]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: VMX: fix read/write sizes of VMCS fields
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
5037878e
GN
113#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
115#define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
117#define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 120
cdc0e244
AK
121#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
78ac8b47
AK
124#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
f4124500
JK
126#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
4b8d54f9
ZE
128/*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 132 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
b4a2d31d
RK
139#define KVM_VMX_DEFAULT_PLE_GAP 128
140#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
4b8d54f9
ZE
146static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147module_param(ple_gap, int, S_IRUGO);
148
149static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150module_param(ple_window, int, S_IRUGO);
151
b4a2d31d
RK
152/* Default doubles per-vcpu window every exit. */
153static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154module_param(ple_window_grow, int, S_IRUGO);
155
156/* Default resets per-vcpu window every exit to ple_window. */
157static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158module_param(ple_window_shrink, int, S_IRUGO);
159
160/* Default is to compute the maximum so we can never overflow. */
161static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163module_param(ple_window_max, int, S_IRUGO);
164
83287ea4
AK
165extern const ulong vmx_return;
166
8bf00a52 167#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 168#define VMCS02_POOL_SIZE 1
61d2ef2c 169
a2fa3e9f
GH
170struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174};
175
d462b819
NHE
176/*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186};
187
26bb0981
AK
188struct shared_msr_entry {
189 unsigned index;
190 u64 data;
d5696725 191 u64 mask;
26bb0981
AK
192};
193
a9d30f33
NHE
194/*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
22bd0358 207typedef u64 natural_width;
a9d30f33
NHE
208struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
22bd0358 214
27d6c865
NHE
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
22bd0358
NHE
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
705699a1 227 u64 posted_intr_desc_addr;
22bd0358 228 u64 ept_pointer;
608406e2
WV
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
81dc01f7 233 u64 xss_exit_bitmap;
22bd0358
NHE
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
36be0b9d 244 u64 guest_bndcfgs;
22bd0358
NHE
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
0238ea91
JK
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
22bd0358 346 u16 virtual_processor_id;
705699a1 347 u16 posted_intr_nv;
22bd0358
NHE
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
608406e2 356 u16 guest_intr_status;
22bd0358
NHE
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
a9d30f33
NHE
364};
365
366/*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371#define VMCS12_REVISION 0x11e57ed0
372
373/*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378#define VMCS12_SIZE 0x1000
379
ff2f6fe9
NHE
380/* Used to remember the last vmcs02 used for some recently used vmcs12s */
381struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385};
386
ec378aee
NHE
387/*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
3573e22c 394 gpa_t vmxon_ptr;
a9d30f33
NHE
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
8de48833 401 struct vmcs *current_shadow_vmcs;
012f83cb
AG
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
ff2f6fe9
NHE
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
fe3ef05c 411 u64 vmcs01_tsc_offset;
644d711a
NHE
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
fe3ef05c
NHE
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
a7c0b07d 419 struct page *virtual_apic_page;
705699a1
WV
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
b3897a49 424 u64 msr_ia32_feature_control;
f4124500
JK
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
2996fca0
JK
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
b9c237bb 431
5c614b35
WL
432 u16 vpid02;
433 u16 last_vpid;
434
b9c237bb
WV
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
99b83ac8 451 u32 nested_vmx_vpid_caps;
ec378aee
NHE
452};
453
01e439be 454#define POSTED_INTR_ON 0
ebbfc765
FW
455#define POSTED_INTR_SN 1
456
01e439be
YZ
457/* Posted-Interrupt Descriptor */
458struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
01e439be
YZ
478} __aligned(64);
479
a20ed54d
YZ
480static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481{
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484}
485
486static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487{
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490}
491
492static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493{
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495}
496
ebbfc765
FW
497static inline void pi_clear_sn(struct pi_desc *pi_desc)
498{
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501}
502
503static inline void pi_set_sn(struct pi_desc *pi_desc)
504{
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507}
508
509static inline int pi_test_on(struct pi_desc *pi_desc)
510{
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513}
514
515static inline int pi_test_sn(struct pi_desc *pi_desc)
516{
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519}
520
a2fa3e9f 521struct vcpu_vmx {
fb3f0f51 522 struct kvm_vcpu vcpu;
313dbd49 523 unsigned long host_rsp;
29bd8a78 524 u8 fail;
9d58b931 525 bool nmi_known_unmasked;
51aa01d1 526 u32 exit_intr_info;
1155f76a 527 u32 idt_vectoring_info;
6de12732 528 ulong rflags;
26bb0981 529 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
530 int nmsrs;
531 int save_nmsrs;
a547c6db 532 unsigned long host_idt_base;
a2fa3e9f 533#ifdef CONFIG_X86_64
44ea2b17
AK
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
a2fa3e9f 536#endif
2961e876
GN
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
d462b819
NHE
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
a2fa3e9f
GH
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
555#ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557#endif
152d3f2f
LV
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
da8999d3 560 u64 msr_host_bndcfgs;
d974baa3 561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 562 } host_state;
9c8cba37 563 struct {
7ffd92c5 564 int vm86_active;
78ac8b47 565 ulong save_rflags;
f5f7b2fe
AK
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
f5f7b2fe 575 } seg[8];
2fb92db1 576 } segment_cache;
2384d2b3 577 int vpid;
04fa4d32 578 bool emulation_required;
3b86cd99
JK
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
a0861c02 584 u32 exit_reason;
4e47c7a6 585
01e439be
YZ
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
ec378aee
NHE
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
a7653ecd
RK
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
843e4330
KH
595
596 /* Support for PML */
597#define PML_ENTITY_NUM 512
598 struct page *pml_pg;
a2fa3e9f
GH
599};
600
2fb92db1
AK
601enum segment_cache_field {
602 SEG_FIELD_SEL = 0,
603 SEG_FIELD_BASE = 1,
604 SEG_FIELD_LIMIT = 2,
605 SEG_FIELD_AR = 3,
606
607 SEG_FIELD_NR = 4
608};
609
a2fa3e9f
GH
610static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
611{
fb3f0f51 612 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
613}
614
efc64404
FW
615static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
616{
617 return &(to_vmx(vcpu)->pi_desc);
618}
619
22bd0358
NHE
620#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
621#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
622#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
623 [number##_HIGH] = VMCS12_OFFSET(name)+4
624
4607c2d7 625
fe2b201b 626static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
627 /*
628 * We do NOT shadow fields that are modified when L0
629 * traps and emulates any vmx instruction (e.g. VMPTRLD,
630 * VMXON...) executed by L1.
631 * For example, VM_INSTRUCTION_ERROR is read
632 * by L1 if a vmx instruction fails (part of the error path).
633 * Note the code assumes this logic. If for some reason
634 * we start shadowing these fields then we need to
635 * force a shadow sync when L0 emulates vmx instructions
636 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
637 * by nested_vmx_failValid)
638 */
639 VM_EXIT_REASON,
640 VM_EXIT_INTR_INFO,
641 VM_EXIT_INSTRUCTION_LEN,
642 IDT_VECTORING_INFO_FIELD,
643 IDT_VECTORING_ERROR_CODE,
644 VM_EXIT_INTR_ERROR_CODE,
645 EXIT_QUALIFICATION,
646 GUEST_LINEAR_ADDRESS,
647 GUEST_PHYSICAL_ADDRESS
648};
fe2b201b 649static int max_shadow_read_only_fields =
4607c2d7
AG
650 ARRAY_SIZE(shadow_read_only_fields);
651
fe2b201b 652static unsigned long shadow_read_write_fields[] = {
a7c0b07d 653 TPR_THRESHOLD,
4607c2d7
AG
654 GUEST_RIP,
655 GUEST_RSP,
656 GUEST_CR0,
657 GUEST_CR3,
658 GUEST_CR4,
659 GUEST_INTERRUPTIBILITY_INFO,
660 GUEST_RFLAGS,
661 GUEST_CS_SELECTOR,
662 GUEST_CS_AR_BYTES,
663 GUEST_CS_LIMIT,
664 GUEST_CS_BASE,
665 GUEST_ES_BASE,
36be0b9d 666 GUEST_BNDCFGS,
4607c2d7
AG
667 CR0_GUEST_HOST_MASK,
668 CR0_READ_SHADOW,
669 CR4_READ_SHADOW,
670 TSC_OFFSET,
671 EXCEPTION_BITMAP,
672 CPU_BASED_VM_EXEC_CONTROL,
673 VM_ENTRY_EXCEPTION_ERROR_CODE,
674 VM_ENTRY_INTR_INFO_FIELD,
675 VM_ENTRY_INSTRUCTION_LEN,
676 VM_ENTRY_EXCEPTION_ERROR_CODE,
677 HOST_FS_BASE,
678 HOST_GS_BASE,
679 HOST_FS_SELECTOR,
680 HOST_GS_SELECTOR
681};
fe2b201b 682static int max_shadow_read_write_fields =
4607c2d7
AG
683 ARRAY_SIZE(shadow_read_write_fields);
684
772e0318 685static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 686 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 687 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
688 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
689 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
690 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
691 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
692 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
693 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
694 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
695 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 696 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
697 FIELD(HOST_ES_SELECTOR, host_es_selector),
698 FIELD(HOST_CS_SELECTOR, host_cs_selector),
699 FIELD(HOST_SS_SELECTOR, host_ss_selector),
700 FIELD(HOST_DS_SELECTOR, host_ds_selector),
701 FIELD(HOST_FS_SELECTOR, host_fs_selector),
702 FIELD(HOST_GS_SELECTOR, host_gs_selector),
703 FIELD(HOST_TR_SELECTOR, host_tr_selector),
704 FIELD64(IO_BITMAP_A, io_bitmap_a),
705 FIELD64(IO_BITMAP_B, io_bitmap_b),
706 FIELD64(MSR_BITMAP, msr_bitmap),
707 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
708 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
709 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
710 FIELD64(TSC_OFFSET, tsc_offset),
711 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
712 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 713 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 714 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
715 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
716 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
717 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
718 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 719 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
720 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
721 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
722 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
723 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
724 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
725 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
726 FIELD64(GUEST_PDPTR0, guest_pdptr0),
727 FIELD64(GUEST_PDPTR1, guest_pdptr1),
728 FIELD64(GUEST_PDPTR2, guest_pdptr2),
729 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 730 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
731 FIELD64(HOST_IA32_PAT, host_ia32_pat),
732 FIELD64(HOST_IA32_EFER, host_ia32_efer),
733 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
734 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
735 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
736 FIELD(EXCEPTION_BITMAP, exception_bitmap),
737 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
738 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
739 FIELD(CR3_TARGET_COUNT, cr3_target_count),
740 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
741 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
742 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
743 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
744 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
745 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
746 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
747 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
748 FIELD(TPR_THRESHOLD, tpr_threshold),
749 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
750 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
751 FIELD(VM_EXIT_REASON, vm_exit_reason),
752 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
753 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
754 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
755 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
756 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
757 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
758 FIELD(GUEST_ES_LIMIT, guest_es_limit),
759 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
760 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
761 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
762 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
763 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
764 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
765 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
766 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
767 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
768 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
769 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
770 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
771 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
772 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
773 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
774 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
775 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
776 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
777 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
778 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
779 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 780 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
781 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
782 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
783 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
784 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
785 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
786 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
787 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
788 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
789 FIELD(EXIT_QUALIFICATION, exit_qualification),
790 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
791 FIELD(GUEST_CR0, guest_cr0),
792 FIELD(GUEST_CR3, guest_cr3),
793 FIELD(GUEST_CR4, guest_cr4),
794 FIELD(GUEST_ES_BASE, guest_es_base),
795 FIELD(GUEST_CS_BASE, guest_cs_base),
796 FIELD(GUEST_SS_BASE, guest_ss_base),
797 FIELD(GUEST_DS_BASE, guest_ds_base),
798 FIELD(GUEST_FS_BASE, guest_fs_base),
799 FIELD(GUEST_GS_BASE, guest_gs_base),
800 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
801 FIELD(GUEST_TR_BASE, guest_tr_base),
802 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
803 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
804 FIELD(GUEST_DR7, guest_dr7),
805 FIELD(GUEST_RSP, guest_rsp),
806 FIELD(GUEST_RIP, guest_rip),
807 FIELD(GUEST_RFLAGS, guest_rflags),
808 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
809 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
810 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
811 FIELD(HOST_CR0, host_cr0),
812 FIELD(HOST_CR3, host_cr3),
813 FIELD(HOST_CR4, host_cr4),
814 FIELD(HOST_FS_BASE, host_fs_base),
815 FIELD(HOST_GS_BASE, host_gs_base),
816 FIELD(HOST_TR_BASE, host_tr_base),
817 FIELD(HOST_GDTR_BASE, host_gdtr_base),
818 FIELD(HOST_IDTR_BASE, host_idtr_base),
819 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
820 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
821 FIELD(HOST_RSP, host_rsp),
822 FIELD(HOST_RIP, host_rip),
823};
22bd0358
NHE
824
825static inline short vmcs_field_to_offset(unsigned long field)
826{
a2ae9df7
PB
827 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
828
829 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
830 vmcs_field_to_offset_table[field] == 0)
831 return -ENOENT;
832
22bd0358
NHE
833 return vmcs_field_to_offset_table[field];
834}
835
a9d30f33
NHE
836static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
837{
838 return to_vmx(vcpu)->nested.current_vmcs12;
839}
840
841static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
842{
54bf36aa 843 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 844 if (is_error_page(page))
a9d30f33 845 return NULL;
32cad84f 846
a9d30f33
NHE
847 return page;
848}
849
850static void nested_release_page(struct page *page)
851{
852 kvm_release_page_dirty(page);
853}
854
855static void nested_release_page_clean(struct page *page)
856{
857 kvm_release_page_clean(page);
858}
859
bfd0a56b 860static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 861static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
862static void kvm_cpu_vmxon(u64 addr);
863static void kvm_cpu_vmxoff(void);
93c4adc7 864static bool vmx_mpx_supported(void);
f53cd63c 865static bool vmx_xsaves_supported(void);
776e58ea 866static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
867static void vmx_set_segment(struct kvm_vcpu *vcpu,
868 struct kvm_segment *var, int seg);
869static void vmx_get_segment(struct kvm_vcpu *vcpu,
870 struct kvm_segment *var, int seg);
d99e4152
GN
871static bool guest_state_valid(struct kvm_vcpu *vcpu);
872static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 873static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 874static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 875static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 876
6aa8b732
AK
877static DEFINE_PER_CPU(struct vmcs *, vmxarea);
878static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
879/*
880 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
881 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
882 */
883static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 884static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 885
bf9f6ac8
FW
886/*
887 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
888 * can find which vCPU should be waken up.
889 */
890static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
891static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
892
3e7c73e9
AK
893static unsigned long *vmx_io_bitmap_a;
894static unsigned long *vmx_io_bitmap_b;
5897297b
AK
895static unsigned long *vmx_msr_bitmap_legacy;
896static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
897static unsigned long *vmx_msr_bitmap_legacy_x2apic;
898static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 899static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
900static unsigned long *vmx_vmread_bitmap;
901static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 902
110312c8 903static bool cpu_has_load_ia32_efer;
8bf00a52 904static bool cpu_has_load_perf_global_ctrl;
110312c8 905
2384d2b3
SY
906static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
907static DEFINE_SPINLOCK(vmx_vpid_lock);
908
1c3d14fe 909static struct vmcs_config {
6aa8b732
AK
910 int size;
911 int order;
912 u32 revision_id;
1c3d14fe
YS
913 u32 pin_based_exec_ctrl;
914 u32 cpu_based_exec_ctrl;
f78e0e2e 915 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
916 u32 vmexit_ctrl;
917 u32 vmentry_ctrl;
918} vmcs_config;
6aa8b732 919
efff9e53 920static struct vmx_capability {
d56f546d
SY
921 u32 ept;
922 u32 vpid;
923} vmx_capability;
924
6aa8b732
AK
925#define VMX_SEGMENT_FIELD(seg) \
926 [VCPU_SREG_##seg] = { \
927 .selector = GUEST_##seg##_SELECTOR, \
928 .base = GUEST_##seg##_BASE, \
929 .limit = GUEST_##seg##_LIMIT, \
930 .ar_bytes = GUEST_##seg##_AR_BYTES, \
931 }
932
772e0318 933static const struct kvm_vmx_segment_field {
6aa8b732
AK
934 unsigned selector;
935 unsigned base;
936 unsigned limit;
937 unsigned ar_bytes;
938} kvm_vmx_segment_fields[] = {
939 VMX_SEGMENT_FIELD(CS),
940 VMX_SEGMENT_FIELD(DS),
941 VMX_SEGMENT_FIELD(ES),
942 VMX_SEGMENT_FIELD(FS),
943 VMX_SEGMENT_FIELD(GS),
944 VMX_SEGMENT_FIELD(SS),
945 VMX_SEGMENT_FIELD(TR),
946 VMX_SEGMENT_FIELD(LDTR),
947};
948
26bb0981
AK
949static u64 host_efer;
950
6de4f3ad
AK
951static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
952
4d56c8a7 953/*
8c06585d 954 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
955 * away by decrementing the array size.
956 */
6aa8b732 957static const u32 vmx_msr_index[] = {
05b3e0c2 958#ifdef CONFIG_X86_64
44ea2b17 959 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 960#endif
8c06585d 961 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 962};
6aa8b732 963
31299944 964static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
965{
966 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
967 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 968 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
969}
970
31299944 971static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
972{
973 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
974 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 975 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
976}
977
31299944 978static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
979{
980 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
981 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 982 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
983}
984
31299944 985static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
986{
987 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
988 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
989}
990
31299944 991static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
992{
993 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
994 INTR_INFO_VALID_MASK)) ==
995 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
996}
997
31299944 998static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 999{
04547156 1000 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1001}
1002
31299944 1003static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1004{
04547156 1005 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1006}
1007
35754c98 1008static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1009{
35754c98 1010 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1011}
1012
31299944 1013static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1014{
04547156
SY
1015 return vmcs_config.cpu_based_exec_ctrl &
1016 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1017}
1018
774ead3a 1019static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1020{
04547156
SY
1021 return vmcs_config.cpu_based_2nd_exec_ctrl &
1022 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1023}
1024
8d14695f
YZ
1025static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1026{
1027 return vmcs_config.cpu_based_2nd_exec_ctrl &
1028 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1029}
1030
83d4c286
YZ
1031static inline bool cpu_has_vmx_apic_register_virt(void)
1032{
1033 return vmcs_config.cpu_based_2nd_exec_ctrl &
1034 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1035}
1036
c7c9c56c
YZ
1037static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1038{
1039 return vmcs_config.cpu_based_2nd_exec_ctrl &
1040 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1041}
1042
01e439be
YZ
1043static inline bool cpu_has_vmx_posted_intr(void)
1044{
d6a858d1
PB
1045 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1046 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1047}
1048
1049static inline bool cpu_has_vmx_apicv(void)
1050{
1051 return cpu_has_vmx_apic_register_virt() &&
1052 cpu_has_vmx_virtual_intr_delivery() &&
1053 cpu_has_vmx_posted_intr();
1054}
1055
04547156
SY
1056static inline bool cpu_has_vmx_flexpriority(void)
1057{
1058 return cpu_has_vmx_tpr_shadow() &&
1059 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1060}
1061
e799794e
MT
1062static inline bool cpu_has_vmx_ept_execute_only(void)
1063{
31299944 1064 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1065}
1066
e799794e
MT
1067static inline bool cpu_has_vmx_ept_2m_page(void)
1068{
31299944 1069 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1070}
1071
878403b7
SY
1072static inline bool cpu_has_vmx_ept_1g_page(void)
1073{
31299944 1074 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1075}
1076
4bc9b982
SY
1077static inline bool cpu_has_vmx_ept_4levels(void)
1078{
1079 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1080}
1081
83c3a331
XH
1082static inline bool cpu_has_vmx_ept_ad_bits(void)
1083{
1084 return vmx_capability.ept & VMX_EPT_AD_BIT;
1085}
1086
31299944 1087static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1088{
31299944 1089 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1090}
1091
31299944 1092static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1093{
31299944 1094 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1095}
1096
518c8aee
GJ
1097static inline bool cpu_has_vmx_invvpid_single(void)
1098{
1099 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1100}
1101
b9d762fa
GJ
1102static inline bool cpu_has_vmx_invvpid_global(void)
1103{
1104 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1105}
1106
31299944 1107static inline bool cpu_has_vmx_ept(void)
d56f546d 1108{
04547156
SY
1109 return vmcs_config.cpu_based_2nd_exec_ctrl &
1110 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1111}
1112
31299944 1113static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1114{
1115 return vmcs_config.cpu_based_2nd_exec_ctrl &
1116 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1117}
1118
31299944 1119static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1120{
1121 return vmcs_config.cpu_based_2nd_exec_ctrl &
1122 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1123}
1124
35754c98 1125static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1126{
35754c98 1127 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1128}
1129
31299944 1130static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1131{
04547156
SY
1132 return vmcs_config.cpu_based_2nd_exec_ctrl &
1133 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1134}
1135
31299944 1136static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1137{
1138 return vmcs_config.cpu_based_2nd_exec_ctrl &
1139 SECONDARY_EXEC_RDTSCP;
1140}
1141
ad756a16
MJ
1142static inline bool cpu_has_vmx_invpcid(void)
1143{
1144 return vmcs_config.cpu_based_2nd_exec_ctrl &
1145 SECONDARY_EXEC_ENABLE_INVPCID;
1146}
1147
31299944 1148static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1149{
1150 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1151}
1152
f5f48ee1
SY
1153static inline bool cpu_has_vmx_wbinvd_exit(void)
1154{
1155 return vmcs_config.cpu_based_2nd_exec_ctrl &
1156 SECONDARY_EXEC_WBINVD_EXITING;
1157}
1158
abc4fc58
AG
1159static inline bool cpu_has_vmx_shadow_vmcs(void)
1160{
1161 u64 vmx_msr;
1162 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1163 /* check if the cpu supports writing r/o exit information fields */
1164 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1165 return false;
1166
1167 return vmcs_config.cpu_based_2nd_exec_ctrl &
1168 SECONDARY_EXEC_SHADOW_VMCS;
1169}
1170
843e4330
KH
1171static inline bool cpu_has_vmx_pml(void)
1172{
1173 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1174}
1175
64903d61
HZ
1176static inline bool cpu_has_vmx_tsc_scaling(void)
1177{
1178 return vmcs_config.cpu_based_2nd_exec_ctrl &
1179 SECONDARY_EXEC_TSC_SCALING;
1180}
1181
04547156
SY
1182static inline bool report_flexpriority(void)
1183{
1184 return flexpriority_enabled;
1185}
1186
fe3ef05c
NHE
1187static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1188{
1189 return vmcs12->cpu_based_vm_exec_control & bit;
1190}
1191
1192static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1193{
1194 return (vmcs12->cpu_based_vm_exec_control &
1195 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1196 (vmcs12->secondary_vm_exec_control & bit);
1197}
1198
f5c4368f 1199static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1200{
1201 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1202}
1203
f4124500
JK
1204static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1205{
1206 return vmcs12->pin_based_vm_exec_control &
1207 PIN_BASED_VMX_PREEMPTION_TIMER;
1208}
1209
155a97a3
NHE
1210static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1211{
1212 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1213}
1214
81dc01f7
WL
1215static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1216{
1217 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1218 vmx_xsaves_supported();
1219}
1220
f2b93280
WV
1221static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1222{
1223 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1224}
1225
5c614b35
WL
1226static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1227{
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1229}
1230
82f0dd4b
WV
1231static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1232{
1233 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1234}
1235
608406e2
WV
1236static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1237{
1238 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1239}
1240
705699a1
WV
1241static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1242{
1243 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1244}
1245
644d711a
NHE
1246static inline bool is_exception(u32 intr_info)
1247{
1248 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1249 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1250}
1251
533558bc
JK
1252static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1253 u32 exit_intr_info,
1254 unsigned long exit_qualification);
7c177938
NHE
1255static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1256 struct vmcs12 *vmcs12,
1257 u32 reason, unsigned long qualification);
1258
8b9cf98c 1259static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1260{
1261 int i;
1262
a2fa3e9f 1263 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1264 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1265 return i;
1266 return -1;
1267}
1268
2384d2b3
SY
1269static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1270{
1271 struct {
1272 u64 vpid : 16;
1273 u64 rsvd : 48;
1274 u64 gva;
1275 } operand = { vpid, 0, gva };
1276
4ecac3fd 1277 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1278 /* CF==1 or ZF==1 --> rc = -1 */
1279 "; ja 1f ; ud2 ; 1:"
1280 : : "a"(&operand), "c"(ext) : "cc", "memory");
1281}
1282
1439442c
SY
1283static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1284{
1285 struct {
1286 u64 eptp, gpa;
1287 } operand = {eptp, gpa};
1288
4ecac3fd 1289 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1290 /* CF==1 or ZF==1 --> rc = -1 */
1291 "; ja 1f ; ud2 ; 1:\n"
1292 : : "a" (&operand), "c" (ext) : "cc", "memory");
1293}
1294
26bb0981 1295static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1296{
1297 int i;
1298
8b9cf98c 1299 i = __find_msr_index(vmx, msr);
a75beee6 1300 if (i >= 0)
a2fa3e9f 1301 return &vmx->guest_msrs[i];
8b6d44c7 1302 return NULL;
7725f0ba
AK
1303}
1304
6aa8b732
AK
1305static void vmcs_clear(struct vmcs *vmcs)
1306{
1307 u64 phys_addr = __pa(vmcs);
1308 u8 error;
1309
4ecac3fd 1310 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1311 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1312 : "cc", "memory");
1313 if (error)
1314 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1315 vmcs, phys_addr);
1316}
1317
d462b819
NHE
1318static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1319{
1320 vmcs_clear(loaded_vmcs->vmcs);
1321 loaded_vmcs->cpu = -1;
1322 loaded_vmcs->launched = 0;
1323}
1324
7725b894
DX
1325static void vmcs_load(struct vmcs *vmcs)
1326{
1327 u64 phys_addr = __pa(vmcs);
1328 u8 error;
1329
1330 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1331 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1332 : "cc", "memory");
1333 if (error)
2844d849 1334 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1335 vmcs, phys_addr);
1336}
1337
2965faa5 1338#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1339/*
1340 * This bitmap is used to indicate whether the vmclear
1341 * operation is enabled on all cpus. All disabled by
1342 * default.
1343 */
1344static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1345
1346static inline void crash_enable_local_vmclear(int cpu)
1347{
1348 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1349}
1350
1351static inline void crash_disable_local_vmclear(int cpu)
1352{
1353 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1354}
1355
1356static inline int crash_local_vmclear_enabled(int cpu)
1357{
1358 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1359}
1360
1361static void crash_vmclear_local_loaded_vmcss(void)
1362{
1363 int cpu = raw_smp_processor_id();
1364 struct loaded_vmcs *v;
1365
1366 if (!crash_local_vmclear_enabled(cpu))
1367 return;
1368
1369 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1370 loaded_vmcss_on_cpu_link)
1371 vmcs_clear(v->vmcs);
1372}
1373#else
1374static inline void crash_enable_local_vmclear(int cpu) { }
1375static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1376#endif /* CONFIG_KEXEC_CORE */
8f536b76 1377
d462b819 1378static void __loaded_vmcs_clear(void *arg)
6aa8b732 1379{
d462b819 1380 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1381 int cpu = raw_smp_processor_id();
6aa8b732 1382
d462b819
NHE
1383 if (loaded_vmcs->cpu != cpu)
1384 return; /* vcpu migration can race with cpu offline */
1385 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1386 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1387 crash_disable_local_vmclear(cpu);
d462b819 1388 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1389
1390 /*
1391 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1392 * is before setting loaded_vmcs->vcpu to -1 which is done in
1393 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1394 * then adds the vmcs into percpu list before it is deleted.
1395 */
1396 smp_wmb();
1397
d462b819 1398 loaded_vmcs_init(loaded_vmcs);
8f536b76 1399 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1400}
1401
d462b819 1402static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1403{
e6c7d321
XG
1404 int cpu = loaded_vmcs->cpu;
1405
1406 if (cpu != -1)
1407 smp_call_function_single(cpu,
1408 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1409}
1410
dd5f5341 1411static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1412{
dd5f5341 1413 if (vpid == 0)
2384d2b3
SY
1414 return;
1415
518c8aee 1416 if (cpu_has_vmx_invvpid_single())
dd5f5341 1417 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1418}
1419
b9d762fa
GJ
1420static inline void vpid_sync_vcpu_global(void)
1421{
1422 if (cpu_has_vmx_invvpid_global())
1423 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1424}
1425
dd5f5341 1426static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1427{
1428 if (cpu_has_vmx_invvpid_single())
dd5f5341 1429 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1430 else
1431 vpid_sync_vcpu_global();
1432}
1433
1439442c
SY
1434static inline void ept_sync_global(void)
1435{
1436 if (cpu_has_vmx_invept_global())
1437 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1438}
1439
1440static inline void ept_sync_context(u64 eptp)
1441{
089d034e 1442 if (enable_ept) {
1439442c
SY
1443 if (cpu_has_vmx_invept_context())
1444 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1445 else
1446 ept_sync_global();
1447 }
1448}
1449
96304217 1450static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1451{
5e520e62 1452 unsigned long value;
6aa8b732 1453
5e520e62
AK
1454 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1455 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1456 return value;
1457}
1458
96304217 1459static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1460{
1461 return vmcs_readl(field);
1462}
1463
96304217 1464static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1465{
1466 return vmcs_readl(field);
1467}
1468
96304217 1469static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1470{
05b3e0c2 1471#ifdef CONFIG_X86_64
6aa8b732
AK
1472 return vmcs_readl(field);
1473#else
1474 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1475#endif
1476}
1477
e52de1b8
AK
1478static noinline void vmwrite_error(unsigned long field, unsigned long value)
1479{
1480 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1481 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1482 dump_stack();
1483}
1484
6aa8b732
AK
1485static void vmcs_writel(unsigned long field, unsigned long value)
1486{
1487 u8 error;
1488
4ecac3fd 1489 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1490 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1491 if (unlikely(error))
1492 vmwrite_error(field, value);
6aa8b732
AK
1493}
1494
1495static void vmcs_write16(unsigned long field, u16 value)
1496{
1497 vmcs_writel(field, value);
1498}
1499
1500static void vmcs_write32(unsigned long field, u32 value)
1501{
1502 vmcs_writel(field, value);
1503}
1504
1505static void vmcs_write64(unsigned long field, u64 value)
1506{
6aa8b732 1507 vmcs_writel(field, value);
7682f2d0 1508#ifndef CONFIG_X86_64
6aa8b732
AK
1509 asm volatile ("");
1510 vmcs_writel(field+1, value >> 32);
1511#endif
1512}
1513
2ab455cc
AL
1514static void vmcs_clear_bits(unsigned long field, u32 mask)
1515{
1516 vmcs_writel(field, vmcs_readl(field) & ~mask);
1517}
1518
1519static void vmcs_set_bits(unsigned long field, u32 mask)
1520{
1521 vmcs_writel(field, vmcs_readl(field) | mask);
1522}
1523
2961e876
GN
1524static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1525{
1526 vmcs_write32(VM_ENTRY_CONTROLS, val);
1527 vmx->vm_entry_controls_shadow = val;
1528}
1529
1530static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1531{
1532 if (vmx->vm_entry_controls_shadow != val)
1533 vm_entry_controls_init(vmx, val);
1534}
1535
1536static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1537{
1538 return vmx->vm_entry_controls_shadow;
1539}
1540
1541
1542static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1543{
1544 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1545}
1546
1547static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1548{
1549 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1550}
1551
1552static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1553{
1554 vmcs_write32(VM_EXIT_CONTROLS, val);
1555 vmx->vm_exit_controls_shadow = val;
1556}
1557
1558static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1559{
1560 if (vmx->vm_exit_controls_shadow != val)
1561 vm_exit_controls_init(vmx, val);
1562}
1563
1564static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1565{
1566 return vmx->vm_exit_controls_shadow;
1567}
1568
1569
1570static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1571{
1572 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1573}
1574
1575static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1576{
1577 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1578}
1579
2fb92db1
AK
1580static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1581{
1582 vmx->segment_cache.bitmask = 0;
1583}
1584
1585static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1586 unsigned field)
1587{
1588 bool ret;
1589 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1590
1591 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1592 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1593 vmx->segment_cache.bitmask = 0;
1594 }
1595 ret = vmx->segment_cache.bitmask & mask;
1596 vmx->segment_cache.bitmask |= mask;
1597 return ret;
1598}
1599
1600static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1601{
1602 u16 *p = &vmx->segment_cache.seg[seg].selector;
1603
1604 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1605 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1606 return *p;
1607}
1608
1609static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1610{
1611 ulong *p = &vmx->segment_cache.seg[seg].base;
1612
1613 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1614 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1615 return *p;
1616}
1617
1618static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1619{
1620 u32 *p = &vmx->segment_cache.seg[seg].limit;
1621
1622 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1623 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1624 return *p;
1625}
1626
1627static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1628{
1629 u32 *p = &vmx->segment_cache.seg[seg].ar;
1630
1631 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1632 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1633 return *p;
1634}
1635
abd3f2d6
AK
1636static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1637{
1638 u32 eb;
1639
fd7373cc 1640 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
54a20552 1641 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1642 if ((vcpu->guest_debug &
1643 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1644 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1645 eb |= 1u << BP_VECTOR;
7ffd92c5 1646 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1647 eb = ~0;
089d034e 1648 if (enable_ept)
1439442c 1649 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1650 if (vcpu->fpu_active)
1651 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1652
1653 /* When we are running a nested L2 guest and L1 specified for it a
1654 * certain exception bitmap, we must trap the same exceptions and pass
1655 * them to L1. When running L2, we will only handle the exceptions
1656 * specified above if L1 did not want them.
1657 */
1658 if (is_guest_mode(vcpu))
1659 eb |= get_vmcs12(vcpu)->exception_bitmap;
1660
abd3f2d6
AK
1661 vmcs_write32(EXCEPTION_BITMAP, eb);
1662}
1663
2961e876
GN
1664static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1665 unsigned long entry, unsigned long exit)
8bf00a52 1666{
2961e876
GN
1667 vm_entry_controls_clearbit(vmx, entry);
1668 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1669}
1670
61d2ef2c
AK
1671static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1672{
1673 unsigned i;
1674 struct msr_autoload *m = &vmx->msr_autoload;
1675
8bf00a52
GN
1676 switch (msr) {
1677 case MSR_EFER:
1678 if (cpu_has_load_ia32_efer) {
2961e876
GN
1679 clear_atomic_switch_msr_special(vmx,
1680 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1681 VM_EXIT_LOAD_IA32_EFER);
1682 return;
1683 }
1684 break;
1685 case MSR_CORE_PERF_GLOBAL_CTRL:
1686 if (cpu_has_load_perf_global_ctrl) {
2961e876 1687 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1688 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1689 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1690 return;
1691 }
1692 break;
110312c8
AK
1693 }
1694
61d2ef2c
AK
1695 for (i = 0; i < m->nr; ++i)
1696 if (m->guest[i].index == msr)
1697 break;
1698
1699 if (i == m->nr)
1700 return;
1701 --m->nr;
1702 m->guest[i] = m->guest[m->nr];
1703 m->host[i] = m->host[m->nr];
1704 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1705 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1706}
1707
2961e876
GN
1708static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1709 unsigned long entry, unsigned long exit,
1710 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1711 u64 guest_val, u64 host_val)
8bf00a52
GN
1712{
1713 vmcs_write64(guest_val_vmcs, guest_val);
1714 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1715 vm_entry_controls_setbit(vmx, entry);
1716 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1717}
1718
61d2ef2c
AK
1719static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1720 u64 guest_val, u64 host_val)
1721{
1722 unsigned i;
1723 struct msr_autoload *m = &vmx->msr_autoload;
1724
8bf00a52
GN
1725 switch (msr) {
1726 case MSR_EFER:
1727 if (cpu_has_load_ia32_efer) {
2961e876
GN
1728 add_atomic_switch_msr_special(vmx,
1729 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1730 VM_EXIT_LOAD_IA32_EFER,
1731 GUEST_IA32_EFER,
1732 HOST_IA32_EFER,
1733 guest_val, host_val);
1734 return;
1735 }
1736 break;
1737 case MSR_CORE_PERF_GLOBAL_CTRL:
1738 if (cpu_has_load_perf_global_ctrl) {
2961e876 1739 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1740 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1741 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1742 GUEST_IA32_PERF_GLOBAL_CTRL,
1743 HOST_IA32_PERF_GLOBAL_CTRL,
1744 guest_val, host_val);
1745 return;
1746 }
1747 break;
110312c8
AK
1748 }
1749
61d2ef2c
AK
1750 for (i = 0; i < m->nr; ++i)
1751 if (m->guest[i].index == msr)
1752 break;
1753
e7fc6f93 1754 if (i == NR_AUTOLOAD_MSRS) {
60266204 1755 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1756 "Can't add msr %x\n", msr);
1757 return;
1758 } else if (i == m->nr) {
61d2ef2c
AK
1759 ++m->nr;
1760 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1761 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1762 }
1763
1764 m->guest[i].index = msr;
1765 m->guest[i].value = guest_val;
1766 m->host[i].index = msr;
1767 m->host[i].value = host_val;
1768}
1769
33ed6329
AK
1770static void reload_tss(void)
1771{
33ed6329
AK
1772 /*
1773 * VT restores TR but not its size. Useless.
