70669ab 4965
cf8f70bf 4966 ++vcpu->stat.io_exits;
e70669ab 4967
cf8f70bf 4968 if (string || in)
51d8b661 4969 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4970
cf8f70bf
GN
4971 port = exit_qualification >> 16;
4972 size = (exit_qualification & 7) + 1;
e93f36bc 4973 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4974
4975 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4976}
4977
102d8325
IM
4978static void
4979vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4980{
4981 /*
4982 * Patch in the VMCALL instruction:
4983 */
4984 hypercall[0] = 0x0f;
4985 hypercall[1] = 0x01;
4986 hypercall[2] = 0xc1;
102d8325
IM
4987}
4988
92fbc7b1
JK
4989static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4990{
4991 unsigned long always_on = VMXON_CR0_ALWAYSON;
4992
4993 if (nested_vmx_secondary_ctls_high &
4994 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4995 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4996 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4997 return (val & always_on) == always_on;
4998}
4999
0fa06071 5000/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5001static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5002{
eeadf9e7 5003 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5004 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5005 unsigned long orig_val = val;
5006
eeadf9e7
NHE
5007 /*
5008 * We get here when L2 changed cr0 in a way that did not change
5009 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5010 * but did change L0 shadowed bits. So we first calculate the
5011 * effective cr0 value that L1 would like to write into the
5012 * hardware. It consists of the L2-owned bits from the new
5013 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5014 */
1a0d74e6
JK
5015 val = (val & ~vmcs12->cr0_guest_host_mask) |
5016 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5017
92fbc7b1 5018 if (!nested_cr0_valid(vmcs12, val))
eeadf9e7 5019 return 1;
1a0d74e6
JK
5020
5021 if (kvm_set_cr0(vcpu, val))
5022 return 1;
5023 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5024 return 0;
1a0d74e6
JK
5025 } else {
5026 if (to_vmx(vcpu)->nested.vmxon &&
5027 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5028 return 1;
eeadf9e7 5029 return kvm_set_cr0(vcpu, val);
1a0d74e6 5030 }
eeadf9e7
NHE
5031}
5032
5033static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5034{
5035 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5036 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5037 unsigned long orig_val = val;
5038
5039 /* analogously to handle_set_cr0 */
5040 val = (val & ~vmcs12->cr4_guest_host_mask) |
5041 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5042 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5043 return 1;
1a0d74e6 5044 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5045 return 0;
5046 } else
5047 return kvm_set_cr4(vcpu, val);
5048}
5049
5050/* called to set cr0 as approriate for clts instruction exit. */
5051static void handle_clts(struct kvm_vcpu *vcpu)
5052{
5053 if (is_guest_mode(vcpu)) {
5054 /*
5055 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5056 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5057 * just pretend it's off (also in arch.cr0 for fpu_activate).
5058 */
5059 vmcs_writel(CR0_READ_SHADOW,
5060 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5061 vcpu->arch.cr0 &= ~X86_CR0_TS;
5062 } else
5063 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5064}
5065
851ba692 5066static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5067{
229456fc 5068 unsigned long exit_qualification, val;
6aa8b732
AK
5069 int cr;
5070 int reg;
49a9b07e 5071 int err;
6aa8b732 5072
bfdaab09 5073 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5074 cr = exit_qualification & 15;
5075 reg = (exit_qualification >> 8) & 15;
5076 switch ((exit_qualification >> 4) & 3) {
5077 case 0: /* mov to cr */
1e32c079 5078 val = kvm_register_readl(vcpu, reg);
229456fc 5079 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5080 switch (cr) {
5081 case 0:
eeadf9e7 5082 err = handle_set_cr0(vcpu, val);
db8fcefa 5083 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5084 return 1;
5085 case 3:
2390218b 5086 err = kvm_set_cr3(vcpu, val);
db8fcefa 5087 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5088 return 1;
5089 case 4:
eeadf9e7 5090 err = handle_set_cr4(vcpu, val);
db8fcefa 5091 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5092 return 1;
0a5fff19
GN
5093 case 8: {
5094 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5095 u8 cr8 = (u8)val;
eea1cff9 5096 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5097 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5098 if (irqchip_in_kernel(vcpu->kvm))
5099 return 1;
5100 if (cr8_prev <= cr8)
5101 return 1;
851ba692 5102 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5103 return 0;
5104 }
4b8073e4 5105 }
6aa8b732 5106 break;
25c4c276 5107 case 2: /* clts */
eeadf9e7 5108 handle_clts(vcpu);
4d4ec087 5109 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5110 skip_emulated_instruction(vcpu);
6b52d186 5111 vmx_fpu_activate(vcpu);
25c4c276 5112 return 1;
6aa8b732
AK
5113 case 1: /*mov from cr*/
5114 switch (cr) {
5115 case 3:
9f8fe504
AK
5116 val = kvm_read_cr3(vcpu);
5117 kvm_register_write(vcpu, reg, val);
5118 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5119 skip_emulated_instruction(vcpu);
5120 return 1;
5121 case 8:
229456fc
MT
5122 val = kvm_get_cr8(vcpu);
5123 kvm_register_write(vcpu, reg, val);
5124 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5125 skip_emulated_instruction(vcpu);
5126 return 1;
5127 }
5128 break;
5129 case 3: /* lmsw */
a1f83a74 5130 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5131 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5132 kvm_lmsw(vcpu, val);
6aa8b732
AK
5133
5134 skip_emulated_instruction(vcpu);
5135 return 1;
5136 default:
5137 break;
5138 }
851ba692 5139 vcpu->run->exit_reason = 0;
a737f256 5140 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5141 (int)(exit_qualification >> 4) & 3, cr);
5142 return 0;
5143}
5144
851ba692 5145static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5146{
bfdaab09 5147 unsigned long exit_qualification;
16f8a6f9
NA
5148 int dr, dr7, reg;
5149
5150 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5151 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5152
5153 /* First, if DR does not exist, trigger UD */
5154 if (!kvm_require_dr(vcpu, dr))
5155 return 1;
6aa8b732 5156
f2483415 5157 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5158 if (!kvm_require_cpl(vcpu, 0))
5159 return 1;
16f8a6f9
NA
5160 dr7 = vmcs_readl(GUEST_DR7);
5161 if (dr7 & DR7_GD) {
42dbaa5a
JK
5162 /*
5163 * As the vm-exit takes precedence over the debug trap, we
5164 * need to emulate the latter, either for the host or the
5165 * guest debugging itself.
5166 */
5167 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5168 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5169 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5170 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5171 vcpu->run->debug.arch.exception = DB_VECTOR;
5172 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5173 return 0;
5174 } else {
7305eb5d 5175 vcpu->arch.dr6 &= ~15;
6f43ed01 5176 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5177 kvm_queue_exception(vcpu, DB_VECTOR);
5178 return 1;
5179 }
5180 }
5181
81908bf4
PB
5182 if (vcpu->guest_debug == 0) {
5183 u32 cpu_based_vm_exec_control;
5184
5185 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5186 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5187 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5188
5189 /*
5190 * No more DR vmexits; force a reload of the debug registers
5191 * and reenter on this instruction. The next vmexit will
5192 * retrieve the full state of the debug registers.
5193 */
5194 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5195 return 1;
5196 }
5197
42dbaa5a
JK
5198 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5199 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5200 unsigned long val;
4c4d563b
JK
5201
5202 if (kvm_get_dr(vcpu, dr, &val))
5203 return 1;
5204 kvm_register_write(vcpu, reg, val);
020df079 5205 } else
5777392e 5206 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5207 return 1;
5208
6aa8b732
AK
5209 skip_emulated_instruction(vcpu);
5210 return 1;
5211}
5212
73aaf249
JK
5213static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5214{
5215 return vcpu->arch.dr6;
5216}
5217
5218static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5219{
5220}
5221
81908bf4
PB
5222static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5223{
5224 u32 cpu_based_vm_exec_control;
5225
5226 get_debugreg(vcpu->arch.db[0], 0);
5227 get_debugreg(vcpu->arch.db[1], 1);
5228 get_debugreg(vcpu->arch.db[2], 2);
5229 get_debugreg(vcpu->arch.db[3], 3);
5230 get_debugreg(vcpu->arch.dr6, 6);
5231 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5232
5233 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5234
5235 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5236 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5237 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5238}
5239
020df079
GN
5240static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5241{
5242 vmcs_writel(GUEST_DR7, val);
5243}
5244
851ba692 5245static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5246{
06465c5a
AK
5247 kvm_emulate_cpuid(vcpu);
5248 return 1;
6aa8b732
AK
5249}
5250
851ba692 5251static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5252{
ad312c7c 5253 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
5254 u64 data;
5255
5256 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5257 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5258 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5259 return 1;
5260 }
5261
229456fc 5262 trace_kvm_msr_read(ecx, data);
2714d1d3 5263
6aa8b732 5264 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5265 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5266 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5267 skip_emulated_instruction(vcpu);
5268 return 1;
5269}
5270
851ba692 5271static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5272{
8fe8ab46 5273 struct msr_data msr;
ad312c7c
ZX
5274 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5275 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5276 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5277
8fe8ab46
WA
5278 msr.data = data;
5279 msr.index = ecx;
5280 msr.host_initiated = false;
854e8bb1 5281 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5282 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5283 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5284 return 1;
5285 }
5286
59200273 5287 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5288 skip_emulated_instruction(vcpu);
5289 return 1;
5290}
5291
851ba692 5292static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5293{
3842d135 5294 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5295 return 1;
5296}
5297
851ba692 5298static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5299{
85f455f7
ED
5300 u32 cpu_based_vm_exec_control;
5301
5302 /* clear pending irq */
5303 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5304 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5305 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5306
3842d135
AK
5307 kvm_make_request(KVM_REQ_EVENT, vcpu);
5308
a26bf12a 5309 ++vcpu->stat.irq_window_exits;
2714d1d3 5310
c1150d8c
DL
5311 /*
5312 * If the user space waits to inject interrupts, exit as soon as
5313 * possible
5314 */
8061823a 5315 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5316 vcpu->run->request_interrupt_window &&
8061823a 5317 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5318 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5319 return 0;
5320 }
6aa8b732
AK
5321 return 1;
5322}
5323
851ba692 5324static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
5325{
5326 skip_emulated_instruction(vcpu);
d3bef15f 5327 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5328}
5329
851ba692 5330static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5331{
510043da 5332 skip_emulated_instruction(vcpu);
7aa81cc0
AL
5333 kvm_emulate_hypercall(vcpu);
5334 return 1;
c21415e8
IM
5335}
5336
ec25d5e6
GN
5337static int handle_invd(struct kvm_vcpu *vcpu)
5338{
51d8b661 5339 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5340}
5341
851ba692 5342static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5343{
f9c617f6 5344 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5345
5346 kvm_mmu_invlpg(vcpu, exit_qualification);
5347 skip_emulated_instruction(vcpu);
5348 return 1;
5349}
5350
fee84b07
AK
5351static int handle_rdpmc(struct kvm_vcpu *vcpu)
5352{
5353 int err;
5354
5355 err = kvm_rdpmc(vcpu);
5356 kvm_complete_insn_gp(vcpu, err);
5357
5358 return 1;
5359}
5360
851ba692 5361static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
5362{
5363 skip_emulated_instruction(vcpu);
f5f48ee1 5364 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5365 return 1;
5366}
5367
2acf923e
DC
5368static int handle_xsetbv(struct kvm_vcpu *vcpu)
5369{
5370 u64 new_bv = kvm_read_edx_eax(vcpu);
5371 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5372
5373 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5374 skip_emulated_instruction(vcpu);
5375 return 1;
5376}
5377
f53cd63c
WL
5378static int handle_xsaves(struct kvm_vcpu *vcpu)
5379{
5380 skip_emulated_instruction(vcpu);
5381 WARN(1, "this should never happen\n");
5382 return 1;
5383}
5384
5385static int handle_xrstors(struct kvm_vcpu *vcpu)
5386{
5387 skip_emulated_instruction(vcpu);
5388 WARN(1, "this should never happen\n");
5389 return 1;
5390}
5391
851ba692 5392static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5393{
58fbbf26
KT
5394 if (likely(fasteoi)) {
5395 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5396 int access_type, offset;
5397
5398 access_type = exit_qualification & APIC_ACCESS_TYPE;
5399 offset = exit_qualification & APIC_ACCESS_OFFSET;
5400 /*
5401 * Sane guest uses MOV to write EOI, with written value
5402 * not cared. So make a short-circuit here by avoiding
5403 * heavy instruction emulation.
5404 */
5405 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5406 (offset == APIC_EOI)) {
5407 kvm_lapic_set_eoi(vcpu);
5408 skip_emulated_instruction(vcpu);
5409 return 1;
5410 }
5411 }
51d8b661 5412 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5413}
5414
c7c9c56c
YZ
5415static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5416{
5417 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418 int vector = exit_qualification & 0xff;
5419
5420 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5421 kvm_apic_set_eoi_accelerated(vcpu, vector);
5422 return 1;
5423}
5424
83d4c286
YZ
5425static int handle_apic_write(struct kvm_vcpu *vcpu)
5426{
5427 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5428 u32 offset = exit_qualification & 0xfff;
5429
5430 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5431 kvm_apic_write_nodecode(vcpu, offset);
5432 return 1;
5433}
5434
851ba692 5435static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5436{
60637aac 5437 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5438 unsigned long exit_qualification;
e269fb21
JK
5439 bool has_error_code = false;
5440 u32 error_code = 0;
37817f29 5441 u16 tss_selector;
7f3d35fd 5442 int reason, type, idt_v, idt_index;
64a7ec06
GN
5443
5444 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5445 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5446 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5447
5448 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5449
5450 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5451 if (reason == TASK_SWITCH_GATE && idt_v) {
5452 switch (type) {
5453 case INTR_TYPE_NMI_INTR:
5454 vcpu->arch.nmi_injected = false;
654f06fc 5455 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5456 break;
5457 case INTR_TYPE_EXT_INTR:
66fd3f7f 5458 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5459 kvm_clear_interrupt_queue(vcpu);
5460 break;
5461 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5462 if (vmx->idt_vectoring_info &
5463 VECTORING_INFO_DELIVER_CODE_MASK) {
5464 has_error_code = true;
5465 error_code =
5466 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5467 }
5468 /* fall through */
64a7ec06
GN
5469 case INTR_TYPE_SOFT_EXCEPTION:
5470 kvm_clear_exception_queue(vcpu);
5471 break;
5472 default:
5473 break;
5474 }
60637aac 5475 }
37817f29
IE
5476 tss_selector = exit_qualification;
5477
64a7ec06
GN
5478 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5479 type != INTR_TYPE_EXT_INTR &&
5480 type != INTR_TYPE_NMI_INTR))
5481 skip_emulated_instruction(vcpu);
5482
7f3d35fd
KW
5483 if (kvm_task_switch(vcpu, tss_selector,
5484 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5485 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5486 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5487 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5488 vcpu->run->internal.ndata = 0;
42dbaa5a 5489 return 0;
acb54517 5490 }
42dbaa5a
JK
5491
5492 /* clear all local breakpoint enable flags */
0e8a0996 5493 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
42dbaa5a
JK
5494
5495 /*
5496 * TODO: What about debug traps on tss switch?
5497 * Are we supposed to inject them and update dr6?
5498 */
5499
5500 return 1;
37817f29
IE
5501}
5502
851ba692 5503static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5504{
f9c617f6 5505 unsigned long exit_qualification;
1439442c 5506 gpa_t gpa;
4f5982a5 5507 u32 error_code;
1439442c 5508 int gla_validity;
1439442c 5509
f9c617f6 5510 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5511
1439442c
SY
5512 gla_validity = (exit_qualification >> 7) & 0x3;
5513 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5514 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5515 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5516 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5517 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5518 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5519 (long unsigned int)exit_qualification);
851ba692
AK
5520 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5521 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5522 return 0;
1439442c
SY
5523 }
5524
0be9c7a8
GN
5525 /*
5526 * EPT violation happened while executing iret from NMI,
5527 * "blocked by NMI" bit has to be set before next VM entry.
5528 * There are errata that may cause this bit to not be set:
5529 * AAK134, BY25.
5530 */
bcd1c294
GN
5531 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5532 cpu_has_virtual_nmis() &&
5533 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5535
1439442c 5536 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5537 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5538
5539 /* It is a write fault? */
81ed33e4 5540 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 5541 /* It is a fetch fault? */
81ed33e4 5542 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 5543 /* ept page table is present? */
81ed33e4 5544 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 5545
25d92081
YZ
5546 vcpu->arch.exit_qualification = exit_qualification;
5547
4f5982a5 5548 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5549}
5550
68f89400
MT
5551static u64 ept_rsvd_mask(u64 spte, int level)
5552{
5553 int i;
5554 u64 mask = 0;
5555
5556 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5557 mask |= (1ULL << i);
5558
a32e8459 5559 if (level == 4)
68f89400
MT
5560 /* bits 7:3 reserved */
5561 mask |= 0xf8;
a32e8459
WL
5562 else if (spte & (1ULL << 7))
5563 /*
5564 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5565 * level == 1 if the hypervisor is using the ignored bit 7.
