]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
perf/core: Fix perf_event_open() vs. execve() race
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
5037878e
GN
113#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
115#define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
117#define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 120
cdc0e244
AK
121#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
78ac8b47
AK
124#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
f4124500
JK
126#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
4b8d54f9
ZE
128/*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 132 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
b4a2d31d
RK
139#define KVM_VMX_DEFAULT_PLE_GAP 128
140#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
4b8d54f9
ZE
146static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147module_param(ple_gap, int, S_IRUGO);
148
149static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150module_param(ple_window, int, S_IRUGO);
151
b4a2d31d
RK
152/* Default doubles per-vcpu window every exit. */
153static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154module_param(ple_window_grow, int, S_IRUGO);
155
156/* Default resets per-vcpu window every exit to ple_window. */
157static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158module_param(ple_window_shrink, int, S_IRUGO);
159
160/* Default is to compute the maximum so we can never overflow. */
161static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163module_param(ple_window_max, int, S_IRUGO);
164
83287ea4
AK
165extern const ulong vmx_return;
166
8bf00a52 167#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 168#define VMCS02_POOL_SIZE 1
61d2ef2c 169
a2fa3e9f
GH
170struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174};
175
d462b819
NHE
176/*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186};
187
26bb0981
AK
188struct shared_msr_entry {
189 unsigned index;
190 u64 data;
d5696725 191 u64 mask;
26bb0981
AK
192};
193
a9d30f33
NHE
194/*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
22bd0358 207typedef u64 natural_width;
a9d30f33
NHE
208struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
22bd0358 214
27d6c865
NHE
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
22bd0358
NHE
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
705699a1 227 u64 posted_intr_desc_addr;
22bd0358 228 u64 ept_pointer;
608406e2
WV
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
81dc01f7 233 u64 xss_exit_bitmap;
22bd0358
NHE
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
36be0b9d 244 u64 guest_bndcfgs;
22bd0358
NHE
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
0238ea91
JK
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
22bd0358 346 u16 virtual_processor_id;
705699a1 347 u16 posted_intr_nv;
22bd0358
NHE
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
608406e2 356 u16 guest_intr_status;
22bd0358
NHE
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
a9d30f33
NHE
364};
365
366/*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371#define VMCS12_REVISION 0x11e57ed0
372
373/*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378#define VMCS12_SIZE 0x1000
379
ff2f6fe9
NHE
380/* Used to remember the last vmcs02 used for some recently used vmcs12s */
381struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385};
386
ec378aee
NHE
387/*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
3573e22c 394 gpa_t vmxon_ptr;
a9d30f33
NHE
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
8de48833 401 struct vmcs *current_shadow_vmcs;
012f83cb
AG
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
ff2f6fe9
NHE
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
fe3ef05c 411 u64 vmcs01_tsc_offset;
644d711a
NHE
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
fe3ef05c
NHE
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
a7c0b07d 419 struct page *virtual_apic_page;
705699a1
WV
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
b3897a49 424 u64 msr_ia32_feature_control;
f4124500
JK
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
2996fca0
JK
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
b9c237bb 431
5c614b35
WL
432 u16 vpid02;
433 u16 last_vpid;
434
b9c237bb
WV
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
99b83ac8 451 u32 nested_vmx_vpid_caps;
ec378aee
NHE
452};
453
01e439be 454#define POSTED_INTR_ON 0
ebbfc765
FW
455#define POSTED_INTR_SN 1
456
01e439be
YZ
457/* Posted-Interrupt Descriptor */
458struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
01e439be
YZ
478} __aligned(64);
479
a20ed54d
YZ
480static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481{
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484}
485
486static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487{
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490}
491
492static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493{
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495}
496
ebbfc765
FW
497static inline void pi_clear_sn(struct pi_desc *pi_desc)
498{
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501}
502
503static inline void pi_set_sn(struct pi_desc *pi_desc)
504{
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507}
508
509static inline int pi_test_on(struct pi_desc *pi_desc)
510{
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513}
514
515static inline int pi_test_sn(struct pi_desc *pi_desc)
516{
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519}
520
a2fa3e9f 521struct vcpu_vmx {
fb3f0f51 522 struct kvm_vcpu vcpu;
313dbd49 523 unsigned long host_rsp;
29bd8a78 524 u8 fail;
9d58b931 525 bool nmi_known_unmasked;
51aa01d1 526 u32 exit_intr_info;
1155f76a 527 u32 idt_vectoring_info;
6de12732 528 ulong rflags;
26bb0981 529 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
530 int nmsrs;
531 int save_nmsrs;
a547c6db 532 unsigned long host_idt_base;
a2fa3e9f 533#ifdef CONFIG_X86_64
44ea2b17
AK
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
a2fa3e9f 536#endif
2961e876
GN
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
d462b819
NHE
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
a2fa3e9f
GH
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
555#ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557#endif
152d3f2f
LV
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
da8999d3 560 u64 msr_host_bndcfgs;
d974baa3 561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 562 } host_state;
9c8cba37 563 struct {
7ffd92c5 564 int vm86_active;
78ac8b47 565 ulong save_rflags;
f5f7b2fe
AK
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
f5f7b2fe 575 } seg[8];
2fb92db1 576 } segment_cache;
2384d2b3 577 int vpid;
04fa4d32 578 bool emulation_required;
3b86cd99
JK
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
a0861c02 584 u32 exit_reason;
4e47c7a6 585
01e439be
YZ
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
ec378aee
NHE
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
a7653ecd
RK
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
843e4330
KH
595
596 /* Support for PML */
597#define PML_ENTITY_NUM 512
598 struct page *pml_pg;
2680d6da
OH
599
600 u64 current_tsc_ratio;
1be0e61c
XG
601
602 bool guest_pkru_valid;
603 u32 guest_pkru;
604 u32 host_pkru;
a2fa3e9f
GH
605};
606
2fb92db1
AK
607enum segment_cache_field {
608 SEG_FIELD_SEL = 0,
609 SEG_FIELD_BASE = 1,
610 SEG_FIELD_LIMIT = 2,
611 SEG_FIELD_AR = 3,
612
613 SEG_FIELD_NR = 4
614};
615
a2fa3e9f
GH
616static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
617{
fb3f0f51 618 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
619}
620
efc64404
FW
621static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
622{
623 return &(to_vmx(vcpu)->pi_desc);
624}
625
22bd0358
NHE
626#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
628#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
629 [number##_HIGH] = VMCS12_OFFSET(name)+4
630
4607c2d7 631
fe2b201b 632static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
633 /*
634 * We do NOT shadow fields that are modified when L0
635 * traps and emulates any vmx instruction (e.g. VMPTRLD,
636 * VMXON...) executed by L1.
637 * For example, VM_INSTRUCTION_ERROR is read
638 * by L1 if a vmx instruction fails (part of the error path).
639 * Note the code assumes this logic. If for some reason
640 * we start shadowing these fields then we need to
641 * force a shadow sync when L0 emulates vmx instructions
642 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643 * by nested_vmx_failValid)
644 */
645 VM_EXIT_REASON,
646 VM_EXIT_INTR_INFO,
647 VM_EXIT_INSTRUCTION_LEN,
648 IDT_VECTORING_INFO_FIELD,
649 IDT_VECTORING_ERROR_CODE,
650 VM_EXIT_INTR_ERROR_CODE,
651 EXIT_QUALIFICATION,
652 GUEST_LINEAR_ADDRESS,
653 GUEST_PHYSICAL_ADDRESS
654};
fe2b201b 655static int max_shadow_read_only_fields =
4607c2d7
AG
656 ARRAY_SIZE(shadow_read_only_fields);
657
fe2b201b 658static unsigned long shadow_read_write_fields[] = {
a7c0b07d 659 TPR_THRESHOLD,
4607c2d7
AG
660 GUEST_RIP,
661 GUEST_RSP,
662 GUEST_CR0,
663 GUEST_CR3,
664 GUEST_CR4,
665 GUEST_INTERRUPTIBILITY_INFO,
666 GUEST_RFLAGS,
667 GUEST_CS_SELECTOR,
668 GUEST_CS_AR_BYTES,
669 GUEST_CS_LIMIT,
670 GUEST_CS_BASE,
671 GUEST_ES_BASE,
36be0b9d 672 GUEST_BNDCFGS,
4607c2d7
AG
673 CR0_GUEST_HOST_MASK,
674 CR0_READ_SHADOW,
675 CR4_READ_SHADOW,
676 TSC_OFFSET,
677 EXCEPTION_BITMAP,
678 CPU_BASED_VM_EXEC_CONTROL,
679 VM_ENTRY_EXCEPTION_ERROR_CODE,
680 VM_ENTRY_INTR_INFO_FIELD,
681 VM_ENTRY_INSTRUCTION_LEN,
682 VM_ENTRY_EXCEPTION_ERROR_CODE,
683 HOST_FS_BASE,
684 HOST_GS_BASE,
685 HOST_FS_SELECTOR,
686 HOST_GS_SELECTOR
687};
fe2b201b 688static int max_shadow_read_write_fields =
4607c2d7
AG
689 ARRAY_SIZE(shadow_read_write_fields);
690
772e0318 691static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 692 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 693 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
694 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
695 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
696 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
697 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
698 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
699 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
700 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
701 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 702 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
703 FIELD(HOST_ES_SELECTOR, host_es_selector),
704 FIELD(HOST_CS_SELECTOR, host_cs_selector),
705 FIELD(HOST_SS_SELECTOR, host_ss_selector),
706 FIELD(HOST_DS_SELECTOR, host_ds_selector),
707 FIELD(HOST_FS_SELECTOR, host_fs_selector),
708 FIELD(HOST_GS_SELECTOR, host_gs_selector),
709 FIELD(HOST_TR_SELECTOR, host_tr_selector),
710 FIELD64(IO_BITMAP_A, io_bitmap_a),
711 FIELD64(IO_BITMAP_B, io_bitmap_b),
712 FIELD64(MSR_BITMAP, msr_bitmap),
713 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
714 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
715 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
716 FIELD64(TSC_OFFSET, tsc_offset),
717 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
718 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 719 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 720 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
721 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
722 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
723 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
724 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 725 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
726 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
727 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
728 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
729 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
730 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
731 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
732 FIELD64(GUEST_PDPTR0, guest_pdptr0),
733 FIELD64(GUEST_PDPTR1, guest_pdptr1),
734 FIELD64(GUEST_PDPTR2, guest_pdptr2),
735 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 736 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
737 FIELD64(HOST_IA32_PAT, host_ia32_pat),
738 FIELD64(HOST_IA32_EFER, host_ia32_efer),
739 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
740 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
741 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
742 FIELD(EXCEPTION_BITMAP, exception_bitmap),
743 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
744 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
745 FIELD(CR3_TARGET_COUNT, cr3_target_count),
746 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
747 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
748 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
749 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
750 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
751 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
752 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
753 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
754 FIELD(TPR_THRESHOLD, tpr_threshold),
755 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
756 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
757 FIELD(VM_EXIT_REASON, vm_exit_reason),
758 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
759 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
760 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
761 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
762 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
763 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
764 FIELD(GUEST_ES_LIMIT, guest_es_limit),
765 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
766 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
767 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
768 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
769 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
770 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
771 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
772 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
773 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
774 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
775 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
776 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
777 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
778 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
779 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
780 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
781 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
782 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
783 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
784 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
785 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 786 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
787 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
788 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
789 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
790 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
791 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
792 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
793 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
794 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
795 FIELD(EXIT_QUALIFICATION, exit_qualification),
796 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
797 FIELD(GUEST_CR0, guest_cr0),
798 FIELD(GUEST_CR3, guest_cr3),
799 FIELD(GUEST_CR4, guest_cr4),
800 FIELD(GUEST_ES_BASE, guest_es_base),
801 FIELD(GUEST_CS_BASE, guest_cs_base),
802 FIELD(GUEST_SS_BASE, guest_ss_base),
803 FIELD(GUEST_DS_BASE, guest_ds_base),
804 FIELD(GUEST_FS_BASE, guest_fs_base),
805 FIELD(GUEST_GS_BASE, guest_gs_base),
806 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
807 FIELD(GUEST_TR_BASE, guest_tr_base),
808 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
809 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
810 FIELD(GUEST_DR7, guest_dr7),
811 FIELD(GUEST_RSP, guest_rsp),
812 FIELD(GUEST_RIP, guest_rip),
813 FIELD(GUEST_RFLAGS, guest_rflags),
814 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
815 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
816 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
817 FIELD(HOST_CR0, host_cr0),
818 FIELD(HOST_CR3, host_cr3),
819 FIELD(HOST_CR4, host_cr4),
820 FIELD(HOST_FS_BASE, host_fs_base),
821 FIELD(HOST_GS_BASE, host_gs_base),
822 FIELD(HOST_TR_BASE, host_tr_base),
823 FIELD(HOST_GDTR_BASE, host_gdtr_base),
824 FIELD(HOST_IDTR_BASE, host_idtr_base),
825 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
826 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
827 FIELD(HOST_RSP, host_rsp),
828 FIELD(HOST_RIP, host_rip),
829};
22bd0358
NHE
830
831static inline short vmcs_field_to_offset(unsigned long field)
832{
a2ae9df7
PB
833 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
834
835 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
836 vmcs_field_to_offset_table[field] == 0)
837 return -ENOENT;
838
22bd0358
NHE
839 return vmcs_field_to_offset_table[field];
840}
841
a9d30f33
NHE
842static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
843{
844 return to_vmx(vcpu)->nested.current_vmcs12;
845}
846
847static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
848{
54bf36aa 849 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 850 if (is_error_page(page))
a9d30f33 851 return NULL;
32cad84f 852
a9d30f33
NHE
853 return page;
854}
855
856static void nested_release_page(struct page *page)
857{
858 kvm_release_page_dirty(page);
859}
860
861static void nested_release_page_clean(struct page *page)
862{
863 kvm_release_page_clean(page);
864}
865
bfd0a56b 866static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 867static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
868static void kvm_cpu_vmxon(u64 addr);
869static void kvm_cpu_vmxoff(void);
f53cd63c 870static bool vmx_xsaves_supported(void);
776e58ea 871static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
872static void vmx_set_segment(struct kvm_vcpu *vcpu,
873 struct kvm_segment *var, int seg);
874static void vmx_get_segment(struct kvm_vcpu *vcpu,
875 struct kvm_segment *var, int seg);
d99e4152
GN
876static bool guest_state_valid(struct kvm_vcpu *vcpu);
877static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 878static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 879static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 880static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 881
6aa8b732
AK
882static DEFINE_PER_CPU(struct vmcs *, vmxarea);
883static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
884/*
885 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
887 */
888static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 889static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 890
bf9f6ac8
FW
891/*
892 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893 * can find which vCPU should be waken up.
894 */
895static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
896static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
897
3e7c73e9
AK
898static unsigned long *vmx_io_bitmap_a;
899static unsigned long *vmx_io_bitmap_b;
5897297b
AK
900static unsigned long *vmx_msr_bitmap_legacy;
901static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
902static unsigned long *vmx_msr_bitmap_legacy_x2apic;
903static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 904static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
905static unsigned long *vmx_vmread_bitmap;
906static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 907
110312c8 908static bool cpu_has_load_ia32_efer;
8bf00a52 909static bool cpu_has_load_perf_global_ctrl;
110312c8 910
2384d2b3
SY
911static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
912static DEFINE_SPINLOCK(vmx_vpid_lock);
913
1c3d14fe 914static struct vmcs_config {
6aa8b732
AK
915 int size;
916 int order;
917 u32 revision_id;
1c3d14fe
YS
918 u32 pin_based_exec_ctrl;
919 u32 cpu_based_exec_ctrl;
f78e0e2e 920 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
921 u32 vmexit_ctrl;
922 u32 vmentry_ctrl;
923} vmcs_config;
6aa8b732 924
efff9e53 925static struct vmx_capability {
d56f546d
SY
926 u32 ept;
927 u32 vpid;
928} vmx_capability;
929
6aa8b732
AK
930#define VMX_SEGMENT_FIELD(seg) \
931 [VCPU_SREG_##seg] = { \
932 .selector = GUEST_##seg##_SELECTOR, \
933 .base = GUEST_##seg##_BASE, \
934 .limit = GUEST_##seg##_LIMIT, \
935 .ar_bytes = GUEST_##seg##_AR_BYTES, \
936 }
937
772e0318 938static const struct kvm_vmx_segment_field {
6aa8b732
AK
939 unsigned selector;
940 unsigned base;
941 unsigned limit;
942 unsigned ar_bytes;
943} kvm_vmx_segment_fields[] = {
944 VMX_SEGMENT_FIELD(CS),
945 VMX_SEGMENT_FIELD(DS),
946 VMX_SEGMENT_FIELD(ES),
947 VMX_SEGMENT_FIELD(FS),
948 VMX_SEGMENT_FIELD(GS),
949 VMX_SEGMENT_FIELD(SS),
950 VMX_SEGMENT_FIELD(TR),
951 VMX_SEGMENT_FIELD(LDTR),
952};
953
26bb0981
AK
954static u64 host_efer;
955
6de4f3ad
AK
956static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
957
4d56c8a7 958/*
8c06585d 959 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
960 * away by decrementing the array size.
961 */
6aa8b732 962static const u32 vmx_msr_index[] = {
05b3e0c2 963#ifdef CONFIG_X86_64
44ea2b17 964 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 965#endif
8c06585d 966 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 967};
6aa8b732 968
5bb16016 969static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
970{
971 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
972 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
973 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
974}
975
6f05485d
JK
976static inline bool is_debug(u32 intr_info)
977{
978 return is_exception_n(intr_info, DB_VECTOR);
979}
980
981static inline bool is_breakpoint(u32 intr_info)
982{
983 return is_exception_n(intr_info, BP_VECTOR);
984}
985
5bb16016
JK
986static inline bool is_page_fault(u32 intr_info)
987{
988 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
989}
990
31299944 991static inline bool is_no_device(u32 intr_info)
2ab455cc 992{
5bb16016 993 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
994}
995
31299944 996static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 997{
5bb16016 998 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
999}
1000
31299944 1001static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1002{
1003 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1004 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1005}
1006
31299944 1007static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1008{
1009 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1010 INTR_INFO_VALID_MASK)) ==
1011 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1012}
1013
31299944 1014static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1015{
04547156 1016 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1017}
1018
31299944 1019static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1020{
04547156 1021 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1022}
1023
35754c98 1024static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1025{
35754c98 1026 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1027}
1028
31299944 1029static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1030{
04547156
SY
1031 return vmcs_config.cpu_based_exec_ctrl &
1032 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1033}
1034
774ead3a 1035static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1036{
04547156
SY
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1039}
1040
8d14695f
YZ
1041static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1042{
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1045}
1046
83d4c286
YZ
1047static inline bool cpu_has_vmx_apic_register_virt(void)
1048{
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1051}
1052
c7c9c56c
YZ
1053static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1054{
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1057}
1058
01e439be
YZ
1059static inline bool cpu_has_vmx_posted_intr(void)
1060{
d6a858d1
PB
1061 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1062 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1063}
1064
1065static inline bool cpu_has_vmx_apicv(void)
1066{
1067 return cpu_has_vmx_apic_register_virt() &&
1068 cpu_has_vmx_virtual_intr_delivery() &&
1069 cpu_has_vmx_posted_intr();
1070}
1071
04547156
SY
1072static inline bool cpu_has_vmx_flexpriority(void)
1073{
1074 return cpu_has_vmx_tpr_shadow() &&
1075 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1076}
1077
e799794e
MT
1078static inline bool cpu_has_vmx_ept_execute_only(void)
1079{
31299944 1080 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1081}
1082
e799794e
MT
1083static inline bool cpu_has_vmx_ept_2m_page(void)
1084{
31299944 1085 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1086}
1087
878403b7
SY
1088static inline bool cpu_has_vmx_ept_1g_page(void)
1089{
31299944 1090 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1091}
1092
4bc9b982
SY
1093static inline bool cpu_has_vmx_ept_4levels(void)
1094{
1095 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1096}
1097
83c3a331
XH
1098static inline bool cpu_has_vmx_ept_ad_bits(void)
1099{
1100 return vmx_capability.ept & VMX_EPT_AD_BIT;
1101}
1102
31299944 1103static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1104{
31299944 1105 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1106}
1107
31299944 1108static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1109{
31299944 1110 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1111}
1112
518c8aee
GJ
1113static inline bool cpu_has_vmx_invvpid_single(void)
1114{
1115 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1116}
1117
b9d762fa
GJ
1118static inline bool cpu_has_vmx_invvpid_global(void)
1119{
1120 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1121}
1122
31299944 1123static inline bool cpu_has_vmx_ept(void)
d56f546d 1124{
04547156
SY
1125 return vmcs_config.cpu_based_2nd_exec_ctrl &
1126 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1127}
1128
31299944 1129static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1130{
1131 return vmcs_config.cpu_based_2nd_exec_ctrl &
1132 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1133}
1134
31299944 1135static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1136{
1137 return vmcs_config.cpu_based_2nd_exec_ctrl &
1138 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1139}
1140
35754c98 1141static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1142{
35754c98 1143 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1144}
1145
31299944 1146static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1147{
04547156
SY
1148 return vmcs_config.cpu_based_2nd_exec_ctrl &
1149 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1150}
1151
31299944 1152static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1153{
1154 return vmcs_config.cpu_based_2nd_exec_ctrl &
1155 SECONDARY_EXEC_RDTSCP;
1156}
1157
ad756a16
MJ
1158static inline bool cpu_has_vmx_invpcid(void)
1159{
1160 return vmcs_config.cpu_based_2nd_exec_ctrl &
1161 SECONDARY_EXEC_ENABLE_INVPCID;
1162}
1163
31299944 1164static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1165{
1166 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1167}
1168
f5f48ee1
SY
1169static inline bool cpu_has_vmx_wbinvd_exit(void)
1170{
1171 return vmcs_config.cpu_based_2nd_exec_ctrl &
1172 SECONDARY_EXEC_WBINVD_EXITING;
1173}
1174
abc4fc58
AG
1175static inline bool cpu_has_vmx_shadow_vmcs(void)
1176{
1177 u64 vmx_msr;
1178 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1179 /* check if the cpu supports writing r/o exit information fields */
1180 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1181 return false;
1182
1183 return vmcs_config.cpu_based_2nd_exec_ctrl &
1184 SECONDARY_EXEC_SHADOW_VMCS;
1185}
1186
843e4330
KH
1187static inline bool cpu_has_vmx_pml(void)
1188{
1189 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1190}
1191
64903d61
HZ
1192static inline bool cpu_has_vmx_tsc_scaling(void)
1193{
1194 return vmcs_config.cpu_based_2nd_exec_ctrl &
1195 SECONDARY_EXEC_TSC_SCALING;
1196}
1197
04547156
SY
1198static inline bool report_flexpriority(void)
1199{
1200 return flexpriority_enabled;
1201}
1202
fe3ef05c
NHE
1203static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1204{
1205 return vmcs12->cpu_based_vm_exec_control & bit;
1206}
1207
1208static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1209{
1210 return (vmcs12->cpu_based_vm_exec_control &
1211 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1212 (vmcs12->secondary_vm_exec_control & bit);
1213}
1214
f5c4368f 1215static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1216{
1217 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1218}
1219
f4124500
JK
1220static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1221{
1222 return vmcs12->pin_based_vm_exec_control &
1223 PIN_BASED_VMX_PREEMPTION_TIMER;
1224}
1225
155a97a3
NHE
1226static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1227{
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1229}
1230
81dc01f7
WL
1231static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1232{
1233 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1234 vmx_xsaves_supported();
1235}
1236
f2b93280
WV
1237static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1238{
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1240}
1241
5c614b35
WL
1242static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1243{
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1245}
1246
82f0dd4b
WV
1247static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1248{
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1250}
1251
608406e2
WV
1252static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1253{
1254 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1255}
1256
705699a1
WV
1257static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1258{
1259 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1260}
1261
644d711a
NHE
1262static inline bool is_exception(u32 intr_info)
1263{
1264 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1265 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1266}
1267
533558bc
JK
1268static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1269 u32 exit_intr_info,
1270 unsigned long exit_qualification);
7c177938
NHE
1271static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1272 struct vmcs12 *vmcs12,
1273 u32 reason, unsigned long qualification);
1274
8b9cf98c 1275static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1276{
1277 int i;
1278
a2fa3e9f 1279 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1280 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1281 return i;
1282 return -1;
1283}
1284
2384d2b3
SY
1285static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1286{
1287 struct {
1288 u64 vpid : 16;
1289 u64 rsvd : 48;
1290 u64 gva;
1291 } operand = { vpid, 0, gva };
1292
4ecac3fd 1293 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1294 /* CF==1 or ZF==1 --> rc = -1 */
1295 "; ja 1f ; ud2 ; 1:"
1296 : : "a"(&operand), "c"(ext) : "cc", "memory");
1297}
1298
1439442c
SY
1299static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1300{
1301 struct {
1302 u64 eptp, gpa;
1303 } operand = {eptp, gpa};
1304
4ecac3fd 1305 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1306 /* CF==1 or ZF==1 --> rc = -1 */
1307 "; ja 1f ; ud2 ; 1:\n"
1308 : : "a" (&operand), "c" (ext) : "cc", "memory");
1309}
1310
26bb0981 1311static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1312{
1313 int i;
1314
8b9cf98c 1315 i = __find_msr_index(vmx, msr);
a75beee6 1316 if (i >= 0)
a2fa3e9f 1317 return &vmx->guest_msrs[i];
8b6d44c7 1318 return NULL;
7725f0ba
AK
1319}
1320
6aa8b732
AK
1321static void vmcs_clear(struct vmcs *vmcs)
1322{
1323 u64 phys_addr = __pa(vmcs);
1324 u8 error;
1325
4ecac3fd 1326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1327 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1328 : "cc", "memory");
1329 if (error)
1330 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1331 vmcs, phys_addr);
1332}
1333
d462b819
NHE
1334static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1335{
1336 vmcs_clear(loaded_vmcs->vmcs);
1337 loaded_vmcs->cpu = -1;
1338 loaded_vmcs->launched = 0;
1339}
1340
7725b894
DX
1341static void vmcs_load(struct vmcs *vmcs)
1342{
1343 u64 phys_addr = __pa(vmcs);
1344 u8 error;
1345
1346 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1347 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1348 : "cc", "memory");
1349 if (error)
2844d849 1350 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1351 vmcs, phys_addr);
1352}
1353
2965faa5 1354#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1355/*
1356 * This bitmap is used to indicate whether the vmclear
1357 * operation is enabled on all cpus. All disabled by
1358 * default.
1359 */
1360static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1361
1362static inline void crash_enable_local_vmclear(int cpu)
1363{
1364 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365}
1366
1367static inline void crash_disable_local_vmclear(int cpu)
1368{
1369 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370}
1371
1372static inline int crash_local_vmclear_enabled(int cpu)
1373{
1374 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1375}
1376
1377static void crash_vmclear_local_loaded_vmcss(void)
1378{
1379 int cpu = raw_smp_processor_id();
1380 struct loaded_vmcs *v;
1381
1382 if (!crash_local_vmclear_enabled(cpu))
1383 return;
1384
1385 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1386 loaded_vmcss_on_cpu_link)
1387 vmcs_clear(v->vmcs);
1388}
1389#else
1390static inline void crash_enable_local_vmclear(int cpu) { }
1391static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1392#endif /* CONFIG_KEXEC_CORE */
8f536b76 1393
d462b819 1394static void __loaded_vmcs_clear(void *arg)
6aa8b732 1395{
d462b819 1396 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1397 int cpu = raw_smp_processor_id();
6aa8b732 1398
d462b819
NHE
1399 if (loaded_vmcs->cpu != cpu)
1400 return; /* vcpu migration can race with cpu offline */
1401 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1402 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1403 crash_disable_local_vmclear(cpu);
d462b819 1404 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1405
1406 /*
1407 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408 * is before setting loaded_vmcs->vcpu to -1 which is done in
1409 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410 * then adds the vmcs into percpu list before it is deleted.
1411 */
1412 smp_wmb();
1413
d462b819 1414 loaded_vmcs_init(loaded_vmcs);
8f536b76 1415 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1416}
1417
d462b819 1418static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1419{
e6c7d321
XG
1420 int cpu = loaded_vmcs->cpu;
1421
1422 if (cpu != -1)
1423 smp_call_function_single(cpu,
1424 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1425}
1426
dd5f5341 1427static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1428{
dd5f5341 1429 if (vpid == 0)
2384d2b3
SY
1430 return;
1431
518c8aee 1432 if (cpu_has_vmx_invvpid_single())
dd5f5341 1433 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1434}
1435
b9d762fa
GJ
1436static inline void vpid_sync_vcpu_global(void)
1437{
1438 if (cpu_has_vmx_invvpid_global())
1439 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1440}
1441
dd5f5341 1442static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1443{
1444 if (cpu_has_vmx_invvpid_single())
dd5f5341 1445 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1446 else
1447 vpid_sync_vcpu_global();
1448}
1449
1439442c
SY
1450static inline void ept_sync_global(void)
1451{
1452 if (cpu_has_vmx_invept_global())
1453 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1454}
1455
1456static inline void ept_sync_context(u64 eptp)
1457{
089d034e 1458 if (enable_ept) {
1439442c
SY
1459 if (cpu_has_vmx_invept_context())
1460 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1461 else
1462 ept_sync_global();
1463 }
1464}
1465
8a86aea9
PB
1466static __always_inline void vmcs_check16(unsigned long field)
1467{
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1469 "16-bit accessor invalid for 64-bit field");
1470 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1471 "16-bit accessor invalid for 64-bit high field");
1472 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1473 "16-bit accessor invalid for 32-bit high field");
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1475 "16-bit accessor invalid for natural width field");
1476}
1477
1478static __always_inline void vmcs_check32(unsigned long field)
1479{
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1481 "32-bit accessor invalid for 16-bit field");
1482 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1483 "32-bit accessor invalid for natural width field");
1484}
1485
1486static __always_inline void vmcs_check64(unsigned long field)
1487{
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1489 "64-bit accessor invalid for 16-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491 "64-bit accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493 "64-bit accessor invalid for 32-bit field");
1494 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1495 "64-bit accessor invalid for natural width field");
1496}
1497
1498static __always_inline void vmcs_checkl(unsigned long field)
1499{
1500 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1501 "Natural width accessor invalid for 16-bit field");
1502 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1503 "Natural width accessor invalid for 64-bit field");
1504 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1505 "Natural width accessor invalid for 64-bit high field");
1506 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1507 "Natural width accessor invalid for 32-bit field");
1508}
1509
1510static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1511{
5e520e62 1512 unsigned long value;
6aa8b732 1513
5e520e62
AK
1514 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1515 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1516 return value;
1517}
1518
96304217 1519static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1520{
8a86aea9
PB
1521 vmcs_check16(field);
1522 return __vmcs_readl(field);
6aa8b732
AK
1523}
1524
96304217 1525static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1526{
8a86aea9
PB
1527 vmcs_check32(field);
1528 return __vmcs_readl(field);
6aa8b732
AK
1529}
1530
96304217 1531static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1532{
8a86aea9 1533 vmcs_check64(field);
05b3e0c2 1534#ifdef CONFIG_X86_64
8a86aea9 1535 return __vmcs_readl(field);
6aa8b732 1536#else
8a86aea9 1537 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1538#endif
1539}
1540
8a86aea9
PB
1541static __always_inline unsigned long vmcs_readl(unsigned long field)
1542{
1543 vmcs_checkl(field);
1544 return __vmcs_readl(field);
1545}
1546
e52de1b8
AK
1547static noinline void vmwrite_error(unsigned long field, unsigned long value)
1548{
1549 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1550 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1551 dump_stack();
1552}
1553
8a86aea9 1554static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1555{
1556 u8 error;
1557
4ecac3fd 1558 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1559 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1560 if (unlikely(error))
1561 vmwrite_error(field, value);
6aa8b732
AK
1562}
1563
8a86aea9 1564static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1565{
8a86aea9
PB
1566 vmcs_check16(field);
1567 __vmcs_writel(field, value);
6aa8b732
AK
1568}
1569
8a86aea9 1570static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1571{
8a86aea9
PB
1572 vmcs_check32(field);
1573 __vmcs_writel(field, value);
6aa8b732
AK
1574}
1575
8a86aea9 1576static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1577{
8a86aea9
PB
1578 vmcs_check64(field);
1579 __vmcs_writel(field, value);
7682f2d0 1580#ifndef CONFIG_X86_64
6aa8b732 1581 asm volatile ("");
8a86aea9 1582 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1583#endif
1584}
1585
8a86aea9 1586static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1587{
8a86aea9
PB
1588 vmcs_checkl(field);
1589 __vmcs_writel(field, value);
2ab455cc
AL
1590}
1591
8a86aea9 1592static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1593{
8a86aea9
PB
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1595 "vmcs_clear_bits does not support 64-bit fields");
1596 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1597}
1598
8a86aea9 1599static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1600{
8a86aea9
PB
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1602 "vmcs_set_bits does not support 64-bit fields");
1603 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1604}
1605
2961e876
GN
1606static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1607{
1608 vmcs_write32(VM_ENTRY_CONTROLS, val);
1609 vmx->vm_entry_controls_shadow = val;
1610}
1611
1612static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1613{
1614 if (vmx->vm_entry_controls_shadow != val)
1615 vm_entry_controls_init(vmx, val);
1616}
1617
1618static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1619{
1620 return vmx->vm_entry_controls_shadow;
1621}
1622
1623
1624static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1625{
1626 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1627}
1628
1629static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1630{
1631 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1632}
1633
1634static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1635{
1636 vmcs_write32(VM_EXIT_CONTROLS, val);
1637 vmx->vm_exit_controls_shadow = val;
1638}
1639
1640static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1641{
1642 if (vmx->vm_exit_controls_shadow != val)
1643 vm_exit_controls_init(vmx, val);
1644}
1645
1646static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1647{
1648 return vmx->vm_exit_controls_shadow;
1649}
1650
1651
1652static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1653{
1654 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1655}
1656
1657static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1658{
1659 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1660}
1661
2fb92db1
AK
1662static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1663{
1664 vmx->segment_cache.bitmask = 0;
1665}
1666
1667static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1668 unsigned field)
1669{
1670 bool ret;
1671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1672
1673 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1674 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1675 vmx->segment_cache.bitmask = 0;
1676 }
1677 ret = vmx->segment_cache.bitmask & mask;
1678 vmx->segment_cache.bitmask |= mask;
1679 return ret;
1680}
1681
1682static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1683{
1684 u16 *p = &vmx->segment_cache.seg[seg].selector;
1685
1686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1688 return *p;
1689}
1690
1691static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1692{
1693 ulong *p = &vmx->segment_cache.seg[seg].base;
1694
1695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1697 return *p;
1698}
1699
1700static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1701{
1702 u32 *p = &vmx->segment_cache.seg[seg].limit;
1703
1704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1706 return *p;
1707}
1708
1709static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1710{
1711 u32 *p = &vmx->segment_cache.seg[seg].ar;
1712
1713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1715 return *p;
1716}
1717
abd3f2d6
AK
1718static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1719{
1720 u32 eb;
1721
fd7373cc 1722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
54a20552 1723 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1724 if ((vcpu->guest_debug &
1725 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1726 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1727 eb |= 1u << BP_VECTOR;
7ffd92c5 1728 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1729 eb = ~0;
089d034e 1730 if (enable_ept)
1439442c 1731 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1732 if (vcpu->fpu_active)
1733 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1734
1735 /* When we are running a nested L2 guest and L1 specified for it a
1736 * certain exception bitmap, we must trap the same exceptions and pass
1737 * them to L1. When running L2, we will only handle the exceptions
1738 * specified above if L1 did not want them.
1739 */
1740 if (is_guest_mode(vcpu))
1741 eb |= get_vmcs12(vcpu)->exception_bitmap;
1742
abd3f2d6
AK
1743 vmcs_write32(EXCEPTION_BITMAP, eb);
1744}
1745
2961e876
GN
1746static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1747 unsigned long entry, unsigned long exit)
8bf00a52 1748{
2961e876
GN
1749 vm_entry_controls_clearbit(vmx, entry);
1750 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1751}
1752
61d2ef2c
AK
1753static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1754{
1755 unsigned i;
1756 struct msr_autoload *m = &vmx->msr_autoload;
1757
8bf00a52
GN
1758 switch (msr) {
1759 case MSR_EFER:
1760 if (cpu_has_load_ia32_efer) {
2961e876
GN
1761 clear_atomic_switch_msr_special(vmx,
1762 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1763 VM_EXIT_LOAD_IA32_EFER);
1764 return;
1765 }
1766 break;
1767 case MSR_CORE_PERF_GLOBAL_CTRL:
1768 if (cpu_has_load_perf_global_ctrl) {
2961e876 1769 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1770 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1772 return;
1773 }
1774 break;
110312c8
AK
1775 }
1776
61d2ef2c
AK
1777 for (i = 0; i < m->nr; ++i)
1778 if (m->guest[i].index == msr)
1779 break;
1780
1781 if (i == m->nr)
1782 return;
1783 --m->nr;
1784 m->guest[i] = m->guest[m->nr];
1785 m->host[i] = m->host[m->nr];
1786 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1787 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1788}
1789
2961e876
GN
1790static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1791 unsigned long entry, unsigned long exit,
1792 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1793 u64 guest_val, u64 host_val)
8bf00a52
GN
1794{
1795 vmcs_write64(guest_val_vmcs, guest_val);
1796 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1797 vm_entry_controls_setbit(vmx, entry);
1798 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1799}
1800
61d2ef2c
AK
1801static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1802 u64 guest_val, u64 host_val)
1803{
1804 unsigned i;
1805 struct msr_autoload *m = &vmx->msr_autoload;
1806
8bf00a52
GN
1807 switch (msr) {
1808 case MSR_EFER:
1809 if (cpu_has_load_ia32_efer) {
2961e876
GN
1810 add_atomic_switch_msr_special(vmx,
1811 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1812 VM_EXIT_LOAD_IA32_EFER,
1813 GUEST_IA32_EFER,
1814 HOST_IA32_EFER,
1815 guest_val, host_val);
1816 return;
1817 }
1818 break;
1819 case MSR_CORE_PERF_GLOBAL_CTRL:
1820 if (cpu_has_load_perf_global_ctrl) {
2961e876 1821 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1822 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1823 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1824 GUEST_IA32_PERF_GLOBAL_CTRL,
1825 HOST_IA32_PERF_GLOBAL_CTRL,
1826 guest_val, host_val);
1827 return;
1828 }
1829 break;
7099e2e1
RK
1830 case MSR_IA32_PEBS_ENABLE:
1831 /* PEBS needs a quiescent period after being disabled (to write
1832 * a record). Disabling PEBS through VMX MSR swapping doesn't
1833 * provide that period, so a CPU could write host's record into
1834 * guest's memory.