1774 */
89cbc767 1775 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1776 struct desc_struct *descs;
33ed6329 1777
d359192f 1778 descs = (void *)gdt->address;
33ed6329
AK
1779 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1780 load_TR_desc();
33ed6329
AK
1781}
1782
92c0d900 1783static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1784{
3a34a881 1785 u64 guest_efer;
51c6cf66
AK
1786 u64 ignore_bits;
1787
f6801dff 1788 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1789
51c6cf66 1790 /*
0fa06071 1791 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1792 * outside long mode
1793 */
1794 ignore_bits = EFER_NX | EFER_SCE;
1795#ifdef CONFIG_X86_64
1796 ignore_bits |= EFER_LMA | EFER_LME;
1797 /* SCE is meaningful only in long mode on Intel */
1798 if (guest_efer & EFER_LMA)
1799 ignore_bits &= ~(u64)EFER_SCE;
1800#endif
51c6cf66
AK
1801 guest_efer &= ~ignore_bits;
1802 guest_efer |= host_efer & ignore_bits;
26bb0981 1803 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1804 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1805
1806 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1807
1808 /*
1809 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1810 * On CPUs that support "load IA32_EFER", always switch EFER
1811 * atomically, since it's faster than switching it manually.
1812 */
1813 if (cpu_has_load_ia32_efer ||
1814 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1815 guest_efer = vmx->vcpu.arch.efer;
1816 if (!(guest_efer & EFER_LMA))
1817 guest_efer &= ~EFER_LME;
54b98bff
AL
1818 if (guest_efer != host_efer)
1819 add_atomic_switch_msr(vmx, MSR_EFER,
1820 guest_efer, host_efer);
84ad33ef
AK
1821 return false;
1822 }
1823
26bb0981 1824 return true;
51c6cf66
AK
1825}
1826
2d49ec72
GN
1827static unsigned long segment_base(u16 selector)
1828{
89cbc767 1829 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1830 struct desc_struct *d;
1831 unsigned long table_base;
1832 unsigned long v;
1833
1834 if (!(selector & ~3))
1835 return 0;
1836
d359192f 1837 table_base = gdt->address;
2d49ec72
GN
1838
1839 if (selector & 4) { /* from ldt */
1840 u16 ldt_selector = kvm_read_ldt();
1841
1842 if (!(ldt_selector & ~3))
1843 return 0;
1844
1845 table_base = segment_base(ldt_selector);
1846 }
1847 d = (struct desc_struct *)(table_base + (selector & ~7));
1848 v = get_desc_base(d);
1849#ifdef CONFIG_X86_64
1850 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1851 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1852#endif
1853 return v;
1854}
1855
1856static inline unsigned long kvm_read_tr_base(void)
1857{
1858 u16 tr;
1859 asm("str %0" : "=g"(tr));
1860 return segment_base(tr);
1861}
1862
04d2cc77 1863static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1864{
04d2cc77 1865 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1866 int i;
04d2cc77 1867
a2fa3e9f 1868 if (vmx->host_state.loaded)
33ed6329
AK
1869 return;
1870
a2fa3e9f 1871 vmx->host_state.loaded = 1;
33ed6329
AK
1872 /*
1873 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1874 * allow segment selectors with cpl > 0 or ti == 1.
1875 */
d6e88aec 1876 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1877 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1878 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1879 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1880 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1881 vmx->host_state.fs_reload_needed = 0;
1882 } else {
33ed6329 1883 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1884 vmx->host_state.fs_reload_needed = 1;
33ed6329 1885 }
9581d442 1886 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1887 if (!(vmx->host_state.gs_sel & 7))
1888 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1889 else {
1890 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1891 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1892 }
1893
b2da15ac
AK
1894#ifdef CONFIG_X86_64
1895 savesegment(ds, vmx->host_state.ds_sel);
1896 savesegment(es, vmx->host_state.es_sel);
1897#endif
1898
33ed6329
AK
1899#ifdef CONFIG_X86_64
1900 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1901 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1902#else
a2fa3e9f
GH
1903 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1904 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1905#endif
707c0874
AK
1906
1907#ifdef CONFIG_X86_64
c8770e7b
AK
1908 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1909 if (is_long_mode(&vmx->vcpu))
44ea2b17 1910 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1911#endif
da8999d3
LJ
1912 if (boot_cpu_has(X86_FEATURE_MPX))
1913 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
1914 for (i = 0; i < vmx->save_nmsrs; ++i)
1915 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1916 vmx->guest_msrs[i].data,
1917 vmx->guest_msrs[i].mask);
33ed6329
AK
1918}
1919
a9b21b62 1920static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1921{
a2fa3e9f 1922 if (!vmx->host_state.loaded)
33ed6329
AK
1923 return;
1924
e1beb1d3 1925 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1926 vmx->host_state.loaded = 0;
c8770e7b
AK
1927#ifdef CONFIG_X86_64
1928 if (is_long_mode(&vmx->vcpu))
1929 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1930#endif
152d3f2f 1931 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1932 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1933#ifdef CONFIG_X86_64
9581d442 1934 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1935#else
1936 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1937#endif
33ed6329 1938 }
0a77fe4c
AK
1939 if (vmx->host_state.fs_reload_needed)
1940 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1941#ifdef CONFIG_X86_64
1942 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1943 loadsegment(ds, vmx->host_state.ds_sel);
1944 loadsegment(es, vmx->host_state.es_sel);
1945 }
b2da15ac 1946#endif
152d3f2f 1947 reload_tss();
44ea2b17 1948#ifdef CONFIG_X86_64
c8770e7b 1949 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1950#endif
da8999d3
LJ
1951 if (vmx->host_state.msr_host_bndcfgs)
1952 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
1953 /*
1954 * If the FPU is not active (through the host task or
1955 * the guest vcpu), then restore the cr0.TS bit.
1956 */
3c6dffa9 1957 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 1958 stts();
89cbc767 1959 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
1960}
1961
a9b21b62
AK
1962static void vmx_load_host_state(struct vcpu_vmx *vmx)
1963{
1964 preempt_disable();
1965 __vmx_load_host_state(vmx);
1966 preempt_enable();
1967}
1968
28b835d6
FW
1969static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1970{
1971 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1972 struct pi_desc old, new;
1973 unsigned int dest;
1974
1975 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1976 !irq_remapping_cap(IRQ_POSTING_CAP))
1977 return;
1978
1979 do {
1980 old.control = new.control = pi_desc->control;
1981
1982 /*
1983 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
1984 * are two possible cases:
1985 * 1. After running 'pre_block', context switch
1986 * happened. For this case, 'sn' was set in
1987 * vmx_vcpu_put(), so we need to clear it here.
1988 * 2. After running 'pre_block', we were blocked,
1989 * and woken up by some other guy. For this case,
1990 * we don't need to do anything, 'pi_post_block'
1991 * will do everything for us. However, we cannot
1992 * check whether it is case #1 or case #2 here
1993 * (maybe, not needed), so we also clear sn here,
1994 * I think it is not a big deal.
1995 */
1996 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
1997 if (vcpu->cpu != cpu) {
1998 dest = cpu_physical_id(cpu);
1999
2000 if (x2apic_enabled())
2001 new.ndst = dest;
2002 else
2003 new.ndst = (dest << 8) & 0xFF00;
2004 }
2005
2006 /* set 'NV' to 'notification vector' */
2007 new.nv = POSTED_INTR_VECTOR;
2008 }
2009
2010 /* Allow posting non-urgent interrupts */
2011 new.sn = 0;
2012 } while (cmpxchg(&pi_desc->control, old.control,
2013 new.control) != old.control);
2014}
6aa8b732
AK
2015/*
2016 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2017 * vcpu mutex is already taken.
2018 */
15ad7146 2019static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2020{
a2fa3e9f 2021 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2022 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 2023
4610c9cc
DX
2024 if (!vmm_exclusive)
2025 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
2026 else if (vmx->loaded_vmcs->cpu != cpu)
2027 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2028
d462b819
NHE
2029 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2030 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2031 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
2032 }
2033
d462b819 2034 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 2035 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
2036 unsigned long sysenter_esp;
2037
a8eeb04a 2038 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2039 local_irq_disable();
8f536b76 2040 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2041
2042 /*
2043 * Read loaded_vmcs->cpu should be before fetching
2044 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2045 * See the comments in __loaded_vmcs_clear().
2046 */
2047 smp_rmb();
2048
d462b819
NHE
2049 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2050 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2051 crash_enable_local_vmclear(cpu);
92fe13be
DX
2052 local_irq_enable();
2053
6aa8b732
AK
2054 /*
2055 * Linux uses per-cpu TSS and GDT, so set these when switching
2056 * processors.
2057 */
d6e88aec 2058 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2059 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2060
2061 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2062 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18
HZ
2063
2064 /* Setup TSC multiplier */
2065 if (cpu_has_vmx_tsc_scaling())
2066 vmcs_write64(TSC_MULTIPLIER,
2067 vcpu->arch.tsc_scaling_ratio);
2068
d462b819 2069 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2070 }
28b835d6
FW
2071
2072 vmx_vcpu_pi_load(vcpu, cpu);
2073}
2074
2075static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2076{
2077 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2078
2079 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2080 !irq_remapping_cap(IRQ_POSTING_CAP))
2081 return;
2082
2083 /* Set SN when the vCPU is preempted */
2084 if (vcpu->preempted)
2085 pi_set_sn(pi_desc);
6aa8b732
AK
2086}
2087
2088static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2089{
28b835d6
FW
2090 vmx_vcpu_pi_put(vcpu);
2091
a9b21b62 2092 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2093 if (!vmm_exclusive) {
d462b819
NHE
2094 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2095 vcpu->cpu = -1;
4610c9cc
DX
2096 kvm_cpu_vmxoff();
2097 }
6aa8b732
AK
2098}
2099
5fd86fcf
AK
2100static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2101{
81231c69
AK
2102 ulong cr0;
2103
5fd86fcf
AK
2104 if (vcpu->fpu_active)
2105 return;
2106 vcpu->fpu_active = 1;
81231c69
AK
2107 cr0 = vmcs_readl(GUEST_CR0);
2108 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2109 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2110 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2111 update_exception_bitmap(vcpu);
edcafe3c 2112 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2113 if (is_guest_mode(vcpu))
2114 vcpu->arch.cr0_guest_owned_bits &=
2115 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2116 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2117}
2118
edcafe3c
AK
2119static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2120
fe3ef05c
NHE
2121/*
2122 * Return the cr0 value that a nested guest would read. This is a combination
2123 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2124 * its hypervisor (cr0_read_shadow).
2125 */
2126static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2127{
2128 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2129 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2130}
2131static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2132{
2133 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2134 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2135}
2136
5fd86fcf
AK
2137static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2138{
36cf24e0
NHE
2139 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2140 * set this *before* calling this function.
2141 */
edcafe3c 2142 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2143 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2144 update_exception_bitmap(vcpu);
edcafe3c
AK
2145 vcpu->arch.cr0_guest_owned_bits = 0;
2146 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2147 if (is_guest_mode(vcpu)) {
2148 /*
2149 * L1's specified read shadow might not contain the TS bit,
2150 * so now that we turned on shadowing of this bit, we need to
2151 * set this bit of the shadow. Like in nested_vmx_run we need
2152 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2153 * up-to-date here because we just decached cr0.TS (and we'll
2154 * only update vmcs12->guest_cr0 on nested exit).
2155 */
2156 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2157 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2158 (vcpu->arch.cr0 & X86_CR0_TS);
2159 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2160 } else
2161 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2162}
2163
6aa8b732
AK
2164static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2165{
78ac8b47 2166 unsigned long rflags, save_rflags;
345dcaa8 2167
6de12732
AK
2168 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2169 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2170 rflags = vmcs_readl(GUEST_RFLAGS);
2171 if (to_vmx(vcpu)->rmode.vm86_active) {
2172 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2173 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2174 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2175 }
2176 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2177 }
6de12732 2178 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2179}
2180
2181static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2182{
6de12732
AK
2183 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2184 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2185 if (to_vmx(vcpu)->rmode.vm86_active) {
2186 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2187 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2188 }
6aa8b732
AK
2189 vmcs_writel(GUEST_RFLAGS, rflags);
2190}
2191
37ccdcbe 2192static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2193{
2194 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2195 int ret = 0;
2196
2197 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2198 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2199 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2200 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2201
37ccdcbe 2202 return ret;
2809f5d2
GC
2203}
2204
2205static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2206{
2207 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2208 u32 interruptibility = interruptibility_old;
2209
2210 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2211
48005f64 2212 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2213 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2214 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2215 interruptibility |= GUEST_INTR_STATE_STI;
2216
2217 if ((interruptibility != interruptibility_old))
2218 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2219}
2220
6aa8b732
AK
2221static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2222{
2223 unsigned long rip;
6aa8b732 2224
5fdbf976 2225 rip = kvm_rip_read(vcpu);
6aa8b732 2226 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2227 kvm_rip_write(vcpu, rip);
6aa8b732 2228
2809f5d2
GC
2229 /* skipping an emulated instruction also counts */
2230 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2231}
2232
0b6ac343
NHE
2233/*
2234 * KVM wants to inject page-faults which it got to the guest. This function
2235 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2236 */
e011c663 2237static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2238{
2239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2240
e011c663 2241 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2242 return 0;
2243
533558bc
JK
2244 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2245 vmcs_read32(VM_EXIT_INTR_INFO),
2246 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2247 return 1;
2248}
2249
298101da 2250static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2251 bool has_error_code, u32 error_code,
2252 bool reinject)
298101da 2253{
77ab6db0 2254 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2255 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2256
e011c663
GN
2257 if (!reinject && is_guest_mode(vcpu) &&
2258 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2259 return;
2260
8ab2d2e2 2261 if (has_error_code) {
77ab6db0 2262 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2263 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2264 }
77ab6db0 2265
7ffd92c5 2266 if (vmx->rmode.vm86_active) {
71f9833b
SH
2267 int inc_eip = 0;
2268 if (kvm_exception_is_soft(nr))
2269 inc_eip = vcpu->arch.event_exit_inst_len;
2270 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2271 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2272 return;
2273 }
2274
66fd3f7f
GN
2275 if (kvm_exception_is_soft(nr)) {
2276 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2277 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2278 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2279 } else
2280 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2281
2282 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2283}
2284
4e47c7a6
SY
2285static bool vmx_rdtscp_supported(void)
2286{
2287 return cpu_has_vmx_rdtscp();
2288}
2289
ad756a16
MJ
2290static bool vmx_invpcid_supported(void)
2291{
2292 return cpu_has_vmx_invpcid() && enable_ept;
2293}
2294
a75beee6
ED
2295/*
2296 * Swap MSR entry in host/guest MSR entry array.
2297 */
8b9cf98c 2298static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2299{
26bb0981 2300 struct shared_msr_entry tmp;
a2fa3e9f
GH
2301
2302 tmp = vmx->guest_msrs[to];
2303 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2304 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2305}
2306
8d14695f
YZ
2307static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2308{
2309 unsigned long *msr_bitmap;
2310
670125bd
WV
2311 if (is_guest_mode(vcpu))
2312 msr_bitmap = vmx_msr_bitmap_nested;
8a9781f7 2313 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
8d14695f
YZ
2314 if (is_long_mode(vcpu))
2315 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2316 else
2317 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2318 } else {
2319 if (is_long_mode(vcpu))
2320 msr_bitmap = vmx_msr_bitmap_longmode;
2321 else
2322 msr_bitmap = vmx_msr_bitmap_legacy;
2323 }
2324
2325 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2326}
2327
e38aea3e
AK
2328/*
2329 * Set up the vmcs to automatically save and restore system
2330 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2331 * mode, as fiddling with msrs is very expensive.
2332 */
8b9cf98c 2333static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2334{
26bb0981 2335 int save_nmsrs, index;
e38aea3e 2336
a75beee6
ED
2337 save_nmsrs = 0;
2338#ifdef CONFIG_X86_64
8b9cf98c 2339 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2340 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2341 if (index >= 0)
8b9cf98c
RR
2342 move_msr_up(vmx, index, save_nmsrs++);
2343 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2344 if (index >= 0)
8b9cf98c
RR
2345 move_msr_up(vmx, index, save_nmsrs++);
2346 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2347 if (index >= 0)
8b9cf98c 2348 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2349 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2350 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2351 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2352 /*
8c06585d 2353 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2354 * if efer.sce is enabled.
2355 */
8c06585d 2356 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2357 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2358 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2359 }
2360#endif
92c0d900
AK
2361 index = __find_msr_index(vmx, MSR_EFER);
2362 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2363 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2364
26bb0981 2365 vmx->save_nmsrs = save_nmsrs;
5897297b 2366
8d14695f
YZ
2367 if (cpu_has_vmx_msr_bitmap())
2368 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2369}
2370
6aa8b732
AK
2371/*
2372 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2373 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2374 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2375 */
be7b263e 2376static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2377{
2378 u64 host_tsc, tsc_offset;
2379
4ea1636b 2380 host_tsc = rdtsc();
6aa8b732 2381 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2382 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2383}
2384
d5c1785d
NHE
2385/*
2386 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2387 * counter, even if a nested guest (L2) is currently running.
2388 */
48d89b92 2389static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2390{
886b470c 2391 u64 tsc_offset;
d5c1785d 2392
d5c1785d
NHE
2393 tsc_offset = is_guest_mode(vcpu) ?
2394 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2395 vmcs_read64(TSC_OFFSET);
2396 return host_tsc + tsc_offset;
2397}
2398
ba904635
WA
2399static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2400{
2401 return vmcs_read64(TSC_OFFSET);
2402}
2403
6aa8b732 2404/*
99e3e30a 2405 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2406 */
99e3e30a 2407static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2408{
27fc51b2 2409 if (is_guest_mode(vcpu)) {
7991825b 2410 /*
27fc51b2
NHE
2411 * We're here if L1 chose not to trap WRMSR to TSC. According
2412 * to the spec, this should set L1's TSC; The offset that L1
2413 * set for L2 remains unchanged, and still needs to be added
2414 * to the newly set TSC to get L2's TSC.
7991825b 2415 */
27fc51b2
NHE
2416 struct vmcs12 *vmcs12;
2417 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2418 /* recalculate vmcs02.TSC_OFFSET: */
2419 vmcs12 = get_vmcs12(vcpu);
2420 vmcs_write64(TSC_OFFSET, offset +
2421 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2422 vmcs12->tsc_offset : 0));
2423 } else {
489223ed
YY
2424 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2425 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2426 vmcs_write64(TSC_OFFSET, offset);
2427 }
6aa8b732
AK
2428}
2429
58ea6767 2430static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
e48672fa
ZA
2431{
2432 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2433
e48672fa 2434 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2435 if (is_guest_mode(vcpu)) {
2436 /* Even when running L2, the adjustment needs to apply to L1 */
2437 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2438 } else
2439 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2440 offset + adjustment);
e48672fa
ZA
2441}
2442
801d3424
NHE
2443static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2444{
2445 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2446 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2447}
2448
2449/*
2450 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2451 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2452 * all guests if the "nested" module option is off, and can also be disabled
2453 * for a single guest by disabling its VMX cpuid bit.
2454 */
2455static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2456{
2457 return nested && guest_cpuid_has_vmx(vcpu);
2458}
2459
b87a51ae
NHE
2460/*
2461 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2462 * returned for the various VMX controls MSRs when nested VMX is enabled.
2463 * The same values should also be used to verify that vmcs12 control fields are
2464 * valid during nested entry from L1 to L2.
2465 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2466 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2467 * bit in the high half is on if the corresponding bit in the control field
2468 * may be on. See also vmx_control_verify().
b87a51ae 2469 */
b9c237bb 2470static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2471{
2472 /*
2473 * Note that as a general rule, the high half of the MSRs (bits in
2474 * the control fields which may be 1) should be initialized by the
2475 * intersection of the underlying hardware's MSR (i.e., features which
2476 * can be supported) and the list of features we want to expose -
2477 * because they are known to be properly supported in our code.
2478 * Also, usually, the low half of the MSRs (bits which must be 1) can
2479 * be set to 0, meaning that L1 may turn off any of these bits. The
2480 * reason is that if one of these bits is necessary, it will appear
2481 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2482 * fields of vmcs01 and vmcs02, will turn these bits off - and
2483 * nested_vmx_exit_handled() will not pass related exits to L1.
2484 * These rules have exceptions below.
2485 */
2486
2487 /* pin-based controls */
eabeaacc 2488 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2489 vmx->nested.nested_vmx_pinbased_ctls_low,
2490 vmx->nested.nested_vmx_pinbased_ctls_high);
2491 vmx->nested.nested_vmx_pinbased_ctls_low |=
2492 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2493 vmx->nested.nested_vmx_pinbased_ctls_high &=
2494 PIN_BASED_EXT_INTR_MASK |
2495 PIN_BASED_NMI_EXITING |
2496 PIN_BASED_VIRTUAL_NMIS;
2497 vmx->nested.nested_vmx_pinbased_ctls_high |=
2498 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2499 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2500 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2501 vmx->nested.nested_vmx_pinbased_ctls_high |=
2502 PIN_BASED_POSTED_INTR;
b87a51ae 2503
3dbcd8da 2504 /* exit controls */
c0dfee58 2505 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2506 vmx->nested.nested_vmx_exit_ctls_low,
2507 vmx->nested.nested_vmx_exit_ctls_high);
2508 vmx->nested.nested_vmx_exit_ctls_low =
2509 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2510
b9c237bb 2511 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2512#ifdef CONFIG_X86_64
c0dfee58 2513 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2514#endif
f4124500 2515 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2516 vmx->nested.nested_vmx_exit_ctls_high |=
2517 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2518 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2519 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2520
36be0b9d 2521 if (vmx_mpx_supported())
b9c237bb 2522 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2523
2996fca0 2524 /* We support free control of debug control saving. */
b9c237bb
WV
2525 vmx->nested.nested_vmx_true_exit_ctls_low =
2526 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2527 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2528
b87a51ae
NHE
2529 /* entry controls */
2530 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2531 vmx->nested.nested_vmx_entry_ctls_low,
2532 vmx->nested.nested_vmx_entry_ctls_high);
2533 vmx->nested.nested_vmx_entry_ctls_low =
2534 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2535 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2536#ifdef CONFIG_X86_64
2537 VM_ENTRY_IA32E_MODE |
2538#endif
2539 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2540 vmx->nested.nested_vmx_entry_ctls_high |=
2541 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
36be0b9d 2542 if (vmx_mpx_supported())
b9c237bb 2543 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2544
2996fca0 2545 /* We support free control of debug control loading. */
b9c237bb
WV
2546 vmx->nested.nested_vmx_true_entry_ctls_low =
2547 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2548 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2549
b87a51ae
NHE
2550 /* cpu-based controls */
2551 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2552 vmx->nested.nested_vmx_procbased_ctls_low,
2553 vmx->nested.nested_vmx_procbased_ctls_high);
2554 vmx->nested.nested_vmx_procbased_ctls_low =
2555 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2556 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2557 CPU_BASED_VIRTUAL_INTR_PENDING |
2558 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2559 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2560 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2561 CPU_BASED_CR3_STORE_EXITING |
2562#ifdef CONFIG_X86_64
2563 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2564#endif
2565 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2566 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2567 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2568 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2569 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2570 /*
2571 * We can allow some features even when not supported by the
2572 * hardware. For example, L1 can specify an MSR bitmap - and we
2573 * can use it to avoid exits to L1 - even when L0 runs L2
2574 * without MSR bitmaps.
2575 */
b9c237bb
WV
2576 vmx->nested.nested_vmx_procbased_ctls_high |=
2577 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2578 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2579
3dcdf3ec 2580 /* We support free control of CR3 access interception. */
b9c237bb
WV
2581 vmx->nested.nested_vmx_true_procbased_ctls_low =
2582 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2583 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2584
b87a51ae
NHE
2585 /* secondary cpu-based controls */
2586 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2587 vmx->nested.nested_vmx_secondary_ctls_low,
2588 vmx->nested.nested_vmx_secondary_ctls_high);
2589 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2590 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2591 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2592 SECONDARY_EXEC_RDTSCP |
f2b93280 2593 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2594 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2595 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2596 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2597 SECONDARY_EXEC_WBINVD_EXITING |
8b3e34e4
XG
2598 SECONDARY_EXEC_XSAVES |
2599 SECONDARY_EXEC_PCOMMIT;
c18911a2 2600
afa61f75
NHE
2601 if (enable_ept) {
2602 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2603 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2604 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2605 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2606 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2607 VMX_EPT_INVEPT_BIT;
b9c237bb 2608 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2609 /*
4b855078
BD
2610 * For nested guests, we don't do anything specific
2611 * for single context invalidation. Hence, only advertise
2612 * support for global context invalidation.
afa61f75 2613 */
b9c237bb 2614 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2615 } else
b9c237bb 2616 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2617
089d7b6e
WL
2618 if (enable_vpid)
2619 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2620 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2621 else
2622 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2623
0790ec17
RK
2624 if (enable_unrestricted_guest)
2625 vmx->nested.nested_vmx_secondary_ctls_high |=
2626 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2627
c18911a2 2628 /* miscellaneous data */
b9c237bb
WV
2629 rdmsr(MSR_IA32_VMX_MISC,
2630 vmx->nested.nested_vmx_misc_low,
2631 vmx->nested.nested_vmx_misc_high);
2632 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2633 vmx->nested.nested_vmx_misc_low |=
2634 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2635 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2636 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2637}
2638
2639static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2640{
2641 /*
2642 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2643 */
2644 return ((control & high) | low) == control;
2645}
2646
2647static inline u64 vmx_control_msr(u32 low, u32 high)
2648{
2649 return low | ((u64)high << 32);
2650}
2651
cae50139 2652/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2653static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2654{
b9c237bb
WV
2655 struct vcpu_vmx *vmx = to_vmx(vcpu);
2656
b87a51ae 2657 switch (msr_index) {
b87a51ae
NHE
2658 case MSR_IA32_VMX_BASIC:
2659 /*
2660 * This MSR reports some information about VMX support. We
2661 * should return information about the VMX we emulate for the
2662 * guest, and the VMCS structure we give it - not about the
2663 * VMX support of the underlying hardware.
2664 */
3dbcd8da 2665 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2666 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2667 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2668 break;
2669 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2670 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2671 *pdata = vmx_control_msr(
2672 vmx->nested.nested_vmx_pinbased_ctls_low,
2673 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2674 break;
2675 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2676 *pdata = vmx_control_msr(
2677 vmx->nested.nested_vmx_true_procbased_ctls_low,
2678 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2679 break;
b87a51ae 2680 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2681 *pdata = vmx_control_msr(
2682 vmx->nested.nested_vmx_procbased_ctls_low,
2683 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2684 break;
2685 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2686 *pdata = vmx_control_msr(
2687 vmx->nested.nested_vmx_true_exit_ctls_low,
2688 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2689 break;
b87a51ae 2690 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2691 *pdata = vmx_control_msr(
2692 vmx->nested.nested_vmx_exit_ctls_low,
2693 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2694 break;
2695 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2696 *pdata = vmx_control_msr(
2697 vmx->nested.nested_vmx_true_entry_ctls_low,
2698 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2699 break;
b87a51ae 2700 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2701 *pdata = vmx_control_msr(
2702 vmx->nested.nested_vmx_entry_ctls_low,
2703 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2704 break;
2705 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2706 *pdata = vmx_control_msr(
2707 vmx->nested.nested_vmx_misc_low,
2708 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2709 break;
2710 /*
2711 * These MSRs specify bits which the guest must keep fixed (on or off)
2712 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2713 * We picked the standard core2 setting.
2714 */
2715#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2716#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2717 case MSR_IA32_VMX_CR0_FIXED0:
2718 *pdata = VMXON_CR0_ALWAYSON;
2719 break;
2720 case MSR_IA32_VMX_CR0_FIXED1:
2721 *pdata = -1ULL;
2722 break;
2723 case MSR_IA32_VMX_CR4_FIXED0:
2724 *pdata = VMXON_CR4_ALWAYSON;
2725 break;
2726 case MSR_IA32_VMX_CR4_FIXED1:
2727 *pdata = -1ULL;
2728 break;
2729 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2730 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2731 break;
2732 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2733 *pdata = vmx_control_msr(
2734 vmx->nested.nested_vmx_secondary_ctls_low,
2735 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2736 break;
2737 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2738 /* Currently, no nested vpid support */
089d7b6e
WL
2739 *pdata = vmx->nested.nested_vmx_ept_caps |
2740 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
2741 break;
2742 default:
b87a51ae 2743 return 1;
b3897a49
NHE
2744 }
2745
b87a51ae
NHE
2746 return 0;
2747}
2748
6aa8b732
AK
2749/*
2750 * Reads an msr value (of 'msr_index') into 'pdata'.
2751 * Returns 0 on success, non-0 otherwise.
2752 * Assumes vcpu_load() was already called.
2753 */
609e36d3 2754static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2755{
26bb0981 2756 struct shared_msr_entry *msr;
6aa8b732 2757
609e36d3 2758 switch (msr_info->index) {
05b3e0c2 2759#ifdef CONFIG_X86_64
6aa8b732 2760 case MSR_FS_BASE:
609e36d3 2761 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2762 break;
2763 case MSR_GS_BASE:
609e36d3 2764 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2765 break;
44ea2b17
AK
2766 case MSR_KERNEL_GS_BASE:
2767 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2768 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 2769 break;
26bb0981 2770#endif
6aa8b732 2771 case MSR_EFER:
609e36d3 2772 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 2773 case MSR_IA32_TSC:
be7b263e 2774 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
2775 break;
2776 case MSR_IA32_SYSENTER_CS:
609e36d3 2777 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
2778 break;
2779 case MSR_IA32_SYSENTER_EIP:
609e36d3 2780 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2781 break;
2782 case MSR_IA32_SYSENTER_ESP:
609e36d3 2783 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2784 break;
0dd376e7 2785 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2786 if (!vmx_mpx_supported())
2787 return 1;
609e36d3 2788 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 2789 break;
cae50139
JK
2790 case MSR_IA32_FEATURE_CONTROL:
2791 if (!nested_vmx_allowed(vcpu))
2792 return 1;
609e36d3 2793 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
cae50139
JK
2794 break;
2795 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2796 if (!nested_vmx_allowed(vcpu))
2797 return 1;
609e36d3 2798 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
2799 case MSR_IA32_XSS:
2800 if (!vmx_xsaves_supported())
2801 return 1;
609e36d3 2802 msr_info->data = vcpu->arch.ia32_xss;
20300099 2803 break;
4e47c7a6 2804 case MSR_TSC_AUX:
1cea0ce6 2805 if (!guest_cpuid_has_rdtscp(vcpu))
4e47c7a6
SY
2806 return 1;
2807 /* Otherwise falls through */
6aa8b732 2808 default:
609e36d3 2809 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 2810 if (msr) {
609e36d3 2811 msr_info->data = msr->data;
3bab1f5d 2812 break;
6aa8b732 2813 }
609e36d3 2814 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
2815 }
2816
6aa8b732
AK
2817 return 0;
2818}
2819
cae50139
JK
2820static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2821
6aa8b732
AK
2822/*
2823 * Writes msr value into into the appropriate "register".
2824 * Returns 0 on success, non-0 otherwise.
2825 * Assumes vcpu_load() was already called.
2826 */
8fe8ab46 2827static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2828{
a2fa3e9f 2829 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2830 struct shared_msr_entry *msr;
2cc51560 2831 int ret = 0;
8fe8ab46
WA
2832 u32 msr_index = msr_info->index;
2833 u64 data = msr_info->data;
2cc51560 2834
6aa8b732 2835 switch (msr_index) {
3bab1f5d 2836 case MSR_EFER:
8fe8ab46 2837 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2838 break;
16175a79 2839#ifdef CONFIG_X86_64
6aa8b732 2840 case MSR_FS_BASE:
2fb92db1 2841 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2842 vmcs_writel(GUEST_FS_BASE, data);
2843 break;
2844 case MSR_GS_BASE:
2fb92db1 2845 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2846 vmcs_writel(GUEST_GS_BASE, data);
2847 break;
44ea2b17
AK
2848 case MSR_KERNEL_GS_BASE:
2849 vmx_load_host_state(vmx);
2850 vmx->msr_guest_kernel_gs_base = data;
2851 break;
6aa8b732
AK
2852#endif
2853 case MSR_IA32_SYSENTER_CS:
2854 vmcs_write32(GUEST_SYSENTER_CS, data);
2855 break;
2856 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2857 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2858 break;
2859 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2860 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2861 break;
0dd376e7 2862 case MSR_IA32_BNDCFGS:
93c4adc7
PB
2863 if (!vmx_mpx_supported())
2864 return 1;
0dd376e7
LJ
2865 vmcs_write64(GUEST_BNDCFGS, data);
2866 break;
af24a4e4 2867 case MSR_IA32_TSC:
8fe8ab46 2868 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2869 break;
468d472f
SY
2870 case MSR_IA32_CR_PAT:
2871 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2872 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2873 return 1;
468d472f
SY
2874 vmcs_write64(GUEST_IA32_PAT, data);
2875 vcpu->arch.pat = data;
2876 break;
2877 }
8fe8ab46 2878 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2879 break;
ba904635
WA
2880 case MSR_IA32_TSC_ADJUST:
2881 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2882 break;
cae50139
JK
2883 case MSR_IA32_FEATURE_CONTROL:
2884 if (!nested_vmx_allowed(vcpu) ||
2885 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2886 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2887 return 1;
2888 vmx->nested.msr_ia32_feature_control = data;
2889 if (msr_info->host_initiated && data == 0)
2890 vmx_leave_nested(vcpu);
2891 break;
2892 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2893 return 1; /* they are read-only */
20300099
WL
2894 case MSR_IA32_XSS:
2895 if (!vmx_xsaves_supported())
2896 return 1;
2897 /*
2898 * The only supported bit as of Skylake is bit 8, but
2899 * it is not supported on KVM.
2900 */
2901 if (data != 0)
2902 return 1;
2903 vcpu->arch.ia32_xss = data;
2904 if (vcpu->arch.ia32_xss != host_xss)
2905 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2906 vcpu->arch.ia32_xss, host_xss);
2907 else
2908 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2909 break;
4e47c7a6 2910 case MSR_TSC_AUX:
1cea0ce6 2911 if (!guest_cpuid_has_rdtscp(vcpu))
4e47c7a6
SY
2912 return 1;
2913 /* Check reserved bit, higher 32 bits should be zero */
2914 if ((data >> 32) != 0)
2915 return 1;
2916 /* Otherwise falls through */
6aa8b732 2917 default:
8b9cf98c 2918 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 2919 if (msr) {
8b3c3104 2920 u64 old_msr_data = msr->data;
3bab1f5d 2921 msr->data = data;
2225fd56
AK
2922 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2923 preempt_disable();
8b3c3104
AH
2924 ret = kvm_set_shared_msr(msr->index, msr->data,
2925 msr->mask);
2225fd56 2926 preempt_enable();
8b3c3104
AH
2927 if (ret)
2928 msr->data = old_msr_data;
2225fd56 2929 }
3bab1f5d 2930 break;
6aa8b732 2931 }
8fe8ab46 2932 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2933 }
2934
2cc51560 2935 return ret;
6aa8b732
AK
2936}
2937
5fdbf976 2938static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2939{
5fdbf976
MT
2940 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2941 switch (reg) {
2942 case VCPU_REGS_RSP:
2943 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2944 break;
2945 case VCPU_REGS_RIP:
2946 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2947 break;
6de4f3ad
AK
2948 case VCPU_EXREG_PDPTR:
2949 if (enable_ept)
2950 ept_save_pdptrs(vcpu);
2951 break;
5fdbf976
MT
2952 default:
2953 break;
2954 }
6aa8b732
AK
2955}
2956
6aa8b732
AK
2957static __init int cpu_has_kvm_support(void)
2958{
6210e37b 2959 return cpu_has_vmx();
6aa8b732
AK
2960}
2961
2962static __init int vmx_disabled_by_bios(void)
2963{
2964 u64 msr;
2965
2966 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2967 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2968 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2969 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2970 && tboot_enabled())
2971 return 1;
23f3e991 2972 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2973 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2974 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2975 && !tboot_enabled()) {
2976 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2977 "activate TXT before enabling KVM\n");
cafd6659 2978 return 1;
f9335afe 2979 }
23f3e991
JC
2980 /* launched w/o TXT and VMX disabled */
2981 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2982 && !tboot_enabled())
2983 return 1;
cafd6659
SW
2984 }
2985
2986 return 0;
6aa8b732
AK
2987}
2988
7725b894
DX
2989static void kvm_cpu_vmxon(u64 addr)
2990{
2991 asm volatile (ASM_VMX_VMXON_RAX
2992 : : "a"(&addr), "m"(addr)
2993 : "memory", "cc");
2994}
2995
13a34e06 2996static int hardware_enable(void)
6aa8b732
AK
2997{
2998 int cpu = raw_smp_processor_id();
2999 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3000 u64 old, test_bits;
6aa8b732 3001
1e02ce4c 3002 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3003 return -EBUSY;
3004
d462b819 3005 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3006 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3007 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3008
3009 /*
3010 * Now we can enable the vmclear operation in kdump
3011 * since the loaded_vmcss_on_cpu list on this cpu
3012 * has been initialized.
3013 *
3014 * Though the cpu is not in VMX operation now, there
3015 * is no problem to enable the vmclear operation
3016 * for the loaded_vmcss_on_cpu list is empty!