5566 */
5567 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5568 else if (level > 1)
5569 /* bits 6:3 reserved */
5570 mask |= 0x78;
68f89400
MT
5571
5572 return mask;
5573}
5574
5575static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5576 int level)
5577{
5578 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5579
5580 /* 010b (write-only) */
5581 WARN_ON((spte & 0x7) == 0x2);
5582
5583 /* 110b (write/execute) */
5584 WARN_ON((spte & 0x7) == 0x6);
5585
5586 /* 100b (execute-only) and value not supported by logical processor */
5587 if (!cpu_has_vmx_ept_execute_only())
5588 WARN_ON((spte & 0x7) == 0x4);
5589
5590 /* not 000b */
5591 if ((spte & 0x7)) {
5592 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5593
5594 if (rsvd_bits != 0) {
5595 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5596 __func__, rsvd_bits);
5597 WARN_ON(1);
5598 }
5599
a32e8459
WL
5600 /* bits 5:3 are _not_ reserved for large page or leaf page */
5601 if ((rsvd_bits & 0x38) == 0) {
68f89400
MT
5602 u64 ept_mem_type = (spte & 0x38) >> 3;
5603
5604 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5605 ept_mem_type == 7) {
5606 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5607 __func__, ept_mem_type);
5608 WARN_ON(1);
5609 }
5610 }
5611 }
5612}
5613
851ba692 5614static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5615{
5616 u64 sptes[4];
ce88decf 5617 int nr_sptes, i, ret;
68f89400
MT
5618 gpa_t gpa;
5619
5620 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
68c3b4d1
MT
5621 if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5622 skip_emulated_instruction(vcpu);
5623 return 1;
5624 }
68f89400 5625
ce88decf 5626 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
b37fbea6 5627 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5628 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5629 EMULATE_DONE;
f8f55942
XG
5630
5631 if (unlikely(ret == RET_MMIO_PF_INVALID))
5632 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5633
b37fbea6 5634 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5635 return 1;
5636
5637 /* It is the real ept misconfig */
68f89400
MT
5638 printk(KERN_ERR "EPT: Misconfiguration.\n");
5639 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5640
5641 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5642
5643 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5644 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5645
851ba692
AK
5646 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5647 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5648
5649 return 0;
5650}
5651
851ba692 5652static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5653{
5654 u32 cpu_based_vm_exec_control;
5655
5656 /* clear pending NMI */
5657 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5658 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5660 ++vcpu->stat.nmi_window_exits;
3842d135 5661 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5662
5663 return 1;
5664}
5665
80ced186 5666static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5667{
8b3079a5
AK
5668 struct vcpu_vmx *vmx = to_vmx(vcpu);
5669 enum emulation_result err = EMULATE_DONE;
80ced186 5670 int ret = 1;
49e9d557
AK
5671 u32 cpu_exec_ctrl;
5672 bool intr_window_requested;
b8405c18 5673 unsigned count = 130;
49e9d557
AK
5674
5675 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5676 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5677
98eb2f8b 5678 while (vmx->emulation_required && count-- != 0) {
bdea48e3 5679 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5680 return handle_interrupt_window(&vmx->vcpu);
5681
de87dcdd
AK
5682 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5683 return 1;
5684
991eebf9 5685 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5686
ac0a48c3 5687 if (err == EMULATE_USER_EXIT) {
94452b9e 5688 ++vcpu->stat.mmio_exits;
80ced186
MG
5689 ret = 0;
5690 goto out;
5691 }
1d5a4d9b 5692
de5f70e0
AK
5693 if (err != EMULATE_DONE) {
5694 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5695 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5696 vcpu->run->internal.ndata = 0;
6d77dbfc 5697 return 0;
de5f70e0 5698 }
ea953ef0 5699
8d76c49e
GN
5700 if (vcpu->arch.halt_request) {
5701 vcpu->arch.halt_request = 0;
5702 ret = kvm_emulate_halt(vcpu);
5703 goto out;
5704 }
5705
ea953ef0 5706 if (signal_pending(current))
80ced186 5707 goto out;
ea953ef0
MG
5708 if (need_resched())
5709 schedule();
5710 }
5711
80ced186
MG
5712out:
5713 return ret;
ea953ef0
MG
5714}
5715
b4a2d31d
RK
5716static int __grow_ple_window(int val)
5717{
5718 if (ple_window_grow < 1)
5719 return ple_window;
5720
5721 val = min(val, ple_window_actual_max);
5722
5723 if (ple_window_grow < ple_window)
5724 val *= ple_window_grow;
5725 else
5726 val += ple_window_grow;
5727
5728 return val;
5729}
5730
5731static int __shrink_ple_window(int val, int modifier, int minimum)
5732{
5733 if (modifier < 1)
5734 return ple_window;
5735
5736 if (modifier < ple_window)
5737 val /= modifier;
5738 else
5739 val -= modifier;
5740
5741 return max(val, minimum);
5742}
5743
5744static void grow_ple_window(struct kvm_vcpu *vcpu)
5745{
5746 struct vcpu_vmx *vmx = to_vmx(vcpu);
5747 int old = vmx->ple_window;
5748
5749 vmx->ple_window = __grow_ple_window(old);
5750
5751 if (vmx->ple_window != old)
5752 vmx->ple_window_dirty = true;
7b46268d
RK
5753
5754 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5755}
5756
5757static void shrink_ple_window(struct kvm_vcpu *vcpu)
5758{
5759 struct vcpu_vmx *vmx = to_vmx(vcpu);
5760 int old = vmx->ple_window;
5761
5762 vmx->ple_window = __shrink_ple_window(old,
5763 ple_window_shrink, ple_window);
5764
5765 if (vmx->ple_window != old)
5766 vmx->ple_window_dirty = true;
7b46268d
RK
5767
5768 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
5769}
5770
5771/*
5772 * ple_window_actual_max is computed to be one grow_ple_window() below
5773 * ple_window_max. (See __grow_ple_window for the reason.)
5774 * This prevents overflows, because ple_window_max is int.
5775 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5776 * this process.
5777 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5778 */
5779static void update_ple_window_actual_max(void)
5780{
5781 ple_window_actual_max =
5782 __shrink_ple_window(max(ple_window_max, ple_window),
5783 ple_window_grow, INT_MIN);
5784}
5785
f2c7648d
TC
5786static __init int hardware_setup(void)
5787{
34a1cd60
TC
5788 int r = -ENOMEM, i, msr;
5789
5790 rdmsrl_safe(MSR_EFER, &host_efer);
5791
5792 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5793 kvm_define_shared_msr(i, vmx_msr_index[i]);
5794
5795 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5796 if (!vmx_io_bitmap_a)
5797 return r;
5798
5799 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5800 if (!vmx_io_bitmap_b)
5801 goto out;
5802
5803 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5804 if (!vmx_msr_bitmap_legacy)
5805 goto out1;
5806
5807 vmx_msr_bitmap_legacy_x2apic =
5808 (unsigned long *)__get_free_page(GFP_KERNEL);
5809 if (!vmx_msr_bitmap_legacy_x2apic)
5810 goto out2;
5811
5812 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5813 if (!vmx_msr_bitmap_longmode)
5814 goto out3;
5815
5816 vmx_msr_bitmap_longmode_x2apic =
5817 (unsigned long *)__get_free_page(GFP_KERNEL);
5818 if (!vmx_msr_bitmap_longmode_x2apic)
5819 goto out4;
5820 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5821 if (!vmx_vmread_bitmap)
5822 goto out5;
5823
5824 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5825 if (!vmx_vmwrite_bitmap)
5826 goto out6;
5827
5828 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5829 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5830
5831 /*
5832 * Allow direct access to the PC debug port (it is often used for I/O
5833 * delays, but the vmexits simply slow things down).
5834 */
5835 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5836 clear_bit(0x80, vmx_io_bitmap_a);
5837
5838 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5839
5840 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5841 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5842
34a1cd60
TC
5843 if (setup_vmcs_config(&vmcs_config) < 0) {
5844 r = -EIO;
5845 goto out7;
baa03522 5846 }
f2c7648d
TC
5847
5848 if (boot_cpu_has(X86_FEATURE_NX))
5849 kvm_enable_efer_bits(EFER_NX);
5850
5851 if (!cpu_has_vmx_vpid())
5852 enable_vpid = 0;
5853 if (!cpu_has_vmx_shadow_vmcs())
5854 enable_shadow_vmcs = 0;
5855 if (enable_shadow_vmcs)
5856 init_vmcs_shadow_fields();
5857
5858 if (!cpu_has_vmx_ept() ||
5859 !cpu_has_vmx_ept_4levels()) {
5860 enable_ept = 0;
5861 enable_unrestricted_guest = 0;
5862 enable_ept_ad_bits = 0;
5863 }
5864
5865 if (!cpu_has_vmx_ept_ad_bits())
5866 enable_ept_ad_bits = 0;
5867
5868 if (!cpu_has_vmx_unrestricted_guest())
5869 enable_unrestricted_guest = 0;
5870
5871 if (!cpu_has_vmx_flexpriority()) {
5872 flexpriority_enabled = 0;
5873
5874 /*
5875 * set_apic_access_page_addr() is used to reload apic access
5876 * page upon invalidation. No need to do anything if the
5877 * processor does not have the APIC_ACCESS_ADDR VMCS field.
5878 */
5879 kvm_x86_ops->set_apic_access_page_addr = NULL;
5880 }
5881
5882 if (!cpu_has_vmx_tpr_shadow())
5883 kvm_x86_ops->update_cr8_intercept = NULL;
5884
5885 if (enable_ept && !cpu_has_vmx_ept_2m_page())
5886 kvm_disable_largepages();
5887
5888 if (!cpu_has_vmx_ple())
5889 ple_gap = 0;
5890
5891 if (!cpu_has_vmx_apicv())
5892 enable_apicv = 0;
5893
5894 if (enable_apicv)
5895 kvm_x86_ops->update_cr8_intercept = NULL;
5896 else {
5897 kvm_x86_ops->hwapic_irr_update = NULL;
5898 kvm_x86_ops->deliver_posted_interrupt = NULL;
5899 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
5900 }
5901
5902 if (nested)
5903 nested_vmx_setup_ctls_msrs();
5904
baa03522
TC
5905 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
5906 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
5907 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
5908 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
5909 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
5910 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
5911 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
5912
5913 memcpy(vmx_msr_bitmap_legacy_x2apic,
5914 vmx_msr_bitmap_legacy, PAGE_SIZE);
5915 memcpy(vmx_msr_bitmap_longmode_x2apic,
5916 vmx_msr_bitmap_longmode, PAGE_SIZE);
5917
5918 if (enable_apicv) {
5919 for (msr = 0x800; msr <= 0x8ff; msr++)
5920 vmx_disable_intercept_msr_read_x2apic(msr);
5921
5922 /* According SDM, in x2apic mode, the whole id reg is used.
5923 * But in KVM, it only use the highest eight bits. Need to
5924 * intercept it */
5925 vmx_enable_intercept_msr_read_x2apic(0x802);
5926 /* TMCCT */
5927 vmx_enable_intercept_msr_read_x2apic(0x839);
5928 /* TPR */
5929 vmx_disable_intercept_msr_write_x2apic(0x808);
5930 /* EOI */
5931 vmx_disable_intercept_msr_write_x2apic(0x80b);
5932 /* SELF-IPI */
5933 vmx_disable_intercept_msr_write_x2apic(0x83f);
5934 }
5935
5936 if (enable_ept) {
5937 kvm_mmu_set_mask_ptes(0ull,
5938 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
5939 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
5940 0ull, VMX_EPT_EXECUTABLE_MASK);
5941 ept_set_mmio_spte_mask();
5942 kvm_enable_tdp();
5943 } else
5944 kvm_disable_tdp();
5945
5946 update_ple_window_actual_max();
5947
f2c7648d 5948 return alloc_kvm_area();
34a1cd60
TC
5949
5950out7:
5951 free_page((unsigned long)vmx_vmwrite_bitmap);
5952out6:
5953 free_page((unsigned long)vmx_vmread_bitmap);
5954out5:
5955 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5956out4:
5957 free_page((unsigned long)vmx_msr_bitmap_longmode);
5958out3:
5959 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5960out2:
5961 free_page((unsigned long)vmx_msr_bitmap_legacy);
5962out1:
5963 free_page((unsigned long)vmx_io_bitmap_b);
5964out:
5965 free_page((unsigned long)vmx_io_bitmap_a);
5966
5967 return r;
f2c7648d
TC
5968}
5969
5970static __exit void hardware_unsetup(void)
5971{
34a1cd60
TC
5972 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
5973 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5974 free_page((unsigned long)vmx_msr_bitmap_legacy);
5975 free_page((unsigned long)vmx_msr_bitmap_longmode);
5976 free_page((unsigned long)vmx_io_bitmap_b);
5977 free_page((unsigned long)vmx_io_bitmap_a);
5978 free_page((unsigned long)vmx_vmwrite_bitmap);
5979 free_page((unsigned long)vmx_vmread_bitmap);
5980
f2c7648d
TC
5981 free_kvm_area();
5982}
5983
4b8d54f9
ZE
5984/*
5985 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5986 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5987 */
9fb41ba8 5988static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 5989{
b4a2d31d
RK
5990 if (ple_gap)
5991 grow_ple_window(vcpu);
5992
4b8d54f9
ZE
5993 skip_emulated_instruction(vcpu);
5994 kvm_vcpu_on_spin(vcpu);
5995
5996 return 1;
5997}
5998
87c00572 5999static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6000{
87c00572 6001 skip_emulated_instruction(vcpu);
59708670
SY
6002 return 1;
6003}
6004
87c00572
GS
6005static int handle_mwait(struct kvm_vcpu *vcpu)
6006{
6007 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6008 return handle_nop(vcpu);
6009}
6010
6011static int handle_monitor(struct kvm_vcpu *vcpu)
6012{
6013 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6014 return handle_nop(vcpu);
6015}
6016
ff2f6fe9
NHE
6017/*
6018 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6019 * We could reuse a single VMCS for all the L2 guests, but we also want the
6020 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6021 * allows keeping them loaded on the processor, and in the future will allow
6022 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6023 * every entry if they never change.
6024 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6025 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6026 *
6027 * The following functions allocate and free a vmcs02 in this pool.
6028 */
6029
6030/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6031static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6032{
6033 struct vmcs02_list *item;
6034 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6035 if (item->vmptr == vmx->nested.current_vmptr) {
6036 list_move(&item->list, &vmx->nested.vmcs02_pool);
6037 return &item->vmcs02;
6038 }
6039
6040 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6041 /* Recycle the least recently used VMCS. */
6042 item = list_entry(vmx->nested.vmcs02_pool.prev,
6043 struct vmcs02_list, list);
6044 item->vmptr = vmx->nested.current_vmptr;
6045 list_move(&item->list, &vmx->nested.vmcs02_pool);
6046 return &item->vmcs02;
6047 }
6048
6049 /* Create a new VMCS */
0fa24ce3 6050 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6051 if (!item)
6052 return NULL;
6053 item->vmcs02.vmcs = alloc_vmcs();
6054 if (!item->vmcs02.vmcs) {
6055 kfree(item);
6056 return NULL;
6057 }
6058 loaded_vmcs_init(&item->vmcs02);
6059 item->vmptr = vmx->nested.current_vmptr;
6060 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6061 vmx->nested.vmcs02_num++;
6062 return &item->vmcs02;
6063}
6064
6065/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6066static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6067{
6068 struct vmcs02_list *item;
6069 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6070 if (item->vmptr == vmptr) {
6071 free_loaded_vmcs(&item->vmcs02);
6072 list_del(&item->list);
6073 kfree(item);
6074 vmx->nested.vmcs02_num--;
6075 return;
6076 }
6077}
6078
6079/*
6080 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6081 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6082 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6083 */
6084static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6085{
6086 struct vmcs02_list *item, *n;
4fa7734c
PB
6087
6088 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6089 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6090 /*
6091 * Something will leak if the above WARN triggers. Better than
6092 * a use-after-free.
6093 */
6094 if (vmx->loaded_vmcs == &item->vmcs02)
6095 continue;
6096
6097 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6098 list_del(&item->list);
6099 kfree(item);
4fa7734c 6100 vmx->nested.vmcs02_num--;
ff2f6fe9 6101 }
ff2f6fe9
NHE
6102}
6103
0658fbaa
ACL
6104/*
6105 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6106 * set the success or error code of an emulated VMX instruction, as specified
6107 * by Vol 2B, VMX Instruction Reference, "Conventions".
6108 */
6109static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6110{
6111 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6112 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6113 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6114}
6115
6116static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6117{
6118 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6119 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6120 X86_EFLAGS_SF | X86_EFLAGS_OF))
6121 | X86_EFLAGS_CF);
6122}
6123
145c28dd 6124static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6125 u32 vm_instruction_error)
6126{
6127 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6128 /*
6129 * failValid writes the error number to the current VMCS, which
6130 * can't be done there isn't a current VMCS.
