]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
nfit, tools/testing/nvdimm/: unify shutdown paths
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
5037878e
GN
113#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
115#define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
117#define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 120
cdc0e244
AK
121#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
78ac8b47
AK
124#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
f4124500
JK
126#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
4b8d54f9
ZE
128/*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 132 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
b4a2d31d
RK
139#define KVM_VMX_DEFAULT_PLE_GAP 128
140#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
4b8d54f9
ZE
146static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147module_param(ple_gap, int, S_IRUGO);
148
149static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150module_param(ple_window, int, S_IRUGO);
151
b4a2d31d
RK
152/* Default doubles per-vcpu window every exit. */
153static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154module_param(ple_window_grow, int, S_IRUGO);
155
156/* Default resets per-vcpu window every exit to ple_window. */
157static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158module_param(ple_window_shrink, int, S_IRUGO);
159
160/* Default is to compute the maximum so we can never overflow. */
161static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163module_param(ple_window_max, int, S_IRUGO);
164
83287ea4
AK
165extern const ulong vmx_return;
166
8bf00a52 167#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 168#define VMCS02_POOL_SIZE 1
61d2ef2c 169
a2fa3e9f
GH
170struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174};
175
d462b819
NHE
176/*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186};
187
26bb0981
AK
188struct shared_msr_entry {
189 unsigned index;
190 u64 data;
d5696725 191 u64 mask;
26bb0981
AK
192};
193
a9d30f33
NHE
194/*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
22bd0358 207typedef u64 natural_width;
a9d30f33
NHE
208struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
22bd0358 214
27d6c865
NHE
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
22bd0358
NHE
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
705699a1 227 u64 posted_intr_desc_addr;
22bd0358 228 u64 ept_pointer;
608406e2
WV
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
81dc01f7 233 u64 xss_exit_bitmap;
22bd0358
NHE
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
36be0b9d 244 u64 guest_bndcfgs;
22bd0358
NHE
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
0238ea91
JK
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
22bd0358 346 u16 virtual_processor_id;
705699a1 347 u16 posted_intr_nv;
22bd0358
NHE
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
608406e2 356 u16 guest_intr_status;
22bd0358
NHE
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
a9d30f33
NHE
364};
365
366/*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371#define VMCS12_REVISION 0x11e57ed0
372
373/*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378#define VMCS12_SIZE 0x1000
379
ff2f6fe9
NHE
380/* Used to remember the last vmcs02 used for some recently used vmcs12s */
381struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385};
386
ec378aee
NHE
387/*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
3573e22c 394 gpa_t vmxon_ptr;
a9d30f33
NHE
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
8de48833 401 struct vmcs *current_shadow_vmcs;
012f83cb
AG
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
ff2f6fe9
NHE
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
fe3ef05c 411 u64 vmcs01_tsc_offset;
644d711a
NHE
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
fe3ef05c
NHE
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
a7c0b07d 419 struct page *virtual_apic_page;
705699a1
WV
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
b3897a49 424 u64 msr_ia32_feature_control;
f4124500
JK
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
2996fca0
JK