3017 */
3018 crash_enable_local_vmclear(cpu);
3019
6aa8b732 3020 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3021
3022 test_bits = FEATURE_CONTROL_LOCKED;
3023 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3024 if (tboot_enabled())
3025 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3026
3027 if ((old & test_bits) != test_bits) {
6aa8b732 3028 /* enable and lock */
cafd6659
SW
3029 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3030 }
375074cc 3031 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3032
4610c9cc
DX
3033 if (vmm_exclusive) {
3034 kvm_cpu_vmxon(phys_addr);
3035 ept_sync_global();
3036 }
10474ae8 3037
89cbc767 3038 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3039
10474ae8 3040 return 0;
6aa8b732
AK
3041}
3042
d462b819 3043static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3044{
3045 int cpu = raw_smp_processor_id();
d462b819 3046 struct loaded_vmcs *v, *n;
543e4243 3047
d462b819
NHE
3048 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3049 loaded_vmcss_on_cpu_link)
3050 __loaded_vmcs_clear(v);
543e4243
AK
3051}
3052
710ff4a8
EH
3053
3054/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3055 * tricks.
3056 */
3057static void kvm_cpu_vmxoff(void)
6aa8b732 3058{
4ecac3fd 3059 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
3060}
3061
13a34e06 3062static void hardware_disable(void)
710ff4a8 3063{
4610c9cc 3064 if (vmm_exclusive) {
d462b819 3065 vmclear_local_loaded_vmcss();
4610c9cc
DX
3066 kvm_cpu_vmxoff();
3067 }
375074cc 3068 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3069}
3070
1c3d14fe 3071static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3072 u32 msr, u32 *result)
1c3d14fe
YS
3073{
3074 u32 vmx_msr_low, vmx_msr_high;
3075 u32 ctl = ctl_min | ctl_opt;
3076
3077 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3078
3079 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3080 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3081
3082 /* Ensure minimum (required) set of control bits are supported. */
3083 if (ctl_min & ~ctl)
002c7f7c 3084 return -EIO;
1c3d14fe
YS
3085
3086 *result = ctl;
3087 return 0;
3088}
3089
110312c8
AK
3090static __init bool allow_1_setting(u32 msr, u32 ctl)
3091{
3092 u32 vmx_msr_low, vmx_msr_high;
3093
3094 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3095 return vmx_msr_high & ctl;
3096}
3097
002c7f7c 3098static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3099{
3100 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3101 u32 min, opt, min2, opt2;
1c3d14fe
YS
3102 u32 _pin_based_exec_control = 0;
3103 u32 _cpu_based_exec_control = 0;
f78e0e2e 3104 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3105 u32 _vmexit_control = 0;
3106 u32 _vmentry_control = 0;
3107
10166744 3108 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3109#ifdef CONFIG_X86_64
3110 CPU_BASED_CR8_LOAD_EXITING |
3111 CPU_BASED_CR8_STORE_EXITING |
3112#endif
d56f546d
SY
3113 CPU_BASED_CR3_LOAD_EXITING |
3114 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3115 CPU_BASED_USE_IO_BITMAPS |
3116 CPU_BASED_MOV_DR_EXITING |
a7052897 3117 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3118 CPU_BASED_MWAIT_EXITING |
3119 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3120 CPU_BASED_INVLPG_EXITING |
3121 CPU_BASED_RDPMC_EXITING;
443381a8 3122
f78e0e2e 3123 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3124 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3125 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3126 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3127 &_cpu_based_exec_control) < 0)
002c7f7c 3128 return -EIO;
6e5d865c
YS
3129#ifdef CONFIG_X86_64
3130 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3131 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3132 ~CPU_BASED_CR8_STORE_EXITING;
3133#endif
f78e0e2e 3134 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3135 min2 = 0;
3136 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3137 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3138 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3139 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3140 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3141 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3142 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3143 SECONDARY_EXEC_RDTSCP |
83d4c286 3144 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3145 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3146 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3147 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3148 SECONDARY_EXEC_XSAVES |
8b3e34e4 3149 SECONDARY_EXEC_ENABLE_PML |
64903d61
HZ
3150 SECONDARY_EXEC_PCOMMIT |
3151 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3152 if (adjust_vmx_controls(min2, opt2,
3153 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3154 &_cpu_based_2nd_exec_control) < 0)
3155 return -EIO;
3156 }
3157#ifndef CONFIG_X86_64
3158 if (!(_cpu_based_2nd_exec_control &
3159 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3160 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3161#endif
83d4c286
YZ
3162
3163 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3164 _cpu_based_2nd_exec_control &= ~(
8d14695f 3165 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3166 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3167 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3168
d56f546d 3169 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3170 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3171 enabled */
5fff7d27
GN
3172 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3173 CPU_BASED_CR3_STORE_EXITING |
3174 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3175 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3176 vmx_capability.ept, vmx_capability.vpid);
3177 }
1c3d14fe 3178
81908bf4 3179 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3180#ifdef CONFIG_X86_64
3181 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3182#endif
a547c6db 3183 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3184 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3185 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3186 &_vmexit_control) < 0)
002c7f7c 3187 return -EIO;
1c3d14fe 3188
01e439be
YZ
3189 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3190 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3191 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3192 &_pin_based_exec_control) < 0)
3193 return -EIO;
3194
3195 if (!(_cpu_based_2nd_exec_control &
3196 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3197 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3198 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3199
c845f9c6 3200 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3201 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3202 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3203 &_vmentry_control) < 0)
002c7f7c 3204 return -EIO;
6aa8b732 3205
c68876fd 3206 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3207
3208 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3209 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3210 return -EIO;
1c3d14fe
YS
3211
3212#ifdef CONFIG_X86_64
3213 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3214 if (vmx_msr_high & (1u<<16))
002c7f7c 3215 return -EIO;
1c3d14fe
YS
3216#endif
3217
3218 /* Require Write-Back (WB) memory type for VMCS accesses. */
3219 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3220 return -EIO;
1c3d14fe 3221
002c7f7c
YS
3222 vmcs_conf->size = vmx_msr_high & 0x1fff;
3223 vmcs_conf->order = get_order(vmcs_config.size);
3224 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3225
002c7f7c
YS
3226 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3227 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3228 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3229 vmcs_conf->vmexit_ctrl = _vmexit_control;
3230 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3231
110312c8
AK
3232 cpu_has_load_ia32_efer =
3233 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3234 VM_ENTRY_LOAD_IA32_EFER)
3235 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3236 VM_EXIT_LOAD_IA32_EFER);
3237
8bf00a52
GN
3238 cpu_has_load_perf_global_ctrl =
3239 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3240 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3241 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3242 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3243
3244 /*
3245 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3246 * but due to arrata below it can't be used. Workaround is to use
3247 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3248 *
3249 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3250 *
3251 * AAK155 (model 26)
3252 * AAP115 (model 30)
3253 * AAT100 (model 37)
3254 * BC86,AAY89,BD102 (model 44)
3255 * BA97 (model 46)
3256 *
3257 */
3258 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3259 switch (boot_cpu_data.x86_model) {
3260 case 26:
3261 case 30:
3262 case 37:
3263 case 44:
3264 case 46:
3265 cpu_has_load_perf_global_ctrl = false;
3266 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3267 "does not work properly. Using workaround\n");
3268 break;
3269 default:
3270 break;
3271 }
3272 }
3273
20300099
WL
3274 if (cpu_has_xsaves)
3275 rdmsrl(MSR_IA32_XSS, host_xss);
3276
1c3d14fe 3277 return 0;
c68876fd 3278}
6aa8b732
AK
3279
3280static struct vmcs *alloc_vmcs_cpu(int cpu)
3281{
3282 int node = cpu_to_node(cpu);
3283 struct page *pages;
3284 struct vmcs *vmcs;
3285
96db800f 3286 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3287 if (!pages)
3288 return NULL;
3289 vmcs = page_address(pages);
1c3d14fe
YS
3290 memset(vmcs, 0, vmcs_config.size);
3291 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3292 return vmcs;
3293}
3294
3295static struct vmcs *alloc_vmcs(void)
3296{
d3b2c338 3297 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3298}
3299
3300static void free_vmcs(struct vmcs *vmcs)
3301{
1c3d14fe 3302 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3303}
3304
d462b819
NHE
3305/*
3306 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3307 */
3308static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3309{
3310 if (!loaded_vmcs->vmcs)
3311 return;
3312 loaded_vmcs_clear(loaded_vmcs);
3313 free_vmcs(loaded_vmcs->vmcs);
3314 loaded_vmcs->vmcs = NULL;
3315}
3316
39959588 3317static void free_kvm_area(void)
6aa8b732
AK
3318{
3319 int cpu;
3320
3230bb47 3321 for_each_possible_cpu(cpu) {
6aa8b732 3322 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3323 per_cpu(vmxarea, cpu) = NULL;
3324 }
6aa8b732
AK
3325}
3326
fe2b201b
BD
3327static void init_vmcs_shadow_fields(void)
3328{
3329 int i, j;
3330
3331 /* No checks for read only fields yet */
3332
3333 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3334 switch (shadow_read_write_fields[i]) {
3335 case GUEST_BNDCFGS:
3336 if (!vmx_mpx_supported())
3337 continue;
3338 break;
3339 default:
3340 break;
3341 }
3342
3343 if (j < i)
3344 shadow_read_write_fields[j] =
3345 shadow_read_write_fields[i];
3346 j++;
3347 }
3348 max_shadow_read_write_fields = j;
3349
3350 /* shadowed fields guest access without vmexit */
3351 for (i = 0; i < max_shadow_read_write_fields; i++) {
3352 clear_bit(shadow_read_write_fields[i],
3353 vmx_vmwrite_bitmap);
3354 clear_bit(shadow_read_write_fields[i],
3355 vmx_vmread_bitmap);
3356 }
3357 for (i = 0; i < max_shadow_read_only_fields; i++)
3358 clear_bit(shadow_read_only_fields[i],
3359 vmx_vmread_bitmap);
3360}
3361
6aa8b732
AK
3362static __init int alloc_kvm_area(void)
3363{
3364 int cpu;
3365
3230bb47 3366 for_each_possible_cpu(cpu) {
6aa8b732
AK
3367 struct vmcs *vmcs;
3368
3369 vmcs = alloc_vmcs_cpu(cpu);
3370 if (!vmcs) {
3371 free_kvm_area();
3372 return -ENOMEM;
3373 }
3374
3375 per_cpu(vmxarea, cpu) = vmcs;
3376 }
3377 return 0;
3378}
3379
14168786
GN
3380static bool emulation_required(struct kvm_vcpu *vcpu)
3381{
3382 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3383}
3384
91b0aa2c 3385static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3386 struct kvm_segment *save)
6aa8b732 3387{
d99e4152
GN
3388 if (!emulate_invalid_guest_state) {
3389 /*
3390 * CS and SS RPL should be equal during guest entry according
3391 * to VMX spec, but in reality it is not always so. Since vcpu
3392 * is in the middle of the transition from real mode to
3393 * protected mode it is safe to assume that RPL 0 is a good
3394 * default value.
3395 */
3396 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3397 save->selector &= ~SEGMENT_RPL_MASK;
3398 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3399 save->s = 1;
6aa8b732 3400 }
d99e4152 3401 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3402}
3403
3404static void enter_pmode(struct kvm_vcpu *vcpu)
3405{
3406 unsigned long flags;
a89a8fb9 3407 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3408
d99e4152
GN
3409 /*
3410 * Update real mode segment cache. It may be not up-to-date if sement
3411 * register was written while vcpu was in a guest mode.
3412 */
3413 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3414 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3415 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3416 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3417 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3418 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3419
7ffd92c5 3420 vmx->rmode.vm86_active = 0;
6aa8b732 3421
2fb92db1
AK
3422 vmx_segment_cache_clear(vmx);
3423
f5f7b2fe 3424 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3425
3426 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3427 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3428 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3429 vmcs_writel(GUEST_RFLAGS, flags);
3430
66aee91a
RR
3431 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3432 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3433
3434 update_exception_bitmap(vcpu);
3435
91b0aa2c
GN
3436 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3437 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3438 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3439 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3440 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3441 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3442}
3443
f5f7b2fe 3444static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3445{
772e0318 3446 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3447 struct kvm_segment var = *save;
3448
3449 var.dpl = 0x3;
3450 if (seg == VCPU_SREG_CS)
3451 var.type = 0x3;
3452
3453 if (!emulate_invalid_guest_state) {
3454 var.selector = var.base >> 4;
3455 var.base = var.base & 0xffff0;
3456 var.limit = 0xffff;
3457 var.g = 0;
3458 var.db = 0;
3459 var.present = 1;
3460 var.s = 1;
3461 var.l = 0;
3462 var.unusable = 0;
3463 var.type = 0x3;
3464 var.avl = 0;
3465 if (save->base & 0xf)
3466 printk_once(KERN_WARNING "kvm: segment base is not "
3467 "paragraph aligned when entering "
3468 "protected mode (seg=%d)", seg);
3469 }
6aa8b732 3470
d99e4152
GN
3471 vmcs_write16(sf->selector, var.selector);
3472 vmcs_write32(sf->base, var.base);
3473 vmcs_write32(sf->limit, var.limit);
3474 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3475}
3476
3477static void enter_rmode(struct kvm_vcpu *vcpu)
3478{
3479 unsigned long flags;
a89a8fb9 3480 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3481
f5f7b2fe
AK
3482 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3483 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3484 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3485 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3486 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3487 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3488 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3489
7ffd92c5 3490 vmx->rmode.vm86_active = 1;
6aa8b732 3491
776e58ea
GN
3492 /*
3493 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3494 * vcpu. Warn the user that an update is overdue.
776e58ea 3495 */
4918c6ca 3496 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3497 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3498 "called before entering vcpu\n");
776e58ea 3499
2fb92db1
AK
3500 vmx_segment_cache_clear(vmx);
3501
4918c6ca 3502 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3503 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3504 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3505
3506 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3507 vmx->rmode.save_rflags = flags;
6aa8b732 3508
053de044 3509 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3510
3511 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3512 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3513 update_exception_bitmap(vcpu);
3514
d99e4152
GN
3515 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3516 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3517 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3518 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3519 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3520 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3521
8668a3c4 3522 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3523}
3524
401d10de
AS
3525static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3526{
3527 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3528 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3529
3530 if (!msr)
3531 return;
401d10de 3532
44ea2b17
AK
3533 /*
3534 * Force kernel_gs_base reloading before EFER changes, as control
3535 * of this msr depends on is_long_mode().
3536 */
3537 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3538 vcpu->arch.efer = efer;
401d10de 3539 if (efer & EFER_LMA) {
2961e876 3540 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3541 msr->data = efer;
3542 } else {
2961e876 3543 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3544
3545 msr->data = efer & ~EFER_LME;
3546 }
3547 setup_msrs(vmx);
3548}
3549
05b3e0c2 3550#ifdef CONFIG_X86_64
6aa8b732
AK
3551
3552static void enter_lmode(struct kvm_vcpu *vcpu)
3553{
3554 u32 guest_tr_ar;
3555
2fb92db1
AK
3556 vmx_segment_cache_clear(to_vmx(vcpu));
3557
6aa8b732 3558 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3559 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3560 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3561 __func__);
6aa8b732 3562 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3563 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3564 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3565 }
da38f438 3566 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3567}
3568
3569static void exit_lmode(struct kvm_vcpu *vcpu)
3570{
2961e876 3571 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3572 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3573}
3574
3575#endif
3576
dd5f5341 3577static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3578{
dd5f5341 3579 vpid_sync_context(vpid);
dd180b3e
XG
3580 if (enable_ept) {
3581 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3582 return;
4e1096d2 3583 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3584 }
2384d2b3
SY
3585}
3586
dd5f5341
WL
3587static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3588{
3589 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3590}
3591
e8467fda
AK
3592static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3593{
3594 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3595
3596 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3597 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3598}
3599
aff48baa
AK
3600static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3601{
3602 if (enable_ept && is_paging(vcpu))
3603 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3604 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3605}
3606
25c4c276 3607static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3608{
fc78f519
AK
3609 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3610
3611 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3612 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3613}
3614
1439442c
SY
3615static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3616{
d0d538b9
GN
3617 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3618
6de4f3ad
AK
3619 if (!test_bit(VCPU_EXREG_PDPTR,
3620 (unsigned long *)&vcpu->arch.regs_dirty))
3621 return;
3622
1439442c 3623 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3624 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3625 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3626 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3627 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3628 }
3629}
3630
8f5d549f
AK
3631static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3632{
d0d538b9
GN
3633 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3634
8f5d549f 3635 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3636 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3637 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3638 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3639 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3640 }
6de4f3ad
AK
3641
3642 __set_bit(VCPU_EXREG_PDPTR,
3643 (unsigned long *)&vcpu->arch.regs_avail);
3644 __set_bit(VCPU_EXREG_PDPTR,
3645 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3646}
3647
5e1746d6 3648static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3649
3650static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3651 unsigned long cr0,
3652 struct kvm_vcpu *vcpu)
3653{
5233dd51
MT
3654 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3655 vmx_decache_cr3(vcpu);
1439442c
SY
3656 if (!(cr0 & X86_CR0_PG)) {
3657 /* From paging/starting to nonpaging */
3658 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3659 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3660 (CPU_BASED_CR3_LOAD_EXITING |
3661 CPU_BASED_CR3_STORE_EXITING));
3662 vcpu->arch.cr0 = cr0;
fc78f519 3663 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3664 } else if (!is_paging(vcpu)) {
3665 /* From nonpaging to paging */
3666 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3667 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3668 ~(CPU_BASED_CR3_LOAD_EXITING |
3669 CPU_BASED_CR3_STORE_EXITING));
3670 vcpu->arch.cr0 = cr0;
fc78f519 3671 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3672 }
95eb84a7
SY
3673
3674 if (!(cr0 & X86_CR0_WP))
3675 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3676}
3677
6aa8b732
AK
3678static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3679{
7ffd92c5 3680 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3681 unsigned long hw_cr0;
3682
5037878e 3683 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3684 if (enable_unrestricted_guest)
5037878e 3685 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3686 else {
5037878e 3687 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3688
218e763f
GN
3689 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3690 enter_pmode(vcpu);
6aa8b732 3691
218e763f
GN
3692 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3693 enter_rmode(vcpu);
3694 }
6aa8b732 3695
05b3e0c2 3696#ifdef CONFIG_X86_64
f6801dff 3697 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3698 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3699 enter_lmode(vcpu);
707d92fa 3700 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3701 exit_lmode(vcpu);
3702 }
3703#endif
3704
089d034e 3705 if (enable_ept)
1439442c
SY
3706 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3707
02daab21 3708 if (!vcpu->fpu_active)
81231c69 3709 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3710
6aa8b732 3711 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3712 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3713 vcpu->arch.cr0 = cr0;
14168786
GN
3714
3715 /* depends on vcpu->arch.cr0 to be set to a new value */
3716 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3717}
3718
1439442c
SY
3719static u64 construct_eptp(unsigned long root_hpa)
3720{
3721 u64 eptp;
3722
3723 /* TODO write the value reading from MSR */
3724 eptp = VMX_EPT_DEFAULT_MT |
3725 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3726 if (enable_ept_ad_bits)
3727 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3728 eptp |= (root_hpa & PAGE_MASK);
3729
3730 return eptp;
3731}
3732
6aa8b732
AK
3733static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3734{
1439442c
SY
3735 unsigned long guest_cr3;
3736 u64 eptp;
3737
3738 guest_cr3 = cr3;
089d034e 3739 if (enable_ept) {
1439442c
SY
3740 eptp = construct_eptp(cr3);
3741 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3742 if (is_paging(vcpu) || is_guest_mode(vcpu))
3743 guest_cr3 = kvm_read_cr3(vcpu);
3744 else
3745 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3746 ept_load_pdptrs(vcpu);
1439442c
SY
3747 }
3748
2384d2b3 3749 vmx_flush_tlb(vcpu);
1439442c 3750 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3751}
3752
5e1746d6 3753static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3754{
085e68ee
BS
3755 /*
3756 * Pass through host's Machine Check Enable value to hw_cr4, which
3757 * is in force while we are in guest mode. Do not let guests control
3758 * this bit, even if host CR4.MCE == 0.
3759 */
3760 unsigned long hw_cr4 =
3761 (cr4_read_shadow() & X86_CR4_MCE) |
3762 (cr4 & ~X86_CR4_MCE) |
3763 (to_vmx(vcpu)->rmode.vm86_active ?
3764 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 3765
5e1746d6
NHE
3766 if (cr4 & X86_CR4_VMXE) {
3767 /*
3768 * To use VMXON (and later other VMX instructions), a guest
3769 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3770 * So basically the check on whether to allow nested VMX
3771 * is here.
3772 */
3773 if (!nested_vmx_allowed(vcpu))
3774 return 1;
1a0d74e6
JK
3775 }
3776 if (to_vmx(vcpu)->nested.vmxon &&
3777 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3778 return 1;
3779
ad312c7c 3780 vcpu->arch.cr4 = cr4;
bc23008b
AK
3781 if (enable_ept) {
3782 if (!is_paging(vcpu)) {
3783 hw_cr4 &= ~X86_CR4_PAE;
3784 hw_cr4 |= X86_CR4_PSE;
3785 } else if (!(cr4 & X86_CR4_PAE)) {
3786 hw_cr4 &= ~X86_CR4_PAE;
3787 }
3788 }
1439442c 3789
656ec4a4
RK
3790 if (!enable_unrestricted_guest && !is_paging(vcpu))
3791 /*
3792 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3793 * hardware. However KVM always uses paging mode without
3794 * unrestricted guest.
3795 * To emulate this behavior, SMEP/SMAP needs to be manually
3796 * disabled when guest switches to non-paging mode.
3797 */
3798 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3799
1439442c
SY
3800 vmcs_writel(CR4_READ_SHADOW, cr4);
3801 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3802 return 0;
6aa8b732
AK
3803}
3804
6aa8b732
AK
3805static void vmx_get_segment(struct kvm_vcpu *vcpu,
3806 struct kvm_segment *var, int seg)
3807{
a9179499 3808 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3809 u32 ar;
3810
c6ad1153 3811 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3812 *var = vmx->rmode.segs[seg];
a9179499 3813 if (seg == VCPU_SREG_TR
2fb92db1 3814 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3815 return;
1390a28b
AK
3816 var->base = vmx_read_guest_seg_base(vmx, seg);
3817 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3818 return;
a9179499 3819 }
2fb92db1
AK
3820 var->base = vmx_read_guest_seg_base(vmx, seg);
3821 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3822 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3823 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3824 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3825 var->type = ar & 15;
3826 var->s = (ar >> 4) & 1;
3827 var->dpl = (ar >> 5) & 3;
03617c18
GN
3828 /*
3829 * Some userspaces do not preserve unusable property. Since usable
3830 * segment has to be present according to VMX spec we can use present
3831 * property to amend userspace bug by making unusable segment always
3832 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3833 * segment as unusable.
3834 */
3835 var->present = !var->unusable;
6aa8b732
AK
3836 var->avl = (ar >> 12) & 1;
3837 var->l = (ar >> 13) & 1;
3838 var->db = (ar >> 14) & 1;
3839 var->g = (ar >> 15) & 1;
6aa8b732
AK
3840}
3841
a9179499
AK
3842static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3843{
a9179499
AK
3844 struct kvm_segment s;
3845
3846 if (to_vmx(vcpu)->rmode.vm86_active) {
3847 vmx_get_segment(vcpu, &s, seg);
3848 return s.base;
3849 }
2fb92db1 3850 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3851}
3852
b09408d0 3853static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3854{
b09408d0
MT
3855 struct vcpu_vmx *vmx = to_vmx(vcpu);
3856
ae9fedc7 3857 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3858 return 0;
ae9fedc7
PB
3859 else {
3860 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 3861 return VMX_AR_DPL(ar);
69c73028 3862 }
69c73028
AK
3863}
3864
653e3108 3865static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3866{
6aa8b732
AK
3867 u32 ar;
3868
f0495f9b 3869 if (var->unusable || !var->present)
6aa8b732
AK
3870 ar = 1 << 16;
3871 else {
3872 ar = var->type & 15;
3873 ar |= (var->s & 1) << 4;
3874 ar |= (var->dpl & 3) << 5;
3875 ar |= (var->present & 1) << 7;
3876 ar |= (var->avl & 1) << 12;
3877 ar |= (var->l & 1) << 13;
3878 ar |= (var->db & 1) << 14;
3879 ar |= (var->g & 1) << 15;
3880 }
653e3108
AK
3881
3882 return ar;
3883}
3884
3885static void vmx_set_segment(struct kvm_vcpu *vcpu,
3886 struct kvm_segment *var, int seg)
3887{
7ffd92c5 3888 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3889 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3890
2fb92db1
AK
3891 vmx_segment_cache_clear(vmx);
3892
1ecd50a9
GN
3893 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3894 vmx->rmode.segs[seg] = *var;
3895 if (seg == VCPU_SREG_TR)
3896 vmcs_write16(sf->selector, var->selector);
3897 else if (var->s)
3898 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3899 goto out;
653e3108 3900 }
1ecd50a9 3901
653e3108
AK
3902 vmcs_writel(sf->base, var->base);
3903 vmcs_write32(sf->limit, var->limit);
3904 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3905
3906 /*
3907 * Fix the "Accessed" bit in AR field of segment registers for older
3908 * qemu binaries.
3909 * IA32 arch specifies that at the time of processor reset the
3910 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3911 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3912 * state vmexit when "unrestricted guest" mode is turned on.
3913 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3914 * tree. Newer qemu binaries with that qemu fix would not need this
3915 * kvm hack.
3916 */
3917 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3918 var->type |= 0x1; /* Accessed */
3a624e29 3919
f924d66d 3920 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3921
3922out:
98eb2f8b 3923 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3924}
3925
6aa8b732
AK
3926static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3927{
2fb92db1 3928 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3929
3930 *db = (ar >> 14) & 1;
3931 *l = (ar >> 13) & 1;
3932}
3933
89a27f4d 3934static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3935{
89a27f4d
GN
3936 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3937 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3938}
3939
89a27f4d 3940static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3941{
89a27f4d
GN
3942 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3943 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3944}
3945
89a27f4d 3946static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3947{
89a27f4d
GN
3948 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3949 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3950}
3951
89a27f4d 3952static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3953{
89a27f4d
GN
3954 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3955 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3956}
3957
648dfaa7
MG
3958static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3959{
3960 struct kvm_segment var;
3961 u32 ar;
3962
3963 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3964 var.dpl = 0x3;
0647f4aa
GN
3965 if (seg == VCPU_SREG_CS)
3966 var.type = 0x3;
648dfaa7
MG
3967 ar = vmx_segment_access_rights(&var);
3968
3969 if (var.base != (var.selector << 4))
3970 return false;
89efbed0 3971 if (var.limit != 0xffff)
648dfaa7 3972 return false;
07f42f5f 3973 if (ar != 0xf3)
648dfaa7
MG
3974 return false;
3975
3976 return true;
3977}
3978
3979static bool code_segment_valid(struct kvm_vcpu *vcpu)
3980{
3981 struct kvm_segment cs;
3982 unsigned int cs_rpl;
3983
3984 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 3985 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 3986
1872a3f4
AK
3987 if (cs.unusable)
3988 return false;
4d283ec9 3989 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
3990 return false;
3991 if (!cs.s)
3992 return false;
4d283ec9 3993 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3994 if (cs.dpl > cs_rpl)
3995 return false;
1872a3f4 3996 } else {
648dfaa7
MG
3997 if (cs.dpl != cs_rpl)
3998 return false;
3999 }
4000 if (!cs.present)
4001 return false;
4002
4003 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4004 return true;
4005}
4006
4007static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4008{
4009 struct kvm_segment ss;
4010 unsigned int ss_rpl;
4011
4012 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4013 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4014
1872a3f4
AK
4015 if (ss.unusable)
4016 return true;
4017 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4018 return false;
4019 if (!ss.s)
4020 return false;
4021 if (ss.dpl != ss_rpl) /* DPL != RPL */
4022 return false;
4023 if (!ss.present)
4024 return false;
4025
4026 return true;
4027}
4028
4029static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4030{
4031 struct kvm_segment var;
4032 unsigned int rpl;
4033
4034 vmx_get_segment(vcpu, &var, seg);
b32a9918 4035 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4036
1872a3f4
AK
4037 if (var.unusable)
4038 return true;
648dfaa7
MG
4039 if (!var.s)
4040 return false;
4041 if (!var.present)
4042 return false;
4d283ec9 4043 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4044 if (var.dpl < rpl) /* DPL < RPL */
4045 return false;
4046 }
4047
4048 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4049 * rights flags
4050 */
4051 return true;
4052}
4053
4054static bool tr_valid(struct kvm_vcpu *vcpu)
4055{
4056 struct kvm_segment tr;
4057
4058 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4059
1872a3f4
AK
4060 if (tr.unusable)
4061 return false;
b32a9918 4062 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4063 return false;
1872a3f4 4064 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4065 return false;
4066 if (!tr.present)
4067 return false;
4068
4069 return true;
4070}
4071
4072static bool ldtr_valid(struct kvm_vcpu *vcpu)
4073{
4074 struct kvm_segment ldtr;
4075
4076 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4077
1872a3f4
AK
4078 if (ldtr.unusable)
4079 return true;
b32a9918 4080 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4081 return false;
4082 if (ldtr.type != 2)
4083 return false;
4084 if (!ldtr.present)
4085 return false;
4086
4087 return true;
4088}
4089
4090static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4091{
4092 struct kvm_segment cs, ss;
4093
4094 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4095 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4096
b32a9918
NA
4097 return ((cs.selector & SEGMENT_RPL_MASK) ==
4098 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4099}
4100
4101/*
4102 * Check if guest state is valid. Returns true if valid, false if
4103 * not.
4104 * We assume that registers are always usable
4105 */
4106static bool guest_state_valid(struct kvm_vcpu *vcpu)
4107{
c5e97c80
GN
4108 if (enable_unrestricted_guest)
4109 return true;
4110
648dfaa7 4111 /* real mode guest state checks */
f13882d8 4112 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4113 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4114 return false;
4115 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4116 return false;
4117 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4118 return false;
4119 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4120 return false;
4121 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4122 return false;
4123 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4124 return false;
4125 } else {
4126 /* protected mode guest state checks */
4127 if (!cs_ss_rpl_check(vcpu))
4128 return false;
4129 if (!code_segment_valid(vcpu))
4130 return false;
4131 if (!stack_segment_valid(vcpu))
4132 return false;
4133 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4134 return false;
4135 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4136 return false;
4137 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4138 return false;
4139 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4140 return false;
4141 if (!tr_valid(vcpu))
4142 return false;
4143 if (!ldtr_valid(vcpu))
4144 return false;
4145 }
4146 /* TODO:
4147 * - Add checks on RIP
4148 * - Add checks on RFLAGS
4149 */
4150
4151 return true;
4152}
4153
d77c26fc 4154static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4155{
40dcaa9f 4156 gfn_t fn;
195aefde 4157 u16 data = 0;
1f755a82 4158 int idx, r;
6aa8b732 4159
40dcaa9f 4160 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4161 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4162 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4163 if (r < 0)
10589a46 4164 goto out;
195aefde 4165 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4166 r = kvm_write_guest_page(kvm, fn++, &data,
4167 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4168 if (r < 0)
10589a46 4169 goto out;
195aefde
IE
4170 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4171 if (r < 0)
10589a46 4172 goto out;
195aefde
IE
4173 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4174 if (r < 0)
10589a46 4175 goto out;
195aefde 4176 data = ~0;
10589a46
MT
4177 r = kvm_write_guest_page(kvm, fn, &data,
4178 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4179 sizeof(u8));
10589a46 4180out:
40dcaa9f 4181 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4182 return r;
6aa8b732
AK
4183}
4184
b7ebfb05
SY
4185static int init_rmode_identity_map(struct kvm *kvm)
4186{
f51770ed 4187 int i, idx, r = 0;
b7ebfb05
SY
4188 pfn_t identity_map_pfn;
4189 u32 tmp;
4190
089d034e 4191 if (!enable_ept)
f51770ed 4192 return 0;
a255d479
TC
4193
4194 /* Protect kvm->arch.ept_identity_pagetable_done. */
4195 mutex_lock(&kvm->slots_lock);
4196
f51770ed 4197 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4198 goto out2;
a255d479 4199
b927a3ce 4200 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4201
4202 r = alloc_identity_pagetable(kvm);
f51770ed 4203 if (r < 0)
a255d479
TC
4204 goto out2;
4205
40dcaa9f 4206 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4207 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4208 if (r < 0)
4209 goto out;
4210 /* Set up identity-mapping pagetable for EPT in real mode */
4211 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4212 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4213 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4214 r = kvm_write_guest_page(kvm, identity_map_pfn,
4215 &tmp, i * sizeof(tmp), sizeof(tmp));
4216 if (r < 0)
4217 goto out;
4218 }
4219 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4220
b7ebfb05 4221out:
40dcaa9f 4222 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4223
4224out2:
4225 mutex_unlock(&kvm->slots_lock);
f51770ed 4226 return r;
b7ebfb05
SY
4227}
4228
6aa8b732
AK
4229static void seg_setup(int seg)
4230{
772e0318 4231 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4232 unsigned int ar;
6aa8b732
AK
4233
4234 vmcs_write16(sf->selector, 0);
4235 vmcs_writel(sf->base, 0);
4236 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4237 ar = 0x93;
4238 if (seg == VCPU_SREG_CS)
4239 ar |= 0x08; /* code segment */
3a624e29
NK
4240
4241 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4242}
4243
f78e0e2e
SY
4244static int alloc_apic_access_page(struct kvm *kvm)
4245{
4484141a 4246 struct page *page;
f78e0e2e
SY
4247 int r = 0;
4248
79fac95e 4249 mutex_lock(&kvm->slots_lock);
c24ae0dc 4250 if (kvm->arch.apic_access_page_done)
f78e0e2e 4251 goto out;
1d8007bd
PB
4252 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4253 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4254 if (r)
4255 goto out;
72dc67a6 4256
73a6d941 4257 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4258 if (is_error_page(page)) {
4259 r = -EFAULT;
4260 goto out;
4261 }
4262
c24ae0dc
TC
4263 /*
4264 * Do not pin the page in memory, so that memory hot-unplug
4265 * is able to migrate it.
4266 */
4267 put_page(page);
4268 kvm->arch.apic_access_page_done = true;
f78e0e2e 4269out:
79fac95e 4270 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4271 return r;
4272}
4273
b7ebfb05
SY
4274static int alloc_identity_pagetable(struct kvm *kvm)
4275{
a255d479
TC
4276 /* Called with kvm->slots_lock held. */
4277
b7ebfb05
SY
4278 int r = 0;
4279
a255d479
TC
4280 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4281
1d8007bd
PB
4282 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4283 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4284
b7ebfb05
SY
4285 return r;
4286}
4287
991e7a0e 4288static int allocate_vpid(void)
2384d2b3
SY
4289{
4290 int vpid;
4291
919818ab 4292 if (!enable_vpid)
991e7a0e 4293 return 0;
2384d2b3
SY
4294 spin_lock(&vmx_vpid_lock);
4295 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4296 if (vpid < VMX_NR_VPIDS)
2384d2b3 4297 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4298 else
4299 vpid = 0;
2384d2b3 4300 spin_unlock(&vmx_vpid_lock);
991e7a0e 4301 return vpid;
2384d2b3
SY
4302}
4303
991e7a0e 4304static void free_vpid(int vpid)
cdbecfc3 4305{
991e7a0e 4306 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4307 return;
4308 spin_lock(&vmx_vpid_lock);
991e7a0e 4309 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4310 spin_unlock(&vmx_vpid_lock);
4311}
4312
8d14695f
YZ
4313#define MSR_TYPE_R 1
4314#define MSR_TYPE_W 2
4315static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4316 u32 msr, int type)
25c5f225 4317{
3e7c73e9 4318 int f = sizeof(unsigned long);
25c5f225
SY
4319
4320 if (!cpu_has_vmx_msr_bitmap())
4321 return;
4322
4323 /*
4324 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4325 * have the write-low and read-high bitmap offsets the wrong way round.
4326 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4327 */
25c5f225 4328 if (msr <= 0x1fff) {
8d14695f
YZ
4329 if (type & MSR_TYPE_R)
4330 /* read-low */
4331 __clear_bit(msr, msr_bitmap + 0x000 / f);
4332
4333 if (type & MSR_TYPE_W)
4334 /* write-low */
4335 __clear_bit(msr, msr_bitmap + 0x800 / f);
4336
25c5f225
SY
4337 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4338 msr &= 0x1fff;
8d14695f
YZ
4339 if (type & MSR_TYPE_R)
4340 /* read-high */
4341 __clear_bit(msr, msr_bitmap + 0x400 / f);
4342
4343 if (type & MSR_TYPE_W)
4344 /* write-high */
4345 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4346
4347 }
4348}
4349
4350static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4351 u32 msr, int type)
4352{
4353 int f = sizeof(unsigned long);
4354
4355 if (!cpu_has_vmx_msr_bitmap())
4356 return;
4357
4358 /*
4359 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4360 * have the write-low and read-high bitmap offsets the wrong way round.
4361 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4362 */
4363 if (msr <= 0x1fff) {
4364 if (type & MSR_TYPE_R)
4365 /* read-low */
4366 __set_bit(msr, msr_bitmap + 0x000 / f);
4367
4368 if (type & MSR_TYPE_W)
4369 /* write-low */
4370 __set_bit(msr, msr_bitmap + 0x800 / f);
4371
4372 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4373 msr &= 0x1fff;
4374 if (type & MSR_TYPE_R)
4375 /* read-high */
4376 __set_bit(msr, msr_bitmap + 0x400 / f);
4377
4378 if (type & MSR_TYPE_W)
4379 /* write-high */
4380 __set_bit(msr, msr_bitmap + 0xc00 / f);
4381
25c5f225 4382 }
25c5f225
SY
4383}
4384
f2b93280
WV
4385/*
4386 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4387 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4388 */
4389static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4390 unsigned long *msr_bitmap_nested,
4391 u32 msr, int type)
4392{
4393 int f = sizeof(unsigned long);
4394
4395 if (!cpu_has_vmx_msr_bitmap()) {
4396 WARN_ON(1);
4397 return;
4398 }
4399
4400 /*
4401 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4402 * have the write-low and read-high bitmap offsets the wrong way round.