1835 */
1836 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1837 }
1838
61d2ef2c
AK
1839 for (i = 0; i < m->nr; ++i)
1840 if (m->guest[i].index == msr)
1841 break;
1842
e7fc6f93 1843 if (i == NR_AUTOLOAD_MSRS) {
60266204 1844 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1845 "Can't add msr %x\n", msr);
1846 return;
1847 } else if (i == m->nr) {
61d2ef2c
AK
1848 ++m->nr;
1849 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1850 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1851 }
1852
1853 m->guest[i].index = msr;
1854 m->guest[i].value = guest_val;
1855 m->host[i].index = msr;
1856 m->host[i].value = host_val;
1857}
1858
33ed6329
AK
1859static void reload_tss(void)
1860{
33ed6329
AK
1861 /*
1862 * VT restores TR but not its size. Useless.
1863 */
89cbc767 1864 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1865 struct desc_struct *descs;
33ed6329 1866
d359192f 1867 descs = (void *)gdt->address;
33ed6329
AK
1868 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1869 load_TR_desc();
33ed6329
AK
1870}
1871
92c0d900 1872static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1873{
844a5fe2
PB
1874 u64 guest_efer = vmx->vcpu.arch.efer;
1875 u64 ignore_bits = 0;
1876
1877 if (!enable_ept) {
1878 /*
1879 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1880 * host CPUID is more efficient than testing guest CPUID
1881 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1882 */
1883 if (boot_cpu_has(X86_FEATURE_SMEP))
1884 guest_efer |= EFER_NX;
1885 else if (!(guest_efer & EFER_NX))
1886 ignore_bits |= EFER_NX;
1887 }
3a34a881 1888
51c6cf66 1889 /*
844a5fe2 1890 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 1891 */
844a5fe2 1892 ignore_bits |= EFER_SCE;
51c6cf66
AK
1893#ifdef CONFIG_X86_64
1894 ignore_bits |= EFER_LMA | EFER_LME;
1895 /* SCE is meaningful only in long mode on Intel */
1896 if (guest_efer & EFER_LMA)
1897 ignore_bits &= ~(u64)EFER_SCE;
1898#endif
84ad33ef
AK
1899
1900 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1901
1902 /*
1903 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904 * On CPUs that support "load IA32_EFER", always switch EFER
1905 * atomically, since it's faster than switching it manually.
1906 */
1907 if (cpu_has_load_ia32_efer ||
1908 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1909 if (!(guest_efer & EFER_LMA))
1910 guest_efer &= ~EFER_LME;
54b98bff
AL
1911 if (guest_efer != host_efer)
1912 add_atomic_switch_msr(vmx, MSR_EFER,
1913 guest_efer, host_efer);
84ad33ef 1914 return false;
844a5fe2
PB
1915 } else {
1916 guest_efer &= ~ignore_bits;
1917 guest_efer |= host_efer & ignore_bits;
1918
1919 vmx->guest_msrs[efer_offset].data = guest_efer;
1920 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 1921
844a5fe2
PB
1922 return true;
1923 }
51c6cf66
AK
1924}
1925
2d49ec72
GN
1926static unsigned long segment_base(u16 selector)
1927{
89cbc767 1928 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1929 struct desc_struct *d;
1930 unsigned long table_base;
1931 unsigned long v;
1932
1933 if (!(selector & ~3))
1934 return 0;
1935
d359192f 1936 table_base = gdt->address;
2d49ec72
GN
1937
1938 if (selector & 4) { /* from ldt */
1939 u16 ldt_selector = kvm_read_ldt();
1940
1941 if (!(ldt_selector & ~3))
1942 return 0;
1943
1944 table_base = segment_base(ldt_selector);
1945 }
1946 d = (struct desc_struct *)(table_base + (selector & ~7));
1947 v = get_desc_base(d);
1948#ifdef CONFIG_X86_64
1949 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1950 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1951#endif
1952 return v;
1953}
1954
1955static inline unsigned long kvm_read_tr_base(void)
1956{
1957 u16 tr;
1958 asm("str %0" : "=g"(tr));
1959 return segment_base(tr);
1960}
1961
04d2cc77 1962static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1963{
04d2cc77 1964 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1965 int i;
04d2cc77 1966
a2fa3e9f 1967 if (vmx->host_state.loaded)
33ed6329
AK
1968 return;
1969
a2fa3e9f 1970 vmx->host_state.loaded = 1;
33ed6329
AK
1971 /*
1972 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1973 * allow segment selectors with cpl > 0 or ti == 1.
1974 */
d6e88aec 1975 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1976 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1977 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1978 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1979 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1980 vmx->host_state.fs_reload_needed = 0;
1981 } else {
33ed6329 1982 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1983 vmx->host_state.fs_reload_needed = 1;
33ed6329 1984 }
9581d442 1985 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1986 if (!(vmx->host_state.gs_sel & 7))
1987 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1988 else {
1989 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1990 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1991 }
1992
b2da15ac
AK
1993#ifdef CONFIG_X86_64
1994 savesegment(ds, vmx->host_state.ds_sel);
1995 savesegment(es, vmx->host_state.es_sel);
1996#endif
1997
33ed6329
AK
1998#ifdef CONFIG_X86_64
1999 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2000 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2001#else
a2fa3e9f
GH
2002 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2003 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2004#endif
707c0874
AK
2005
2006#ifdef CONFIG_X86_64
c8770e7b
AK
2007 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2008 if (is_long_mode(&vmx->vcpu))
44ea2b17 2009 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2010#endif
da8999d3
LJ
2011 if (boot_cpu_has(X86_FEATURE_MPX))
2012 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2013 for (i = 0; i < vmx->save_nmsrs; ++i)
2014 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2015 vmx->guest_msrs[i].data,
2016 vmx->guest_msrs[i].mask);
33ed6329
AK
2017}
2018
a9b21b62 2019static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2020{
a2fa3e9f 2021 if (!vmx->host_state.loaded)
33ed6329
AK
2022 return;
2023
e1beb1d3 2024 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2025 vmx->host_state.loaded = 0;
c8770e7b
AK
2026#ifdef CONFIG_X86_64
2027 if (is_long_mode(&vmx->vcpu))
2028 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2029#endif
152d3f2f 2030 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2031 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2032#ifdef CONFIG_X86_64
9581d442 2033 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2034#else
2035 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2036#endif
33ed6329 2037 }
0a77fe4c
AK
2038 if (vmx->host_state.fs_reload_needed)
2039 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2040#ifdef CONFIG_X86_64
2041 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2042 loadsegment(ds, vmx->host_state.ds_sel);
2043 loadsegment(es, vmx->host_state.es_sel);
2044 }
b2da15ac 2045#endif
152d3f2f 2046 reload_tss();
44ea2b17 2047#ifdef CONFIG_X86_64
c8770e7b 2048 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2049#endif
da8999d3
LJ
2050 if (vmx->host_state.msr_host_bndcfgs)
2051 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
2052 /*
2053 * If the FPU is not active (through the host task or
2054 * the guest vcpu), then restore the cr0.TS bit.
2055 */
3c6dffa9 2056 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 2057 stts();
89cbc767 2058 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2059}
2060
a9b21b62
AK
2061static void vmx_load_host_state(struct vcpu_vmx *vmx)
2062{
2063 preempt_disable();
2064 __vmx_load_host_state(vmx);
2065 preempt_enable();
2066}
2067
28b835d6
FW
2068static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2069{
2070 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2071 struct pi_desc old, new;
2072 unsigned int dest;
2073
2074 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP))
2076 return;
2077
2078 do {
2079 old.control = new.control = pi_desc->control;
2080
2081 /*
2082 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2083 * are two possible cases:
2084 * 1. After running 'pre_block', context switch
2085 * happened. For this case, 'sn' was set in
2086 * vmx_vcpu_put(), so we need to clear it here.
2087 * 2. After running 'pre_block', we were blocked,
2088 * and woken up by some other guy. For this case,
2089 * we don't need to do anything, 'pi_post_block'
2090 * will do everything for us. However, we cannot
2091 * check whether it is case #1 or case #2 here
2092 * (maybe, not needed), so we also clear sn here,
2093 * I think it is not a big deal.
2094 */
2095 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2096 if (vcpu->cpu != cpu) {
2097 dest = cpu_physical_id(cpu);
2098
2099 if (x2apic_enabled())
2100 new.ndst = dest;
2101 else
2102 new.ndst = (dest << 8) & 0xFF00;
2103 }
2104
2105 /* set 'NV' to 'notification vector' */
2106 new.nv = POSTED_INTR_VECTOR;
2107 }
2108
2109 /* Allow posting non-urgent interrupts */
2110 new.sn = 0;
2111 } while (cmpxchg(&pi_desc->control, old.control,
2112 new.control) != old.control);
2113}
1be0e61c 2114
6aa8b732
AK
2115/*
2116 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2117 * vcpu mutex is already taken.
2118 */
15ad7146 2119static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2120{
a2fa3e9f 2121 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2122 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 2123
4610c9cc
DX
2124 if (!vmm_exclusive)
2125 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
2126 else if (vmx->loaded_vmcs->cpu != cpu)
2127 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2128
d462b819
NHE
2129 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2130 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2131 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
2132 }
2133
d462b819 2134 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 2135 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
2136 unsigned long sysenter_esp;
2137
a8eeb04a 2138 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2139 local_irq_disable();
8f536b76 2140 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2141
2142 /*
2143 * Read loaded_vmcs->cpu should be before fetching
2144 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2145 * See the comments in __loaded_vmcs_clear().
2146 */
2147 smp_rmb();
2148
d462b819
NHE
2149 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2150 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2151 crash_enable_local_vmclear(cpu);
92fe13be
DX
2152 local_irq_enable();
2153
6aa8b732
AK
2154 /*
2155 * Linux uses per-cpu TSS and GDT, so set these when switching
2156 * processors.
2157 */
d6e88aec 2158 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2159 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2160
2161 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2162 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2163
d462b819 2164 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2165 }
28b835d6 2166
2680d6da
OH
2167 /* Setup TSC multiplier */
2168 if (kvm_has_tsc_control &&
2169 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2170 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2171 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2172 }
2173
28b835d6 2174 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2175 vmx->host_pkru = read_pkru();
28b835d6
FW
2176}
2177
2178static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2179{
2180 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2181
2182 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2183 !irq_remapping_cap(IRQ_POSTING_CAP))
2184 return;
2185
2186 /* Set SN when the vCPU is preempted */
2187 if (vcpu->preempted)
2188 pi_set_sn(pi_desc);
6aa8b732
AK
2189}
2190
2191static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2192{
28b835d6
FW
2193 vmx_vcpu_pi_put(vcpu);
2194
a9b21b62 2195 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2196 if (!vmm_exclusive) {
d462b819
NHE
2197 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2198 vcpu->cpu = -1;
4610c9cc
DX
2199 kvm_cpu_vmxoff();
2200 }
6aa8b732
AK
2201}
2202
5fd86fcf
AK
2203static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2204{
81231c69
AK
2205 ulong cr0;
2206
5fd86fcf
AK
2207 if (vcpu->fpu_active)
2208 return;
2209 vcpu->fpu_active = 1;
81231c69
AK
2210 cr0 = vmcs_readl(GUEST_CR0);
2211 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2212 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2213 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2214 update_exception_bitmap(vcpu);
edcafe3c 2215 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2216 if (is_guest_mode(vcpu))
2217 vcpu->arch.cr0_guest_owned_bits &=
2218 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2219 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2220}
2221
edcafe3c
AK
2222static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2223
fe3ef05c
NHE
2224/*
2225 * Return the cr0 value that a nested guest would read. This is a combination
2226 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2227 * its hypervisor (cr0_read_shadow).
2228 */
2229static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2230{
2231 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2232 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2233}
2234static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2235{
2236 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2237 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2238}
2239
5fd86fcf
AK
2240static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2241{
36cf24e0
NHE
2242 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2243 * set this *before* calling this function.
2244 */
edcafe3c 2245 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2246 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2247 update_exception_bitmap(vcpu);
edcafe3c
AK
2248 vcpu->arch.cr0_guest_owned_bits = 0;
2249 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2250 if (is_guest_mode(vcpu)) {
2251 /*
2252 * L1's specified read shadow might not contain the TS bit,
2253 * so now that we turned on shadowing of this bit, we need to
2254 * set this bit of the shadow. Like in nested_vmx_run we need
2255 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2256 * up-to-date here because we just decached cr0.TS (and we'll
2257 * only update vmcs12->guest_cr0 on nested exit).
2258 */
2259 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2260 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2261 (vcpu->arch.cr0 & X86_CR0_TS);
2262 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2263 } else
2264 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2265}
2266
6aa8b732
AK
2267static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2268{
78ac8b47 2269 unsigned long rflags, save_rflags;
345dcaa8 2270
6de12732
AK
2271 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2272 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2273 rflags = vmcs_readl(GUEST_RFLAGS);
2274 if (to_vmx(vcpu)->rmode.vm86_active) {
2275 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2276 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2277 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2278 }
2279 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2280 }
6de12732 2281 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2282}
2283
2284static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2285{
6de12732
AK
2286 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2287 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2288 if (to_vmx(vcpu)->rmode.vm86_active) {
2289 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2290 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2291 }
6aa8b732
AK
2292 vmcs_writel(GUEST_RFLAGS, rflags);
2293}
2294
be94f6b7
HH
2295static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2296{
2297 return to_vmx(vcpu)->guest_pkru;
2298}
2299
37ccdcbe 2300static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2301{
2302 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2303 int ret = 0;
2304
2305 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2306 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2307 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2308 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2309
37ccdcbe 2310 return ret;
2809f5d2
GC
2311}
2312
2313static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2314{
2315 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2316 u32 interruptibility = interruptibility_old;
2317
2318 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2319
48005f64 2320 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2321 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2322 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2323 interruptibility |= GUEST_INTR_STATE_STI;
2324
2325 if ((interruptibility != interruptibility_old))
2326 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2327}
2328
6aa8b732
AK
2329static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2330{
2331 unsigned long rip;
6aa8b732 2332
5fdbf976 2333 rip = kvm_rip_read(vcpu);
6aa8b732 2334 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2335 kvm_rip_write(vcpu, rip);
6aa8b732 2336
2809f5d2
GC
2337 /* skipping an emulated instruction also counts */
2338 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2339}
2340
0b6ac343
NHE
2341/*
2342 * KVM wants to inject page-faults which it got to the guest. This function
2343 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2344 */
e011c663 2345static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2346{
2347 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2348
e011c663 2349 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2350 return 0;
2351
533558bc
JK
2352 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2353 vmcs_read32(VM_EXIT_INTR_INFO),
2354 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2355 return 1;
2356}
2357
298101da 2358static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2359 bool has_error_code, u32 error_code,
2360 bool reinject)
298101da 2361{
77ab6db0 2362 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2363 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2364
e011c663
GN
2365 if (!reinject && is_guest_mode(vcpu) &&
2366 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2367 return;
2368
8ab2d2e2 2369 if (has_error_code) {
77ab6db0 2370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2371 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2372 }
77ab6db0 2373
7ffd92c5 2374 if (vmx->rmode.vm86_active) {
71f9833b
SH
2375 int inc_eip = 0;
2376 if (kvm_exception_is_soft(nr))
2377 inc_eip = vcpu->arch.event_exit_inst_len;
2378 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2380 return;
2381 }
2382
66fd3f7f
GN
2383 if (kvm_exception_is_soft(nr)) {
2384 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2385 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2386 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2387 } else
2388 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2389
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2391}
2392
4e47c7a6
SY
2393static bool vmx_rdtscp_supported(void)
2394{
2395 return cpu_has_vmx_rdtscp();
2396}
2397
ad756a16
MJ
2398static bool vmx_invpcid_supported(void)
2399{
2400 return cpu_has_vmx_invpcid() && enable_ept;
2401}
2402
a75beee6
ED
2403/*
2404 * Swap MSR entry in host/guest MSR entry array.
2405 */
8b9cf98c 2406static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2407{
26bb0981 2408 struct shared_msr_entry tmp;
a2fa3e9f
GH
2409
2410 tmp = vmx->guest_msrs[to];
2411 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2412 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2413}
2414
8d14695f
YZ
2415static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2416{
2417 unsigned long *msr_bitmap;
2418
670125bd
WV
2419 if (is_guest_mode(vcpu))
2420 msr_bitmap = vmx_msr_bitmap_nested;
8a9781f7 2421 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
8d14695f
YZ
2422 if (is_long_mode(vcpu))
2423 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2424 else
2425 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2426 } else {
2427 if (is_long_mode(vcpu))
2428 msr_bitmap = vmx_msr_bitmap_longmode;
2429 else
2430 msr_bitmap = vmx_msr_bitmap_legacy;
2431 }
2432
2433 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2434}
2435
e38aea3e
AK
2436/*
2437 * Set up the vmcs to automatically save and restore system
2438 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2439 * mode, as fiddling with msrs is very expensive.
2440 */
8b9cf98c 2441static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2442{
26bb0981 2443 int save_nmsrs, index;
e38aea3e 2444
a75beee6
ED
2445 save_nmsrs = 0;
2446#ifdef CONFIG_X86_64
8b9cf98c 2447 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2448 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2449 if (index >= 0)
8b9cf98c
RR
2450 move_msr_up(vmx, index, save_nmsrs++);
2451 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2452 if (index >= 0)
8b9cf98c
RR
2453 move_msr_up(vmx, index, save_nmsrs++);
2454 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2455 if (index >= 0)
8b9cf98c 2456 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2457 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2458 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2459 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2460 /*
8c06585d 2461 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2462 * if efer.sce is enabled.
2463 */
8c06585d 2464 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2465 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2466 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2467 }
2468#endif
92c0d900
AK
2469 index = __find_msr_index(vmx, MSR_EFER);
2470 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2471 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2472
26bb0981 2473 vmx->save_nmsrs = save_nmsrs;
5897297b 2474
8d14695f
YZ
2475 if (cpu_has_vmx_msr_bitmap())
2476 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2477}
2478
6aa8b732
AK
2479/*
2480 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2481 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2482 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2483 */
be7b263e 2484static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2485{
2486 u64 host_tsc, tsc_offset;
2487
4ea1636b 2488 host_tsc = rdtsc();
6aa8b732 2489 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2490 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2491}
2492
d5c1785d
NHE
2493/*
2494 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2495 * counter, even if a nested guest (L2) is currently running.
2496 */
48d89b92 2497static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2498{
886b470c 2499 u64 tsc_offset;
d5c1785d 2500
d5c1785d
NHE
2501 tsc_offset = is_guest_mode(vcpu) ?
2502 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2503 vmcs_read64(TSC_OFFSET);
2504 return host_tsc + tsc_offset;
2505}
2506
ba904635
WA
2507static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2508{
2509 return vmcs_read64(TSC_OFFSET);
2510}
2511
6aa8b732 2512/*
99e3e30a 2513 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2514 */
99e3e30a 2515static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2516{
27fc51b2 2517 if (is_guest_mode(vcpu)) {
7991825b 2518 /*
27fc51b2
NHE
2519 * We're here if L1 chose not to trap WRMSR to TSC. According
2520 * to the spec, this should set L1's TSC; The offset that L1
2521 * set for L2 remains unchanged, and still needs to be added
2522 * to the newly set TSC to get L2's TSC.
7991825b 2523 */
27fc51b2
NHE
2524 struct vmcs12 *vmcs12;
2525 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2526 /* recalculate vmcs02.TSC_OFFSET: */
2527 vmcs12 = get_vmcs12(vcpu);
2528 vmcs_write64(TSC_OFFSET, offset +
2529 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2530 vmcs12->tsc_offset : 0));
2531 } else {
489223ed
YY
2532 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2533 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2534 vmcs_write64(TSC_OFFSET, offset);
2535 }
6aa8b732
AK
2536}
2537
58ea6767 2538static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
e48672fa
ZA
2539{
2540 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2541
e48672fa 2542 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2543 if (is_guest_mode(vcpu)) {
2544 /* Even when running L2, the adjustment needs to apply to L1 */
2545 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2546 } else
2547 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2548 offset + adjustment);
e48672fa
ZA
2549}
2550
801d3424
NHE
2551static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2552{
2553 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2554 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2555}
2556
2557/*
2558 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2559 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2560 * all guests if the "nested" module option is off, and can also be disabled
2561 * for a single guest by disabling its VMX cpuid bit.
2562 */
2563static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2564{
2565 return nested && guest_cpuid_has_vmx(vcpu);
2566}
2567
b87a51ae
NHE
2568/*
2569 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2570 * returned for the various VMX controls MSRs when nested VMX is enabled.
2571 * The same values should also be used to verify that vmcs12 control fields are
2572 * valid during nested entry from L1 to L2.
2573 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2574 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2575 * bit in the high half is on if the corresponding bit in the control field
2576 * may be on. See also vmx_control_verify().
b87a51ae 2577 */
b9c237bb 2578static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2579{
2580 /*
2581 * Note that as a general rule, the high half of the MSRs (bits in
2582 * the control fields which may be 1) should be initialized by the
2583 * intersection of the underlying hardware's MSR (i.e., features which
2584 * can be supported) and the list of features we want to expose -
2585 * because they are known to be properly supported in our code.
2586 * Also, usually, the low half of the MSRs (bits which must be 1) can
2587 * be set to 0, meaning that L1 may turn off any of these bits. The
2588 * reason is that if one of these bits is necessary, it will appear
2589 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2590 * fields of vmcs01 and vmcs02, will turn these bits off - and
2591 * nested_vmx_exit_handled() will not pass related exits to L1.
2592 * These rules have exceptions below.
2593 */
2594
2595 /* pin-based controls */
eabeaacc 2596 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2597 vmx->nested.nested_vmx_pinbased_ctls_low,
2598 vmx->nested.nested_vmx_pinbased_ctls_high);
2599 vmx->nested.nested_vmx_pinbased_ctls_low |=
2600 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2601 vmx->nested.nested_vmx_pinbased_ctls_high &=
2602 PIN_BASED_EXT_INTR_MASK |
2603 PIN_BASED_NMI_EXITING |
2604 PIN_BASED_VIRTUAL_NMIS;
2605 vmx->nested.nested_vmx_pinbased_ctls_high |=
2606 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2607 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2608 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2609 vmx->nested.nested_vmx_pinbased_ctls_high |=
2610 PIN_BASED_POSTED_INTR;
b87a51ae 2611
3dbcd8da 2612 /* exit controls */
c0dfee58 2613 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2614 vmx->nested.nested_vmx_exit_ctls_low,
2615 vmx->nested.nested_vmx_exit_ctls_high);
2616 vmx->nested.nested_vmx_exit_ctls_low =
2617 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2618
b9c237bb 2619 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2620#ifdef CONFIG_X86_64
c0dfee58 2621 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2622#endif
f4124500 2623 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2624 vmx->nested.nested_vmx_exit_ctls_high |=
2625 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2626 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2627 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2628
a87036ad 2629 if (kvm_mpx_supported())
b9c237bb 2630 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2631
2996fca0 2632 /* We support free control of debug control saving. */
b9c237bb
WV
2633 vmx->nested.nested_vmx_true_exit_ctls_low =
2634 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2635 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2636
b87a51ae
NHE
2637 /* entry controls */
2638 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2639 vmx->nested.nested_vmx_entry_ctls_low,
2640 vmx->nested.nested_vmx_entry_ctls_high);
2641 vmx->nested.nested_vmx_entry_ctls_low =
2642 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2643 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2644#ifdef CONFIG_X86_64
2645 VM_ENTRY_IA32E_MODE |
2646#endif
2647 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2648 vmx->nested.nested_vmx_entry_ctls_high |=
2649 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2650 if (kvm_mpx_supported())
b9c237bb 2651 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2652
2996fca0 2653 /* We support free control of debug control loading. */
b9c237bb
WV
2654 vmx->nested.nested_vmx_true_entry_ctls_low =
2655 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2656 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2657
b87a51ae
NHE
2658 /* cpu-based controls */
2659 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2660 vmx->nested.nested_vmx_procbased_ctls_low,
2661 vmx->nested.nested_vmx_procbased_ctls_high);
2662 vmx->nested.nested_vmx_procbased_ctls_low =
2663 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2664 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2665 CPU_BASED_VIRTUAL_INTR_PENDING |
2666 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2667 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2668 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2669 CPU_BASED_CR3_STORE_EXITING |
2670#ifdef CONFIG_X86_64
2671 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2672#endif
2673 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2674 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2675 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2676 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2677 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2678 /*
2679 * We can allow some features even when not supported by the
2680 * hardware. For example, L1 can specify an MSR bitmap - and we
2681 * can use it to avoid exits to L1 - even when L0 runs L2
2682 * without MSR bitmaps.
2683 */
b9c237bb
WV
2684 vmx->nested.nested_vmx_procbased_ctls_high |=
2685 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2686 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2687
3dcdf3ec 2688 /* We support free control of CR3 access interception. */
b9c237bb
WV
2689 vmx->nested.nested_vmx_true_procbased_ctls_low =
2690 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2691 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2692
b87a51ae
NHE
2693 /* secondary cpu-based controls */
2694 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2695 vmx->nested.nested_vmx_secondary_ctls_low,
2696 vmx->nested.nested_vmx_secondary_ctls_high);
2697 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2698 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2699 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2700 SECONDARY_EXEC_RDTSCP |
f2b93280 2701 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2702 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2703 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2704 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2705 SECONDARY_EXEC_WBINVD_EXITING |
8b3e34e4
XG
2706 SECONDARY_EXEC_XSAVES |
2707 SECONDARY_EXEC_PCOMMIT;
c18911a2 2708
afa61f75
NHE
2709 if (enable_ept) {
2710 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2711 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2712 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2713 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2714 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2715 VMX_EPT_INVEPT_BIT;
b9c237bb 2716 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2717 /*
4b855078
BD
2718 * For nested guests, we don't do anything specific
2719 * for single context invalidation. Hence, only advertise
2720 * support for global context invalidation.
afa61f75 2721 */
b9c237bb 2722 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2723 } else
b9c237bb 2724 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2725
ef697a71
PB
2726 /*
2727 * Old versions of KVM use the single-context version without
2728 * checking for support, so declare that it is supported even
2729 * though it is treated as global context. The alternative is
2730 * not failing the single-context invvpid, and it is worse.
2731 */
089d7b6e
WL
2732 if (enable_vpid)
2733 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
ef697a71 2734 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
089d7b6e
WL
2735 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2736 else
2737 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2738
0790ec17
RK
2739 if (enable_unrestricted_guest)
2740 vmx->nested.nested_vmx_secondary_ctls_high |=
2741 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2742
c18911a2 2743 /* miscellaneous data */
b9c237bb
WV
2744 rdmsr(MSR_IA32_VMX_MISC,
2745 vmx->nested.nested_vmx_misc_low,
2746 vmx->nested.nested_vmx_misc_high);
2747 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2748 vmx->nested.nested_vmx_misc_low |=
2749 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2750 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2751 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2752}
2753
2754static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2755{
2756 /*
2757 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2758 */
2759 return ((control & high) | low) == control;
2760}
2761
2762static inline u64 vmx_control_msr(u32 low, u32 high)
2763{
2764 return low | ((u64)high << 32);
2765}
2766
cae50139 2767/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2768static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2769{
b9c237bb
WV
2770 struct vcpu_vmx *vmx = to_vmx(vcpu);
2771
b87a51ae 2772 switch (msr_index) {
b87a51ae
NHE
2773 case MSR_IA32_VMX_BASIC:
2774 /*
2775 * This MSR reports some information about VMX support. We
2776 * should return information about the VMX we emulate for the
2777 * guest, and the VMCS structure we give it - not about the
2778 * VMX support of the underlying hardware.
2779 */
3dbcd8da 2780 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2781 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2782 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2783 break;
2784 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2785 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2786 *pdata = vmx_control_msr(
2787 vmx->nested.nested_vmx_pinbased_ctls_low,
2788 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2789 break;
2790 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2791 *pdata = vmx_control_msr(
2792 vmx->nested.nested_vmx_true_procbased_ctls_low,
2793 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2794 break;
b87a51ae 2795 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2796 *pdata = vmx_control_msr(
2797 vmx->nested.nested_vmx_procbased_ctls_low,
2798 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2799 break;
2800 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2801 *pdata = vmx_control_msr(
2802 vmx->nested.nested_vmx_true_exit_ctls_low,
2803 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2804 break;
b87a51ae 2805 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2806 *pdata = vmx_control_msr(
2807 vmx->nested.nested_vmx_exit_ctls_low,
2808 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2809 break;
2810 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2811 *pdata = vmx_control_msr(
2812 vmx->nested.nested_vmx_true_entry_ctls_low,
2813 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2814 break;
b87a51ae 2815 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2816 *pdata = vmx_control_msr(
2817 vmx->nested.nested_vmx_entry_ctls_low,
2818 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2819 break;
2820 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2821 *pdata = vmx_control_msr(
2822 vmx->nested.nested_vmx_misc_low,
2823 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2824 break;
2825 /*
2826 * These MSRs specify bits which the guest must keep fixed (on or off)
2827 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2828 * We picked the standard core2 setting.
2829 */
2830#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2831#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2832 case MSR_IA32_VMX_CR0_FIXED0:
2833 *pdata = VMXON_CR0_ALWAYSON;
2834 break;
2835 case MSR_IA32_VMX_CR0_FIXED1:
2836 *pdata = -1ULL;
2837 break;
2838 case MSR_IA32_VMX_CR4_FIXED0:
2839 *pdata = VMXON_CR4_ALWAYSON;
2840 break;
2841 case MSR_IA32_VMX_CR4_FIXED1:
2842 *pdata = -1ULL;
2843 break;
2844 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2845 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2846 break;
2847 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2848 *pdata = vmx_control_msr(
2849 vmx->nested.nested_vmx_secondary_ctls_low,
2850 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2851 break;
2852 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2853 /* Currently, no nested vpid support */
089d7b6e
WL
2854 *pdata = vmx->nested.nested_vmx_ept_caps |
2855 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
2856 break;
2857 default:
b87a51ae 2858 return 1;
b3897a49
NHE
2859 }
2860
b87a51ae
NHE
2861 return 0;
2862}
2863
6aa8b732
AK
2864/*
2865 * Reads an msr value (of 'msr_index') into 'pdata'.
2866 * Returns 0 on success, non-0 otherwise.
2867 * Assumes vcpu_load() was already called.
2868 */
609e36d3 2869static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2870{
26bb0981 2871 struct shared_msr_entry *msr;
6aa8b732 2872
609e36d3 2873 switch (msr_info->index) {
05b3e0c2 2874#ifdef CONFIG_X86_64
6aa8b732 2875 case MSR_FS_BASE:
609e36d3 2876 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2877 break;
2878 case MSR_GS_BASE:
609e36d3 2879 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2880 break;
44ea2b17
AK
2881 case MSR_KERNEL_GS_BASE:
2882 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2883 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 2884 break;
26bb0981 2885#endif
6aa8b732 2886 case MSR_EFER:
609e36d3 2887 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 2888 case MSR_IA32_TSC:
be7b263e 2889 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
2890 break;
2891 case MSR_IA32_SYSENTER_CS:
609e36d3 2892 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
2893 break;
2894 case MSR_IA32_SYSENTER_EIP:
609e36d3 2895 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2896 break;
2897 case MSR_IA32_SYSENTER_ESP:
609e36d3 2898 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2899 break;
0dd376e7 2900 case MSR_IA32_BNDCFGS:
a87036ad 2901 if (!kvm_mpx_supported())
93c4adc7 2902 return 1;
609e36d3 2903 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 2904 break;
cae50139
JK
2905 case MSR_IA32_FEATURE_CONTROL:
2906 if (!nested_vmx_allowed(vcpu))
2907 return 1;
609e36d3 2908 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
cae50139
JK
2909 break;
2910 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2911 if (!nested_vmx_allowed(vcpu))
2912 return 1;
609e36d3 2913 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
2914 case MSR_IA32_XSS:
2915 if (!vmx_xsaves_supported())
2916 return 1;
609e36d3 2917 msr_info->data = vcpu->arch.ia32_xss;
20300099 2918 break;
4e47c7a6 2919 case MSR_TSC_AUX:
81b1b9ca 2920 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
2921 return 1;
2922 /* Otherwise falls through */
6aa8b732 2923 default:
609e36d3 2924 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 2925 if (msr) {
609e36d3 2926 msr_info->data = msr->data;
3bab1f5d 2927 break;
6aa8b732 2928 }
609e36d3 2929 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
2930 }
2931
6aa8b732
AK
2932 return 0;
2933}
2934
cae50139
JK
2935static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2936
6aa8b732
AK
2937/*
2938 * Writes msr value into into the appropriate "register".
2939 * Returns 0 on success, non-0 otherwise.
2940 * Assumes vcpu_load() was already called.
2941 */
8fe8ab46 2942static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2943{
a2fa3e9f 2944 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2945 struct shared_msr_entry *msr;
2cc51560 2946 int ret = 0;
8fe8ab46
WA
2947 u32 msr_index = msr_info->index;
2948 u64 data = msr_info->data;
2cc51560 2949
6aa8b732 2950 switch (msr_index) {
3bab1f5d 2951 case MSR_EFER:
8fe8ab46 2952 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2953 break;
16175a79 2954#ifdef CONFIG_X86_64
6aa8b732 2955 case MSR_FS_BASE:
2fb92db1 2956 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2957 vmcs_writel(GUEST_FS_BASE, data);
2958 break;
2959 case MSR_GS_BASE:
2fb92db1 2960 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2961 vmcs_writel(GUEST_GS_BASE, data);
2962 break;
44ea2b17
AK
2963 case MSR_KERNEL_GS_BASE:
2964 vmx_load_host_state(vmx);
2965 vmx->msr_guest_kernel_gs_base = data;
2966 break;
6aa8b732
AK
2967#endif
2968 case MSR_IA32_SYSENTER_CS:
2969 vmcs_write32(GUEST_SYSENTER_CS, data);
2970 break;
2971 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2972 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2973 break;
2974 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2975 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2976 break;
0dd376e7 2977 case MSR_IA32_BNDCFGS:
a87036ad 2978 if (!kvm_mpx_supported())
93c4adc7 2979 return 1;
0dd376e7
LJ
2980 vmcs_write64(GUEST_BNDCFGS, data);
2981 break;
af24a4e4 2982 case MSR_IA32_TSC:
8fe8ab46 2983 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2984 break;
468d472f
SY
2985 case MSR_IA32_CR_PAT:
2986 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2987 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2988 return 1;
468d472f
SY
2989 vmcs_write64(GUEST_IA32_PAT, data);
2990 vcpu->arch.pat = data;
2991 break;
2992 }
8fe8ab46 2993 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2994 break;
ba904635
WA
2995 case MSR_IA32_TSC_ADJUST:
2996 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2997 break;
cae50139
JK
2998 case MSR_IA32_FEATURE_CONTROL:
2999 if (!nested_vmx_allowed(vcpu) ||
3000 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3001 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3002 return 1;
3003 vmx->nested.msr_ia32_feature_control = data;
3004 if (msr_info->host_initiated && data == 0)
3005 vmx_leave_nested(vcpu);
3006 break;
3007 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3008 return 1; /* they are read-only */
20300099
WL
3009 case MSR_IA32_XSS:
3010 if (!vmx_xsaves_supported())
3011 return 1;
3012 /*
3013 * The only supported bit as of Skylake is bit 8, but
3014 * it is not supported on KVM.
3015 */
3016 if (data != 0)
3017 return 1;
3018 vcpu->arch.ia32_xss = data;
3019 if (vcpu->arch.ia32_xss != host_xss)
3020 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3021 vcpu->arch.ia32_xss, host_xss);
3022 else
3023 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3024 break;
4e47c7a6 3025 case MSR_TSC_AUX:
81b1b9ca 3026 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3027 return 1;
3028 /* Check reserved bit, higher 32 bits should be zero */
3029 if ((data >> 32) != 0)
3030 return 1;
3031 /* Otherwise falls through */
6aa8b732 3032 default:
8b9cf98c 3033 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3034 if (msr) {
8b3c3104 3035 u64 old_msr_data = msr->data;
3bab1f5d 3036 msr->data = data;
2225fd56
AK
3037 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3038 preempt_disable();
8b3c3104
AH
3039 ret = kvm_set_shared_msr(msr->index, msr->data,
3040 msr->mask);
2225fd56 3041 preempt_enable();
8b3c3104
AH
3042 if (ret)
3043 msr->data = old_msr_data;
2225fd56 3044 }
3bab1f5d 3045 break;
6aa8b732 3046 }
8fe8ab46 3047 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3048 }
3049
2cc51560 3050 return ret;
6aa8b732
AK
3051}
3052
5fdbf976 3053static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3054{
5fdbf976
MT
3055 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3056 switch (reg) {
3057 case VCPU_REGS_RSP:
3058 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3059 break;
3060 case VCPU_REGS_RIP:
3061 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3062 break;
6de4f3ad
AK
3063 case VCPU_EXREG_PDPTR:
3064 if (enable_ept)
3065 ept_save_pdptrs(vcpu);
3066 break;
5fdbf976
MT
3067 default:
3068 break;
3069 }
6aa8b732
AK
3070}
3071
6aa8b732
AK
3072static __init int cpu_has_kvm_support(void)
3073{
6210e37b 3074 return cpu_has_vmx();
6aa8b732
AK
3075}
3076
3077static __init int vmx_disabled_by_bios(void)
3078{
3079 u64 msr;
3080
3081 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3082 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3083 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3084 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3085 && tboot_enabled())
3086 return 1;
23f3e991 3087 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3088 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3089 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3090 && !tboot_enabled()) {
3091 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3092 "activate TXT before enabling KVM\n");
cafd6659 3093 return 1;
f9335afe 3094 }
23f3e991
JC
3095 /* launched w/o TXT and VMX disabled */
3096 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3097 && !tboot_enabled())
3098 return 1;
cafd6659
SW
3099 }
3100
3101 return 0;
6aa8b732
AK
3102}
3103
7725b894
DX
3104static void kvm_cpu_vmxon(u64 addr)
3105{
3106 asm volatile (ASM_VMX_VMXON_RAX
3107 : : "a"(&addr), "m"(addr)
3108 : "memory", "cc");
3109}
3110
13a34e06 3111static int hardware_enable(void)
6aa8b732
AK
3112{
3113 int cpu = raw_smp_processor_id();
3114 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3115 u64 old, test_bits;
6aa8b732 3116
1e02ce4c 3117 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3118 return -EBUSY;
3119
d462b819 3120 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3121 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3122 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3123
3124 /*
3125 * Now we can enable the vmclear operation in kdump
3126 * since the loaded_vmcss_on_cpu list on this cpu
3127 * has been initialized.