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
b9c237bb 431
5c614b35
WL
432 u16 vpid02;
433 u16 last_vpid;
434
b9c237bb
WV
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
99b83ac8 451 u32 nested_vmx_vpid_caps;
ec378aee
NHE
452};
453
01e439be 454#define POSTED_INTR_ON 0
ebbfc765
FW
455#define POSTED_INTR_SN 1
456
01e439be
YZ
457/* Posted-Interrupt Descriptor */
458struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
01e439be
YZ
478} __aligned(64);
479
a20ed54d
YZ
480static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481{
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484}
485
486static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487{
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490}
491
492static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493{
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495}
496
ebbfc765
FW
497static inline void pi_clear_sn(struct pi_desc *pi_desc)
498{
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501}
502
503static inline void pi_set_sn(struct pi_desc *pi_desc)
504{
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507}
508
509static inline int pi_test_on(struct pi_desc *pi_desc)
510{
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513}
514
515static inline int pi_test_sn(struct pi_desc *pi_desc)
516{
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519}
520
a2fa3e9f 521struct vcpu_vmx {
fb3f0f51 522 struct kvm_vcpu vcpu;
313dbd49 523 unsigned long host_rsp;
29bd8a78 524 u8 fail;
9d58b931 525 bool nmi_known_unmasked;
51aa01d1 526 u32 exit_intr_info;
1155f76a 527 u32 idt_vectoring_info;
6de12732 528 ulong rflags;
26bb0981 529 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
530 int nmsrs;
531 int save_nmsrs;
a547c6db 532 unsigned long host_idt_base;
a2fa3e9f 533#ifdef CONFIG_X86_64
44ea2b17
AK
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
a2fa3e9f 536#endif
2961e876
GN
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
d462b819
NHE
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
a2fa3e9f
GH
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
555#ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557#endif
152d3f2f
LV
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
da8999d3 560 u64 msr_host_bndcfgs;
d974baa3 561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 562 } host_state;
9c8cba37 563 struct {
7ffd92c5 564 int vm86_active;
78ac8b47 565 ulong save_rflags;
f5f7b2fe
AK
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
f5f7b2fe 575 } seg[8];
2fb92db1 576 } segment_cache;
2384d2b3 577 int vpid;
04fa4d32 578 bool emulation_required;
3b86cd99
JK
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
a0861c02 584 u32 exit_reason;
4e47c7a6 585
01e439be
YZ
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
ec378aee
NHE
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
a7653ecd
RK
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
843e4330
KH
595
596 /* Support for PML */
597#define PML_ENTITY_NUM 512
598 struct page *pml_pg;
2680d6da
OH
599
600 u64 current_tsc_ratio;
1be0e61c
XG
601
602 bool guest_pkru_valid;
603 u32 guest_pkru;
604 u32 host_pkru;
a2fa3e9f
GH
605};
606
2fb92db1
AK
607enum segment_cache_field {
608 SEG_FIELD_SEL = 0,
609 SEG_FIELD_BASE = 1,
610 SEG_FIELD_LIMIT = 2,
611 SEG_FIELD_AR = 3,
612
613 SEG_FIELD_NR = 4
614};
615
a2fa3e9f
GH
616static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
617{
fb3f0f51 618 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
619}
620
efc64404
FW
621static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
622{
623 return &(to_vmx(vcpu)->pi_desc);
624}
625
22bd0358
NHE
626#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
628#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
629 [number##_HIGH] = VMCS12_OFFSET(name)+4
630
4607c2d7 631
fe2b201b 632static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
633 /*
634 * We do NOT shadow fields that are modified when L0
635 * traps and emulates any vmx instruction (e.g. VMPTRLD,
636 * VMXON...) executed by L1.
637 * For example, VM_INSTRUCTION_ERROR is read
638 * by L1 if a vmx instruction fails (part of the error path).