4403 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4404 */
4405 if (msr <= 0x1fff) {
4406 if (type & MSR_TYPE_R &&
4407 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4408 /* read-low */
4409 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4410
4411 if (type & MSR_TYPE_W &&
4412 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4413 /* write-low */
4414 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4415
4416 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4417 msr &= 0x1fff;
4418 if (type & MSR_TYPE_R &&
4419 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4420 /* read-high */
4421 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4422
4423 if (type & MSR_TYPE_W &&
4424 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4425 /* write-high */
4426 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4427
4428 }
4429}
4430
5897297b
AK
4431static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4432{
4433 if (!longmode_only)
8d14695f
YZ
4434 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4435 msr, MSR_TYPE_R | MSR_TYPE_W);
4436 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4437 msr, MSR_TYPE_R | MSR_TYPE_W);
4438}
4439
4440static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4441{
4442 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4443 msr, MSR_TYPE_R);
4444 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4445 msr, MSR_TYPE_R);
4446}
4447
4448static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4449{
4450 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4451 msr, MSR_TYPE_R);
4452 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4453 msr, MSR_TYPE_R);
4454}
4455
4456static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4457{
4458 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4459 msr, MSR_TYPE_W);
4460 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4461 msr, MSR_TYPE_W);
5897297b
AK
4462}
4463
d62caabb 4464static bool vmx_get_enable_apicv(void)
d50ab6c1 4465{
d62caabb 4466 return enable_apicv;
d50ab6c1
PB
4467}
4468
705699a1
WV
4469static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4470{
4471 struct vcpu_vmx *vmx = to_vmx(vcpu);
4472 int max_irr;
4473 void *vapic_page;
4474 u16 status;
4475
4476 if (vmx->nested.pi_desc &&
4477 vmx->nested.pi_pending) {
4478 vmx->nested.pi_pending = false;
4479 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4480 return 0;
4481
4482 max_irr = find_last_bit(
4483 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4484
4485 if (max_irr == 256)
4486 return 0;
4487
4488 vapic_page = kmap(vmx->nested.virtual_apic_page);
4489 if (!vapic_page) {
4490 WARN_ON(1);
4491 return -ENOMEM;
4492 }
4493 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4494 kunmap(vmx->nested.virtual_apic_page);
4495
4496 status = vmcs_read16(GUEST_INTR_STATUS);
4497 if ((u8)max_irr > ((u8)status & 0xff)) {
4498 status &= ~0xff;
4499 status |= (u8)max_irr;
4500 vmcs_write16(GUEST_INTR_STATUS, status);
4501 }
4502 }
4503 return 0;
4504}
4505
21bc8dc5
RK
4506static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4507{
4508#ifdef CONFIG_SMP
4509 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4510 struct vcpu_vmx *vmx = to_vmx(vcpu);
4511
4512 /*
4513 * Currently, we don't support urgent interrupt,
4514 * all interrupts are recognized as non-urgent
4515 * interrupt, so we cannot post interrupts when
4516 * 'SN' is set.
4517 *
4518 * If the vcpu is in guest mode, it means it is
4519 * running instead of being scheduled out and
4520 * waiting in the run queue, and that's the only
4521 * case when 'SN' is set currently, warning if
4522 * 'SN' is set.
4523 */
4524 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4525
21bc8dc5
RK
4526 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4527 POSTED_INTR_VECTOR);
4528 return true;
4529 }
4530#endif
4531 return false;
4532}
4533
705699a1
WV
4534static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4535 int vector)
4536{
4537 struct vcpu_vmx *vmx = to_vmx(vcpu);
4538
4539 if (is_guest_mode(vcpu) &&
4540 vector == vmx->nested.posted_intr_nv) {
4541 /* the PIR and ON have been set by L1. */
21bc8dc5 4542 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4543 /*
4544 * If a posted intr is not recognized by hardware,
4545 * we will accomplish it in the next vmentry.
4546 */
4547 vmx->nested.pi_pending = true;
4548 kvm_make_request(KVM_REQ_EVENT, vcpu);
4549 return 0;
4550 }
4551 return -1;
4552}
a20ed54d
YZ
4553/*
4554 * Send interrupt to vcpu via posted interrupt way.
4555 * 1. If target vcpu is running(non-root mode), send posted interrupt
4556 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4557 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4558 * interrupt from PIR in next vmentry.
4559 */
4560static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4561{
4562 struct vcpu_vmx *vmx = to_vmx(vcpu);
4563 int r;
4564
705699a1
WV
4565 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4566 if (!r)
4567 return;
4568
a20ed54d
YZ
4569 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4570 return;
4571
4572 r = pi_test_and_set_on(&vmx->pi_desc);
4573 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4574 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4575 kvm_vcpu_kick(vcpu);
4576}
4577
4578static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4579{
4580 struct vcpu_vmx *vmx = to_vmx(vcpu);
4581
4582 if (!pi_test_and_clear_on(&vmx->pi_desc))
4583 return;
4584
4585 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4586}
4587
a3a8ff8e
NHE
4588/*
4589 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4590 * will not change in the lifetime of the guest.
4591 * Note that host-state that does change is set elsewhere. E.g., host-state
4592 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4593 */
a547c6db 4594static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4595{
4596 u32 low32, high32;
4597 unsigned long tmpl;
4598 struct desc_ptr dt;
d974baa3 4599 unsigned long cr4;
a3a8ff8e 4600
b1a74bf8 4601 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4602 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4603
d974baa3 4604 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4605 cr4 = cr4_read_shadow();
d974baa3
AL
4606 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4607 vmx->host_state.vmcs_host_cr4 = cr4;
4608
a3a8ff8e 4609 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4610#ifdef CONFIG_X86_64
4611 /*
4612 * Load null selectors, so we can avoid reloading them in
4613 * __vmx_load_host_state(), in case userspace uses the null selectors
4614 * too (the expected case).
4615 */
4616 vmcs_write16(HOST_DS_SELECTOR, 0);
4617 vmcs_write16(HOST_ES_SELECTOR, 0);
4618#else
a3a8ff8e
NHE
4619 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4620 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4621#endif
a3a8ff8e
NHE
4622 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4623 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4624
4625 native_store_idt(&dt);
4626 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4627 vmx->host_idt_base = dt.address;
a3a8ff8e 4628
83287ea4 4629 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4630
4631 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4632 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4633 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4634 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4635
4636 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4637 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4638 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4639 }
4640}
4641
bf8179a0
NHE
4642static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4643{
4644 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4645 if (enable_ept)
4646 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4647 if (is_guest_mode(&vmx->vcpu))
4648 vmx->vcpu.arch.cr4_guest_owned_bits &=
4649 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4650 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4651}
4652
01e439be
YZ
4653static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4654{
4655 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4656
d62caabb 4657 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be
YZ
4658 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4659 return pin_based_exec_ctrl;
4660}
4661
d62caabb
AS
4662static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4663{
4664 struct vcpu_vmx *vmx = to_vmx(vcpu);
4665
4666 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4667}
4668
bf8179a0
NHE
4669static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4670{
4671 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4672
4673 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4674 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4675
35754c98 4676 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
4677 exec_control &= ~CPU_BASED_TPR_SHADOW;
4678#ifdef CONFIG_X86_64
4679 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4680 CPU_BASED_CR8_LOAD_EXITING;
4681#endif
4682 }
4683 if (!enable_ept)
4684 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4685 CPU_BASED_CR3_LOAD_EXITING |
4686 CPU_BASED_INVLPG_EXITING;
4687 return exec_control;
4688}
4689
4690static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4691{
4692 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 4693 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
4694 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4695 if (vmx->vpid == 0)
4696 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4697 if (!enable_ept) {
4698 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4699 enable_unrestricted_guest = 0;
ad756a16
MJ
4700 /* Enable INVPCID for non-ept guests may cause performance regression. */
4701 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4702 }
4703 if (!enable_unrestricted_guest)
4704 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4705 if (!ple_gap)
4706 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 4707 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
4708 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4709 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4710 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4711 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4712 (handle_vmptrld).
4713 We can NOT enable shadow_vmcs here because we don't have yet
4714 a current VMCS12
4715 */
4716 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
4717
4718 if (!enable_pml)
4719 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 4720
8b3e34e4
XG
4721 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4722 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4723
bf8179a0
NHE
4724 return exec_control;
4725}
4726
ce88decf
XG
4727static void ept_set_mmio_spte_mask(void)
4728{
4729 /*
4730 * EPT Misconfigurations can be generated if the value of bits 2:0
4731 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4732 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4733 * spte.
4734 */
885032b9 4735 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4736}
4737
f53cd63c 4738#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4739/*
4740 * Sets up the vmcs for emulated real mode.
4741 */
8b9cf98c 4742static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4743{
2e4ce7f5 4744#ifdef CONFIG_X86_64
6aa8b732 4745 unsigned long a;
2e4ce7f5 4746#endif
6aa8b732 4747 int i;
6aa8b732 4748
6aa8b732 4749 /* I/O */
3e7c73e9
AK
4750 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4751 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4752
4607c2d7
AG
4753 if (enable_shadow_vmcs) {
4754 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4755 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4756 }
25c5f225 4757 if (cpu_has_vmx_msr_bitmap())
5897297b 4758 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4759
6aa8b732
AK
4760 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4761
6aa8b732 4762 /* Control */
01e439be 4763 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4764
bf8179a0 4765 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4766
8b3e34e4 4767 if (cpu_has_secondary_exec_ctrls())
bf8179a0
NHE
4768 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4769 vmx_secondary_exec_control(vmx));
f78e0e2e 4770
d62caabb 4771 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
4772 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4773 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4774 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4775 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4776
4777 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 4778
0bcf261c 4779 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 4780 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4781 }
4782
4b8d54f9
ZE
4783 if (ple_gap) {
4784 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4785 vmx->ple_window = ple_window;
4786 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4787 }
4788
c3707958
XG
4789 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4790 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4791 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4792
9581d442
AK
4793 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4794 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4795 vmx_set_constant_host_state(vmx);
05b3e0c2 4796#ifdef CONFIG_X86_64
6aa8b732
AK
4797 rdmsrl(MSR_FS_BASE, a);
4798 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4799 rdmsrl(MSR_GS_BASE, a);
4800 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4801#else
4802 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4803 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4804#endif
4805
2cc51560
ED
4806 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4807 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4808 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4809 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4810 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4811
74545705
RK
4812 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4813 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 4814
03916db9 4815 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4816 u32 index = vmx_msr_index[i];
4817 u32 data_low, data_high;
a2fa3e9f 4818 int j = vmx->nmsrs;
6aa8b732
AK
4819
4820 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4821 continue;
432bd6cb
AK
4822 if (wrmsr_safe(index, data_low, data_high) < 0)
4823 continue;
26bb0981
AK
4824 vmx->guest_msrs[j].index = i;
4825 vmx->guest_msrs[j].data = 0;
d5696725 4826 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4827 ++vmx->nmsrs;
6aa8b732 4828 }
6aa8b732 4829
2961e876
GN
4830
4831 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4832
4833 /* 22.2.1, 20.8.1 */
2961e876 4834 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4835
e00c8cf2 4836 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4837 set_cr4_guest_host_mask(vmx);
e00c8cf2 4838
f53cd63c
WL
4839 if (vmx_xsaves_supported())
4840 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4841
e00c8cf2
AK
4842 return 0;
4843}
4844
d28bc9dd 4845static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
4846{
4847 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4848 struct msr_data apic_base_msr;
d28bc9dd 4849 u64 cr0;
e00c8cf2 4850
7ffd92c5 4851 vmx->rmode.vm86_active = 0;
e00c8cf2 4852
3b86cd99
JK
4853 vmx->soft_vnmi_blocked = 0;
4854
ad312c7c 4855 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
4856 kvm_set_cr8(vcpu, 0);
4857
4858 if (!init_event) {
4859 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4860 MSR_IA32_APICBASE_ENABLE;
4861 if (kvm_vcpu_is_reset_bsp(vcpu))
4862 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4863 apic_base_msr.host_initiated = true;
4864 kvm_set_apic_base(vcpu, &apic_base_msr);
4865 }
e00c8cf2 4866
2fb92db1
AK
4867 vmx_segment_cache_clear(vmx);
4868
5706be0d 4869 seg_setup(VCPU_SREG_CS);
66450a21 4870 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 4871 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
4872
4873 seg_setup(VCPU_SREG_DS);
4874 seg_setup(VCPU_SREG_ES);
4875 seg_setup(VCPU_SREG_FS);
4876 seg_setup(VCPU_SREG_GS);
4877 seg_setup(VCPU_SREG_SS);
4878
4879 vmcs_write16(GUEST_TR_SELECTOR, 0);
4880 vmcs_writel(GUEST_TR_BASE, 0);
4881 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4882 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4883
4884 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4885 vmcs_writel(GUEST_LDTR_BASE, 0);
4886 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4887 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4888
d28bc9dd
NA
4889 if (!init_event) {
4890 vmcs_write32(GUEST_SYSENTER_CS, 0);
4891 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4892 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4893 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4894 }
e00c8cf2
AK
4895
4896 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4897 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4898
e00c8cf2
AK
4899 vmcs_writel(GUEST_GDTR_BASE, 0);
4900 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4901
4902 vmcs_writel(GUEST_IDTR_BASE, 0);
4903 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4904
443381a8 4905 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 4906 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 4907 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 4908
e00c8cf2
AK
4909 setup_msrs(vmx);
4910
6aa8b732
AK
4911 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4912
d28bc9dd 4913 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 4914 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 4915 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 4916 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 4917 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
4918 vmcs_write32(TPR_THRESHOLD, 0);
4919 }
4920
a73896cb 4921 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 4922
d62caabb 4923 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
4924 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4925
2384d2b3
SY
4926 if (vmx->vpid != 0)
4927 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4928
d28bc9dd
NA
4929 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4930 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4931 vmx->vcpu.arch.cr0 = cr0;
4932 vmx_set_cr4(vcpu, 0);
5690891b 4933 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
4934 vmx_fpu_activate(vcpu);
4935 update_exception_bitmap(vcpu);
6aa8b732 4936
dd5f5341 4937 vpid_sync_context(vmx->vpid);
6aa8b732
AK
4938}
4939
b6f1250e
NHE
4940/*
4941 * In nested virtualization, check if L1 asked to exit on external interrupts.
4942 * For most existing hypervisors, this will always return true.
4943 */
4944static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4945{
4946 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4947 PIN_BASED_EXT_INTR_MASK;
4948}
4949
77b0f5d6
BD
4950/*
4951 * In nested virtualization, check if L1 has set
4952 * VM_EXIT_ACK_INTR_ON_EXIT
4953 */
4954static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4955{
4956 return get_vmcs12(vcpu)->vm_exit_controls &
4957 VM_EXIT_ACK_INTR_ON_EXIT;
4958}
4959
ea8ceb83
JK
4960static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4961{
4962 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4963 PIN_BASED_NMI_EXITING;
4964}
4965
c9a7953f 4966static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4967{
4968 u32 cpu_based_vm_exec_control;
730dca42 4969
3b86cd99
JK
4970 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4971 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4972 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4973}
4974
c9a7953f 4975static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4976{
4977 u32 cpu_based_vm_exec_control;
4978
c9a7953f
JK
4979 if (!cpu_has_virtual_nmis() ||
4980 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4981 enable_irq_window(vcpu);
4982 return;
4983 }
3b86cd99
JK
4984
4985 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4986 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4987 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4988}
4989
66fd3f7f 4990static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4991{
9c8cba37 4992 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4993 uint32_t intr;
4994 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4995
229456fc 4996 trace_kvm_inj_virq(irq);
2714d1d3 4997
fa89a817 4998 ++vcpu->stat.irq_injections;
7ffd92c5 4999 if (vmx->rmode.vm86_active) {
71f9833b
SH
5000 int inc_eip = 0;
5001 if (vcpu->arch.interrupt.soft)
5002 inc_eip = vcpu->arch.event_exit_inst_len;
5003 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5004 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5005 return;
5006 }
66fd3f7f
GN
5007 intr = irq | INTR_INFO_VALID_MASK;
5008 if (vcpu->arch.interrupt.soft) {
5009 intr |= INTR_TYPE_SOFT_INTR;
5010 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5011 vmx->vcpu.arch.event_exit_inst_len);
5012 } else
5013 intr |= INTR_TYPE_EXT_INTR;
5014 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5015}
5016
f08864b4
SY
5017static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5018{
66a5a347
JK
5019 struct vcpu_vmx *vmx = to_vmx(vcpu);
5020
0b6ac343
NHE
5021 if (is_guest_mode(vcpu))
5022 return;
5023
3b86cd99
JK
5024 if (!cpu_has_virtual_nmis()) {
5025 /*
5026 * Tracking the NMI-blocked state in software is built upon
5027 * finding the next open IRQ window. This, in turn, depends on
5028 * well-behaving guests: They have to keep IRQs disabled at
5029 * least as long as the NMI handler runs. Otherwise we may
5030 * cause NMI nesting, maybe breaking the guest. But as this is
5031 * highly unlikely, we can live with the residual risk.
5032 */
5033 vmx->soft_vnmi_blocked = 1;
5034 vmx->vnmi_blocked_time = 0;
5035 }
5036
487b391d 5037 ++vcpu->stat.nmi_injections;
9d58b931 5038 vmx->nmi_known_unmasked = false;
7ffd92c5 5039 if (vmx->rmode.vm86_active) {
71f9833b 5040 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5041 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5042 return;
5043 }
f08864b4
SY
5044 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5045 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5046}
5047
3cfc3092
JK
5048static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5049{
5050 if (!cpu_has_virtual_nmis())
5051 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5052 if (to_vmx(vcpu)->nmi_known_unmasked)
5053 return false;
c332c83a 5054 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5055}
5056
5057static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5058{
5059 struct vcpu_vmx *vmx = to_vmx(vcpu);
5060
5061 if (!cpu_has_virtual_nmis()) {
5062 if (vmx->soft_vnmi_blocked != masked) {
5063 vmx->soft_vnmi_blocked = masked;
5064 vmx->vnmi_blocked_time = 0;
5065 }
5066 } else {
9d58b931 5067 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5068 if (masked)
5069 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5070 GUEST_INTR_STATE_NMI);
5071 else
5072 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5073 GUEST_INTR_STATE_NMI);
5074 }
5075}
5076
2505dc9f
JK
5077static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5078{
b6b8a145
JK
5079 if (to_vmx(vcpu)->nested.nested_run_pending)
5080 return 0;
ea8ceb83 5081
2505dc9f
JK
5082 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5083 return 0;
5084
5085 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5086 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5087 | GUEST_INTR_STATE_NMI));
5088}
5089
78646121
GN
5090static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5091{
b6b8a145
JK
5092 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5093 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5094 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5095 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5096}
5097
cbc94022
IE
5098static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5099{
5100 int ret;
cbc94022 5101
1d8007bd
PB
5102 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5103 PAGE_SIZE * 3);
cbc94022
IE
5104 if (ret)
5105 return ret;
bfc6d222 5106 kvm->arch.tss_addr = addr;
1f755a82 5107 return init_rmode_tss(kvm);
cbc94022
IE
5108}
5109
0ca1b4f4 5110static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5111{
77ab6db0 5112 switch (vec) {
77ab6db0 5113 case BP_VECTOR:
c573cd22
JK
5114 /*
5115 * Update instruction length as we may reinject the exception
5116 * from user space while in guest debugging mode.
5117 */
5118 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5119 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5120 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5121 return false;
5122 /* fall through */
5123 case DB_VECTOR:
5124 if (vcpu->guest_debug &
5125 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5126 return false;
d0bfb940
JK
5127 /* fall through */
5128 case DE_VECTOR:
77ab6db0
JK
5129 case OF_VECTOR:
5130 case BR_VECTOR:
5131 case UD_VECTOR:
5132 case DF_VECTOR:
5133 case SS_VECTOR:
5134 case GP_VECTOR:
5135 case MF_VECTOR:
0ca1b4f4
GN
5136 return true;
5137 break;
77ab6db0 5138 }
0ca1b4f4
GN
5139 return false;
5140}
5141
5142static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5143 int vec, u32 err_code)
5144{
5145 /*
5146 * Instruction with address size override prefix opcode 0x67
5147 * Cause the #SS fault with 0 error code in VM86 mode.
5148 */
5149 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5150 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5151 if (vcpu->arch.halt_request) {
5152 vcpu->arch.halt_request = 0;
5cb56059 5153 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5154 }
5155 return 1;
5156 }
5157 return 0;
5158 }
5159
5160 /*
5161 * Forward all other exceptions that are valid in real mode.
5162 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5163 * the required debugging infrastructure rework.
5164 */
5165 kvm_queue_exception(vcpu, vec);
5166 return 1;
6aa8b732
AK
5167}
5168
a0861c02
AK
5169/*
5170 * Trigger machine check on the host. We assume all the MSRs are already set up
5171 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5172 * We pass a fake environment to the machine check handler because we want
5173 * the guest to be always treated like user space, no matter what context
5174 * it used internally.
5175 */
5176static void kvm_machine_check(void)
5177{
5178#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5179 struct pt_regs regs = {
5180 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5181 .flags = X86_EFLAGS_IF,
5182 };
5183
5184 do_machine_check(&regs, 0);
5185#endif
5186}
5187
851ba692 5188static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5189{
5190 /* already handled by vcpu_run */
5191 return 1;
5192}
5193
851ba692 5194static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5195{
1155f76a 5196 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5197 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5198 u32 intr_info, ex_no, error_code;
42dbaa5a 5199 unsigned long cr2, rip, dr6;
6aa8b732
AK
5200 u32 vect_info;
5201 enum emulation_result er;
5202
1155f76a 5203 vect_info = vmx->idt_vectoring_info;
88786475 5204 intr_info = vmx->exit_intr_info;
6aa8b732 5205
a0861c02 5206 if (is_machine_check(intr_info))
851ba692 5207 return handle_machine_check(vcpu);
a0861c02 5208
e4a41889 5209 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5210 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5211
5212 if (is_no_device(intr_info)) {
5fd86fcf 5213 vmx_fpu_activate(vcpu);
2ab455cc
AL
5214 return 1;
5215 }
5216
7aa81cc0 5217 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5218 if (is_guest_mode(vcpu)) {
5219 kvm_queue_exception(vcpu, UD_VECTOR);
5220 return 1;
5221 }
51d8b661 5222 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5223 if (er != EMULATE_DONE)
7ee5d940 5224 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5225 return 1;
5226 }
5227
6aa8b732 5228 error_code = 0;
2e11384c 5229 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5230 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5231
5232 /*
5233 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5234 * MMIO, it is better to report an internal error.
5235 * See the comments in vmx_handle_exit.
5236 */
5237 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5238 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5239 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5240 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5241 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5242 vcpu->run->internal.data[0] = vect_info;
5243 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5244 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5245 return 0;
5246 }
5247
6aa8b732 5248 if (is_page_fault(intr_info)) {
1439442c 5249 /* EPT won't cause page fault directly */
cf3ace79 5250 BUG_ON(enable_ept);
6aa8b732 5251 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5252 trace_kvm_page_fault(cr2, error_code);
5253
3298b75c 5254 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5255 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5256 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5257 }
5258
d0bfb940 5259 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5260
5261 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5262 return handle_rmode_exception(vcpu, ex_no, error_code);
5263
42dbaa5a 5264 switch (ex_no) {
54a20552
EN
5265 case AC_VECTOR:
5266 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5267 return 1;
42dbaa5a
JK
5268 case DB_VECTOR:
5269 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5270 if (!(vcpu->guest_debug &
5271 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5272 vcpu->arch.dr6 &= ~15;
6f43ed01 5273 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5274 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5275 skip_emulated_instruction(vcpu);
5276
42dbaa5a
JK
5277 kvm_queue_exception(vcpu, DB_VECTOR);
5278 return 1;
5279 }
5280 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5281 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5282 /* fall through */
5283 case BP_VECTOR:
c573cd22
JK
5284 /*
5285 * Update instruction length as we may reinject #BP from
5286 * user space while in guest debugging mode. Reading it for
5287 * #DB as well causes no harm, it is not used in that case.
5288 */
5289 vmx->vcpu.arch.event_exit_inst_len =
5290 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5291 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5292 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5293 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5294 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5295 break;
5296 default:
d0bfb940
JK
5297 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5298 kvm_run->ex.exception = ex_no;
5299 kvm_run->ex.error_code = error_code;
42dbaa5a 5300 break;
6aa8b732 5301 }
6aa8b732
AK
5302 return 0;
5303}
5304
851ba692 5305static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5306{
1165f5fe 5307 ++vcpu->stat.irq_exits;
6aa8b732
AK
5308 return 1;
5309}
5310
851ba692 5311static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5312{
851ba692 5313 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5314 return 0;
5315}
6aa8b732 5316
851ba692 5317static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5318{
bfdaab09 5319 unsigned long exit_qualification;
34c33d16 5320 int size, in, string;
039576c0 5321 unsigned port;
6aa8b732 5322
bfdaab09 5323 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5324 string = (exit_qualification & 16) != 0;
cf8f70bf 5325 in = (exit_qualification & 8) != 0;
e70669ab 5326
cf8f70bf 5327 ++vcpu->stat.io_exits;
e70669ab 5328
cf8f70bf 5329 if (string || in)
51d8b661 5330 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5331
cf8f70bf
GN
5332 port = exit_qualification >> 16;
5333 size = (exit_qualification & 7) + 1;
e93f36bc 5334 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5335
5336 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5337}
5338
102d8325
IM
5339static void
5340vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5341{
5342 /*
5343 * Patch in the VMCALL instruction:
5344 */
5345 hypercall[0] = 0x0f;
5346 hypercall[1] = 0x01;
5347 hypercall[2] = 0xc1;
102d8325
IM
5348}
5349
b9c237bb 5350static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5351{
5352 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5353 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5354
b9c237bb 5355 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5356 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5357 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5358 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5359 return (val & always_on) == always_on;
5360}
5361
0fa06071 5362/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5363static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5364{
eeadf9e7 5365 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5366 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5367 unsigned long orig_val = val;
5368
eeadf9e7
NHE
5369 /*
5370 * We get here when L2 changed cr0 in a way that did not change
5371 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5372 * but did change L0 shadowed bits. So we first calculate the
5373 * effective cr0 value that L1 would like to write into the
5374 * hardware. It consists of the L2-owned bits from the new
5375 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5376 */
1a0d74e6
JK
5377 val = (val & ~vmcs12->cr0_guest_host_mask) |
5378 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5379
b9c237bb 5380 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5381 return 1;
1a0d74e6
JK
5382
5383 if (kvm_set_cr0(vcpu, val))
5384 return 1;
5385 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5386 return 0;
1a0d74e6
JK
5387 } else {
5388 if (to_vmx(vcpu)->nested.vmxon &&
5389 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5390 return 1;
eeadf9e7 5391 return kvm_set_cr0(vcpu, val);
1a0d74e6 5392 }
eeadf9e7
NHE
5393}
5394
5395static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5396{
5397 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5398 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5399 unsigned long orig_val = val;
5400
5401 /* analogously to handle_set_cr0 */
5402 val = (val & ~vmcs12->cr4_guest_host_mask) |
5403 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5404 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5405 return 1;
1a0d74e6 5406 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5407 return 0;
5408 } else
5409 return kvm_set_cr4(vcpu, val);
5410}
5411
5412/* called to set cr0 as approriate for clts instruction exit. */
5413static void handle_clts(struct kvm_vcpu *vcpu)
5414{
5415 if (is_guest_mode(vcpu)) {
5416 /*
5417 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5418 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5419 * just pretend it's off (also in arch.cr0 for fpu_activate).
5420 */
5421 vmcs_writel(CR0_READ_SHADOW,
5422 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5423 vcpu->arch.cr0 &= ~X86_CR0_TS;
5424 } else
5425 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5426}
5427
851ba692 5428static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5429{
229456fc 5430 unsigned long exit_qualification, val;
6aa8b732
AK
5431 int cr;
5432 int reg;
49a9b07e 5433 int err;
6aa8b732 5434
bfdaab09 5435 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5436 cr = exit_qualification & 15;
5437 reg = (exit_qualification >> 8) & 15;
5438 switch ((exit_qualification >> 4) & 3) {
5439 case 0: /* mov to cr */
1e32c079 5440 val = kvm_register_readl(vcpu, reg);
229456fc 5441 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5442 switch (cr) {
5443 case 0:
eeadf9e7 5444 err = handle_set_cr0(vcpu, val);
db8fcefa 5445 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5446 return 1;
5447 case 3:
2390218b 5448 err = kvm_set_cr3(vcpu, val);
db8fcefa 5449 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5450 return 1;
5451 case 4:
eeadf9e7 5452 err = handle_set_cr4(vcpu, val);
db8fcefa 5453 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5454 return 1;
0a5fff19
GN
5455 case 8: {
5456 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5457 u8 cr8 = (u8)val;
eea1cff9 5458 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5459 kvm_complete_insn_gp(vcpu, err);
35754c98 5460 if (lapic_in_kernel(vcpu))
0a5fff19
GN
5461 return 1;
5462 if (cr8_prev <= cr8)
5463 return 1;
851ba692 5464 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5465 return 0;
5466 }
4b8073e4 5467 }
6aa8b732 5468 break;
25c4c276 5469 case 2: /* clts */
eeadf9e7 5470 handle_clts(vcpu);
4d4ec087 5471 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5472 skip_emulated_instruction(vcpu);
6b52d186 5473 vmx_fpu_activate(vcpu);
25c4c276 5474 return 1;
6aa8b732
AK
5475 case 1: /*mov from cr*/
5476 switch (cr) {
5477 case 3:
9f8fe504
AK
5478 val = kvm_read_cr3(vcpu);
5479 kvm_register_write(vcpu, reg, val);
5480 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5481 skip_emulated_instruction(vcpu);
5482 return 1;
5483 case 8:
229456fc
MT
5484 val = kvm_get_cr8(vcpu);
5485 kvm_register_write(vcpu, reg, val);
5486 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5487 skip_emulated_instruction(vcpu);
5488 return 1;
5489 }
5490 break;
5491 case 3: /* lmsw */
a1f83a74 5492 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5493 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5494 kvm_lmsw(vcpu, val);
6aa8b732
AK
5495
5496 skip_emulated_instruction(vcpu);
5497 return 1;
5498 default:
5499 break;
5500 }
851ba692 5501 vcpu->run->exit_reason = 0;
a737f256 5502 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5503 (int)(exit_qualification >> 4) & 3, cr);
5504 return 0;
5505}
5506
851ba692 5507static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5508{
bfdaab09 5509 unsigned long exit_qualification;
16f8a6f9
NA
5510 int dr, dr7, reg;
5511
5512 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5513 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5514
5515 /* First, if DR does not exist, trigger UD */
5516 if (!kvm_require_dr(vcpu, dr))
5517 return 1;
6aa8b732 5518
f2483415 5519 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5520 if (!kvm_require_cpl(vcpu, 0))
5521 return 1;
16f8a6f9
NA
5522 dr7 = vmcs_readl(GUEST_DR7);
5523 if (dr7 & DR7_GD) {
42dbaa5a
JK
5524 /*
5525 * As the vm-exit takes precedence over the debug trap, we
5526 * need to emulate the latter, either for the host or the
5527 * guest debugging itself.
5528 */
5529 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5530 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5531 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5532 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5533 vcpu->run->debug.arch.exception = DB_VECTOR;
5534 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5535 return 0;
5536 } else {
7305eb5d 5537 vcpu->arch.dr6 &= ~15;
6f43ed01 5538 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5539 kvm_queue_exception(vcpu, DB_VECTOR);
5540 return 1;
5541 }
5542 }
5543
81908bf4
PB
5544 if (vcpu->guest_debug == 0) {
5545 u32 cpu_based_vm_exec_control;
5546
5547 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5548 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5549 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5550
5551 /*
5552 * No more DR vmexits; force a reload of the debug registers
5553 * and reenter on this instruction. The next vmexit will
5554 * retrieve the full state of the debug registers.
5555 */
5556 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5557 return 1;
5558 }
5559
42dbaa5a
JK
5560 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5561 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5562 unsigned long val;
4c4d563b
JK
5563
5564 if (kvm_get_dr(vcpu, dr, &val))
5565 return 1;
5566 kvm_register_write(vcpu, reg, val);
020df079 5567 } else
5777392e 5568 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5569 return 1;
5570
6aa8b732
AK
5571 skip_emulated_instruction(vcpu);
5572 return 1;
5573}
5574
73aaf249
JK
5575static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5576{
5577 return vcpu->arch.dr6;
5578}
5579
5580static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5581{
5582}
5583
81908bf4
PB
5584static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5585{
5586 u32 cpu_based_vm_exec_control;
5587
5588 get_debugreg(vcpu->arch.db[0], 0);
5589 get_debugreg(vcpu->arch.db[1], 1);
5590 get_debugreg(vcpu->arch.db[2], 2);
5591 get_debugreg(vcpu->arch.db[3], 3);
5592 get_debugreg(vcpu->arch.dr6, 6);
5593 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5594
5595 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5596
5597 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5598 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5599 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5600}
5601
020df079
GN
5602static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5603{
5604 vmcs_writel(GUEST_DR7, val);
5605}
5606
851ba692 5607static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5608{
06465c5a
AK
5609 kvm_emulate_cpuid(vcpu);
5610 return 1;
6aa8b732
AK
5611}
5612
851ba692 5613static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5614{
ad312c7c 5615 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5616 struct msr_data msr_info;
6aa8b732 5617
609e36d3
PB
5618 msr_info.index = ecx;
5619 msr_info.host_initiated = false;
5620 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5621 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5622 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5623 return 1;
5624 }
5625
609e36d3 5626 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5627
6aa8b732 5628 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5629 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5630 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5631 skip_emulated_instruction(vcpu);
5632 return 1;
5633}
5634
851ba692 5635static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5636{
8fe8ab46 5637 struct msr_data msr;
ad312c7c
ZX
5638 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5639 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5640 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5641
8fe8ab46
WA
5642 msr.data = data;
5643 msr.index = ecx;
5644 msr.host_initiated = false;
854e8bb1 5645 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5646 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5647 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5648 return 1;
5649 }
5650
59200273 5651 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5652 skip_emulated_instruction(vcpu);
5653 return 1;
5654}
5655
851ba692 5656static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5657{
3842d135 5658 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5659 return 1;
5660}
5661
851ba692 5662static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5663{
85f455f7
ED
5664 u32 cpu_based_vm_exec_control;
5665
5666 /* clear pending irq */
5667 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5668 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5669 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5670
3842d135
AK
5671 kvm_make_request(KVM_REQ_EVENT, vcpu);
5672
a26bf12a 5673 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
5674 return 1;
5675}
5676
851ba692 5677static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5678{
d3bef15f 5679 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5680}
5681
851ba692 5682static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5683{
7aa81cc0
AL
5684 kvm_emulate_hypercall(vcpu);
5685 return 1;
c21415e8
IM
5686}
5687
ec25d5e6
GN
5688static int handle_invd(struct kvm_vcpu *vcpu)
5689{
51d8b661 5690 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5691}
5692
851ba692 5693static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5694{
f9c617f6 5695 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5696
5697 kvm_mmu_invlpg(vcpu, exit_qualification);
5698 skip_emulated_instruction(vcpu);
5699 return 1;
5700}
5701
fee84b07
AK
5702static int handle_rdpmc(struct kvm_vcpu *vcpu)
5703{
5704 int err;
5705
5706 err = kvm_rdpmc(vcpu);
5707 kvm_complete_insn_gp(vcpu, err);
5708
5709 return 1;
5710}
5711
851ba692 5712static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5713{
f5f48ee1 5714 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5715 return 1;
5716}
5717
2acf923e
DC
5718static int handle_xsetbv(struct kvm_vcpu *vcpu)
5719{
5720 u64 new_bv = kvm_read_edx_eax(vcpu);
5721 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5722
5723 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5724 skip_emulated_instruction(vcpu);
5725 return 1;
5726}
5727
f53cd63c
WL
5728static int handle_xsaves(struct kvm_vcpu *vcpu)
5729{
5730 skip_emulated_instruction(vcpu);
5731 WARN(1, "this should never happen\n");
5732 return 1;
5733}
5734
5735static int handle_xrstors(struct kvm_vcpu *vcpu)
5736{
5737 skip_emulated_instruction(vcpu);
5738 WARN(1, "this should never happen\n");
5739 return 1;
5740}
5741
851ba692 5742static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5743{
58fbbf26
KT
5744 if (likely(fasteoi)) {
5745 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5746 int access_type, offset;
5747
5748 access_type = exit_qualification & APIC_ACCESS_TYPE;
5749 offset = exit_qualification & APIC_ACCESS_OFFSET;
5750 /*
5751 * Sane guest uses MOV to write EOI, with written value
5752 * not cared. So make a short-circuit here by avoiding
5753 * heavy instruction emulation.