6131 */
6132 nested_vmx_failInvalid(vcpu);
6133 return;
6134 }
6135 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6136 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6137 X86_EFLAGS_SF | X86_EFLAGS_OF))
6138 | X86_EFLAGS_ZF);
6139 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6140 /*
6141 * We don't need to force a shadow sync because
6142 * VM_INSTRUCTION_ERROR is not shadowed
6143 */
6144}
145c28dd 6145
ff651cb6
WV
6146static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6147{
6148 /* TODO: not to reset guest simply here. */
6149 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6150 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6151}
6152
f4124500
JK
6153static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6154{
6155 struct vcpu_vmx *vmx =
6156 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6157
6158 vmx->nested.preemption_timer_expired = true;
6159 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6160 kvm_vcpu_kick(&vmx->vcpu);
6161
6162 return HRTIMER_NORESTART;
6163}
6164
19677e32
BD
6165/*
6166 * Decode the memory-address operand of a vmx instruction, as recorded on an
6167 * exit caused by such an instruction (run by a guest hypervisor).
6168 * On success, returns 0. When the operand is invalid, returns 1 and throws
6169 * #UD or #GP.
6170 */
6171static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6172 unsigned long exit_qualification,
6173 u32 vmx_instruction_info, gva_t *ret)
6174{
6175 /*
6176 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6177 * Execution", on an exit, vmx_instruction_info holds most of the
6178 * addressing components of the operand. Only the displacement part
6179 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6180 * For how an actual address is calculated from all these components,
6181 * refer to Vol. 1, "Operand Addressing".
6182 */
6183 int scaling = vmx_instruction_info & 3;
6184 int addr_size = (vmx_instruction_info >> 7) & 7;
6185 bool is_reg = vmx_instruction_info & (1u << 10);
6186 int seg_reg = (vmx_instruction_info >> 15) & 7;
6187 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6188 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6189 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6190 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6191
6192 if (is_reg) {
6193 kvm_queue_exception(vcpu, UD_VECTOR);
6194 return 1;
6195 }
6196
6197 /* Addr = segment_base + offset */
6198 /* offset = base + [index * scale] + displacement */
6199 *ret = vmx_get_segment_base(vcpu, seg_reg);
6200 if (base_is_valid)
6201 *ret += kvm_register_read(vcpu, base_reg);
6202 if (index_is_valid)
6203 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6204 *ret += exit_qualification; /* holds the displacement */
6205
6206 if (addr_size == 1) /* 32 bit */
6207 *ret &= 0xffffffff;
6208
6209 /*
6210 * TODO: throw #GP (and return 1) in various cases that the VM*
6211 * instructions require it - e.g., offset beyond segment limit,
6212 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6213 * address, and so on. Currently these are not checked.
6214 */
6215 return 0;
6216}
6217
3573e22c
BD
6218/*
6219 * This function performs the various checks including
6220 * - if it's 4KB aligned
6221 * - No bits beyond the physical address width are set
6222 * - Returns 0 on success or else 1
4291b588 6223 * (Intel SDM Section 30.3)
3573e22c 6224 */
4291b588
BD
6225static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6226 gpa_t *vmpointer)
3573e22c
BD
6227{
6228 gva_t gva;
6229 gpa_t vmptr;
6230 struct x86_exception e;
6231 struct page *page;
6232 struct vcpu_vmx *vmx = to_vmx(vcpu);
6233 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6234
6235 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6236 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6237 return 1;
6238
6239 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6240 sizeof(vmptr), &e)) {
6241 kvm_inject_page_fault(vcpu, &e);
6242 return 1;
6243 }
6244
6245 switch (exit_reason) {
6246 case EXIT_REASON_VMON:
6247 /*
6248 * SDM 3: 24.11.5
6249 * The first 4 bytes of VMXON region contain the supported
6250 * VMCS revision identifier
6251 *
6252 * Note - IA32_VMX_BASIC[48] will never be 1
6253 * for the nested case;
6254 * which replaces physical address width with 32
6255 *
6256 */
bc39c4db 6257 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6258 nested_vmx_failInvalid(vcpu);
6259 skip_emulated_instruction(vcpu);
6260 return 1;
6261 }
6262
6263 page = nested_get_page(vcpu, vmptr);
6264 if (page == NULL ||
6265 *(u32 *)kmap(page) != VMCS12_REVISION) {
6266 nested_vmx_failInvalid(vcpu);
6267 kunmap(page);
6268 skip_emulated_instruction(vcpu);
6269 return 1;
6270 }
6271 kunmap(page);
6272 vmx->nested.vmxon_ptr = vmptr;
6273 break;
4291b588 6274 case EXIT_REASON_VMCLEAR:
bc39c4db 6275 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6276 nested_vmx_failValid(vcpu,
6277 VMXERR_VMCLEAR_INVALID_ADDRESS);
6278 skip_emulated_instruction(vcpu);
6279 return 1;
6280 }
6281
6282 if (vmptr == vmx->nested.vmxon_ptr) {
6283 nested_vmx_failValid(vcpu,
6284 VMXERR_VMCLEAR_VMXON_POINTER);
6285 skip_emulated_instruction(vcpu);
6286 return 1;
6287 }
6288 break;
6289 case EXIT_REASON_VMPTRLD:
bc39c4db 6290 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6291 nested_vmx_failValid(vcpu,
6292 VMXERR_VMPTRLD_INVALID_ADDRESS);
6293 skip_emulated_instruction(vcpu);
6294 return 1;
6295 }
3573e22c 6296
4291b588
BD
6297 if (vmptr == vmx->nested.vmxon_ptr) {
6298 nested_vmx_failValid(vcpu,
6299 VMXERR_VMCLEAR_VMXON_POINTER);
6300 skip_emulated_instruction(vcpu);
6301 return 1;
6302 }
6303 break;
3573e22c
BD
6304 default:
6305 return 1; /* shouldn't happen */
6306 }
6307
4291b588
BD
6308 if (vmpointer)
6309 *vmpointer = vmptr;
3573e22c
BD
6310 return 0;
6311}
6312
ec378aee
NHE
6313/*
6314 * Emulate the VMXON instruction.
6315 * Currently, we just remember that VMX is active, and do not save or even
6316 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6317 * do not currently need to store anything in that guest-allocated memory
6318 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6319 * argument is different from the VMXON pointer (which the spec says they do).
6320 */
6321static int handle_vmon(struct kvm_vcpu *vcpu)
6322{
6323 struct kvm_segment cs;
6324 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6325 struct vmcs *shadow_vmcs;
b3897a49
NHE
6326 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6327 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6328
6329 /* The Intel VMX Instruction Reference lists a bunch of bits that
6330 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6331 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6332 * Otherwise, we should fail with #UD. We test these now:
6333 */
6334 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6335 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6336 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6337 kvm_queue_exception(vcpu, UD_VECTOR);
6338 return 1;
6339 }
6340
6341 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6342 if (is_long_mode(vcpu) && !cs.l) {
6343 kvm_queue_exception(vcpu, UD_VECTOR);
6344 return 1;
6345 }
6346
6347 if (vmx_get_cpl(vcpu)) {
6348 kvm_inject_gp(vcpu, 0);
6349 return 1;
6350 }
3573e22c 6351
4291b588 6352 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6353 return 1;
6354
145c28dd
AG
6355 if (vmx->nested.vmxon) {
6356 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6357 skip_emulated_instruction(vcpu);
6358 return 1;
6359 }
b3897a49
NHE
6360
6361 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6362 != VMXON_NEEDED_FEATURES) {
6363 kvm_inject_gp(vcpu, 0);
6364 return 1;
6365 }
6366
8de48833
AG
6367 if (enable_shadow_vmcs) {
6368 shadow_vmcs = alloc_vmcs();
6369 if (!shadow_vmcs)
6370 return -ENOMEM;
6371 /* mark vmcs as shadow */
6372 shadow_vmcs->revision_id |= (1u << 31);
6373 /* init shadow vmcs */
6374 vmcs_clear(shadow_vmcs);
6375 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6376 }
ec378aee 6377
ff2f6fe9
NHE
6378 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6379 vmx->nested.vmcs02_num = 0;
6380
f4124500
JK
6381 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6382 HRTIMER_MODE_REL);
6383 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6384
ec378aee
NHE
6385 vmx->nested.vmxon = true;
6386
6387 skip_emulated_instruction(vcpu);
a25eb114 6388 nested_vmx_succeed(vcpu);
ec378aee
NHE
6389 return 1;
6390}
6391
6392/*
6393 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6394 * for running VMX instructions (except VMXON, whose prerequisites are
6395 * slightly different). It also specifies what exception to inject otherwise.
6396 */
6397static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6398{
6399 struct kvm_segment cs;
6400 struct vcpu_vmx *vmx = to_vmx(vcpu);
6401
6402 if (!vmx->nested.vmxon) {
6403 kvm_queue_exception(vcpu, UD_VECTOR);
6404 return 0;
6405 }
6406
6407 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6408 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6409 (is_long_mode(vcpu) && !cs.l)) {
6410 kvm_queue_exception(vcpu, UD_VECTOR);
6411 return 0;
6412 }
6413
6414 if (vmx_get_cpl(vcpu)) {
6415 kvm_inject_gp(vcpu, 0);
6416 return 0;
6417 }
6418
6419 return 1;
6420}
6421
e7953d7f
AG
6422static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6423{
8a1b9dd0 6424 u32 exec_control;
9a2a05b9
PB
6425 if (vmx->nested.current_vmptr == -1ull)
6426 return;
6427
6428 /* current_vmptr and current_vmcs12 are always set/reset together */
6429 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6430 return;
6431
012f83cb 6432 if (enable_shadow_vmcs) {
9a2a05b9
PB
6433 /* copy to memory all shadowed fields in case
6434 they were modified */
6435 copy_shadow_to_vmcs12(vmx);
6436 vmx->nested.sync_shadow_vmcs = false;
6437 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6438 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6439 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6440 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6441 }
e7953d7f
AG
6442 kunmap(vmx->nested.current_vmcs12_page);
6443 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6444 vmx->nested.current_vmptr = -1ull;
6445 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6446}
6447
ec378aee
NHE
6448/*
6449 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6450 * just stops using VMX.
6451 */
6452static void free_nested(struct vcpu_vmx *vmx)
6453{
6454 if (!vmx->nested.vmxon)
6455 return;
9a2a05b9 6456
ec378aee 6457 vmx->nested.vmxon = false;
9a2a05b9 6458 nested_release_vmcs12(vmx);
e7953d7f
AG
6459 if (enable_shadow_vmcs)
6460 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6461 /* Unpin physical memory we referred to in current vmcs02 */
6462 if (vmx->nested.apic_access_page) {
6463 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6464 vmx->nested.apic_access_page = NULL;
fe3ef05c 6465 }
a7c0b07d
WL
6466 if (vmx->nested.virtual_apic_page) {
6467 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6468 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6469 }
ff2f6fe9
NHE
6470
6471 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6472}
6473
6474/* Emulate the VMXOFF instruction */
6475static int handle_vmoff(struct kvm_vcpu *vcpu)
6476{
6477 if (!nested_vmx_check_permission(vcpu))
6478 return 1;
6479 free_nested(to_vmx(vcpu));
6480 skip_emulated_instruction(vcpu);
a25eb114 6481 nested_vmx_succeed(vcpu);
ec378aee
NHE
6482 return 1;
6483}
6484
27d6c865
NHE
6485/* Emulate the VMCLEAR instruction */
6486static int handle_vmclear(struct kvm_vcpu *vcpu)
6487{
6488 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6489 gpa_t vmptr;
6490 struct vmcs12 *vmcs12;
6491 struct page *page;
27d6c865
NHE
6492
6493 if (!nested_vmx_check_permission(vcpu))
6494 return 1;
6495
4291b588 6496 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6497 return 1;
27d6c865 6498
9a2a05b9 6499 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6500 nested_release_vmcs12(vmx);
27d6c865
NHE
6501
6502 page = nested_get_page(vcpu, vmptr);
6503 if (page == NULL) {
6504 /*
6505 * For accurate processor emulation, VMCLEAR beyond available
6506 * physical memory should do nothing at all. However, it is
6507 * possible that a nested vmx bug, not a guest hypervisor bug,
6508 * resulted in this case, so let's shut down before doing any
6509 * more damage:
6510 */
6511 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6512 return 1;
6513 }
6514 vmcs12 = kmap(page);
6515 vmcs12->launch_state = 0;
6516 kunmap(page);
6517 nested_release_page(page);
6518
6519 nested_free_vmcs02(vmx, vmptr);
6520
6521 skip_emulated_instruction(vcpu);
6522 nested_vmx_succeed(vcpu);
6523 return 1;
6524}
6525
cd232ad0
NHE
6526static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6527
6528/* Emulate the VMLAUNCH instruction */
6529static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6530{
6531 return nested_vmx_run(vcpu, true);
6532}
6533
6534/* Emulate the VMRESUME instruction */
6535static int handle_vmresume(struct kvm_vcpu *vcpu)
6536{
6537
6538 return nested_vmx_run(vcpu, false);
6539}
6540
49f705c5
NHE
6541enum vmcs_field_type {
6542 VMCS_FIELD_TYPE_U16 = 0,
6543 VMCS_FIELD_TYPE_U64 = 1,
6544 VMCS_FIELD_TYPE_U32 = 2,
6545 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6546};
6547
6548static inline int vmcs_field_type(unsigned long field)
6549{
6550 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6551 return VMCS_FIELD_TYPE_U32;
6552 return (field >> 13) & 0x3 ;
6553}
6554
6555static inline int vmcs_field_readonly(unsigned long field)
6556{
6557 return (((field >> 10) & 0x3) == 1);
6558}
6559
6560/*
6561 * Read a vmcs12 field. Since these can have varying lengths and we return
6562 * one type, we chose the biggest type (u64) and zero-extend the return value
6563 * to that size. Note that the caller, handle_vmread, might need to use only
6564 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6565 * 64-bit fields are to be returned).
6566 */
a2ae9df7
PB
6567static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6568 unsigned long field, u64 *ret)
49f705c5
NHE
6569{
6570 short offset = vmcs_field_to_offset(field);
6571 char *p;
6572
6573 if (offset < 0)
a2ae9df7 6574 return offset;
49f705c5
NHE
6575
6576 p = ((char *)(get_vmcs12(vcpu))) + offset;
6577
6578 switch (vmcs_field_type(field)) {
6579 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6580 *ret = *((natural_width *)p);
a2ae9df7 6581 return 0;
49f705c5
NHE
6582 case VMCS_FIELD_TYPE_U16:
6583 *ret = *((u16 *)p);
a2ae9df7 6584 return 0;
49f705c5
NHE
6585 case VMCS_FIELD_TYPE_U32:
6586 *ret = *((u32 *)p);
a2ae9df7 6587 return 0;
49f705c5
NHE
6588 case VMCS_FIELD_TYPE_U64:
6589 *ret = *((u64 *)p);
a2ae9df7 6590 return 0;
49f705c5 6591 default:
a2ae9df7
PB
6592 WARN_ON(1);
6593 return -ENOENT;
49f705c5
NHE
6594 }
6595}
6596
20b97fea 6597
a2ae9df7
PB
6598static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6599 unsigned long field, u64 field_value){
20b97fea
AG
6600 short offset = vmcs_field_to_offset(field);
6601 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6602 if (offset < 0)
a2ae9df7 6603 return offset;
20b97fea
AG
6604
6605 switch (vmcs_field_type(field)) {
6606 case VMCS_FIELD_TYPE_U16:
6607 *(u16 *)p = field_value;
a2ae9df7 6608 return 0;
20b97fea
AG
6609 case VMCS_FIELD_TYPE_U32:
6610 *(u32 *)p = field_value;
a2ae9df7 6611 return 0;
20b97fea
AG
6612 case VMCS_FIELD_TYPE_U64:
6613 *(u64 *)p = field_value;
a2ae9df7 6614 return 0;
20b97fea
AG
6615 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6616 *(natural_width *)p = field_value;
a2ae9df7 6617 return 0;
20b97fea 6618 default:
a2ae9df7
PB
6619 WARN_ON(1);
6620 return -ENOENT;
20b97fea
AG
6621 }
6622
6623}
6624
16f5b903
AG
6625static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6626{
6627 int i;
6628 unsigned long field;
6629 u64 field_value;
6630 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
6631 const unsigned long *fields = shadow_read_write_fields;
6632 const int num_fields = max_shadow_read_write_fields;
16f5b903 6633
282da870
JK
6634 preempt_disable();
6635
16f5b903
AG
6636 vmcs_load(shadow_vmcs);
6637
6638 for (i = 0; i < num_fields; i++) {
6639 field = fields[i];
6640 switch (vmcs_field_type(field)) {
6641 case VMCS_FIELD_TYPE_U16:
6642 field_value = vmcs_read16(field);
6643 break;
6644 case VMCS_FIELD_TYPE_U32:
6645 field_value = vmcs_read32(field);
6646 break;
6647 case VMCS_FIELD_TYPE_U64:
6648 field_value = vmcs_read64(field);
6649 break;
6650 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6651 field_value = vmcs_readl(field);
6652 break;
a2ae9df7
PB
6653 default:
6654 WARN_ON(1);
6655 continue;
16f5b903
AG
6656 }
6657 vmcs12_write_any(&vmx->vcpu, field, field_value);
6658 }
6659
6660 vmcs_clear(shadow_vmcs);
6661 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
6662
6663 preempt_enable();
16f5b903
AG
6664}
6665
c3114420
AG
6666static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6667{
c2bae893
MK
6668 const unsigned long *fields[] = {
6669 shadow_read_write_fields,
6670 shadow_read_only_fields
c3114420 6671 };
c2bae893 6672 const int max_fields[] = {
c3114420
AG
6673 max_shadow_read_write_fields,
6674 max_shadow_read_only_fields
6675 };
6676 int i, q;
6677 unsigned long field;
6678 u64 field_value = 0;
6679 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6680
6681 vmcs_load(shadow_vmcs);
6682
c2bae893 6683 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
6684 for (i = 0; i < max_fields[q]; i++) {
6685 field = fields[q][i];
6686 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6687
6688 switch (vmcs_field_type(field)) {
6689 case VMCS_FIELD_TYPE_U16:
6690 vmcs_write16(field, (u16)field_value);
6691 break;
6692 case VMCS_FIELD_TYPE_U32:
6693 vmcs_write32(field, (u32)field_value);
6694 break;
6695 case VMCS_FIELD_TYPE_U64:
6696 vmcs_write64(field, (u64)field_value);
6697 break;
6698 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6699 vmcs_writel(field, (long)field_value);
6700 break;
a2ae9df7
PB
6701 default:
6702 WARN_ON(1);
6703 break;
c3114420
AG
6704 }
6705 }
6706 }
6707
6708 vmcs_clear(shadow_vmcs);
6709 vmcs_load(vmx->loaded_vmcs->vmcs);
6710}
6711
49f705c5
NHE
6712/*
6713 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6714 * used before) all generate the same failure when it is missing.