639 * Note the code assumes this logic. If for some reason
640 * we start shadowing these fields then we need to
641 * force a shadow sync when L0 emulates vmx instructions
642 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643 * by nested_vmx_failValid)
644 */
645 VM_EXIT_REASON,
646 VM_EXIT_INTR_INFO,
647 VM_EXIT_INSTRUCTION_LEN,
648 IDT_VECTORING_INFO_FIELD,
649 IDT_VECTORING_ERROR_CODE,
650 VM_EXIT_INTR_ERROR_CODE,
651 EXIT_QUALIFICATION,
652 GUEST_LINEAR_ADDRESS,
653 GUEST_PHYSICAL_ADDRESS
654};
fe2b201b 655static int max_shadow_read_only_fields =
4607c2d7
AG
656 ARRAY_SIZE(shadow_read_only_fields);
657
fe2b201b 658static unsigned long shadow_read_write_fields[] = {
a7c0b07d 659 TPR_THRESHOLD,
4607c2d7
AG
660 GUEST_RIP,
661 GUEST_RSP,
662 GUEST_CR0,
663 GUEST_CR3,
664 GUEST_CR4,
665 GUEST_INTERRUPTIBILITY_INFO,
666 GUEST_RFLAGS,
667 GUEST_CS_SELECTOR,
668 GUEST_CS_AR_BYTES,
669 GUEST_CS_LIMIT,
670 GUEST_CS_BASE,
671 GUEST_ES_BASE,
36be0b9d 672 GUEST_BNDCFGS,
4607c2d7
AG
673 CR0_GUEST_HOST_MASK,
674 CR0_READ_SHADOW,
675 CR4_READ_SHADOW,
676 TSC_OFFSET,
677 EXCEPTION_BITMAP,
678 CPU_BASED_VM_EXEC_CONTROL,
679 VM_ENTRY_EXCEPTION_ERROR_CODE,
680 VM_ENTRY_INTR_INFO_FIELD,
681 VM_ENTRY_INSTRUCTION_LEN,
682 VM_ENTRY_EXCEPTION_ERROR_CODE,
683 HOST_FS_BASE,
684 HOST_GS_BASE,
685 HOST_FS_SELECTOR,
686 HOST_GS_SELECTOR
687};
fe2b201b 688static int max_shadow_read_write_fields =
4607c2d7
AG
689 ARRAY_SIZE(shadow_read_write_fields);
690
772e0318 691static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 692 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 693 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
694 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
695 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
696 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
697 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
698 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
699 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
700 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
701 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 702 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
703 FIELD(HOST_ES_SELECTOR, host_es_selector),
704 FIELD(HOST_CS_SELECTOR, host_cs_selector),
705 FIELD(HOST_SS_SELECTOR, host_ss_selector),
706 FIELD(HOST_DS_SELECTOR, host_ds_selector),
707 FIELD(HOST_FS_SELECTOR, host_fs_selector),
708 FIELD(HOST_GS_SELECTOR, host_gs_selector),
709 FIELD(HOST_TR_SELECTOR, host_tr_selector),
710 FIELD64(IO_BITMAP_A, io_bitmap_a),
711 FIELD64(IO_BITMAP_B, io_bitmap_b),
712 FIELD64(MSR_BITMAP, msr_bitmap),
713 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
714 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
715 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
716 FIELD64(TSC_OFFSET, tsc_offset),
717 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
718 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 719 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 720 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
721 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
722 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
723 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
724 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 725 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
726 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
727 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
728 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
729 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
730 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
731 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
732 FIELD64(GUEST_PDPTR0, guest_pdptr0),
733 FIELD64(GUEST_PDPTR1, guest_pdptr1),
734 FIELD64(GUEST_PDPTR2, guest_pdptr2),
735 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 736 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
737 FIELD64(HOST_IA32_PAT, host_ia32_pat),
738 FIELD64(HOST_IA32_EFER, host_ia32_efer),
739 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
740 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
741 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
742 FIELD(EXCEPTION_BITMAP, exception_bitmap),
743 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
744 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
745 FIELD(CR3_TARGET_COUNT, cr3_target_count),
746 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
747 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
748 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
749 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
750 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
751 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
752 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
753 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
754 FIELD(TPR_THRESHOLD, tpr_threshold),
755 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
756 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
757 FIELD(VM_EXIT_REASON, vm_exit_reason),
758 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
759 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
760 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
761 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
762 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
763 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
764 FIELD(GUEST_ES_LIMIT, guest_es_limit),