5754 */
5755 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5756 (offset == APIC_EOI)) {
5757 kvm_lapic_set_eoi(vcpu);
5758 skip_emulated_instruction(vcpu);
5759 return 1;
5760 }
5761 }
51d8b661 5762 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5763}
5764
c7c9c56c
YZ
5765static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5766{
5767 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5768 int vector = exit_qualification & 0xff;
5769
5770 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5771 kvm_apic_set_eoi_accelerated(vcpu, vector);
5772 return 1;
5773}
5774
83d4c286
YZ
5775static int handle_apic_write(struct kvm_vcpu *vcpu)
5776{
5777 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5778 u32 offset = exit_qualification & 0xfff;
5779
5780 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5781 kvm_apic_write_nodecode(vcpu, offset);
5782 return 1;
5783}
5784
851ba692 5785static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5786{
60637aac 5787 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5788 unsigned long exit_qualification;
e269fb21
JK
5789 bool has_error_code = false;
5790 u32 error_code = 0;
37817f29 5791 u16 tss_selector;
7f3d35fd 5792 int reason, type, idt_v, idt_index;
64a7ec06
GN
5793
5794 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5795 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5796 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5797
5798 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5799
5800 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5801 if (reason == TASK_SWITCH_GATE && idt_v) {
5802 switch (type) {
5803 case INTR_TYPE_NMI_INTR:
5804 vcpu->arch.nmi_injected = false;
654f06fc 5805 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5806 break;
5807 case INTR_TYPE_EXT_INTR:
66fd3f7f 5808 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5809 kvm_clear_interrupt_queue(vcpu);
5810 break;
5811 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5812 if (vmx->idt_vectoring_info &
5813 VECTORING_INFO_DELIVER_CODE_MASK) {
5814 has_error_code = true;
5815 error_code =
5816 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5817 }
5818 /* fall through */
64a7ec06
GN
5819 case INTR_TYPE_SOFT_EXCEPTION:
5820 kvm_clear_exception_queue(vcpu);
5821 break;
5822 default:
5823 break;
5824 }
60637aac 5825 }
37817f29
IE
5826 tss_selector = exit_qualification;
5827
64a7ec06
GN
5828 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5829 type != INTR_TYPE_EXT_INTR &&
5830 type != INTR_TYPE_NMI_INTR))
5831 skip_emulated_instruction(vcpu);
5832
7f3d35fd
KW
5833 if (kvm_task_switch(vcpu, tss_selector,
5834 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5835 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5836 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5837 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5838 vcpu->run->internal.ndata = 0;
42dbaa5a 5839 return 0;
acb54517 5840 }
42dbaa5a 5841
42dbaa5a
JK
5842 /*
5843 * TODO: What about debug traps on tss switch?
5844 * Are we supposed to inject them and update dr6?
5845 */
5846
5847 return 1;
37817f29
IE
5848}
5849
851ba692 5850static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5851{
f9c617f6 5852 unsigned long exit_qualification;
1439442c 5853 gpa_t gpa;
4f5982a5 5854 u32 error_code;
1439442c 5855 int gla_validity;
1439442c 5856
f9c617f6 5857 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5858
1439442c
SY
5859 gla_validity = (exit_qualification >> 7) & 0x3;
5860 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5861 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5862 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5863 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5864 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5865 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5866 (long unsigned int)exit_qualification);
851ba692
AK
5867 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5868 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5869 return 0;
1439442c
SY
5870 }
5871
0be9c7a8
GN
5872 /*
5873 * EPT violation happened while executing iret from NMI,
5874 * "blocked by NMI" bit has to be set before next VM entry.
5875 * There are errata that may cause this bit to not be set:
5876 * AAK134, BY25.
5877 */
bcd1c294
GN
5878 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5879 cpu_has_virtual_nmis() &&
5880 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5881 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5882
1439442c 5883 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5884 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5885
5886 /* It is a write fault? */
81ed33e4 5887 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 5888 /* It is a fetch fault? */
81ed33e4 5889 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 5890 /* ept page table is present? */
81ed33e4 5891 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 5892
25d92081
YZ
5893 vcpu->arch.exit_qualification = exit_qualification;
5894
4f5982a5 5895 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5896}
5897
851ba692 5898static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 5899{
f735d4af 5900 int ret;
68f89400
MT
5901 gpa_t gpa;
5902
5903 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 5904 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1 5905 skip_emulated_instruction(vcpu);
931c33b1 5906 trace_kvm_fast_mmio(gpa);
68c3b4d1
MT
5907 return 1;
5908 }
68f89400 5909
450869d6 5910 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 5911 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5912 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5913 EMULATE_DONE;
f8f55942
XG
5914
5915 if (unlikely(ret == RET_MMIO_PF_INVALID))
5916 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5917
b37fbea6 5918 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5919 return 1;
5920
5921 /* It is the real ept misconfig */
f735d4af 5922 WARN_ON(1);
68f89400 5923
851ba692
AK
5924 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5925 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5926
5927 return 0;
5928}
5929
851ba692 5930static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5931{
5932 u32 cpu_based_vm_exec_control;
5933
5934 /* clear pending NMI */
5935 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5936 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5937 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5938 ++vcpu->stat.nmi_window_exits;
3842d135 5939 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5940
5941 return 1;
5942}
5943
80ced186 5944static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5945{
8b3079a5
AK
5946 struct vcpu_vmx *vmx = to_vmx(vcpu);
5947 enum emulation_result err = EMULATE_DONE;
80ced186 5948 int ret = 1;
49e9d557
AK
5949 u32 cpu_exec_ctrl;
5950 bool intr_window_requested;
b8405c18 5951 unsigned count = 130;
49e9d557
AK
5952
5953 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5954 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5955
98eb2f8b 5956 while (vmx->emulation_required && count-- != 0) {
bdea48e3 5957 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5958 return handle_interrupt_window(&vmx->vcpu);
5959
de87dcdd
AK
5960 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5961 return 1;
5962
991eebf9 5963 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5964
ac0a48c3 5965 if (err == EMULATE_USER_EXIT) {
94452b9e 5966 ++vcpu->stat.mmio_exits;
80ced186
MG
5967 ret = 0;
5968 goto out;
5969 }
1d5a4d9b 5970
de5f70e0
AK
5971 if (err != EMULATE_DONE) {
5972 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5973 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5974 vcpu->run->internal.ndata = 0;
6d77dbfc 5975 return 0;
de5f70e0 5976 }
ea953ef0 5977
8d76c49e
GN
5978 if (vcpu->arch.halt_request) {
5979 vcpu->arch.halt_request = 0;
5cb56059 5980 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
5981 goto out;
5982 }
5983
ea953ef0 5984 if (signal_pending(current))
80ced186 5985 goto out;
ea953ef0
MG
5986 if (need_resched())
5987 schedule();
5988 }
5989
80ced186
MG
5990out:
5991 return ret;
ea953ef0
MG
5992}
5993
b4a2d31d
RK
5994static int __grow_ple_window(int val)
5995{
5996 if (ple_window_grow < 1)
5997 return ple_window;
5998
5999 val = min(val, ple_window_actual_max);
6000
6001 if (ple_window_grow < ple_window)
6002 val *= ple_window_grow;
6003 else
6004 val += ple_window_grow;
6005
6006 return val;
6007}
6008
6009static int __shrink_ple_window(int val, int modifier, int minimum)
6010{
6011 if (modifier < 1)
6012 return ple_window;
6013
6014 if (modifier < ple_window)
6015 val /= modifier;
6016 else
6017 val -= modifier;
6018
6019 return max(val, minimum);
6020}
6021
6022static void grow_ple_window(struct kvm_vcpu *vcpu)
6023{
6024 struct vcpu_vmx *vmx = to_vmx(vcpu);
6025 int old = vmx->ple_window;
6026
6027 vmx->ple_window = __grow_ple_window(old);
6028
6029 if (vmx->ple_window != old)
6030 vmx->ple_window_dirty = true;
7b46268d
RK
6031
6032 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6033}
6034
6035static void shrink_ple_window(struct kvm_vcpu *vcpu)
6036{
6037 struct vcpu_vmx *vmx = to_vmx(vcpu);
6038 int old = vmx->ple_window;
6039
6040 vmx->ple_window = __shrink_ple_window(old,
6041 ple_window_shrink, ple_window);
6042
6043 if (vmx->ple_window != old)
6044 vmx->ple_window_dirty = true;
7b46268d
RK
6045
6046 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6047}
6048
6049/*
6050 * ple_window_actual_max is computed to be one grow_ple_window() below
6051 * ple_window_max. (See __grow_ple_window for the reason.)
6052 * This prevents overflows, because ple_window_max is int.
6053 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6054 * this process.
6055 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6056 */
6057static void update_ple_window_actual_max(void)
6058{
6059 ple_window_actual_max =
6060 __shrink_ple_window(max(ple_window_max, ple_window),
6061 ple_window_grow, INT_MIN);
6062}
6063
bf9f6ac8
FW
6064/*
6065 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6066 */
6067static void wakeup_handler(void)
6068{
6069 struct kvm_vcpu *vcpu;
6070 int cpu = smp_processor_id();
6071
6072 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6073 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6074 blocked_vcpu_list) {
6075 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6076
6077 if (pi_test_on(pi_desc) == 1)
6078 kvm_vcpu_kick(vcpu);
6079 }
6080 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6081}
6082
f2c7648d
TC
6083static __init int hardware_setup(void)
6084{
34a1cd60
TC
6085 int r = -ENOMEM, i, msr;
6086
6087 rdmsrl_safe(MSR_EFER, &host_efer);
6088
6089 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6090 kvm_define_shared_msr(i, vmx_msr_index[i]);
6091
6092 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6093 if (!vmx_io_bitmap_a)
6094 return r;
6095
6096 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6097 if (!vmx_io_bitmap_b)
6098 goto out;
6099
6100 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6101 if (!vmx_msr_bitmap_legacy)
6102 goto out1;
6103
6104 vmx_msr_bitmap_legacy_x2apic =
6105 (unsigned long *)__get_free_page(GFP_KERNEL);
6106 if (!vmx_msr_bitmap_legacy_x2apic)
6107 goto out2;
6108
6109 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6110 if (!vmx_msr_bitmap_longmode)
6111 goto out3;
6112
6113 vmx_msr_bitmap_longmode_x2apic =
6114 (unsigned long *)__get_free_page(GFP_KERNEL);
6115 if (!vmx_msr_bitmap_longmode_x2apic)
6116 goto out4;
3af18d9c
WV
6117
6118 if (nested) {
6119 vmx_msr_bitmap_nested =
6120 (unsigned long *)__get_free_page(GFP_KERNEL);
6121 if (!vmx_msr_bitmap_nested)
6122 goto out5;
6123 }
6124
34a1cd60
TC
6125 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6126 if (!vmx_vmread_bitmap)
3af18d9c 6127 goto out6;
34a1cd60
TC
6128
6129 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6130 if (!vmx_vmwrite_bitmap)
3af18d9c 6131 goto out7;
34a1cd60
TC
6132
6133 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6134 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6135
6136 /*
6137 * Allow direct access to the PC debug port (it is often used for I/O
6138 * delays, but the vmexits simply slow things down).
6139 */
6140 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6141 clear_bit(0x80, vmx_io_bitmap_a);
6142
6143 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6144
6145 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6146 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
6147 if (nested)
6148 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 6149
34a1cd60
TC
6150 if (setup_vmcs_config(&vmcs_config) < 0) {
6151 r = -EIO;
3af18d9c 6152 goto out8;
baa03522 6153 }
f2c7648d
TC
6154
6155 if (boot_cpu_has(X86_FEATURE_NX))
6156 kvm_enable_efer_bits(EFER_NX);
6157
6158 if (!cpu_has_vmx_vpid())
6159 enable_vpid = 0;
6160 if (!cpu_has_vmx_shadow_vmcs())
6161 enable_shadow_vmcs = 0;
6162 if (enable_shadow_vmcs)
6163 init_vmcs_shadow_fields();
6164
6165 if (!cpu_has_vmx_ept() ||
6166 !cpu_has_vmx_ept_4levels()) {
6167 enable_ept = 0;
6168 enable_unrestricted_guest = 0;
6169 enable_ept_ad_bits = 0;
6170 }
6171
6172 if (!cpu_has_vmx_ept_ad_bits())
6173 enable_ept_ad_bits = 0;
6174
6175 if (!cpu_has_vmx_unrestricted_guest())
6176 enable_unrestricted_guest = 0;
6177
ad15a296 6178 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6179 flexpriority_enabled = 0;
6180
ad15a296
PB
6181 /*
6182 * set_apic_access_page_addr() is used to reload apic access
6183 * page upon invalidation. No need to do anything if not
6184 * using the APIC_ACCESS_ADDR VMCS field.
6185 */
6186 if (!flexpriority_enabled)
f2c7648d 6187 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6188
6189 if (!cpu_has_vmx_tpr_shadow())
6190 kvm_x86_ops->update_cr8_intercept = NULL;
6191
6192 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6193 kvm_disable_largepages();
6194
6195 if (!cpu_has_vmx_ple())
6196 ple_gap = 0;
6197
6198 if (!cpu_has_vmx_apicv())
6199 enable_apicv = 0;
6200
64903d61
HZ
6201 if (cpu_has_vmx_tsc_scaling()) {
6202 kvm_has_tsc_control = true;
6203 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6204 kvm_tsc_scaling_ratio_frac_bits = 48;
6205 }
6206
baa03522
TC
6207 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6208 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6209 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6210 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6211 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6212 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6213 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6214
6215 memcpy(vmx_msr_bitmap_legacy_x2apic,
6216 vmx_msr_bitmap_legacy, PAGE_SIZE);
6217 memcpy(vmx_msr_bitmap_longmode_x2apic,
6218 vmx_msr_bitmap_longmode, PAGE_SIZE);
6219
04bb92e4
WL
6220 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6221
baa03522
TC
6222 if (enable_apicv) {
6223 for (msr = 0x800; msr <= 0x8ff; msr++)
6224 vmx_disable_intercept_msr_read_x2apic(msr);
6225
6226 /* According SDM, in x2apic mode, the whole id reg is used.
6227 * But in KVM, it only use the highest eight bits. Need to
6228 * intercept it */
6229 vmx_enable_intercept_msr_read_x2apic(0x802);
6230 /* TMCCT */
6231 vmx_enable_intercept_msr_read_x2apic(0x839);
6232 /* TPR */
6233 vmx_disable_intercept_msr_write_x2apic(0x808);
6234 /* EOI */
6235 vmx_disable_intercept_msr_write_x2apic(0x80b);
6236 /* SELF-IPI */
6237 vmx_disable_intercept_msr_write_x2apic(0x83f);
6238 }
6239
6240 if (enable_ept) {
6241 kvm_mmu_set_mask_ptes(0ull,
6242 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6243 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6244 0ull, VMX_EPT_EXECUTABLE_MASK);
6245 ept_set_mmio_spte_mask();
6246 kvm_enable_tdp();
6247 } else
6248 kvm_disable_tdp();
6249
6250 update_ple_window_actual_max();
6251
843e4330
KH
6252 /*
6253 * Only enable PML when hardware supports PML feature, and both EPT
6254 * and EPT A/D bit features are enabled -- PML depends on them to work.
6255 */
6256 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6257 enable_pml = 0;
6258
6259 if (!enable_pml) {
6260 kvm_x86_ops->slot_enable_log_dirty = NULL;
6261 kvm_x86_ops->slot_disable_log_dirty = NULL;
6262 kvm_x86_ops->flush_log_dirty = NULL;
6263 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6264 }
6265
bf9f6ac8
FW
6266 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6267
f2c7648d 6268 return alloc_kvm_area();
34a1cd60 6269
3af18d9c 6270out8:
34a1cd60 6271 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6272out7:
34a1cd60 6273 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6274out6:
6275 if (nested)
6276 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6277out5:
6278 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6279out4:
6280 free_page((unsigned long)vmx_msr_bitmap_longmode);
6281out3:
6282 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6283out2:
6284 free_page((unsigned long)vmx_msr_bitmap_legacy);
6285out1:
6286 free_page((unsigned long)vmx_io_bitmap_b);
6287out:
6288 free_page((unsigned long)vmx_io_bitmap_a);
6289
6290 return r;
f2c7648d
TC
6291}
6292
6293static __exit void hardware_unsetup(void)
6294{
34a1cd60
TC
6295 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6296 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6297 free_page((unsigned long)vmx_msr_bitmap_legacy);
6298 free_page((unsigned long)vmx_msr_bitmap_longmode);
6299 free_page((unsigned long)vmx_io_bitmap_b);
6300 free_page((unsigned long)vmx_io_bitmap_a);
6301 free_page((unsigned long)vmx_vmwrite_bitmap);
6302 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6303 if (nested)
6304 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6305
f2c7648d
TC
6306 free_kvm_area();
6307}
6308
4b8d54f9
ZE
6309/*
6310 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6311 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6312 */
9fb41ba8 6313static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6314{
b4a2d31d
RK
6315 if (ple_gap)
6316 grow_ple_window(vcpu);
6317
4b8d54f9
ZE
6318 skip_emulated_instruction(vcpu);
6319 kvm_vcpu_on_spin(vcpu);
6320
6321 return 1;
6322}
6323
87c00572 6324static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6325{
87c00572 6326 skip_emulated_instruction(vcpu);
59708670
SY
6327 return 1;
6328}
6329
87c00572
GS
6330static int handle_mwait(struct kvm_vcpu *vcpu)
6331{
6332 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6333 return handle_nop(vcpu);
6334}
6335
5f3d45e7
MD
6336static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6337{
6338 return 1;
6339}
6340
87c00572
GS
6341static int handle_monitor(struct kvm_vcpu *vcpu)
6342{
6343 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6344 return handle_nop(vcpu);
6345}
6346
ff2f6fe9
NHE
6347/*
6348 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6349 * We could reuse a single VMCS for all the L2 guests, but we also want the
6350 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6351 * allows keeping them loaded on the processor, and in the future will allow
6352 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6353 * every entry if they never change.
6354 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6355 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6356 *
6357 * The following functions allocate and free a vmcs02 in this pool.
6358 */
6359
6360/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6361static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6362{
6363 struct vmcs02_list *item;
6364 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6365 if (item->vmptr == vmx->nested.current_vmptr) {
6366 list_move(&item->list, &vmx->nested.vmcs02_pool);
6367 return &item->vmcs02;
6368 }
6369
6370 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6371 /* Recycle the least recently used VMCS. */
6372 item = list_entry(vmx->nested.vmcs02_pool.prev,
6373 struct vmcs02_list, list);
6374 item->vmptr = vmx->nested.current_vmptr;
6375 list_move(&item->list, &vmx->nested.vmcs02_pool);
6376 return &item->vmcs02;
6377 }
6378
6379 /* Create a new VMCS */
0fa24ce3 6380 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6381 if (!item)
6382 return NULL;
6383 item->vmcs02.vmcs = alloc_vmcs();
6384 if (!item->vmcs02.vmcs) {
6385 kfree(item);
6386 return NULL;
6387 }
6388 loaded_vmcs_init(&item->vmcs02);
6389 item->vmptr = vmx->nested.current_vmptr;
6390 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6391 vmx->nested.vmcs02_num++;
6392 return &item->vmcs02;
6393}
6394
6395/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6396static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6397{
6398 struct vmcs02_list *item;
6399 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6400 if (item->vmptr == vmptr) {
6401 free_loaded_vmcs(&item->vmcs02);
6402 list_del(&item->list);
6403 kfree(item);
6404 vmx->nested.vmcs02_num--;
6405 return;
6406 }
6407}
6408
6409/*
6410 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6411 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6412 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6413 */
6414static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6415{
6416 struct vmcs02_list *item, *n;
4fa7734c
PB
6417
6418 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6419 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6420 /*
6421 * Something will leak if the above WARN triggers. Better than
6422 * a use-after-free.
6423 */
6424 if (vmx->loaded_vmcs == &item->vmcs02)
6425 continue;
6426
6427 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6428 list_del(&item->list);
6429 kfree(item);
4fa7734c 6430 vmx->nested.vmcs02_num--;
ff2f6fe9 6431 }
ff2f6fe9
NHE
6432}
6433
0658fbaa
ACL
6434/*
6435 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6436 * set the success or error code of an emulated VMX instruction, as specified
6437 * by Vol 2B, VMX Instruction Reference, "Conventions".
6438 */
6439static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6440{
6441 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6442 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6443 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6444}
6445
6446static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6447{
6448 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6449 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6450 X86_EFLAGS_SF | X86_EFLAGS_OF))
6451 | X86_EFLAGS_CF);
6452}
6453
145c28dd 6454static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6455 u32 vm_instruction_error)
6456{
6457 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6458 /*
6459 * failValid writes the error number to the current VMCS, which
6460 * can't be done there isn't a current VMCS.
6461 */
6462 nested_vmx_failInvalid(vcpu);
6463 return;
6464 }
6465 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6466 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6467 X86_EFLAGS_SF | X86_EFLAGS_OF))
6468 | X86_EFLAGS_ZF);
6469 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6470 /*
6471 * We don't need to force a shadow sync because
6472 * VM_INSTRUCTION_ERROR is not shadowed
6473 */
6474}
145c28dd 6475
ff651cb6
WV
6476static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6477{
6478 /* TODO: not to reset guest simply here. */
6479 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6480 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6481}
6482
f4124500
JK
6483static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6484{
6485 struct vcpu_vmx *vmx =
6486 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6487
6488 vmx->nested.preemption_timer_expired = true;
6489 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6490 kvm_vcpu_kick(&vmx->vcpu);
6491
6492 return HRTIMER_NORESTART;
6493}
6494
19677e32
BD
6495/*
6496 * Decode the memory-address operand of a vmx instruction, as recorded on an
6497 * exit caused by such an instruction (run by a guest hypervisor).
6498 * On success, returns 0. When the operand is invalid, returns 1 and throws
6499 * #UD or #GP.
6500 */
6501static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6502 unsigned long exit_qualification,
f9eb4af6 6503 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6504{
f9eb4af6
EK
6505 gva_t off;
6506 bool exn;
6507 struct kvm_segment s;
6508
19677e32
BD
6509 /*
6510 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6511 * Execution", on an exit, vmx_instruction_info holds most of the
6512 * addressing components of the operand. Only the displacement part
6513 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6514 * For how an actual address is calculated from all these components,
6515 * refer to Vol. 1, "Operand Addressing".
6516 */
6517 int scaling = vmx_instruction_info & 3;
6518 int addr_size = (vmx_instruction_info >> 7) & 7;
6519 bool is_reg = vmx_instruction_info & (1u << 10);
6520 int seg_reg = (vmx_instruction_info >> 15) & 7;
6521 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6522 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6523 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6524 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6525
6526 if (is_reg) {
6527 kvm_queue_exception(vcpu, UD_VECTOR);
6528 return 1;
6529 }
6530
6531 /* Addr = segment_base + offset */
6532 /* offset = base + [index * scale] + displacement */
f9eb4af6 6533 off = exit_qualification; /* holds the displacement */
19677e32 6534 if (base_is_valid)
f9eb4af6 6535 off += kvm_register_read(vcpu, base_reg);
19677e32 6536 if (index_is_valid)
f9eb4af6
EK
6537 off += kvm_register_read(vcpu, index_reg)<<scaling;
6538 vmx_get_segment(vcpu, &s, seg_reg);
6539 *ret = s.base + off;
19677e32
BD
6540
6541 if (addr_size == 1) /* 32 bit */
6542 *ret &= 0xffffffff;
6543
f9eb4af6
EK
6544 /* Checks for #GP/#SS exceptions. */
6545 exn = false;
6546 if (is_protmode(vcpu)) {
6547 /* Protected mode: apply checks for segment validity in the
6548 * following order:
6549 * - segment type check (#GP(0) may be thrown)
6550 * - usability check (#GP(0)/#SS(0))
6551 * - limit check (#GP(0)/#SS(0))
6552 */
6553 if (wr)
6554 /* #GP(0) if the destination operand is located in a
6555 * read-only data segment or any code segment.
6556 */
6557 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6558 else
6559 /* #GP(0) if the source operand is located in an
6560 * execute-only code segment
6561 */
6562 exn = ((s.type & 0xa) == 8);
6563 }
6564 if (exn) {
6565 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6566 return 1;
6567 }
6568 if (is_long_mode(vcpu)) {
6569 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6570 * non-canonical form. This is an only check for long mode.
6571 */
6572 exn = is_noncanonical_address(*ret);
6573 } else if (is_protmode(vcpu)) {
6574 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6575 */
6576 exn = (s.unusable != 0);
6577 /* Protected mode: #GP(0)/#SS(0) if the memory
6578 * operand is outside the segment limit.
6579 */
6580 exn = exn || (off + sizeof(u64) > s.limit);
6581 }
6582 if (exn) {
6583 kvm_queue_exception_e(vcpu,
6584 seg_reg == VCPU_SREG_SS ?
6585 SS_VECTOR : GP_VECTOR,
6586 0);
6587 return 1;
6588 }
6589
19677e32
BD
6590 return 0;
6591}
6592
3573e22c
BD
6593/*
6594 * This function performs the various checks including
6595 * - if it's 4KB aligned
6596 * - No bits beyond the physical address width are set
6597 * - Returns 0 on success or else 1
4291b588 6598 * (Intel SDM Section 30.3)
3573e22c 6599 */
4291b588
BD
6600static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6601 gpa_t *vmpointer)
3573e22c
BD
6602{
6603 gva_t gva;
6604 gpa_t vmptr;
6605 struct x86_exception e;
6606 struct page *page;
6607 struct vcpu_vmx *vmx = to_vmx(vcpu);
6608 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6609
6610 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6611 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6612 return 1;
6613
6614 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6615 sizeof(vmptr), &e)) {
6616 kvm_inject_page_fault(vcpu, &e);
6617 return 1;
6618 }
6619
6620 switch (exit_reason) {
6621 case EXIT_REASON_VMON:
6622 /*
6623 * SDM 3: 24.11.5
6624 * The first 4 bytes of VMXON region contain the supported
6625 * VMCS revision identifier
6626 *
6627 * Note - IA32_VMX_BASIC[48] will never be 1
6628 * for the nested case;
6629 * which replaces physical address width with 32
6630 *
6631 */
bc39c4db 6632 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6633 nested_vmx_failInvalid(vcpu);
6634 skip_emulated_instruction(vcpu);
6635 return 1;
6636 }
6637
6638 page = nested_get_page(vcpu, vmptr);
6639 if (page == NULL ||
6640 *(u32 *)kmap(page) != VMCS12_REVISION) {
6641 nested_vmx_failInvalid(vcpu);
6642 kunmap(page);
6643 skip_emulated_instruction(vcpu);
6644 return 1;
6645 }
6646 kunmap(page);
6647 vmx->nested.vmxon_ptr = vmptr;
6648 break;
4291b588 6649 case EXIT_REASON_VMCLEAR:
bc39c4db 6650 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6651 nested_vmx_failValid(vcpu,
6652 VMXERR_VMCLEAR_INVALID_ADDRESS);
6653 skip_emulated_instruction(vcpu);
6654 return 1;
6655 }
6656
6657 if (vmptr == vmx->nested.vmxon_ptr) {
6658 nested_vmx_failValid(vcpu,
6659 VMXERR_VMCLEAR_VMXON_POINTER);
6660 skip_emulated_instruction(vcpu);
6661 return 1;
6662 }
6663 break;
6664 case EXIT_REASON_VMPTRLD:
bc39c4db 6665 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6666 nested_vmx_failValid(vcpu,
6667 VMXERR_VMPTRLD_INVALID_ADDRESS);
6668 skip_emulated_instruction(vcpu);
6669 return 1;
6670 }
3573e22c 6671
4291b588
BD
6672 if (vmptr == vmx->nested.vmxon_ptr) {
6673 nested_vmx_failValid(vcpu,
6674 VMXERR_VMCLEAR_VMXON_POINTER);
6675 skip_emulated_instruction(vcpu);
6676 return 1;
6677 }
6678 break;
3573e22c
BD
6679 default:
6680 return 1; /* shouldn't happen */
6681 }
6682
4291b588
BD
6683 if (vmpointer)
6684 *vmpointer = vmptr;
3573e22c
BD
6685 return 0;
6686}
6687
ec378aee
NHE
6688/*
6689 * Emulate the VMXON instruction.
6690 * Currently, we just remember that VMX is active, and do not save or even
6691 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6692 * do not currently need to store anything in that guest-allocated memory
6693 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6694 * argument is different from the VMXON pointer (which the spec says they do).
6695 */
6696static int handle_vmon(struct kvm_vcpu *vcpu)
6697{
6698 struct kvm_segment cs;
6699 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6700 struct vmcs *shadow_vmcs;
b3897a49
NHE
6701 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6702 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6703
6704 /* The Intel VMX Instruction Reference lists a bunch of bits that
6705 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6706 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6707 * Otherwise, we should fail with #UD. We test these now:
6708 */
6709 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6710 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6711 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6712 kvm_queue_exception(vcpu, UD_VECTOR);
6713 return 1;
6714 }
6715
6716 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6717 if (is_long_mode(vcpu) && !cs.l) {
6718 kvm_queue_exception(vcpu, UD_VECTOR);
6719 return 1;
6720 }
6721
6722 if (vmx_get_cpl(vcpu)) {
6723 kvm_inject_gp(vcpu, 0);
6724 return 1;
6725 }
3573e22c 6726
4291b588 6727 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6728 return 1;
6729
145c28dd
AG
6730 if (vmx->nested.vmxon) {
6731 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6732 skip_emulated_instruction(vcpu);
6733 return 1;
6734 }
b3897a49
NHE
6735
6736 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6737 != VMXON_NEEDED_FEATURES) {
6738 kvm_inject_gp(vcpu, 0);
6739 return 1;
6740 }
6741
8de48833
AG
6742 if (enable_shadow_vmcs) {
6743 shadow_vmcs = alloc_vmcs();
6744 if (!shadow_vmcs)
6745 return -ENOMEM;
6746 /* mark vmcs as shadow */
6747 shadow_vmcs->revision_id |= (1u << 31);
6748 /* init shadow vmcs */
6749 vmcs_clear(shadow_vmcs);
6750 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6751 }
ec378aee 6752
ff2f6fe9
NHE
6753 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6754 vmx->nested.vmcs02_num = 0;
6755
f4124500
JK
6756 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6757 HRTIMER_MODE_REL);
6758 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6759
ec378aee
NHE
6760 vmx->nested.vmxon = true;
6761
6762 skip_emulated_instruction(vcpu);
a25eb114 6763 nested_vmx_succeed(vcpu);
ec378aee
NHE
6764 return 1;
6765}
6766
6767/*
6768 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6769 * for running VMX instructions (except VMXON, whose prerequisites are
6770 * slightly different). It also specifies what exception to inject otherwise.
6771 */
6772static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6773{
6774 struct kvm_segment cs;
6775 struct vcpu_vmx *vmx = to_vmx(vcpu);
6776
6777 if (!vmx->nested.vmxon) {
6778 kvm_queue_exception(vcpu, UD_VECTOR);
6779 return 0;
6780 }
6781
6782 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6783 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6784 (is_long_mode(vcpu) && !cs.l)) {
6785 kvm_queue_exception(vcpu, UD_VECTOR);
6786 return 0;
6787 }
6788
6789 if (vmx_get_cpl(vcpu)) {
6790 kvm_inject_gp(vcpu, 0);
6791 return 0;
6792 }
6793
6794 return 1;
6795}
6796
e7953d7f
AG
6797static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6798{
9a2a05b9
PB
6799 if (vmx->nested.current_vmptr == -1ull)
6800 return;
6801
6802 /* current_vmptr and current_vmcs12 are always set/reset together */
6803 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6804 return;
6805
012f83cb 6806 if (enable_shadow_vmcs) {
9a2a05b9
PB
6807 /* copy to memory all shadowed fields in case
6808 they were modified */
6809 copy_shadow_to_vmcs12(vmx);
6810 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
6811 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6812 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 6813 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6814 }
705699a1 6815 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6816 kunmap(vmx->nested.current_vmcs12_page);
6817 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6818 vmx->nested.current_vmptr = -1ull;
6819 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6820}
6821
ec378aee
NHE
6822/*
6823 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6824 * just stops using VMX.
6825 */
6826static void free_nested(struct vcpu_vmx *vmx)
6827{
6828 if (!vmx->nested.vmxon)
6829 return;
9a2a05b9 6830
ec378aee 6831 vmx->nested.vmxon = false;
5c614b35 6832 free_vpid(vmx->nested.vpid02);
9a2a05b9 6833 nested_release_vmcs12(vmx);
e7953d7f
AG
6834 if (enable_shadow_vmcs)
6835 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6836 /* Unpin physical memory we referred to in current vmcs02 */
6837 if (vmx->nested.apic_access_page) {
6838 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6839 vmx->nested.apic_access_page = NULL;
fe3ef05c 6840 }
a7c0b07d
WL
6841 if (vmx->nested.virtual_apic_page) {
6842 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6843 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6844 }
705699a1
WV
6845 if (vmx->nested.pi_desc_page) {
6846 kunmap(vmx->nested.pi_desc_page);
6847 nested_release_page(vmx->nested.pi_desc_page);
6848 vmx->nested.pi_desc_page = NULL;
6849 vmx->nested.pi_desc = NULL;
6850 }
ff2f6fe9
NHE
6851
6852 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6853}
6854
6855/* Emulate the VMXOFF instruction */
6856static int handle_vmoff(struct kvm_vcpu *vcpu)
6857{
6858 if (!nested_vmx_check_permission(vcpu))
6859 return 1;
6860 free_nested(to_vmx(vcpu));
6861 skip_emulated_instruction(vcpu);
a25eb114 6862 nested_vmx_succeed(vcpu);
ec378aee
NHE
6863 return 1;
6864}
6865
27d6c865
NHE
6866/* Emulate the VMCLEAR instruction */
6867static int handle_vmclear(struct kvm_vcpu *vcpu)
6868{
6869 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6870 gpa_t vmptr;
6871 struct vmcs12 *vmcs12;
6872 struct page *page;
27d6c865
NHE
6873
6874 if (!nested_vmx_check_permission(vcpu))
6875 return 1;
6876
4291b588 6877 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6878 return 1;
27d6c865 6879
9a2a05b9 6880 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6881 nested_release_vmcs12(vmx);
27d6c865
NHE
6882
6883 page = nested_get_page(vcpu, vmptr);
6884 if (page == NULL) {
6885 /*
6886 * For accurate processor emulation, VMCLEAR beyond available
6887 * physical memory should do nothing at all. However, it is
6888 * possible that a nested vmx bug, not a guest hypervisor bug,
6889 * resulted in this case, so let's shut down before doing any
6890 * more damage:
6891 */
6892 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6893 return 1;
6894 }
6895 vmcs12 = kmap(page);
6896 vmcs12->launch_state = 0;
6897 kunmap(page);
6898 nested_release_page(page);
6899
6900 nested_free_vmcs02(vmx, vmptr);
6901
6902 skip_emulated_instruction(vcpu);
6903 nested_vmx_succeed(vcpu);
6904 return 1;
6905}
6906
cd232ad0
NHE
6907static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6908
6909/* Emulate the VMLAUNCH instruction */
6910static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6911{
6912 return nested_vmx_run(vcpu, true);
6913}
6914
6915/* Emulate the VMRESUME instruction */
6916static int handle_vmresume(struct kvm_vcpu *vcpu)
6917{
6918
6919 return nested_vmx_run(vcpu, false);
6920}
6921
49f705c5
NHE
6922enum vmcs_field_type {
6923 VMCS_FIELD_TYPE_U16 = 0,
6924 VMCS_FIELD_TYPE_U64 = 1,
6925 VMCS_FIELD_TYPE_U32 = 2,
6926 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6927};
6928
6929static inline int vmcs_field_type(unsigned long field)
6930{
6931 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6932 return VMCS_FIELD_TYPE_U32;
6933 return (field >> 13) & 0x3 ;
6934}
6935
6936static inline int vmcs_field_readonly(unsigned long field)
6937{
6938 return (((field >> 10) & 0x3) == 1);
6939}
6940
6941/*
6942 * Read a vmcs12 field. Since these can have varying lengths and we return
6943 * one type, we chose the biggest type (u64) and zero-extend the return value
6944 * to that size. Note that the caller, handle_vmread, might need to use only
6945 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6946 * 64-bit fields are to be returned).