6715 */
6716static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6717{
6718 struct vcpu_vmx *vmx = to_vmx(vcpu);
6719 if (vmx->nested.current_vmptr == -1ull) {
6720 nested_vmx_failInvalid(vcpu);
6721 skip_emulated_instruction(vcpu);
6722 return 0;
6723 }
6724 return 1;
6725}
6726
6727static int handle_vmread(struct kvm_vcpu *vcpu)
6728{
6729 unsigned long field;
6730 u64 field_value;
6731 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6732 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6733 gva_t gva = 0;
6734
6735 if (!nested_vmx_check_permission(vcpu) ||
6736 !nested_vmx_check_vmcs12(vcpu))
6737 return 1;
6738
6739 /* Decode instruction info and find the field to read */
27e6fb5d 6740 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 6741 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 6742 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
6743 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6744 skip_emulated_instruction(vcpu);
6745 return 1;
6746 }
6747 /*
6748 * Now copy part of this value to register or memory, as requested.
6749 * Note that the number of bits actually copied is 32 or 64 depending
6750 * on the guest's mode (32 or 64 bit), not on the given field's length.
6751 */
6752 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 6753 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
6754 field_value);
6755 } else {
6756 if (get_vmx_mem_address(vcpu, exit_qualification,
6757 vmx_instruction_info, &gva))
6758 return 1;
6759 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6760 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6761 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6762 }
6763
6764 nested_vmx_succeed(vcpu);
6765 skip_emulated_instruction(vcpu);
6766 return 1;
6767}
6768
6769
6770static int handle_vmwrite(struct kvm_vcpu *vcpu)
6771{
6772 unsigned long field;
6773 gva_t gva;
6774 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6775 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
6776 /* The value to write might be 32 or 64 bits, depending on L1's long
6777 * mode, and eventually we need to write that into a field of several
6778 * possible lengths. The code below first zero-extends the value to 64
6779 * bit (field_value), and then copies only the approriate number of
6780 * bits into the vmcs12 field.
6781 */
6782 u64 field_value = 0;
6783 struct x86_exception e;
6784
6785 if (!nested_vmx_check_permission(vcpu) ||
6786 !nested_vmx_check_vmcs12(vcpu))
6787 return 1;
6788
6789 if (vmx_instruction_info & (1u << 10))
27e6fb5d 6790 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
6791 (((vmx_instruction_info) >> 3) & 0xf));
6792 else {
6793 if (get_vmx_mem_address(vcpu, exit_qualification,
6794 vmx_instruction_info, &gva))
6795 return 1;
6796 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 6797 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
6798 kvm_inject_page_fault(vcpu, &e);
6799 return 1;
6800 }
6801 }
6802
6803
27e6fb5d 6804 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
6805 if (vmcs_field_readonly(field)) {
6806 nested_vmx_failValid(vcpu,
6807 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6808 skip_emulated_instruction(vcpu);
6809 return 1;
6810 }
6811
a2ae9df7 6812 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
6813 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6814 skip_emulated_instruction(vcpu);
6815 return 1;
6816 }
6817
6818 nested_vmx_succeed(vcpu);
6819 skip_emulated_instruction(vcpu);
6820 return 1;
6821}
6822
63846663
NHE
6823/* Emulate the VMPTRLD instruction */
6824static int handle_vmptrld(struct kvm_vcpu *vcpu)
6825{
6826 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 6827 gpa_t vmptr;
8a1b9dd0 6828 u32 exec_control;
63846663
NHE
6829
6830 if (!nested_vmx_check_permission(vcpu))
6831 return 1;
6832
4291b588 6833 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 6834 return 1;
63846663
NHE
6835
6836 if (vmx->nested.current_vmptr != vmptr) {
6837 struct vmcs12 *new_vmcs12;
6838 struct page *page;
6839 page = nested_get_page(vcpu, vmptr);
6840 if (page == NULL) {
6841 nested_vmx_failInvalid(vcpu);
6842 skip_emulated_instruction(vcpu);
6843 return 1;
6844 }
6845 new_vmcs12 = kmap(page);
6846 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6847 kunmap(page);
6848 nested_release_page_clean(page);
6849 nested_vmx_failValid(vcpu,
6850 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6851 skip_emulated_instruction(vcpu);
6852 return 1;
6853 }
63846663 6854
9a2a05b9 6855 nested_release_vmcs12(vmx);
63846663
NHE
6856 vmx->nested.current_vmptr = vmptr;
6857 vmx->nested.current_vmcs12 = new_vmcs12;
6858 vmx->nested.current_vmcs12_page = page;
012f83cb 6859 if (enable_shadow_vmcs) {
8a1b9dd0
AG
6860 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6861 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6862 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6863 vmcs_write64(VMCS_LINK_POINTER,
6864 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
6865 vmx->nested.sync_shadow_vmcs = true;
6866 }
63846663
NHE
6867 }
6868
6869 nested_vmx_succeed(vcpu);
6870 skip_emulated_instruction(vcpu);
6871 return 1;
6872}
6873
6a4d7550
NHE
6874/* Emulate the VMPTRST instruction */
6875static int handle_vmptrst(struct kvm_vcpu *vcpu)
6876{
6877 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6878 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6879 gva_t vmcs_gva;
6880 struct x86_exception e;
6881
6882 if (!nested_vmx_check_permission(vcpu))
6883 return 1;
6884
6885 if (get_vmx_mem_address(vcpu, exit_qualification,
6886 vmx_instruction_info, &vmcs_gva))
6887 return 1;
6888 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6889 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6890 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6891 sizeof(u64), &e)) {
6892 kvm_inject_page_fault(vcpu, &e);
6893 return 1;
6894 }
6895 nested_vmx_succeed(vcpu);
6896 skip_emulated_instruction(vcpu);
6897 return 1;
6898}
6899
bfd0a56b
NHE
6900/* Emulate the INVEPT instruction */
6901static int handle_invept(struct kvm_vcpu *vcpu)
6902{
6903 u32 vmx_instruction_info, types;
6904 unsigned long type;
6905 gva_t gva;
6906 struct x86_exception e;
6907 struct {
6908 u64 eptp, gpa;
6909 } operand;
bfd0a56b
NHE
6910
6911 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6912 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6913 kvm_queue_exception(vcpu, UD_VECTOR);
6914 return 1;
6915 }
6916
6917 if (!nested_vmx_check_permission(vcpu))
6918 return 1;
6919
6920 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6921 kvm_queue_exception(vcpu, UD_VECTOR);
6922 return 1;
6923 }
6924
6925 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 6926 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b
NHE
6927
6928 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6929
6930 if (!(types & (1UL << type))) {
6931 nested_vmx_failValid(vcpu,
6932 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6933 return 1;
6934 }
6935
6936 /* According to the Intel VMX instruction reference, the memory
6937 * operand is read even if it isn't needed (e.g., for type==global)
6938 */
6939 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6940 vmx_instruction_info, &gva))
6941 return 1;
6942 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6943 sizeof(operand), &e)) {
6944 kvm_inject_page_fault(vcpu, &e);
6945 return 1;
6946 }
6947
6948 switch (type) {
bfd0a56b
NHE
6949 case VMX_EPT_EXTENT_GLOBAL:
6950 kvm_mmu_sync_roots(vcpu);
77c3913b 6951 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
6952 nested_vmx_succeed(vcpu);
6953 break;
6954 default:
4b855078 6955 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
6956 BUG_ON(1);
6957 break;
6958 }
6959
6960 skip_emulated_instruction(vcpu);
6961 return 1;
6962}
6963
a642fc30
PM
6964static int handle_invvpid(struct kvm_vcpu *vcpu)
6965{
6966 kvm_queue_exception(vcpu, UD_VECTOR);
6967 return 1;
6968}
6969
6aa8b732
AK
6970/*
6971 * The exit handlers return 1 if the exit was handled fully and guest execution
6972 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6973 * to be done to userspace and return 0.
6974 */
772e0318 6975static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
6976 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6977 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 6978 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 6979 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 6980 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
6981 [EXIT_REASON_CR_ACCESS] = handle_cr,
6982 [EXIT_REASON_DR_ACCESS] = handle_dr,
6983 [EXIT_REASON_CPUID] = handle_cpuid,
6984 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6985 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6986 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6987 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 6988 [EXIT_REASON_INVD] = handle_invd,
a7052897 6989 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 6990 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 6991 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 6992 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 6993 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 6994 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 6995 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 6996 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 6997 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 6998 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
6999 [EXIT_REASON_VMOFF] = handle_vmoff,
7000 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7001 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7002 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7003 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7004 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7005 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7006 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7007 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7008 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7009 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7010 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7011 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572
GS
7012 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7013 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7014 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7015 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7016 [EXIT_REASON_XSAVES] = handle_xsaves,
7017 [EXIT_REASON_XRSTORS] = handle_xrstors,
6aa8b732
AK
7018};
7019
7020static const int kvm_vmx_max_exit_handlers =
50a3485c 7021 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7022
908a7bdd
JK
7023static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7024 struct vmcs12 *vmcs12)
7025{
7026 unsigned long exit_qualification;
7027 gpa_t bitmap, last_bitmap;
7028 unsigned int port;
7029 int size;
7030 u8 b;
7031
908a7bdd 7032 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7033 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7034
7035 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7036
7037 port = exit_qualification >> 16;
7038 size = (exit_qualification & 7) + 1;
7039
7040 last_bitmap = (gpa_t)-1;
7041 b = -1;
7042
7043 while (size > 0) {
7044 if (port < 0x8000)
7045 bitmap = vmcs12->io_bitmap_a;
7046 else if (port < 0x10000)
7047 bitmap = vmcs12->io_bitmap_b;
7048 else
7049 return 1;
7050 bitmap += (port & 0x7fff) / 8;
7051
7052 if (last_bitmap != bitmap)
7053 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7054 return 1;
7055 if (b & (1 << (port & 7)))
7056 return 1;
7057
7058 port++;
7059 size--;
7060 last_bitmap = bitmap;
7061 }
7062
7063 return 0;
7064}
7065
644d711a
NHE
7066/*
7067 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7068 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7069 * disinterest in the current event (read or write a specific MSR) by using an
7070 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7071 */
7072static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7073 struct vmcs12 *vmcs12, u32 exit_reason)
7074{
7075 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7076 gpa_t bitmap;
7077
cbd29cb6 7078 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
7079 return 1;
7080
7081 /*
7082 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7083 * for the four combinations of read/write and low/high MSR numbers.
7084 * First we need to figure out which of the four to use:
7085 */
7086 bitmap = vmcs12->msr_bitmap;
7087 if (exit_reason == EXIT_REASON_MSR_WRITE)
7088 bitmap += 2048;
7089 if (msr_index >= 0xc0000000) {
7090 msr_index -= 0xc0000000;
7091 bitmap += 1024;
7092 }
7093
7094 /* Then read the msr_index'th bit from this bitmap: */
7095 if (msr_index < 1024*8) {
7096 unsigned char b;
bd31a7f5
JK
7097 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7098 return 1;
644d711a
NHE
7099 return 1 & (b >> (msr_index & 7));
7100 } else
7101 return 1; /* let L1 handle the wrong parameter */
7102}
7103
7104/*
7105 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7106 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7107 * intercept (via guest_host_mask etc.) the current event.
7108 */
7109static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7110 struct vmcs12 *vmcs12)
7111{
7112 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7113 int cr = exit_qualification & 15;
7114 int reg = (exit_qualification >> 8) & 15;
1e32c079 7115 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7116
7117 switch ((exit_qualification >> 4) & 3) {
7118 case 0: /* mov to cr */
7119 switch (cr) {
7120 case 0:
7121 if (vmcs12->cr0_guest_host_mask &
7122 (val ^ vmcs12->cr0_read_shadow))
7123 return 1;
7124 break;
7125 case 3:
7126 if ((vmcs12->cr3_target_count >= 1 &&
7127 vmcs12->cr3_target_value0 == val) ||
7128 (vmcs12->cr3_target_count >= 2 &&
7129 vmcs12->cr3_target_value1 == val) ||
7130 (vmcs12->cr3_target_count >= 3 &&
7131 vmcs12->cr3_target_value2 == val) ||
7132 (vmcs12->cr3_target_count >= 4 &&
7133 vmcs12->cr3_target_value3 == val))
7134 return 0;
7135 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7136 return 1;
7137 break;
7138 case 4:
7139 if (vmcs12->cr4_guest_host_mask &
7140 (vmcs12->cr4_read_shadow ^ val))
7141 return 1;
7142 break;
7143 case 8:
7144 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7145 return 1;
7146 break;
7147 }
7148 break;
7149 case 2: /* clts */
7150 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7151 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7152 return 1;
7153 break;
7154 case 1: /* mov from cr */
7155 switch (cr) {
7156 case 3:
7157 if (vmcs12->cpu_based_vm_exec_control &
7158 CPU_BASED_CR3_STORE_EXITING)
7159 return 1;
7160 break;
7161 case 8:
7162 if (vmcs12->cpu_based_vm_exec_control &
7163 CPU_BASED_CR8_STORE_EXITING)
7164 return 1;
7165 break;
7166 }
7167 break;
7168 case 3: /* lmsw */
7169 /*
7170 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7171 * cr0. Other attempted changes are ignored, with no exit.
7172 */
7173 if (vmcs12->cr0_guest_host_mask & 0xe &
7174 (val ^ vmcs12->cr0_read_shadow))
7175 return 1;
7176 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7177 !(vmcs12->cr0_read_shadow & 0x1) &&
7178 (val & 0x1))
7179 return 1;
7180 break;
7181 }
7182 return 0;
7183}
7184
7185/*
7186 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7187 * should handle it ourselves in L0 (and then continue L2). Only call this
7188 * when in is_guest_mode (L2).