3128 *
3129 * Though the cpu is not in VMX operation now, there
3130 * is no problem to enable the vmclear operation
3131 * for the loaded_vmcss_on_cpu list is empty!
3132 */
3133 crash_enable_local_vmclear(cpu);
3134
6aa8b732 3135 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3136
3137 test_bits = FEATURE_CONTROL_LOCKED;
3138 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3139 if (tboot_enabled())
3140 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3141
3142 if ((old & test_bits) != test_bits) {
6aa8b732 3143 /* enable and lock */
cafd6659
SW
3144 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3145 }
375074cc 3146 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3147
4610c9cc
DX
3148 if (vmm_exclusive) {
3149 kvm_cpu_vmxon(phys_addr);
3150 ept_sync_global();
3151 }
10474ae8 3152
89cbc767 3153 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3154
10474ae8 3155 return 0;
6aa8b732
AK
3156}
3157
d462b819 3158static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3159{
3160 int cpu = raw_smp_processor_id();
d462b819 3161 struct loaded_vmcs *v, *n;
543e4243 3162
d462b819
NHE
3163 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3164 loaded_vmcss_on_cpu_link)
3165 __loaded_vmcs_clear(v);
543e4243
AK
3166}
3167
710ff4a8
EH
3168
3169/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3170 * tricks.
3171 */
3172static void kvm_cpu_vmxoff(void)
6aa8b732 3173{
4ecac3fd 3174 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
3175}
3176
13a34e06 3177static void hardware_disable(void)
710ff4a8 3178{
4610c9cc 3179 if (vmm_exclusive) {
d462b819 3180 vmclear_local_loaded_vmcss();
4610c9cc
DX
3181 kvm_cpu_vmxoff();
3182 }
375074cc 3183 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3184}
3185
1c3d14fe 3186static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3187 u32 msr, u32 *result)
1c3d14fe
YS
3188{
3189 u32 vmx_msr_low, vmx_msr_high;
3190 u32 ctl = ctl_min | ctl_opt;
3191
3192 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3193
3194 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3195 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3196
3197 /* Ensure minimum (required) set of control bits are supported. */
3198 if (ctl_min & ~ctl)
002c7f7c 3199 return -EIO;
1c3d14fe
YS
3200
3201 *result = ctl;
3202 return 0;
3203}
3204
110312c8
AK
3205static __init bool allow_1_setting(u32 msr, u32 ctl)
3206{
3207 u32 vmx_msr_low, vmx_msr_high;
3208
3209 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3210 return vmx_msr_high & ctl;
3211}
3212
002c7f7c 3213static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3214{
3215 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3216 u32 min, opt, min2, opt2;
1c3d14fe
YS
3217 u32 _pin_based_exec_control = 0;
3218 u32 _cpu_based_exec_control = 0;
f78e0e2e 3219 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3220 u32 _vmexit_control = 0;
3221 u32 _vmentry_control = 0;
3222
10166744 3223 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3224#ifdef CONFIG_X86_64
3225 CPU_BASED_CR8_LOAD_EXITING |
3226 CPU_BASED_CR8_STORE_EXITING |
3227#endif
d56f546d
SY
3228 CPU_BASED_CR3_LOAD_EXITING |
3229 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3230 CPU_BASED_USE_IO_BITMAPS |
3231 CPU_BASED_MOV_DR_EXITING |
a7052897 3232 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3233 CPU_BASED_MWAIT_EXITING |
3234 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3235 CPU_BASED_INVLPG_EXITING |
3236 CPU_BASED_RDPMC_EXITING;
443381a8 3237
f78e0e2e 3238 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3239 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3240 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3241 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3242 &_cpu_based_exec_control) < 0)
002c7f7c 3243 return -EIO;
6e5d865c
YS
3244#ifdef CONFIG_X86_64
3245 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3246 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3247 ~CPU_BASED_CR8_STORE_EXITING;
3248#endif
f78e0e2e 3249 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3250 min2 = 0;
3251 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3252 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3253 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3254 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3255 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3256 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3257 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3258 SECONDARY_EXEC_RDTSCP |
83d4c286 3259 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3260 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3261 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3262 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3263 SECONDARY_EXEC_XSAVES |
8b3e34e4 3264 SECONDARY_EXEC_ENABLE_PML |
64903d61
HZ
3265 SECONDARY_EXEC_PCOMMIT |
3266 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3267 if (adjust_vmx_controls(min2, opt2,
3268 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3269 &_cpu_based_2nd_exec_control) < 0)
3270 return -EIO;
3271 }
3272#ifndef CONFIG_X86_64
3273 if (!(_cpu_based_2nd_exec_control &
3274 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3275 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3276#endif
83d4c286
YZ
3277
3278 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3279 _cpu_based_2nd_exec_control &= ~(
8d14695f 3280 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3281 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3282 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3283
d56f546d 3284 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3285 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3286 enabled */
5fff7d27
GN
3287 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3288 CPU_BASED_CR3_STORE_EXITING |
3289 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3290 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3291 vmx_capability.ept, vmx_capability.vpid);
3292 }
1c3d14fe 3293
81908bf4 3294 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3295#ifdef CONFIG_X86_64
3296 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3297#endif
a547c6db 3298 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3299 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3300 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3301 &_vmexit_control) < 0)
002c7f7c 3302 return -EIO;
1c3d14fe 3303
01e439be
YZ
3304 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3305 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3306 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3307 &_pin_based_exec_control) < 0)
3308 return -EIO;
3309
3310 if (!(_cpu_based_2nd_exec_control &
3311 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3312 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3313 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3314
c845f9c6 3315 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3316 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3317 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3318 &_vmentry_control) < 0)
002c7f7c 3319 return -EIO;
6aa8b732 3320
c68876fd 3321 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3322
3323 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3324 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3325 return -EIO;
1c3d14fe
YS
3326
3327#ifdef CONFIG_X86_64
3328 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3329 if (vmx_msr_high & (1u<<16))
002c7f7c 3330 return -EIO;
1c3d14fe
YS
3331#endif
3332
3333 /* Require Write-Back (WB) memory type for VMCS accesses. */
3334 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3335 return -EIO;
1c3d14fe 3336
002c7f7c
YS
3337 vmcs_conf->size = vmx_msr_high & 0x1fff;
3338 vmcs_conf->order = get_order(vmcs_config.size);
3339 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3340
002c7f7c
YS
3341 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3342 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3343 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3344 vmcs_conf->vmexit_ctrl = _vmexit_control;
3345 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3346
110312c8
AK
3347 cpu_has_load_ia32_efer =
3348 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3349 VM_ENTRY_LOAD_IA32_EFER)
3350 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3351 VM_EXIT_LOAD_IA32_EFER);
3352
8bf00a52
GN
3353 cpu_has_load_perf_global_ctrl =
3354 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3355 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3356 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3357 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3358
3359 /*
3360 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3361 * but due to arrata below it can't be used. Workaround is to use
3362 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3363 *
3364 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3365 *
3366 * AAK155 (model 26)
3367 * AAP115 (model 30)
3368 * AAT100 (model 37)
3369 * BC86,AAY89,BD102 (model 44)
3370 * BA97 (model 46)
3371 *
3372 */
3373 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3374 switch (boot_cpu_data.x86_model) {
3375 case 26:
3376 case 30:
3377 case 37:
3378 case 44:
3379 case 46:
3380 cpu_has_load_perf_global_ctrl = false;
3381 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3382 "does not work properly. Using workaround\n");
3383 break;
3384 default:
3385 break;
3386 }
3387 }
3388
20300099
WL
3389 if (cpu_has_xsaves)
3390 rdmsrl(MSR_IA32_XSS, host_xss);
3391
1c3d14fe 3392 return 0;
c68876fd 3393}
6aa8b732
AK
3394
3395static struct vmcs *alloc_vmcs_cpu(int cpu)
3396{
3397 int node = cpu_to_node(cpu);
3398 struct page *pages;
3399 struct vmcs *vmcs;
3400
96db800f 3401 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3402 if (!pages)
3403 return NULL;
3404 vmcs = page_address(pages);
1c3d14fe
YS
3405 memset(vmcs, 0, vmcs_config.size);
3406 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3407 return vmcs;
3408}
3409
3410static struct vmcs *alloc_vmcs(void)
3411{
d3b2c338 3412 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3413}
3414
3415static void free_vmcs(struct vmcs *vmcs)
3416{
1c3d14fe 3417 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3418}
3419
d462b819
NHE
3420/*
3421 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3422 */
3423static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3424{
3425 if (!loaded_vmcs->vmcs)
3426 return;
3427 loaded_vmcs_clear(loaded_vmcs);
3428 free_vmcs(loaded_vmcs->vmcs);
3429 loaded_vmcs->vmcs = NULL;
3430}
3431
39959588 3432static void free_kvm_area(void)
6aa8b732
AK
3433{
3434 int cpu;
3435
3230bb47 3436 for_each_possible_cpu(cpu) {
6aa8b732 3437 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3438 per_cpu(vmxarea, cpu) = NULL;
3439 }
6aa8b732
AK
3440}
3441
fe2b201b
BD
3442static void init_vmcs_shadow_fields(void)
3443{
3444 int i, j;
3445
3446 /* No checks for read only fields yet */
3447
3448 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3449 switch (shadow_read_write_fields[i]) {
3450 case GUEST_BNDCFGS:
a87036ad 3451 if (!kvm_mpx_supported())
fe2b201b
BD
3452 continue;
3453 break;
3454 default:
3455 break;
3456 }
3457
3458 if (j < i)
3459 shadow_read_write_fields[j] =
3460 shadow_read_write_fields[i];
3461 j++;
3462 }
3463 max_shadow_read_write_fields = j;
3464
3465 /* shadowed fields guest access without vmexit */
3466 for (i = 0; i < max_shadow_read_write_fields; i++) {
3467 clear_bit(shadow_read_write_fields[i],
3468 vmx_vmwrite_bitmap);
3469 clear_bit(shadow_read_write_fields[i],
3470 vmx_vmread_bitmap);
3471 }
3472 for (i = 0; i < max_shadow_read_only_fields; i++)
3473 clear_bit(shadow_read_only_fields[i],
3474 vmx_vmread_bitmap);
3475}
3476
6aa8b732
AK
3477static __init int alloc_kvm_area(void)
3478{
3479 int cpu;
3480
3230bb47 3481 for_each_possible_cpu(cpu) {
6aa8b732
AK
3482 struct vmcs *vmcs;
3483
3484 vmcs = alloc_vmcs_cpu(cpu);
3485 if (!vmcs) {
3486 free_kvm_area();
3487 return -ENOMEM;
3488 }
3489
3490 per_cpu(vmxarea, cpu) = vmcs;
3491 }
3492 return 0;
3493}
3494
14168786
GN
3495static bool emulation_required(struct kvm_vcpu *vcpu)
3496{
3497 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3498}
3499
91b0aa2c 3500static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3501 struct kvm_segment *save)
6aa8b732 3502{
d99e4152
GN
3503 if (!emulate_invalid_guest_state) {
3504 /*
3505 * CS and SS RPL should be equal during guest entry according
3506 * to VMX spec, but in reality it is not always so. Since vcpu
3507 * is in the middle of the transition from real mode to
3508 * protected mode it is safe to assume that RPL 0 is a good
3509 * default value.
3510 */
3511 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3512 save->selector &= ~SEGMENT_RPL_MASK;
3513 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3514 save->s = 1;
6aa8b732 3515 }
d99e4152 3516 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3517}
3518
3519static void enter_pmode(struct kvm_vcpu *vcpu)
3520{
3521 unsigned long flags;
a89a8fb9 3522 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3523
d99e4152
GN
3524 /*
3525 * Update real mode segment cache. It may be not up-to-date if sement
3526 * register was written while vcpu was in a guest mode.
3527 */
3528 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3529 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3530 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3531 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3532 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3533 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3534
7ffd92c5 3535 vmx->rmode.vm86_active = 0;
6aa8b732 3536
2fb92db1
AK
3537 vmx_segment_cache_clear(vmx);
3538
f5f7b2fe 3539 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3540
3541 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3542 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3543 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3544 vmcs_writel(GUEST_RFLAGS, flags);
3545
66aee91a
RR
3546 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3547 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3548
3549 update_exception_bitmap(vcpu);
3550
91b0aa2c
GN
3551 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3552 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3553 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3554 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3555 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3556 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3557}
3558
f5f7b2fe 3559static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3560{
772e0318 3561 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3562 struct kvm_segment var = *save;
3563
3564 var.dpl = 0x3;
3565 if (seg == VCPU_SREG_CS)
3566 var.type = 0x3;
3567
3568 if (!emulate_invalid_guest_state) {
3569 var.selector = var.base >> 4;
3570 var.base = var.base & 0xffff0;
3571 var.limit = 0xffff;
3572 var.g = 0;
3573 var.db = 0;
3574 var.present = 1;
3575 var.s = 1;
3576 var.l = 0;
3577 var.unusable = 0;
3578 var.type = 0x3;
3579 var.avl = 0;
3580 if (save->base & 0xf)
3581 printk_once(KERN_WARNING "kvm: segment base is not "
3582 "paragraph aligned when entering "
3583 "protected mode (seg=%d)", seg);
3584 }
6aa8b732 3585
d99e4152
GN
3586 vmcs_write16(sf->selector, var.selector);
3587 vmcs_write32(sf->base, var.base);
3588 vmcs_write32(sf->limit, var.limit);
3589 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3590}
3591
3592static void enter_rmode(struct kvm_vcpu *vcpu)
3593{
3594 unsigned long flags;
a89a8fb9 3595 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3596
f5f7b2fe
AK
3597 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3598 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3599 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3600 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3601 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3602 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3603 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3604
7ffd92c5 3605 vmx->rmode.vm86_active = 1;
6aa8b732 3606
776e58ea
GN
3607 /*
3608 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3609 * vcpu. Warn the user that an update is overdue.
776e58ea 3610 */
4918c6ca 3611 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3612 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3613 "called before entering vcpu\n");
776e58ea 3614
2fb92db1
AK
3615 vmx_segment_cache_clear(vmx);
3616
4918c6ca 3617 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3618 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3619 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3620
3621 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3622 vmx->rmode.save_rflags = flags;
6aa8b732 3623
053de044 3624 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3625
3626 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3627 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3628 update_exception_bitmap(vcpu);
3629
d99e4152
GN
3630 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3631 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3632 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3633 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3634 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3635 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3636
8668a3c4 3637 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3638}
3639
401d10de
AS
3640static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3641{
3642 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3643 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3644
3645 if (!msr)
3646 return;
401d10de 3647
44ea2b17
AK
3648 /*
3649 * Force kernel_gs_base reloading before EFER changes, as control
3650 * of this msr depends on is_long_mode().
3651 */
3652 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3653 vcpu->arch.efer = efer;
401d10de 3654 if (efer & EFER_LMA) {
2961e876 3655 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3656 msr->data = efer;
3657 } else {
2961e876 3658 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3659
3660 msr->data = efer & ~EFER_LME;
3661 }
3662 setup_msrs(vmx);
3663}
3664
05b3e0c2 3665#ifdef CONFIG_X86_64
6aa8b732
AK
3666
3667static void enter_lmode(struct kvm_vcpu *vcpu)
3668{
3669 u32 guest_tr_ar;
3670
2fb92db1
AK
3671 vmx_segment_cache_clear(to_vmx(vcpu));
3672
6aa8b732 3673 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3674 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3675 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3676 __func__);
6aa8b732 3677 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3678 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3679 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3680 }
da38f438 3681 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3682}
3683
3684static void exit_lmode(struct kvm_vcpu *vcpu)
3685{
2961e876 3686 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3687 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3688}
3689
3690#endif
3691
dd5f5341 3692static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3693{
dd5f5341 3694 vpid_sync_context(vpid);
dd180b3e
XG
3695 if (enable_ept) {
3696 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3697 return;
4e1096d2 3698 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3699 }
2384d2b3
SY
3700}
3701
dd5f5341
WL
3702static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3703{
3704 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3705}
3706
e8467fda
AK
3707static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3708{
3709 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3710
3711 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3712 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3713}
3714
aff48baa
AK
3715static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3716{
3717 if (enable_ept && is_paging(vcpu))
3718 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3719 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3720}
3721
25c4c276 3722static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3723{
fc78f519
AK
3724 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3725
3726 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3727 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3728}
3729
1439442c
SY
3730static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3731{
d0d538b9
GN
3732 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3733
6de4f3ad
AK
3734 if (!test_bit(VCPU_EXREG_PDPTR,
3735 (unsigned long *)&vcpu->arch.regs_dirty))
3736 return;
3737
1439442c 3738 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3739 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3740 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3741 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3742 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3743 }
3744}
3745
8f5d549f
AK
3746static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3747{
d0d538b9
GN
3748 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3749
8f5d549f 3750 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3751 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3752 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3753 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3754 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3755 }
6de4f3ad
AK
3756
3757 __set_bit(VCPU_EXREG_PDPTR,
3758 (unsigned long *)&vcpu->arch.regs_avail);
3759 __set_bit(VCPU_EXREG_PDPTR,
3760 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3761}
3762
5e1746d6 3763static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3764
3765static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3766 unsigned long cr0,
3767 struct kvm_vcpu *vcpu)
3768{
5233dd51
MT
3769 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3770 vmx_decache_cr3(vcpu);
1439442c
SY
3771 if (!(cr0 & X86_CR0_PG)) {
3772 /* From paging/starting to nonpaging */
3773 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3774 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3775 (CPU_BASED_CR3_LOAD_EXITING |
3776 CPU_BASED_CR3_STORE_EXITING));
3777 vcpu->arch.cr0 = cr0;
fc78f519 3778 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3779 } else if (!is_paging(vcpu)) {
3780 /* From nonpaging to paging */
3781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3782 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3783 ~(CPU_BASED_CR3_LOAD_EXITING |
3784 CPU_BASED_CR3_STORE_EXITING));
3785 vcpu->arch.cr0 = cr0;
fc78f519 3786 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3787 }
95eb84a7
SY
3788
3789 if (!(cr0 & X86_CR0_WP))
3790 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3791}
3792
6aa8b732
AK
3793static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3794{
7ffd92c5 3795 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3796 unsigned long hw_cr0;
3797
5037878e 3798 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3799 if (enable_unrestricted_guest)
5037878e 3800 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3801 else {
5037878e 3802 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3803
218e763f
GN
3804 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3805 enter_pmode(vcpu);
6aa8b732 3806
218e763f
GN
3807 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3808 enter_rmode(vcpu);
3809 }
6aa8b732 3810
05b3e0c2 3811#ifdef CONFIG_X86_64
f6801dff 3812 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3813 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3814 enter_lmode(vcpu);
707d92fa 3815 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3816 exit_lmode(vcpu);
3817 }
3818#endif
3819
089d034e 3820 if (enable_ept)
1439442c
SY
3821 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3822
02daab21 3823 if (!vcpu->fpu_active)
81231c69 3824 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3825
6aa8b732 3826 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3827 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3828 vcpu->arch.cr0 = cr0;
14168786
GN
3829
3830 /* depends on vcpu->arch.cr0 to be set to a new value */
3831 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3832}
3833
1439442c
SY
3834static u64 construct_eptp(unsigned long root_hpa)
3835{
3836 u64 eptp;
3837
3838 /* TODO write the value reading from MSR */
3839 eptp = VMX_EPT_DEFAULT_MT |
3840 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3841 if (enable_ept_ad_bits)
3842 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3843 eptp |= (root_hpa & PAGE_MASK);
3844
3845 return eptp;
3846}
3847
6aa8b732
AK
3848static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3849{
1439442c
SY
3850 unsigned long guest_cr3;
3851 u64 eptp;
3852
3853 guest_cr3 = cr3;
089d034e 3854 if (enable_ept) {
1439442c
SY
3855 eptp = construct_eptp(cr3);
3856 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3857 if (is_paging(vcpu) || is_guest_mode(vcpu))
3858 guest_cr3 = kvm_read_cr3(vcpu);
3859 else
3860 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3861 ept_load_pdptrs(vcpu);
1439442c
SY
3862 }
3863
2384d2b3 3864 vmx_flush_tlb(vcpu);
1439442c 3865 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3866}
3867
5e1746d6 3868static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3869{
085e68ee
BS
3870 /*
3871 * Pass through host's Machine Check Enable value to hw_cr4, which
3872 * is in force while we are in guest mode. Do not let guests control
3873 * this bit, even if host CR4.MCE == 0.
3874 */
3875 unsigned long hw_cr4 =
3876 (cr4_read_shadow() & X86_CR4_MCE) |
3877 (cr4 & ~X86_CR4_MCE) |
3878 (to_vmx(vcpu)->rmode.vm86_active ?
3879 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 3880
5e1746d6
NHE
3881 if (cr4 & X86_CR4_VMXE) {
3882 /*
3883 * To use VMXON (and later other VMX instructions), a guest
3884 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3885 * So basically the check on whether to allow nested VMX
3886 * is here.
3887 */
3888 if (!nested_vmx_allowed(vcpu))
3889 return 1;
1a0d74e6
JK
3890 }
3891 if (to_vmx(vcpu)->nested.vmxon &&
3892 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3893 return 1;
3894
ad312c7c 3895 vcpu->arch.cr4 = cr4;
bc23008b
AK
3896 if (enable_ept) {
3897 if (!is_paging(vcpu)) {
3898 hw_cr4 &= ~X86_CR4_PAE;
3899 hw_cr4 |= X86_CR4_PSE;
3900 } else if (!(cr4 & X86_CR4_PAE)) {
3901 hw_cr4 &= ~X86_CR4_PAE;
3902 }
3903 }
1439442c 3904
656ec4a4
RK
3905 if (!enable_unrestricted_guest && !is_paging(vcpu))
3906 /*
ddba2628
HH
3907 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3908 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3909 * to be manually disabled when guest switches to non-paging
3910 * mode.
3911 *
3912 * If !enable_unrestricted_guest, the CPU is always running
3913 * with CR0.PG=1 and CR4 needs to be modified.
3914 * If enable_unrestricted_guest, the CPU automatically
3915 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 3916 */
ddba2628 3917 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 3918
1439442c
SY
3919 vmcs_writel(CR4_READ_SHADOW, cr4);
3920 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3921 return 0;
6aa8b732
AK
3922}
3923
6aa8b732
AK
3924static void vmx_get_segment(struct kvm_vcpu *vcpu,
3925 struct kvm_segment *var, int seg)
3926{
a9179499 3927 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3928 u32 ar;
3929
c6ad1153 3930 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3931 *var = vmx->rmode.segs[seg];
a9179499 3932 if (seg == VCPU_SREG_TR
2fb92db1 3933 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3934 return;
1390a28b
AK
3935 var->base = vmx_read_guest_seg_base(vmx, seg);
3936 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3937 return;
a9179499 3938 }
2fb92db1
AK
3939 var->base = vmx_read_guest_seg_base(vmx, seg);
3940 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3941 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3942 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3943 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3944 var->type = ar & 15;
3945 var->s = (ar >> 4) & 1;
3946 var->dpl = (ar >> 5) & 3;
03617c18
GN
3947 /*
3948 * Some userspaces do not preserve unusable property. Since usable
3949 * segment has to be present according to VMX spec we can use present
3950 * property to amend userspace bug by making unusable segment always
3951 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3952 * segment as unusable.
3953 */
3954 var->present = !var->unusable;
6aa8b732
AK
3955 var->avl = (ar >> 12) & 1;
3956 var->l = (ar >> 13) & 1;
3957 var->db = (ar >> 14) & 1;
3958 var->g = (ar >> 15) & 1;
6aa8b732
AK
3959}
3960
a9179499
AK
3961static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3962{
a9179499
AK
3963 struct kvm_segment s;
3964
3965 if (to_vmx(vcpu)->rmode.vm86_active) {
3966 vmx_get_segment(vcpu, &s, seg);
3967 return s.base;
3968 }
2fb92db1 3969 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3970}
3971
b09408d0 3972static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3973{
b09408d0
MT
3974 struct vcpu_vmx *vmx = to_vmx(vcpu);
3975
ae9fedc7 3976 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3977 return 0;
ae9fedc7
PB
3978 else {
3979 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 3980 return VMX_AR_DPL(ar);
69c73028 3981 }
69c73028
AK
3982}
3983
653e3108 3984static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3985{
6aa8b732
AK
3986 u32 ar;
3987
f0495f9b 3988 if (var->unusable || !var->present)
6aa8b732
AK
3989 ar = 1 << 16;
3990 else {
3991 ar = var->type & 15;
3992 ar |= (var->s & 1) << 4;
3993 ar |= (var->dpl & 3) << 5;
3994 ar |= (var->present & 1) << 7;
3995 ar |= (var->avl & 1) << 12;
3996 ar |= (var->l & 1) << 13;
3997 ar |= (var->db & 1) << 14;
3998 ar |= (var->g & 1) << 15;
3999 }
653e3108
AK
4000
4001 return ar;
4002}
4003
4004static void vmx_set_segment(struct kvm_vcpu *vcpu,
4005 struct kvm_segment *var, int seg)
4006{
7ffd92c5 4007 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4008 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4009
2fb92db1
AK
4010 vmx_segment_cache_clear(vmx);
4011
1ecd50a9
GN
4012 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4013 vmx->rmode.segs[seg] = *var;
4014 if (seg == VCPU_SREG_TR)
4015 vmcs_write16(sf->selector, var->selector);
4016 else if (var->s)
4017 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4018 goto out;
653e3108 4019 }
1ecd50a9 4020
653e3108
AK
4021 vmcs_writel(sf->base, var->base);
4022 vmcs_write32(sf->limit, var->limit);
4023 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4024
4025 /*
4026 * Fix the "Accessed" bit in AR field of segment registers for older
4027 * qemu binaries.
4028 * IA32 arch specifies that at the time of processor reset the
4029 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4030 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4031 * state vmexit when "unrestricted guest" mode is turned on.
4032 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4033 * tree. Newer qemu binaries with that qemu fix would not need this
4034 * kvm hack.
4035 */
4036 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4037 var->type |= 0x1; /* Accessed */
3a624e29 4038
f924d66d 4039 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4040
4041out:
98eb2f8b 4042 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4043}
4044
6aa8b732
AK
4045static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4046{
2fb92db1 4047 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4048
4049 *db = (ar >> 14) & 1;
4050 *l = (ar >> 13) & 1;
4051}
4052
89a27f4d 4053static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4054{
89a27f4d
GN
4055 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4056 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4057}
4058
89a27f4d 4059static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4060{
89a27f4d
GN
4061 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4062 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4063}
4064
89a27f4d 4065static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4066{
89a27f4d
GN
4067 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4068 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4069}
4070
89a27f4d 4071static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4072{
89a27f4d
GN
4073 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4074 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4075}
4076
648dfaa7
MG
4077static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4078{
4079 struct kvm_segment var;
4080 u32 ar;
4081
4082 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4083 var.dpl = 0x3;
0647f4aa
GN
4084 if (seg == VCPU_SREG_CS)
4085 var.type = 0x3;
648dfaa7
MG
4086 ar = vmx_segment_access_rights(&var);
4087
4088 if (var.base != (var.selector << 4))
4089 return false;
89efbed0 4090 if (var.limit != 0xffff)
648dfaa7 4091 return false;
07f42f5f 4092 if (ar != 0xf3)
648dfaa7
MG
4093 return false;
4094
4095 return true;
4096}
4097
4098static bool code_segment_valid(struct kvm_vcpu *vcpu)
4099{
4100 struct kvm_segment cs;
4101 unsigned int cs_rpl;
4102
4103 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4104 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4105
1872a3f4
AK
4106 if (cs.unusable)
4107 return false;
4d283ec9 4108 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4109 return false;
4110 if (!cs.s)
4111 return false;
4d283ec9 4112 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4113 if (cs.dpl > cs_rpl)
4114 return false;
1872a3f4 4115 } else {
648dfaa7
MG
4116 if (cs.dpl != cs_rpl)
4117 return false;
4118 }
4119 if (!cs.present)
4120 return false;
4121
4122 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4123 return true;
4124}
4125
4126static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4127{
4128 struct kvm_segment ss;
4129 unsigned int ss_rpl;
4130
4131 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4132 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4133
1872a3f4
AK
4134 if (ss.unusable)
4135 return true;
4136 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4137 return false;
4138 if (!ss.s)
4139 return false;
4140 if (ss.dpl != ss_rpl) /* DPL != RPL */
4141 return false;
4142 if (!ss.present)
4143 return false;
4144
4145 return true;
4146}
4147
4148static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4149{
4150 struct kvm_segment var;
4151 unsigned int rpl;
4152
4153 vmx_get_segment(vcpu, &var, seg);
b32a9918 4154 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4155
1872a3f4
AK
4156 if (var.unusable)
4157 return true;
648dfaa7
MG
4158 if (!var.s)
4159 return false;
4160 if (!var.present)
4161 return false;
4d283ec9 4162 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4163 if (var.dpl < rpl) /* DPL < RPL */
4164 return false;
4165 }
4166
4167 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4168 * rights flags
4169 */
4170 return true;
4171}
4172
4173static bool tr_valid(struct kvm_vcpu *vcpu)
4174{
4175 struct kvm_segment tr;
4176
4177 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4178
1872a3f4
AK
4179 if (tr.unusable)
4180 return false;
b32a9918 4181 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4182 return false;
1872a3f4 4183 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4184 return false;
4185 if (!tr.present)
4186 return false;
4187
4188 return true;
4189}
4190
4191static bool ldtr_valid(struct kvm_vcpu *vcpu)
4192{
4193 struct kvm_segment ldtr;
4194
4195 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4196
1872a3f4
AK
4197 if (ldtr.unusable)
4198 return true;
b32a9918 4199 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4200 return false;
4201 if (ldtr.type != 2)
4202 return false;
4203 if (!ldtr.present)
4204 return false;
4205
4206 return true;
4207}
4208
4209static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4210{
4211 struct kvm_segment cs, ss;
4212
4213 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4214 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4215
b32a9918
NA
4216 return ((cs.selector & SEGMENT_RPL_MASK) ==
4217 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4218}
4219
4220/*
4221 * Check if guest state is valid. Returns true if valid, false if
4222 * not.
4223 * We assume that registers are always usable
4224 */
4225static bool guest_state_valid(struct kvm_vcpu *vcpu)
4226{
c5e97c80
GN
4227 if (enable_unrestricted_guest)
4228 return true;
4229
648dfaa7 4230 /* real mode guest state checks */
f13882d8 4231 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4232 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4233 return false;
4234 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4235 return false;
4236 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4237 return false;
4238 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4239 return false;
4240 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4241 return false;
4242 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4243 return false;
4244 } else {
4245 /* protected mode guest state checks */
4246 if (!cs_ss_rpl_check(vcpu))
4247 return false;
4248 if (!code_segment_valid(vcpu))
4249 return false;
4250 if (!stack_segment_valid(vcpu))
4251 return false;
4252 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4253 return false;
4254 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4255 return false;
4256 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4257 return false;
4258 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4259 return false;
4260 if (!tr_valid(vcpu))
4261 return false;
4262 if (!ldtr_valid(vcpu))
4263 return false;
4264 }
4265 /* TODO:
4266 * - Add checks on RIP
4267 * - Add checks on RFLAGS
4268 */
4269
4270 return true;
4271}
4272
d77c26fc 4273static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4274{
40dcaa9f 4275 gfn_t fn;
195aefde 4276 u16 data = 0;
1f755a82 4277 int idx, r;
6aa8b732 4278
40dcaa9f 4279 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4280 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4281 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4282 if (r < 0)
10589a46 4283 goto out;
195aefde 4284 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4285 r = kvm_write_guest_page(kvm, fn++, &data,
4286 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4287 if (r < 0)
10589a46 4288 goto out;
195aefde
IE
4289 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4290 if (r < 0)
10589a46 4291 goto out;
195aefde
IE
4292 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4293 if (r < 0)
10589a46 4294 goto out;
195aefde 4295 data = ~0;
10589a46
MT
4296 r = kvm_write_guest_page(kvm, fn, &data,
4297 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4298 sizeof(u8));
10589a46 4299out:
40dcaa9f 4300 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4301 return r;
6aa8b732
AK
4302}
4303
b7ebfb05
SY
4304static int init_rmode_identity_map(struct kvm *kvm)
4305{
f51770ed 4306 int i, idx, r = 0;
ba049e93 4307 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4308 u32 tmp;
4309
089d034e 4310 if (!enable_ept)
f51770ed 4311 return 0;
a255d479
TC
4312
4313 /* Protect kvm->arch.ept_identity_pagetable_done. */
4314 mutex_lock(&kvm->slots_lock);
4315
f51770ed 4316 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4317 goto out2;
a255d479 4318
b927a3ce 4319 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4320
4321 r = alloc_identity_pagetable(kvm);
f51770ed 4322 if (r < 0)
a255d479
TC
4323 goto out2;
4324
40dcaa9f 4325 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4326 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4327 if (r < 0)
4328 goto out;
4329 /* Set up identity-mapping pagetable for EPT in real mode */
4330 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4331 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4332 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4333 r = kvm_write_guest_page(kvm, identity_map_pfn,
4334 &tmp, i * sizeof(tmp), sizeof(tmp));
4335 if (r < 0)
4336 goto out;
4337 }
4338 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4339
b7ebfb05 4340out:
40dcaa9f 4341 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4342
4343out2:
4344 mutex_unlock(&kvm->slots_lock);
f51770ed 4345 return r;
b7ebfb05
SY
4346}
4347
6aa8b732
AK
4348static void seg_setup(int seg)
4349{
772e0318 4350 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4351 unsigned int ar;
6aa8b732
AK
4352
4353 vmcs_write16(sf->selector, 0);
4354 vmcs_writel(sf->base, 0);
4355 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4356 ar = 0x93;
4357 if (seg == VCPU_SREG_CS)
4358 ar |= 0x08; /* code segment */
3a624e29
NK
4359
4360 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4361}
4362
f78e0e2e
SY
4363static int alloc_apic_access_page(struct kvm *kvm)
4364{
4484141a 4365 struct page *page;
f78e0e2e
SY
4366 int r = 0;
4367
79fac95e 4368 mutex_lock(&kvm->slots_lock);
c24ae0dc 4369 if (kvm->arch.apic_access_page_done)
f78e0e2e 4370 goto out;
1d8007bd
PB
4371 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4372 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4373 if (r)
4374 goto out;
72dc67a6 4375
73a6d941 4376 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4377 if (is_error_page(page)) {
4378 r = -EFAULT;
4379 goto out;
4380 }
4381
c24ae0dc
TC
4382 /*
4383 * Do not pin the page in memory, so that memory hot-unplug
4384 * is able to migrate it.
4385 */
4386 put_page(page);
4387 kvm->arch.apic_access_page_done = true;
f78e0e2e 4388out:
79fac95e 4389 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4390 return r;
4391}
4392
b7ebfb05
SY
4393static int alloc_identity_pagetable(struct kvm *kvm)
4394{
a255d479
TC
4395 /* Called with kvm->slots_lock held. */
4396
b7ebfb05
SY
4397 int r = 0;
4398
a255d479
TC
4399 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4400
1d8007bd
PB
4401 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4402 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4403
b7ebfb05
SY
4404 return r;
4405}
4406
991e7a0e 4407static int allocate_vpid(void)
2384d2b3
SY
4408{
4409 int vpid;
4410
919818ab 4411 if (!enable_vpid)
991e7a0e 4412 return 0;
2384d2b3
SY
4413 spin_lock(&vmx_vpid_lock);
4414 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4415 if (vpid < VMX_NR_VPIDS)
2384d2b3 4416 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4417 else
4418 vpid = 0;
2384d2b3 4419 spin_unlock(&vmx_vpid_lock);
991e7a0e 4420 return vpid;
2384d2b3
SY
4421}
4422
991e7a0e 4423static void free_vpid(int vpid)
cdbecfc3 4424{
991e7a0e 4425 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4426 return;
4427 spin_lock(&vmx_vpid_lock);
991e7a0e 4428 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4429 spin_unlock(&vmx_vpid_lock);
4430}
4431
8d14695f
YZ
4432#define MSR_TYPE_R 1
4433#define MSR_TYPE_W 2
4434static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4435 u32 msr, int type)
25c5f225 4436{
3e7c73e9 4437 int f = sizeof(unsigned long);
25c5f225
SY
4438
4439 if (!cpu_has_vmx_msr_bitmap())
4440 return;
4441
4442 /*
4443 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4444 * have the write-low and read-high bitmap offsets the wrong way round.