6947 */
a2ae9df7
PB
6948static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6949 unsigned long field, u64 *ret)
49f705c5
NHE
6950{
6951 short offset = vmcs_field_to_offset(field);
6952 char *p;
6953
6954 if (offset < 0)
a2ae9df7 6955 return offset;
49f705c5
NHE
6956
6957 p = ((char *)(get_vmcs12(vcpu))) + offset;
6958
6959 switch (vmcs_field_type(field)) {
6960 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6961 *ret = *((natural_width *)p);
a2ae9df7 6962 return 0;
49f705c5
NHE
6963 case VMCS_FIELD_TYPE_U16:
6964 *ret = *((u16 *)p);
a2ae9df7 6965 return 0;
49f705c5
NHE
6966 case VMCS_FIELD_TYPE_U32:
6967 *ret = *((u32 *)p);
a2ae9df7 6968 return 0;
49f705c5
NHE
6969 case VMCS_FIELD_TYPE_U64:
6970 *ret = *((u64 *)p);
a2ae9df7 6971 return 0;
49f705c5 6972 default:
a2ae9df7
PB
6973 WARN_ON(1);
6974 return -ENOENT;
49f705c5
NHE
6975 }
6976}
6977
20b97fea 6978
a2ae9df7
PB
6979static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6980 unsigned long field, u64 field_value){
20b97fea
AG
6981 short offset = vmcs_field_to_offset(field);
6982 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6983 if (offset < 0)
a2ae9df7 6984 return offset;
20b97fea
AG
6985
6986 switch (vmcs_field_type(field)) {
6987 case VMCS_FIELD_TYPE_U16:
6988 *(u16 *)p = field_value;
a2ae9df7 6989 return 0;
20b97fea
AG
6990 case VMCS_FIELD_TYPE_U32:
6991 *(u32 *)p = field_value;
a2ae9df7 6992 return 0;
20b97fea
AG
6993 case VMCS_FIELD_TYPE_U64:
6994 *(u64 *)p = field_value;
a2ae9df7 6995 return 0;
20b97fea
AG
6996 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6997 *(natural_width *)p = field_value;
a2ae9df7 6998 return 0;
20b97fea 6999 default:
a2ae9df7
PB
7000 WARN_ON(1);
7001 return -ENOENT;
20b97fea
AG
7002 }
7003
7004}
7005
16f5b903
AG
7006static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7007{
7008 int i;
7009 unsigned long field;
7010 u64 field_value;
7011 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
7012 const unsigned long *fields = shadow_read_write_fields;
7013 const int num_fields = max_shadow_read_write_fields;
16f5b903 7014
282da870
JK
7015 preempt_disable();
7016
16f5b903
AG
7017 vmcs_load(shadow_vmcs);
7018
7019 for (i = 0; i < num_fields; i++) {
7020 field = fields[i];
7021 switch (vmcs_field_type(field)) {
7022 case VMCS_FIELD_TYPE_U16:
7023 field_value = vmcs_read16(field);
7024 break;
7025 case VMCS_FIELD_TYPE_U32:
7026 field_value = vmcs_read32(field);
7027 break;
7028 case VMCS_FIELD_TYPE_U64:
7029 field_value = vmcs_read64(field);
7030 break;
7031 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7032 field_value = vmcs_readl(field);
7033 break;
a2ae9df7
PB
7034 default:
7035 WARN_ON(1);
7036 continue;
16f5b903
AG
7037 }
7038 vmcs12_write_any(&vmx->vcpu, field, field_value);
7039 }
7040
7041 vmcs_clear(shadow_vmcs);
7042 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7043
7044 preempt_enable();
16f5b903
AG
7045}
7046
c3114420
AG
7047static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7048{
c2bae893
MK
7049 const unsigned long *fields[] = {
7050 shadow_read_write_fields,
7051 shadow_read_only_fields
c3114420 7052 };
c2bae893 7053 const int max_fields[] = {
c3114420
AG
7054 max_shadow_read_write_fields,
7055 max_shadow_read_only_fields
7056 };
7057 int i, q;
7058 unsigned long field;
7059 u64 field_value = 0;
7060 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7061
7062 vmcs_load(shadow_vmcs);
7063
c2bae893 7064 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7065 for (i = 0; i < max_fields[q]; i++) {
7066 field = fields[q][i];
7067 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7068
7069 switch (vmcs_field_type(field)) {
7070 case VMCS_FIELD_TYPE_U16:
7071 vmcs_write16(field, (u16)field_value);
7072 break;
7073 case VMCS_FIELD_TYPE_U32:
7074 vmcs_write32(field, (u32)field_value);
7075 break;
7076 case VMCS_FIELD_TYPE_U64:
7077 vmcs_write64(field, (u64)field_value);
7078 break;
7079 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7080 vmcs_writel(field, (long)field_value);
7081 break;
a2ae9df7
PB
7082 default:
7083 WARN_ON(1);
7084 break;
c3114420
AG
7085 }
7086 }
7087 }
7088
7089 vmcs_clear(shadow_vmcs);
7090 vmcs_load(vmx->loaded_vmcs->vmcs);
7091}
7092
49f705c5
NHE
7093/*
7094 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7095 * used before) all generate the same failure when it is missing.
7096 */
7097static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7098{
7099 struct vcpu_vmx *vmx = to_vmx(vcpu);
7100 if (vmx->nested.current_vmptr == -1ull) {
7101 nested_vmx_failInvalid(vcpu);
7102 skip_emulated_instruction(vcpu);
7103 return 0;
7104 }
7105 return 1;
7106}
7107
7108static int handle_vmread(struct kvm_vcpu *vcpu)
7109{
7110 unsigned long field;
7111 u64 field_value;
7112 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7113 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7114 gva_t gva = 0;
7115
7116 if (!nested_vmx_check_permission(vcpu) ||
7117 !nested_vmx_check_vmcs12(vcpu))
7118 return 1;
7119
7120 /* Decode instruction info and find the field to read */
27e6fb5d 7121 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7122 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7123 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
7124 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7125 skip_emulated_instruction(vcpu);
7126 return 1;
7127 }
7128 /*
7129 * Now copy part of this value to register or memory, as requested.
7130 * Note that the number of bits actually copied is 32 or 64 depending
7131 * on the guest's mode (32 or 64 bit), not on the given field's length.
7132 */
7133 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7134 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7135 field_value);
7136 } else {
7137 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7138 vmx_instruction_info, true, &gva))
49f705c5
NHE
7139 return 1;
7140 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7141 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7142 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7143 }
7144
7145 nested_vmx_succeed(vcpu);
7146 skip_emulated_instruction(vcpu);
7147 return 1;
7148}
7149
7150
7151static int handle_vmwrite(struct kvm_vcpu *vcpu)
7152{
7153 unsigned long field;
7154 gva_t gva;
7155 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7156 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7157 /* The value to write might be 32 or 64 bits, depending on L1's long
7158 * mode, and eventually we need to write that into a field of several
7159 * possible lengths. The code below first zero-extends the value to 64
7160 * bit (field_value), and then copies only the approriate number of
7161 * bits into the vmcs12 field.
7162 */
7163 u64 field_value = 0;
7164 struct x86_exception e;
7165
7166 if (!nested_vmx_check_permission(vcpu) ||
7167 !nested_vmx_check_vmcs12(vcpu))
7168 return 1;
7169
7170 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7171 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7172 (((vmx_instruction_info) >> 3) & 0xf));
7173 else {
7174 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7175 vmx_instruction_info, false, &gva))
49f705c5
NHE
7176 return 1;
7177 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7178 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7179 kvm_inject_page_fault(vcpu, &e);
7180 return 1;
7181 }
7182 }
7183
7184
27e6fb5d 7185 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7186 if (vmcs_field_readonly(field)) {
7187 nested_vmx_failValid(vcpu,
7188 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7189 skip_emulated_instruction(vcpu);
7190 return 1;
7191 }
7192
a2ae9df7 7193 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7194 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7195 skip_emulated_instruction(vcpu);
7196 return 1;
7197 }
7198
7199 nested_vmx_succeed(vcpu);
7200 skip_emulated_instruction(vcpu);
7201 return 1;
7202}
7203
63846663
NHE
7204/* Emulate the VMPTRLD instruction */
7205static int handle_vmptrld(struct kvm_vcpu *vcpu)
7206{
7207 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7208 gpa_t vmptr;
63846663
NHE
7209
7210 if (!nested_vmx_check_permission(vcpu))
7211 return 1;
7212
4291b588 7213 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7214 return 1;
63846663
NHE
7215
7216 if (vmx->nested.current_vmptr != vmptr) {
7217 struct vmcs12 *new_vmcs12;
7218 struct page *page;
7219 page = nested_get_page(vcpu, vmptr);
7220 if (page == NULL) {
7221 nested_vmx_failInvalid(vcpu);
7222 skip_emulated_instruction(vcpu);
7223 return 1;
7224 }
7225 new_vmcs12 = kmap(page);
7226 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7227 kunmap(page);
7228 nested_release_page_clean(page);
7229 nested_vmx_failValid(vcpu,
7230 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7231 skip_emulated_instruction(vcpu);
7232 return 1;
7233 }
63846663 7234
9a2a05b9 7235 nested_release_vmcs12(vmx);
63846663
NHE
7236 vmx->nested.current_vmptr = vmptr;
7237 vmx->nested.current_vmcs12 = new_vmcs12;
7238 vmx->nested.current_vmcs12_page = page;
012f83cb 7239 if (enable_shadow_vmcs) {
7ec36296
XG
7240 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7241 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0
AG
7242 vmcs_write64(VMCS_LINK_POINTER,
7243 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7244 vmx->nested.sync_shadow_vmcs = true;
7245 }
63846663
NHE
7246 }
7247
7248 nested_vmx_succeed(vcpu);
7249 skip_emulated_instruction(vcpu);
7250 return 1;
7251}
7252
6a4d7550
NHE
7253/* Emulate the VMPTRST instruction */
7254static int handle_vmptrst(struct kvm_vcpu *vcpu)
7255{
7256 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7257 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7258 gva_t vmcs_gva;
7259 struct x86_exception e;
7260
7261 if (!nested_vmx_check_permission(vcpu))
7262 return 1;
7263
7264 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7265 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7266 return 1;
7267 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7268 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7269 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7270 sizeof(u64), &e)) {
7271 kvm_inject_page_fault(vcpu, &e);
7272 return 1;
7273 }
7274 nested_vmx_succeed(vcpu);
7275 skip_emulated_instruction(vcpu);
7276 return 1;
7277}
7278
bfd0a56b
NHE
7279/* Emulate the INVEPT instruction */
7280static int handle_invept(struct kvm_vcpu *vcpu)
7281{
b9c237bb 7282 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7283 u32 vmx_instruction_info, types;
7284 unsigned long type;
7285 gva_t gva;
7286 struct x86_exception e;
7287 struct {
7288 u64 eptp, gpa;
7289 } operand;
bfd0a56b 7290
b9c237bb
WV
7291 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7292 SECONDARY_EXEC_ENABLE_EPT) ||
7293 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7294 kvm_queue_exception(vcpu, UD_VECTOR);
7295 return 1;
7296 }
7297
7298 if (!nested_vmx_check_permission(vcpu))
7299 return 1;
7300
7301 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7302 kvm_queue_exception(vcpu, UD_VECTOR);
7303 return 1;
7304 }
7305
7306 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7307 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7308
b9c237bb 7309 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7310
7311 if (!(types & (1UL << type))) {
7312 nested_vmx_failValid(vcpu,
7313 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7314 return 1;
7315 }
7316
7317 /* According to the Intel VMX instruction reference, the memory
7318 * operand is read even if it isn't needed (e.g., for type==global)
7319 */
7320 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7321 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7322 return 1;
7323 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7324 sizeof(operand), &e)) {
7325 kvm_inject_page_fault(vcpu, &e);
7326 return 1;
7327 }
7328
7329 switch (type) {
bfd0a56b
NHE
7330 case VMX_EPT_EXTENT_GLOBAL:
7331 kvm_mmu_sync_roots(vcpu);
77c3913b 7332 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7333 nested_vmx_succeed(vcpu);
7334 break;
7335 default:
4b855078 7336 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7337 BUG_ON(1);
7338 break;
7339 }
7340
7341 skip_emulated_instruction(vcpu);
7342 return 1;
7343}
7344
a642fc30
PM
7345static int handle_invvpid(struct kvm_vcpu *vcpu)
7346{
99b83ac8
WL
7347 struct vcpu_vmx *vmx = to_vmx(vcpu);
7348 u32 vmx_instruction_info;
7349 unsigned long type, types;
7350 gva_t gva;
7351 struct x86_exception e;
7352 int vpid;
7353
7354 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7355 SECONDARY_EXEC_ENABLE_VPID) ||
7356 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7357 kvm_queue_exception(vcpu, UD_VECTOR);
7358 return 1;
7359 }
7360
7361 if (!nested_vmx_check_permission(vcpu))
7362 return 1;
7363
7364 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7365 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7366
7367 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7368
7369 if (!(types & (1UL << type))) {
7370 nested_vmx_failValid(vcpu,
7371 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7372 return 1;
7373 }
7374
7375 /* according to the intel vmx instruction reference, the memory
7376 * operand is read even if it isn't needed (e.g., for type==global)
7377 */
7378 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7379 vmx_instruction_info, false, &gva))
7380 return 1;
7381 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7382 sizeof(u32), &e)) {
7383 kvm_inject_page_fault(vcpu, &e);
7384 return 1;
7385 }
7386
7387 switch (type) {
7388 case VMX_VPID_EXTENT_ALL_CONTEXT:
5c614b35 7389 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
99b83ac8
WL
7390 nested_vmx_succeed(vcpu);
7391 break;
7392 default:
7393 /* Trap single context invalidation invvpid calls */
7394 BUG_ON(1);
7395 break;
7396 }
7397
7398 skip_emulated_instruction(vcpu);
a642fc30
PM
7399 return 1;
7400}
7401
843e4330
KH
7402static int handle_pml_full(struct kvm_vcpu *vcpu)
7403{
7404 unsigned long exit_qualification;
7405
7406 trace_kvm_pml_full(vcpu->vcpu_id);
7407
7408 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7409
7410 /*
7411 * PML buffer FULL happened while executing iret from NMI,
7412 * "blocked by NMI" bit has to be set before next VM entry.
7413 */
7414 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7415 cpu_has_virtual_nmis() &&
7416 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7417 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7418 GUEST_INTR_STATE_NMI);
7419
7420 /*
7421 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7422 * here.., and there's no userspace involvement needed for PML.
7423 */
7424 return 1;
7425}
7426
8b3e34e4
XG
7427static int handle_pcommit(struct kvm_vcpu *vcpu)
7428{
7429 /* we never catch pcommit instruct for L1 guest. */
7430 WARN_ON(1);
7431 return 1;
7432}
7433
6aa8b732
AK
7434/*
7435 * The exit handlers return 1 if the exit was handled fully and guest execution
7436 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7437 * to be done to userspace and return 0.
7438 */
772e0318 7439static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7440 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7441 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7442 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7443 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7444 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7445 [EXIT_REASON_CR_ACCESS] = handle_cr,
7446 [EXIT_REASON_DR_ACCESS] = handle_dr,
7447 [EXIT_REASON_CPUID] = handle_cpuid,
7448 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7449 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7450 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7451 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7452 [EXIT_REASON_INVD] = handle_invd,
a7052897 7453 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7454 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7455 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7456 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7457 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7458 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7459 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7460 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7461 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7462 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7463 [EXIT_REASON_VMOFF] = handle_vmoff,
7464 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7465 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7466 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7467 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7468 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7469 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7470 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7471 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7472 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7473 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7474 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7475 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7476 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7477 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7478 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7479 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7480 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7481 [EXIT_REASON_XSAVES] = handle_xsaves,
7482 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7483 [EXIT_REASON_PML_FULL] = handle_pml_full,
8b3e34e4 7484 [EXIT_REASON_PCOMMIT] = handle_pcommit,
6aa8b732
AK
7485};
7486
7487static const int kvm_vmx_max_exit_handlers =
50a3485c 7488 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7489
908a7bdd
JK
7490static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7491 struct vmcs12 *vmcs12)
7492{
7493 unsigned long exit_qualification;
7494 gpa_t bitmap, last_bitmap;
7495 unsigned int port;
7496 int size;
7497 u8 b;
7498
908a7bdd 7499 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7500 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7501
7502 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7503
7504 port = exit_qualification >> 16;
7505 size = (exit_qualification & 7) + 1;
7506
7507 last_bitmap = (gpa_t)-1;
7508 b = -1;
7509
7510 while (size > 0) {
7511 if (port < 0x8000)
7512 bitmap = vmcs12->io_bitmap_a;
7513 else if (port < 0x10000)
7514 bitmap = vmcs12->io_bitmap_b;
7515 else
1d804d07 7516 return true;
908a7bdd
JK
7517 bitmap += (port & 0x7fff) / 8;
7518
7519 if (last_bitmap != bitmap)
54bf36aa 7520 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7521 return true;
908a7bdd 7522 if (b & (1 << (port & 7)))
1d804d07 7523 return true;
908a7bdd
JK
7524
7525 port++;
7526 size--;
7527 last_bitmap = bitmap;
7528 }
7529
1d804d07 7530 return false;
908a7bdd
JK
7531}
7532
644d711a
NHE
7533/*
7534 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7535 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7536 * disinterest in the current event (read or write a specific MSR) by using an
7537 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7538 */
7539static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7540 struct vmcs12 *vmcs12, u32 exit_reason)
7541{
7542 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7543 gpa_t bitmap;
7544
cbd29cb6 7545 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7546 return true;
644d711a
NHE
7547
7548 /*
7549 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7550 * for the four combinations of read/write and low/high MSR numbers.
7551 * First we need to figure out which of the four to use:
7552 */
7553 bitmap = vmcs12->msr_bitmap;
7554 if (exit_reason == EXIT_REASON_MSR_WRITE)
7555 bitmap += 2048;
7556 if (msr_index >= 0xc0000000) {
7557 msr_index -= 0xc0000000;
7558 bitmap += 1024;
7559 }
7560
7561 /* Then read the msr_index'th bit from this bitmap: */
7562 if (msr_index < 1024*8) {
7563 unsigned char b;
54bf36aa 7564 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7565 return true;
644d711a
NHE
7566 return 1 & (b >> (msr_index & 7));
7567 } else
1d804d07 7568 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7569}
7570
7571/*
7572 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7573 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7574 * intercept (via guest_host_mask etc.) the current event.
7575 */
7576static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7577 struct vmcs12 *vmcs12)
7578{
7579 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7580 int cr = exit_qualification & 15;
7581 int reg = (exit_qualification >> 8) & 15;
1e32c079 7582 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7583
7584 switch ((exit_qualification >> 4) & 3) {
7585 case 0: /* mov to cr */
7586 switch (cr) {
7587 case 0:
7588 if (vmcs12->cr0_guest_host_mask &
7589 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7590 return true;
644d711a
NHE
7591 break;
7592 case 3:
7593 if ((vmcs12->cr3_target_count >= 1 &&
7594 vmcs12->cr3_target_value0 == val) ||
7595 (vmcs12->cr3_target_count >= 2 &&
7596 vmcs12->cr3_target_value1 == val) ||
7597 (vmcs12->cr3_target_count >= 3 &&
7598 vmcs12->cr3_target_value2 == val) ||
7599 (vmcs12->cr3_target_count >= 4 &&
7600 vmcs12->cr3_target_value3 == val))
1d804d07 7601 return false;
644d711a 7602 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7603 return true;
644d711a
NHE
7604 break;
7605 case 4:
7606 if (vmcs12->cr4_guest_host_mask &
7607 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7608 return true;
644d711a
NHE
7609 break;
7610 case 8:
7611 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7612 return true;
644d711a
NHE
7613 break;
7614 }
7615 break;
7616 case 2: /* clts */
7617 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7618 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7619 return true;
644d711a
NHE
7620 break;
7621 case 1: /* mov from cr */
7622 switch (cr) {
7623 case 3:
7624 if (vmcs12->cpu_based_vm_exec_control &
7625 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7626 return true;
644d711a
NHE
7627 break;
7628 case 8:
7629 if (vmcs12->cpu_based_vm_exec_control &
7630 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7631 return true;
644d711a
NHE
7632 break;
7633 }
7634 break;
7635 case 3: /* lmsw */
7636 /*
7637 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7638 * cr0. Other attempted changes are ignored, with no exit.
7639 */
7640 if (vmcs12->cr0_guest_host_mask & 0xe &
7641 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7642 return true;
644d711a
NHE
7643 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7644 !(vmcs12->cr0_read_shadow & 0x1) &&
7645 (val & 0x1))
1d804d07 7646 return true;
644d711a
NHE
7647 break;
7648 }
1d804d07 7649 return false;
644d711a
NHE
7650}
7651
7652/*
7653 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7654 * should handle it ourselves in L0 (and then continue L2). Only call this
7655 * when in is_guest_mode (L2).
7656 */
7657static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7658{
644d711a
NHE
7659 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7660 struct vcpu_vmx *vmx = to_vmx(vcpu);
7661 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7662 u32 exit_reason = vmx->exit_reason;
644d711a 7663
542060ea
JK
7664 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7665 vmcs_readl(EXIT_QUALIFICATION),
7666 vmx->idt_vectoring_info,
7667 intr_info,
7668 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7669 KVM_ISA_VMX);
7670
644d711a 7671 if (vmx->nested.nested_run_pending)
1d804d07 7672 return false;
644d711a
NHE
7673
7674 if (unlikely(vmx->fail)) {
bd80158a
JK
7675 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7676 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7677 return true;
644d711a
NHE
7678 }
7679
7680 switch (exit_reason) {
7681 case EXIT_REASON_EXCEPTION_NMI:
7682 if (!is_exception(intr_info))
1d804d07 7683 return false;
644d711a
NHE
7684 else if (is_page_fault(intr_info))
7685 return enable_ept;
e504c909 7686 else if (is_no_device(intr_info) &&
ccf9844e 7687 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 7688 return false;
644d711a
NHE
7689 return vmcs12->exception_bitmap &
7690 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7691 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 7692 return false;
644d711a 7693 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 7694 return true;
644d711a 7695 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7696 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7697 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7698 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 7699 case EXIT_REASON_TASK_SWITCH:
1d804d07 7700 return true;
644d711a 7701 case EXIT_REASON_CPUID:
bc613494 7702 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
7703 return false;
7704 return true;
644d711a
NHE
7705 case EXIT_REASON_HLT:
7706 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7707 case EXIT_REASON_INVD:
1d804d07 7708 return true;
644d711a
NHE
7709 case EXIT_REASON_INVLPG:
7710 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7711 case EXIT_REASON_RDPMC:
7712 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7713 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7714 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7715 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7716 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7717 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7718 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7719 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7720 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7721 /*
7722 * VMX instructions trap unconditionally. This allows L1 to
7723 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7724 */
1d804d07 7725 return true;
644d711a
NHE
7726 case EXIT_REASON_CR_ACCESS:
7727 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7728 case EXIT_REASON_DR_ACCESS:
7729 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7730 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7731 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7732 case EXIT_REASON_MSR_READ:
7733 case EXIT_REASON_MSR_WRITE:
7734 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7735 case EXIT_REASON_INVALID_STATE:
1d804d07 7736 return true;
644d711a
NHE
7737 case EXIT_REASON_MWAIT_INSTRUCTION:
7738 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
7739 case EXIT_REASON_MONITOR_TRAP_FLAG:
7740 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
7741 case EXIT_REASON_MONITOR_INSTRUCTION:
7742 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7743 case EXIT_REASON_PAUSE_INSTRUCTION:
7744 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7745 nested_cpu_has2(vmcs12,
7746 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7747 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 7748 return false;
644d711a 7749 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7750 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7751 case EXIT_REASON_APIC_ACCESS:
7752 return nested_cpu_has2(vmcs12,
7753 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7754 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7755 case EXIT_REASON_EOI_INDUCED:
7756 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 7757 return true;
644d711a 7758 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7759 /*
7760 * L0 always deals with the EPT violation. If nested EPT is
7761 * used, and the nested mmu code discovers that the address is
7762 * missing in the guest EPT table (EPT12), the EPT violation
7763 * will be injected with nested_ept_inject_page_fault()
7764 */
1d804d07 7765 return false;
644d711a 7766 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7767 /*
7768 * L2 never uses directly L1's EPT, but rather L0's own EPT
7769 * table (shadow on EPT) or a merged EPT table that L0 built
7770 * (EPT on EPT). So any problems with the structure of the
7771 * table is L0's fault.
7772 */
1d804d07 7773 return false;
644d711a
NHE
7774 case EXIT_REASON_WBINVD:
7775 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7776 case EXIT_REASON_XSETBV:
1d804d07 7777 return true;
81dc01f7
WL
7778 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7779 /*
7780 * This should never happen, since it is not possible to
7781 * set XSS to a non-zero value---neither in L1 nor in L2.
7782 * If if it were, XSS would have to be checked against
7783 * the XSS exit bitmap in vmcs12.
7784 */
7785 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8b3e34e4
XG
7786 case EXIT_REASON_PCOMMIT:
7787 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
644d711a 7788 default:
1d804d07 7789 return true;
644d711a
NHE
7790 }
7791}
7792
586f9607
AK
7793static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7794{
7795 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7796 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7797}
7798
a3eaa864 7799static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
843e4330
KH
7800{
7801 struct page *pml_pg;
843e4330
KH
7802
7803 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7804 if (!pml_pg)
7805 return -ENOMEM;
7806
7807 vmx->pml_pg = pml_pg;
7808
7809 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7810 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7811
843e4330
KH
7812 return 0;
7813}
7814
a3eaa864 7815static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 7816{
a3eaa864
KH
7817 if (vmx->pml_pg) {
7818 __free_page(vmx->pml_pg);
7819 vmx->pml_pg = NULL;
7820 }
843e4330
KH
7821}
7822
54bf36aa 7823static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 7824{
54bf36aa 7825 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
7826 u64 *pml_buf;
7827 u16 pml_idx;
7828
7829 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7830
7831 /* Do nothing if PML buffer is empty */
7832 if (pml_idx == (PML_ENTITY_NUM - 1))
7833 return;
7834
7835 /* PML index always points to next available PML buffer entity */
7836 if (pml_idx >= PML_ENTITY_NUM)
7837 pml_idx = 0;
7838 else
7839 pml_idx++;
7840
7841 pml_buf = page_address(vmx->pml_pg);
7842 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7843 u64 gpa;
7844
7845 gpa = pml_buf[pml_idx];
7846 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 7847 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
7848 }
7849
7850 /* reset PML index */
7851 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7852}
7853
7854/*
7855 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7856 * Called before reporting dirty_bitmap to userspace.
7857 */
7858static void kvm_flush_pml_buffers(struct kvm *kvm)
7859{
7860 int i;
7861 struct kvm_vcpu *vcpu;
7862 /*
7863 * We only need to kick vcpu out of guest mode here, as PML buffer
7864 * is flushed at beginning of all VMEXITs, and it's obvious that only
7865 * vcpus running in guest are possible to have unflushed GPAs in PML
7866 * buffer.
7867 */
7868 kvm_for_each_vcpu(i, vcpu, kvm)
7869 kvm_vcpu_kick(vcpu);
7870}
7871
4eb64dce
PB
7872static void vmx_dump_sel(char *name, uint32_t sel)
7873{
7874 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7875 name, vmcs_read32(sel),
7876 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7877 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7878 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7879}
7880
7881static void vmx_dump_dtsel(char *name, uint32_t limit)
7882{
7883 pr_err("%s limit=0x%08x, base=0x%016lx\n",
7884 name, vmcs_read32(limit),
7885 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7886}
7887
7888static void dump_vmcs(void)
7889{
7890 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7891 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7892 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7893 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7894 u32 secondary_exec_control = 0;
7895 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 7896 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
7897 int i, n;
7898
7899 if (cpu_has_secondary_exec_ctrls())
7900 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7901
7902 pr_err("*** Guest State ***\n");
7903 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7904 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7905 vmcs_readl(CR0_GUEST_HOST_MASK));
7906 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7907 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7908 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7909 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7910 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7911 {
7912 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
7913 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7914 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
7915 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7916 }
7917 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
7918 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7919 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
7920 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7921 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7922 vmcs_readl(GUEST_SYSENTER_ESP),
7923 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7924 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
7925 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
7926 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
7927 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
7928 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
7929 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
7930 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7931 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7932 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7933 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
7934 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7935 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7936 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
7937 efer, vmcs_readl(GUEST_IA32_PAT));
7938 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
7939 vmcs_readl(GUEST_IA32_DEBUGCTL),
7940 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7941 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7942 pr_err("PerfGlobCtl = 0x%016lx\n",
7943 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7944 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7945 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7946 pr_err("Interruptibility = %08x ActivityState = %08x\n",
7947 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7948 vmcs_read32(GUEST_ACTIVITY_STATE));
7949 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7950 pr_err("InterruptStatus = %04x\n",
7951 vmcs_read16(GUEST_INTR_STATUS));
7952
7953 pr_err("*** Host State ***\n");
7954 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
7955 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7956 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7957 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7958 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7959 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7960 vmcs_read16(HOST_TR_SELECTOR));
7961 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7962 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7963 vmcs_readl(HOST_TR_BASE));
7964 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7965 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7966 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7967 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7968 vmcs_readl(HOST_CR4));
7969 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7970 vmcs_readl(HOST_IA32_SYSENTER_ESP),
7971 vmcs_read32(HOST_IA32_SYSENTER_CS),
7972 vmcs_readl(HOST_IA32_SYSENTER_EIP));
7973 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7974 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
7975 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7976 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7977 pr_err("PerfGlobCtl = 0x%016lx\n",
7978 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7979
7980 pr_err("*** Control State ***\n");
7981 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7982 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7983 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7984 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7985 vmcs_read32(EXCEPTION_BITMAP),
7986 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7987 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7988 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7989 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7990 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7991 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7992 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7993 vmcs_read32(VM_EXIT_INTR_INFO),
7994 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7995 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7996 pr_err(" reason=%08x qualification=%016lx\n",
7997 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7998 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7999 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8000 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8001 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8cfe9866
HZ
8002 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8003 pr_err("TSC Multiplier = 0x%016lx\n",
8004 vmcs_readl(TSC_MULTIPLIER));
4eb64dce
PB
8005 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8006 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8007 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8008 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8009 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8010 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8011 n = vmcs_read32(CR3_TARGET_COUNT);
8012 for (i = 0; i + 1 < n; i += 4)
8013 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8014 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8015 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8016 if (i < n)
8017 pr_err("CR3 target%u=%016lx\n",
8018 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8019 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8020 pr_err("PLE Gap=%08x Window=%08x\n",
8021 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8022 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8023 pr_err("Virtual processor ID = 0x%04x\n",
8024 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8025}
8026
6aa8b732
AK
8027/*
8028 * The guest has exited. See if we can fix it or if we need userspace
8029 * assistance.
8030 */
851ba692 8031static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8032{
29bd8a78 8033 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8034 u32 exit_reason = vmx->exit_reason;
1155f76a 8035 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8036
843e4330
KH
8037 /*
8038 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8039 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8040 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8041 * mode as if vcpus is in root mode, the PML buffer must has been
8042 * flushed already.
8043 */
8044 if (enable_pml)
54bf36aa 8045 vmx_flush_pml_buffer(vcpu);
843e4330 8046
80ced186 8047 /* If guest state is invalid, start emulating */
14168786 8048 if (vmx->emulation_required)
80ced186 8049 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8050
644d711a 8051 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8052 nested_vmx_vmexit(vcpu, exit_reason,
8053 vmcs_read32(VM_EXIT_INTR_INFO),
8054 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8055 return 1;
8056 }
8057
5120702e 8058 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8059 dump_vmcs();
5120702e
MG
8060 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8061 vcpu->run->fail_entry.hardware_entry_failure_reason
8062 = exit_reason;
8063 return 0;
8064 }
8065
29bd8a78 8066 if (unlikely(vmx->fail)) {
851ba692
AK
8067 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8068 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8069 = vmcs_read32(VM_INSTRUCTION_ERROR);
8070 return 0;
8071 }
6aa8b732 8072
b9bf6882
XG
8073 /*
8074 * Note:
8075 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8076 * delivery event since it indicates guest is accessing MMIO.
8077 * The vm-exit can be triggered again after return to guest that
8078 * will cause infinite loop.
8079 */
d77c26fc 8080 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8081 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8082 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
8083 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8084 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8085 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8086 vcpu->run->internal.ndata = 2;
8087 vcpu->run->internal.data[0] = vectoring_info;
8088 vcpu->run->internal.data[1] = exit_reason;
8089 return 0;
8090 }
3b86cd99 8091
644d711a
NHE
8092 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8093 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8094 get_vmcs12(vcpu))))) {
c4282df9 8095 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8096 vmx->soft_vnmi_blocked = 0;
3b86cd99 8097 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8098 vcpu->arch.nmi_pending) {
3b86cd99
JK
8099 /*
8100 * This CPU don't support us in finding the end of an
8101 * NMI-blocked window if the guest runs with IRQs
8102 * disabled. So we pull the trigger after 1 s of
8103 * futile waiting, but inform the user about this.
8104 */
8105 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8106 "state on VCPU %d after 1 s timeout\n",
8107 __func__, vcpu->vcpu_id);
8108 vmx->soft_vnmi_blocked = 0;
3b86cd99 8109 }
3b86cd99
JK
8110 }
8111
6aa8b732
AK
8112 if (exit_reason < kvm_vmx_max_exit_handlers
8113 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8114 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8115 else {
2bc19dc3
MT
8116 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8117 kvm_queue_exception(vcpu, UD_VECTOR);
8118 return 1;
6aa8b732 8119 }
6aa8b732
AK
8120}
8121
95ba8273 8122static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8123{
a7c0b07d
WL
8124 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8125
8126 if (is_guest_mode(vcpu) &&
8127 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8128 return;
8129
95ba8273 8130 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8131 vmcs_write32(TPR_THRESHOLD, 0);
8132 return;
8133 }
8134
95ba8273 8135 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8136}
8137
8d14695f
YZ
8138static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8139{
8140 u32 sec_exec_control;
8141
8142 /*
8143 * There is not point to enable virtualize x2apic without enable
8144 * apicv
8145 */
c7c9c56c 8146 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
d62caabb 8147 !kvm_vcpu_apicv_active(vcpu))
8d14695f
YZ
8148 return;
8149
35754c98 8150 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8151 return;
8152
8153 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8154
8155 if (set) {
8156 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8157 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8158 } else {
8159 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8160 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8161 }
8162 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8163
8164 vmx_set_msr_bitmap(vcpu);
8165}
8166
38b99173
TC
8167static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8168{
8169 struct vcpu_vmx *vmx = to_vmx(vcpu);
8170
8171 /*
8172 * Currently we do not handle the nested case where L2 has an
8173 * APIC access page of its own; that page is still pinned.
8174 * Hence, we skip the case where the VCPU is in guest mode _and_
8175 * L1 prepared an APIC access page for L2.
8176 *
8177 * For the case where L1 and L2 share the same APIC access page
8178 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8179 * in the vmcs12), this function will only update either the vmcs01
8180 * or the vmcs02. If the former, the vmcs02 will be updated by
8181 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8182 * the next L2->L1 exit.
8183 */
8184 if (!is_guest_mode(vcpu) ||
8185 !nested_cpu_has2(vmx->nested.current_vmcs12,
8186 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8187 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8188}
8189
c7c9c56c
YZ
8190static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8191{
8192 u16 status;
8193 u8 old;
8194
c7c9c56c
YZ
8195 if (isr == -1)
8196 isr = 0;
8197
8198 status = vmcs_read16(GUEST_INTR_STATUS);
8199 old = status >> 8;
8200 if (isr != old) {
8201 status &= 0xff;
8202 status |= isr << 8;
8203 vmcs_write16(GUEST_INTR_STATUS, status);
8204 }
8205}
8206
8207static void vmx_set_rvi(int vector)
8208{
8209 u16 status;
8210 u8 old;
8211
4114c27d
WW
8212 if (vector == -1)
8213 vector = 0;
8214
c7c9c56c
YZ
8215 status = vmcs_read16(GUEST_INTR_STATUS);
8216 old = (u8)status & 0xff;
8217 if ((u8)vector != old) {
8218 status &= ~0xff;
8219 status |= (u8)vector;
8220 vmcs_write16(GUEST_INTR_STATUS, status);
8221 }
8222}
8223
8224static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8225{
4114c27d
WW
8226 if (!is_guest_mode(vcpu)) {
8227 vmx_set_rvi(max_irr);
8228 return;
8229 }
8230
c7c9c56c
YZ
8231 if (max_irr == -1)
8232 return;
8233
963fee16 8234 /*
4114c27d
WW
8235 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8236 * handles it.
963fee16 8237 */
4114c27d 8238 if (nested_exit_on_intr(vcpu))
963fee16
WL
8239 return;
8240
963fee16 8241 /*
4114c27d 8242 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8243 * is run without virtual interrupt delivery.
8244 */
8245 if (!kvm_event_needs_reinjection(vcpu) &&
8246 vmx_interrupt_allowed(vcpu)) {
8247 kvm_queue_interrupt(vcpu, max_irr, false);
8248 vmx_inject_irq(vcpu);
8249 }
c7c9c56c
YZ
8250}
8251
6308630b 8252static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8253{
d62caabb 8254 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8255 return;
8256
c7c9c56c
YZ
8257 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8258 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8259 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8260 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8261}
8262
51aa01d1 8263static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8264{
00eba012
AK
8265 u32 exit_intr_info;
8266
8267 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8268 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8269 return;
8270
c5ca8e57 8271 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8272 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8273
8274 /* Handle machine checks before interrupts are enabled */
00eba012 8275 if (is_machine_check(exit_intr_info))
a0861c02
AK
8276 kvm_machine_check();
8277
20f65983 8278 /* We need to handle NMIs before interrupts are enabled */
00eba012 8279 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8280 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8281 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8282 asm("int $2");
ff9d07a0
ZY
8283 kvm_after_handle_nmi(&vmx->vcpu);
8284 }
51aa01d1 8285}
20f65983 8286
a547c6db
YZ
8287static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8288{
8289 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8290
8291 /*
8292 * If external interrupt exists, IF bit is set in rflags/eflags on the
8293 * interrupt stack frame, and interrupt will be enabled on a return
8294 * from interrupt handler.
8295 */
8296 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8297 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8298 unsigned int vector;
8299 unsigned long entry;
8300 gate_desc *desc;
8301 struct vcpu_vmx *vmx = to_vmx(vcpu);
8302#ifdef CONFIG_X86_64
8303 unsigned long tmp;
8304#endif
8305
8306 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8307 desc = (gate_desc *)vmx->host_idt_base + vector;
8308 entry = gate_offset(*desc);
8309 asm volatile(
8310#ifdef CONFIG_X86_64
8311 "mov %%" _ASM_SP ", %[sp]\n\t"
8312 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8313 "push $%c[ss]\n\t"
8314 "push %[sp]\n\t"
8315#endif
8316 "pushf\n\t"
8317 "orl $0x200, (%%" _ASM_SP ")\n\t"
8318 __ASM_SIZE(push) " $%c[cs]\n\t"
8319 "call *%[entry]\n\t"
8320 :
8321#ifdef CONFIG_X86_64
8322 [sp]"=&r"(tmp)
8323#endif
8324 :
8325 [entry]"r"(entry),
8326 [ss]"i"(__KERNEL_DS),
8327 [cs]"i"(__KERNEL_CS)
8328 );
8329 } else
8330 local_irq_enable();
8331}
8332
6d396b55
PB
8333static bool vmx_has_high_real_mode_segbase(void)
8334{
8335 return enable_unrestricted_guest || emulate_invalid_guest_state;
8336}
8337
da8999d3
LJ
8338static bool vmx_mpx_supported(void)
8339{
8340 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8341 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8342}
8343
55412b2e
WL
8344static bool vmx_xsaves_supported(void)
8345{
8346 return vmcs_config.cpu_based_2nd_exec_ctrl &
8347 SECONDARY_EXEC_XSAVES;
8348}
8349
51aa01d1
AK
8350static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8351{
c5ca8e57 8352 u32 exit_intr_info;
51aa01d1
AK
8353 bool unblock_nmi;
8354 u8 vector;
8355 bool idtv_info_valid;
8356
8357 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8358
cf393f75 8359 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8360 if (vmx->nmi_known_unmasked)
8361 return;
c5ca8e57
AK
8362 /*
8363 * Can't use vmx->exit_intr_info since we're not sure what
8364 * the exit reason is.