7189 */
7190static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7191{
644d711a
NHE
7192 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7193 struct vcpu_vmx *vmx = to_vmx(vcpu);
7194 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7195 u32 exit_reason = vmx->exit_reason;
644d711a 7196
542060ea
JK
7197 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7198 vmcs_readl(EXIT_QUALIFICATION),
7199 vmx->idt_vectoring_info,
7200 intr_info,
7201 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7202 KVM_ISA_VMX);
7203
644d711a
NHE
7204 if (vmx->nested.nested_run_pending)
7205 return 0;
7206
7207 if (unlikely(vmx->fail)) {
bd80158a
JK
7208 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7209 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
7210 return 1;
7211 }
7212
7213 switch (exit_reason) {
7214 case EXIT_REASON_EXCEPTION_NMI:
7215 if (!is_exception(intr_info))
7216 return 0;
7217 else if (is_page_fault(intr_info))
7218 return enable_ept;
e504c909 7219 else if (is_no_device(intr_info) &&
ccf9844e 7220 !(vmcs12->guest_cr0 & X86_CR0_TS))
e504c909 7221 return 0;
644d711a
NHE
7222 return vmcs12->exception_bitmap &
7223 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7224 case EXIT_REASON_EXTERNAL_INTERRUPT:
7225 return 0;
7226 case EXIT_REASON_TRIPLE_FAULT:
7227 return 1;
7228 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7229 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7230 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7231 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
7232 case EXIT_REASON_TASK_SWITCH:
7233 return 1;
7234 case EXIT_REASON_CPUID:
bc613494
MT
7235 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7236 return 0;
644d711a
NHE
7237 return 1;
7238 case EXIT_REASON_HLT:
7239 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7240 case EXIT_REASON_INVD:
7241 return 1;
7242 case EXIT_REASON_INVLPG:
7243 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7244 case EXIT_REASON_RDPMC:
7245 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7246 case EXIT_REASON_RDTSC:
7247 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7248 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7249 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7250 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7251 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7252 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7253 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7254 /*
7255 * VMX instructions trap unconditionally. This allows L1 to
7256 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7257 */
7258 return 1;
7259 case EXIT_REASON_CR_ACCESS:
7260 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7261 case EXIT_REASON_DR_ACCESS:
7262 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7263 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7264 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7265 case EXIT_REASON_MSR_READ:
7266 case EXIT_REASON_MSR_WRITE:
7267 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7268 case EXIT_REASON_INVALID_STATE:
7269 return 1;
7270 case EXIT_REASON_MWAIT_INSTRUCTION:
7271 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7272 case EXIT_REASON_MONITOR_INSTRUCTION:
7273 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7274 case EXIT_REASON_PAUSE_INSTRUCTION:
7275 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7276 nested_cpu_has2(vmcs12,
7277 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7278 case EXIT_REASON_MCE_DURING_VMENTRY:
7279 return 0;
7280 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7281 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7282 case EXIT_REASON_APIC_ACCESS:
7283 return nested_cpu_has2(vmcs12,
7284 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7285 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7286 /*
7287 * L0 always deals with the EPT violation. If nested EPT is
7288 * used, and the nested mmu code discovers that the address is
7289 * missing in the guest EPT table (EPT12), the EPT violation
7290 * will be injected with nested_ept_inject_page_fault()
7291 */
7292 return 0;
644d711a 7293 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7294 /*
7295 * L2 never uses directly L1's EPT, but rather L0's own EPT
7296 * table (shadow on EPT) or a merged EPT table that L0 built
7297 * (EPT on EPT). So any problems with the structure of the
7298 * table is L0's fault.
7299 */
644d711a
NHE
7300 return 0;
7301 case EXIT_REASON_WBINVD:
7302 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7303 case EXIT_REASON_XSETBV:
7304 return 1;
81dc01f7
WL
7305 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7306 /*
7307 * This should never happen, since it is not possible to
7308 * set XSS to a non-zero value---neither in L1 nor in L2.
7309 * If if it were, XSS would have to be checked against
7310 * the XSS exit bitmap in vmcs12.
7311 */
7312 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
644d711a
NHE
7313 default:
7314 return 1;
7315 }
7316}
7317
586f9607
AK
7318static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7319{
7320 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7321 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7322}
7323
6aa8b732
AK
7324/*
7325 * The guest has exited. See if we can fix it or if we need userspace
7326 * assistance.
7327 */
851ba692 7328static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 7329{
29bd8a78 7330 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 7331 u32 exit_reason = vmx->exit_reason;
1155f76a 7332 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 7333
80ced186 7334 /* If guest state is invalid, start emulating */
14168786 7335 if (vmx->emulation_required)
80ced186 7336 return handle_invalid_guest_state(vcpu);
1d5a4d9b 7337
644d711a 7338 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
7339 nested_vmx_vmexit(vcpu, exit_reason,
7340 vmcs_read32(VM_EXIT_INTR_INFO),
7341 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
7342 return 1;
7343 }
7344
5120702e
MG
7345 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7346 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7347 vcpu->run->fail_entry.hardware_entry_failure_reason
7348 = exit_reason;
7349 return 0;
7350 }
7351
29bd8a78 7352 if (unlikely(vmx->fail)) {
851ba692
AK
7353 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7354 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
7355 = vmcs_read32(VM_INSTRUCTION_ERROR);
7356 return 0;
7357 }
6aa8b732 7358
b9bf6882
XG
7359 /*
7360 * Note:
7361 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7362 * delivery event since it indicates guest is accessing MMIO.
7363 * The vm-exit can be triggered again after return to guest that
7364 * will cause infinite loop.
7365 */
d77c26fc 7366 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 7367 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 7368 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
7369 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7370 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7371 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7372 vcpu->run->internal.ndata = 2;
7373 vcpu->run->internal.data[0] = vectoring_info;
7374 vcpu->run->internal.data[1] = exit_reason;
7375 return 0;
7376 }
3b86cd99 7377
644d711a
NHE
7378 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7379 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 7380 get_vmcs12(vcpu))))) {
c4282df9 7381 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 7382 vmx->soft_vnmi_blocked = 0;
3b86cd99 7383 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 7384 vcpu->arch.nmi_pending) {
3b86cd99
JK
7385 /*
7386 * This CPU don't support us in finding the end of an
7387 * NMI-blocked window if the guest runs with IRQs
7388 * disabled. So we pull the trigger after 1 s of
7389 * futile waiting, but inform the user about this.
7390 */
7391 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7392 "state on VCPU %d after 1 s timeout\n",
7393 __func__, vcpu->vcpu_id);
7394 vmx->soft_vnmi_blocked = 0;
3b86cd99 7395 }
3b86cd99
JK
7396 }
7397
6aa8b732
AK
7398 if (exit_reason < kvm_vmx_max_exit_handlers
7399 && kvm_vmx_exit_handlers[exit_reason])
851ba692 7400 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 7401 else {
2bc19dc3
MT
7402 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7403 kvm_queue_exception(vcpu, UD_VECTOR);
7404 return 1;
6aa8b732 7405 }
6aa8b732
AK
7406}
7407
95ba8273 7408static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 7409{
a7c0b07d
WL
7410 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7411
7412 if (is_guest_mode(vcpu) &&
7413 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7414 return;
7415
95ba8273 7416 if (irr == -1 || tpr < irr) {
6e5d865c
YS
7417 vmcs_write32(TPR_THRESHOLD, 0);
7418 return;
7419 }
7420
95ba8273 7421 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
7422}
7423
8d14695f
YZ
7424static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7425{
7426 u32 sec_exec_control;
7427
7428 /*
7429 * There is not point to enable virtualize x2apic without enable
7430 * apicv
7431 */
c7c9c56c
YZ
7432 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7433 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
7434 return;
7435
7436 if (!vm_need_tpr_shadow(vcpu->kvm))
7437 return;
7438
7439 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7440
7441 if (set) {
7442 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7443 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7444 } else {
7445 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7446 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7447 }
7448 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7449
7450 vmx_set_msr_bitmap(vcpu);
7451}
7452
38b99173
TC
7453static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7454{
7455 struct vcpu_vmx *vmx = to_vmx(vcpu);
7456
7457 /*
7458 * Currently we do not handle the nested case where L2 has an
7459 * APIC access page of its own; that page is still pinned.
7460 * Hence, we skip the case where the VCPU is in guest mode _and_
7461 * L1 prepared an APIC access page for L2.
7462 *
7463 * For the case where L1 and L2 share the same APIC access page
7464 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7465 * in the vmcs12), this function will only update either the vmcs01
7466 * or the vmcs02. If the former, the vmcs02 will be updated by
7467 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7468 * the next L2->L1 exit.
7469 */
7470 if (!is_guest_mode(vcpu) ||
7471 !nested_cpu_has2(vmx->nested.current_vmcs12,
7472 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7473 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7474}
7475
c7c9c56c
YZ
7476static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7477{
7478 u16 status;
7479 u8 old;
7480
7481 if (!vmx_vm_has_apicv(kvm))
7482 return;
7483
7484 if (isr == -1)
7485 isr = 0;
7486
7487 status = vmcs_read16(GUEST_INTR_STATUS);
7488 old = status >> 8;
7489 if (isr != old) {
7490 status &= 0xff;
7491 status |= isr << 8;
7492 vmcs_write16(GUEST_INTR_STATUS, status);
7493 }
7494}
7495
7496static void vmx_set_rvi(int vector)
7497{
7498 u16 status;
7499 u8 old;
7500
4114c27d
WW
7501 if (vector == -1)
7502 vector = 0;
7503
c7c9c56c
YZ
7504 status = vmcs_read16(GUEST_INTR_STATUS);
7505 old = (u8)status & 0xff;
7506 if ((u8)vector != old) {
7507 status &= ~0xff;
7508 status |= (u8)vector;
7509 vmcs_write16(GUEST_INTR_STATUS, status);
7510 }
7511}
7512
7513static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7514{
4114c27d
WW
7515 if (!is_guest_mode(vcpu)) {
7516 vmx_set_rvi(max_irr);
7517 return;
7518 }
7519
c7c9c56c
YZ
7520 if (max_irr == -1)
7521 return;
7522
963fee16 7523 /*
4114c27d
WW
7524 * In guest mode. If a vmexit is needed, vmx_check_nested_events
7525 * handles it.
963fee16 7526 */
4114c27d 7527 if (nested_exit_on_intr(vcpu))
963fee16
WL
7528 return;
7529
963fee16 7530 /*
4114c27d 7531 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
7532 * is run without virtual interrupt delivery.
7533 */
7534 if (!kvm_event_needs_reinjection(vcpu) &&
7535 vmx_interrupt_allowed(vcpu)) {
7536 kvm_queue_interrupt(vcpu, max_irr, false);
7537 vmx_inject_irq(vcpu);
7538 }
c7c9c56c
YZ
7539}
7540
7541static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7542{
3d81bc7e
YZ
7543 if (!vmx_vm_has_apicv(vcpu->kvm))
7544 return;
7545
c7c9c56c
YZ
7546 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7547 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7548 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7549 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7550}
7551
51aa01d1 7552static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 7553{
00eba012
AK
7554 u32 exit_intr_info;
7555
7556 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7557 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7558 return;
7559
c5ca8e57 7560 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 7561 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
7562
7563 /* Handle machine checks before interrupts are enabled */
00eba012 7564 if (is_machine_check(exit_intr_info))
a0861c02
AK
7565 kvm_machine_check();
7566
20f65983 7567 /* We need to handle NMIs before interrupts are enabled */
00eba012 7568 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
7569 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7570 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 7571 asm("int $2");
ff9d07a0
ZY
7572 kvm_after_handle_nmi(&vmx->vcpu);
7573 }
51aa01d1 7574}
20f65983 7575
a547c6db
YZ
7576static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7577{
7578 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7579
7580 /*
7581 * If external interrupt exists, IF bit is set in rflags/eflags on the
7582 * interrupt stack frame, and interrupt will be enabled on a return
7583 * from interrupt handler.
7584 */
7585 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7586 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7587 unsigned int vector;
7588 unsigned long entry;
7589 gate_desc *desc;
7590 struct vcpu_vmx *vmx = to_vmx(vcpu);
7591#ifdef CONFIG_X86_64
7592 unsigned long tmp;
7593#endif
7594
7595 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7596 desc = (gate_desc *)vmx->host_idt_base + vector;
7597 entry = gate_offset(*desc);
7598 asm volatile(
7599#ifdef CONFIG_X86_64
7600 "mov %%" _ASM_SP ", %[sp]\n\t"
7601 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7602 "push $%c[ss]\n\t"
7603 "push %[sp]\n\t"
7604#endif
7605 "pushf\n\t"
7606 "orl $0x200, (%%" _ASM_SP ")\n\t"
7607 __ASM_SIZE(push) " $%c[cs]\n\t"
7608 "call *%[entry]\n\t"
7609 :
7610#ifdef CONFIG_X86_64
7611 [sp]"=&r"(tmp)
7612#endif
7613 :
7614 [entry]"r"(entry),
7615 [ss]"i"(__KERNEL_DS),
7616 [cs]"i"(__KERNEL_CS)
7617 );
7618 } else
7619 local_irq_enable();
7620}
7621
da8999d3
LJ
7622static bool vmx_mpx_supported(void)
7623{
7624 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7625 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7626}
7627
55412b2e
WL
7628static bool vmx_xsaves_supported(void)
7629{
7630 return vmcs_config.cpu_based_2nd_exec_ctrl &
7631 SECONDARY_EXEC_XSAVES;
7632}
7633
51aa01d1
AK
7634static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7635{
c5ca8e57 7636 u32 exit_intr_info;
51aa01d1
AK
7637 bool unblock_nmi;
7638 u8 vector;
7639 bool idtv_info_valid;
7640
7641 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 7642
cf393f75 7643 if (cpu_has_virtual_nmis()) {
9d58b931
AK
7644 if (vmx->nmi_known_unmasked)
7645 return;
c5ca8e57
AK
7646 /*
7647 * Can't use vmx->exit_intr_info since we're not sure what
7648 * the exit reason is.
7649 */
7650 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
7651 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7652 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7653 /*
7b4a25cb 7654 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
7655 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7656 * a guest IRET fault.
7b4a25cb
GN
7657 * SDM 3: 23.2.2 (September 2008)
7658 * Bit 12 is undefined in any of the following cases:
7659 * If the VM exit sets the valid bit in the IDT-vectoring
7660 * information field.
7661 * If the VM exit is due to a double fault.
cf393f75 7662 */
7b4a25cb
GN
7663 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7664 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
7665 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7666 GUEST_INTR_STATE_NMI);
9d58b931
AK
7667 else
7668 vmx->nmi_known_unmasked =
7669 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7670 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
7671 } else if (unlikely(vmx->soft_vnmi_blocked))
7672 vmx->vnmi_blocked_time +=
7673 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
7674}
7675
3ab66e8a 7676static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
7677 u32 idt_vectoring_info,
7678 int instr_len_field,
7679 int error_code_field)
51aa01d1 7680{
51aa01d1
AK
7681 u8 vector;
7682 int type;
7683 bool idtv_info_valid;
7684
7685 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 7686
3ab66e8a
JK
7687 vcpu->arch.nmi_injected = false;
7688 kvm_clear_exception_queue(vcpu);
7689 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
7690
7691 if (!idtv_info_valid)
7692 return;
7693
3ab66e8a 7694 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 7695
668f612f
AK
7696 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7697 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 7698
64a7ec06 7699 switch (type) {
37b96e98 7700 case INTR_TYPE_NMI_INTR:
3ab66e8a 7701 vcpu->arch.nmi_injected = true;
668f612f 7702 /*
7b4a25cb 7703 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
7704 * Clear bit "block by NMI" before VM entry if a NMI
7705 * delivery faulted.