4445 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4446 */
25c5f225 4447 if (msr <= 0x1fff) {
8d14695f
YZ
4448 if (type & MSR_TYPE_R)
4449 /* read-low */
4450 __clear_bit(msr, msr_bitmap + 0x000 / f);
4451
4452 if (type & MSR_TYPE_W)
4453 /* write-low */
4454 __clear_bit(msr, msr_bitmap + 0x800 / f);
4455
25c5f225
SY
4456 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4457 msr &= 0x1fff;
8d14695f
YZ
4458 if (type & MSR_TYPE_R)
4459 /* read-high */
4460 __clear_bit(msr, msr_bitmap + 0x400 / f);
4461
4462 if (type & MSR_TYPE_W)
4463 /* write-high */
4464 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4465
4466 }
4467}
4468
4469static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4470 u32 msr, int type)
4471{
4472 int f = sizeof(unsigned long);
4473
4474 if (!cpu_has_vmx_msr_bitmap())
4475 return;
4476
4477 /*
4478 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4479 * have the write-low and read-high bitmap offsets the wrong way round.
4480 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4481 */
4482 if (msr <= 0x1fff) {
4483 if (type & MSR_TYPE_R)
4484 /* read-low */
4485 __set_bit(msr, msr_bitmap + 0x000 / f);
4486
4487 if (type & MSR_TYPE_W)
4488 /* write-low */
4489 __set_bit(msr, msr_bitmap + 0x800 / f);
4490
4491 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4492 msr &= 0x1fff;
4493 if (type & MSR_TYPE_R)
4494 /* read-high */
4495 __set_bit(msr, msr_bitmap + 0x400 / f);
4496
4497 if (type & MSR_TYPE_W)
4498 /* write-high */
4499 __set_bit(msr, msr_bitmap + 0xc00 / f);
4500
25c5f225 4501 }
25c5f225
SY
4502}
4503
f2b93280
WV
4504/*
4505 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4506 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4507 */
4508static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4509 unsigned long *msr_bitmap_nested,
4510 u32 msr, int type)
4511{
4512 int f = sizeof(unsigned long);
4513
4514 if (!cpu_has_vmx_msr_bitmap()) {
4515 WARN_ON(1);
4516 return;
4517 }
4518
4519 /*
4520 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4521 * have the write-low and read-high bitmap offsets the wrong way round.
4522 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4523 */
4524 if (msr <= 0x1fff) {
4525 if (type & MSR_TYPE_R &&
4526 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4527 /* read-low */
4528 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4529
4530 if (type & MSR_TYPE_W &&
4531 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4532 /* write-low */
4533 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4534
4535 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4536 msr &= 0x1fff;
4537 if (type & MSR_TYPE_R &&
4538 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4539 /* read-high */
4540 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4541
4542 if (type & MSR_TYPE_W &&
4543 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4544 /* write-high */
4545 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4546
4547 }
4548}
4549
5897297b
AK
4550static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4551{
4552 if (!longmode_only)
8d14695f
YZ
4553 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4554 msr, MSR_TYPE_R | MSR_TYPE_W);
4555 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4556 msr, MSR_TYPE_R | MSR_TYPE_W);
4557}
4558
4559static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4560{
4561 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4562 msr, MSR_TYPE_R);
4563 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4564 msr, MSR_TYPE_R);
4565}
4566
4567static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4568{
4569 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4570 msr, MSR_TYPE_R);
4571 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4572 msr, MSR_TYPE_R);
4573}
4574
4575static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4576{
4577 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4578 msr, MSR_TYPE_W);
4579 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4580 msr, MSR_TYPE_W);
5897297b
AK
4581}
4582
d62caabb 4583static bool vmx_get_enable_apicv(void)
d50ab6c1 4584{
d62caabb 4585 return enable_apicv;
d50ab6c1
PB
4586}
4587
705699a1
WV
4588static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4589{
4590 struct vcpu_vmx *vmx = to_vmx(vcpu);
4591 int max_irr;
4592 void *vapic_page;
4593 u16 status;
4594
4595 if (vmx->nested.pi_desc &&
4596 vmx->nested.pi_pending) {
4597 vmx->nested.pi_pending = false;
4598 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4599 return 0;
4600
4601 max_irr = find_last_bit(
4602 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4603
4604 if (max_irr == 256)
4605 return 0;
4606
4607 vapic_page = kmap(vmx->nested.virtual_apic_page);
4608 if (!vapic_page) {
4609 WARN_ON(1);
4610 return -ENOMEM;
4611 }
4612 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4613 kunmap(vmx->nested.virtual_apic_page);
4614
4615 status = vmcs_read16(GUEST_INTR_STATUS);
4616 if ((u8)max_irr > ((u8)status & 0xff)) {
4617 status &= ~0xff;
4618 status |= (u8)max_irr;
4619 vmcs_write16(GUEST_INTR_STATUS, status);
4620 }
4621 }
4622 return 0;
4623}
4624
21bc8dc5
RK
4625static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4626{
4627#ifdef CONFIG_SMP
4628 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4629 struct vcpu_vmx *vmx = to_vmx(vcpu);
4630
4631 /*
4632 * Currently, we don't support urgent interrupt,
4633 * all interrupts are recognized as non-urgent
4634 * interrupt, so we cannot post interrupts when
4635 * 'SN' is set.
4636 *
4637 * If the vcpu is in guest mode, it means it is
4638 * running instead of being scheduled out and
4639 * waiting in the run queue, and that's the only
4640 * case when 'SN' is set currently, warning if
4641 * 'SN' is set.
4642 */
4643 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4644
21bc8dc5
RK
4645 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4646 POSTED_INTR_VECTOR);
4647 return true;
4648 }
4649#endif
4650 return false;
4651}
4652
705699a1
WV
4653static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4654 int vector)
4655{
4656 struct vcpu_vmx *vmx = to_vmx(vcpu);
4657
4658 if (is_guest_mode(vcpu) &&
4659 vector == vmx->nested.posted_intr_nv) {
4660 /* the PIR and ON have been set by L1. */
21bc8dc5 4661 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4662 /*
4663 * If a posted intr is not recognized by hardware,
4664 * we will accomplish it in the next vmentry.
4665 */
4666 vmx->nested.pi_pending = true;
4667 kvm_make_request(KVM_REQ_EVENT, vcpu);
4668 return 0;
4669 }
4670 return -1;
4671}
a20ed54d
YZ
4672/*
4673 * Send interrupt to vcpu via posted interrupt way.
4674 * 1. If target vcpu is running(non-root mode), send posted interrupt
4675 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4676 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4677 * interrupt from PIR in next vmentry.
4678 */
4679static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4680{
4681 struct vcpu_vmx *vmx = to_vmx(vcpu);
4682 int r;
4683
705699a1
WV
4684 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4685 if (!r)
4686 return;
4687
a20ed54d
YZ
4688 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4689 return;
4690
4691 r = pi_test_and_set_on(&vmx->pi_desc);
4692 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4693 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4694 kvm_vcpu_kick(vcpu);
4695}
4696
4697static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4698{
4699 struct vcpu_vmx *vmx = to_vmx(vcpu);
4700
4701 if (!pi_test_and_clear_on(&vmx->pi_desc))
4702 return;
4703
4704 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4705}
4706
a3a8ff8e
NHE
4707/*
4708 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4709 * will not change in the lifetime of the guest.
4710 * Note that host-state that does change is set elsewhere. E.g., host-state
4711 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4712 */
a547c6db 4713static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4714{
4715 u32 low32, high32;
4716 unsigned long tmpl;
4717 struct desc_ptr dt;
d974baa3 4718 unsigned long cr4;
a3a8ff8e 4719
b1a74bf8 4720 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4721 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4722
d974baa3 4723 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4724 cr4 = cr4_read_shadow();
d974baa3
AL
4725 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4726 vmx->host_state.vmcs_host_cr4 = cr4;
4727
a3a8ff8e 4728 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4729#ifdef CONFIG_X86_64
4730 /*
4731 * Load null selectors, so we can avoid reloading them in
4732 * __vmx_load_host_state(), in case userspace uses the null selectors
4733 * too (the expected case).
4734 */
4735 vmcs_write16(HOST_DS_SELECTOR, 0);
4736 vmcs_write16(HOST_ES_SELECTOR, 0);
4737#else
a3a8ff8e
NHE
4738 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4739 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4740#endif
a3a8ff8e
NHE
4741 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4742 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4743
4744 native_store_idt(&dt);
4745 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4746 vmx->host_idt_base = dt.address;
a3a8ff8e 4747
83287ea4 4748 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4749
4750 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4751 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4752 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4753 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4754
4755 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4756 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4757 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4758 }
4759}
4760
bf8179a0
NHE
4761static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4762{
4763 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4764 if (enable_ept)
4765 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4766 if (is_guest_mode(&vmx->vcpu))
4767 vmx->vcpu.arch.cr4_guest_owned_bits &=
4768 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4769 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4770}
4771
01e439be
YZ
4772static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4773{
4774 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4775
d62caabb 4776 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be
YZ
4777 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4778 return pin_based_exec_ctrl;
4779}
4780
d62caabb
AS
4781static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4782{
4783 struct vcpu_vmx *vmx = to_vmx(vcpu);
4784
4785 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4786}
4787
bf8179a0
NHE
4788static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4789{
4790 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4791
4792 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4793 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4794
35754c98 4795 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
4796 exec_control &= ~CPU_BASED_TPR_SHADOW;
4797#ifdef CONFIG_X86_64
4798 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4799 CPU_BASED_CR8_LOAD_EXITING;
4800#endif
4801 }
4802 if (!enable_ept)
4803 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4804 CPU_BASED_CR3_LOAD_EXITING |
4805 CPU_BASED_INVLPG_EXITING;
4806 return exec_control;
4807}
4808
4809static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4810{
4811 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 4812 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
4813 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4814 if (vmx->vpid == 0)
4815 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4816 if (!enable_ept) {
4817 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4818 enable_unrestricted_guest = 0;
ad756a16
MJ
4819 /* Enable INVPCID for non-ept guests may cause performance regression. */
4820 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4821 }
4822 if (!enable_unrestricted_guest)
4823 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4824 if (!ple_gap)
4825 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 4826 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
4827 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4828 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4829 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4830 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4831 (handle_vmptrld).
4832 We can NOT enable shadow_vmcs here because we don't have yet
4833 a current VMCS12
4834 */
4835 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
4836
4837 if (!enable_pml)
4838 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 4839
8b3e34e4
XG
4840 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4841 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4842
bf8179a0
NHE
4843 return exec_control;
4844}
4845
ce88decf
XG
4846static void ept_set_mmio_spte_mask(void)
4847{
4848 /*
4849 * EPT Misconfigurations can be generated if the value of bits 2:0
4850 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4851 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4852 * spte.
4853 */
885032b9 4854 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4855}
4856
f53cd63c 4857#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4858/*
4859 * Sets up the vmcs for emulated real mode.
4860 */
8b9cf98c 4861static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4862{
2e4ce7f5 4863#ifdef CONFIG_X86_64
6aa8b732 4864 unsigned long a;
2e4ce7f5 4865#endif
6aa8b732 4866 int i;
6aa8b732 4867
6aa8b732 4868 /* I/O */
3e7c73e9
AK
4869 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4870 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4871
4607c2d7
AG
4872 if (enable_shadow_vmcs) {
4873 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4874 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4875 }
25c5f225 4876 if (cpu_has_vmx_msr_bitmap())
5897297b 4877 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4878
6aa8b732
AK
4879 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4880
6aa8b732 4881 /* Control */
01e439be 4882 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4883
bf8179a0 4884 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4885
8b3e34e4 4886 if (cpu_has_secondary_exec_ctrls())
bf8179a0
NHE
4887 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4888 vmx_secondary_exec_control(vmx));
f78e0e2e 4889
d62caabb 4890 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
4891 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4892 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4893 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4894 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4895
4896 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 4897
0bcf261c 4898 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 4899 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4900 }
4901
4b8d54f9
ZE
4902 if (ple_gap) {
4903 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4904 vmx->ple_window = ple_window;
4905 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4906 }
4907
c3707958
XG
4908 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4910 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4911
9581d442
AK
4912 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4913 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4914 vmx_set_constant_host_state(vmx);
05b3e0c2 4915#ifdef CONFIG_X86_64
6aa8b732
AK
4916 rdmsrl(MSR_FS_BASE, a);
4917 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4918 rdmsrl(MSR_GS_BASE, a);
4919 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4920#else
4921 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4922 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4923#endif
4924
2cc51560
ED
4925 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4926 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4927 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4928 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4929 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4930
74545705
RK
4931 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4932 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 4933
03916db9 4934 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4935 u32 index = vmx_msr_index[i];
4936 u32 data_low, data_high;
a2fa3e9f 4937 int j = vmx->nmsrs;
6aa8b732
AK
4938
4939 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4940 continue;
432bd6cb
AK
4941 if (wrmsr_safe(index, data_low, data_high) < 0)
4942 continue;
26bb0981
AK
4943 vmx->guest_msrs[j].index = i;
4944 vmx->guest_msrs[j].data = 0;
d5696725 4945 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4946 ++vmx->nmsrs;
6aa8b732 4947 }
6aa8b732 4948
2961e876
GN
4949
4950 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4951
4952 /* 22.2.1, 20.8.1 */
2961e876 4953 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4954
e00c8cf2 4955 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4956 set_cr4_guest_host_mask(vmx);
e00c8cf2 4957
f53cd63c
WL
4958 if (vmx_xsaves_supported())
4959 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4960
e00c8cf2
AK
4961 return 0;
4962}
4963
d28bc9dd 4964static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
4965{
4966 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4967 struct msr_data apic_base_msr;
d28bc9dd 4968 u64 cr0;
e00c8cf2 4969
7ffd92c5 4970 vmx->rmode.vm86_active = 0;
e00c8cf2 4971
3b86cd99
JK
4972 vmx->soft_vnmi_blocked = 0;
4973
ad312c7c 4974 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
4975 kvm_set_cr8(vcpu, 0);
4976
4977 if (!init_event) {
4978 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4979 MSR_IA32_APICBASE_ENABLE;
4980 if (kvm_vcpu_is_reset_bsp(vcpu))
4981 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4982 apic_base_msr.host_initiated = true;
4983 kvm_set_apic_base(vcpu, &apic_base_msr);
4984 }
e00c8cf2 4985
2fb92db1
AK
4986 vmx_segment_cache_clear(vmx);
4987
5706be0d 4988 seg_setup(VCPU_SREG_CS);
66450a21 4989 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 4990 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
4991
4992 seg_setup(VCPU_SREG_DS);
4993 seg_setup(VCPU_SREG_ES);
4994 seg_setup(VCPU_SREG_FS);
4995 seg_setup(VCPU_SREG_GS);
4996 seg_setup(VCPU_SREG_SS);
4997
4998 vmcs_write16(GUEST_TR_SELECTOR, 0);
4999 vmcs_writel(GUEST_TR_BASE, 0);
5000 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5001 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5002
5003 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5004 vmcs_writel(GUEST_LDTR_BASE, 0);
5005 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5006 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5007
d28bc9dd
NA
5008 if (!init_event) {
5009 vmcs_write32(GUEST_SYSENTER_CS, 0);
5010 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5011 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5012 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5013 }
e00c8cf2
AK
5014
5015 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5016 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5017
e00c8cf2
AK
5018 vmcs_writel(GUEST_GDTR_BASE, 0);
5019 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5020
5021 vmcs_writel(GUEST_IDTR_BASE, 0);
5022 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5023
443381a8 5024 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5025 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5026 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5027
e00c8cf2
AK
5028 setup_msrs(vmx);
5029
6aa8b732
AK
5030 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5031
d28bc9dd 5032 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5033 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5034 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5035 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5036 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5037 vmcs_write32(TPR_THRESHOLD, 0);
5038 }
5039
a73896cb 5040 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5041
d62caabb 5042 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5043 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5044
2384d2b3
SY
5045 if (vmx->vpid != 0)
5046 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5047
d28bc9dd
NA
5048 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5049 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5050 vmx->vcpu.arch.cr0 = cr0;
5051 vmx_set_cr4(vcpu, 0);
5690891b 5052 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
5053 vmx_fpu_activate(vcpu);
5054 update_exception_bitmap(vcpu);
6aa8b732 5055
dd5f5341 5056 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5057}
5058
b6f1250e
NHE
5059/*
5060 * In nested virtualization, check if L1 asked to exit on external interrupts.
5061 * For most existing hypervisors, this will always return true.
5062 */
5063static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5064{
5065 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5066 PIN_BASED_EXT_INTR_MASK;
5067}
5068
77b0f5d6
BD
5069/*
5070 * In nested virtualization, check if L1 has set
5071 * VM_EXIT_ACK_INTR_ON_EXIT
5072 */
5073static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5074{
5075 return get_vmcs12(vcpu)->vm_exit_controls &
5076 VM_EXIT_ACK_INTR_ON_EXIT;
5077}
5078
ea8ceb83
JK
5079static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5080{
5081 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5082 PIN_BASED_NMI_EXITING;
5083}
5084
c9a7953f 5085static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5086{
5087 u32 cpu_based_vm_exec_control;
730dca42 5088
3b86cd99
JK
5089 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5090 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5091 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5092}
5093
c9a7953f 5094static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5095{
5096 u32 cpu_based_vm_exec_control;
5097
c9a7953f
JK
5098 if (!cpu_has_virtual_nmis() ||
5099 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5100 enable_irq_window(vcpu);
5101 return;
5102 }
3b86cd99
JK
5103
5104 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5105 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5106 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5107}
5108
66fd3f7f 5109static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5110{
9c8cba37 5111 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5112 uint32_t intr;
5113 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5114
229456fc 5115 trace_kvm_inj_virq(irq);
2714d1d3 5116
fa89a817 5117 ++vcpu->stat.irq_injections;
7ffd92c5 5118 if (vmx->rmode.vm86_active) {
71f9833b
SH
5119 int inc_eip = 0;
5120 if (vcpu->arch.interrupt.soft)
5121 inc_eip = vcpu->arch.event_exit_inst_len;
5122 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5123 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5124 return;
5125 }
66fd3f7f
GN
5126 intr = irq | INTR_INFO_VALID_MASK;
5127 if (vcpu->arch.interrupt.soft) {
5128 intr |= INTR_TYPE_SOFT_INTR;
5129 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5130 vmx->vcpu.arch.event_exit_inst_len);
5131 } else
5132 intr |= INTR_TYPE_EXT_INTR;
5133 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5134}
5135
f08864b4
SY
5136static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5137{
66a5a347
JK
5138 struct vcpu_vmx *vmx = to_vmx(vcpu);
5139
0b6ac343
NHE
5140 if (is_guest_mode(vcpu))
5141 return;
5142
3b86cd99
JK
5143 if (!cpu_has_virtual_nmis()) {
5144 /*
5145 * Tracking the NMI-blocked state in software is built upon
5146 * finding the next open IRQ window. This, in turn, depends on
5147 * well-behaving guests: They have to keep IRQs disabled at
5148 * least as long as the NMI handler runs. Otherwise we may
5149 * cause NMI nesting, maybe breaking the guest. But as this is
5150 * highly unlikely, we can live with the residual risk.
5151 */
5152 vmx->soft_vnmi_blocked = 1;
5153 vmx->vnmi_blocked_time = 0;
5154 }
5155
487b391d 5156 ++vcpu->stat.nmi_injections;
9d58b931 5157 vmx->nmi_known_unmasked = false;
7ffd92c5 5158 if (vmx->rmode.vm86_active) {
71f9833b 5159 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5160 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5161 return;
5162 }
f08864b4
SY
5163 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5164 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5165}
5166
3cfc3092
JK
5167static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5168{
5169 if (!cpu_has_virtual_nmis())
5170 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5171 if (to_vmx(vcpu)->nmi_known_unmasked)
5172 return false;
c332c83a 5173 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5174}
5175
5176static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5177{
5178 struct vcpu_vmx *vmx = to_vmx(vcpu);
5179
5180 if (!cpu_has_virtual_nmis()) {
5181 if (vmx->soft_vnmi_blocked != masked) {
5182 vmx->soft_vnmi_blocked = masked;
5183 vmx->vnmi_blocked_time = 0;
5184 }
5185 } else {
9d58b931 5186 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5187 if (masked)
5188 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5189 GUEST_INTR_STATE_NMI);
5190 else
5191 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5192 GUEST_INTR_STATE_NMI);
5193 }
5194}
5195
2505dc9f
JK
5196static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5197{
b6b8a145
JK
5198 if (to_vmx(vcpu)->nested.nested_run_pending)
5199 return 0;
ea8ceb83 5200
2505dc9f
JK
5201 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5202 return 0;
5203
5204 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5205 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5206 | GUEST_INTR_STATE_NMI));
5207}
5208
78646121
GN
5209static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5210{
b6b8a145
JK
5211 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5212 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5213 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5214 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5215}
5216
cbc94022
IE
5217static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5218{
5219 int ret;
cbc94022 5220
1d8007bd
PB
5221 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5222 PAGE_SIZE * 3);
cbc94022
IE
5223 if (ret)
5224 return ret;
bfc6d222 5225 kvm->arch.tss_addr = addr;
1f755a82 5226 return init_rmode_tss(kvm);
cbc94022
IE
5227}
5228
0ca1b4f4 5229static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5230{
77ab6db0 5231 switch (vec) {
77ab6db0 5232 case BP_VECTOR:
c573cd22
JK
5233 /*
5234 * Update instruction length as we may reinject the exception
5235 * from user space while in guest debugging mode.
5236 */
5237 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5238 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5239 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5240 return false;
5241 /* fall through */
5242 case DB_VECTOR:
5243 if (vcpu->guest_debug &
5244 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5245 return false;
d0bfb940
JK
5246 /* fall through */
5247 case DE_VECTOR:
77ab6db0
JK
5248 case OF_VECTOR:
5249 case BR_VECTOR:
5250 case UD_VECTOR:
5251 case DF_VECTOR:
5252 case SS_VECTOR:
5253 case GP_VECTOR:
5254 case MF_VECTOR:
0ca1b4f4
GN
5255 return true;
5256 break;
77ab6db0 5257 }
0ca1b4f4
GN
5258 return false;
5259}
5260
5261static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5262 int vec, u32 err_code)
5263{
5264 /*
5265 * Instruction with address size override prefix opcode 0x67
5266 * Cause the #SS fault with 0 error code in VM86 mode.
5267 */
5268 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5269 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5270 if (vcpu->arch.halt_request) {
5271 vcpu->arch.halt_request = 0;
5cb56059 5272 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5273 }
5274 return 1;
5275 }
5276 return 0;
5277 }
5278
5279 /*
5280 * Forward all other exceptions that are valid in real mode.
5281 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5282 * the required debugging infrastructure rework.
5283 */
5284 kvm_queue_exception(vcpu, vec);
5285 return 1;
6aa8b732
AK
5286}
5287
a0861c02
AK
5288/*
5289 * Trigger machine check on the host. We assume all the MSRs are already set up
5290 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5291 * We pass a fake environment to the machine check handler because we want
5292 * the guest to be always treated like user space, no matter what context
5293 * it used internally.
5294 */
5295static void kvm_machine_check(void)
5296{
5297#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5298 struct pt_regs regs = {
5299 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5300 .flags = X86_EFLAGS_IF,
5301 };
5302
5303 do_machine_check(&regs, 0);
5304#endif
5305}
5306
851ba692 5307static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5308{
5309 /* already handled by vcpu_run */
5310 return 1;
5311}
5312
851ba692 5313static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5314{
1155f76a 5315 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5316 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5317 u32 intr_info, ex_no, error_code;
42dbaa5a 5318 unsigned long cr2, rip, dr6;
6aa8b732
AK
5319 u32 vect_info;
5320 enum emulation_result er;
5321
1155f76a 5322 vect_info = vmx->idt_vectoring_info;
88786475 5323 intr_info = vmx->exit_intr_info;
6aa8b732 5324
a0861c02 5325 if (is_machine_check(intr_info))
851ba692 5326 return handle_machine_check(vcpu);
a0861c02 5327
e4a41889 5328 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5329 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5330
5331 if (is_no_device(intr_info)) {
5fd86fcf 5332 vmx_fpu_activate(vcpu);
2ab455cc
AL
5333 return 1;
5334 }
5335
7aa81cc0 5336 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5337 if (is_guest_mode(vcpu)) {
5338 kvm_queue_exception(vcpu, UD_VECTOR);
5339 return 1;
5340 }
51d8b661 5341 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5342 if (er != EMULATE_DONE)
7ee5d940 5343 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5344 return 1;
5345 }
5346
6aa8b732 5347 error_code = 0;
2e11384c 5348 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5349 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5350
5351 /*
5352 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5353 * MMIO, it is better to report an internal error.
5354 * See the comments in vmx_handle_exit.
5355 */
5356 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5357 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5358 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5359 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5360 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5361 vcpu->run->internal.data[0] = vect_info;
5362 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5363 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5364 return 0;
5365 }
5366
6aa8b732 5367 if (is_page_fault(intr_info)) {
1439442c 5368 /* EPT won't cause page fault directly */
cf3ace79 5369 BUG_ON(enable_ept);
6aa8b732 5370 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5371 trace_kvm_page_fault(cr2, error_code);
5372
3298b75c 5373 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5374 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5375 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5376 }
5377
d0bfb940 5378 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5379
5380 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5381 return handle_rmode_exception(vcpu, ex_no, error_code);
5382
42dbaa5a 5383 switch (ex_no) {
54a20552
EN
5384 case AC_VECTOR:
5385 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5386 return 1;
42dbaa5a
JK
5387 case DB_VECTOR:
5388 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5389 if (!(vcpu->guest_debug &
5390 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5391 vcpu->arch.dr6 &= ~15;
6f43ed01 5392 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5393 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5394 skip_emulated_instruction(vcpu);
5395
42dbaa5a
JK
5396 kvm_queue_exception(vcpu, DB_VECTOR);
5397 return 1;
5398 }
5399 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5400 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5401 /* fall through */
5402 case BP_VECTOR:
c573cd22
JK
5403 /*
5404 * Update instruction length as we may reinject #BP from
5405 * user space while in guest debugging mode. Reading it for
5406 * #DB as well causes no harm, it is not used in that case.
5407 */
5408 vmx->vcpu.arch.event_exit_inst_len =
5409 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5410 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5411 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5412 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5413 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5414 break;
5415 default:
d0bfb940
JK
5416 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5417 kvm_run->ex.exception = ex_no;
5418 kvm_run->ex.error_code = error_code;
42dbaa5a 5419 break;
6aa8b732 5420 }
6aa8b732
AK
5421 return 0;
5422}
5423
851ba692 5424static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5425{
1165f5fe 5426 ++vcpu->stat.irq_exits;
6aa8b732
AK
5427 return 1;
5428}
5429
851ba692 5430static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5431{
851ba692 5432 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5433 return 0;
5434}
6aa8b732 5435
851ba692 5436static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5437{
bfdaab09 5438 unsigned long exit_qualification;
34c33d16 5439 int size, in, string;
039576c0 5440 unsigned port;
6aa8b732 5441
bfdaab09 5442 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5443 string = (exit_qualification & 16) != 0;
cf8f70bf 5444 in = (exit_qualification & 8) != 0;
e70669ab 5445
cf8f70bf 5446 ++vcpu->stat.io_exits;
e70669ab 5447
cf8f70bf 5448 if (string || in)
51d8b661 5449 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5450
cf8f70bf
GN
5451 port = exit_qualification >> 16;
5452 size = (exit_qualification & 7) + 1;
e93f36bc 5453 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5454
5455 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5456}
5457
102d8325
IM
5458static void
5459vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5460{
5461 /*
5462 * Patch in the VMCALL instruction:
5463 */
5464 hypercall[0] = 0x0f;
5465 hypercall[1] = 0x01;
5466 hypercall[2] = 0xc1;
102d8325
IM
5467}
5468
b9c237bb 5469static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5470{
5471 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5472 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5473
b9c237bb 5474 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5475 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5476 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5477 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5478 return (val & always_on) == always_on;
5479}
5480
0fa06071 5481/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5482static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5483{
eeadf9e7 5484 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5485 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5486 unsigned long orig_val = val;
5487
eeadf9e7
NHE
5488 /*
5489 * We get here when L2 changed cr0 in a way that did not change
5490 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5491 * but did change L0 shadowed bits. So we first calculate the
5492 * effective cr0 value that L1 would like to write into the
5493 * hardware. It consists of the L2-owned bits from the new
5494 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5495 */
1a0d74e6
JK
5496 val = (val & ~vmcs12->cr0_guest_host_mask) |
5497 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5498
b9c237bb 5499 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5500 return 1;
1a0d74e6
JK
5501
5502 if (kvm_set_cr0(vcpu, val))
5503 return 1;
5504 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5505 return 0;
1a0d74e6
JK
5506 } else {
5507 if (to_vmx(vcpu)->nested.vmxon &&
5508 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5509 return 1;
eeadf9e7 5510 return kvm_set_cr0(vcpu, val);
1a0d74e6 5511 }
eeadf9e7
NHE
5512}
5513
5514static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5515{
5516 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5517 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5518 unsigned long orig_val = val;
5519
5520 /* analogously to handle_set_cr0 */
5521 val = (val & ~vmcs12->cr4_guest_host_mask) |
5522 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5523 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5524 return 1;
1a0d74e6 5525 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5526 return 0;
5527 } else
5528 return kvm_set_cr4(vcpu, val);
5529}
5530
6a6256f9 5531/* called to set cr0 as appropriate for clts instruction exit. */
eeadf9e7
NHE
5532static void handle_clts(struct kvm_vcpu *vcpu)
5533{
5534 if (is_guest_mode(vcpu)) {
5535 /*
5536 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5537 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5538 * just pretend it's off (also in arch.cr0 for fpu_activate).
5539 */
5540 vmcs_writel(CR0_READ_SHADOW,
5541 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5542 vcpu->arch.cr0 &= ~X86_CR0_TS;
5543 } else
5544 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5545}
5546
851ba692 5547static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5548{
229456fc 5549 unsigned long exit_qualification, val;
6aa8b732
AK
5550 int cr;
5551 int reg;
49a9b07e 5552 int err;
6aa8b732 5553
bfdaab09 5554 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5555 cr = exit_qualification & 15;
5556 reg = (exit_qualification >> 8) & 15;
5557 switch ((exit_qualification >> 4) & 3) {
5558 case 0: /* mov to cr */
1e32c079 5559 val = kvm_register_readl(vcpu, reg);
229456fc 5560 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5561 switch (cr) {
5562 case 0:
eeadf9e7 5563 err = handle_set_cr0(vcpu, val);
db8fcefa 5564 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5565 return 1;
5566 case 3:
2390218b 5567 err = kvm_set_cr3(vcpu, val);
db8fcefa 5568 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5569 return 1;
5570 case 4:
eeadf9e7 5571 err = handle_set_cr4(vcpu, val);
db8fcefa 5572 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5573 return 1;
0a5fff19
GN
5574 case 8: {
5575 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5576 u8 cr8 = (u8)val;
eea1cff9 5577 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5578 kvm_complete_insn_gp(vcpu, err);
35754c98 5579 if (lapic_in_kernel(vcpu))
0a5fff19
GN
5580 return 1;
5581 if (cr8_prev <= cr8)
5582 return 1;
851ba692 5583 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5584 return 0;
5585 }
4b8073e4 5586 }
6aa8b732 5587 break;
25c4c276 5588 case 2: /* clts */
eeadf9e7 5589 handle_clts(vcpu);
4d4ec087 5590 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5591 skip_emulated_instruction(vcpu);
6b52d186 5592 vmx_fpu_activate(vcpu);
25c4c276 5593 return 1;
6aa8b732
AK
5594 case 1: /*mov from cr*/
5595 switch (cr) {
5596 case 3:
9f8fe504
AK
5597 val = kvm_read_cr3(vcpu);
5598 kvm_register_write(vcpu, reg, val);
5599 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5600 skip_emulated_instruction(vcpu);
5601 return 1;
5602 case 8:
229456fc
MT
5603 val = kvm_get_cr8(vcpu);
5604 kvm_register_write(vcpu, reg, val);
5605 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5606 skip_emulated_instruction(vcpu);
5607 return 1;
5608 }
5609 break;
5610 case 3: /* lmsw */
a1f83a74 5611 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5612 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5613 kvm_lmsw(vcpu, val);
6aa8b732
AK
5614
5615 skip_emulated_instruction(vcpu);
5616 return 1;
5617 default:
5618 break;
5619 }
851ba692 5620 vcpu->run->exit_reason = 0;
a737f256 5621 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5622 (int)(exit_qualification >> 4) & 3, cr);
5623 return 0;
5624}
5625
851ba692 5626static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5627{
bfdaab09 5628 unsigned long exit_qualification;
16f8a6f9
NA
5629 int dr, dr7, reg;
5630
5631 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5632 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5633
5634 /* First, if DR does not exist, trigger UD */
5635 if (!kvm_require_dr(vcpu, dr))
5636 return 1;
6aa8b732 5637
f2483415 5638 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5639 if (!kvm_require_cpl(vcpu, 0))
5640 return 1;
16f8a6f9
NA
5641 dr7 = vmcs_readl(GUEST_DR7);
5642 if (dr7 & DR7_GD) {
42dbaa5a
JK
5643 /*
5644 * As the vm-exit takes precedence over the debug trap, we
5645 * need to emulate the latter, either for the host or the
5646 * guest debugging itself.
5647 */
5648 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5649 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5650 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5651 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5652 vcpu->run->debug.arch.exception = DB_VECTOR;
5653 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5654 return 0;
5655 } else {
7305eb5d 5656 vcpu->arch.dr6 &= ~15;
6f43ed01 5657 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5658 kvm_queue_exception(vcpu, DB_VECTOR);
5659 return 1;
5660 }
5661 }
5662
81908bf4 5663 if (vcpu->guest_debug == 0) {
8f22372f
PB
5664 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5665 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5666
5667 /*
5668 * No more DR vmexits; force a reload of the debug registers
5669 * and reenter on this instruction. The next vmexit will
5670 * retrieve the full state of the debug registers.
5671 */
5672 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5673 return 1;
5674 }
5675
42dbaa5a
JK
5676 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5677 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5678 unsigned long val;
4c4d563b
JK
5679
5680 if (kvm_get_dr(vcpu, dr, &val))
5681 return 1;
5682 kvm_register_write(vcpu, reg, val);
020df079 5683 } else
5777392e 5684 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5685 return 1;
5686
6aa8b732
AK
5687 skip_emulated_instruction(vcpu);
5688 return 1;
5689}
5690
73aaf249
JK
5691static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5692{
5693 return vcpu->arch.dr6;
5694}
5695
5696static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5697{
5698}
5699
81908bf4
PB
5700static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5701{
81908bf4
PB
5702 get_debugreg(vcpu->arch.db[0], 0);
5703 get_debugreg(vcpu->arch.db[1], 1);
5704 get_debugreg(vcpu->arch.db[2], 2);
5705 get_debugreg(vcpu->arch.db[3], 3);
5706 get_debugreg(vcpu->arch.dr6, 6);
5707 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5708
5709 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5710 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5711}
5712
020df079
GN
5713static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5714{
5715 vmcs_writel(GUEST_DR7, val);
5716}
5717
851ba692 5718static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5719{
06465c5a
AK
5720 kvm_emulate_cpuid(vcpu);
5721 return 1;
6aa8b732
AK
5722}
5723
851ba692 5724static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5725{
ad312c7c 5726 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5727 struct msr_data msr_info;
6aa8b732 5728
609e36d3
PB
5729 msr_info.index = ecx;
5730 msr_info.host_initiated = false;
5731 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5732 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5733 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5734 return 1;
5735 }
5736
609e36d3 5737 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5738
6aa8b732 5739 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5740 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5741 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5742 skip_emulated_instruction(vcpu);
5743 return 1;
5744}
5745
851ba692 5746static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5747{
8fe8ab46 5748 struct msr_data msr;
ad312c7c
ZX
5749 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5750 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5751 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5752
8fe8ab46
WA
5753 msr.data = data;
5754 msr.index = ecx;
5755 msr.host_initiated = false;
854e8bb1 5756 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5757 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5758 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5759 return 1;
5760 }
5761
59200273 5762 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5763 skip_emulated_instruction(vcpu);
5764 return 1;
5765}
5766
851ba692 5767static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5768{
3842d135 5769 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5770 return 1;
5771}
5772
851ba692 5773static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5774{
85f455f7
ED
5775 u32 cpu_based_vm_exec_control;
5776
5777 /* clear pending irq */
5778 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5779 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5780 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5781
3842d135
AK
5782 kvm_make_request(KVM_REQ_EVENT, vcpu);
5783
a26bf12a 5784 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
5785 return 1;
5786}
5787
851ba692 5788static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5789{
d3bef15f 5790 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5791}
5792
851ba692 5793static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5794{
0d9c055e 5795 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
5796}
5797
ec25d5e6
GN
5798static int handle_invd(struct kvm_vcpu *vcpu)
5799{
51d8b661 5800 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5801}
5802
851ba692 5803static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5804{
f9c617f6 5805 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5806
5807 kvm_mmu_invlpg(vcpu, exit_qualification);
5808 skip_emulated_instruction(vcpu);
5809 return 1;
5810}
5811
fee84b07
AK
5812static int handle_rdpmc(struct kvm_vcpu *vcpu)
5813{
5814 int err;
5815
5816 err = kvm_rdpmc(vcpu);
5817 kvm_complete_insn_gp(vcpu, err);
5818
5819 return 1;
5820}
5821
851ba692 5822static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5823{
f5f48ee1 5824 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5825 return 1;
5826}
5827
2acf923e
DC
5828static int handle_xsetbv(struct kvm_vcpu *vcpu)
5829{
5830 u64 new_bv = kvm_read_edx_eax(vcpu);
5831 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5832
5833 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5834 skip_emulated_instruction(vcpu);
5835 return 1;
5836}
5837
f53cd63c
WL
5838static int handle_xsaves(struct kvm_vcpu *vcpu)
5839{
5840 skip_emulated_instruction(vcpu);
5841 WARN(1, "this should never happen\n");
5842 return 1;
5843}
5844
5845static int handle_xrstors(struct kvm_vcpu *vcpu)
5846{
5847 skip_emulated_instruction(vcpu);
5848 WARN(1, "this should never happen\n");
5849 return 1;
5850}
5851
851ba692 5852static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5853{
58fbbf26
KT
5854 if (likely(fasteoi)) {
5855 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5856 int access_type, offset;
5857
5858 access_type = exit_qualification & APIC_ACCESS_TYPE;
5859 offset = exit_qualification & APIC_ACCESS_OFFSET;
5860 /*
5861 * Sane guest uses MOV to write EOI, with written value
5862 * not cared. So make a short-circuit here by avoiding
5863 * heavy instruction emulation.