8365 */
8366 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8367 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8368 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8369 /*
7b4a25cb 8370 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8371 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8372 * a guest IRET fault.
7b4a25cb
GN
8373 * SDM 3: 23.2.2 (September 2008)
8374 * Bit 12 is undefined in any of the following cases:
8375 * If the VM exit sets the valid bit in the IDT-vectoring
8376 * information field.
8377 * If the VM exit is due to a double fault.
cf393f75 8378 */
7b4a25cb
GN
8379 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8380 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8381 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8382 GUEST_INTR_STATE_NMI);
9d58b931
AK
8383 else
8384 vmx->nmi_known_unmasked =
8385 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8386 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8387 } else if (unlikely(vmx->soft_vnmi_blocked))
8388 vmx->vnmi_blocked_time +=
8389 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8390}
8391
3ab66e8a 8392static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8393 u32 idt_vectoring_info,
8394 int instr_len_field,
8395 int error_code_field)
51aa01d1 8396{
51aa01d1
AK
8397 u8 vector;
8398 int type;
8399 bool idtv_info_valid;
8400
8401 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8402
3ab66e8a
JK
8403 vcpu->arch.nmi_injected = false;
8404 kvm_clear_exception_queue(vcpu);
8405 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8406
8407 if (!idtv_info_valid)
8408 return;
8409
3ab66e8a 8410 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8411
668f612f
AK
8412 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8413 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8414
64a7ec06 8415 switch (type) {
37b96e98 8416 case INTR_TYPE_NMI_INTR:
3ab66e8a 8417 vcpu->arch.nmi_injected = true;
668f612f 8418 /*
7b4a25cb 8419 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8420 * Clear bit "block by NMI" before VM entry if a NMI
8421 * delivery faulted.
668f612f 8422 */
3ab66e8a 8423 vmx_set_nmi_mask(vcpu, false);
37b96e98 8424 break;
37b96e98 8425 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8426 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8427 /* fall through */
8428 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8429 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8430 u32 err = vmcs_read32(error_code_field);
851eb667 8431 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8432 } else
851eb667 8433 kvm_requeue_exception(vcpu, vector);
37b96e98 8434 break;
66fd3f7f 8435 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8436 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8437 /* fall through */
37b96e98 8438 case INTR_TYPE_EXT_INTR:
3ab66e8a 8439 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8440 break;
8441 default:
8442 break;
f7d9238f 8443 }
cf393f75
AK
8444}
8445
83422e17
AK
8446static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8447{
3ab66e8a 8448 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8449 VM_EXIT_INSTRUCTION_LEN,
8450 IDT_VECTORING_ERROR_CODE);
8451}
8452
b463a6f7
AK
8453static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8454{
3ab66e8a 8455 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8456 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8457 VM_ENTRY_INSTRUCTION_LEN,
8458 VM_ENTRY_EXCEPTION_ERROR_CODE);
8459
8460 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8461}
8462
d7cd9796
GN
8463static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8464{
8465 int i, nr_msrs;
8466 struct perf_guest_switch_msr *msrs;
8467
8468 msrs = perf_guest_get_msrs(&nr_msrs);
8469
8470 if (!msrs)
8471 return;
8472
8473 for (i = 0; i < nr_msrs; i++)
8474 if (msrs[i].host == msrs[i].guest)
8475 clear_atomic_switch_msr(vmx, msrs[i].msr);
8476 else
8477 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8478 msrs[i].host);
8479}
8480
a3b5ba49 8481static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8482{
a2fa3e9f 8483 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8484 unsigned long debugctlmsr, cr4;
104f226b
AK
8485
8486 /* Record the guest's net vcpu time for enforced NMI injections. */
8487 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8488 vmx->entry_time = ktime_get();
8489
8490 /* Don't enter VMX if guest state is invalid, let the exit handler
8491 start emulation until we arrive back to a valid state */
14168786 8492 if (vmx->emulation_required)
104f226b
AK
8493 return;
8494
a7653ecd
RK
8495 if (vmx->ple_window_dirty) {
8496 vmx->ple_window_dirty = false;
8497 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8498 }
8499
012f83cb
AG
8500 if (vmx->nested.sync_shadow_vmcs) {
8501 copy_vmcs12_to_shadow(vmx);
8502 vmx->nested.sync_shadow_vmcs = false;
8503 }
8504
104f226b
AK
8505 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8506 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8507 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8508 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8509
1e02ce4c 8510 cr4 = cr4_read_shadow();
d974baa3
AL
8511 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8512 vmcs_writel(HOST_CR4, cr4);
8513 vmx->host_state.vmcs_host_cr4 = cr4;
8514 }
8515
104f226b
AK
8516 /* When single-stepping over STI and MOV SS, we must clear the
8517 * corresponding interruptibility bits in the guest state. Otherwise
8518 * vmentry fails as it then expects bit 14 (BS) in pending debug
8519 * exceptions being set, but that's not correct for the guest debugging
8520 * case. */
8521 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8522 vmx_set_interrupt_shadow(vcpu, 0);
8523
d7cd9796 8524 atomic_switch_perf_msrs(vmx);
2a7921b7 8525 debugctlmsr = get_debugctlmsr();
d7cd9796 8526
d462b819 8527 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8528 asm(
6aa8b732 8529 /* Store host registers */
b188c81f
AK
8530 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8531 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8532 "push %%" _ASM_CX " \n\t"
8533 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8534 "je 1f \n\t"
b188c81f 8535 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8536 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8537 "1: \n\t"
d3edefc0 8538 /* Reload cr2 if changed */
b188c81f
AK
8539 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8540 "mov %%cr2, %%" _ASM_DX " \n\t"
8541 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8542 "je 2f \n\t"
b188c81f 8543 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8544 "2: \n\t"
6aa8b732 8545 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8546 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8547 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8548 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8549 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8550 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8551 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8552 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8553 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8554#ifdef CONFIG_X86_64
e08aa78a
AK
8555 "mov %c[r8](%0), %%r8 \n\t"
8556 "mov %c[r9](%0), %%r9 \n\t"
8557 "mov %c[r10](%0), %%r10 \n\t"
8558 "mov %c[r11](%0), %%r11 \n\t"
8559 "mov %c[r12](%0), %%r12 \n\t"
8560 "mov %c[r13](%0), %%r13 \n\t"
8561 "mov %c[r14](%0), %%r14 \n\t"
8562 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8563#endif
b188c81f 8564 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8565
6aa8b732 8566 /* Enter guest mode */
83287ea4 8567 "jne 1f \n\t"
4ecac3fd 8568 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8569 "jmp 2f \n\t"
8570 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8571 "2: "
6aa8b732 8572 /* Save guest registers, load host registers, keep flags */
b188c81f 8573 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8574 "pop %0 \n\t"
b188c81f
AK
8575 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8576 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8577 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8578 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8579 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8580 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8581 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8582#ifdef CONFIG_X86_64
e08aa78a
AK
8583 "mov %%r8, %c[r8](%0) \n\t"
8584 "mov %%r9, %c[r9](%0) \n\t"
8585 "mov %%r10, %c[r10](%0) \n\t"
8586 "mov %%r11, %c[r11](%0) \n\t"
8587 "mov %%r12, %c[r12](%0) \n\t"
8588 "mov %%r13, %c[r13](%0) \n\t"
8589 "mov %%r14, %c[r14](%0) \n\t"
8590 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8591#endif
b188c81f
AK
8592 "mov %%cr2, %%" _ASM_AX " \n\t"
8593 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8594
b188c81f 8595 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8596 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8597 ".pushsection .rodata \n\t"
8598 ".global vmx_return \n\t"
8599 "vmx_return: " _ASM_PTR " 2b \n\t"
8600 ".popsection"
e08aa78a 8601 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8602 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8603 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8604 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8605 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8606 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8607 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8608 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8609 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8610 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8611 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8612#ifdef CONFIG_X86_64
ad312c7c
ZX
8613 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8614 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8615 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8616 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8617 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8618 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8619 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8620 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8621#endif
40712fae
AK
8622 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8623 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8624 : "cc", "memory"
8625#ifdef CONFIG_X86_64
b188c81f 8626 , "rax", "rbx", "rdi", "rsi"
c2036300 8627 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8628#else
8629 , "eax", "ebx", "edi", "esi"
c2036300
LV
8630#endif
8631 );
6aa8b732 8632
2a7921b7
GN
8633 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8634 if (debugctlmsr)
8635 update_debugctlmsr(debugctlmsr);
8636
aa67f609
AK
8637#ifndef CONFIG_X86_64
8638 /*
8639 * The sysexit path does not restore ds/es, so we must set them to
8640 * a reasonable value ourselves.
8641 *
8642 * We can't defer this to vmx_load_host_state() since that function
8643 * may be executed in interrupt context, which saves and restore segments
8644 * around it, nullifying its effect.
8645 */
8646 loadsegment(ds, __USER_DS);
8647 loadsegment(es, __USER_DS);
8648#endif
8649
6de4f3ad 8650 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8651 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8652 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8653 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8654 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8655 vcpu->arch.regs_dirty = 0;
8656
1155f76a
AK
8657 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8658
d462b819 8659 vmx->loaded_vmcs->launched = 1;
1b6269db 8660
51aa01d1 8661 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 8662 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1 8663
e0b890d3
GN
8664 /*
8665 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8666 * we did not inject a still-pending event to L1 now because of
8667 * nested_run_pending, we need to re-enable this bit.
8668 */
8669 if (vmx->nested.nested_run_pending)
8670 kvm_make_request(KVM_REQ_EVENT, vcpu);
8671
8672 vmx->nested.nested_run_pending = 0;
8673
51aa01d1
AK
8674 vmx_complete_atomic_exit(vmx);
8675 vmx_recover_nmi_blocking(vmx);
cf393f75 8676 vmx_complete_interrupts(vmx);
6aa8b732
AK
8677}
8678
4fa7734c
PB
8679static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8680{
8681 struct vcpu_vmx *vmx = to_vmx(vcpu);
8682 int cpu;
8683
8684 if (vmx->loaded_vmcs == &vmx->vmcs01)
8685 return;
8686
8687 cpu = get_cpu();
8688 vmx->loaded_vmcs = &vmx->vmcs01;
8689 vmx_vcpu_put(vcpu);
8690 vmx_vcpu_load(vcpu, cpu);
8691 vcpu->cpu = cpu;
8692 put_cpu();
8693}
8694
6aa8b732
AK
8695static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8696{
fb3f0f51
RR
8697 struct vcpu_vmx *vmx = to_vmx(vcpu);
8698
843e4330 8699 if (enable_pml)
a3eaa864 8700 vmx_destroy_pml_buffer(vmx);
991e7a0e 8701 free_vpid(vmx->vpid);
4fa7734c
PB
8702 leave_guest_mode(vcpu);
8703 vmx_load_vmcs01(vcpu);
26a865f4 8704 free_nested(vmx);
4fa7734c 8705 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8706 kfree(vmx->guest_msrs);
8707 kvm_vcpu_uninit(vcpu);
a4770347 8708 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8709}
8710
fb3f0f51 8711static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8712{
fb3f0f51 8713 int err;
c16f862d 8714 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8715 int cpu;
6aa8b732 8716
a2fa3e9f 8717 if (!vmx)
fb3f0f51
RR
8718 return ERR_PTR(-ENOMEM);
8719
991e7a0e 8720 vmx->vpid = allocate_vpid();
2384d2b3 8721
fb3f0f51
RR
8722 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8723 if (err)
8724 goto free_vcpu;
965b58a5 8725
a2fa3e9f 8726 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8727 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8728 > PAGE_SIZE);
0123be42 8729
be6d05cf 8730 err = -ENOMEM;
fb3f0f51 8731 if (!vmx->guest_msrs) {
fb3f0f51
RR
8732 goto uninit_vcpu;
8733 }
965b58a5 8734
d462b819
NHE
8735 vmx->loaded_vmcs = &vmx->vmcs01;
8736 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8737 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8738 goto free_msrs;
d462b819
NHE
8739 if (!vmm_exclusive)
8740 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8741 loaded_vmcs_init(vmx->loaded_vmcs);
8742 if (!vmm_exclusive)
8743 kvm_cpu_vmxoff();
a2fa3e9f 8744
15ad7146
AK
8745 cpu = get_cpu();
8746 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8747 vmx->vcpu.cpu = cpu;
8b9cf98c 8748 err = vmx_vcpu_setup(vmx);
fb3f0f51 8749 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8750 put_cpu();
fb3f0f51
RR
8751 if (err)
8752 goto free_vmcs;
35754c98 8753 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
8754 err = alloc_apic_access_page(kvm);
8755 if (err)
5e4a0b3c 8756 goto free_vmcs;
a63cb560 8757 }
fb3f0f51 8758
b927a3ce
SY
8759 if (enable_ept) {
8760 if (!kvm->arch.ept_identity_map_addr)
8761 kvm->arch.ept_identity_map_addr =
8762 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8763 err = init_rmode_identity_map(kvm);
8764 if (err)
93ea5388 8765 goto free_vmcs;
b927a3ce 8766 }
b7ebfb05 8767
5c614b35 8768 if (nested) {
b9c237bb 8769 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
8770 vmx->nested.vpid02 = allocate_vpid();
8771 }
b9c237bb 8772
705699a1 8773 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8774 vmx->nested.current_vmptr = -1ull;
8775 vmx->nested.current_vmcs12 = NULL;
8776
843e4330
KH
8777 /*
8778 * If PML is turned on, failure on enabling PML just results in failure
8779 * of creating the vcpu, therefore we can simplify PML logic (by
8780 * avoiding dealing with cases, such as enabling PML partially on vcpus
8781 * for the guest, etc.
8782 */
8783 if (enable_pml) {
a3eaa864 8784 err = vmx_create_pml_buffer(vmx);
843e4330
KH
8785 if (err)
8786 goto free_vmcs;
8787 }
8788
fb3f0f51
RR
8789 return &vmx->vcpu;
8790
8791free_vmcs:
5c614b35 8792 free_vpid(vmx->nested.vpid02);
5f3fbc34 8793 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8794free_msrs:
fb3f0f51
RR
8795 kfree(vmx->guest_msrs);
8796uninit_vcpu:
8797 kvm_vcpu_uninit(&vmx->vcpu);
8798free_vcpu:
991e7a0e 8799 free_vpid(vmx->vpid);
a4770347 8800 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8801 return ERR_PTR(err);
6aa8b732
AK
8802}
8803
002c7f7c
YS
8804static void __init vmx_check_processor_compat(void *rtn)
8805{
8806 struct vmcs_config vmcs_conf;
8807
8808 *(int *)rtn = 0;
8809 if (setup_vmcs_config(&vmcs_conf) < 0)
8810 *(int *)rtn = -EIO;
8811 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8812 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8813 smp_processor_id());
8814 *(int *)rtn = -EIO;
8815 }
8816}
8817
67253af5
SY
8818static int get_ept_level(void)
8819{
8820 return VMX_EPT_DEFAULT_GAW + 1;
8821}
8822
4b12f0de 8823static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8824{
b18d5431
XG
8825 u8 cache;
8826 u64 ipat = 0;
4b12f0de 8827
522c68c4 8828 /* For VT-d and EPT combination
606decd6 8829 * 1. MMIO: always map as UC
522c68c4
SY
8830 * 2. EPT with VT-d:
8831 * a. VT-d without snooping control feature: can't guarantee the
606decd6 8832 * result, try to trust guest.
522c68c4
SY
8833 * b. VT-d with snooping control feature: snooping control feature of
8834 * VT-d engine can guarantee the cache correctness. Just set it
8835 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8836 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8837 * consistent with host MTRR
8838 */
606decd6
PB
8839 if (is_mmio) {
8840 cache = MTRR_TYPE_UNCACHABLE;
8841 goto exit;
8842 }
8843
8844 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
8845 ipat = VMX_EPT_IPAT_BIT;
8846 cache = MTRR_TYPE_WRBACK;
8847 goto exit;
8848 }
8849
8850 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8851 ipat = VMX_EPT_IPAT_BIT;
0da029ed 8852 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
8853 cache = MTRR_TYPE_WRBACK;
8854 else
8855 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
8856 goto exit;
8857 }
8858
ff53604b 8859 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
8860
8861exit:
8862 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
8863}
8864
17cc3935 8865static int vmx_get_lpage_level(void)
344f414f 8866{
878403b7
SY
8867 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8868 return PT_DIRECTORY_LEVEL;
8869 else
8870 /* For shadow and EPT supported 1GB page */
8871 return PT_PDPE_LEVEL;
344f414f
JR
8872}
8873
feda805f
XG
8874static void vmcs_set_secondary_exec_control(u32 new_ctl)
8875{
8876 /*
8877 * These bits in the secondary execution controls field
8878 * are dynamic, the others are mostly based on the hypervisor
8879 * architecture and the guest's CPUID. Do not touch the
8880 * dynamic bits.
8881 */
8882 u32 mask =
8883 SECONDARY_EXEC_SHADOW_VMCS |
8884 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
8885 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8886
8887 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8888
8889 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8890 (new_ctl & ~mask) | (cur_ctl & mask));
8891}
8892
0e851880
SY
8893static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8894{
4e47c7a6
SY
8895 struct kvm_cpuid_entry2 *best;
8896 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 8897 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 8898
4e47c7a6 8899 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
8900 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
8901 if (!rdtscp_enabled)
feda805f 8902 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 8903
8b97265a 8904 if (nested) {
1cea0ce6 8905 if (rdtscp_enabled)
8b97265a
PB
8906 vmx->nested.nested_vmx_secondary_ctls_high |=
8907 SECONDARY_EXEC_RDTSCP;
8908 else
8909 vmx->nested.nested_vmx_secondary_ctls_high &=
8910 ~SECONDARY_EXEC_RDTSCP;
8911 }
4e47c7a6 8912 }
ad756a16 8913
ad756a16
MJ
8914 /* Exposing INVPCID only when PCID is exposed */
8915 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8916 if (vmx_invpcid_supported() &&
29541bb8
XG
8917 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
8918 !guest_cpuid_has_pcid(vcpu))) {
feda805f 8919 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 8920
ad756a16 8921 if (best)
4f977045 8922 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 8923 }
8b3e34e4 8924
feda805f
XG
8925 vmcs_set_secondary_exec_control(secondary_exec_ctl);
8926
8b3e34e4
XG
8927 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
8928 if (guest_cpuid_has_pcommit(vcpu))
8929 vmx->nested.nested_vmx_secondary_ctls_high |=
8930 SECONDARY_EXEC_PCOMMIT;
8931 else
8932 vmx->nested.nested_vmx_secondary_ctls_high &=
8933 ~SECONDARY_EXEC_PCOMMIT;
8934 }
0e851880
SY
8935}
8936
d4330ef2
JR
8937static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8938{
7b8050f5
NHE
8939 if (func == 1 && nested)
8940 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
8941}
8942
25d92081
YZ
8943static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8944 struct x86_exception *fault)
8945{
533558bc
JK
8946 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8947 u32 exit_reason;
25d92081
YZ
8948
8949 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 8950 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 8951 else
533558bc
JK
8952 exit_reason = EXIT_REASON_EPT_VIOLATION;
8953 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
8954 vmcs12->guest_physical_address = fault->address;
8955}
8956
155a97a3
NHE
8957/* Callbacks for nested_ept_init_mmu_context: */
8958
8959static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8960{
8961 /* return the page table to be shadowed - in our case, EPT12 */
8962 return get_vmcs12(vcpu)->ept_pointer;
8963}
8964
8a3c1a33 8965static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 8966{
ad896af0
PB
8967 WARN_ON(mmu_is_nested(vcpu));
8968 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
8969 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8970 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
8971 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8972 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8973 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8974
8975 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
8976}
8977
8978static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8979{
8980 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8981}
8982
19d5f10b
EK
8983static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8984 u16 error_code)
8985{
8986 bool inequality, bit;
8987
8988 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8989 inequality =
8990 (error_code & vmcs12->page_fault_error_code_mask) !=
8991 vmcs12->page_fault_error_code_match;
8992 return inequality ^ bit;
8993}
8994
feaf0c7d
GN
8995static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8996 struct x86_exception *fault)
8997{
8998 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8999
9000 WARN_ON(!is_guest_mode(vcpu));
9001
19d5f10b 9002 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9003 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9004 vmcs_read32(VM_EXIT_INTR_INFO),
9005 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9006 else
9007 kvm_inject_page_fault(vcpu, fault);
9008}
9009
a2bcba50
WL
9010static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9011 struct vmcs12 *vmcs12)
9012{
9013 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9014 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9015
9016 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9017 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9018 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9019 return false;
9020
9021 /*
9022 * Translate L1 physical address to host physical
9023 * address for vmcs02. Keep the page pinned, so this
9024 * physical address remains valid. We keep a reference
9025 * to it so we can release it later.
9026 */
9027 if (vmx->nested.apic_access_page) /* shouldn't happen */
9028 nested_release_page(vmx->nested.apic_access_page);
9029 vmx->nested.apic_access_page =
9030 nested_get_page(vcpu, vmcs12->apic_access_addr);
9031 }
a7c0b07d
WL
9032
9033 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9034 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9035 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9036 return false;
9037
9038 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9039 nested_release_page(vmx->nested.virtual_apic_page);
9040 vmx->nested.virtual_apic_page =
9041 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9042
9043 /*
9044 * Failing the vm entry is _not_ what the processor does
9045 * but it's basically the only possibility we have.
9046 * We could still enter the guest if CR8 load exits are
9047 * enabled, CR8 store exits are enabled, and virtualize APIC
9048 * access is disabled; in this case the processor would never
9049 * use the TPR shadow and we could simply clear the bit from
9050 * the execution control. But such a configuration is useless,
9051 * so let's keep the code simple.
9052 */
9053 if (!vmx->nested.virtual_apic_page)
9054 return false;
9055 }
9056
705699a1 9057 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9058 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9059 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9060 return false;
9061
9062 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9063 kunmap(vmx->nested.pi_desc_page);
9064 nested_release_page(vmx->nested.pi_desc_page);
9065 }
9066 vmx->nested.pi_desc_page =
9067 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9068 if (!vmx->nested.pi_desc_page)
9069 return false;
9070
9071 vmx->nested.pi_desc =
9072 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9073 if (!vmx->nested.pi_desc) {
9074 nested_release_page_clean(vmx->nested.pi_desc_page);
9075 return false;
9076 }
9077 vmx->nested.pi_desc =
9078 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9079 (unsigned long)(vmcs12->posted_intr_desc_addr &
9080 (PAGE_SIZE - 1)));
9081 }
9082
a2bcba50
WL
9083 return true;
9084}
9085
f4124500
JK
9086static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9087{
9088 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9089 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090
9091 if (vcpu->arch.virtual_tsc_khz == 0)
9092 return;
9093
9094 /* Make sure short timeouts reliably trigger an immediate vmexit.
9095 * hrtimer_start does not guarantee this. */
9096 if (preemption_timeout <= 1) {
9097 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9098 return;
9099 }
9100
9101 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9102 preemption_timeout *= 1000000;
9103 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9104 hrtimer_start(&vmx->nested.preemption_timer,
9105 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9106}
9107
3af18d9c
WV
9108static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9109 struct vmcs12 *vmcs12)
9110{
9111 int maxphyaddr;
9112 u64 addr;
9113
9114 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9115 return 0;
9116
9117 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9118 WARN_ON(1);
9119 return -EINVAL;
9120 }
9121 maxphyaddr = cpuid_maxphyaddr(vcpu);
9122
9123 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9124 ((addr + PAGE_SIZE) >> maxphyaddr))
9125 return -EINVAL;
9126
9127 return 0;
9128}
9129
9130/*
9131 * Merge L0's and L1's MSR bitmap, return false to indicate that
9132 * we do not use the hardware.
9133 */
9134static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9135 struct vmcs12 *vmcs12)
9136{
82f0dd4b 9137 int msr;
f2b93280
WV
9138 struct page *page;
9139 unsigned long *msr_bitmap;
9140
9141 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9142 return false;
9143
9144 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9145 if (!page) {
9146 WARN_ON(1);
9147 return false;
9148 }
9149 msr_bitmap = (unsigned long *)kmap(page);
9150 if (!msr_bitmap) {
9151 nested_release_page_clean(page);
9152 WARN_ON(1);
9153 return false;
9154 }
9155
9156 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9157 if (nested_cpu_has_apic_reg_virt(vmcs12))
9158 for (msr = 0x800; msr <= 0x8ff; msr++)
9159 nested_vmx_disable_intercept_for_msr(
9160 msr_bitmap,
9161 vmx_msr_bitmap_nested,
9162 msr, MSR_TYPE_R);
f2b93280
WV
9163 /* TPR is allowed */
9164 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9165 vmx_msr_bitmap_nested,
9166 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9167 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
9168 if (nested_cpu_has_vid(vmcs12)) {
9169 /* EOI and self-IPI are allowed */
9170 nested_vmx_disable_intercept_for_msr(
9171 msr_bitmap,
9172 vmx_msr_bitmap_nested,
9173 APIC_BASE_MSR + (APIC_EOI >> 4),
9174 MSR_TYPE_W);
9175 nested_vmx_disable_intercept_for_msr(
9176 msr_bitmap,
9177 vmx_msr_bitmap_nested,
9178 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9179 MSR_TYPE_W);
9180 }
82f0dd4b
WV
9181 } else {
9182 /*
9183 * Enable reading intercept of all the x2apic
9184 * MSRs. We should not rely on vmcs12 to do any
9185 * optimizations here, it may have been modified
9186 * by L1.
9187 */
9188 for (msr = 0x800; msr <= 0x8ff; msr++)
9189 __vmx_enable_intercept_for_msr(
9190 vmx_msr_bitmap_nested,
9191 msr,
9192 MSR_TYPE_R);
9193
f2b93280
WV
9194 __vmx_enable_intercept_for_msr(
9195 vmx_msr_bitmap_nested,
9196 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 9197 MSR_TYPE_W);
608406e2
WV
9198 __vmx_enable_intercept_for_msr(
9199 vmx_msr_bitmap_nested,
9200 APIC_BASE_MSR + (APIC_EOI >> 4),
9201 MSR_TYPE_W);
9202 __vmx_enable_intercept_for_msr(
9203 vmx_msr_bitmap_nested,
9204 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9205 MSR_TYPE_W);
82f0dd4b 9206 }
f2b93280
WV
9207 kunmap(page);
9208 nested_release_page_clean(page);
9209
9210 return true;
9211}
9212
9213static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9214 struct vmcs12 *vmcs12)
9215{
82f0dd4b 9216 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9217 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9218 !nested_cpu_has_vid(vmcs12) &&
9219 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9220 return 0;
9221
9222 /*
9223 * If virtualize x2apic mode is enabled,
9224 * virtualize apic access must be disabled.
9225 */
82f0dd4b
WV
9226 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9227 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9228 return -EINVAL;
9229
608406e2
WV
9230 /*
9231 * If virtual interrupt delivery is enabled,
9232 * we must exit on external interrupts.
9233 */
9234 if (nested_cpu_has_vid(vmcs12) &&
9235 !nested_exit_on_intr(vcpu))
9236 return -EINVAL;
9237
705699a1
WV
9238 /*
9239 * bits 15:8 should be zero in posted_intr_nv,
9240 * the descriptor address has been already checked
9241 * in nested_get_vmcs12_pages.
9242 */
9243 if (nested_cpu_has_posted_intr(vmcs12) &&
9244 (!nested_cpu_has_vid(vmcs12) ||
9245 !nested_exit_intr_ack_set(vcpu) ||
9246 vmcs12->posted_intr_nv & 0xff00))
9247 return -EINVAL;
9248
f2b93280
WV
9249 /* tpr shadow is needed by all apicv features. */
9250 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9251 return -EINVAL;
9252
9253 return 0;
3af18d9c
WV
9254}
9255
e9ac033e
EK
9256static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9257 unsigned long count_field,
92d71bc6 9258 unsigned long addr_field)
ff651cb6 9259{
92d71bc6 9260 int maxphyaddr;
e9ac033e
EK
9261 u64 count, addr;
9262
9263 if (vmcs12_read_any(vcpu, count_field, &count) ||
9264 vmcs12_read_any(vcpu, addr_field, &addr)) {
9265 WARN_ON(1);
9266 return -EINVAL;
9267 }
9268 if (count == 0)
9269 return 0;
92d71bc6 9270 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9271 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9272 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9273 pr_warn_ratelimited(
9274 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9275 addr_field, maxphyaddr, count, addr);
9276 return -EINVAL;
9277 }
9278 return 0;
9279}
9280
9281static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9282 struct vmcs12 *vmcs12)
9283{
e9ac033e
EK
9284 if (vmcs12->vm_exit_msr_load_count == 0 &&
9285 vmcs12->vm_exit_msr_store_count == 0 &&
9286 vmcs12->vm_entry_msr_load_count == 0)
9287 return 0; /* Fast path */
e9ac033e 9288 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9289 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9290 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9291 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9292 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9293 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9294 return -EINVAL;
9295 return 0;
9296}
9297
9298static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9299 struct vmx_msr_entry *e)
9300{
9301 /* x2APIC MSR accesses are not allowed */
8a9781f7 9302 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9303 return -EINVAL;
9304 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9305 e->index == MSR_IA32_UCODE_REV)
9306 return -EINVAL;
9307 if (e->reserved != 0)
ff651cb6
WV
9308 return -EINVAL;
9309 return 0;
9310}
9311
e9ac033e
EK
9312static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9313 struct vmx_msr_entry *e)
ff651cb6
WV
9314{
9315 if (e->index == MSR_FS_BASE ||
9316 e->index == MSR_GS_BASE ||
e9ac033e
EK
9317 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9318 nested_vmx_msr_check_common(vcpu, e))
9319 return -EINVAL;
9320 return 0;
9321}
9322
9323static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9324 struct vmx_msr_entry *e)
9325{
9326 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9327 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9328 return -EINVAL;
9329 return 0;
9330}
9331
9332/*
9333 * Load guest's/host's msr at nested entry/exit.
9334 * return 0 for success, entry index for failure.
9335 */
9336static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9337{
9338 u32 i;
9339 struct vmx_msr_entry e;
9340 struct msr_data msr;
9341
9342 msr.host_initiated = false;
9343 for (i = 0; i < count; i++) {
54bf36aa
PB
9344 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9345 &e, sizeof(e))) {
e9ac033e
EK
9346 pr_warn_ratelimited(
9347 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9348 __func__, i, gpa + i * sizeof(e));
ff651cb6 9349 goto fail;
e9ac033e
EK
9350 }
9351 if (nested_vmx_load_msr_check(vcpu, &e)) {
9352 pr_warn_ratelimited(
9353 "%s check failed (%u, 0x%x, 0x%x)\n",
9354 __func__, i, e.index, e.reserved);
9355 goto fail;
9356 }
ff651cb6
WV
9357 msr.index = e.index;
9358 msr.data = e.value;
e9ac033e
EK
9359 if (kvm_set_msr(vcpu, &msr)) {
9360 pr_warn_ratelimited(
9361 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9362 __func__, i, e.index, e.value);
ff651cb6 9363 goto fail;
e9ac033e 9364 }
ff651cb6
WV
9365 }
9366 return 0;
9367fail:
9368 return i + 1;
9369}
9370
9371static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9372{
9373 u32 i;
9374 struct vmx_msr_entry e;
9375
9376 for (i = 0; i < count; i++) {
609e36d3 9377 struct msr_data msr_info;
54bf36aa
PB
9378 if (kvm_vcpu_read_guest(vcpu,
9379 gpa + i * sizeof(e),
9380 &e, 2 * sizeof(u32))) {
e9ac033e
EK
9381 pr_warn_ratelimited(
9382 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9383 __func__, i, gpa + i * sizeof(e));
ff651cb6 9384 return -EINVAL;
e9ac033e
EK
9385 }
9386 if (nested_vmx_store_msr_check(vcpu, &e)) {
9387 pr_warn_ratelimited(
9388 "%s check failed (%u, 0x%x, 0x%x)\n",
9389 __func__, i, e.index, e.reserved);
ff651cb6 9390 return -EINVAL;
e9ac033e 9391 }
609e36d3
PB
9392 msr_info.host_initiated = false;
9393 msr_info.index = e.index;
9394 if (kvm_get_msr(vcpu, &msr_info)) {
e9ac033e
EK
9395 pr_warn_ratelimited(
9396 "%s cannot read MSR (%u, 0x%x)\n",
9397 __func__, i, e.index);
9398 return -EINVAL;
9399 }
54bf36aa
PB
9400 if (kvm_vcpu_write_guest(vcpu,
9401 gpa + i * sizeof(e) +
9402 offsetof(struct vmx_msr_entry, value),
9403 &msr_info.data, sizeof(msr_info.data))) {
e9ac033e
EK
9404 pr_warn_ratelimited(
9405 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9406 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9407 return -EINVAL;
9408 }
ff651cb6
WV
9409 }
9410 return 0;
9411}
9412
fe3ef05c
NHE
9413/*
9414 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9415 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9416 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9417 * guest in a way that will both be appropriate to L1's requests, and our
9418 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9419 * function also has additional necessary side-effects, like setting various
9420 * vcpu->arch fields.
9421 */
9422static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9423{
9424 struct vcpu_vmx *vmx = to_vmx(vcpu);
9425 u32 exec_control;
9426
9427 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9428 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9429 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9430 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9431 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9432 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9433 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9434 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9435 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9436 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9437 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9438 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9439 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9440 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9441 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9442 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9443 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9444 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9445 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9446 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9447 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9448 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9449 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9450 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9451 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9452 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9453 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9454 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9455 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9456 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9457 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9458 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9459 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9460 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9461 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9462 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9463
2996fca0
JK
9464 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9465 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9466 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9467 } else {
9468 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9469 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9470 }
fe3ef05c
NHE
9471 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9472 vmcs12->vm_entry_intr_info_field);
9473 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9474 vmcs12->vm_entry_exception_error_code);
9475 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9476 vmcs12->vm_entry_instruction_len);
9477 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9478 vmcs12->guest_interruptibility_info);
fe3ef05c 9479 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9480 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9481 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9482 vmcs12->guest_pending_dbg_exceptions);
9483 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9484 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9485
81dc01f7
WL
9486 if (nested_cpu_has_xsaves(vmcs12))
9487 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9488 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9489
f4124500
JK
9490 exec_control = vmcs12->pin_based_vm_exec_control;
9491 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9492 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9493
9494 if (nested_cpu_has_posted_intr(vmcs12)) {
9495 /*
9496 * Note that we use L0's vector here and in
9497 * vmx_deliver_nested_posted_interrupt.
9498 */
9499 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9500 vmx->nested.pi_pending = false;
0bcf261c 9501 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
705699a1
WV
9502 vmcs_write64(POSTED_INTR_DESC_ADDR,
9503 page_to_phys(vmx->nested.pi_desc_page) +
9504 (unsigned long)(vmcs12->posted_intr_desc_addr &
9505 (PAGE_SIZE - 1)));
9506 } else
9507 exec_control &= ~PIN_BASED_POSTED_INTR;
9508
f4124500 9509 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9510
f4124500
JK
9511 vmx->nested.preemption_timer_expired = false;
9512 if (nested_cpu_has_preemption_timer(vmcs12))
9513 vmx_start_preemption_timer(vcpu);
0238ea91 9514
fe3ef05c
NHE
9515 /*
9516 * Whether page-faults are trapped is determined by a combination of
9517 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9518 * If enable_ept, L0 doesn't care about page faults and we should
9519 * set all of these to L1's desires. However, if !enable_ept, L0 does
9520 * care about (at least some) page faults, and because it is not easy
9521 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9522 * to exit on each and every L2 page fault. This is done by setting
9523 * MASK=MATCH=0 and (see below) EB.PF=1.
9524 * Note that below we don't need special code to set EB.PF beyond the
9525 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9526 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9527 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9528 *
9529 * A problem with this approach (when !enable_ept) is that L1 may be
9530 * injected with more page faults than it asked for. This could have
9531 * caused problems, but in practice existing hypervisors don't care.
9532 * To fix this, we will need to emulate the PFEC checking (on the L1
9533 * page tables), using walk_addr(), when injecting PFs to L1.
9534 */
9535 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9536 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9537 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9538 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9539
9540 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9541 exec_control = vmx_secondary_exec_control(vmx);
e2821620 9542
fe3ef05c 9543 /* Take the following fields only from vmcs12 */
696dfd95 9544 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9545 SECONDARY_EXEC_RDTSCP |
696dfd95 9546 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8b3e34e4
XG
9547 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9548 SECONDARY_EXEC_PCOMMIT);
fe3ef05c
NHE
9549 if (nested_cpu_has(vmcs12,
9550 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9551 exec_control |= vmcs12->secondary_vm_exec_control;
9552
9553 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9554 /*
9555 * If translation failed, no matter: This feature asks
9556 * to exit when accessing the given address, and if it
9557 * can never be accessed, this feature won't do
9558 * anything anyway.