668f612f 7706 */
3ab66e8a 7707 vmx_set_nmi_mask(vcpu, false);
37b96e98 7708 break;
37b96e98 7709 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 7710 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
7711 /* fall through */
7712 case INTR_TYPE_HARD_EXCEPTION:
35920a35 7713 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 7714 u32 err = vmcs_read32(error_code_field);
851eb667 7715 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 7716 } else
851eb667 7717 kvm_requeue_exception(vcpu, vector);
37b96e98 7718 break;
66fd3f7f 7719 case INTR_TYPE_SOFT_INTR:
3ab66e8a 7720 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 7721 /* fall through */
37b96e98 7722 case INTR_TYPE_EXT_INTR:
3ab66e8a 7723 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
7724 break;
7725 default:
7726 break;
f7d9238f 7727 }
cf393f75
AK
7728}
7729
83422e17
AK
7730static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7731{
3ab66e8a 7732 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
7733 VM_EXIT_INSTRUCTION_LEN,
7734 IDT_VECTORING_ERROR_CODE);
7735}
7736
b463a6f7
AK
7737static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7738{
3ab66e8a 7739 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
7740 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7741 VM_ENTRY_INSTRUCTION_LEN,
7742 VM_ENTRY_EXCEPTION_ERROR_CODE);
7743
7744 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7745}
7746
d7cd9796
GN
7747static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7748{
7749 int i, nr_msrs;
7750 struct perf_guest_switch_msr *msrs;
7751
7752 msrs = perf_guest_get_msrs(&nr_msrs);
7753
7754 if (!msrs)
7755 return;
7756
7757 for (i = 0; i < nr_msrs; i++)
7758 if (msrs[i].host == msrs[i].guest)
7759 clear_atomic_switch_msr(vmx, msrs[i].msr);
7760 else
7761 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7762 msrs[i].host);
7763}
7764
a3b5ba49 7765static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 7766{
a2fa3e9f 7767 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 7768 unsigned long debugctlmsr, cr4;
104f226b
AK
7769
7770 /* Record the guest's net vcpu time for enforced NMI injections. */
7771 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7772 vmx->entry_time = ktime_get();
7773
7774 /* Don't enter VMX if guest state is invalid, let the exit handler
7775 start emulation until we arrive back to a valid state */
14168786 7776 if (vmx->emulation_required)
104f226b
AK
7777 return;
7778
a7653ecd
RK
7779 if (vmx->ple_window_dirty) {
7780 vmx->ple_window_dirty = false;
7781 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7782 }
7783
012f83cb
AG
7784 if (vmx->nested.sync_shadow_vmcs) {
7785 copy_vmcs12_to_shadow(vmx);
7786 vmx->nested.sync_shadow_vmcs = false;
7787 }
7788
104f226b
AK
7789 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7790 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7791 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7792 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7793
d974baa3
AL
7794 cr4 = read_cr4();
7795 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7796 vmcs_writel(HOST_CR4, cr4);
7797 vmx->host_state.vmcs_host_cr4 = cr4;
7798 }
7799
104f226b
AK
7800 /* When single-stepping over STI and MOV SS, we must clear the
7801 * corresponding interruptibility bits in the guest state. Otherwise
7802 * vmentry fails as it then expects bit 14 (BS) in pending debug
7803 * exceptions being set, but that's not correct for the guest debugging
7804 * case. */
7805 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7806 vmx_set_interrupt_shadow(vcpu, 0);
7807
d7cd9796 7808 atomic_switch_perf_msrs(vmx);
2a7921b7 7809 debugctlmsr = get_debugctlmsr();
d7cd9796 7810
d462b819 7811 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 7812 asm(
6aa8b732 7813 /* Store host registers */
b188c81f
AK
7814 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7815 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7816 "push %%" _ASM_CX " \n\t"
7817 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 7818 "je 1f \n\t"
b188c81f 7819 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 7820 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 7821 "1: \n\t"
d3edefc0 7822 /* Reload cr2 if changed */
b188c81f
AK
7823 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7824 "mov %%cr2, %%" _ASM_DX " \n\t"
7825 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 7826 "je 2f \n\t"
b188c81f 7827 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 7828 "2: \n\t"
6aa8b732 7829 /* Check if vmlaunch of vmresume is needed */
e08aa78a 7830 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 7831 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
7832 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7833 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7834 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7835 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7836 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7837 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 7838#ifdef CONFIG_X86_64
e08aa78a
AK
7839 "mov %c[r8](%0), %%r8 \n\t"
7840 "mov %c[r9](%0), %%r9 \n\t"
7841 "mov %c[r10](%0), %%r10 \n\t"
7842 "mov %c[r11](%0), %%r11 \n\t"
7843 "mov %c[r12](%0), %%r12 \n\t"
7844 "mov %c[r13](%0), %%r13 \n\t"
7845 "mov %c[r14](%0), %%r14 \n\t"
7846 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 7847#endif
b188c81f 7848 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 7849
6aa8b732 7850 /* Enter guest mode */
83287ea4 7851 "jne 1f \n\t"
4ecac3fd 7852 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
7853 "jmp 2f \n\t"
7854 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7855 "2: "
6aa8b732 7856 /* Save guest registers, load host registers, keep flags */
b188c81f 7857 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 7858 "pop %0 \n\t"
b188c81f
AK
7859 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7860 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7861 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7862 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7863 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7864 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7865 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 7866#ifdef CONFIG_X86_64
e08aa78a
AK
7867 "mov %%r8, %c[r8](%0) \n\t"
7868 "mov %%r9, %c[r9](%0) \n\t"
7869 "mov %%r10, %c[r10](%0) \n\t"
7870 "mov %%r11, %c[r11](%0) \n\t"
7871 "mov %%r12, %c[r12](%0) \n\t"
7872 "mov %%r13, %c[r13](%0) \n\t"
7873 "mov %%r14, %c[r14](%0) \n\t"
7874 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 7875#endif
b188c81f
AK
7876 "mov %%cr2, %%" _ASM_AX " \n\t"
7877 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 7878
b188c81f 7879 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 7880 "setbe %c[fail](%0) \n\t"
83287ea4
AK
7881 ".pushsection .rodata \n\t"
7882 ".global vmx_return \n\t"
7883 "vmx_return: " _ASM_PTR " 2b \n\t"
7884 ".popsection"
e08aa78a 7885 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 7886 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 7887 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 7888 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
7889 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7890 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7891 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7892 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7893 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7894 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7895 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 7896#ifdef CONFIG_X86_64
ad312c7c
ZX
7897 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7898 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7899 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7900 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7901 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7902 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7903 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7904 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 7905#endif
40712fae
AK
7906 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7907 [wordsize]"i"(sizeof(ulong))
c2036300
LV
7908 : "cc", "memory"
7909#ifdef CONFIG_X86_64
b188c81f 7910 , "rax", "rbx", "rdi", "rsi"
c2036300 7911 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
7912#else
7913 , "eax", "ebx", "edi", "esi"
c2036300
LV
7914#endif
7915 );
6aa8b732 7916
2a7921b7
GN
7917 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7918 if (debugctlmsr)
7919 update_debugctlmsr(debugctlmsr);
7920
aa67f609
AK
7921#ifndef CONFIG_X86_64
7922 /*
7923 * The sysexit path does not restore ds/es, so we must set them to
7924 * a reasonable value ourselves.
7925 *
7926 * We can't defer this to vmx_load_host_state() since that function
7927 * may be executed in interrupt context, which saves and restore segments
7928 * around it, nullifying its effect.
7929 */
7930 loadsegment(ds, __USER_DS);
7931 loadsegment(es, __USER_DS);
7932#endif
7933
6de4f3ad 7934 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 7935 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 7936 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 7937 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 7938 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
7939 vcpu->arch.regs_dirty = 0;
7940
1155f76a
AK
7941 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7942
d462b819 7943 vmx->loaded_vmcs->launched = 1;
1b6269db 7944
51aa01d1 7945 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 7946 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 7947
e0b890d3
GN
7948 /*
7949 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7950 * we did not inject a still-pending event to L1 now because of
7951 * nested_run_pending, we need to re-enable this bit.
7952 */
7953 if (vmx->nested.nested_run_pending)
7954 kvm_make_request(KVM_REQ_EVENT, vcpu);
7955
7956 vmx->nested.nested_run_pending = 0;
7957
51aa01d1
AK
7958 vmx_complete_atomic_exit(vmx);
7959 vmx_recover_nmi_blocking(vmx);
cf393f75 7960 vmx_complete_interrupts(vmx);
6aa8b732
AK
7961}
7962
4fa7734c
PB
7963static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7964{
7965 struct vcpu_vmx *vmx = to_vmx(vcpu);
7966 int cpu;
7967
7968 if (vmx->loaded_vmcs == &vmx->vmcs01)
7969 return;
7970
7971 cpu = get_cpu();
7972 vmx->loaded_vmcs = &vmx->vmcs01;
7973 vmx_vcpu_put(vcpu);
7974 vmx_vcpu_load(vcpu, cpu);
7975 vcpu->cpu = cpu;
7976 put_cpu();
7977}
7978
6aa8b732
AK
7979static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7980{
fb3f0f51
RR
7981 struct vcpu_vmx *vmx = to_vmx(vcpu);
7982
cdbecfc3 7983 free_vpid(vmx);
4fa7734c
PB
7984 leave_guest_mode(vcpu);
7985 vmx_load_vmcs01(vcpu);
26a865f4 7986 free_nested(vmx);
4fa7734c 7987 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
7988 kfree(vmx->guest_msrs);
7989 kvm_vcpu_uninit(vcpu);
a4770347 7990 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
7991}
7992
fb3f0f51 7993static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 7994{
fb3f0f51 7995 int err;
c16f862d 7996 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 7997 int cpu;
6aa8b732 7998
a2fa3e9f 7999 if (!vmx)
fb3f0f51
RR
8000 return ERR_PTR(-ENOMEM);
8001
2384d2b3
SY
8002 allocate_vpid(vmx);
8003
fb3f0f51
RR
8004 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8005 if (err)
8006 goto free_vcpu;
965b58a5 8007
a2fa3e9f 8008 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8009 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8010 > PAGE_SIZE);
0123be42 8011
be6d05cf 8012 err = -ENOMEM;
fb3f0f51 8013 if (!vmx->guest_msrs) {
fb3f0f51
RR
8014 goto uninit_vcpu;
8015 }
965b58a5 8016
d462b819
NHE
8017 vmx->loaded_vmcs = &vmx->vmcs01;
8018 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8019 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8020 goto free_msrs;
d462b819
NHE
8021 if (!vmm_exclusive)
8022 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8023 loaded_vmcs_init(vmx->loaded_vmcs);
8024 if (!vmm_exclusive)
8025 kvm_cpu_vmxoff();
a2fa3e9f 8026
15ad7146
AK
8027 cpu = get_cpu();
8028 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8029 vmx->vcpu.cpu = cpu;
8b9cf98c 8030 err = vmx_vcpu_setup(vmx);
fb3f0f51 8031 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8032 put_cpu();
fb3f0f51
RR
8033 if (err)
8034 goto free_vmcs;
a63cb560 8035 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
8036 err = alloc_apic_access_page(kvm);
8037 if (err)
5e4a0b3c 8038 goto free_vmcs;
a63cb560 8039 }
fb3f0f51 8040
b927a3ce
SY
8041 if (enable_ept) {
8042 if (!kvm->arch.ept_identity_map_addr)
8043 kvm->arch.ept_identity_map_addr =
8044 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8045 err = init_rmode_identity_map(kvm);
8046 if (err)
93ea5388 8047 goto free_vmcs;
b927a3ce 8048 }
b7ebfb05 8049
a9d30f33
NHE
8050 vmx->nested.current_vmptr = -1ull;
8051 vmx->nested.current_vmcs12 = NULL;
8052
fb3f0f51
RR
8053 return &vmx->vcpu;
8054
8055free_vmcs:
5f3fbc34 8056 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8057free_msrs:
fb3f0f51
RR
8058 kfree(vmx->guest_msrs);
8059uninit_vcpu:
8060 kvm_vcpu_uninit(&vmx->vcpu);
8061free_vcpu:
cdbecfc3 8062 free_vpid(vmx);
a4770347 8063 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8064 return ERR_PTR(err);
6aa8b732
AK
8065}
8066
002c7f7c
YS
8067static void __init vmx_check_processor_compat(void *rtn)
8068{
8069 struct vmcs_config vmcs_conf;
8070
8071 *(int *)rtn = 0;
8072 if (setup_vmcs_config(&vmcs_conf) < 0)
8073 *(int *)rtn = -EIO;
8074 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8075 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8076 smp_processor_id());
8077 *(int *)rtn = -EIO;
8078 }
8079}
8080
67253af5
SY
8081static int get_ept_level(void)
8082{
8083 return VMX_EPT_DEFAULT_GAW + 1;
8084}
8085
4b12f0de 8086static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8087{
4b12f0de
SY
8088 u64 ret;
8089
522c68c4
SY
8090 /* For VT-d and EPT combination
8091 * 1. MMIO: always map as UC
8092 * 2. EPT with VT-d:
8093 * a. VT-d without snooping control feature: can't guarantee the
8094 * result, try to trust guest.
8095 * b. VT-d with snooping control feature: snooping control feature of
8096 * VT-d engine can guarantee the cache correctness. Just set it
8097 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8098 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8099 * consistent with host MTRR
8100 */
4b12f0de
SY
8101 if (is_mmio)
8102 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
e0f0bbc5 8103 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
522c68c4
SY
8104 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8105 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 8106 else
522c68c4 8107 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 8108 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
8109
8110 return ret;
64d4d521
SY
8111}
8112
17cc3935 8113static int vmx_get_lpage_level(void)
344f414f 8114{
878403b7
SY
8115 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8116 return PT_DIRECTORY_LEVEL;
8117 else
8118 /* For shadow and EPT supported 1GB page */
8119 return PT_PDPE_LEVEL;
344f414f
JR
8120}
8121
0e851880
SY
8122static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8123{
4e47c7a6
SY
8124 struct kvm_cpuid_entry2 *best;
8125 struct vcpu_vmx *vmx = to_vmx(vcpu);
8126 u32 exec_control;
8127
8128 vmx->rdtscp_enabled = false;
8129 if (vmx_rdtscp_supported()) {
8130 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8131 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8132 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8133 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8134 vmx->rdtscp_enabled = true;
8135 else {
8136 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8137 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8138 exec_control);
8139 }
8140 }
8141 }
ad756a16 8142
ad756a16
MJ
8143 /* Exposing INVPCID only when PCID is exposed */
8144 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8145 if (vmx_invpcid_supported() &&
4f977045 8146 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 8147 guest_cpuid_has_pcid(vcpu)) {
29282fde 8148 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
8149 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8150 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8151 exec_control);
8152 } else {
29282fde
TI
8153 if (cpu_has_secondary_exec_ctrls()) {
8154 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8155 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8156 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8157 exec_control);
8158 }
ad756a16 8159 if (best)
4f977045 8160 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 8161 }
0e851880
SY
8162}
8163
d4330ef2
JR
8164static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8165{
7b8050f5
NHE
8166 if (func == 1 && nested)
8167 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
8168}
8169
25d92081
YZ
8170static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8171 struct x86_exception *fault)
8172{
533558bc
JK
8173 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8174 u32 exit_reason;
25d92081
YZ
8175
8176 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 8177 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 8178 else
533558bc
JK
8179 exit_reason = EXIT_REASON_EPT_VIOLATION;
8180 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
8181 vmcs12->guest_physical_address = fault->address;
8182}
8183
155a97a3
NHE
8184/* Callbacks for nested_ept_init_mmu_context: */
8185
8186static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8187{
8188 /* return the page table to be shadowed - in our case, EPT12 */
8189 return get_vmcs12(vcpu)->ept_pointer;
8190}
8191
8a3c1a33 8192static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 8193{
8a3c1a33 8194 kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
155a97a3
NHE
8195 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
8196
8197 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8198 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8199 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8200
8201 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
8202}
8203
8204static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8205{
8206 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8207}
8208
feaf0c7d
GN
8209static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8210 struct x86_exception *fault)
8211{
8212 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8213
8214 WARN_ON(!is_guest_mode(vcpu));
8215
8216 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
8217 if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
533558bc
JK
8218 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8219 vmcs_read32(VM_EXIT_INTR_INFO),
8220 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
8221 else
8222 kvm_inject_page_fault(vcpu, fault);
8223}
8224
a2bcba50
WL
8225static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8226 struct vmcs12 *vmcs12)
8227{
8228 struct vcpu_vmx *vmx = to_vmx(vcpu);
8229
8230 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a7c0b07d 8231 /* TODO: Also verify bits beyond physical address width are 0 */
a2bcba50 8232 if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
a2bcba50
WL
8233 return false;
8234
8235 /*
8236 * Translate L1 physical address to host physical
8237 * address for vmcs02. Keep the page pinned, so this
8238 * physical address remains valid. We keep a reference
8239 * to it so we can release it later.
8240 */
8241 if (vmx->nested.apic_access_page) /* shouldn't happen */
8242 nested_release_page(vmx->nested.apic_access_page);
8243 vmx->nested.apic_access_page =
8244 nested_get_page(vcpu, vmcs12->apic_access_addr);
8245 }
a7c0b07d
WL
8246
8247 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8248 /* TODO: Also verify bits beyond physical address width are 0 */
8249 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8250 return false;
8251
8252 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8253 nested_release_page(vmx->nested.virtual_apic_page);
8254 vmx->nested.virtual_apic_page =
8255 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8256
8257 /*
8258 * Failing the vm entry is _not_ what the processor does
8259 * but it's basically the only possibility we have.
8260 * We could still enter the guest if CR8 load exits are
8261 * enabled, CR8 store exits are enabled, and virtualize APIC
8262 * access is disabled; in this case the processor would never
8263 * use the TPR shadow and we could simply clear the bit from
8264 * the execution control. But such a configuration is useless,
8265 * so let's keep the code simple.
8266 */
8267 if (!vmx->nested.virtual_apic_page)
8268 return false;
8269 }
8270
a2bcba50
WL
8271 return true;
8272}
8273
f4124500
JK
8274static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8275{
8276 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8277 struct vcpu_vmx *vmx = to_vmx(vcpu);
8278
8279 if (vcpu->arch.virtual_tsc_khz == 0)
8280 return;
8281
8282 /* Make sure short timeouts reliably trigger an immediate vmexit.
8283 * hrtimer_start does not guarantee this. */
8284 if (preemption_timeout <= 1) {
8285 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8286 return;
8287 }
8288
8289 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8290 preemption_timeout *= 1000000;
8291 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8292 hrtimer_start(&vmx->nested.preemption_timer,
8293 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8294}
8295
ff651cb6
WV
8296static inline int nested_vmx_msr_check_common(struct vmx_msr_entry *e)
8297{
8298 if (e->index >> 8 == 0x8 || e->reserved != 0)
8299 return -EINVAL;
8300 return 0;
8301}
8302
8303static inline int nested_vmx_load_msr_check(struct vmx_msr_entry *e)
8304{
8305 if (e->index == MSR_FS_BASE ||
8306 e->index == MSR_GS_BASE ||
8307 nested_vmx_msr_check_common(e))
8308 return -EINVAL;
8309 return 0;
8310}
8311
8312/*
8313 * Load guest's/host's msr at nested entry/exit.
8314 * return 0 for success, entry index for failure.