5864 */
5865 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5866 (offset == APIC_EOI)) {
5867 kvm_lapic_set_eoi(vcpu);
5868 skip_emulated_instruction(vcpu);
5869 return 1;
5870 }
5871 }
51d8b661 5872 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5873}
5874
c7c9c56c
YZ
5875static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5876{
5877 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5878 int vector = exit_qualification & 0xff;
5879
5880 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5881 kvm_apic_set_eoi_accelerated(vcpu, vector);
5882 return 1;
5883}
5884
83d4c286
YZ
5885static int handle_apic_write(struct kvm_vcpu *vcpu)
5886{
5887 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5888 u32 offset = exit_qualification & 0xfff;
5889
5890 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5891 kvm_apic_write_nodecode(vcpu, offset);
5892 return 1;
5893}
5894
851ba692 5895static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5896{
60637aac 5897 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5898 unsigned long exit_qualification;
e269fb21
JK
5899 bool has_error_code = false;
5900 u32 error_code = 0;
37817f29 5901 u16 tss_selector;
7f3d35fd 5902 int reason, type, idt_v, idt_index;
64a7ec06
GN
5903
5904 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5905 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5906 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5907
5908 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5909
5910 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5911 if (reason == TASK_SWITCH_GATE && idt_v) {
5912 switch (type) {
5913 case INTR_TYPE_NMI_INTR:
5914 vcpu->arch.nmi_injected = false;
654f06fc 5915 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5916 break;
5917 case INTR_TYPE_EXT_INTR:
66fd3f7f 5918 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5919 kvm_clear_interrupt_queue(vcpu);
5920 break;
5921 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5922 if (vmx->idt_vectoring_info &
5923 VECTORING_INFO_DELIVER_CODE_MASK) {
5924 has_error_code = true;
5925 error_code =
5926 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5927 }
5928 /* fall through */
64a7ec06
GN
5929 case INTR_TYPE_SOFT_EXCEPTION:
5930 kvm_clear_exception_queue(vcpu);
5931 break;
5932 default:
5933 break;
5934 }
60637aac 5935 }
37817f29
IE
5936 tss_selector = exit_qualification;
5937
64a7ec06
GN
5938 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5939 type != INTR_TYPE_EXT_INTR &&
5940 type != INTR_TYPE_NMI_INTR))
5941 skip_emulated_instruction(vcpu);
5942
7f3d35fd
KW
5943 if (kvm_task_switch(vcpu, tss_selector,
5944 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5945 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5946 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5947 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5948 vcpu->run->internal.ndata = 0;
42dbaa5a 5949 return 0;
acb54517 5950 }
42dbaa5a 5951
42dbaa5a
JK
5952 /*
5953 * TODO: What about debug traps on tss switch?
5954 * Are we supposed to inject them and update dr6?
5955 */
5956
5957 return 1;
37817f29
IE
5958}
5959
851ba692 5960static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5961{
f9c617f6 5962 unsigned long exit_qualification;
1439442c 5963 gpa_t gpa;
4f5982a5 5964 u32 error_code;
1439442c 5965 int gla_validity;
1439442c 5966
f9c617f6 5967 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5968
1439442c
SY
5969 gla_validity = (exit_qualification >> 7) & 0x3;
5970 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5971 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5972 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5973 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5974 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5975 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5976 (long unsigned int)exit_qualification);
851ba692
AK
5977 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5978 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5979 return 0;
1439442c
SY
5980 }
5981
0be9c7a8
GN
5982 /*
5983 * EPT violation happened while executing iret from NMI,
5984 * "blocked by NMI" bit has to be set before next VM entry.
5985 * There are errata that may cause this bit to not be set:
5986 * AAK134, BY25.
5987 */
bcd1c294
GN
5988 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5989 cpu_has_virtual_nmis() &&
5990 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5991 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5992
1439442c 5993 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5994 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5995
5996 /* It is a write fault? */
81ed33e4 5997 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 5998 /* It is a fetch fault? */
81ed33e4 5999 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 6000 /* ept page table is present? */
81ed33e4 6001 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 6002
25d92081
YZ
6003 vcpu->arch.exit_qualification = exit_qualification;
6004
4f5982a5 6005 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6006}
6007
851ba692 6008static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6009{
f735d4af 6010 int ret;
68f89400
MT
6011 gpa_t gpa;
6012
6013 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6014 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1 6015 skip_emulated_instruction(vcpu);
931c33b1 6016 trace_kvm_fast_mmio(gpa);
68c3b4d1
MT
6017 return 1;
6018 }
68f89400 6019
450869d6 6020 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 6021 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6022 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6023 EMULATE_DONE;
f8f55942
XG
6024
6025 if (unlikely(ret == RET_MMIO_PF_INVALID))
6026 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6027
b37fbea6 6028 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6029 return 1;
6030
6031 /* It is the real ept misconfig */
f735d4af 6032 WARN_ON(1);
68f89400 6033
851ba692
AK
6034 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6035 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6036
6037 return 0;
6038}
6039
851ba692 6040static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
6041{
6042 u32 cpu_based_vm_exec_control;
6043
6044 /* clear pending NMI */
6045 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6046 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6047 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6048 ++vcpu->stat.nmi_window_exits;
3842d135 6049 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6050
6051 return 1;
6052}
6053
80ced186 6054static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6055{
8b3079a5
AK
6056 struct vcpu_vmx *vmx = to_vmx(vcpu);
6057 enum emulation_result err = EMULATE_DONE;
80ced186 6058 int ret = 1;
49e9d557
AK
6059 u32 cpu_exec_ctrl;
6060 bool intr_window_requested;
b8405c18 6061 unsigned count = 130;
49e9d557
AK
6062
6063 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6064 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6065
98eb2f8b 6066 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6067 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6068 return handle_interrupt_window(&vmx->vcpu);
6069
de87dcdd
AK
6070 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6071 return 1;
6072
991eebf9 6073 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6074
ac0a48c3 6075 if (err == EMULATE_USER_EXIT) {
94452b9e 6076 ++vcpu->stat.mmio_exits;
80ced186
MG
6077 ret = 0;
6078 goto out;
6079 }
1d5a4d9b 6080
de5f70e0
AK
6081 if (err != EMULATE_DONE) {
6082 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6083 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6084 vcpu->run->internal.ndata = 0;
6d77dbfc 6085 return 0;
de5f70e0 6086 }
ea953ef0 6087
8d76c49e
GN
6088 if (vcpu->arch.halt_request) {
6089 vcpu->arch.halt_request = 0;
5cb56059 6090 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6091 goto out;
6092 }
6093
ea953ef0 6094 if (signal_pending(current))
80ced186 6095 goto out;
ea953ef0
MG
6096 if (need_resched())
6097 schedule();
6098 }
6099
80ced186
MG
6100out:
6101 return ret;
ea953ef0
MG
6102}
6103
b4a2d31d
RK
6104static int __grow_ple_window(int val)
6105{
6106 if (ple_window_grow < 1)
6107 return ple_window;
6108
6109 val = min(val, ple_window_actual_max);
6110
6111 if (ple_window_grow < ple_window)
6112 val *= ple_window_grow;
6113 else
6114 val += ple_window_grow;
6115
6116 return val;
6117}
6118
6119static int __shrink_ple_window(int val, int modifier, int minimum)
6120{
6121 if (modifier < 1)
6122 return ple_window;
6123
6124 if (modifier < ple_window)
6125 val /= modifier;
6126 else
6127 val -= modifier;
6128
6129 return max(val, minimum);
6130}
6131
6132static void grow_ple_window(struct kvm_vcpu *vcpu)
6133{
6134 struct vcpu_vmx *vmx = to_vmx(vcpu);
6135 int old = vmx->ple_window;
6136
6137 vmx->ple_window = __grow_ple_window(old);
6138
6139 if (vmx->ple_window != old)
6140 vmx->ple_window_dirty = true;
7b46268d
RK
6141
6142 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6143}
6144
6145static void shrink_ple_window(struct kvm_vcpu *vcpu)
6146{
6147 struct vcpu_vmx *vmx = to_vmx(vcpu);
6148 int old = vmx->ple_window;
6149
6150 vmx->ple_window = __shrink_ple_window(old,
6151 ple_window_shrink, ple_window);
6152
6153 if (vmx->ple_window != old)
6154 vmx->ple_window_dirty = true;
7b46268d
RK
6155
6156 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6157}
6158
6159/*
6160 * ple_window_actual_max is computed to be one grow_ple_window() below
6161 * ple_window_max. (See __grow_ple_window for the reason.)
6162 * This prevents overflows, because ple_window_max is int.
6163 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6164 * this process.
6165 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6166 */
6167static void update_ple_window_actual_max(void)
6168{
6169 ple_window_actual_max =
6170 __shrink_ple_window(max(ple_window_max, ple_window),
6171 ple_window_grow, INT_MIN);
6172}
6173
bf9f6ac8
FW
6174/*
6175 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6176 */
6177static void wakeup_handler(void)
6178{
6179 struct kvm_vcpu *vcpu;
6180 int cpu = smp_processor_id();
6181
6182 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6183 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6184 blocked_vcpu_list) {
6185 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6186
6187 if (pi_test_on(pi_desc) == 1)
6188 kvm_vcpu_kick(vcpu);
6189 }
6190 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6191}
6192
f2c7648d
TC
6193static __init int hardware_setup(void)
6194{
34a1cd60
TC
6195 int r = -ENOMEM, i, msr;
6196
6197 rdmsrl_safe(MSR_EFER, &host_efer);
6198
6199 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6200 kvm_define_shared_msr(i, vmx_msr_index[i]);
6201
6202 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6203 if (!vmx_io_bitmap_a)
6204 return r;
6205
6206 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6207 if (!vmx_io_bitmap_b)
6208 goto out;
6209
6210 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6211 if (!vmx_msr_bitmap_legacy)
6212 goto out1;
6213
6214 vmx_msr_bitmap_legacy_x2apic =
6215 (unsigned long *)__get_free_page(GFP_KERNEL);
6216 if (!vmx_msr_bitmap_legacy_x2apic)
6217 goto out2;
6218
6219 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6220 if (!vmx_msr_bitmap_longmode)
6221 goto out3;
6222
6223 vmx_msr_bitmap_longmode_x2apic =
6224 (unsigned long *)__get_free_page(GFP_KERNEL);
6225 if (!vmx_msr_bitmap_longmode_x2apic)
6226 goto out4;
3af18d9c
WV
6227
6228 if (nested) {
6229 vmx_msr_bitmap_nested =
6230 (unsigned long *)__get_free_page(GFP_KERNEL);
6231 if (!vmx_msr_bitmap_nested)
6232 goto out5;
6233 }
6234
34a1cd60
TC
6235 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6236 if (!vmx_vmread_bitmap)
3af18d9c 6237 goto out6;
34a1cd60
TC
6238
6239 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6240 if (!vmx_vmwrite_bitmap)
3af18d9c 6241 goto out7;
34a1cd60
TC
6242
6243 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6244 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6245
6246 /*
6247 * Allow direct access to the PC debug port (it is often used for I/O
6248 * delays, but the vmexits simply slow things down).
6249 */
6250 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6251 clear_bit(0x80, vmx_io_bitmap_a);
6252
6253 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6254
6255 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6256 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
6257 if (nested)
6258 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 6259
34a1cd60
TC
6260 if (setup_vmcs_config(&vmcs_config) < 0) {
6261 r = -EIO;
3af18d9c 6262 goto out8;
baa03522 6263 }
f2c7648d
TC
6264
6265 if (boot_cpu_has(X86_FEATURE_NX))
6266 kvm_enable_efer_bits(EFER_NX);
6267
6268 if (!cpu_has_vmx_vpid())
6269 enable_vpid = 0;
6270 if (!cpu_has_vmx_shadow_vmcs())
6271 enable_shadow_vmcs = 0;
6272 if (enable_shadow_vmcs)
6273 init_vmcs_shadow_fields();
6274
6275 if (!cpu_has_vmx_ept() ||
6276 !cpu_has_vmx_ept_4levels()) {
6277 enable_ept = 0;
6278 enable_unrestricted_guest = 0;
6279 enable_ept_ad_bits = 0;
6280 }
6281
6282 if (!cpu_has_vmx_ept_ad_bits())
6283 enable_ept_ad_bits = 0;
6284
6285 if (!cpu_has_vmx_unrestricted_guest())
6286 enable_unrestricted_guest = 0;
6287
ad15a296 6288 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6289 flexpriority_enabled = 0;
6290
ad15a296
PB
6291 /*
6292 * set_apic_access_page_addr() is used to reload apic access
6293 * page upon invalidation. No need to do anything if not
6294 * using the APIC_ACCESS_ADDR VMCS field.
6295 */
6296 if (!flexpriority_enabled)
f2c7648d 6297 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6298
6299 if (!cpu_has_vmx_tpr_shadow())
6300 kvm_x86_ops->update_cr8_intercept = NULL;
6301
6302 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6303 kvm_disable_largepages();
6304
6305 if (!cpu_has_vmx_ple())
6306 ple_gap = 0;
6307
6308 if (!cpu_has_vmx_apicv())
6309 enable_apicv = 0;
6310
64903d61
HZ
6311 if (cpu_has_vmx_tsc_scaling()) {
6312 kvm_has_tsc_control = true;
6313 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6314 kvm_tsc_scaling_ratio_frac_bits = 48;
6315 }
6316
baa03522
TC
6317 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6318 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6319 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6320 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6321 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6322 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6323 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6324
6325 memcpy(vmx_msr_bitmap_legacy_x2apic,
6326 vmx_msr_bitmap_legacy, PAGE_SIZE);
6327 memcpy(vmx_msr_bitmap_longmode_x2apic,
6328 vmx_msr_bitmap_longmode, PAGE_SIZE);
6329
04bb92e4
WL
6330 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6331
baa03522
TC
6332 if (enable_apicv) {
6333 for (msr = 0x800; msr <= 0x8ff; msr++)
6334 vmx_disable_intercept_msr_read_x2apic(msr);
6335
6336 /* According SDM, in x2apic mode, the whole id reg is used.
6337 * But in KVM, it only use the highest eight bits. Need to
6338 * intercept it */
6339 vmx_enable_intercept_msr_read_x2apic(0x802);
6340 /* TMCCT */
6341 vmx_enable_intercept_msr_read_x2apic(0x839);
6342 /* TPR */
6343 vmx_disable_intercept_msr_write_x2apic(0x808);
6344 /* EOI */
6345 vmx_disable_intercept_msr_write_x2apic(0x80b);
6346 /* SELF-IPI */
6347 vmx_disable_intercept_msr_write_x2apic(0x83f);
6348 }
6349
6350 if (enable_ept) {
6351 kvm_mmu_set_mask_ptes(0ull,
6352 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6353 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6354 0ull, VMX_EPT_EXECUTABLE_MASK);
6355 ept_set_mmio_spte_mask();
6356 kvm_enable_tdp();
6357 } else
6358 kvm_disable_tdp();
6359
6360 update_ple_window_actual_max();
6361
843e4330
KH
6362 /*
6363 * Only enable PML when hardware supports PML feature, and both EPT
6364 * and EPT A/D bit features are enabled -- PML depends on them to work.
6365 */
6366 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6367 enable_pml = 0;
6368
6369 if (!enable_pml) {
6370 kvm_x86_ops->slot_enable_log_dirty = NULL;
6371 kvm_x86_ops->slot_disable_log_dirty = NULL;
6372 kvm_x86_ops->flush_log_dirty = NULL;
6373 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6374 }
6375
bf9f6ac8
FW
6376 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6377
f2c7648d 6378 return alloc_kvm_area();
34a1cd60 6379
3af18d9c 6380out8:
34a1cd60 6381 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6382out7:
34a1cd60 6383 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6384out6:
6385 if (nested)
6386 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6387out5:
6388 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6389out4:
6390 free_page((unsigned long)vmx_msr_bitmap_longmode);
6391out3:
6392 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6393out2:
6394 free_page((unsigned long)vmx_msr_bitmap_legacy);
6395out1:
6396 free_page((unsigned long)vmx_io_bitmap_b);
6397out:
6398 free_page((unsigned long)vmx_io_bitmap_a);
6399
6400 return r;
f2c7648d
TC
6401}
6402
6403static __exit void hardware_unsetup(void)
6404{
34a1cd60
TC
6405 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6406 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6407 free_page((unsigned long)vmx_msr_bitmap_legacy);
6408 free_page((unsigned long)vmx_msr_bitmap_longmode);
6409 free_page((unsigned long)vmx_io_bitmap_b);
6410 free_page((unsigned long)vmx_io_bitmap_a);
6411 free_page((unsigned long)vmx_vmwrite_bitmap);
6412 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6413 if (nested)
6414 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6415
f2c7648d
TC
6416 free_kvm_area();
6417}
6418
4b8d54f9
ZE
6419/*
6420 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6421 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6422 */
9fb41ba8 6423static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6424{
b4a2d31d
RK
6425 if (ple_gap)
6426 grow_ple_window(vcpu);
6427
4b8d54f9
ZE
6428 skip_emulated_instruction(vcpu);
6429 kvm_vcpu_on_spin(vcpu);
6430
6431 return 1;
6432}
6433
87c00572 6434static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6435{
87c00572 6436 skip_emulated_instruction(vcpu);
59708670
SY
6437 return 1;
6438}
6439
87c00572
GS
6440static int handle_mwait(struct kvm_vcpu *vcpu)
6441{
6442 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6443 return handle_nop(vcpu);
6444}
6445
5f3d45e7
MD
6446static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6447{
6448 return 1;
6449}
6450
87c00572
GS
6451static int handle_monitor(struct kvm_vcpu *vcpu)
6452{
6453 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6454 return handle_nop(vcpu);
6455}
6456
ff2f6fe9
NHE
6457/*
6458 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6459 * We could reuse a single VMCS for all the L2 guests, but we also want the
6460 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6461 * allows keeping them loaded on the processor, and in the future will allow
6462 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6463 * every entry if they never change.
6464 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6465 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6466 *
6467 * The following functions allocate and free a vmcs02 in this pool.
6468 */
6469
6470/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6471static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6472{
6473 struct vmcs02_list *item;
6474 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6475 if (item->vmptr == vmx->nested.current_vmptr) {
6476 list_move(&item->list, &vmx->nested.vmcs02_pool);
6477 return &item->vmcs02;
6478 }
6479
6480 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6481 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6482 item = list_last_entry(&vmx->nested.vmcs02_pool,
6483 struct vmcs02_list, list);
ff2f6fe9
NHE
6484 item->vmptr = vmx->nested.current_vmptr;
6485 list_move(&item->list, &vmx->nested.vmcs02_pool);
6486 return &item->vmcs02;
6487 }
6488
6489 /* Create a new VMCS */
0fa24ce3 6490 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6491 if (!item)
6492 return NULL;
6493 item->vmcs02.vmcs = alloc_vmcs();
6494 if (!item->vmcs02.vmcs) {
6495 kfree(item);
6496 return NULL;
6497 }
6498 loaded_vmcs_init(&item->vmcs02);
6499 item->vmptr = vmx->nested.current_vmptr;
6500 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6501 vmx->nested.vmcs02_num++;
6502 return &item->vmcs02;
6503}
6504
6505/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6506static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6507{
6508 struct vmcs02_list *item;
6509 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6510 if (item->vmptr == vmptr) {
6511 free_loaded_vmcs(&item->vmcs02);
6512 list_del(&item->list);
6513 kfree(item);
6514 vmx->nested.vmcs02_num--;
6515 return;
6516 }
6517}
6518
6519/*
6520 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6521 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6522 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6523 */
6524static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6525{
6526 struct vmcs02_list *item, *n;
4fa7734c
PB
6527
6528 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6529 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6530 /*
6531 * Something will leak if the above WARN triggers. Better than
6532 * a use-after-free.
6533 */
6534 if (vmx->loaded_vmcs == &item->vmcs02)
6535 continue;
6536
6537 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6538 list_del(&item->list);
6539 kfree(item);
4fa7734c 6540 vmx->nested.vmcs02_num--;
ff2f6fe9 6541 }
ff2f6fe9
NHE
6542}
6543
0658fbaa
ACL
6544/*
6545 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6546 * set the success or error code of an emulated VMX instruction, as specified
6547 * by Vol 2B, VMX Instruction Reference, "Conventions".
6548 */
6549static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6550{
6551 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6552 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6553 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6554}
6555
6556static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6557{
6558 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6559 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6560 X86_EFLAGS_SF | X86_EFLAGS_OF))
6561 | X86_EFLAGS_CF);
6562}
6563
145c28dd 6564static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6565 u32 vm_instruction_error)
6566{
6567 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6568 /*
6569 * failValid writes the error number to the current VMCS, which
6570 * can't be done there isn't a current VMCS.
6571 */
6572 nested_vmx_failInvalid(vcpu);
6573 return;
6574 }
6575 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6576 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6577 X86_EFLAGS_SF | X86_EFLAGS_OF))
6578 | X86_EFLAGS_ZF);
6579 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6580 /*
6581 * We don't need to force a shadow sync because
6582 * VM_INSTRUCTION_ERROR is not shadowed
6583 */
6584}
145c28dd 6585
ff651cb6
WV
6586static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6587{
6588 /* TODO: not to reset guest simply here. */
6589 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6590 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6591}
6592
f4124500
JK
6593static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6594{
6595 struct vcpu_vmx *vmx =
6596 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6597
6598 vmx->nested.preemption_timer_expired = true;
6599 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6600 kvm_vcpu_kick(&vmx->vcpu);
6601
6602 return HRTIMER_NORESTART;
6603}
6604
19677e32
BD
6605/*
6606 * Decode the memory-address operand of a vmx instruction, as recorded on an
6607 * exit caused by such an instruction (run by a guest hypervisor).
6608 * On success, returns 0. When the operand is invalid, returns 1 and throws
6609 * #UD or #GP.
6610 */
6611static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6612 unsigned long exit_qualification,
f9eb4af6 6613 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6614{
f9eb4af6
EK
6615 gva_t off;
6616 bool exn;
6617 struct kvm_segment s;
6618
19677e32
BD
6619 /*
6620 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6621 * Execution", on an exit, vmx_instruction_info holds most of the
6622 * addressing components of the operand. Only the displacement part
6623 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6624 * For how an actual address is calculated from all these components,
6625 * refer to Vol. 1, "Operand Addressing".
6626 */
6627 int scaling = vmx_instruction_info & 3;
6628 int addr_size = (vmx_instruction_info >> 7) & 7;
6629 bool is_reg = vmx_instruction_info & (1u << 10);
6630 int seg_reg = (vmx_instruction_info >> 15) & 7;
6631 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6632 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6633 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6634 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6635
6636 if (is_reg) {
6637 kvm_queue_exception(vcpu, UD_VECTOR);
6638 return 1;
6639 }
6640
6641 /* Addr = segment_base + offset */
6642 /* offset = base + [index * scale] + displacement */
f9eb4af6 6643 off = exit_qualification; /* holds the displacement */
19677e32 6644 if (base_is_valid)
f9eb4af6 6645 off += kvm_register_read(vcpu, base_reg);
19677e32 6646 if (index_is_valid)
f9eb4af6
EK
6647 off += kvm_register_read(vcpu, index_reg)<<scaling;
6648 vmx_get_segment(vcpu, &s, seg_reg);
6649 *ret = s.base + off;
19677e32
BD
6650
6651 if (addr_size == 1) /* 32 bit */
6652 *ret &= 0xffffffff;
6653
f9eb4af6
EK
6654 /* Checks for #GP/#SS exceptions. */
6655 exn = false;
6656 if (is_protmode(vcpu)) {
6657 /* Protected mode: apply checks for segment validity in the
6658 * following order:
6659 * - segment type check (#GP(0) may be thrown)
6660 * - usability check (#GP(0)/#SS(0))
6661 * - limit check (#GP(0)/#SS(0))
6662 */
6663 if (wr)
6664 /* #GP(0) if the destination operand is located in a
6665 * read-only data segment or any code segment.
6666 */
6667 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6668 else
6669 /* #GP(0) if the source operand is located in an
6670 * execute-only code segment
6671 */
6672 exn = ((s.type & 0xa) == 8);
6673 }
6674 if (exn) {
6675 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6676 return 1;
6677 }
6678 if (is_long_mode(vcpu)) {
6679 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6680 * non-canonical form. This is an only check for long mode.
6681 */
6682 exn = is_noncanonical_address(*ret);
6683 } else if (is_protmode(vcpu)) {
6684 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6685 */
6686 exn = (s.unusable != 0);
6687 /* Protected mode: #GP(0)/#SS(0) if the memory
6688 * operand is outside the segment limit.
6689 */
6690 exn = exn || (off + sizeof(u64) > s.limit);
6691 }
6692 if (exn) {
6693 kvm_queue_exception_e(vcpu,
6694 seg_reg == VCPU_SREG_SS ?
6695 SS_VECTOR : GP_VECTOR,
6696 0);
6697 return 1;
6698 }
6699
19677e32
BD
6700 return 0;
6701}
6702
3573e22c
BD
6703/*
6704 * This function performs the various checks including
6705 * - if it's 4KB aligned
6706 * - No bits beyond the physical address width are set
6707 * - Returns 0 on success or else 1
4291b588 6708 * (Intel SDM Section 30.3)
3573e22c 6709 */
4291b588
BD
6710static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6711 gpa_t *vmpointer)
3573e22c
BD
6712{
6713 gva_t gva;
6714 gpa_t vmptr;
6715 struct x86_exception e;
6716 struct page *page;
6717 struct vcpu_vmx *vmx = to_vmx(vcpu);
6718 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6719
6720 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6721 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6722 return 1;
6723
6724 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6725 sizeof(vmptr), &e)) {
6726 kvm_inject_page_fault(vcpu, &e);
6727 return 1;
6728 }
6729
6730 switch (exit_reason) {
6731 case EXIT_REASON_VMON:
6732 /*
6733 * SDM 3: 24.11.5
6734 * The first 4 bytes of VMXON region contain the supported
6735 * VMCS revision identifier
6736 *
6737 * Note - IA32_VMX_BASIC[48] will never be 1
6738 * for the nested case;
6739 * which replaces physical address width with 32
6740 *
6741 */
bc39c4db 6742 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6743 nested_vmx_failInvalid(vcpu);
6744 skip_emulated_instruction(vcpu);
6745 return 1;
6746 }
6747
6748 page = nested_get_page(vcpu, vmptr);
6749 if (page == NULL ||
6750 *(u32 *)kmap(page) != VMCS12_REVISION) {
6751 nested_vmx_failInvalid(vcpu);
6752 kunmap(page);
6753 skip_emulated_instruction(vcpu);
6754 return 1;
6755 }
6756 kunmap(page);
6757 vmx->nested.vmxon_ptr = vmptr;
6758 break;
4291b588 6759 case EXIT_REASON_VMCLEAR:
bc39c4db 6760 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6761 nested_vmx_failValid(vcpu,
6762 VMXERR_VMCLEAR_INVALID_ADDRESS);
6763 skip_emulated_instruction(vcpu);
6764 return 1;
6765 }
6766
6767 if (vmptr == vmx->nested.vmxon_ptr) {
6768 nested_vmx_failValid(vcpu,
6769 VMXERR_VMCLEAR_VMXON_POINTER);
6770 skip_emulated_instruction(vcpu);
6771 return 1;
6772 }
6773 break;
6774 case EXIT_REASON_VMPTRLD:
bc39c4db 6775 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6776 nested_vmx_failValid(vcpu,
6777 VMXERR_VMPTRLD_INVALID_ADDRESS);
6778 skip_emulated_instruction(vcpu);
6779 return 1;
6780 }
3573e22c 6781
4291b588
BD
6782 if (vmptr == vmx->nested.vmxon_ptr) {
6783 nested_vmx_failValid(vcpu,
6784 VMXERR_VMCLEAR_VMXON_POINTER);
6785 skip_emulated_instruction(vcpu);
6786 return 1;
6787 }
6788 break;
3573e22c
BD
6789 default:
6790 return 1; /* shouldn't happen */
6791 }
6792
4291b588
BD
6793 if (vmpointer)
6794 *vmpointer = vmptr;
3573e22c
BD
6795 return 0;
6796}
6797
ec378aee
NHE
6798/*
6799 * Emulate the VMXON instruction.
6800 * Currently, we just remember that VMX is active, and do not save or even
6801 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6802 * do not currently need to store anything in that guest-allocated memory
6803 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6804 * argument is different from the VMXON pointer (which the spec says they do).
6805 */
6806static int handle_vmon(struct kvm_vcpu *vcpu)
6807{
6808 struct kvm_segment cs;
6809 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6810 struct vmcs *shadow_vmcs;
b3897a49
NHE
6811 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6812 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6813
6814 /* The Intel VMX Instruction Reference lists a bunch of bits that
6815 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6816 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6817 * Otherwise, we should fail with #UD. We test these now:
6818 */
6819 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6820 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6821 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6822 kvm_queue_exception(vcpu, UD_VECTOR);
6823 return 1;
6824 }
6825
6826 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6827 if (is_long_mode(vcpu) && !cs.l) {
6828 kvm_queue_exception(vcpu, UD_VECTOR);
6829 return 1;
6830 }
6831
6832 if (vmx_get_cpl(vcpu)) {
6833 kvm_inject_gp(vcpu, 0);
6834 return 1;
6835 }
3573e22c 6836
4291b588 6837 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6838 return 1;
6839
145c28dd
AG
6840 if (vmx->nested.vmxon) {
6841 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6842 skip_emulated_instruction(vcpu);
6843 return 1;
6844 }
b3897a49
NHE
6845
6846 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6847 != VMXON_NEEDED_FEATURES) {
6848 kvm_inject_gp(vcpu, 0);
6849 return 1;
6850 }
6851
8de48833
AG
6852 if (enable_shadow_vmcs) {
6853 shadow_vmcs = alloc_vmcs();
6854 if (!shadow_vmcs)
6855 return -ENOMEM;
6856 /* mark vmcs as shadow */
6857 shadow_vmcs->revision_id |= (1u << 31);
6858 /* init shadow vmcs */
6859 vmcs_clear(shadow_vmcs);
6860 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6861 }
ec378aee 6862
ff2f6fe9
NHE
6863 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6864 vmx->nested.vmcs02_num = 0;
6865
f4124500
JK
6866 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6867 HRTIMER_MODE_REL);
6868 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6869
ec378aee
NHE
6870 vmx->nested.vmxon = true;
6871
6872 skip_emulated_instruction(vcpu);
a25eb114 6873 nested_vmx_succeed(vcpu);
ec378aee
NHE
6874 return 1;
6875}
6876
6877/*
6878 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6879 * for running VMX instructions (except VMXON, whose prerequisites are
6880 * slightly different). It also specifies what exception to inject otherwise.
6881 */
6882static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6883{
6884 struct kvm_segment cs;
6885 struct vcpu_vmx *vmx = to_vmx(vcpu);
6886
6887 if (!vmx->nested.vmxon) {
6888 kvm_queue_exception(vcpu, UD_VECTOR);
6889 return 0;
6890 }
6891
6892 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6893 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6894 (is_long_mode(vcpu) && !cs.l)) {
6895 kvm_queue_exception(vcpu, UD_VECTOR);
6896 return 0;
6897 }
6898
6899 if (vmx_get_cpl(vcpu)) {
6900 kvm_inject_gp(vcpu, 0);
6901 return 0;
6902 }
6903
6904 return 1;
6905}
6906
e7953d7f
AG
6907static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6908{
9a2a05b9
PB
6909 if (vmx->nested.current_vmptr == -1ull)
6910 return;
6911
6912 /* current_vmptr and current_vmcs12 are always set/reset together */
6913 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6914 return;
6915
012f83cb 6916 if (enable_shadow_vmcs) {
9a2a05b9
PB
6917 /* copy to memory all shadowed fields in case
6918 they were modified */
6919 copy_shadow_to_vmcs12(vmx);
6920 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
6921 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6922 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 6923 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6924 }
705699a1 6925 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6926 kunmap(vmx->nested.current_vmcs12_page);
6927 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6928 vmx->nested.current_vmptr = -1ull;
6929 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6930}
6931
ec378aee
NHE
6932/*
6933 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6934 * just stops using VMX.
6935 */
6936static void free_nested(struct vcpu_vmx *vmx)
6937{
6938 if (!vmx->nested.vmxon)
6939 return;
9a2a05b9 6940
ec378aee 6941 vmx->nested.vmxon = false;
5c614b35 6942 free_vpid(vmx->nested.vpid02);
9a2a05b9 6943 nested_release_vmcs12(vmx);
e7953d7f
AG
6944 if (enable_shadow_vmcs)
6945 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6946 /* Unpin physical memory we referred to in current vmcs02 */
6947 if (vmx->nested.apic_access_page) {
6948 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6949 vmx->nested.apic_access_page = NULL;
fe3ef05c 6950 }
a7c0b07d
WL
6951 if (vmx->nested.virtual_apic_page) {
6952 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6953 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6954 }
705699a1
WV
6955 if (vmx->nested.pi_desc_page) {
6956 kunmap(vmx->nested.pi_desc_page);
6957 nested_release_page(vmx->nested.pi_desc_page);
6958 vmx->nested.pi_desc_page = NULL;
6959 vmx->nested.pi_desc = NULL;
6960 }
ff2f6fe9
NHE
6961
6962 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6963}
6964
6965/* Emulate the VMXOFF instruction */
6966static int handle_vmoff(struct kvm_vcpu *vcpu)
6967{
6968 if (!nested_vmx_check_permission(vcpu))
6969 return 1;
6970 free_nested(to_vmx(vcpu));
6971 skip_emulated_instruction(vcpu);
a25eb114 6972 nested_vmx_succeed(vcpu);
ec378aee
NHE
6973 return 1;
6974}
6975
27d6c865
NHE
6976/* Emulate the VMCLEAR instruction */
6977static int handle_vmclear(struct kvm_vcpu *vcpu)
6978{
6979 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6980 gpa_t vmptr;
6981 struct vmcs12 *vmcs12;
6982 struct page *page;
27d6c865
NHE
6983
6984 if (!nested_vmx_check_permission(vcpu))
6985 return 1;
6986
4291b588 6987 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6988 return 1;
27d6c865 6989
9a2a05b9 6990 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6991 nested_release_vmcs12(vmx);
27d6c865
NHE
6992
6993 page = nested_get_page(vcpu, vmptr);
6994 if (page == NULL) {
6995 /*
6996 * For accurate processor emulation, VMCLEAR beyond available
6997 * physical memory should do nothing at all. However, it is
6998 * possible that a nested vmx bug, not a guest hypervisor bug,
6999 * resulted in this case, so let's shut down before doing any
7000 * more damage:
7001 */
7002 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7003 return 1;
7004 }
7005 vmcs12 = kmap(page);
7006 vmcs12->launch_state = 0;
7007 kunmap(page);
7008 nested_release_page(page);
7009
7010 nested_free_vmcs02(vmx, vmptr);
7011
7012 skip_emulated_instruction(vcpu);
7013 nested_vmx_succeed(vcpu);
7014 return 1;
7015}
7016
cd232ad0
NHE
7017static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7018
7019/* Emulate the VMLAUNCH instruction */
7020static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7021{
7022 return nested_vmx_run(vcpu, true);
7023}
7024
7025/* Emulate the VMRESUME instruction */
7026static int handle_vmresume(struct kvm_vcpu *vcpu)
7027{
7028
7029 return nested_vmx_run(vcpu, false);
7030}
7031
49f705c5
NHE
7032enum vmcs_field_type {
7033 VMCS_FIELD_TYPE_U16 = 0,
7034 VMCS_FIELD_TYPE_U64 = 1,
7035 VMCS_FIELD_TYPE_U32 = 2,
7036 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7037};
7038
7039static inline int vmcs_field_type(unsigned long field)
7040{
7041 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7042 return VMCS_FIELD_TYPE_U32;
7043 return (field >> 13) & 0x3 ;
7044}
7045
7046static inline int vmcs_field_readonly(unsigned long field)
7047{
7048 return (((field >> 10) & 0x3) == 1);
7049}
7050
7051/*
7052 * Read a vmcs12 field. Since these can have varying lengths and we return
7053 * one type, we chose the biggest type (u64) and zero-extend the return value
7054 * to that size. Note that the caller, handle_vmread, might need to use only
7055 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7056 * 64-bit fields are to be returned).