765 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
766 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
767 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
768 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
769 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
770 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
771 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
772 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
773 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
774 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
775 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
776 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
777 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
778 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
779 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
780 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
781 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
782 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
783 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
784 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
785 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 786 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
787 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
788 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
789 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
790 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
791 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
792 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
793 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
794 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
795 FIELD(EXIT_QUALIFICATION, exit_qualification),
796 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
797 FIELD(GUEST_CR0, guest_cr0),
798 FIELD(GUEST_CR3, guest_cr3),
799 FIELD(GUEST_CR4, guest_cr4),
800 FIELD(GUEST_ES_BASE, guest_es_base),
801 FIELD(GUEST_CS_BASE, guest_cs_base),
802 FIELD(GUEST_SS_BASE, guest_ss_base),
803 FIELD(GUEST_DS_BASE, guest_ds_base),
804 FIELD(GUEST_FS_BASE, guest_fs_base),
805 FIELD(GUEST_GS_BASE, guest_gs_base),
806 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
807 FIELD(GUEST_TR_BASE, guest_tr_base),
808 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
809 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
810 FIELD(GUEST_DR7, guest_dr7),
811 FIELD(GUEST_RSP, guest_rsp),
812 FIELD(GUEST_RIP, guest_rip),
813 FIELD(GUEST_RFLAGS, guest_rflags),
814 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
815 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
816 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
817 FIELD(HOST_CR0, host_cr0),
818 FIELD(HOST_CR3, host_cr3),
819 FIELD(HOST_CR4, host_cr4),
820 FIELD(HOST_FS_BASE, host_fs_base),
821 FIELD(HOST_GS_BASE, host_gs_base),
822 FIELD(HOST_TR_BASE, host_tr_base),
823 FIELD(HOST_GDTR_BASE, host_gdtr_base),
824 FIELD(HOST_IDTR_BASE, host_idtr_base),
825 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
826 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
827 FIELD(HOST_RSP, host_rsp),
828 FIELD(HOST_RIP, host_rip),
829};
22bd0358
NHE
830
831static inline short vmcs_field_to_offset(unsigned long field)
832{
a2ae9df7
PB
833 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
834
835 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
836 vmcs_field_to_offset_table[field] == 0)
837 return -ENOENT;
838
22bd0358
NHE
839 return vmcs_field_to_offset_table[field];
840}
841
a9d30f33
NHE
842static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
843{
844 return to_vmx(vcpu)->nested.current_vmcs12;
845}
846
847static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
848{
54bf36aa 849 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 850 if (is_error_page(page))
a9d30f33 851 return NULL;
32cad84f 852
a9d30f33
NHE
853 return page;
854}
855
856static void nested_release_page(struct page *page)
857{
858 kvm_release_page_dirty(page);
859}
860
861static void nested_release_page_clean(struct page *page)
862{
863 kvm_release_page_clean(page);
864}
865
bfd0a56b 866static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 867static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
868static void kvm_cpu_vmxon(u64 addr);
869static void kvm_cpu_vmxoff(void);
f53cd63c 870static bool vmx_xsaves_supported(void);
776e58ea 871static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
872static void vmx_set_segment(struct kvm_vcpu *vcpu,
873 struct kvm_segment *var, int seg);
874static void vmx_get_segment(struct kvm_vcpu *vcpu,
875 struct kvm_segment *var, int seg);
d99e4152
GN
876static bool guest_state_valid(struct kvm_vcpu *vcpu);
877static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 878static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 879static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 880static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 881
6aa8b732
AK
882static DEFINE_PER_CPU(struct vmcs *, vmxarea);
883static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
884/*
885 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
887 */
888static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 889static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 890
bf9f6ac8
FW
891/*
892 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893 * can find which vCPU should be waken up.