9559 */
9560 if (!vmx->nested.apic_access_page)
9561 exec_control &=
9562 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9563 else
9564 vmcs_write64(APIC_ACCESS_ADDR,
9565 page_to_phys(vmx->nested.apic_access_page));
f2b93280 9566 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 9567 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
9568 exec_control |=
9569 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9570 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9571 }
9572
608406e2
WV
9573 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9574 vmcs_write64(EOI_EXIT_BITMAP0,
9575 vmcs12->eoi_exit_bitmap0);
9576 vmcs_write64(EOI_EXIT_BITMAP1,
9577 vmcs12->eoi_exit_bitmap1);
9578 vmcs_write64(EOI_EXIT_BITMAP2,
9579 vmcs12->eoi_exit_bitmap2);
9580 vmcs_write64(EOI_EXIT_BITMAP3,
9581 vmcs12->eoi_exit_bitmap3);
9582 vmcs_write16(GUEST_INTR_STATUS,
9583 vmcs12->guest_intr_status);
9584 }
9585
fe3ef05c
NHE
9586 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9587 }
9588
9589
9590 /*
9591 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9592 * Some constant fields are set here by vmx_set_constant_host_state().
9593 * Other fields are different per CPU, and will be set later when
9594 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9595 */
a547c6db 9596 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9597
9598 /*
9599 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9600 * entry, but only if the current (host) sp changed from the value
9601 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9602 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9603 * here we just force the write to happen on entry.
9604 */
9605 vmx->host_rsp = 0;
9606
9607 exec_control = vmx_exec_control(vmx); /* L0's desires */
9608 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9609 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9610 exec_control &= ~CPU_BASED_TPR_SHADOW;
9611 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9612
9613 if (exec_control & CPU_BASED_TPR_SHADOW) {
9614 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9615 page_to_phys(vmx->nested.virtual_apic_page));
9616 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9617 }
9618
3af18d9c 9619 if (cpu_has_vmx_msr_bitmap() &&
670125bd
WV
9620 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9621 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9622 /* MSR_BITMAP will be set by following vmx_set_efer. */
3af18d9c
WV
9623 } else
9624 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9625
fe3ef05c 9626 /*
3af18d9c 9627 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9628 * Rather, exit every time.
9629 */
fe3ef05c
NHE
9630 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9631 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9632
9633 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9634
9635 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9636 * bitwise-or of what L1 wants to trap for L2, and what we want to
9637 * trap. Note that CR0.TS also needs updating - we do this later.
9638 */
9639 update_exception_bitmap(vcpu);
9640 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9641 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9642
8049d651
NHE
9643 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9644 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9645 * bits are further modified by vmx_set_efer() below.
9646 */
f4124500 9647 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9648
9649 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9650 * emulated by vmx_set_efer(), below.
9651 */
2961e876 9652 vm_entry_controls_init(vmx,
8049d651
NHE
9653 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9654 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9655 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9656
44811c02 9657 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9658 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9659 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9660 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9661 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9662
9663
9664 set_cr4_guest_host_mask(vmx);
9665
36be0b9d
PB
9666 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9667 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9668
27fc51b2
NHE
9669 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9670 vmcs_write64(TSC_OFFSET,
9671 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9672 else
9673 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9674
9675 if (enable_vpid) {
9676 /*
5c614b35
WL
9677 * There is no direct mapping between vpid02 and vpid12, the
9678 * vpid02 is per-vCPU for L0 and reused while the value of
9679 * vpid12 is changed w/ one invvpid during nested vmentry.
9680 * The vpid12 is allocated by L1 for L2, so it will not
9681 * influence global bitmap(for vpid01 and vpid02 allocation)
9682 * even if spawn a lot of nested vCPUs.
fe3ef05c 9683 */
5c614b35
WL
9684 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9685 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9686 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9687 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9688 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9689 }
9690 } else {
9691 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9692 vmx_flush_tlb(vcpu);
9693 }
9694
fe3ef05c
NHE
9695 }
9696
155a97a3
NHE
9697 if (nested_cpu_has_ept(vmcs12)) {
9698 kvm_mmu_unload(vcpu);
9699 nested_ept_init_mmu_context(vcpu);
9700 }
9701
fe3ef05c
NHE
9702 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9703 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9704 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9705 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9706 else
9707 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9708 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9709 vmx_set_efer(vcpu, vcpu->arch.efer);
9710
9711 /*
9712 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9713 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9714 * The CR0_READ_SHADOW is what L2 should have expected to read given
9715 * the specifications by L1; It's not enough to take
9716 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9717 * have more bits than L1 expected.
9718 */
9719 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9720 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9721
9722 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9723 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9724
9725 /* shadow page tables on either EPT or shadow page tables */
9726 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9727 kvm_mmu_reset_context(vcpu);
9728
feaf0c7d
GN
9729 if (!enable_ept)
9730 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9731
3633cfc3
NHE
9732 /*
9733 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9734 */
9735 if (enable_ept) {
9736 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9737 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9738 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9739 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9740 }
9741
fe3ef05c
NHE
9742 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9743 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9744}
9745
cd232ad0
NHE
9746/*
9747 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9748 * for running an L2 nested guest.
9749 */
9750static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9751{
9752 struct vmcs12 *vmcs12;
9753 struct vcpu_vmx *vmx = to_vmx(vcpu);
9754 int cpu;
9755 struct loaded_vmcs *vmcs02;
384bb783 9756 bool ia32e;
ff651cb6 9757 u32 msr_entry_idx;
cd232ad0
NHE
9758
9759 if (!nested_vmx_check_permission(vcpu) ||
9760 !nested_vmx_check_vmcs12(vcpu))
9761 return 1;
9762
9763 skip_emulated_instruction(vcpu);
9764 vmcs12 = get_vmcs12(vcpu);
9765
012f83cb
AG
9766 if (enable_shadow_vmcs)
9767 copy_shadow_to_vmcs12(vmx);
9768
7c177938
NHE
9769 /*
9770 * The nested entry process starts with enforcing various prerequisites
9771 * on vmcs12 as required by the Intel SDM, and act appropriately when
9772 * they fail: As the SDM explains, some conditions should cause the
9773 * instruction to fail, while others will cause the instruction to seem
9774 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9775 * To speed up the normal (success) code path, we should avoid checking
9776 * for misconfigurations which will anyway be caught by the processor
9777 * when using the merged vmcs02.
9778 */
9779 if (vmcs12->launch_state == launch) {
9780 nested_vmx_failValid(vcpu,
9781 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9782 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9783 return 1;
9784 }
9785
6dfacadd
JK
9786 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9787 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9788 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9789 return 1;
9790 }
9791
3af18d9c 9792 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9793 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9794 return 1;
9795 }
9796
3af18d9c 9797 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9798 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9799 return 1;
9800 }
9801
f2b93280
WV
9802 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9803 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9804 return 1;
9805 }
9806
e9ac033e
EK
9807 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9808 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9809 return 1;
9810 }
9811
7c177938 9812 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9813 vmx->nested.nested_vmx_true_procbased_ctls_low,
9814 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9815 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9816 vmx->nested.nested_vmx_secondary_ctls_low,
9817 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9818 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9819 vmx->nested.nested_vmx_pinbased_ctls_low,
9820 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9821 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9822 vmx->nested.nested_vmx_true_exit_ctls_low,
9823 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9824 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9825 vmx->nested.nested_vmx_true_entry_ctls_low,
9826 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9827 {
9828 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9829 return 1;
9830 }
9831
9832 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9833 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9834 nested_vmx_failValid(vcpu,
9835 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9836 return 1;
9837 }
9838
b9c237bb 9839 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
9840 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9841 nested_vmx_entry_failure(vcpu, vmcs12,
9842 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9843 return 1;
9844 }
9845 if (vmcs12->vmcs_link_pointer != -1ull) {
9846 nested_vmx_entry_failure(vcpu, vmcs12,
9847 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9848 return 1;
9849 }
9850
384bb783 9851 /*
cb0c8cda 9852 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
9853 * are performed on the field for the IA32_EFER MSR:
9854 * - Bits reserved in the IA32_EFER MSR must be 0.
9855 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9856 * the IA-32e mode guest VM-exit control. It must also be identical
9857 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9858 * CR0.PG) is 1.
9859 */
9860 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9861 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9862 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9863 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9864 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9865 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9866 nested_vmx_entry_failure(vcpu, vmcs12,
9867 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9868 return 1;
9869 }
9870 }
9871
9872 /*
9873 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9874 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9875 * the values of the LMA and LME bits in the field must each be that of
9876 * the host address-space size VM-exit control.
9877 */
9878 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9879 ia32e = (vmcs12->vm_exit_controls &
9880 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9881 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9882 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9883 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9884 nested_vmx_entry_failure(vcpu, vmcs12,
9885 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9886 return 1;
9887 }
9888 }
9889
7c177938
NHE
9890 /*
9891 * We're finally done with prerequisite checking, and can start with
9892 * the nested entry.
9893 */
9894
cd232ad0
NHE
9895 vmcs02 = nested_get_current_vmcs02(vmx);
9896 if (!vmcs02)
9897 return -ENOMEM;
9898
9899 enter_guest_mode(vcpu);
9900
9901 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9902
2996fca0
JK
9903 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9904 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9905
cd232ad0
NHE
9906 cpu = get_cpu();
9907 vmx->loaded_vmcs = vmcs02;
9908 vmx_vcpu_put(vcpu);
9909 vmx_vcpu_load(vcpu, cpu);
9910 vcpu->cpu = cpu;
9911 put_cpu();
9912
36c3cc42
JK
9913 vmx_segment_cache_clear(vmx);
9914
cd232ad0
NHE
9915 prepare_vmcs02(vcpu, vmcs12);
9916
ff651cb6
WV
9917 msr_entry_idx = nested_vmx_load_msr(vcpu,
9918 vmcs12->vm_entry_msr_load_addr,
9919 vmcs12->vm_entry_msr_load_count);
9920 if (msr_entry_idx) {
9921 leave_guest_mode(vcpu);
9922 vmx_load_vmcs01(vcpu);
9923 nested_vmx_entry_failure(vcpu, vmcs12,
9924 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9925 return 1;
9926 }
9927
9928 vmcs12->launch_state = 1;
9929
6dfacadd 9930 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 9931 return kvm_vcpu_halt(vcpu);
6dfacadd 9932
7af40ad3
JK
9933 vmx->nested.nested_run_pending = 1;
9934
cd232ad0
NHE
9935 /*
9936 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9937 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9938 * returned as far as L1 is concerned. It will only return (and set
9939 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9940 */
9941 return 1;
9942}
9943
4704d0be
NHE
9944/*
9945 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9946 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9947 * This function returns the new value we should put in vmcs12.guest_cr0.
9948 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9949 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9950 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9951 * didn't trap the bit, because if L1 did, so would L0).
9952 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9953 * been modified by L2, and L1 knows it. So just leave the old value of
9954 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9955 * isn't relevant, because if L0 traps this bit it can set it to anything.
9956 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9957 * changed these bits, and therefore they need to be updated, but L0
9958 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9959 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9960 */
9961static inline unsigned long
9962vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9963{
9964 return
9965 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9966 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9967 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9968 vcpu->arch.cr0_guest_owned_bits));
9969}
9970
9971static inline unsigned long
9972vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9973{
9974 return
9975 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9976 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9977 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9978 vcpu->arch.cr4_guest_owned_bits));
9979}
9980
5f3d5799
JK
9981static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9982 struct vmcs12 *vmcs12)
9983{
9984 u32 idt_vectoring;
9985 unsigned int nr;
9986
851eb667 9987 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
9988 nr = vcpu->arch.exception.nr;
9989 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9990
9991 if (kvm_exception_is_soft(nr)) {
9992 vmcs12->vm_exit_instruction_len =
9993 vcpu->arch.event_exit_inst_len;
9994 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9995 } else
9996 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9997
9998 if (vcpu->arch.exception.has_error_code) {
9999 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10000 vmcs12->idt_vectoring_error_code =
10001 vcpu->arch.exception.error_code;
10002 }
10003
10004 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10005 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10006 vmcs12->idt_vectoring_info_field =
10007 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10008 } else if (vcpu->arch.interrupt.pending) {
10009 nr = vcpu->arch.interrupt.nr;
10010 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10011
10012 if (vcpu->arch.interrupt.soft) {
10013 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10014 vmcs12->vm_entry_instruction_len =
10015 vcpu->arch.event_exit_inst_len;
10016 } else
10017 idt_vectoring |= INTR_TYPE_EXT_INTR;
10018
10019 vmcs12->idt_vectoring_info_field = idt_vectoring;
10020 }
10021}
10022
b6b8a145
JK
10023static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10024{
10025 struct vcpu_vmx *vmx = to_vmx(vcpu);
10026
f4124500
JK
10027 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10028 vmx->nested.preemption_timer_expired) {
10029 if (vmx->nested.nested_run_pending)
10030 return -EBUSY;
10031 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10032 return 0;
10033 }
10034
b6b8a145 10035 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10036 if (vmx->nested.nested_run_pending ||
10037 vcpu->arch.interrupt.pending)
b6b8a145
JK
10038 return -EBUSY;
10039 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10040 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10041 INTR_INFO_VALID_MASK, 0);
10042 /*
10043 * The NMI-triggered VM exit counts as injection:
10044 * clear this one and block further NMIs.
10045 */
10046 vcpu->arch.nmi_pending = 0;
10047 vmx_set_nmi_mask(vcpu, true);
10048 return 0;
10049 }
10050
10051 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10052 nested_exit_on_intr(vcpu)) {
10053 if (vmx->nested.nested_run_pending)
10054 return -EBUSY;
10055 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10056 return 0;
b6b8a145
JK
10057 }
10058
705699a1 10059 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10060}
10061
f4124500
JK
10062static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10063{
10064 ktime_t remaining =
10065 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10066 u64 value;
10067
10068 if (ktime_to_ns(remaining) <= 0)
10069 return 0;
10070
10071 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10072 do_div(value, 1000000);
10073 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10074}
10075
4704d0be
NHE
10076/*
10077 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10078 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10079 * and this function updates it to reflect the changes to the guest state while
10080 * L2 was running (and perhaps made some exits which were handled directly by L0
10081 * without going back to L1), and to reflect the exit reason.
10082 * Note that we do not have to copy here all VMCS fields, just those that
10083 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10084 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10085 * which already writes to vmcs12 directly.
10086 */
533558bc
JK
10087static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10088 u32 exit_reason, u32 exit_intr_info,
10089 unsigned long exit_qualification)
4704d0be
NHE
10090{
10091 /* update guest state fields: */
10092 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10093 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10094
4704d0be
NHE
10095 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10096 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10097 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10098
10099 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10100 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10101 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10102 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10103 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10104 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10105 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10106 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10107 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10108 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10109 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10110 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10111 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10112 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10113 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10114 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10115 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10116 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10117 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10118 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10119 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10120 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10121 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10122 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10123 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10124 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10125 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10126 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10127 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10128 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10129 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10130 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10131 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10132 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10133 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10134 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10135
4704d0be
NHE
10136 vmcs12->guest_interruptibility_info =
10137 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10138 vmcs12->guest_pending_dbg_exceptions =
10139 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10140 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10141 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10142 else
10143 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10144
f4124500
JK
10145 if (nested_cpu_has_preemption_timer(vmcs12)) {
10146 if (vmcs12->vm_exit_controls &
10147 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10148 vmcs12->vmx_preemption_timer_value =
10149 vmx_get_preemption_timer_value(vcpu);
10150 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10151 }
7854cbca 10152
3633cfc3
NHE
10153 /*
10154 * In some cases (usually, nested EPT), L2 is allowed to change its
10155 * own CR3 without exiting. If it has changed it, we must keep it.
10156 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10157 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10158 *
10159 * Additionally, restore L2's PDPTR to vmcs12.
10160 */
10161 if (enable_ept) {
f3531054 10162 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10163 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10164 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10165 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10166 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10167 }
10168
608406e2
WV
10169 if (nested_cpu_has_vid(vmcs12))
10170 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10171
c18911a2
JK
10172 vmcs12->vm_entry_controls =
10173 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10174 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10175
2996fca0
JK
10176 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10177 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10178 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10179 }
10180
4704d0be
NHE
10181 /* TODO: These cannot have changed unless we have MSR bitmaps and
10182 * the relevant bit asks not to trap the change */
b8c07d55 10183 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10184 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10185 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10186 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10187 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10188 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10189 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
36be0b9d
PB
10190 if (vmx_mpx_supported())
10191 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10192 if (nested_cpu_has_xsaves(vmcs12))
10193 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10194
10195 /* update exit information fields: */
10196
533558bc
JK
10197 vmcs12->vm_exit_reason = exit_reason;
10198 vmcs12->exit_qualification = exit_qualification;
4704d0be 10199
533558bc 10200 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10201 if ((vmcs12->vm_exit_intr_info &
10202 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10203 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10204 vmcs12->vm_exit_intr_error_code =
10205 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10206 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10207 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10208 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10209
5f3d5799
JK
10210 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10211 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10212 * instead of reading the real value. */
4704d0be 10213 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10214
10215 /*
10216 * Transfer the event that L0 or L1 may wanted to inject into
10217 * L2 to IDT_VECTORING_INFO_FIELD.
10218 */
10219 vmcs12_save_pending_event(vcpu, vmcs12);
10220 }
10221
10222 /*
10223 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10224 * preserved above and would only end up incorrectly in L1.
10225 */
10226 vcpu->arch.nmi_injected = false;
10227 kvm_clear_exception_queue(vcpu);
10228 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10229}
10230
10231/*
10232 * A part of what we need to when the nested L2 guest exits and we want to
10233 * run its L1 parent, is to reset L1's guest state to the host state specified
10234 * in vmcs12.
10235 * This function is to be called not only on normal nested exit, but also on
10236 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10237 * Failures During or After Loading Guest State").
10238 * This function should be called when the active VMCS is L1's (vmcs01).
10239 */
733568f9
JK
10240static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10241 struct vmcs12 *vmcs12)
4704d0be 10242{
21feb4eb
ACL
10243 struct kvm_segment seg;
10244
4704d0be
NHE
10245 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10246 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10247 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10248 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10249 else
10250 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10251 vmx_set_efer(vcpu, vcpu->arch.efer);
10252
10253 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10254 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10255 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10256 /*
10257 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10258 * actually changed, because it depends on the current state of
10259 * fpu_active (which may have changed).
10260 * Note that vmx_set_cr0 refers to efer set above.
10261 */
9e3e4dbf 10262 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10263 /*
10264 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10265 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10266 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10267 */
10268 update_exception_bitmap(vcpu);
10269 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10270 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10271
10272 /*
10273 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10274 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10275 */
10276 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10277 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10278
29bf08f1 10279 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10280
4704d0be
NHE
10281 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10282 kvm_mmu_reset_context(vcpu);
10283
feaf0c7d
GN
10284 if (!enable_ept)
10285 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10286
4704d0be
NHE
10287 if (enable_vpid) {
10288 /*
10289 * Trivially support vpid by letting L2s share their parent
10290 * L1's vpid. TODO: move to a more elaborate solution, giving
10291 * each L2 its own vpid and exposing the vpid feature to L1.
10292 */
10293 vmx_flush_tlb(vcpu);
10294 }
10295
10296
10297 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10298 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10299 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10300 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10301 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10302
36be0b9d
PB
10303 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10304 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10305 vmcs_write64(GUEST_BNDCFGS, 0);
10306
44811c02 10307 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10308 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10309 vcpu->arch.pat = vmcs12->host_ia32_pat;
10310 }
4704d0be
NHE
10311 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10312 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10313 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10314
21feb4eb
ACL
10315 /* Set L1 segment info according to Intel SDM
10316 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10317 seg = (struct kvm_segment) {
10318 .base = 0,
10319 .limit = 0xFFFFFFFF,
10320 .selector = vmcs12->host_cs_selector,
10321 .type = 11,
10322 .present = 1,
10323 .s = 1,
10324 .g = 1
10325 };
10326 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10327 seg.l = 1;
10328 else
10329 seg.db = 1;
10330 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10331 seg = (struct kvm_segment) {
10332 .base = 0,
10333 .limit = 0xFFFFFFFF,
10334 .type = 3,
10335 .present = 1,
10336 .s = 1,
10337 .db = 1,
10338 .g = 1
10339 };
10340 seg.selector = vmcs12->host_ds_selector;
10341 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10342 seg.selector = vmcs12->host_es_selector;
10343 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10344 seg.selector = vmcs12->host_ss_selector;
10345 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10346 seg.selector = vmcs12->host_fs_selector;
10347 seg.base = vmcs12->host_fs_base;
10348 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10349 seg.selector = vmcs12->host_gs_selector;
10350 seg.base = vmcs12->host_gs_base;
10351 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10352 seg = (struct kvm_segment) {
205befd9 10353 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10354 .limit = 0x67,
10355 .selector = vmcs12->host_tr_selector,
10356 .type = 11,
10357 .present = 1
10358 };
10359 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10360
503cd0c5
JK
10361 kvm_set_dr(vcpu, 7, 0x400);
10362 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10363
3af18d9c
WV
10364 if (cpu_has_vmx_msr_bitmap())
10365 vmx_set_msr_bitmap(vcpu);
10366
ff651cb6
WV
10367 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10368 vmcs12->vm_exit_msr_load_count))
10369 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10370}
10371
10372/*
10373 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10374 * and modify vmcs12 to make it see what it would expect to see there if
10375 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10376 */
533558bc
JK
10377static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10378 u32 exit_intr_info,
10379 unsigned long exit_qualification)
4704d0be
NHE
10380{
10381 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10382 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10383
5f3d5799
JK
10384 /* trying to cancel vmlaunch/vmresume is a bug */
10385 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10386
4704d0be 10387 leave_guest_mode(vcpu);
533558bc
JK
10388 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10389 exit_qualification);
4704d0be 10390
ff651cb6
WV
10391 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10392 vmcs12->vm_exit_msr_store_count))
10393 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10394
f3380ca5
WL
10395 vmx_load_vmcs01(vcpu);
10396
77b0f5d6
BD
10397 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10398 && nested_exit_intr_ack_set(vcpu)) {
10399 int irq = kvm_cpu_get_interrupt(vcpu);
10400 WARN_ON(irq < 0);
10401 vmcs12->vm_exit_intr_info = irq |
10402 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10403 }
10404
542060ea
JK
10405 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10406 vmcs12->exit_qualification,
10407 vmcs12->idt_vectoring_info_field,
10408 vmcs12->vm_exit_intr_info,
10409 vmcs12->vm_exit_intr_error_code,
10410 KVM_ISA_VMX);
4704d0be 10411
2961e876
GN
10412 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10413 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10414 vmx_segment_cache_clear(vmx);
10415
4704d0be
NHE
10416 /* if no vmcs02 cache requested, remove the one we used */
10417 if (VMCS02_POOL_SIZE == 0)
10418 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10419
10420 load_vmcs12_host_state(vcpu, vmcs12);
10421
27fc51b2 10422 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10423 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10424
10425 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10426 vmx->host_rsp = 0;
10427
10428 /* Unpin physical memory we referred to in vmcs02 */
10429 if (vmx->nested.apic_access_page) {
10430 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10431 vmx->nested.apic_access_page = NULL;
4704d0be 10432 }
a7c0b07d
WL
10433 if (vmx->nested.virtual_apic_page) {
10434 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10435 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10436 }
705699a1
WV
10437 if (vmx->nested.pi_desc_page) {
10438 kunmap(vmx->nested.pi_desc_page);
10439 nested_release_page(vmx->nested.pi_desc_page);
10440 vmx->nested.pi_desc_page = NULL;
10441 vmx->nested.pi_desc = NULL;
10442 }
4704d0be 10443
38b99173
TC
10444 /*
10445 * We are now running in L2, mmu_notifier will force to reload the
10446 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10447 */
10448 kvm_vcpu_reload_apic_access_page(vcpu);
10449
4704d0be
NHE
10450 /*
10451 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10452 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10453 * success or failure flag accordingly.
10454 */
10455 if (unlikely(vmx->fail)) {
10456 vmx->fail = 0;
10457 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10458 } else
10459 nested_vmx_succeed(vcpu);
012f83cb
AG
10460 if (enable_shadow_vmcs)
10461 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10462
10463 /* in case we halted in L2 */
10464 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10465}
10466
42124925
JK
10467/*
10468 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10469 */
10470static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10471{
10472 if (is_guest_mode(vcpu))
533558bc 10473 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10474 free_nested(to_vmx(vcpu));
10475}
10476
7c177938
NHE
10477/*
10478 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10479 * 23.7 "VM-entry failures during or after loading guest state" (this also
10480 * lists the acceptable exit-reason and exit-qualification parameters).
10481 * It should only be called before L2 actually succeeded to run, and when
10482 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10483 */
10484static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10485 struct vmcs12 *vmcs12,
10486 u32 reason, unsigned long qualification)
10487{
10488 load_vmcs12_host_state(vcpu, vmcs12);
10489 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10490 vmcs12->exit_qualification = qualification;
10491 nested_vmx_succeed(vcpu);
012f83cb
AG
10492 if (enable_shadow_vmcs)
10493 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10494}
10495
8a76d7f2
JR
10496static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10497 struct x86_instruction_info *info,
10498 enum x86_intercept_stage stage)
10499{
10500 return X86EMUL_CONTINUE;
10501}
10502
48d89b92 10503static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10504{
b4a2d31d
RK
10505 if (ple_gap)
10506 shrink_ple_window(vcpu);
ae97a3b8
RK
10507}
10508
843e4330
KH
10509static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10510 struct kvm_memory_slot *slot)
10511{
10512 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10513 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10514}
10515
10516static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10517 struct kvm_memory_slot *slot)
10518{
10519 kvm_mmu_slot_set_dirty(kvm, slot);
10520}
10521
10522static void vmx_flush_log_dirty(struct kvm *kvm)
10523{
10524 kvm_flush_pml_buffers(kvm);
10525}
10526
10527static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10528 struct kvm_memory_slot *memslot,
10529 gfn_t offset, unsigned long mask)
10530{
10531 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10532}
10533
bf9f6ac8
FW
10534/*
10535 * This routine does the following things for vCPU which is going
10536 * to be blocked if VT-d PI is enabled.
10537 * - Store the vCPU to the wakeup list, so when interrupts happen
10538 * we can find the right vCPU to wake up.
10539 * - Change the Posted-interrupt descriptor as below:
10540 * 'NDST' <-- vcpu->pre_pcpu
10541 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10542 * - If 'ON' is set during this process, which means at least one
10543 * interrupt is posted for this vCPU, we cannot block it, in
10544 * this case, return 1, otherwise, return 0.
10545 *
10546 */
10547static int vmx_pre_block(struct kvm_vcpu *vcpu)
10548{
10549 unsigned long flags;
10550 unsigned int dest;
10551 struct pi_desc old, new;
10552 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10553
10554 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10555 !irq_remapping_cap(IRQ_POSTING_CAP))
10556 return 0;
10557
10558 vcpu->pre_pcpu = vcpu->cpu;
10559 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10560 vcpu->pre_pcpu), flags);
10561 list_add_tail(&vcpu->blocked_vcpu_list,
10562 &per_cpu(blocked_vcpu_on_cpu,
10563 vcpu->pre_pcpu));
10564 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10565 vcpu->pre_pcpu), flags);
10566
10567 do {
10568 old.control = new.control = pi_desc->control;
10569
10570 /*
10571 * We should not block the vCPU if
10572 * an interrupt is posted for it.
10573 */
10574 if (pi_test_on(pi_desc) == 1) {
10575 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10576 vcpu->pre_pcpu), flags);
10577 list_del(&vcpu->blocked_vcpu_list);
10578 spin_unlock_irqrestore(
10579 &per_cpu(blocked_vcpu_on_cpu_lock,
10580 vcpu->pre_pcpu), flags);
10581 vcpu->pre_pcpu = -1;
10582
10583 return 1;
10584 }
10585
10586 WARN((pi_desc->sn == 1),
10587 "Warning: SN field of posted-interrupts "
10588 "is set before blocking\n");
10589
10590 /*
10591 * Since vCPU can be preempted during this process,
10592 * vcpu->cpu could be different with pre_pcpu, we
10593 * need to set pre_pcpu as the destination of wakeup
10594 * notification event, then we can find the right vCPU
10595 * to wakeup in wakeup handler if interrupts happen
10596 * when the vCPU is in blocked state.
10597 */
10598 dest = cpu_physical_id(vcpu->pre_pcpu);
10599
10600 if (x2apic_enabled())
10601 new.ndst = dest;
10602 else
10603 new.ndst = (dest << 8) & 0xFF00;
10604
10605 /* set 'NV' to 'wakeup vector' */
10606 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10607 } while (cmpxchg(&pi_desc->control, old.control,
10608 new.control) != old.control);
10609
10610 return 0;
10611}
10612
10613static void vmx_post_block(struct kvm_vcpu *vcpu)
10614{
10615 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10616 struct pi_desc old, new;
10617 unsigned int dest;
10618 unsigned long flags;
10619
10620 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10621 !irq_remapping_cap(IRQ_POSTING_CAP))
10622 return;
10623
10624 do {
10625 old.control = new.control = pi_desc->control;
10626
10627 dest = cpu_physical_id(vcpu->cpu);
10628
10629 if (x2apic_enabled())
10630 new.ndst = dest;
10631 else
10632 new.ndst = (dest << 8) & 0xFF00;
10633
10634 /* Allow posting non-urgent interrupts */
10635 new.sn = 0;
10636
10637 /* set 'NV' to 'notification vector' */
10638 new.nv = POSTED_INTR_VECTOR;
10639 } while (cmpxchg(&pi_desc->control, old.control,
10640 new.control) != old.control);
10641
10642 if(vcpu->pre_pcpu != -1) {
10643 spin_lock_irqsave(
10644 &per_cpu(blocked_vcpu_on_cpu_lock,
10645 vcpu->pre_pcpu), flags);
10646 list_del(&vcpu->blocked_vcpu_list);
10647 spin_unlock_irqrestore(
10648 &per_cpu(blocked_vcpu_on_cpu_lock,
10649 vcpu->pre_pcpu), flags);
10650 vcpu->pre_pcpu = -1;
10651 }
10652}
10653
efc64404
FW
10654/*
10655 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10656 *
10657 * @kvm: kvm
10658 * @host_irq: host irq of the interrupt
10659 * @guest_irq: gsi of the interrupt
10660 * @set: set or unset PI
10661 * returns 0 on success, < 0 on failure
10662 */
10663static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10664 uint32_t guest_irq, bool set)
10665{
10666 struct kvm_kernel_irq_routing_entry *e;
10667 struct kvm_irq_routing_table *irq_rt;
10668 struct kvm_lapic_irq irq;
10669 struct kvm_vcpu *vcpu;
10670 struct vcpu_data vcpu_info;
10671 int idx, ret = -EINVAL;
10672
10673 if (!kvm_arch_has_assigned_device(kvm) ||
10674 !irq_remapping_cap(IRQ_POSTING_CAP))
10675 return 0;
10676
10677 idx = srcu_read_lock(&kvm->irq_srcu);
10678 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10679 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10680
10681 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10682 if (e->type != KVM_IRQ_ROUTING_MSI)
10683 continue;
10684 /*
10685 * VT-d PI cannot support posting multicast/broadcast
10686 * interrupts to a vCPU, we still use interrupt remapping
10687 * for these kind of interrupts.
10688 *
10689 * For lowest-priority interrupts, we only support
10690 * those with single CPU as the destination, e.g. user
10691 * configures the interrupts via /proc/irq or uses
10692 * irqbalance to make the interrupts single-CPU.
10693 *
10694 * We will support full lowest-priority interrupt later.
10695 */
10696
10697 kvm_set_msi_irq(e, &irq);
10698 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
10699 continue;
10700
10701 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10702 vcpu_info.vector = irq.vector;
10703
10704 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
10705 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10706
10707 if (set)
10708 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10709 else {
10710 /* suppress notification event before unposting */
10711 pi_set_sn(vcpu_to_pi_desc(vcpu));
10712 ret = irq_set_vcpu_affinity(host_irq, NULL);
10713 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10714 }
10715
10716 if (ret < 0) {
10717 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10718 __func__);
10719 goto out;
10720 }
10721 }
10722
10723 ret = 0;
10724out:
10725 srcu_read_unlock(&kvm->irq_srcu, idx);
10726 return ret;
10727}
10728
cbdd1bea 10729static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10730 .cpu_has_kvm_support = cpu_has_kvm_support,
10731 .disabled_by_bios = vmx_disabled_by_bios,
10732 .hardware_setup = hardware_setup,
10733 .hardware_unsetup = hardware_unsetup,
002c7f7c 10734 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10735 .hardware_enable = hardware_enable,
10736 .hardware_disable = hardware_disable,
04547156 10737 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 10738 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
10739
10740 .vcpu_create = vmx_create_vcpu,
10741 .vcpu_free = vmx_free_vcpu,
04d2cc77 10742 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10743
04d2cc77 10744 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10745 .vcpu_load = vmx_vcpu_load,
10746 .vcpu_put = vmx_vcpu_put,
10747
a96036b8 10748 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10749 .get_msr = vmx_get_msr,
10750 .set_msr = vmx_set_msr,
10751 .get_segment_base = vmx_get_segment_base,
10752 .get_segment = vmx_get_segment,
10753 .set_segment = vmx_set_segment,
2e4d2653 10754 .get_cpl = vmx_get_cpl,
6aa8b732 10755 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10756 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10757 .decache_cr3 = vmx_decache_cr3,
25c4c276 10758 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10759 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10760 .set_cr3 = vmx_set_cr3,
10761 .set_cr4 = vmx_set_cr4,
6aa8b732 10762 .set_efer = vmx_set_efer,
6aa8b732
AK
10763 .get_idt = vmx_get_idt,
10764 .set_idt = vmx_set_idt,
10765 .get_gdt = vmx_get_gdt,
10766 .set_gdt = vmx_set_gdt,
73aaf249
JK
10767 .get_dr6 = vmx_get_dr6,
10768 .set_dr6 = vmx_set_dr6,
020df079 10769 .set_dr7 = vmx_set_dr7,
81908bf4 10770 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10771 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10772 .get_rflags = vmx_get_rflags,
10773 .set_rflags = vmx_set_rflags,
0fdd74f7 10774 .fpu_activate = vmx_fpu_activate,
02daab21 10775 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10776
10777 .tlb_flush = vmx_flush_tlb,
6aa8b732 10778
6aa8b732 10779 .run = vmx_vcpu_run,
6062d012 10780 .handle_exit = vmx_handle_exit,
6aa8b732 10781 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10782 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10783 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10784 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10785 .set_irq = vmx_inject_irq,
95ba8273 10786 .set_nmi = vmx_inject_nmi,
298101da 10787 .queue_exception = vmx_queue_exception,
b463a6f7 10788 .cancel_injection = vmx_cancel_injection,
78646121 10789 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10790 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10791 .get_nmi_mask = vmx_get_nmi_mask,
10792 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10793 .enable_nmi_window = enable_nmi_window,
10794 .enable_irq_window = enable_irq_window,
10795 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10796 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10797 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
10798 .get_enable_apicv = vmx_get_enable_apicv,
10799 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c
YZ
10800 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10801 .hwapic_irr_update = vmx_hwapic_irr_update,
10802 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10803 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10804 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10805
cbc94022 10806 .set_tss_addr = vmx_set_tss_addr,
67253af5 10807 .get_tdp_level = get_ept_level,
4b12f0de 10808 .get_mt_mask = vmx_get_mt_mask,
229456fc 10809
586f9607 10810 .get_exit_info = vmx_get_exit_info,
586f9607 10811
17cc3935 10812 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10813
10814 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10815
10816 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10817 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10818
10819 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10820
10821 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 10822
ba904635 10823 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 10824 .write_tsc_offset = vmx_write_tsc_offset,
58ea6767 10825 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
d5c1785d 10826 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
10827
10828 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
10829
10830 .check_intercept = vmx_check_intercept,
a547c6db 10831 .handle_external_intr = vmx_handle_external_intr,
da8999d3 10832 .mpx_supported = vmx_mpx_supported,
55412b2e 10833 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
10834
10835 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
10836
10837 .sched_in = vmx_sched_in,
843e4330
KH
10838
10839 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10840 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10841 .flush_log_dirty = vmx_flush_log_dirty,
10842 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 10843
bf9f6ac8
FW
10844 .pre_block = vmx_pre_block,
10845 .post_block = vmx_post_block,
10846
25462f7f 10847 .pmu_ops = &intel_pmu_ops,
efc64404
FW
10848
10849 .update_pi_irte = vmx_update_pi_irte,
6aa8b732
AK
10850};
10851
10852static int __init vmx_init(void)
10853{
34a1cd60
TC
10854 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10855 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 10856 if (r)
34a1cd60 10857 return r;
25c5f225 10858
2965faa5 10859#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
10860 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10861 crash_vmclear_local_loaded_vmcss);
10862#endif
10863
fdef3ad1 10864 return 0;
6aa8b732
AK
10865}
10866
10867static void __exit vmx_exit(void)
10868{
2965faa5 10869#ifdef CONFIG_KEXEC_CORE
3b63a43f 10870 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
10871 synchronize_rcu();
10872#endif
10873
cb498ea2 10874 kvm_exit();
6aa8b732
AK
10875}
10876
10877module_init(vmx_init)
10878module_exit(vmx_exit)