7057 */
a2ae9df7
PB
7058static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7059 unsigned long field, u64 *ret)
49f705c5
NHE
7060{
7061 short offset = vmcs_field_to_offset(field);
7062 char *p;
7063
7064 if (offset < 0)
a2ae9df7 7065 return offset;
49f705c5
NHE
7066
7067 p = ((char *)(get_vmcs12(vcpu))) + offset;
7068
7069 switch (vmcs_field_type(field)) {
7070 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7071 *ret = *((natural_width *)p);
a2ae9df7 7072 return 0;
49f705c5
NHE
7073 case VMCS_FIELD_TYPE_U16:
7074 *ret = *((u16 *)p);
a2ae9df7 7075 return 0;
49f705c5
NHE
7076 case VMCS_FIELD_TYPE_U32:
7077 *ret = *((u32 *)p);
a2ae9df7 7078 return 0;
49f705c5
NHE
7079 case VMCS_FIELD_TYPE_U64:
7080 *ret = *((u64 *)p);
a2ae9df7 7081 return 0;
49f705c5 7082 default:
a2ae9df7
PB
7083 WARN_ON(1);
7084 return -ENOENT;
49f705c5
NHE
7085 }
7086}
7087
20b97fea 7088
a2ae9df7
PB
7089static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7090 unsigned long field, u64 field_value){
20b97fea
AG
7091 short offset = vmcs_field_to_offset(field);
7092 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7093 if (offset < 0)
a2ae9df7 7094 return offset;
20b97fea
AG
7095
7096 switch (vmcs_field_type(field)) {
7097 case VMCS_FIELD_TYPE_U16:
7098 *(u16 *)p = field_value;
a2ae9df7 7099 return 0;
20b97fea
AG
7100 case VMCS_FIELD_TYPE_U32:
7101 *(u32 *)p = field_value;
a2ae9df7 7102 return 0;
20b97fea
AG
7103 case VMCS_FIELD_TYPE_U64:
7104 *(u64 *)p = field_value;
a2ae9df7 7105 return 0;
20b97fea
AG
7106 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7107 *(natural_width *)p = field_value;
a2ae9df7 7108 return 0;
20b97fea 7109 default:
a2ae9df7
PB
7110 WARN_ON(1);
7111 return -ENOENT;
20b97fea
AG
7112 }
7113
7114}
7115
16f5b903
AG
7116static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7117{
7118 int i;
7119 unsigned long field;
7120 u64 field_value;
7121 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
7122 const unsigned long *fields = shadow_read_write_fields;
7123 const int num_fields = max_shadow_read_write_fields;
16f5b903 7124
282da870
JK
7125 preempt_disable();
7126
16f5b903
AG
7127 vmcs_load(shadow_vmcs);
7128
7129 for (i = 0; i < num_fields; i++) {
7130 field = fields[i];
7131 switch (vmcs_field_type(field)) {
7132 case VMCS_FIELD_TYPE_U16:
7133 field_value = vmcs_read16(field);
7134 break;
7135 case VMCS_FIELD_TYPE_U32:
7136 field_value = vmcs_read32(field);
7137 break;
7138 case VMCS_FIELD_TYPE_U64:
7139 field_value = vmcs_read64(field);
7140 break;
7141 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7142 field_value = vmcs_readl(field);
7143 break;
a2ae9df7
PB
7144 default:
7145 WARN_ON(1);
7146 continue;
16f5b903
AG
7147 }
7148 vmcs12_write_any(&vmx->vcpu, field, field_value);
7149 }
7150
7151 vmcs_clear(shadow_vmcs);
7152 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7153
7154 preempt_enable();
16f5b903
AG
7155}
7156
c3114420
AG
7157static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7158{
c2bae893
MK
7159 const unsigned long *fields[] = {
7160 shadow_read_write_fields,
7161 shadow_read_only_fields
c3114420 7162 };
c2bae893 7163 const int max_fields[] = {
c3114420
AG
7164 max_shadow_read_write_fields,
7165 max_shadow_read_only_fields
7166 };
7167 int i, q;
7168 unsigned long field;
7169 u64 field_value = 0;
7170 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7171
7172 vmcs_load(shadow_vmcs);
7173
c2bae893 7174 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7175 for (i = 0; i < max_fields[q]; i++) {
7176 field = fields[q][i];
7177 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7178
7179 switch (vmcs_field_type(field)) {
7180 case VMCS_FIELD_TYPE_U16:
7181 vmcs_write16(field, (u16)field_value);
7182 break;
7183 case VMCS_FIELD_TYPE_U32:
7184 vmcs_write32(field, (u32)field_value);
7185 break;
7186 case VMCS_FIELD_TYPE_U64:
7187 vmcs_write64(field, (u64)field_value);
7188 break;
7189 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7190 vmcs_writel(field, (long)field_value);
7191 break;
a2ae9df7
PB
7192 default:
7193 WARN_ON(1);
7194 break;
c3114420
AG
7195 }
7196 }
7197 }
7198
7199 vmcs_clear(shadow_vmcs);
7200 vmcs_load(vmx->loaded_vmcs->vmcs);
7201}
7202
49f705c5
NHE
7203/*
7204 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7205 * used before) all generate the same failure when it is missing.
7206 */
7207static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7208{
7209 struct vcpu_vmx *vmx = to_vmx(vcpu);
7210 if (vmx->nested.current_vmptr == -1ull) {
7211 nested_vmx_failInvalid(vcpu);
7212 skip_emulated_instruction(vcpu);
7213 return 0;
7214 }
7215 return 1;
7216}
7217
7218static int handle_vmread(struct kvm_vcpu *vcpu)
7219{
7220 unsigned long field;
7221 u64 field_value;
7222 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7223 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7224 gva_t gva = 0;
7225
7226 if (!nested_vmx_check_permission(vcpu) ||
7227 !nested_vmx_check_vmcs12(vcpu))
7228 return 1;
7229
7230 /* Decode instruction info and find the field to read */
27e6fb5d 7231 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7232 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7233 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
7234 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7235 skip_emulated_instruction(vcpu);
7236 return 1;
7237 }
7238 /*
7239 * Now copy part of this value to register or memory, as requested.
7240 * Note that the number of bits actually copied is 32 or 64 depending
7241 * on the guest's mode (32 or 64 bit), not on the given field's length.
7242 */
7243 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7244 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7245 field_value);
7246 } else {
7247 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7248 vmx_instruction_info, true, &gva))
49f705c5
NHE
7249 return 1;
7250 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7251 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7252 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7253 }
7254
7255 nested_vmx_succeed(vcpu);
7256 skip_emulated_instruction(vcpu);
7257 return 1;
7258}
7259
7260
7261static int handle_vmwrite(struct kvm_vcpu *vcpu)
7262{
7263 unsigned long field;
7264 gva_t gva;
7265 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7266 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7267 /* The value to write might be 32 or 64 bits, depending on L1's long
7268 * mode, and eventually we need to write that into a field of several
7269 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7270 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7271 * bits into the vmcs12 field.
7272 */
7273 u64 field_value = 0;
7274 struct x86_exception e;
7275
7276 if (!nested_vmx_check_permission(vcpu) ||
7277 !nested_vmx_check_vmcs12(vcpu))
7278 return 1;
7279
7280 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7281 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7282 (((vmx_instruction_info) >> 3) & 0xf));
7283 else {
7284 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7285 vmx_instruction_info, false, &gva))
49f705c5
NHE
7286 return 1;
7287 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7288 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7289 kvm_inject_page_fault(vcpu, &e);
7290 return 1;
7291 }
7292 }
7293
7294
27e6fb5d 7295 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7296 if (vmcs_field_readonly(field)) {
7297 nested_vmx_failValid(vcpu,
7298 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7299 skip_emulated_instruction(vcpu);
7300 return 1;
7301 }
7302
a2ae9df7 7303 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7304 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7305 skip_emulated_instruction(vcpu);
7306 return 1;
7307 }
7308
7309 nested_vmx_succeed(vcpu);
7310 skip_emulated_instruction(vcpu);
7311 return 1;
7312}
7313
63846663
NHE
7314/* Emulate the VMPTRLD instruction */
7315static int handle_vmptrld(struct kvm_vcpu *vcpu)
7316{
7317 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7318 gpa_t vmptr;
63846663
NHE
7319
7320 if (!nested_vmx_check_permission(vcpu))
7321 return 1;
7322
4291b588 7323 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7324 return 1;
63846663
NHE
7325
7326 if (vmx->nested.current_vmptr != vmptr) {
7327 struct vmcs12 *new_vmcs12;
7328 struct page *page;
7329 page = nested_get_page(vcpu, vmptr);
7330 if (page == NULL) {
7331 nested_vmx_failInvalid(vcpu);
7332 skip_emulated_instruction(vcpu);
7333 return 1;
7334 }
7335 new_vmcs12 = kmap(page);
7336 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7337 kunmap(page);
7338 nested_release_page_clean(page);
7339 nested_vmx_failValid(vcpu,
7340 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7341 skip_emulated_instruction(vcpu);
7342 return 1;
7343 }
63846663 7344
9a2a05b9 7345 nested_release_vmcs12(vmx);
63846663
NHE
7346 vmx->nested.current_vmptr = vmptr;
7347 vmx->nested.current_vmcs12 = new_vmcs12;
7348 vmx->nested.current_vmcs12_page = page;
012f83cb 7349 if (enable_shadow_vmcs) {
7ec36296
XG
7350 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7351 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0
AG
7352 vmcs_write64(VMCS_LINK_POINTER,
7353 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7354 vmx->nested.sync_shadow_vmcs = true;
7355 }
63846663
NHE
7356 }
7357
7358 nested_vmx_succeed(vcpu);
7359 skip_emulated_instruction(vcpu);
7360 return 1;
7361}
7362
6a4d7550
NHE
7363/* Emulate the VMPTRST instruction */
7364static int handle_vmptrst(struct kvm_vcpu *vcpu)
7365{
7366 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7367 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7368 gva_t vmcs_gva;
7369 struct x86_exception e;
7370
7371 if (!nested_vmx_check_permission(vcpu))
7372 return 1;
7373
7374 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7375 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7376 return 1;
7377 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7378 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7379 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7380 sizeof(u64), &e)) {
7381 kvm_inject_page_fault(vcpu, &e);
7382 return 1;
7383 }
7384 nested_vmx_succeed(vcpu);
7385 skip_emulated_instruction(vcpu);
7386 return 1;
7387}
7388
bfd0a56b
NHE
7389/* Emulate the INVEPT instruction */
7390static int handle_invept(struct kvm_vcpu *vcpu)
7391{
b9c237bb 7392 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7393 u32 vmx_instruction_info, types;
7394 unsigned long type;
7395 gva_t gva;
7396 struct x86_exception e;
7397 struct {
7398 u64 eptp, gpa;
7399 } operand;
bfd0a56b 7400
b9c237bb
WV
7401 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7402 SECONDARY_EXEC_ENABLE_EPT) ||
7403 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7404 kvm_queue_exception(vcpu, UD_VECTOR);
7405 return 1;
7406 }
7407
7408 if (!nested_vmx_check_permission(vcpu))
7409 return 1;
7410
7411 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7412 kvm_queue_exception(vcpu, UD_VECTOR);
7413 return 1;
7414 }
7415
7416 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7417 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7418
b9c237bb 7419 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7420
7421 if (!(types & (1UL << type))) {
7422 nested_vmx_failValid(vcpu,
7423 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
2849eb4f 7424 skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7425 return 1;
7426 }
7427
7428 /* According to the Intel VMX instruction reference, the memory
7429 * operand is read even if it isn't needed (e.g., for type==global)
7430 */
7431 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7432 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7433 return 1;
7434 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7435 sizeof(operand), &e)) {
7436 kvm_inject_page_fault(vcpu, &e);
7437 return 1;
7438 }
7439
7440 switch (type) {
bfd0a56b
NHE
7441 case VMX_EPT_EXTENT_GLOBAL:
7442 kvm_mmu_sync_roots(vcpu);
77c3913b 7443 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7444 nested_vmx_succeed(vcpu);
7445 break;
7446 default:
4b855078 7447 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7448 BUG_ON(1);
7449 break;
7450 }
7451
7452 skip_emulated_instruction(vcpu);
7453 return 1;
7454}
7455
a642fc30
PM
7456static int handle_invvpid(struct kvm_vcpu *vcpu)
7457{
99b83ac8
WL
7458 struct vcpu_vmx *vmx = to_vmx(vcpu);
7459 u32 vmx_instruction_info;
7460 unsigned long type, types;
7461 gva_t gva;
7462 struct x86_exception e;
7463 int vpid;
7464
7465 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7466 SECONDARY_EXEC_ENABLE_VPID) ||
7467 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7468 kvm_queue_exception(vcpu, UD_VECTOR);
7469 return 1;
7470 }
7471
7472 if (!nested_vmx_check_permission(vcpu))
7473 return 1;
7474
7475 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7476 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7477
7478 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7479
7480 if (!(types & (1UL << type))) {
7481 nested_vmx_failValid(vcpu,
7482 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
f6870ee9 7483 skip_emulated_instruction(vcpu);
99b83ac8
WL
7484 return 1;
7485 }
7486
7487 /* according to the intel vmx instruction reference, the memory
7488 * operand is read even if it isn't needed (e.g., for type==global)
7489 */
7490 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7491 vmx_instruction_info, false, &gva))
7492 return 1;
7493 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7494 sizeof(u32), &e)) {
7495 kvm_inject_page_fault(vcpu, &e);
7496 return 1;
7497 }
7498
7499 switch (type) {
ef697a71
PB
7500 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7501 /*
7502 * Old versions of KVM use the single-context version so we
7503 * have to support it; just treat it the same as all-context.
7504 */
99b83ac8 7505 case VMX_VPID_EXTENT_ALL_CONTEXT:
5c614b35 7506 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
99b83ac8
WL
7507 nested_vmx_succeed(vcpu);
7508 break;
7509 default:
ef697a71 7510 /* Trap individual address invalidation invvpid calls */
99b83ac8
WL
7511 BUG_ON(1);
7512 break;
7513 }
7514
7515 skip_emulated_instruction(vcpu);
a642fc30
PM
7516 return 1;
7517}
7518
843e4330
KH
7519static int handle_pml_full(struct kvm_vcpu *vcpu)
7520{
7521 unsigned long exit_qualification;
7522
7523 trace_kvm_pml_full(vcpu->vcpu_id);
7524
7525 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7526
7527 /*
7528 * PML buffer FULL happened while executing iret from NMI,
7529 * "blocked by NMI" bit has to be set before next VM entry.
7530 */
7531 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7532 cpu_has_virtual_nmis() &&
7533 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7534 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7535 GUEST_INTR_STATE_NMI);
7536
7537 /*
7538 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7539 * here.., and there's no userspace involvement needed for PML.
7540 */
7541 return 1;
7542}
7543
8b3e34e4
XG
7544static int handle_pcommit(struct kvm_vcpu *vcpu)
7545{
7546 /* we never catch pcommit instruct for L1 guest. */
7547 WARN_ON(1);
7548 return 1;
7549}
7550
6aa8b732
AK
7551/*
7552 * The exit handlers return 1 if the exit was handled fully and guest execution
7553 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7554 * to be done to userspace and return 0.
7555 */
772e0318 7556static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7557 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7558 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7559 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7560 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7561 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7562 [EXIT_REASON_CR_ACCESS] = handle_cr,
7563 [EXIT_REASON_DR_ACCESS] = handle_dr,
7564 [EXIT_REASON_CPUID] = handle_cpuid,
7565 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7566 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7567 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7568 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7569 [EXIT_REASON_INVD] = handle_invd,
a7052897 7570 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7571 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7572 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7573 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7574 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7575 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7576 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7577 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7578 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7579 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7580 [EXIT_REASON_VMOFF] = handle_vmoff,
7581 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7582 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7583 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7584 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7585 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7586 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7587 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7588 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7589 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7590 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7591 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7592 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7593 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7594 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7595 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7596 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7597 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7598 [EXIT_REASON_XSAVES] = handle_xsaves,
7599 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7600 [EXIT_REASON_PML_FULL] = handle_pml_full,
8b3e34e4 7601 [EXIT_REASON_PCOMMIT] = handle_pcommit,
6aa8b732
AK
7602};
7603
7604static const int kvm_vmx_max_exit_handlers =
50a3485c 7605 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7606
908a7bdd
JK
7607static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7608 struct vmcs12 *vmcs12)
7609{
7610 unsigned long exit_qualification;
7611 gpa_t bitmap, last_bitmap;
7612 unsigned int port;
7613 int size;
7614 u8 b;
7615
908a7bdd 7616 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7617 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7618
7619 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7620
7621 port = exit_qualification >> 16;
7622 size = (exit_qualification & 7) + 1;
7623
7624 last_bitmap = (gpa_t)-1;
7625 b = -1;
7626
7627 while (size > 0) {
7628 if (port < 0x8000)
7629 bitmap = vmcs12->io_bitmap_a;
7630 else if (port < 0x10000)
7631 bitmap = vmcs12->io_bitmap_b;
7632 else
1d804d07 7633 return true;
908a7bdd
JK
7634 bitmap += (port & 0x7fff) / 8;
7635
7636 if (last_bitmap != bitmap)
54bf36aa 7637 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7638 return true;
908a7bdd 7639 if (b & (1 << (port & 7)))
1d804d07 7640 return true;
908a7bdd
JK
7641
7642 port++;
7643 size--;
7644 last_bitmap = bitmap;
7645 }
7646
1d804d07 7647 return false;
908a7bdd
JK
7648}
7649
644d711a
NHE
7650/*
7651 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7652 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7653 * disinterest in the current event (read or write a specific MSR) by using an
7654 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7655 */
7656static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7657 struct vmcs12 *vmcs12, u32 exit_reason)
7658{
7659 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7660 gpa_t bitmap;
7661
cbd29cb6 7662 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7663 return true;
644d711a
NHE
7664
7665 /*
7666 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7667 * for the four combinations of read/write and low/high MSR numbers.
7668 * First we need to figure out which of the four to use:
7669 */
7670 bitmap = vmcs12->msr_bitmap;
7671 if (exit_reason == EXIT_REASON_MSR_WRITE)
7672 bitmap += 2048;
7673 if (msr_index >= 0xc0000000) {
7674 msr_index -= 0xc0000000;
7675 bitmap += 1024;
7676 }
7677
7678 /* Then read the msr_index'th bit from this bitmap: */
7679 if (msr_index < 1024*8) {
7680 unsigned char b;
54bf36aa 7681 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7682 return true;
644d711a
NHE
7683 return 1 & (b >> (msr_index & 7));
7684 } else
1d804d07 7685 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7686}
7687
7688/*
7689 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7690 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7691 * intercept (via guest_host_mask etc.) the current event.
7692 */
7693static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7694 struct vmcs12 *vmcs12)
7695{
7696 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7697 int cr = exit_qualification & 15;
7698 int reg = (exit_qualification >> 8) & 15;
1e32c079 7699 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7700
7701 switch ((exit_qualification >> 4) & 3) {
7702 case 0: /* mov to cr */
7703 switch (cr) {
7704 case 0:
7705 if (vmcs12->cr0_guest_host_mask &
7706 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7707 return true;
644d711a
NHE
7708 break;
7709 case 3:
7710 if ((vmcs12->cr3_target_count >= 1 &&
7711 vmcs12->cr3_target_value0 == val) ||
7712 (vmcs12->cr3_target_count >= 2 &&
7713 vmcs12->cr3_target_value1 == val) ||
7714 (vmcs12->cr3_target_count >= 3 &&
7715 vmcs12->cr3_target_value2 == val) ||
7716 (vmcs12->cr3_target_count >= 4 &&
7717 vmcs12->cr3_target_value3 == val))
1d804d07 7718 return false;
644d711a 7719 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7720 return true;
644d711a
NHE
7721 break;
7722 case 4:
7723 if (vmcs12->cr4_guest_host_mask &
7724 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7725 return true;
644d711a
NHE
7726 break;
7727 case 8:
7728 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7729 return true;
644d711a
NHE
7730 break;
7731 }
7732 break;
7733 case 2: /* clts */
7734 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7735 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7736 return true;
644d711a
NHE
7737 break;
7738 case 1: /* mov from cr */
7739 switch (cr) {
7740 case 3:
7741 if (vmcs12->cpu_based_vm_exec_control &
7742 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7743 return true;
644d711a
NHE
7744 break;
7745 case 8:
7746 if (vmcs12->cpu_based_vm_exec_control &
7747 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7748 return true;
644d711a
NHE
7749 break;
7750 }
7751 break;
7752 case 3: /* lmsw */
7753 /*
7754 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7755 * cr0. Other attempted changes are ignored, with no exit.
7756 */
7757 if (vmcs12->cr0_guest_host_mask & 0xe &
7758 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7759 return true;
644d711a
NHE
7760 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7761 !(vmcs12->cr0_read_shadow & 0x1) &&
7762 (val & 0x1))
1d804d07 7763 return true;
644d711a
NHE
7764 break;
7765 }
1d804d07 7766 return false;
644d711a
NHE
7767}
7768
7769/*
7770 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7771 * should handle it ourselves in L0 (and then continue L2). Only call this
7772 * when in is_guest_mode (L2).
7773 */
7774static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7775{
644d711a
NHE
7776 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7777 struct vcpu_vmx *vmx = to_vmx(vcpu);
7778 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7779 u32 exit_reason = vmx->exit_reason;
644d711a 7780
542060ea
JK
7781 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7782 vmcs_readl(EXIT_QUALIFICATION),
7783 vmx->idt_vectoring_info,
7784 intr_info,
7785 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7786 KVM_ISA_VMX);
7787
644d711a 7788 if (vmx->nested.nested_run_pending)
1d804d07 7789 return false;
644d711a
NHE
7790
7791 if (unlikely(vmx->fail)) {
bd80158a
JK
7792 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7793 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7794 return true;
644d711a
NHE
7795 }
7796
7797 switch (exit_reason) {
7798 case EXIT_REASON_EXCEPTION_NMI:
7799 if (!is_exception(intr_info))
1d804d07 7800 return false;
644d711a
NHE
7801 else if (is_page_fault(intr_info))
7802 return enable_ept;
e504c909 7803 else if (is_no_device(intr_info) &&
ccf9844e 7804 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 7805 return false;
6f05485d
JK
7806 else if (is_debug(intr_info) &&
7807 vcpu->guest_debug &
7808 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7809 return false;
7810 else if (is_breakpoint(intr_info) &&
7811 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7812 return false;
644d711a
NHE
7813 return vmcs12->exception_bitmap &
7814 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7815 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 7816 return false;
644d711a 7817 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 7818 return true;
644d711a 7819 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7820 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7821 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7822 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 7823 case EXIT_REASON_TASK_SWITCH:
1d804d07 7824 return true;
644d711a 7825 case EXIT_REASON_CPUID:
bc613494 7826 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
7827 return false;
7828 return true;
644d711a
NHE
7829 case EXIT_REASON_HLT:
7830 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7831 case EXIT_REASON_INVD:
1d804d07 7832 return true;
644d711a
NHE
7833 case EXIT_REASON_INVLPG:
7834 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7835 case EXIT_REASON_RDPMC:
7836 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7837 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7838 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7839 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7840 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7841 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7842 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7843 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7844 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7845 /*
7846 * VMX instructions trap unconditionally. This allows L1 to
7847 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7848 */
1d804d07 7849 return true;
644d711a
NHE
7850 case EXIT_REASON_CR_ACCESS:
7851 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7852 case EXIT_REASON_DR_ACCESS:
7853 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7854 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7855 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7856 case EXIT_REASON_MSR_READ:
7857 case EXIT_REASON_MSR_WRITE:
7858 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7859 case EXIT_REASON_INVALID_STATE:
1d804d07 7860 return true;
644d711a
NHE
7861 case EXIT_REASON_MWAIT_INSTRUCTION:
7862 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
7863 case EXIT_REASON_MONITOR_TRAP_FLAG:
7864 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
7865 case EXIT_REASON_MONITOR_INSTRUCTION:
7866 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7867 case EXIT_REASON_PAUSE_INSTRUCTION:
7868 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7869 nested_cpu_has2(vmcs12,
7870 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7871 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 7872 return false;
644d711a 7873 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7874 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7875 case EXIT_REASON_APIC_ACCESS:
7876 return nested_cpu_has2(vmcs12,
7877 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7878 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7879 case EXIT_REASON_EOI_INDUCED:
7880 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 7881 return true;
644d711a 7882 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7883 /*
7884 * L0 always deals with the EPT violation. If nested EPT is
7885 * used, and the nested mmu code discovers that the address is
7886 * missing in the guest EPT table (EPT12), the EPT violation
7887 * will be injected with nested_ept_inject_page_fault()
7888 */
1d804d07 7889 return false;
644d711a 7890 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7891 /*
7892 * L2 never uses directly L1's EPT, but rather L0's own EPT
7893 * table (shadow on EPT) or a merged EPT table that L0 built
7894 * (EPT on EPT). So any problems with the structure of the
7895 * table is L0's fault.
7896 */
1d804d07 7897 return false;
644d711a
NHE
7898 case EXIT_REASON_WBINVD:
7899 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7900 case EXIT_REASON_XSETBV:
1d804d07 7901 return true;
81dc01f7
WL
7902 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7903 /*
7904 * This should never happen, since it is not possible to
7905 * set XSS to a non-zero value---neither in L1 nor in L2.
7906 * If if it were, XSS would have to be checked against
7907 * the XSS exit bitmap in vmcs12.
7908 */
7909 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8b3e34e4
XG
7910 case EXIT_REASON_PCOMMIT:
7911 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
644d711a 7912 default:
1d804d07 7913 return true;
644d711a
NHE
7914 }
7915}
7916
586f9607
AK
7917static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7918{
7919 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7920 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7921}
7922
a3eaa864 7923static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
843e4330
KH
7924{
7925 struct page *pml_pg;
843e4330
KH
7926
7927 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7928 if (!pml_pg)
7929 return -ENOMEM;
7930
7931 vmx->pml_pg = pml_pg;
7932
7933 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7934 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7935
843e4330
KH
7936 return 0;
7937}
7938
a3eaa864 7939static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 7940{
a3eaa864
KH
7941 if (vmx->pml_pg) {
7942 __free_page(vmx->pml_pg);
7943 vmx->pml_pg = NULL;
7944 }
843e4330
KH
7945}
7946
54bf36aa 7947static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 7948{
54bf36aa 7949 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
7950 u64 *pml_buf;
7951 u16 pml_idx;
7952
7953 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7954
7955 /* Do nothing if PML buffer is empty */
7956 if (pml_idx == (PML_ENTITY_NUM - 1))
7957 return;
7958
7959 /* PML index always points to next available PML buffer entity */
7960 if (pml_idx >= PML_ENTITY_NUM)
7961 pml_idx = 0;
7962 else
7963 pml_idx++;
7964
7965 pml_buf = page_address(vmx->pml_pg);
7966 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7967 u64 gpa;
7968
7969 gpa = pml_buf[pml_idx];
7970 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 7971 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
7972 }
7973
7974 /* reset PML index */
7975 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7976}
7977
7978/*
7979 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7980 * Called before reporting dirty_bitmap to userspace.
7981 */
7982static void kvm_flush_pml_buffers(struct kvm *kvm)
7983{
7984 int i;
7985 struct kvm_vcpu *vcpu;
7986 /*
7987 * We only need to kick vcpu out of guest mode here, as PML buffer
7988 * is flushed at beginning of all VMEXITs, and it's obvious that only
7989 * vcpus running in guest are possible to have unflushed GPAs in PML
7990 * buffer.
7991 */
7992 kvm_for_each_vcpu(i, vcpu, kvm)
7993 kvm_vcpu_kick(vcpu);
7994}
7995
4eb64dce
PB
7996static void vmx_dump_sel(char *name, uint32_t sel)
7997{
7998 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7999 name, vmcs_read32(sel),
8000 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8001 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8002 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8003}
8004
8005static void vmx_dump_dtsel(char *name, uint32_t limit)
8006{
8007 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8008 name, vmcs_read32(limit),
8009 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8010}
8011
8012static void dump_vmcs(void)
8013{
8014 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8015 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8016 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8017 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8018 u32 secondary_exec_control = 0;
8019 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8020 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8021 int i, n;
8022
8023 if (cpu_has_secondary_exec_ctrls())
8024 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8025
8026 pr_err("*** Guest State ***\n");
8027 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8028 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8029 vmcs_readl(CR0_GUEST_HOST_MASK));
8030 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8031 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8032 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8033 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8034 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8035 {
845c5b40
PB
8036 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8037 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8038 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8039 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8040 }
8041 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8042 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8043 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8044 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8045 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8046 vmcs_readl(GUEST_SYSENTER_ESP),
8047 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8048 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8049 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8050 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8051 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8052 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8053 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8054 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8055 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8056 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8057 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8058 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8059 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8060 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8061 efer, vmcs_read64(GUEST_IA32_PAT));
8062 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8063 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8064 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8065 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8066 pr_err("PerfGlobCtl = 0x%016llx\n",
8067 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8068 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8069 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8070 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8071 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8072 vmcs_read32(GUEST_ACTIVITY_STATE));
8073 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8074 pr_err("InterruptStatus = %04x\n",
8075 vmcs_read16(GUEST_INTR_STATUS));
8076
8077 pr_err("*** Host State ***\n");
8078 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8079 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8080 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8081 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8082 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8083 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8084 vmcs_read16(HOST_TR_SELECTOR));
8085 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8086 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8087 vmcs_readl(HOST_TR_BASE));
8088 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8089 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8090 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8091 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8092 vmcs_readl(HOST_CR4));
8093 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8094 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8095 vmcs_read32(HOST_IA32_SYSENTER_CS),
8096 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8097 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8098 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8099 vmcs_read64(HOST_IA32_EFER),
8100 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8101 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8102 pr_err("PerfGlobCtl = 0x%016llx\n",
8103 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8104
8105 pr_err("*** Control State ***\n");
8106 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8107 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8108 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8109 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8110 vmcs_read32(EXCEPTION_BITMAP),
8111 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8112 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8113 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8114 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8115 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8116 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8117 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8118 vmcs_read32(VM_EXIT_INTR_INFO),
8119 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8120 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8121 pr_err(" reason=%08x qualification=%016lx\n",
8122 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8123 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8124 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8125 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8126 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8127 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8128 pr_err("TSC Multiplier = 0x%016llx\n",
8129 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8130 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8131 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8132 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8133 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8134 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8135 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8136 n = vmcs_read32(CR3_TARGET_COUNT);
8137 for (i = 0; i + 1 < n; i += 4)
8138 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8139 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8140 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8141 if (i < n)
8142 pr_err("CR3 target%u=%016lx\n",
8143 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8144 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8145 pr_err("PLE Gap=%08x Window=%08x\n",
8146 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8147 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8148 pr_err("Virtual processor ID = 0x%04x\n",
8149 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8150}
8151
6aa8b732
AK
8152/*
8153 * The guest has exited. See if we can fix it or if we need userspace
8154 * assistance.
8155 */
851ba692 8156static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8157{
29bd8a78 8158 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8159 u32 exit_reason = vmx->exit_reason;
1155f76a 8160 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8161
8b89fe1f
PB
8162 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8163
843e4330
KH
8164 /*
8165 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8166 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8167 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8168 * mode as if vcpus is in root mode, the PML buffer must has been
8169 * flushed already.
8170 */
8171 if (enable_pml)
54bf36aa 8172 vmx_flush_pml_buffer(vcpu);
843e4330 8173
80ced186 8174 /* If guest state is invalid, start emulating */
14168786 8175 if (vmx->emulation_required)
80ced186 8176 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8177
644d711a 8178 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8179 nested_vmx_vmexit(vcpu, exit_reason,
8180 vmcs_read32(VM_EXIT_INTR_INFO),
8181 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8182 return 1;
8183 }
8184
5120702e 8185 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8186 dump_vmcs();
5120702e
MG
8187 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8188 vcpu->run->fail_entry.hardware_entry_failure_reason
8189 = exit_reason;
8190 return 0;
8191 }
8192
29bd8a78 8193 if (unlikely(vmx->fail)) {
851ba692
AK
8194 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8195 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8196 = vmcs_read32(VM_INSTRUCTION_ERROR);
8197 return 0;
8198 }
6aa8b732 8199
b9bf6882
XG
8200 /*
8201 * Note:
8202 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8203 * delivery event since it indicates guest is accessing MMIO.
8204 * The vm-exit can be triggered again after return to guest that
8205 * will cause infinite loop.
8206 */
d77c26fc 8207 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8208 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8209 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
8210 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8211 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8212 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8213 vcpu->run->internal.ndata = 2;
8214 vcpu->run->internal.data[0] = vectoring_info;
8215 vcpu->run->internal.data[1] = exit_reason;
8216 return 0;
8217 }
3b86cd99 8218
644d711a
NHE
8219 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8220 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8221 get_vmcs12(vcpu))))) {
c4282df9 8222 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8223 vmx->soft_vnmi_blocked = 0;
3b86cd99 8224 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8225 vcpu->arch.nmi_pending) {
3b86cd99
JK
8226 /*
8227 * This CPU don't support us in finding the end of an
8228 * NMI-blocked window if the guest runs with IRQs
8229 * disabled. So we pull the trigger after 1 s of
8230 * futile waiting, but inform the user about this.
8231 */
8232 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8233 "state on VCPU %d after 1 s timeout\n",
8234 __func__, vcpu->vcpu_id);
8235 vmx->soft_vnmi_blocked = 0;
3b86cd99 8236 }
3b86cd99
JK
8237 }
8238
6aa8b732
AK
8239 if (exit_reason < kvm_vmx_max_exit_handlers
8240 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8241 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8242 else {
2bc19dc3
MT
8243 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8244 kvm_queue_exception(vcpu, UD_VECTOR);
8245 return 1;
6aa8b732 8246 }
6aa8b732
AK
8247}
8248
95ba8273 8249static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8250{
a7c0b07d
WL
8251 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8252
8253 if (is_guest_mode(vcpu) &&
8254 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8255 return;
8256
95ba8273 8257 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8258 vmcs_write32(TPR_THRESHOLD, 0);
8259 return;
8260 }
8261
95ba8273 8262 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8263}
8264
8d14695f
YZ
8265static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8266{
8267 u32 sec_exec_control;
8268
8269 /*
8270 * There is not point to enable virtualize x2apic without enable
8271 * apicv
8272 */
c7c9c56c 8273 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
d62caabb 8274 !kvm_vcpu_apicv_active(vcpu))
8d14695f
YZ
8275 return;
8276
35754c98 8277 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8278 return;
8279
8280 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8281
8282 if (set) {
8283 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8284 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8285 } else {
8286 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8287 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8288 }
8289 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8290
8291 vmx_set_msr_bitmap(vcpu);
8292}
8293
38b99173
TC
8294static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8295{
8296 struct vcpu_vmx *vmx = to_vmx(vcpu);
8297
8298 /*
8299 * Currently we do not handle the nested case where L2 has an
8300 * APIC access page of its own; that page is still pinned.
8301 * Hence, we skip the case where the VCPU is in guest mode _and_
8302 * L1 prepared an APIC access page for L2.
8303 *
8304 * For the case where L1 and L2 share the same APIC access page
8305 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8306 * in the vmcs12), this function will only update either the vmcs01
8307 * or the vmcs02. If the former, the vmcs02 will be updated by
8308 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8309 * the next L2->L1 exit.
8310 */
8311 if (!is_guest_mode(vcpu) ||
8312 !nested_cpu_has2(vmx->nested.current_vmcs12,
8313 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8314 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8315}
8316
c7c9c56c
YZ
8317static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8318{
8319 u16 status;
8320 u8 old;
8321
c7c9c56c
YZ
8322 if (isr == -1)
8323 isr = 0;
8324
8325 status = vmcs_read16(GUEST_INTR_STATUS);
8326 old = status >> 8;
8327 if (isr != old) {
8328 status &= 0xff;
8329 status |= isr << 8;
8330 vmcs_write16(GUEST_INTR_STATUS, status);
8331 }
8332}
8333
8334static void vmx_set_rvi(int vector)
8335{
8336 u16 status;
8337 u8 old;
8338
4114c27d
WW
8339 if (vector == -1)
8340 vector = 0;
8341
c7c9c56c
YZ
8342 status = vmcs_read16(GUEST_INTR_STATUS);
8343 old = (u8)status & 0xff;
8344 if ((u8)vector != old) {
8345 status &= ~0xff;
8346 status |= (u8)vector;
8347 vmcs_write16(GUEST_INTR_STATUS, status);
8348 }
8349}
8350
8351static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8352{
4114c27d
WW
8353 if (!is_guest_mode(vcpu)) {
8354 vmx_set_rvi(max_irr);
8355 return;
8356 }
8357
c7c9c56c
YZ
8358 if (max_irr == -1)
8359 return;
8360
963fee16 8361 /*
4114c27d
WW
8362 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8363 * handles it.
963fee16 8364 */
4114c27d 8365 if (nested_exit_on_intr(vcpu))
963fee16
WL
8366 return;
8367
963fee16 8368 /*
4114c27d 8369 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8370 * is run without virtual interrupt delivery.
8371 */
8372 if (!kvm_event_needs_reinjection(vcpu) &&
8373 vmx_interrupt_allowed(vcpu)) {
8374 kvm_queue_interrupt(vcpu, max_irr, false);
8375 vmx_inject_irq(vcpu);
8376 }
c7c9c56c
YZ
8377}
8378
6308630b 8379static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8380{
d62caabb 8381 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8382 return;
8383
c7c9c56c
YZ
8384 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8385 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8386 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8387 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8388}
8389
51aa01d1 8390static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8391{
00eba012
AK
8392 u32 exit_intr_info;
8393
8394 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8395 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8396 return;
8397
c5ca8e57 8398 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8399 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8400
8401 /* Handle machine checks before interrupts are enabled */
00eba012 8402 if (is_machine_check(exit_intr_info))
a0861c02
AK
8403 kvm_machine_check();
8404
20f65983 8405 /* We need to handle NMIs before interrupts are enabled */
00eba012 8406 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8407 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8408 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8409 asm("int $2");
ff9d07a0
ZY
8410 kvm_after_handle_nmi(&vmx->vcpu);
8411 }
51aa01d1 8412}
20f65983 8413
a547c6db
YZ
8414static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8415{
8416 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8417 register void *__sp asm(_ASM_SP);
a547c6db
YZ
8418
8419 /*
8420 * If external interrupt exists, IF bit is set in rflags/eflags on the
8421 * interrupt stack frame, and interrupt will be enabled on a return
8422 * from interrupt handler.
8423 */
8424 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8425 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8426 unsigned int vector;
8427 unsigned long entry;
8428 gate_desc *desc;
8429 struct vcpu_vmx *vmx = to_vmx(vcpu);
8430#ifdef CONFIG_X86_64
8431 unsigned long tmp;
8432#endif
8433
8434 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8435 desc = (gate_desc *)vmx->host_idt_base + vector;
8436 entry = gate_offset(*desc);
8437 asm volatile(
8438#ifdef CONFIG_X86_64
8439 "mov %%" _ASM_SP ", %[sp]\n\t"
8440 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8441 "push $%c[ss]\n\t"
8442 "push %[sp]\n\t"
8443#endif
8444 "pushf\n\t"
8445 "orl $0x200, (%%" _ASM_SP ")\n\t"
8446 __ASM_SIZE(push) " $%c[cs]\n\t"
8447 "call *%[entry]\n\t"
8448 :
8449#ifdef CONFIG_X86_64
3f62de5f 8450 [sp]"=&r"(tmp),
a547c6db 8451#endif
3f62de5f 8452 "+r"(__sp)
a547c6db
YZ
8453 :
8454 [entry]"r"(entry),
8455 [ss]"i"(__KERNEL_DS),
8456 [cs]"i"(__KERNEL_CS)
8457 );
8458 } else
8459 local_irq_enable();
8460}
8461
6d396b55
PB
8462static bool vmx_has_high_real_mode_segbase(void)
8463{
8464 return enable_unrestricted_guest || emulate_invalid_guest_state;
8465}
8466
da8999d3
LJ
8467static bool vmx_mpx_supported(void)
8468{
8469 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8470 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8471}
8472
55412b2e
WL
8473static bool vmx_xsaves_supported(void)
8474{
8475 return vmcs_config.cpu_based_2nd_exec_ctrl &
8476 SECONDARY_EXEC_XSAVES;
8477}
8478
51aa01d1
AK
8479static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8480{
c5ca8e57 8481 u32 exit_intr_info;
51aa01d1
AK
8482 bool unblock_nmi;
8483 u8 vector;
8484 bool idtv_info_valid;
8485
8486 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8487
cf393f75 8488 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8489 if (vmx->nmi_known_unmasked)
8490 return;
c5ca8e57
AK
8491 /*
8492 * Can't use vmx->exit_intr_info since we're not sure what
8493 * the exit reason is.