894 */
895static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
896static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
897
3e7c73e9
AK
898static unsigned long *vmx_io_bitmap_a;
899static unsigned long *vmx_io_bitmap_b;
5897297b
AK
900static unsigned long *vmx_msr_bitmap_legacy;
901static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
902static unsigned long *vmx_msr_bitmap_legacy_x2apic;
903static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 904static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
905static unsigned long *vmx_vmread_bitmap;
906static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 907
110312c8 908static bool cpu_has_load_ia32_efer;
8bf00a52 909static bool cpu_has_load_perf_global_ctrl;
110312c8 910
2384d2b3
SY
911static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
912static DEFINE_SPINLOCK(vmx_vpid_lock);
913
1c3d14fe 914static struct vmcs_config {
6aa8b732
AK
915 int size;
916 int order;
917 u32 revision_id;
1c3d14fe
YS
918 u32 pin_based_exec_ctrl;
919 u32 cpu_based_exec_ctrl;
f78e0e2e 920 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
921 u32 vmexit_ctrl;
922 u32 vmentry_ctrl;
923} vmcs_config;
6aa8b732 924
efff9e53 925static struct vmx_capability {
d56f546d
SY
926 u32 ept;
927 u32 vpid;
928} vmx_capability;
929
6aa8b732
AK
930#define VMX_SEGMENT_FIELD(seg) \
931 [VCPU_SREG_##seg] = { \
932 .selector = GUEST_##seg##_SELECTOR, \
933 .base = GUEST_##seg##_BASE, \
934 .limit = GUEST_##seg##_LIMIT, \
935 .ar_bytes = GUEST_##seg##_AR_BYTES, \
936 }
937
772e0318 938static const struct kvm_vmx_segment_field {
6aa8b732
AK
939 unsigned selector;
940 unsigned base;
941 unsigned limit;
942 unsigned ar_bytes;
943} kvm_vmx_segment_fields[] = {
944 VMX_SEGMENT_FIELD(CS),
945 VMX_SEGMENT_FIELD(DS),
946 VMX_SEGMENT_FIELD(ES),
947 VMX_SEGMENT_FIELD(FS),
948 VMX_SEGMENT_FIELD(GS),
949 VMX_SEGMENT_FIELD(SS),
950 VMX_SEGMENT_FIELD(TR),
951 VMX_SEGMENT_FIELD(LDTR),
952};
953
26bb0981
AK
954static u64 host_efer;
955
6de4f3ad
AK
956static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
957
4d56c8a7 958/*
8c06585d 959 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
960 * away by decrementing the array size.
961 */
6aa8b732 962static const u32 vmx_msr_index[] = {
05b3e0c2 963#ifdef CONFIG_X86_64
44ea2b17 964 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 965#endif
8c06585d 966 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 967};
6aa8b732 968
5bb16016 969static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
970{
971 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
972 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
973 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
974}
975
6f05485d
JK
976static inline bool is_debug(u32 intr_info)
977{
978 return is_exception_n(intr_info, DB_VECTOR);
979}
980
981static inline bool is_breakpoint(u32 intr_info)
982{
983 return is_exception_n(intr_info, BP_VECTOR);
984}
985
5bb16016
JK
986static inline bool is_page_fault(u32 intr_info)
987{
988 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
989}
990
31299944 991static inline bool is_no_device(u32 intr_info)
2ab455cc 992{
5bb16016 993 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
994}
995
31299944 996static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 997{
5bb16016 998 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
999}
1000
31299944 1001static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1002{
1003 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1004 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1005}
1006
31299944 1007static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1008{
1009 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1010 INTR_INFO_VALID_MASK)) ==
1011 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1012}
1013
31299944 1014static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1015{
04547156 1016 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1017}
1018
31299944 1019static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1020{
04547156 1021 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1022}
1023
35754c98 1024static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1025{
35754c98 1026 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1027}
1028
31299944 1029static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1030{
04547156
SY
1031 return vmcs_config.cpu_based_exec_ctrl &
1032 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1033}
1034
774ead3a 1035static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1036{
04547156
SY
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1039}
1040
8d14695f
YZ
1041static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1042{
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1045}
1046
83d4c286
YZ
1047static inline bool cpu_has_vmx_apic_register_virt(void)
1048{
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1051}
1052
c7c9c56c
YZ
1053static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1054{