8315 */
8316static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8317{
8318 u32 i;
8319 struct vmx_msr_entry e;
8320 struct msr_data msr;
8321
8322 msr.host_initiated = false;
8323 for (i = 0; i < count; i++) {
8324 kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e), &e, sizeof(e));
8325 if (nested_vmx_load_msr_check(&e))
8326 goto fail;
8327 msr.index = e.index;
8328 msr.data = e.value;
8329 if (kvm_set_msr(vcpu, &msr))
8330 goto fail;
8331 }
8332 return 0;
8333fail:
8334 return i + 1;
8335}
8336
8337static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8338{
8339 u32 i;
8340 struct vmx_msr_entry e;
8341
8342 for (i = 0; i < count; i++) {
8343 kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
8344 &e, 2 * sizeof(u32));
8345 if (nested_vmx_msr_check_common(&e))
8346 return -EINVAL;
8347 if (kvm_get_msr(vcpu, e.index, &e.value))
8348 return -EINVAL;
8349 kvm_write_guest(vcpu->kvm,
8350 gpa + i * sizeof(e) +
8351 offsetof(struct vmx_msr_entry, value),
8352 &e.value, sizeof(e.value));
8353 }
8354 return 0;
8355}
8356
fe3ef05c
NHE
8357/*
8358 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8359 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 8360 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
8361 * guest in a way that will both be appropriate to L1's requests, and our
8362 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8363 * function also has additional necessary side-effects, like setting various
8364 * vcpu->arch fields.
8365 */
8366static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8367{
8368 struct vcpu_vmx *vmx = to_vmx(vcpu);
8369 u32 exec_control;
8370
8371 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8372 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8373 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8374 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8375 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8376 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8377 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8378 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8379 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8380 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8381 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8382 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8383 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8384 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8385 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8386 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8387 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8388 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8389 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8390 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8391 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8392 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8393 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8394 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8395 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8396 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8397 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8398 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8399 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8400 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8401 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8402 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8403 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8404 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8405 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8406 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8407
2996fca0
JK
8408 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8409 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8410 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8411 } else {
8412 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8413 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8414 }
fe3ef05c
NHE
8415 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8416 vmcs12->vm_entry_intr_info_field);
8417 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8418 vmcs12->vm_entry_exception_error_code);
8419 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8420 vmcs12->vm_entry_instruction_len);
8421 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8422 vmcs12->guest_interruptibility_info);
fe3ef05c 8423 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 8424 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
8425 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8426 vmcs12->guest_pending_dbg_exceptions);
8427 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8428 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8429
81dc01f7
WL
8430 if (nested_cpu_has_xsaves(vmcs12))
8431 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
8432 vmcs_write64(VMCS_LINK_POINTER, -1ull);
8433
f4124500
JK
8434 exec_control = vmcs12->pin_based_vm_exec_control;
8435 exec_control |= vmcs_config.pin_based_exec_ctrl;
696dfd95
PB
8436 exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8437 PIN_BASED_POSTED_INTR);
f4124500 8438 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 8439
f4124500
JK
8440 vmx->nested.preemption_timer_expired = false;
8441 if (nested_cpu_has_preemption_timer(vmcs12))
8442 vmx_start_preemption_timer(vcpu);
0238ea91 8443
fe3ef05c
NHE
8444 /*
8445 * Whether page-faults are trapped is determined by a combination of
8446 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8447 * If enable_ept, L0 doesn't care about page faults and we should
8448 * set all of these to L1's desires. However, if !enable_ept, L0 does
8449 * care about (at least some) page faults, and because it is not easy
8450 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8451 * to exit on each and every L2 page fault. This is done by setting
8452 * MASK=MATCH=0 and (see below) EB.PF=1.
8453 * Note that below we don't need special code to set EB.PF beyond the
8454 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8455 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8456 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8457 *
8458 * A problem with this approach (when !enable_ept) is that L1 may be
8459 * injected with more page faults than it asked for. This could have
8460 * caused problems, but in practice existing hypervisors don't care.
8461 * To fix this, we will need to emulate the PFEC checking (on the L1
8462 * page tables), using walk_addr(), when injecting PFs to L1.
8463 */
8464 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8465 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8466 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8467 enable_ept ? vmcs12->page_fault_error_code_match : 0);
8468
8469 if (cpu_has_secondary_exec_ctrls()) {
f4124500 8470 exec_control = vmx_secondary_exec_control(vmx);
fe3ef05c
NHE
8471 if (!vmx->rdtscp_enabled)
8472 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8473 /* Take the following fields only from vmcs12 */
696dfd95
PB
8474 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8475 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8476 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
8477 if (nested_cpu_has(vmcs12,
8478 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8479 exec_control |= vmcs12->secondary_vm_exec_control;
8480
8481 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
8482 /*
8483 * If translation failed, no matter: This feature asks
8484 * to exit when accessing the given address, and if it
8485 * can never be accessed, this feature won't do
8486 * anything anyway.
8487 */
8488 if (!vmx->nested.apic_access_page)
8489 exec_control &=
8490 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8491 else
8492 vmcs_write64(APIC_ACCESS_ADDR,
8493 page_to_phys(vmx->nested.apic_access_page));
ca3f257a
JK
8494 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8495 exec_control |=
8496 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 8497 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
8498 }
8499
8500 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8501 }
8502
8503
8504 /*
8505 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8506 * Some constant fields are set here by vmx_set_constant_host_state().
8507 * Other fields are different per CPU, and will be set later when
8508 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8509 */
a547c6db 8510 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
8511
8512 /*
8513 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8514 * entry, but only if the current (host) sp changed from the value
8515 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8516 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8517 * here we just force the write to happen on entry.
8518 */
8519 vmx->host_rsp = 0;
8520
8521 exec_control = vmx_exec_control(vmx); /* L0's desires */
8522 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8523 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8524 exec_control &= ~CPU_BASED_TPR_SHADOW;
8525 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
8526
8527 if (exec_control & CPU_BASED_TPR_SHADOW) {
8528 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8529 page_to_phys(vmx->nested.virtual_apic_page));
8530 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8531 }
8532
fe3ef05c
NHE
8533 /*
8534 * Merging of IO and MSR bitmaps not currently supported.
8535 * Rather, exit every time.
8536 */
8537 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8538 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8539 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8540
8541 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8542
8543 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8544 * bitwise-or of what L1 wants to trap for L2, and what we want to
8545 * trap. Note that CR0.TS also needs updating - we do this later.
8546 */
8547 update_exception_bitmap(vcpu);
8548 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8549 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8550
8049d651
NHE
8551 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8552 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8553 * bits are further modified by vmx_set_efer() below.
8554 */
f4124500 8555 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
8556
8557 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8558 * emulated by vmx_set_efer(), below.
8559 */
2961e876 8560 vm_entry_controls_init(vmx,
8049d651
NHE
8561 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8562 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
8563 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8564
44811c02 8565 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 8566 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
8567 vcpu->arch.pat = vmcs12->guest_ia32_pat;
8568 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
8569 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8570
8571
8572 set_cr4_guest_host_mask(vmx);
8573
36be0b9d
PB
8574 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8575 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8576
27fc51b2
NHE
8577 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8578 vmcs_write64(TSC_OFFSET,
8579 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8580 else
8581 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
8582
8583 if (enable_vpid) {
8584 /*
8585 * Trivially support vpid by letting L2s share their parent
8586 * L1's vpid. TODO: move to a more elaborate solution, giving
8587 * each L2 its own vpid and exposing the vpid feature to L1.
8588 */
8589 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8590 vmx_flush_tlb(vcpu);
8591 }
8592
155a97a3
NHE
8593 if (nested_cpu_has_ept(vmcs12)) {
8594 kvm_mmu_unload(vcpu);
8595 nested_ept_init_mmu_context(vcpu);
8596 }
8597
fe3ef05c
NHE
8598 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8599 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 8600 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
8601 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8602 else
8603 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8604 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8605 vmx_set_efer(vcpu, vcpu->arch.efer);
8606
8607 /*
8608 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8609 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8610 * The CR0_READ_SHADOW is what L2 should have expected to read given
8611 * the specifications by L1; It's not enough to take
8612 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8613 * have more bits than L1 expected.
8614 */
8615 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8616 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8617
8618 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8619 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8620
8621 /* shadow page tables on either EPT or shadow page tables */
8622 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8623 kvm_mmu_reset_context(vcpu);
8624
feaf0c7d
GN
8625 if (!enable_ept)
8626 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8627
3633cfc3
NHE
8628 /*
8629 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8630 */
8631 if (enable_ept) {
8632 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8633 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8634 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8635 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8636 }
8637
fe3ef05c
NHE
8638 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8639 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8640}
8641
cd232ad0
NHE
8642/*
8643 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8644 * for running an L2 nested guest.
8645 */
8646static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8647{
8648 struct vmcs12 *vmcs12;
8649 struct vcpu_vmx *vmx = to_vmx(vcpu);
8650 int cpu;
8651 struct loaded_vmcs *vmcs02;
384bb783 8652 bool ia32e;
ff651cb6 8653 u32 msr_entry_idx;
cd232ad0
NHE
8654
8655 if (!nested_vmx_check_permission(vcpu) ||
8656 !nested_vmx_check_vmcs12(vcpu))
8657 return 1;
8658
8659 skip_emulated_instruction(vcpu);
8660 vmcs12 = get_vmcs12(vcpu);
8661
012f83cb
AG
8662 if (enable_shadow_vmcs)
8663 copy_shadow_to_vmcs12(vmx);
8664
7c177938
NHE
8665 /*
8666 * The nested entry process starts with enforcing various prerequisites
8667 * on vmcs12 as required by the Intel SDM, and act appropriately when
8668 * they fail: As the SDM explains, some conditions should cause the
8669 * instruction to fail, while others will cause the instruction to seem
8670 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8671 * To speed up the normal (success) code path, we should avoid checking
8672 * for misconfigurations which will anyway be caught by the processor
8673 * when using the merged vmcs02.
8674 */
8675 if (vmcs12->launch_state == launch) {
8676 nested_vmx_failValid(vcpu,
8677 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8678 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8679 return 1;
8680 }
8681
6dfacadd
JK
8682 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8683 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
8684 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8685 return 1;
8686 }
8687
7c177938 8688 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
bc39c4db 8689 !PAGE_ALIGNED(vmcs12->msr_bitmap)) {
7c177938
NHE
8690 /*TODO: Also verify bits beyond physical address width are 0*/
8691 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8692 return 1;
8693 }
8694
a2bcba50 8695 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
8696 /*TODO: Also verify bits beyond physical address width are 0*/
8697 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8698 return 1;
8699 }
8700
7c177938 8701 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
3dcdf3ec
JK
8702 nested_vmx_true_procbased_ctls_low,
8703 nested_vmx_procbased_ctls_high) ||
7c177938
NHE
8704 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8705 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8706 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8707 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8708 !vmx_control_verify(vmcs12->vm_exit_controls,
2996fca0
JK
8709 nested_vmx_true_exit_ctls_low,
8710 nested_vmx_exit_ctls_high) ||
7c177938 8711 !vmx_control_verify(vmcs12->vm_entry_controls,
2996fca0
JK
8712 nested_vmx_true_entry_ctls_low,
8713 nested_vmx_entry_ctls_high))
7c177938
NHE
8714 {
8715 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8716 return 1;
8717 }
8718
8719 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8720 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8721 nested_vmx_failValid(vcpu,
8722 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8723 return 1;
8724 }
8725
92fbc7b1 8726 if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
7c177938
NHE
8727 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8728 nested_vmx_entry_failure(vcpu, vmcs12,
8729 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8730 return 1;
8731 }
8732 if (vmcs12->vmcs_link_pointer != -1ull) {
8733 nested_vmx_entry_failure(vcpu, vmcs12,
8734 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8735 return 1;
8736 }
8737
384bb783 8738 /*
cb0c8cda 8739 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
8740 * are performed on the field for the IA32_EFER MSR:
8741 * - Bits reserved in the IA32_EFER MSR must be 0.
8742 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8743 * the IA-32e mode guest VM-exit control. It must also be identical
8744 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8745 * CR0.PG) is 1.
8746 */
8747 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8748 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8749 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8750 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8751 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8752 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8753 nested_vmx_entry_failure(vcpu, vmcs12,
8754 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8755 return 1;
8756 }
8757 }
8758
8759 /*
8760 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8761 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8762 * the values of the LMA and LME bits in the field must each be that of
8763 * the host address-space size VM-exit control.
8764 */
8765 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8766 ia32e = (vmcs12->vm_exit_controls &
8767 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8768 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8769 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8770 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8771 nested_vmx_entry_failure(vcpu, vmcs12,
8772 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8773 return 1;
8774 }
8775 }
8776
7c177938
NHE
8777 /*
8778 * We're finally done with prerequisite checking, and can start with
8779 * the nested entry.
8780 */
8781
cd232ad0
NHE
8782 vmcs02 = nested_get_current_vmcs02(vmx);
8783 if (!vmcs02)
8784 return -ENOMEM;
8785
8786 enter_guest_mode(vcpu);
8787
8788 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8789
2996fca0
JK
8790 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8791 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8792
cd232ad0
NHE
8793 cpu = get_cpu();
8794 vmx->loaded_vmcs = vmcs02;
8795 vmx_vcpu_put(vcpu);
8796 vmx_vcpu_load(vcpu, cpu);
8797 vcpu->cpu = cpu;
8798 put_cpu();
8799
36c3cc42
JK
8800 vmx_segment_cache_clear(vmx);
8801
cd232ad0
NHE
8802 prepare_vmcs02(vcpu, vmcs12);
8803
ff651cb6
WV
8804 msr_entry_idx = nested_vmx_load_msr(vcpu,
8805 vmcs12->vm_entry_msr_load_addr,
8806 vmcs12->vm_entry_msr_load_count);
8807 if (msr_entry_idx) {
8808 leave_guest_mode(vcpu);
8809 vmx_load_vmcs01(vcpu);
8810 nested_vmx_entry_failure(vcpu, vmcs12,
8811 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
8812 return 1;
8813 }
8814
8815 vmcs12->launch_state = 1;
8816
6dfacadd
JK
8817 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8818 return kvm_emulate_halt(vcpu);
8819
7af40ad3
JK
8820 vmx->nested.nested_run_pending = 1;
8821
cd232ad0
NHE
8822 /*
8823 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8824 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8825 * returned as far as L1 is concerned. It will only return (and set
8826 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8827 */
8828 return 1;
8829}
8830
4704d0be
NHE
8831/*
8832 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8833 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8834 * This function returns the new value we should put in vmcs12.guest_cr0.
8835 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8836 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8837 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8838 * didn't trap the bit, because if L1 did, so would L0).
8839 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8840 * been modified by L2, and L1 knows it. So just leave the old value of
8841 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8842 * isn't relevant, because if L0 traps this bit it can set it to anything.
8843 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8844 * changed these bits, and therefore they need to be updated, but L0
8845 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8846 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8847 */
8848static inline unsigned long
8849vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8850{
8851 return
8852 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8853 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8854 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8855 vcpu->arch.cr0_guest_owned_bits));
8856}
8857
8858static inline unsigned long
8859vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8860{
8861 return
8862 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8863 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8864 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8865 vcpu->arch.cr4_guest_owned_bits));
8866}
8867
5f3d5799
JK
8868static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8869 struct vmcs12 *vmcs12)
8870{
8871 u32 idt_vectoring;
8872 unsigned int nr;
8873
851eb667 8874 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
8875 nr = vcpu->arch.exception.nr;
8876 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8877
8878 if (kvm_exception_is_soft(nr)) {
8879 vmcs12->vm_exit_instruction_len =
8880 vcpu->arch.event_exit_inst_len;
8881 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8882 } else
8883 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8884
8885 if (vcpu->arch.exception.has_error_code) {
8886 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8887 vmcs12->idt_vectoring_error_code =
8888 vcpu->arch.exception.error_code;
8889 }
8890
8891 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 8892 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
8893 vmcs12->idt_vectoring_info_field =
8894 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8895 } else if (vcpu->arch.interrupt.pending) {
8896 nr = vcpu->arch.interrupt.nr;
8897 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8898
8899 if (vcpu->arch.interrupt.soft) {
8900 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8901 vmcs12->vm_entry_instruction_len =
8902 vcpu->arch.event_exit_inst_len;
8903 } else
8904 idt_vectoring |= INTR_TYPE_EXT_INTR;
8905
8906 vmcs12->idt_vectoring_info_field = idt_vectoring;
8907 }
8908}
8909
b6b8a145
JK
8910static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8911{
8912 struct vcpu_vmx *vmx = to_vmx(vcpu);
8913
f4124500
JK
8914 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8915 vmx->nested.preemption_timer_expired) {
8916 if (vmx->nested.nested_run_pending)
8917 return -EBUSY;
8918 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8919 return 0;
8920 }
8921
b6b8a145 8922 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
8923 if (vmx->nested.nested_run_pending ||
8924 vcpu->arch.interrupt.pending)
b6b8a145
JK
8925 return -EBUSY;
8926 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8927 NMI_VECTOR | INTR_TYPE_NMI_INTR |
8928 INTR_INFO_VALID_MASK, 0);
8929 /*
8930 * The NMI-triggered VM exit counts as injection:
8931 * clear this one and block further NMIs.