8494 */
8495 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8496 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8497 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8498 /*
7b4a25cb 8499 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8500 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8501 * a guest IRET fault.
7b4a25cb
GN
8502 * SDM 3: 23.2.2 (September 2008)
8503 * Bit 12 is undefined in any of the following cases:
8504 * If the VM exit sets the valid bit in the IDT-vectoring
8505 * information field.
8506 * If the VM exit is due to a double fault.
cf393f75 8507 */
7b4a25cb
GN
8508 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8509 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8511 GUEST_INTR_STATE_NMI);
9d58b931
AK
8512 else
8513 vmx->nmi_known_unmasked =
8514 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8515 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8516 } else if (unlikely(vmx->soft_vnmi_blocked))
8517 vmx->vnmi_blocked_time +=
8518 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8519}
8520
3ab66e8a 8521static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8522 u32 idt_vectoring_info,
8523 int instr_len_field,
8524 int error_code_field)
51aa01d1 8525{
51aa01d1
AK
8526 u8 vector;
8527 int type;
8528 bool idtv_info_valid;
8529
8530 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8531
3ab66e8a
JK
8532 vcpu->arch.nmi_injected = false;
8533 kvm_clear_exception_queue(vcpu);
8534 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8535
8536 if (!idtv_info_valid)
8537 return;
8538
3ab66e8a 8539 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8540
668f612f
AK
8541 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8542 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8543
64a7ec06 8544 switch (type) {
37b96e98 8545 case INTR_TYPE_NMI_INTR:
3ab66e8a 8546 vcpu->arch.nmi_injected = true;
668f612f 8547 /*
7b4a25cb 8548 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8549 * Clear bit "block by NMI" before VM entry if a NMI
8550 * delivery faulted.
668f612f 8551 */
3ab66e8a 8552 vmx_set_nmi_mask(vcpu, false);
37b96e98 8553 break;
37b96e98 8554 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8555 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8556 /* fall through */
8557 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8558 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8559 u32 err = vmcs_read32(error_code_field);
851eb667 8560 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8561 } else
851eb667 8562 kvm_requeue_exception(vcpu, vector);
37b96e98 8563 break;
66fd3f7f 8564 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8565 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8566 /* fall through */
37b96e98 8567 case INTR_TYPE_EXT_INTR:
3ab66e8a 8568 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8569 break;
8570 default:
8571 break;
f7d9238f 8572 }
cf393f75
AK
8573}
8574
83422e17
AK
8575static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8576{
3ab66e8a 8577 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8578 VM_EXIT_INSTRUCTION_LEN,
8579 IDT_VECTORING_ERROR_CODE);
8580}
8581
b463a6f7
AK
8582static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8583{
3ab66e8a 8584 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8585 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8586 VM_ENTRY_INSTRUCTION_LEN,
8587 VM_ENTRY_EXCEPTION_ERROR_CODE);
8588
8589 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8590}
8591
d7cd9796
GN
8592static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8593{
8594 int i, nr_msrs;
8595 struct perf_guest_switch_msr *msrs;
8596
8597 msrs = perf_guest_get_msrs(&nr_msrs);
8598
8599 if (!msrs)
8600 return;
8601
8602 for (i = 0; i < nr_msrs; i++)
8603 if (msrs[i].host == msrs[i].guest)
8604 clear_atomic_switch_msr(vmx, msrs[i].msr);
8605 else
8606 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8607 msrs[i].host);
8608}
8609
a3b5ba49 8610static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8611{
a2fa3e9f 8612 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8613 unsigned long debugctlmsr, cr4;
104f226b
AK
8614
8615 /* Record the guest's net vcpu time for enforced NMI injections. */
8616 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8617 vmx->entry_time = ktime_get();
8618
8619 /* Don't enter VMX if guest state is invalid, let the exit handler
8620 start emulation until we arrive back to a valid state */
14168786 8621 if (vmx->emulation_required)
104f226b
AK
8622 return;
8623
a7653ecd
RK
8624 if (vmx->ple_window_dirty) {
8625 vmx->ple_window_dirty = false;
8626 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8627 }
8628
012f83cb
AG
8629 if (vmx->nested.sync_shadow_vmcs) {
8630 copy_vmcs12_to_shadow(vmx);
8631 vmx->nested.sync_shadow_vmcs = false;
8632 }
8633
104f226b
AK
8634 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8635 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8636 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8637 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8638
1e02ce4c 8639 cr4 = cr4_read_shadow();
d974baa3
AL
8640 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8641 vmcs_writel(HOST_CR4, cr4);
8642 vmx->host_state.vmcs_host_cr4 = cr4;
8643 }
8644
104f226b
AK
8645 /* When single-stepping over STI and MOV SS, we must clear the
8646 * corresponding interruptibility bits in the guest state. Otherwise
8647 * vmentry fails as it then expects bit 14 (BS) in pending debug
8648 * exceptions being set, but that's not correct for the guest debugging
8649 * case. */
8650 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8651 vmx_set_interrupt_shadow(vcpu, 0);
8652
1be0e61c
XG
8653 if (vmx->guest_pkru_valid)
8654 __write_pkru(vmx->guest_pkru);
8655
d7cd9796 8656 atomic_switch_perf_msrs(vmx);
2a7921b7 8657 debugctlmsr = get_debugctlmsr();
d7cd9796 8658
d462b819 8659 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8660 asm(
6aa8b732 8661 /* Store host registers */
b188c81f
AK
8662 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8663 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8664 "push %%" _ASM_CX " \n\t"
8665 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8666 "je 1f \n\t"
b188c81f 8667 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8668 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8669 "1: \n\t"
d3edefc0 8670 /* Reload cr2 if changed */
b188c81f
AK
8671 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8672 "mov %%cr2, %%" _ASM_DX " \n\t"
8673 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8674 "je 2f \n\t"
b188c81f 8675 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8676 "2: \n\t"
6aa8b732 8677 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8678 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8679 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8680 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8681 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8682 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8683 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8684 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8685 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8686#ifdef CONFIG_X86_64
e08aa78a
AK
8687 "mov %c[r8](%0), %%r8 \n\t"
8688 "mov %c[r9](%0), %%r9 \n\t"
8689 "mov %c[r10](%0), %%r10 \n\t"
8690 "mov %c[r11](%0), %%r11 \n\t"
8691 "mov %c[r12](%0), %%r12 \n\t"
8692 "mov %c[r13](%0), %%r13 \n\t"
8693 "mov %c[r14](%0), %%r14 \n\t"
8694 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8695#endif
b188c81f 8696 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8697
6aa8b732 8698 /* Enter guest mode */
83287ea4 8699 "jne 1f \n\t"
4ecac3fd 8700 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8701 "jmp 2f \n\t"
8702 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8703 "2: "
6aa8b732 8704 /* Save guest registers, load host registers, keep flags */
b188c81f 8705 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8706 "pop %0 \n\t"
b188c81f
AK
8707 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8708 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8709 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8710 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8711 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8712 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8713 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8714#ifdef CONFIG_X86_64
e08aa78a
AK
8715 "mov %%r8, %c[r8](%0) \n\t"
8716 "mov %%r9, %c[r9](%0) \n\t"
8717 "mov %%r10, %c[r10](%0) \n\t"
8718 "mov %%r11, %c[r11](%0) \n\t"
8719 "mov %%r12, %c[r12](%0) \n\t"
8720 "mov %%r13, %c[r13](%0) \n\t"
8721 "mov %%r14, %c[r14](%0) \n\t"
8722 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8723#endif
b188c81f
AK
8724 "mov %%cr2, %%" _ASM_AX " \n\t"
8725 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8726
b188c81f 8727 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8728 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8729 ".pushsection .rodata \n\t"
8730 ".global vmx_return \n\t"
8731 "vmx_return: " _ASM_PTR " 2b \n\t"
8732 ".popsection"
e08aa78a 8733 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8734 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8735 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8736 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8737 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8738 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8739 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8740 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8741 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8742 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8743 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8744#ifdef CONFIG_X86_64
ad312c7c
ZX
8745 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8746 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8747 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8748 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8749 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8750 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8751 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8752 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8753#endif
40712fae
AK
8754 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8755 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8756 : "cc", "memory"
8757#ifdef CONFIG_X86_64
b188c81f 8758 , "rax", "rbx", "rdi", "rsi"
c2036300 8759 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8760#else
8761 , "eax", "ebx", "edi", "esi"
c2036300
LV
8762#endif
8763 );
6aa8b732 8764
2a7921b7
GN
8765 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8766 if (debugctlmsr)
8767 update_debugctlmsr(debugctlmsr);
8768
aa67f609
AK
8769#ifndef CONFIG_X86_64
8770 /*
8771 * The sysexit path does not restore ds/es, so we must set them to
8772 * a reasonable value ourselves.
8773 *
8774 * We can't defer this to vmx_load_host_state() since that function
8775 * may be executed in interrupt context, which saves and restore segments
8776 * around it, nullifying its effect.
8777 */
8778 loadsegment(ds, __USER_DS);
8779 loadsegment(es, __USER_DS);
8780#endif
8781
6de4f3ad 8782 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8783 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8784 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8785 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8786 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8787 vcpu->arch.regs_dirty = 0;
8788
1155f76a
AK
8789 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8790
d462b819 8791 vmx->loaded_vmcs->launched = 1;
1b6269db 8792
51aa01d1 8793 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 8794
1be0e61c
XG
8795 /*
8796 * eager fpu is enabled if PKEY is supported and CR4 is switched
8797 * back on host, so it is safe to read guest PKRU from current
8798 * XSAVE.
8799 */
8800 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8801 vmx->guest_pkru = __read_pkru();
8802 if (vmx->guest_pkru != vmx->host_pkru) {
8803 vmx->guest_pkru_valid = true;
8804 __write_pkru(vmx->host_pkru);
8805 } else
8806 vmx->guest_pkru_valid = false;
8807 }
8808
e0b890d3
GN
8809 /*
8810 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8811 * we did not inject a still-pending event to L1 now because of
8812 * nested_run_pending, we need to re-enable this bit.
8813 */
8814 if (vmx->nested.nested_run_pending)
8815 kvm_make_request(KVM_REQ_EVENT, vcpu);
8816
8817 vmx->nested.nested_run_pending = 0;
8818
51aa01d1
AK
8819 vmx_complete_atomic_exit(vmx);
8820 vmx_recover_nmi_blocking(vmx);
cf393f75 8821 vmx_complete_interrupts(vmx);
6aa8b732
AK
8822}
8823
4fa7734c
PB
8824static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8825{
8826 struct vcpu_vmx *vmx = to_vmx(vcpu);
8827 int cpu;
8828
8829 if (vmx->loaded_vmcs == &vmx->vmcs01)
8830 return;
8831
8832 cpu = get_cpu();
8833 vmx->loaded_vmcs = &vmx->vmcs01;
8834 vmx_vcpu_put(vcpu);
8835 vmx_vcpu_load(vcpu, cpu);
8836 vcpu->cpu = cpu;
8837 put_cpu();
8838}
8839
6aa8b732
AK
8840static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8841{
fb3f0f51
RR
8842 struct vcpu_vmx *vmx = to_vmx(vcpu);
8843
843e4330 8844 if (enable_pml)
a3eaa864 8845 vmx_destroy_pml_buffer(vmx);
991e7a0e 8846 free_vpid(vmx->vpid);
4fa7734c
PB
8847 leave_guest_mode(vcpu);
8848 vmx_load_vmcs01(vcpu);
26a865f4 8849 free_nested(vmx);
4fa7734c 8850 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8851 kfree(vmx->guest_msrs);
8852 kvm_vcpu_uninit(vcpu);
a4770347 8853 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8854}
8855
fb3f0f51 8856static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8857{
fb3f0f51 8858 int err;
c16f862d 8859 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8860 int cpu;
6aa8b732 8861
a2fa3e9f 8862 if (!vmx)
fb3f0f51
RR
8863 return ERR_PTR(-ENOMEM);
8864
991e7a0e 8865 vmx->vpid = allocate_vpid();
2384d2b3 8866
fb3f0f51
RR
8867 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8868 if (err)
8869 goto free_vcpu;
965b58a5 8870
a2fa3e9f 8871 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8872 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8873 > PAGE_SIZE);
0123be42 8874
be6d05cf 8875 err = -ENOMEM;
fb3f0f51 8876 if (!vmx->guest_msrs) {
fb3f0f51
RR
8877 goto uninit_vcpu;
8878 }
965b58a5 8879
d462b819
NHE
8880 vmx->loaded_vmcs = &vmx->vmcs01;
8881 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8882 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8883 goto free_msrs;
d462b819
NHE
8884 if (!vmm_exclusive)
8885 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8886 loaded_vmcs_init(vmx->loaded_vmcs);
8887 if (!vmm_exclusive)
8888 kvm_cpu_vmxoff();
a2fa3e9f 8889
15ad7146
AK
8890 cpu = get_cpu();
8891 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8892 vmx->vcpu.cpu = cpu;
8b9cf98c 8893 err = vmx_vcpu_setup(vmx);
fb3f0f51 8894 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8895 put_cpu();
fb3f0f51
RR
8896 if (err)
8897 goto free_vmcs;
35754c98 8898 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
8899 err = alloc_apic_access_page(kvm);
8900 if (err)
5e4a0b3c 8901 goto free_vmcs;
a63cb560 8902 }
fb3f0f51 8903
b927a3ce
SY
8904 if (enable_ept) {
8905 if (!kvm->arch.ept_identity_map_addr)
8906 kvm->arch.ept_identity_map_addr =
8907 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8908 err = init_rmode_identity_map(kvm);
8909 if (err)
93ea5388 8910 goto free_vmcs;
b927a3ce 8911 }
b7ebfb05 8912
5c614b35 8913 if (nested) {
b9c237bb 8914 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
8915 vmx->nested.vpid02 = allocate_vpid();
8916 }
b9c237bb 8917
705699a1 8918 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8919 vmx->nested.current_vmptr = -1ull;
8920 vmx->nested.current_vmcs12 = NULL;
8921
843e4330
KH
8922 /*
8923 * If PML is turned on, failure on enabling PML just results in failure
8924 * of creating the vcpu, therefore we can simplify PML logic (by
8925 * avoiding dealing with cases, such as enabling PML partially on vcpus
8926 * for the guest, etc.
8927 */
8928 if (enable_pml) {
a3eaa864 8929 err = vmx_create_pml_buffer(vmx);
843e4330
KH
8930 if (err)
8931 goto free_vmcs;
8932 }
8933
fb3f0f51
RR
8934 return &vmx->vcpu;
8935
8936free_vmcs:
5c614b35 8937 free_vpid(vmx->nested.vpid02);
5f3fbc34 8938 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8939free_msrs:
fb3f0f51
RR
8940 kfree(vmx->guest_msrs);
8941uninit_vcpu:
8942 kvm_vcpu_uninit(&vmx->vcpu);
8943free_vcpu:
991e7a0e 8944 free_vpid(vmx->vpid);
a4770347 8945 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8946 return ERR_PTR(err);
6aa8b732
AK
8947}
8948
002c7f7c
YS
8949static void __init vmx_check_processor_compat(void *rtn)
8950{
8951 struct vmcs_config vmcs_conf;
8952
8953 *(int *)rtn = 0;
8954 if (setup_vmcs_config(&vmcs_conf) < 0)
8955 *(int *)rtn = -EIO;
8956 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8957 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8958 smp_processor_id());
8959 *(int *)rtn = -EIO;
8960 }
8961}
8962
67253af5
SY
8963static int get_ept_level(void)
8964{
8965 return VMX_EPT_DEFAULT_GAW + 1;
8966}
8967
4b12f0de 8968static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8969{
b18d5431
XG
8970 u8 cache;
8971 u64 ipat = 0;
4b12f0de 8972
522c68c4 8973 /* For VT-d and EPT combination
606decd6 8974 * 1. MMIO: always map as UC
522c68c4
SY
8975 * 2. EPT with VT-d:
8976 * a. VT-d without snooping control feature: can't guarantee the
606decd6 8977 * result, try to trust guest.
522c68c4
SY
8978 * b. VT-d with snooping control feature: snooping control feature of
8979 * VT-d engine can guarantee the cache correctness. Just set it
8980 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8981 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8982 * consistent with host MTRR
8983 */
606decd6
PB
8984 if (is_mmio) {
8985 cache = MTRR_TYPE_UNCACHABLE;
8986 goto exit;
8987 }
8988
8989 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
8990 ipat = VMX_EPT_IPAT_BIT;
8991 cache = MTRR_TYPE_WRBACK;
8992 goto exit;
8993 }
8994
8995 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8996 ipat = VMX_EPT_IPAT_BIT;
0da029ed 8997 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
8998 cache = MTRR_TYPE_WRBACK;
8999 else
9000 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9001 goto exit;
9002 }
9003
ff53604b 9004 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9005
9006exit:
9007 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9008}
9009
17cc3935 9010static int vmx_get_lpage_level(void)
344f414f 9011{
878403b7
SY
9012 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9013 return PT_DIRECTORY_LEVEL;
9014 else
9015 /* For shadow and EPT supported 1GB page */
9016 return PT_PDPE_LEVEL;
344f414f
JR
9017}
9018
feda805f
XG
9019static void vmcs_set_secondary_exec_control(u32 new_ctl)
9020{
9021 /*
9022 * These bits in the secondary execution controls field
9023 * are dynamic, the others are mostly based on the hypervisor
9024 * architecture and the guest's CPUID. Do not touch the
9025 * dynamic bits.
9026 */
9027 u32 mask =
9028 SECONDARY_EXEC_SHADOW_VMCS |
9029 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9030 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9031
9032 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9033
9034 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9035 (new_ctl & ~mask) | (cur_ctl & mask));
9036}
9037
0e851880
SY
9038static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9039{
4e47c7a6
SY
9040 struct kvm_cpuid_entry2 *best;
9041 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9042 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9043
4e47c7a6 9044 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9045 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9046 if (!rdtscp_enabled)
feda805f 9047 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9048
8b97265a 9049 if (nested) {
1cea0ce6 9050 if (rdtscp_enabled)
8b97265a
PB
9051 vmx->nested.nested_vmx_secondary_ctls_high |=
9052 SECONDARY_EXEC_RDTSCP;
9053 else
9054 vmx->nested.nested_vmx_secondary_ctls_high &=
9055 ~SECONDARY_EXEC_RDTSCP;
9056 }
4e47c7a6 9057 }
ad756a16 9058
ad756a16
MJ
9059 /* Exposing INVPCID only when PCID is exposed */
9060 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9061 if (vmx_invpcid_supported() &&
29541bb8
XG
9062 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9063 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9064 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9065
ad756a16 9066 if (best)
4f977045 9067 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9068 }
8b3e34e4 9069
45bdbcfd
HH
9070 if (cpu_has_secondary_exec_ctrls())
9071 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9072
8b3e34e4
XG
9073 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9074 if (guest_cpuid_has_pcommit(vcpu))
9075 vmx->nested.nested_vmx_secondary_ctls_high |=
9076 SECONDARY_EXEC_PCOMMIT;
9077 else
9078 vmx->nested.nested_vmx_secondary_ctls_high &=
9079 ~SECONDARY_EXEC_PCOMMIT;
9080 }
0e851880
SY
9081}
9082
d4330ef2
JR
9083static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9084{
7b8050f5
NHE
9085 if (func == 1 && nested)
9086 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9087}
9088
25d92081
YZ
9089static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9090 struct x86_exception *fault)
9091{
533558bc
JK
9092 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9093 u32 exit_reason;
25d92081
YZ
9094
9095 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9096 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9097 else
533558bc
JK
9098 exit_reason = EXIT_REASON_EPT_VIOLATION;
9099 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9100 vmcs12->guest_physical_address = fault->address;
9101}
9102
155a97a3
NHE
9103/* Callbacks for nested_ept_init_mmu_context: */
9104
9105static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9106{
9107 /* return the page table to be shadowed - in our case, EPT12 */
9108 return get_vmcs12(vcpu)->ept_pointer;
9109}
9110
8a3c1a33 9111static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9112{
ad896af0
PB
9113 WARN_ON(mmu_is_nested(vcpu));
9114 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
9115 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9116 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
9117 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9118 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9119 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9120
9121 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
9122}
9123
9124static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9125{
9126 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9127}
9128
19d5f10b
EK
9129static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9130 u16 error_code)
9131{
9132 bool inequality, bit;
9133
9134 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9135 inequality =
9136 (error_code & vmcs12->page_fault_error_code_mask) !=
9137 vmcs12->page_fault_error_code_match;
9138 return inequality ^ bit;
9139}
9140
feaf0c7d
GN
9141static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9142 struct x86_exception *fault)
9143{
9144 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9145
9146 WARN_ON(!is_guest_mode(vcpu));
9147
19d5f10b 9148 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9149 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9150 vmcs_read32(VM_EXIT_INTR_INFO),
9151 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9152 else
9153 kvm_inject_page_fault(vcpu, fault);
9154}
9155
a2bcba50
WL
9156static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9157 struct vmcs12 *vmcs12)
9158{
9159 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9160 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9161
9162 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9163 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9164 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9165 return false;
9166
9167 /*
9168 * Translate L1 physical address to host physical
9169 * address for vmcs02. Keep the page pinned, so this
9170 * physical address remains valid. We keep a reference
9171 * to it so we can release it later.
9172 */
9173 if (vmx->nested.apic_access_page) /* shouldn't happen */
9174 nested_release_page(vmx->nested.apic_access_page);
9175 vmx->nested.apic_access_page =
9176 nested_get_page(vcpu, vmcs12->apic_access_addr);
9177 }
a7c0b07d
WL
9178
9179 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9180 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9181 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9182 return false;
9183
9184 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9185 nested_release_page(vmx->nested.virtual_apic_page);
9186 vmx->nested.virtual_apic_page =
9187 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9188
9189 /*
9190 * Failing the vm entry is _not_ what the processor does
9191 * but it's basically the only possibility we have.
9192 * We could still enter the guest if CR8 load exits are
9193 * enabled, CR8 store exits are enabled, and virtualize APIC
9194 * access is disabled; in this case the processor would never
9195 * use the TPR shadow and we could simply clear the bit from
9196 * the execution control. But such a configuration is useless,
9197 * so let's keep the code simple.
9198 */
9199 if (!vmx->nested.virtual_apic_page)
9200 return false;
9201 }
9202
705699a1 9203 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9204 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9205 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9206 return false;
9207
9208 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9209 kunmap(vmx->nested.pi_desc_page);
9210 nested_release_page(vmx->nested.pi_desc_page);
9211 }
9212 vmx->nested.pi_desc_page =
9213 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9214 if (!vmx->nested.pi_desc_page)
9215 return false;
9216
9217 vmx->nested.pi_desc =
9218 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9219 if (!vmx->nested.pi_desc) {
9220 nested_release_page_clean(vmx->nested.pi_desc_page);
9221 return false;
9222 }
9223 vmx->nested.pi_desc =
9224 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9225 (unsigned long)(vmcs12->posted_intr_desc_addr &
9226 (PAGE_SIZE - 1)));
9227 }
9228
a2bcba50
WL
9229 return true;
9230}
9231
f4124500
JK
9232static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9233{
9234 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9235 struct vcpu_vmx *vmx = to_vmx(vcpu);
9236
9237 if (vcpu->arch.virtual_tsc_khz == 0)
9238 return;
9239
9240 /* Make sure short timeouts reliably trigger an immediate vmexit.
9241 * hrtimer_start does not guarantee this. */
9242 if (preemption_timeout <= 1) {
9243 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9244 return;
9245 }
9246
9247 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9248 preemption_timeout *= 1000000;
9249 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9250 hrtimer_start(&vmx->nested.preemption_timer,
9251 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9252}
9253
3af18d9c
WV
9254static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9255 struct vmcs12 *vmcs12)
9256{
9257 int maxphyaddr;
9258 u64 addr;
9259
9260 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9261 return 0;
9262
9263 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9264 WARN_ON(1);
9265 return -EINVAL;
9266 }
9267 maxphyaddr = cpuid_maxphyaddr(vcpu);
9268
9269 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9270 ((addr + PAGE_SIZE) >> maxphyaddr))
9271 return -EINVAL;
9272
9273 return 0;
9274}
9275
9276/*
9277 * Merge L0's and L1's MSR bitmap, return false to indicate that
9278 * we do not use the hardware.
9279 */
9280static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9281 struct vmcs12 *vmcs12)
9282{
82f0dd4b 9283 int msr;
f2b93280
WV
9284 struct page *page;
9285 unsigned long *msr_bitmap;
9286
9287 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9288 return false;
9289
9290 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9291 if (!page) {
9292 WARN_ON(1);
9293 return false;
9294 }
9295 msr_bitmap = (unsigned long *)kmap(page);
9296 if (!msr_bitmap) {
9297 nested_release_page_clean(page);
9298 WARN_ON(1);
9299 return false;
9300 }
9301
9302 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9303 if (nested_cpu_has_apic_reg_virt(vmcs12))
9304 for (msr = 0x800; msr <= 0x8ff; msr++)
9305 nested_vmx_disable_intercept_for_msr(
9306 msr_bitmap,
9307 vmx_msr_bitmap_nested,
9308 msr, MSR_TYPE_R);
f2b93280
WV
9309 /* TPR is allowed */
9310 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9311 vmx_msr_bitmap_nested,
9312 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9313 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
9314 if (nested_cpu_has_vid(vmcs12)) {
9315 /* EOI and self-IPI are allowed */
9316 nested_vmx_disable_intercept_for_msr(
9317 msr_bitmap,
9318 vmx_msr_bitmap_nested,
9319 APIC_BASE_MSR + (APIC_EOI >> 4),
9320 MSR_TYPE_W);
9321 nested_vmx_disable_intercept_for_msr(
9322 msr_bitmap,
9323 vmx_msr_bitmap_nested,
9324 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9325 MSR_TYPE_W);
9326 }
82f0dd4b
WV
9327 } else {
9328 /*
9329 * Enable reading intercept of all the x2apic
9330 * MSRs. We should not rely on vmcs12 to do any
9331 * optimizations here, it may have been modified
9332 * by L1.
9333 */
9334 for (msr = 0x800; msr <= 0x8ff; msr++)
9335 __vmx_enable_intercept_for_msr(
9336 vmx_msr_bitmap_nested,
9337 msr,
9338 MSR_TYPE_R);
9339
f2b93280
WV
9340 __vmx_enable_intercept_for_msr(
9341 vmx_msr_bitmap_nested,
9342 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 9343 MSR_TYPE_W);
608406e2
WV
9344 __vmx_enable_intercept_for_msr(
9345 vmx_msr_bitmap_nested,
9346 APIC_BASE_MSR + (APIC_EOI >> 4),
9347 MSR_TYPE_W);
9348 __vmx_enable_intercept_for_msr(
9349 vmx_msr_bitmap_nested,
9350 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9351 MSR_TYPE_W);
82f0dd4b 9352 }
f2b93280
WV
9353 kunmap(page);
9354 nested_release_page_clean(page);
9355
9356 return true;
9357}
9358
9359static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9360 struct vmcs12 *vmcs12)
9361{
82f0dd4b 9362 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9363 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9364 !nested_cpu_has_vid(vmcs12) &&
9365 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9366 return 0;
9367
9368 /*
9369 * If virtualize x2apic mode is enabled,
9370 * virtualize apic access must be disabled.
9371 */
82f0dd4b
WV
9372 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9373 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9374 return -EINVAL;
9375
608406e2
WV
9376 /*
9377 * If virtual interrupt delivery is enabled,
9378 * we must exit on external interrupts.
9379 */
9380 if (nested_cpu_has_vid(vmcs12) &&
9381 !nested_exit_on_intr(vcpu))
9382 return -EINVAL;
9383
705699a1
WV
9384 /*
9385 * bits 15:8 should be zero in posted_intr_nv,
9386 * the descriptor address has been already checked
9387 * in nested_get_vmcs12_pages.
9388 */
9389 if (nested_cpu_has_posted_intr(vmcs12) &&
9390 (!nested_cpu_has_vid(vmcs12) ||
9391 !nested_exit_intr_ack_set(vcpu) ||
9392 vmcs12->posted_intr_nv & 0xff00))
9393 return -EINVAL;
9394
f2b93280
WV
9395 /* tpr shadow is needed by all apicv features. */
9396 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9397 return -EINVAL;
9398
9399 return 0;
3af18d9c
WV
9400}
9401
e9ac033e
EK
9402static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9403 unsigned long count_field,
92d71bc6 9404 unsigned long addr_field)
ff651cb6 9405{
92d71bc6 9406 int maxphyaddr;
e9ac033e
EK
9407 u64 count, addr;
9408
9409 if (vmcs12_read_any(vcpu, count_field, &count) ||
9410 vmcs12_read_any(vcpu, addr_field, &addr)) {
9411 WARN_ON(1);
9412 return -EINVAL;
9413 }
9414 if (count == 0)
9415 return 0;
92d71bc6 9416 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9417 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9418 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9419 pr_warn_ratelimited(
9420 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9421 addr_field, maxphyaddr, count, addr);
9422 return -EINVAL;
9423 }
9424 return 0;
9425}
9426
9427static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9428 struct vmcs12 *vmcs12)
9429{
e9ac033e
EK
9430 if (vmcs12->vm_exit_msr_load_count == 0 &&
9431 vmcs12->vm_exit_msr_store_count == 0 &&
9432 vmcs12->vm_entry_msr_load_count == 0)
9433 return 0; /* Fast path */
e9ac033e 9434 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9435 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9436 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9437 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9438 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9439 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9440 return -EINVAL;
9441 return 0;
9442}
9443
9444static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9445 struct vmx_msr_entry *e)
9446{
9447 /* x2APIC MSR accesses are not allowed */
8a9781f7 9448 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9449 return -EINVAL;
9450 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9451 e->index == MSR_IA32_UCODE_REV)
9452 return -EINVAL;
9453 if (e->reserved != 0)
ff651cb6
WV
9454 return -EINVAL;
9455 return 0;
9456}
9457
e9ac033e
EK
9458static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9459 struct vmx_msr_entry *e)
ff651cb6
WV
9460{
9461 if (e->index == MSR_FS_BASE ||
9462 e->index == MSR_GS_BASE ||
e9ac033e
EK
9463 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9464 nested_vmx_msr_check_common(vcpu, e))
9465 return -EINVAL;
9466 return 0;
9467}
9468
9469static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9470 struct vmx_msr_entry *e)
9471{
9472 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9473 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9474 return -EINVAL;
9475 return 0;
9476}
9477
9478/*
9479 * Load guest's/host's msr at nested entry/exit.
9480 * return 0 for success, entry index for failure.
9481 */
9482static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9483{
9484 u32 i;
9485 struct vmx_msr_entry e;
9486 struct msr_data msr;
9487
9488 msr.host_initiated = false;
9489 for (i = 0; i < count; i++) {
54bf36aa
PB
9490 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9491 &e, sizeof(e))) {
e9ac033e
EK
9492 pr_warn_ratelimited(
9493 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9494 __func__, i, gpa + i * sizeof(e));
ff651cb6 9495 goto fail;
e9ac033e
EK
9496 }
9497 if (nested_vmx_load_msr_check(vcpu, &e)) {
9498 pr_warn_ratelimited(
9499 "%s check failed (%u, 0x%x, 0x%x)\n",
9500 __func__, i, e.index, e.reserved);
9501 goto fail;
9502 }
ff651cb6
WV
9503 msr.index = e.index;
9504 msr.data = e.value;
e9ac033e
EK
9505 if (kvm_set_msr(vcpu, &msr)) {
9506 pr_warn_ratelimited(
9507 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9508 __func__, i, e.index, e.value);
ff651cb6 9509 goto fail;
e9ac033e 9510 }
ff651cb6
WV
9511 }
9512 return 0;
9513fail:
9514 return i + 1;
9515}
9516
9517static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9518{
9519 u32 i;
9520 struct vmx_msr_entry e;
9521
9522 for (i = 0; i < count; i++) {
609e36d3 9523 struct msr_data msr_info;
54bf36aa
PB
9524 if (kvm_vcpu_read_guest(vcpu,
9525 gpa + i * sizeof(e),
9526 &e, 2 * sizeof(u32))) {
e9ac033e
EK
9527 pr_warn_ratelimited(
9528 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9529 __func__, i, gpa + i * sizeof(e));
ff651cb6 9530 return -EINVAL;
e9ac033e
EK
9531 }
9532 if (nested_vmx_store_msr_check(vcpu, &e)) {
9533 pr_warn_ratelimited(
9534 "%s check failed (%u, 0x%x, 0x%x)\n",
9535 __func__, i, e.index, e.reserved);
ff651cb6 9536 return -EINVAL;
e9ac033e 9537 }
609e36d3
PB
9538 msr_info.host_initiated = false;
9539 msr_info.index = e.index;
9540 if (kvm_get_msr(vcpu, &msr_info)) {
e9ac033e
EK
9541 pr_warn_ratelimited(
9542 "%s cannot read MSR (%u, 0x%x)\n",
9543 __func__, i, e.index);
9544 return -EINVAL;
9545 }
54bf36aa
PB
9546 if (kvm_vcpu_write_guest(vcpu,
9547 gpa + i * sizeof(e) +
9548 offsetof(struct vmx_msr_entry, value),
9549 &msr_info.data, sizeof(msr_info.data))) {
e9ac033e
EK
9550 pr_warn_ratelimited(
9551 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9552 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9553 return -EINVAL;
9554 }
ff651cb6
WV
9555 }
9556 return 0;
9557}
9558
fe3ef05c
NHE
9559/*
9560 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9561 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9562 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9563 * guest in a way that will both be appropriate to L1's requests, and our
9564 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9565 * function also has additional necessary side-effects, like setting various
9566 * vcpu->arch fields.
9567 */
9568static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9569{
9570 struct vcpu_vmx *vmx = to_vmx(vcpu);
9571 u32 exec_control;
9572
9573 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9574 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9575 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9576 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9577 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9578 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9579 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9580 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9581 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9582 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9583 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9584 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9585 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9586 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9587 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9588 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9589 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9590 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9591 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9592 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9593 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9594 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9595 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9596 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9597 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9598 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9599 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9600 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9601 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9602 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9603 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9604 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9605 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9606 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9607 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9608 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9609
2996fca0
JK
9610 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9611 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9612 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9613 } else {
9614 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9615 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9616 }
fe3ef05c
NHE
9617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9618 vmcs12->vm_entry_intr_info_field);
9619 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9620 vmcs12->vm_entry_exception_error_code);
9621 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9622 vmcs12->vm_entry_instruction_len);
9623 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9624 vmcs12->guest_interruptibility_info);
fe3ef05c 9625 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9626 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9627 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9628 vmcs12->guest_pending_dbg_exceptions);
9629 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9630 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9631
81dc01f7
WL
9632 if (nested_cpu_has_xsaves(vmcs12))
9633 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9634 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9635
f4124500
JK
9636 exec_control = vmcs12->pin_based_vm_exec_control;
9637 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9638 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9639
9640 if (nested_cpu_has_posted_intr(vmcs12)) {
9641 /*
9642 * Note that we use L0's vector here and in
9643 * vmx_deliver_nested_posted_interrupt.
9644 */
9645 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9646 vmx->nested.pi_pending = false;
0bcf261c 9647 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
705699a1
WV
9648 vmcs_write64(POSTED_INTR_DESC_ADDR,
9649 page_to_phys(vmx->nested.pi_desc_page) +
9650 (unsigned long)(vmcs12->posted_intr_desc_addr &
9651 (PAGE_SIZE - 1)));
9652 } else
9653 exec_control &= ~PIN_BASED_POSTED_INTR;
9654
f4124500 9655 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9656
f4124500
JK
9657 vmx->nested.preemption_timer_expired = false;
9658 if (nested_cpu_has_preemption_timer(vmcs12))
9659 vmx_start_preemption_timer(vcpu);
0238ea91 9660
fe3ef05c
NHE
9661 /*
9662 * Whether page-faults are trapped is determined by a combination of
9663 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9664 * If enable_ept, L0 doesn't care about page faults and we should
9665 * set all of these to L1's desires. However, if !enable_ept, L0 does
9666 * care about (at least some) page faults, and because it is not easy
9667 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9668 * to exit on each and every L2 page fault. This is done by setting
9669 * MASK=MATCH=0 and (see below) EB.PF=1.
9670 * Note that below we don't need special code to set EB.PF beyond the
9671 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9672 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9673 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9674 *
9675 * A problem with this approach (when !enable_ept) is that L1 may be
9676 * injected with more page faults than it asked for. This could have
9677 * caused problems, but in practice existing hypervisors don't care.
9678 * To fix this, we will need to emulate the PFEC checking (on the L1
9679 * page tables), using walk_addr(), when injecting PFs to L1.
9680 */
9681 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9682 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9683 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9684 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9685
9686 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9687 exec_control = vmx_secondary_exec_control(vmx);
e2821620 9688
fe3ef05c 9689 /* Take the following fields only from vmcs12 */
696dfd95 9690 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9691 SECONDARY_EXEC_RDTSCP |
696dfd95 9692 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8b3e34e4
XG
9693 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9694 SECONDARY_EXEC_PCOMMIT);
fe3ef05c
NHE
9695 if (nested_cpu_has(vmcs12,
9696 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9697 exec_control |= vmcs12->secondary_vm_exec_control;
9698
9699 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9700 /*
9701 * If translation failed, no matter: This feature asks
9702 * to exit when accessing the given address, and if it
9703 * can never be accessed, this feature won't do
9704 * anything anyway.