8932 */
8933 vcpu->arch.nmi_pending = 0;
8934 vmx_set_nmi_mask(vcpu, true);
8935 return 0;
8936 }
8937
8938 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8939 nested_exit_on_intr(vcpu)) {
8940 if (vmx->nested.nested_run_pending)
8941 return -EBUSY;
8942 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8943 }
8944
8945 return 0;
8946}
8947
f4124500
JK
8948static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8949{
8950 ktime_t remaining =
8951 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8952 u64 value;
8953
8954 if (ktime_to_ns(remaining) <= 0)
8955 return 0;
8956
8957 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8958 do_div(value, 1000000);
8959 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8960}
8961
4704d0be
NHE
8962/*
8963 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8964 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8965 * and this function updates it to reflect the changes to the guest state while
8966 * L2 was running (and perhaps made some exits which were handled directly by L0
8967 * without going back to L1), and to reflect the exit reason.
8968 * Note that we do not have to copy here all VMCS fields, just those that
8969 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8970 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8971 * which already writes to vmcs12 directly.
8972 */
533558bc
JK
8973static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8974 u32 exit_reason, u32 exit_intr_info,
8975 unsigned long exit_qualification)
4704d0be
NHE
8976{
8977 /* update guest state fields: */
8978 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8979 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8980
4704d0be
NHE
8981 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8982 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8983 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8984
8985 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8986 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8987 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8988 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8989 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8990 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8991 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8992 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8993 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8994 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8995 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8996 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8997 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8998 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8999 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9000 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9001 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9002 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9003 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9004 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9005 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9006 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9007 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9008 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9009 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9010 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9011 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9012 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9013 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9014 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9015 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9016 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9017 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9018 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9019 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9020 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9021
4704d0be
NHE
9022 vmcs12->guest_interruptibility_info =
9023 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9024 vmcs12->guest_pending_dbg_exceptions =
9025 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
9026 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9027 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9028 else
9029 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 9030
f4124500
JK
9031 if (nested_cpu_has_preemption_timer(vmcs12)) {
9032 if (vmcs12->vm_exit_controls &
9033 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9034 vmcs12->vmx_preemption_timer_value =
9035 vmx_get_preemption_timer_value(vcpu);
9036 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9037 }
7854cbca 9038
3633cfc3
NHE
9039 /*
9040 * In some cases (usually, nested EPT), L2 is allowed to change its
9041 * own CR3 without exiting. If it has changed it, we must keep it.
9042 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9043 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9044 *
9045 * Additionally, restore L2's PDPTR to vmcs12.
9046 */
9047 if (enable_ept) {
9048 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9049 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9050 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9051 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9052 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9053 }
9054
c18911a2
JK
9055 vmcs12->vm_entry_controls =
9056 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 9057 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 9058
2996fca0
JK
9059 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9060 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9061 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9062 }
9063
4704d0be
NHE
9064 /* TODO: These cannot have changed unless we have MSR bitmaps and
9065 * the relevant bit asks not to trap the change */
b8c07d55 9066 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 9067 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
9068 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9069 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
9070 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9071 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9072 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
9073 if (vmx_mpx_supported())
9074 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
9075 if (nested_cpu_has_xsaves(vmcs12))
9076 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
9077
9078 /* update exit information fields: */
9079
533558bc
JK
9080 vmcs12->vm_exit_reason = exit_reason;
9081 vmcs12->exit_qualification = exit_qualification;
4704d0be 9082
533558bc 9083 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
9084 if ((vmcs12->vm_exit_intr_info &
9085 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9086 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9087 vmcs12->vm_exit_intr_error_code =
9088 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 9089 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
9090 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9091 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9092
5f3d5799
JK
9093 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9094 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9095 * instead of reading the real value. */
4704d0be 9096 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
9097
9098 /*
9099 * Transfer the event that L0 or L1 may wanted to inject into
9100 * L2 to IDT_VECTORING_INFO_FIELD.
9101 */
9102 vmcs12_save_pending_event(vcpu, vmcs12);
9103 }
9104
9105 /*
9106 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9107 * preserved above and would only end up incorrectly in L1.
9108 */
9109 vcpu->arch.nmi_injected = false;
9110 kvm_clear_exception_queue(vcpu);
9111 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
9112}
9113
9114/*
9115 * A part of what we need to when the nested L2 guest exits and we want to
9116 * run its L1 parent, is to reset L1's guest state to the host state specified
9117 * in vmcs12.
9118 * This function is to be called not only on normal nested exit, but also on
9119 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9120 * Failures During or After Loading Guest State").
9121 * This function should be called when the active VMCS is L1's (vmcs01).
9122 */
733568f9
JK
9123static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9124 struct vmcs12 *vmcs12)
4704d0be 9125{
21feb4eb
ACL
9126 struct kvm_segment seg;
9127
4704d0be
NHE
9128 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9129 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 9130 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
9131 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9132 else
9133 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9134 vmx_set_efer(vcpu, vcpu->arch.efer);
9135
9136 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9137 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 9138 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
9139 /*
9140 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9141 * actually changed, because it depends on the current state of
9142 * fpu_active (which may have changed).
9143 * Note that vmx_set_cr0 refers to efer set above.
9144 */
9e3e4dbf 9145 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
9146 /*
9147 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9148 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9149 * but we also need to update cr0_guest_host_mask and exception_bitmap.
9150 */
9151 update_exception_bitmap(vcpu);
9152 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9153 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9154
9155 /*
9156 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9157 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9158 */
9159 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9160 kvm_set_cr4(vcpu, vmcs12->host_cr4);
9161
29bf08f1 9162 nested_ept_uninit_mmu_context(vcpu);
155a97a3 9163
4704d0be
NHE
9164 kvm_set_cr3(vcpu, vmcs12->host_cr3);
9165 kvm_mmu_reset_context(vcpu);
9166
feaf0c7d
GN
9167 if (!enable_ept)
9168 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9169
4704d0be
NHE
9170 if (enable_vpid) {
9171 /*
9172 * Trivially support vpid by letting L2s share their parent
9173 * L1's vpid. TODO: move to a more elaborate solution, giving
9174 * each L2 its own vpid and exposing the vpid feature to L1.
9175 */
9176 vmx_flush_tlb(vcpu);
9177 }
9178
9179
9180 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9181 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9182 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9183 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9184 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 9185
36be0b9d
PB
9186 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9187 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9188 vmcs_write64(GUEST_BNDCFGS, 0);
9189
44811c02 9190 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 9191 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
9192 vcpu->arch.pat = vmcs12->host_ia32_pat;
9193 }
4704d0be
NHE
9194 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9195 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9196 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 9197
21feb4eb
ACL
9198 /* Set L1 segment info according to Intel SDM
9199 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9200 seg = (struct kvm_segment) {
9201 .base = 0,
9202 .limit = 0xFFFFFFFF,
9203 .selector = vmcs12->host_cs_selector,
9204 .type = 11,
9205 .present = 1,
9206 .s = 1,
9207 .g = 1
9208 };
9209 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9210 seg.l = 1;
9211 else
9212 seg.db = 1;
9213 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9214 seg = (struct kvm_segment) {
9215 .base = 0,
9216 .limit = 0xFFFFFFFF,
9217 .type = 3,
9218 .present = 1,
9219 .s = 1,
9220 .db = 1,
9221 .g = 1
9222 };
9223 seg.selector = vmcs12->host_ds_selector;
9224 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9225 seg.selector = vmcs12->host_es_selector;
9226 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9227 seg.selector = vmcs12->host_ss_selector;
9228 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9229 seg.selector = vmcs12->host_fs_selector;
9230 seg.base = vmcs12->host_fs_base;
9231 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9232 seg.selector = vmcs12->host_gs_selector;
9233 seg.base = vmcs12->host_gs_base;
9234 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9235 seg = (struct kvm_segment) {
205befd9 9236 .base = vmcs12->host_tr_base,
21feb4eb
ACL
9237 .limit = 0x67,
9238 .selector = vmcs12->host_tr_selector,
9239 .type = 11,
9240 .present = 1
9241 };
9242 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9243
503cd0c5
JK
9244 kvm_set_dr(vcpu, 7, 0x400);
9245 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6
WV
9246
9247 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
9248 vmcs12->vm_exit_msr_load_count))
9249 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
9250}
9251
9252/*
9253 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9254 * and modify vmcs12 to make it see what it would expect to see there if
9255 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9256 */
533558bc
JK
9257static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9258 u32 exit_intr_info,
9259 unsigned long exit_qualification)
4704d0be
NHE
9260{
9261 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
9262 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9263
5f3d5799
JK
9264 /* trying to cancel vmlaunch/vmresume is a bug */
9265 WARN_ON_ONCE(vmx->nested.nested_run_pending);
9266
4704d0be 9267 leave_guest_mode(vcpu);
533558bc
JK
9268 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9269 exit_qualification);
4704d0be 9270
ff651cb6
WV
9271 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
9272 vmcs12->vm_exit_msr_store_count))
9273 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
9274
f3380ca5
WL
9275 vmx_load_vmcs01(vcpu);
9276
77b0f5d6
BD
9277 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9278 && nested_exit_intr_ack_set(vcpu)) {
9279 int irq = kvm_cpu_get_interrupt(vcpu);
9280 WARN_ON(irq < 0);
9281 vmcs12->vm_exit_intr_info = irq |
9282 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9283 }
9284
542060ea
JK
9285 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
9286 vmcs12->exit_qualification,
9287 vmcs12->idt_vectoring_info_field,
9288 vmcs12->vm_exit_intr_info,
9289 vmcs12->vm_exit_intr_error_code,
9290 KVM_ISA_VMX);
4704d0be 9291
2961e876
GN
9292 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
9293 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
9294 vmx_segment_cache_clear(vmx);
9295
4704d0be
NHE
9296 /* if no vmcs02 cache requested, remove the one we used */
9297 if (VMCS02_POOL_SIZE == 0)
9298 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
9299
9300 load_vmcs12_host_state(vcpu, vmcs12);
9301
27fc51b2 9302 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
9303 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9304
9305 /* This is needed for same reason as it was needed in prepare_vmcs02 */
9306 vmx->host_rsp = 0;
9307
9308 /* Unpin physical memory we referred to in vmcs02 */
9309 if (vmx->nested.apic_access_page) {
9310 nested_release_page(vmx->nested.apic_access_page);
48d89b92 9311 vmx->nested.apic_access_page = NULL;
4704d0be 9312 }
a7c0b07d
WL
9313 if (vmx->nested.virtual_apic_page) {
9314 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 9315 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 9316 }
4704d0be 9317
38b99173
TC
9318 /*
9319 * We are now running in L2, mmu_notifier will force to reload the
9320 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9321 */
9322 kvm_vcpu_reload_apic_access_page(vcpu);
9323
4704d0be
NHE
9324 /*
9325 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9326 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9327 * success or failure flag accordingly.
9328 */
9329 if (unlikely(vmx->fail)) {
9330 vmx->fail = 0;
9331 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9332 } else
9333 nested_vmx_succeed(vcpu);
012f83cb
AG
9334 if (enable_shadow_vmcs)
9335 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
9336
9337 /* in case we halted in L2 */
9338 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
9339}
9340
42124925
JK
9341/*
9342 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9343 */
9344static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9345{
9346 if (is_guest_mode(vcpu))
533558bc 9347 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
9348 free_nested(to_vmx(vcpu));
9349}
9350
7c177938
NHE
9351/*
9352 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9353 * 23.7 "VM-entry failures during or after loading guest state" (this also
9354 * lists the acceptable exit-reason and exit-qualification parameters).
9355 * It should only be called before L2 actually succeeded to run, and when
9356 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9357 */
9358static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9359 struct vmcs12 *vmcs12,
9360 u32 reason, unsigned long qualification)
9361{
9362 load_vmcs12_host_state(vcpu, vmcs12);
9363 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9364 vmcs12->exit_qualification = qualification;
9365 nested_vmx_succeed(vcpu);
012f83cb
AG
9366 if (enable_shadow_vmcs)
9367 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
9368}
9369
8a76d7f2
JR
9370static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9371 struct x86_instruction_info *info,
9372 enum x86_intercept_stage stage)
9373{
9374 return X86EMUL_CONTINUE;
9375}
9376
48d89b92 9377static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 9378{
b4a2d31d
RK
9379 if (ple_gap)
9380 shrink_ple_window(vcpu);
ae97a3b8
RK
9381}
9382
cbdd1bea 9383static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
9384 .cpu_has_kvm_support = cpu_has_kvm_support,
9385 .disabled_by_bios = vmx_disabled_by_bios,
9386 .hardware_setup = hardware_setup,
9387 .hardware_unsetup = hardware_unsetup,
002c7f7c 9388 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
9389 .hardware_enable = hardware_enable,
9390 .hardware_disable = hardware_disable,
04547156 9391 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
9392
9393 .vcpu_create = vmx_create_vcpu,
9394 .vcpu_free = vmx_free_vcpu,
04d2cc77 9395 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 9396
04d2cc77 9397 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
9398 .vcpu_load = vmx_vcpu_load,
9399 .vcpu_put = vmx_vcpu_put,
9400
c8639010 9401 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
9402 .get_msr = vmx_get_msr,
9403 .set_msr = vmx_set_msr,
9404 .get_segment_base = vmx_get_segment_base,
9405 .get_segment = vmx_get_segment,
9406 .set_segment = vmx_set_segment,
2e4d2653 9407 .get_cpl = vmx_get_cpl,
6aa8b732 9408 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 9409 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 9410 .decache_cr3 = vmx_decache_cr3,
25c4c276 9411 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 9412 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
9413 .set_cr3 = vmx_set_cr3,
9414 .set_cr4 = vmx_set_cr4,
6aa8b732 9415 .set_efer = vmx_set_efer,
6aa8b732
AK
9416 .get_idt = vmx_get_idt,
9417 .set_idt = vmx_set_idt,
9418 .get_gdt = vmx_get_gdt,
9419 .set_gdt = vmx_set_gdt,
73aaf249
JK
9420 .get_dr6 = vmx_get_dr6,
9421 .set_dr6 = vmx_set_dr6,
020df079 9422 .set_dr7 = vmx_set_dr7,
81908bf4 9423 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 9424 .cache_reg = vmx_cache_reg,
6aa8b732
AK
9425 .get_rflags = vmx_get_rflags,
9426 .set_rflags = vmx_set_rflags,
02daab21 9427 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
9428
9429 .tlb_flush = vmx_flush_tlb,
6aa8b732 9430
6aa8b732 9431 .run = vmx_vcpu_run,
6062d012 9432 .handle_exit = vmx_handle_exit,
6aa8b732 9433 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
9434 .set_interrupt_shadow = vmx_set_interrupt_shadow,
9435 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 9436 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 9437 .set_irq = vmx_inject_irq,
95ba8273 9438 .set_nmi = vmx_inject_nmi,
298101da 9439 .queue_exception = vmx_queue_exception,
b463a6f7 9440 .cancel_injection = vmx_cancel_injection,
78646121 9441 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 9442 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
9443 .get_nmi_mask = vmx_get_nmi_mask,
9444 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
9445 .enable_nmi_window = enable_nmi_window,
9446 .enable_irq_window = enable_irq_window,
9447 .update_cr8_intercept = update_cr8_intercept,
8d14695f 9448 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 9449 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
c7c9c56c
YZ
9450 .vm_has_apicv = vmx_vm_has_apicv,
9451 .load_eoi_exitmap = vmx_load_eoi_exitmap,
9452 .hwapic_irr_update = vmx_hwapic_irr_update,
9453 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
9454 .sync_pir_to_irr = vmx_sync_pir_to_irr,
9455 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 9456
cbc94022 9457 .set_tss_addr = vmx_set_tss_addr,
67253af5 9458 .get_tdp_level = get_ept_level,
4b12f0de 9459 .get_mt_mask = vmx_get_mt_mask,
229456fc 9460
586f9607 9461 .get_exit_info = vmx_get_exit_info,
586f9607 9462
17cc3935 9463 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
9464
9465 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
9466
9467 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 9468 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
9469
9470 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
9471
9472 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 9473
4051b188 9474 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 9475 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 9476 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 9477 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 9478 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 9479 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
9480
9481 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
9482
9483 .check_intercept = vmx_check_intercept,
a547c6db 9484 .handle_external_intr = vmx_handle_external_intr,
da8999d3 9485 .mpx_supported = vmx_mpx_supported,
55412b2e 9486 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
9487
9488 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
9489
9490 .sched_in = vmx_sched_in,
6aa8b732
AK
9491};
9492
9493static int __init vmx_init(void)
9494{
34a1cd60
TC
9495 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9496 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 9497 if (r)
34a1cd60 9498 return r;
25c5f225 9499
8f536b76
ZY
9500#ifdef CONFIG_KEXEC
9501 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9502 crash_vmclear_local_loaded_vmcss);
9503#endif
9504
fdef3ad1 9505 return 0;
6aa8b732
AK
9506}
9507
9508static void __exit vmx_exit(void)
9509{
8f536b76 9510#ifdef CONFIG_KEXEC
3b63a43f 9511 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
9512 synchronize_rcu();
9513#endif
9514
cb498ea2 9515 kvm_exit();
6aa8b732
AK
9516}
9517
9518module_init(vmx_init)
9519module_exit(vmx_exit)