9705 */
9706 if (!vmx->nested.apic_access_page)
9707 exec_control &=
9708 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9709 else
9710 vmcs_write64(APIC_ACCESS_ADDR,
9711 page_to_phys(vmx->nested.apic_access_page));
f2b93280 9712 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 9713 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
9714 exec_control |=
9715 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9716 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9717 }
9718
608406e2
WV
9719 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9720 vmcs_write64(EOI_EXIT_BITMAP0,
9721 vmcs12->eoi_exit_bitmap0);
9722 vmcs_write64(EOI_EXIT_BITMAP1,
9723 vmcs12->eoi_exit_bitmap1);
9724 vmcs_write64(EOI_EXIT_BITMAP2,
9725 vmcs12->eoi_exit_bitmap2);
9726 vmcs_write64(EOI_EXIT_BITMAP3,
9727 vmcs12->eoi_exit_bitmap3);
9728 vmcs_write16(GUEST_INTR_STATUS,
9729 vmcs12->guest_intr_status);
9730 }
9731
fe3ef05c
NHE
9732 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9733 }
9734
9735
9736 /*
9737 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9738 * Some constant fields are set here by vmx_set_constant_host_state().
9739 * Other fields are different per CPU, and will be set later when
9740 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9741 */
a547c6db 9742 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9743
9744 /*
9745 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9746 * entry, but only if the current (host) sp changed from the value
9747 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9748 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9749 * here we just force the write to happen on entry.
9750 */
9751 vmx->host_rsp = 0;
9752
9753 exec_control = vmx_exec_control(vmx); /* L0's desires */
9754 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9755 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9756 exec_control &= ~CPU_BASED_TPR_SHADOW;
9757 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9758
9759 if (exec_control & CPU_BASED_TPR_SHADOW) {
9760 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9761 page_to_phys(vmx->nested.virtual_apic_page));
9762 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9763 }
9764
3af18d9c 9765 if (cpu_has_vmx_msr_bitmap() &&
670125bd
WV
9766 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9767 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9768 /* MSR_BITMAP will be set by following vmx_set_efer. */
3af18d9c
WV
9769 } else
9770 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9771
fe3ef05c 9772 /*
3af18d9c 9773 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9774 * Rather, exit every time.
9775 */
fe3ef05c
NHE
9776 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9777 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9778
9779 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9780
9781 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9782 * bitwise-or of what L1 wants to trap for L2, and what we want to
9783 * trap. Note that CR0.TS also needs updating - we do this later.
9784 */
9785 update_exception_bitmap(vcpu);
9786 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9787 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9788
8049d651
NHE
9789 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9790 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9791 * bits are further modified by vmx_set_efer() below.
9792 */
f4124500 9793 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9794
9795 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9796 * emulated by vmx_set_efer(), below.
9797 */
2961e876 9798 vm_entry_controls_init(vmx,
8049d651
NHE
9799 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9800 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9801 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9802
44811c02 9803 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9804 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9805 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9806 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9807 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9808
9809
9810 set_cr4_guest_host_mask(vmx);
9811
36be0b9d
PB
9812 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9813 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9814
27fc51b2
NHE
9815 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9816 vmcs_write64(TSC_OFFSET,
9817 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9818 else
9819 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9820
9821 if (enable_vpid) {
9822 /*
5c614b35
WL
9823 * There is no direct mapping between vpid02 and vpid12, the
9824 * vpid02 is per-vCPU for L0 and reused while the value of
9825 * vpid12 is changed w/ one invvpid during nested vmentry.
9826 * The vpid12 is allocated by L1 for L2, so it will not
9827 * influence global bitmap(for vpid01 and vpid02 allocation)
9828 * even if spawn a lot of nested vCPUs.
fe3ef05c 9829 */
5c614b35
WL
9830 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9831 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9832 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9833 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9834 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9835 }
9836 } else {
9837 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9838 vmx_flush_tlb(vcpu);
9839 }
9840
fe3ef05c
NHE
9841 }
9842
155a97a3
NHE
9843 if (nested_cpu_has_ept(vmcs12)) {
9844 kvm_mmu_unload(vcpu);
9845 nested_ept_init_mmu_context(vcpu);
9846 }
9847
fe3ef05c
NHE
9848 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9849 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9850 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9851 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9852 else
9853 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9854 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9855 vmx_set_efer(vcpu, vcpu->arch.efer);
9856
9857 /*
9858 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9859 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9860 * The CR0_READ_SHADOW is what L2 should have expected to read given
9861 * the specifications by L1; It's not enough to take
9862 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9863 * have more bits than L1 expected.
9864 */
9865 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9866 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9867
9868 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9869 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9870
9871 /* shadow page tables on either EPT or shadow page tables */
9872 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9873 kvm_mmu_reset_context(vcpu);
9874
feaf0c7d
GN
9875 if (!enable_ept)
9876 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9877
3633cfc3
NHE
9878 /*
9879 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9880 */
9881 if (enable_ept) {
9882 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9883 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9884 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9885 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9886 }
9887
fe3ef05c
NHE
9888 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9889 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9890}
9891
cd232ad0
NHE
9892/*
9893 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9894 * for running an L2 nested guest.
9895 */
9896static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9897{
9898 struct vmcs12 *vmcs12;
9899 struct vcpu_vmx *vmx = to_vmx(vcpu);
9900 int cpu;
9901 struct loaded_vmcs *vmcs02;
384bb783 9902 bool ia32e;
ff651cb6 9903 u32 msr_entry_idx;
cd232ad0
NHE
9904
9905 if (!nested_vmx_check_permission(vcpu) ||
9906 !nested_vmx_check_vmcs12(vcpu))
9907 return 1;
9908
9909 skip_emulated_instruction(vcpu);
9910 vmcs12 = get_vmcs12(vcpu);
9911
012f83cb
AG
9912 if (enable_shadow_vmcs)
9913 copy_shadow_to_vmcs12(vmx);
9914
7c177938
NHE
9915 /*
9916 * The nested entry process starts with enforcing various prerequisites
9917 * on vmcs12 as required by the Intel SDM, and act appropriately when
9918 * they fail: As the SDM explains, some conditions should cause the
9919 * instruction to fail, while others will cause the instruction to seem
9920 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9921 * To speed up the normal (success) code path, we should avoid checking
9922 * for misconfigurations which will anyway be caught by the processor
9923 * when using the merged vmcs02.
9924 */
9925 if (vmcs12->launch_state == launch) {
9926 nested_vmx_failValid(vcpu,
9927 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9928 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9929 return 1;
9930 }
9931
6dfacadd
JK
9932 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9933 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9934 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9935 return 1;
9936 }
9937
3af18d9c 9938 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9939 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9940 return 1;
9941 }
9942
3af18d9c 9943 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9944 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9945 return 1;
9946 }
9947
f2b93280
WV
9948 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9949 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9950 return 1;
9951 }
9952
e9ac033e
EK
9953 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9954 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9955 return 1;
9956 }
9957
7c177938 9958 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9959 vmx->nested.nested_vmx_true_procbased_ctls_low,
9960 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9961 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9962 vmx->nested.nested_vmx_secondary_ctls_low,
9963 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9964 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9965 vmx->nested.nested_vmx_pinbased_ctls_low,
9966 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9967 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9968 vmx->nested.nested_vmx_true_exit_ctls_low,
9969 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9970 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9971 vmx->nested.nested_vmx_true_entry_ctls_low,
9972 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9973 {
9974 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9975 return 1;
9976 }
9977
9978 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9979 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9980 nested_vmx_failValid(vcpu,
9981 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9982 return 1;
9983 }
9984
b9c237bb 9985 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
9986 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9987 nested_vmx_entry_failure(vcpu, vmcs12,
9988 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9989 return 1;
9990 }
9991 if (vmcs12->vmcs_link_pointer != -1ull) {
9992 nested_vmx_entry_failure(vcpu, vmcs12,
9993 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9994 return 1;
9995 }
9996
384bb783 9997 /*
cb0c8cda 9998 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
9999 * are performed on the field for the IA32_EFER MSR:
10000 * - Bits reserved in the IA32_EFER MSR must be 0.
10001 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10002 * the IA-32e mode guest VM-exit control. It must also be identical
10003 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10004 * CR0.PG) is 1.
10005 */
10006 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10007 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10008 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10009 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10010 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10011 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10012 nested_vmx_entry_failure(vcpu, vmcs12,
10013 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10014 return 1;
10015 }
10016 }
10017
10018 /*
10019 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10020 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10021 * the values of the LMA and LME bits in the field must each be that of
10022 * the host address-space size VM-exit control.
10023 */
10024 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10025 ia32e = (vmcs12->vm_exit_controls &
10026 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10027 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10028 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10029 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10030 nested_vmx_entry_failure(vcpu, vmcs12,
10031 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10032 return 1;
10033 }
10034 }
10035
7c177938
NHE
10036 /*
10037 * We're finally done with prerequisite checking, and can start with
10038 * the nested entry.
10039 */
10040
cd232ad0
NHE
10041 vmcs02 = nested_get_current_vmcs02(vmx);
10042 if (!vmcs02)
10043 return -ENOMEM;
10044
10045 enter_guest_mode(vcpu);
10046
10047 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10048
2996fca0
JK
10049 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10050 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10051
cd232ad0
NHE
10052 cpu = get_cpu();
10053 vmx->loaded_vmcs = vmcs02;
10054 vmx_vcpu_put(vcpu);
10055 vmx_vcpu_load(vcpu, cpu);
10056 vcpu->cpu = cpu;
10057 put_cpu();
10058
36c3cc42
JK
10059 vmx_segment_cache_clear(vmx);
10060
cd232ad0
NHE
10061 prepare_vmcs02(vcpu, vmcs12);
10062
ff651cb6
WV
10063 msr_entry_idx = nested_vmx_load_msr(vcpu,
10064 vmcs12->vm_entry_msr_load_addr,
10065 vmcs12->vm_entry_msr_load_count);
10066 if (msr_entry_idx) {
10067 leave_guest_mode(vcpu);
10068 vmx_load_vmcs01(vcpu);
10069 nested_vmx_entry_failure(vcpu, vmcs12,
10070 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10071 return 1;
10072 }
10073
10074 vmcs12->launch_state = 1;
10075
6dfacadd 10076 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10077 return kvm_vcpu_halt(vcpu);
6dfacadd 10078
7af40ad3
JK
10079 vmx->nested.nested_run_pending = 1;
10080
cd232ad0
NHE
10081 /*
10082 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10083 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10084 * returned as far as L1 is concerned. It will only return (and set
10085 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10086 */
10087 return 1;
10088}
10089
4704d0be
NHE
10090/*
10091 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10092 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10093 * This function returns the new value we should put in vmcs12.guest_cr0.
10094 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10095 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10096 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10097 * didn't trap the bit, because if L1 did, so would L0).
10098 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10099 * been modified by L2, and L1 knows it. So just leave the old value of
10100 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10101 * isn't relevant, because if L0 traps this bit it can set it to anything.
10102 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10103 * changed these bits, and therefore they need to be updated, but L0
10104 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10105 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10106 */
10107static inline unsigned long
10108vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10109{
10110 return
10111 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10112 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10113 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10114 vcpu->arch.cr0_guest_owned_bits));
10115}
10116
10117static inline unsigned long
10118vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10119{
10120 return
10121 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10122 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10123 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10124 vcpu->arch.cr4_guest_owned_bits));
10125}
10126
5f3d5799
JK
10127static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10128 struct vmcs12 *vmcs12)
10129{
10130 u32 idt_vectoring;
10131 unsigned int nr;
10132
851eb667 10133 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10134 nr = vcpu->arch.exception.nr;
10135 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10136
10137 if (kvm_exception_is_soft(nr)) {
10138 vmcs12->vm_exit_instruction_len =
10139 vcpu->arch.event_exit_inst_len;
10140 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10141 } else
10142 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10143
10144 if (vcpu->arch.exception.has_error_code) {
10145 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10146 vmcs12->idt_vectoring_error_code =
10147 vcpu->arch.exception.error_code;
10148 }
10149
10150 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10151 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10152 vmcs12->idt_vectoring_info_field =
10153 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10154 } else if (vcpu->arch.interrupt.pending) {
10155 nr = vcpu->arch.interrupt.nr;
10156 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10157
10158 if (vcpu->arch.interrupt.soft) {
10159 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10160 vmcs12->vm_entry_instruction_len =
10161 vcpu->arch.event_exit_inst_len;
10162 } else
10163 idt_vectoring |= INTR_TYPE_EXT_INTR;
10164
10165 vmcs12->idt_vectoring_info_field = idt_vectoring;
10166 }
10167}
10168
b6b8a145
JK
10169static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10170{
10171 struct vcpu_vmx *vmx = to_vmx(vcpu);
10172
f4124500
JK
10173 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10174 vmx->nested.preemption_timer_expired) {
10175 if (vmx->nested.nested_run_pending)
10176 return -EBUSY;
10177 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10178 return 0;
10179 }
10180
b6b8a145 10181 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10182 if (vmx->nested.nested_run_pending ||
10183 vcpu->arch.interrupt.pending)
b6b8a145
JK
10184 return -EBUSY;
10185 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10186 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10187 INTR_INFO_VALID_MASK, 0);
10188 /*
10189 * The NMI-triggered VM exit counts as injection:
10190 * clear this one and block further NMIs.
10191 */
10192 vcpu->arch.nmi_pending = 0;
10193 vmx_set_nmi_mask(vcpu, true);
10194 return 0;
10195 }
10196
10197 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10198 nested_exit_on_intr(vcpu)) {
10199 if (vmx->nested.nested_run_pending)
10200 return -EBUSY;
10201 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10202 return 0;
b6b8a145
JK
10203 }
10204
705699a1 10205 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10206}
10207
f4124500
JK
10208static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10209{
10210 ktime_t remaining =
10211 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10212 u64 value;
10213
10214 if (ktime_to_ns(remaining) <= 0)
10215 return 0;
10216
10217 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10218 do_div(value, 1000000);
10219 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10220}
10221
4704d0be
NHE
10222/*
10223 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10224 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10225 * and this function updates it to reflect the changes to the guest state while
10226 * L2 was running (and perhaps made some exits which were handled directly by L0
10227 * without going back to L1), and to reflect the exit reason.
10228 * Note that we do not have to copy here all VMCS fields, just those that
10229 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10230 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10231 * which already writes to vmcs12 directly.
10232 */
533558bc
JK
10233static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10234 u32 exit_reason, u32 exit_intr_info,
10235 unsigned long exit_qualification)
4704d0be
NHE
10236{
10237 /* update guest state fields: */
10238 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10239 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10240
4704d0be
NHE
10241 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10242 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10243 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10244
10245 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10246 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10247 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10248 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10249 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10250 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10251 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10252 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10253 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10254 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10255 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10256 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10257 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10258 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10259 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10260 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10261 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10262 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10263 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10264 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10265 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10266 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10267 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10268 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10269 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10270 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10271 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10272 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10273 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10274 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10275 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10276 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10277 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10278 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10279 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10280 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10281
4704d0be
NHE
10282 vmcs12->guest_interruptibility_info =
10283 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10284 vmcs12->guest_pending_dbg_exceptions =
10285 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10286 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10287 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10288 else
10289 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10290
f4124500
JK
10291 if (nested_cpu_has_preemption_timer(vmcs12)) {
10292 if (vmcs12->vm_exit_controls &
10293 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10294 vmcs12->vmx_preemption_timer_value =
10295 vmx_get_preemption_timer_value(vcpu);
10296 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10297 }
7854cbca 10298
3633cfc3
NHE
10299 /*
10300 * In some cases (usually, nested EPT), L2 is allowed to change its
10301 * own CR3 without exiting. If it has changed it, we must keep it.
10302 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10303 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10304 *
10305 * Additionally, restore L2's PDPTR to vmcs12.
10306 */
10307 if (enable_ept) {
f3531054 10308 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10309 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10310 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10311 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10312 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10313 }
10314
608406e2
WV
10315 if (nested_cpu_has_vid(vmcs12))
10316 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10317
c18911a2
JK
10318 vmcs12->vm_entry_controls =
10319 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10320 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10321
2996fca0
JK
10322 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10323 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10324 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10325 }
10326
4704d0be
NHE
10327 /* TODO: These cannot have changed unless we have MSR bitmaps and
10328 * the relevant bit asks not to trap the change */
b8c07d55 10329 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10330 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10331 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10332 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10333 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10334 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10335 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10336 if (kvm_mpx_supported())
36be0b9d 10337 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10338 if (nested_cpu_has_xsaves(vmcs12))
10339 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10340
10341 /* update exit information fields: */
10342
533558bc
JK
10343 vmcs12->vm_exit_reason = exit_reason;
10344 vmcs12->exit_qualification = exit_qualification;
4704d0be 10345
533558bc 10346 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10347 if ((vmcs12->vm_exit_intr_info &
10348 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10349 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10350 vmcs12->vm_exit_intr_error_code =
10351 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10352 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10353 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10354 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10355
5f3d5799
JK
10356 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10357 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10358 * instead of reading the real value. */
4704d0be 10359 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10360
10361 /*
10362 * Transfer the event that L0 or L1 may wanted to inject into
10363 * L2 to IDT_VECTORING_INFO_FIELD.
10364 */
10365 vmcs12_save_pending_event(vcpu, vmcs12);
10366 }
10367
10368 /*
10369 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10370 * preserved above and would only end up incorrectly in L1.
10371 */
10372 vcpu->arch.nmi_injected = false;
10373 kvm_clear_exception_queue(vcpu);
10374 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10375}
10376
10377/*
10378 * A part of what we need to when the nested L2 guest exits and we want to
10379 * run its L1 parent, is to reset L1's guest state to the host state specified
10380 * in vmcs12.
10381 * This function is to be called not only on normal nested exit, but also on
10382 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10383 * Failures During or After Loading Guest State").
10384 * This function should be called when the active VMCS is L1's (vmcs01).
10385 */
733568f9
JK
10386static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10387 struct vmcs12 *vmcs12)
4704d0be 10388{
21feb4eb
ACL
10389 struct kvm_segment seg;
10390
4704d0be
NHE
10391 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10392 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10393 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10394 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10395 else
10396 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10397 vmx_set_efer(vcpu, vcpu->arch.efer);
10398
10399 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10400 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10401 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10402 /*
10403 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10404 * actually changed, because it depends on the current state of
10405 * fpu_active (which may have changed).
10406 * Note that vmx_set_cr0 refers to efer set above.
10407 */
9e3e4dbf 10408 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10409 /*
10410 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10411 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10412 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10413 */
10414 update_exception_bitmap(vcpu);
10415 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10416 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10417
10418 /*
10419 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10420 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10421 */
10422 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10423 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10424
29bf08f1 10425 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10426
4704d0be
NHE
10427 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10428 kvm_mmu_reset_context(vcpu);
10429
feaf0c7d
GN
10430 if (!enable_ept)
10431 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10432
4704d0be
NHE
10433 if (enable_vpid) {
10434 /*
10435 * Trivially support vpid by letting L2s share their parent
10436 * L1's vpid. TODO: move to a more elaborate solution, giving
10437 * each L2 its own vpid and exposing the vpid feature to L1.
10438 */
10439 vmx_flush_tlb(vcpu);
10440 }
10441
10442
10443 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10444 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10445 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10446 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10447 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10448
36be0b9d
PB
10449 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10450 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10451 vmcs_write64(GUEST_BNDCFGS, 0);
10452
44811c02 10453 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10454 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10455 vcpu->arch.pat = vmcs12->host_ia32_pat;
10456 }
4704d0be
NHE
10457 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10458 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10459 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10460
21feb4eb
ACL
10461 /* Set L1 segment info according to Intel SDM
10462 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10463 seg = (struct kvm_segment) {
10464 .base = 0,
10465 .limit = 0xFFFFFFFF,
10466 .selector = vmcs12->host_cs_selector,
10467 .type = 11,
10468 .present = 1,
10469 .s = 1,
10470 .g = 1
10471 };
10472 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10473 seg.l = 1;
10474 else
10475 seg.db = 1;
10476 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10477 seg = (struct kvm_segment) {
10478 .base = 0,
10479 .limit = 0xFFFFFFFF,
10480 .type = 3,
10481 .present = 1,
10482 .s = 1,
10483 .db = 1,
10484 .g = 1
10485 };
10486 seg.selector = vmcs12->host_ds_selector;
10487 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10488 seg.selector = vmcs12->host_es_selector;
10489 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10490 seg.selector = vmcs12->host_ss_selector;
10491 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10492 seg.selector = vmcs12->host_fs_selector;
10493 seg.base = vmcs12->host_fs_base;
10494 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10495 seg.selector = vmcs12->host_gs_selector;
10496 seg.base = vmcs12->host_gs_base;
10497 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10498 seg = (struct kvm_segment) {
205befd9 10499 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10500 .limit = 0x67,
10501 .selector = vmcs12->host_tr_selector,
10502 .type = 11,
10503 .present = 1
10504 };
10505 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10506
503cd0c5
JK
10507 kvm_set_dr(vcpu, 7, 0x400);
10508 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10509
3af18d9c
WV
10510 if (cpu_has_vmx_msr_bitmap())
10511 vmx_set_msr_bitmap(vcpu);
10512
ff651cb6
WV
10513 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10514 vmcs12->vm_exit_msr_load_count))
10515 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10516}
10517
10518/*
10519 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10520 * and modify vmcs12 to make it see what it would expect to see there if
10521 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10522 */
533558bc
JK
10523static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10524 u32 exit_intr_info,
10525 unsigned long exit_qualification)
4704d0be
NHE
10526{
10527 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10528 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10529
5f3d5799
JK
10530 /* trying to cancel vmlaunch/vmresume is a bug */
10531 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10532
4704d0be 10533 leave_guest_mode(vcpu);
533558bc
JK
10534 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10535 exit_qualification);
4704d0be 10536
ff651cb6
WV
10537 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10538 vmcs12->vm_exit_msr_store_count))
10539 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10540
f3380ca5
WL
10541 vmx_load_vmcs01(vcpu);
10542
77b0f5d6
BD
10543 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10544 && nested_exit_intr_ack_set(vcpu)) {
10545 int irq = kvm_cpu_get_interrupt(vcpu);
10546 WARN_ON(irq < 0);
10547 vmcs12->vm_exit_intr_info = irq |
10548 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10549 }
10550
542060ea
JK
10551 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10552 vmcs12->exit_qualification,
10553 vmcs12->idt_vectoring_info_field,
10554 vmcs12->vm_exit_intr_info,
10555 vmcs12->vm_exit_intr_error_code,
10556 KVM_ISA_VMX);
4704d0be 10557
2961e876
GN
10558 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10559 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10560 vmx_segment_cache_clear(vmx);
10561
4704d0be
NHE
10562 /* if no vmcs02 cache requested, remove the one we used */
10563 if (VMCS02_POOL_SIZE == 0)
10564 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10565
10566 load_vmcs12_host_state(vcpu, vmcs12);
10567
27fc51b2 10568 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10569 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10570
10571 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10572 vmx->host_rsp = 0;
10573
10574 /* Unpin physical memory we referred to in vmcs02 */
10575 if (vmx->nested.apic_access_page) {
10576 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10577 vmx->nested.apic_access_page = NULL;
4704d0be 10578 }
a7c0b07d
WL
10579 if (vmx->nested.virtual_apic_page) {
10580 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10581 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10582 }
705699a1
WV
10583 if (vmx->nested.pi_desc_page) {
10584 kunmap(vmx->nested.pi_desc_page);
10585 nested_release_page(vmx->nested.pi_desc_page);
10586 vmx->nested.pi_desc_page = NULL;
10587 vmx->nested.pi_desc = NULL;
10588 }
4704d0be 10589
38b99173
TC
10590 /*
10591 * We are now running in L2, mmu_notifier will force to reload the
10592 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10593 */
10594 kvm_vcpu_reload_apic_access_page(vcpu);
10595
4704d0be
NHE
10596 /*
10597 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10598 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10599 * success or failure flag accordingly.
10600 */
10601 if (unlikely(vmx->fail)) {
10602 vmx->fail = 0;
10603 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10604 } else
10605 nested_vmx_succeed(vcpu);
012f83cb
AG
10606 if (enable_shadow_vmcs)
10607 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10608
10609 /* in case we halted in L2 */
10610 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10611}
10612
42124925
JK
10613/*
10614 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10615 */
10616static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10617{
10618 if (is_guest_mode(vcpu))
533558bc 10619 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10620 free_nested(to_vmx(vcpu));
10621}
10622
7c177938
NHE
10623/*
10624 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10625 * 23.7 "VM-entry failures during or after loading guest state" (this also
10626 * lists the acceptable exit-reason and exit-qualification parameters).
10627 * It should only be called before L2 actually succeeded to run, and when
10628 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10629 */
10630static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10631 struct vmcs12 *vmcs12,
10632 u32 reason, unsigned long qualification)
10633{
10634 load_vmcs12_host_state(vcpu, vmcs12);
10635 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10636 vmcs12->exit_qualification = qualification;
10637 nested_vmx_succeed(vcpu);
012f83cb
AG
10638 if (enable_shadow_vmcs)
10639 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10640}
10641
8a76d7f2
JR
10642static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10643 struct x86_instruction_info *info,
10644 enum x86_intercept_stage stage)
10645{
10646 return X86EMUL_CONTINUE;
10647}
10648
48d89b92 10649static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10650{
b4a2d31d
RK
10651 if (ple_gap)
10652 shrink_ple_window(vcpu);
ae97a3b8
RK
10653}
10654
843e4330
KH
10655static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10656 struct kvm_memory_slot *slot)
10657{
10658 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10659 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10660}
10661
10662static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10663 struct kvm_memory_slot *slot)
10664{
10665 kvm_mmu_slot_set_dirty(kvm, slot);
10666}
10667
10668static void vmx_flush_log_dirty(struct kvm *kvm)
10669{
10670 kvm_flush_pml_buffers(kvm);
10671}
10672
10673static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10674 struct kvm_memory_slot *memslot,
10675 gfn_t offset, unsigned long mask)
10676{
10677 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10678}
10679
bf9f6ac8
FW
10680/*
10681 * This routine does the following things for vCPU which is going
10682 * to be blocked if VT-d PI is enabled.
10683 * - Store the vCPU to the wakeup list, so when interrupts happen
10684 * we can find the right vCPU to wake up.
10685 * - Change the Posted-interrupt descriptor as below:
10686 * 'NDST' <-- vcpu->pre_pcpu
10687 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10688 * - If 'ON' is set during this process, which means at least one
10689 * interrupt is posted for this vCPU, we cannot block it, in
10690 * this case, return 1, otherwise, return 0.
10691 *
10692 */
10693static int vmx_pre_block(struct kvm_vcpu *vcpu)
10694{
10695 unsigned long flags;
10696 unsigned int dest;
10697 struct pi_desc old, new;
10698 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10699
10700 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10701 !irq_remapping_cap(IRQ_POSTING_CAP))
10702 return 0;
10703
10704 vcpu->pre_pcpu = vcpu->cpu;
10705 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10706 vcpu->pre_pcpu), flags);
10707 list_add_tail(&vcpu->blocked_vcpu_list,
10708 &per_cpu(blocked_vcpu_on_cpu,
10709 vcpu->pre_pcpu));
10710 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10711 vcpu->pre_pcpu), flags);
10712
10713 do {
10714 old.control = new.control = pi_desc->control;
10715
10716 /*
10717 * We should not block the vCPU if
10718 * an interrupt is posted for it.
10719 */
10720 if (pi_test_on(pi_desc) == 1) {
10721 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10722 vcpu->pre_pcpu), flags);
10723 list_del(&vcpu->blocked_vcpu_list);
10724 spin_unlock_irqrestore(
10725 &per_cpu(blocked_vcpu_on_cpu_lock,
10726 vcpu->pre_pcpu), flags);
10727 vcpu->pre_pcpu = -1;
10728
10729 return 1;
10730 }
10731
10732 WARN((pi_desc->sn == 1),
10733 "Warning: SN field of posted-interrupts "
10734 "is set before blocking\n");
10735
10736 /*
10737 * Since vCPU can be preempted during this process,
10738 * vcpu->cpu could be different with pre_pcpu, we
10739 * need to set pre_pcpu as the destination of wakeup
10740 * notification event, then we can find the right vCPU
10741 * to wakeup in wakeup handler if interrupts happen
10742 * when the vCPU is in blocked state.
10743 */
10744 dest = cpu_physical_id(vcpu->pre_pcpu);
10745
10746 if (x2apic_enabled())
10747 new.ndst = dest;
10748 else
10749 new.ndst = (dest << 8) & 0xFF00;
10750
10751 /* set 'NV' to 'wakeup vector' */
10752 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10753 } while (cmpxchg(&pi_desc->control, old.control,
10754 new.control) != old.control);
10755
10756 return 0;
10757}
10758
10759static void vmx_post_block(struct kvm_vcpu *vcpu)
10760{
10761 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10762 struct pi_desc old, new;
10763 unsigned int dest;
10764 unsigned long flags;
10765
10766 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10767 !irq_remapping_cap(IRQ_POSTING_CAP))
10768 return;
10769
10770 do {
10771 old.control = new.control = pi_desc->control;
10772
10773 dest = cpu_physical_id(vcpu->cpu);
10774
10775 if (x2apic_enabled())
10776 new.ndst = dest;
10777 else
10778 new.ndst = (dest << 8) & 0xFF00;
10779
10780 /* Allow posting non-urgent interrupts */
10781 new.sn = 0;
10782
10783 /* set 'NV' to 'notification vector' */
10784 new.nv = POSTED_INTR_VECTOR;
10785 } while (cmpxchg(&pi_desc->control, old.control,
10786 new.control) != old.control);
10787
10788 if(vcpu->pre_pcpu != -1) {
10789 spin_lock_irqsave(
10790 &per_cpu(blocked_vcpu_on_cpu_lock,
10791 vcpu->pre_pcpu), flags);
10792 list_del(&vcpu->blocked_vcpu_list);
10793 spin_unlock_irqrestore(
10794 &per_cpu(blocked_vcpu_on_cpu_lock,
10795 vcpu->pre_pcpu), flags);
10796 vcpu->pre_pcpu = -1;
10797 }
10798}
10799
efc64404
FW
10800/*
10801 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10802 *
10803 * @kvm: kvm
10804 * @host_irq: host irq of the interrupt
10805 * @guest_irq: gsi of the interrupt
10806 * @set: set or unset PI
10807 * returns 0 on success, < 0 on failure
10808 */
10809static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10810 uint32_t guest_irq, bool set)
10811{
10812 struct kvm_kernel_irq_routing_entry *e;
10813 struct kvm_irq_routing_table *irq_rt;
10814 struct kvm_lapic_irq irq;
10815 struct kvm_vcpu *vcpu;
10816 struct vcpu_data vcpu_info;
10817 int idx, ret = -EINVAL;
10818
10819 if (!kvm_arch_has_assigned_device(kvm) ||
10820 !irq_remapping_cap(IRQ_POSTING_CAP))
10821 return 0;
10822
10823 idx = srcu_read_lock(&kvm->irq_srcu);
10824 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10825 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10826
10827 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10828 if (e->type != KVM_IRQ_ROUTING_MSI)
10829 continue;
10830 /*
10831 * VT-d PI cannot support posting multicast/broadcast
10832 * interrupts to a vCPU, we still use interrupt remapping
10833 * for these kind of interrupts.
10834 *
10835 * For lowest-priority interrupts, we only support
10836 * those with single CPU as the destination, e.g. user
10837 * configures the interrupts via /proc/irq or uses
10838 * irqbalance to make the interrupts single-CPU.
10839 *
10840 * We will support full lowest-priority interrupt later.
10841 */
10842
10843 kvm_set_msi_irq(e, &irq);
23a1c257
FW
10844 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10845 /*
10846 * Make sure the IRTE is in remapped mode if
10847 * we don't handle it in posted mode.
10848 */
10849 ret = irq_set_vcpu_affinity(host_irq, NULL);
10850 if (ret < 0) {
10851 printk(KERN_INFO
10852 "failed to back to remapped mode, irq: %u\n",
10853 host_irq);
10854 goto out;
10855 }
10856
efc64404 10857 continue;
23a1c257 10858 }
efc64404
FW
10859
10860 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10861 vcpu_info.vector = irq.vector;
10862
b6ce9780 10863 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
10864 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10865
10866 if (set)
10867 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10868 else {
10869 /* suppress notification event before unposting */
10870 pi_set_sn(vcpu_to_pi_desc(vcpu));
10871 ret = irq_set_vcpu_affinity(host_irq, NULL);
10872 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10873 }
10874
10875 if (ret < 0) {
10876 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10877 __func__);
10878 goto out;
10879 }
10880 }
10881
10882 ret = 0;
10883out:
10884 srcu_read_unlock(&kvm->irq_srcu, idx);
10885 return ret;
10886}
10887
cbdd1bea 10888static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10889 .cpu_has_kvm_support = cpu_has_kvm_support,
10890 .disabled_by_bios = vmx_disabled_by_bios,
10891 .hardware_setup = hardware_setup,
10892 .hardware_unsetup = hardware_unsetup,
002c7f7c 10893 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10894 .hardware_enable = hardware_enable,
10895 .hardware_disable = hardware_disable,
04547156 10896 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 10897 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
10898
10899 .vcpu_create = vmx_create_vcpu,
10900 .vcpu_free = vmx_free_vcpu,
04d2cc77 10901 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10902
04d2cc77 10903 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10904 .vcpu_load = vmx_vcpu_load,
10905 .vcpu_put = vmx_vcpu_put,
10906
a96036b8 10907 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10908 .get_msr = vmx_get_msr,
10909 .set_msr = vmx_set_msr,
10910 .get_segment_base = vmx_get_segment_base,
10911 .get_segment = vmx_get_segment,
10912 .set_segment = vmx_set_segment,
2e4d2653 10913 .get_cpl = vmx_get_cpl,
6aa8b732 10914 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10915 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10916 .decache_cr3 = vmx_decache_cr3,
25c4c276 10917 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10918 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10919 .set_cr3 = vmx_set_cr3,
10920 .set_cr4 = vmx_set_cr4,
6aa8b732 10921 .set_efer = vmx_set_efer,
6aa8b732
AK
10922 .get_idt = vmx_get_idt,
10923 .set_idt = vmx_set_idt,
10924 .get_gdt = vmx_get_gdt,
10925 .set_gdt = vmx_set_gdt,
73aaf249
JK
10926 .get_dr6 = vmx_get_dr6,
10927 .set_dr6 = vmx_set_dr6,
020df079 10928 .set_dr7 = vmx_set_dr7,
81908bf4 10929 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10930 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10931 .get_rflags = vmx_get_rflags,
10932 .set_rflags = vmx_set_rflags,
be94f6b7
HH
10933
10934 .get_pkru = vmx_get_pkru,
10935
0fdd74f7 10936 .fpu_activate = vmx_fpu_activate,
02daab21 10937 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10938
10939 .tlb_flush = vmx_flush_tlb,
6aa8b732 10940
6aa8b732 10941 .run = vmx_vcpu_run,
6062d012 10942 .handle_exit = vmx_handle_exit,
6aa8b732 10943 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10944 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10945 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10946 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10947 .set_irq = vmx_inject_irq,
95ba8273 10948 .set_nmi = vmx_inject_nmi,
298101da 10949 .queue_exception = vmx_queue_exception,
b463a6f7 10950 .cancel_injection = vmx_cancel_injection,
78646121 10951 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10952 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10953 .get_nmi_mask = vmx_get_nmi_mask,
10954 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10955 .enable_nmi_window = enable_nmi_window,
10956 .enable_irq_window = enable_irq_window,
10957 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10958 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10959 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
10960 .get_enable_apicv = vmx_get_enable_apicv,
10961 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c
YZ
10962 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10963 .hwapic_irr_update = vmx_hwapic_irr_update,
10964 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10965 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10966 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10967
cbc94022 10968 .set_tss_addr = vmx_set_tss_addr,
67253af5 10969 .get_tdp_level = get_ept_level,
4b12f0de 10970 .get_mt_mask = vmx_get_mt_mask,
229456fc 10971
586f9607 10972 .get_exit_info = vmx_get_exit_info,
586f9607 10973
17cc3935 10974 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10975
10976 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10977
10978 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10979 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10980
10981 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10982
10983 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 10984
ba904635 10985 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 10986 .write_tsc_offset = vmx_write_tsc_offset,
58ea6767 10987 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
d5c1785d 10988 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
10989
10990 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
10991
10992 .check_intercept = vmx_check_intercept,
a547c6db 10993 .handle_external_intr = vmx_handle_external_intr,
da8999d3 10994 .mpx_supported = vmx_mpx_supported,
55412b2e 10995 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
10996
10997 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
10998
10999 .sched_in = vmx_sched_in,
843e4330
KH
11000
11001 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11002 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11003 .flush_log_dirty = vmx_flush_log_dirty,
11004 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11005
bf9f6ac8
FW
11006 .pre_block = vmx_pre_block,
11007 .post_block = vmx_post_block,
11008
25462f7f 11009 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11010
11011 .update_pi_irte = vmx_update_pi_irte,
6aa8b732
AK
11012};
11013
11014static int __init vmx_init(void)
11015{
34a1cd60
TC
11016 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11017 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11018 if (r)
34a1cd60 11019 return r;
25c5f225 11020
2965faa5 11021#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11022 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11023 crash_vmclear_local_loaded_vmcss);
11024#endif
11025
fdef3ad1 11026 return 0;
6aa8b732
AK
11027}
11028
11029static void __exit vmx_exit(void)
11030{
2965faa5 11031#ifdef CONFIG_KEXEC_CORE
3b63a43f 11032 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11033 synchronize_rcu();
11034#endif
11035
cb498ea2 11036 kvm_exit();
6aa8b732
AK
11037}
11038
11039module_init(vmx_init)
11040module_exit(vmx_exit)