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1057}
1058
01e439be
YZ
1059static inline bool cpu_has_vmx_posted_intr(void)
1060{
d6a858d1
PB
1061 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1062 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1063}
1064
1065static inline bool cpu_has_vmx_apicv(void)
1066{
1067 return cpu_has_vmx_apic_register_virt() &&
1068 cpu_has_vmx_virtual_intr_delivery() &&
1069 cpu_has_vmx_posted_intr();
1070}
1071
04547156
SY
1072static inline bool cpu_has_vmx_flexpriority(void)
1073{
1074 return cpu_has_vmx_tpr_shadow() &&
1075 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1076}
1077
e799794e
MT
1078static inline bool cpu_has_vmx_ept_execute_only(void)
1079{
31299944 1080 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1081}
1082
e799794e
MT
1083static inline bool cpu_has_vmx_ept_2m_page(void)
1084{
31299944 1085 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1086}
1087
878403b7
SY
1088static inline bool cpu_has_vmx_ept_1g_page(void)
1089{
31299944 1090 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1091}
1092
4bc9b982
SY
1093static inline bool cpu_has_vmx_ept_4levels(void)
1094{
1095 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1096}
1097
83c3a331
XH
1098static inline bool cpu_has_vmx_ept_ad_bits(void)
1099{
1100 return vmx_capability.ept & VMX_EPT_AD_BIT;
1101}
1102
31299944 1103static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1104{
31299944 1105 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1106}
1107
31299944 1108static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1109{
31299944 1110 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1111}
1112
518c8aee
GJ
1113static inline bool cpu_has_vmx_invvpid_single(void)
1114{
1115 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1116}
1117
b9d762fa
GJ
1118static inline bool cpu_has_vmx_invvpid_global(void)
1119{
1120 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1121}
1122
31299944 1123static inline bool cpu_has_vmx_ept(void)
d56f546d 1124{
04547156
SY
1125 return vmcs_config.cpu_based_2nd_exec_ctrl &
1126 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1127}
1128
31299944 1129static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1130{
1131 return vmcs_config.cpu_based_2nd_exec_ctrl &
1132 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1133}
1134
31299944 1135static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1136{
1137 return vmcs_config.cpu_based_2nd_exec_ctrl &
1138 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1139}
1140
35754c98 1141static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1142{
35754c98 1143 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1144}
1145
31299944 1146static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1147{
04547156
SY
1148 return vmcs_config.cpu_based_2nd_exec_ctrl &
1149 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1150}
1151
31299944 1152static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1153{
1154 return vmcs_config.cpu_based_2nd_exec_ctrl &
1155 SECONDARY_EXEC_RDTSCP;
1156}
1157
ad756a16
MJ
1158static inline bool cpu_has_vmx_invpcid(void)
1159{
1160 return vmcs_config.cpu_based_2nd_exec_ctrl &
1161 SECONDARY_EXEC_ENABLE_INVPCID;
1162}
1163
31299944 1164static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1165{
1166 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1167}
1168
f5f48ee1
SY
1169static inline bool cpu_has_vmx_wbinvd_exit(void)
1170{
1171 return vmcs_config.cpu_based_2nd_exec_ctrl &
1172 SECONDARY_EXEC_WBINVD_EXITING;
1173}
1174
abc4fc58
AG
1175static inline bool cpu_has_vmx_shadow_vmcs(void)
1176{
1177 u64 vmx_msr;
1178 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1179 /* check if the cpu supports writing r/o exit information fields */
1180 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1181 return false;
1182
1183 return vmcs_config.cpu_based_2nd_exec_ctrl &
1184 SECONDARY_EXEC_SHADOW_VMCS;
1185}
1186
843e4330
KH
1187static inline bool cpu_has_vmx_pml(void)
1188{
1189 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1190}
1191
64903d61
HZ
1192static inline bool cpu_has_vmx_tsc_scaling(void)
1193{
1194 return vmcs_config.cpu_based_2nd_exec_ctrl &
1195 SECONDARY_EXEC_TSC_SCALING;
1196}
1197
04547156
SY
1198static inline bool report_flexpriority(void)
1199{
1200 return flexpriority_enabled;
1201}
1202
fe3ef05c
NHE
1203static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1204{
1205 return vmcs12->cpu_based_vm_exec_control & bit;
1206}
1207
1208static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1209{
1210 return (vmcs12->cpu_based_vm_exec_control &
1211 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1212 (vmcs12->secondary_vm_exec_control & bit);
1213}
1214
f5c4368f 1215static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1216{
1217 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1218}
1219
f4124500
JK
1220static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1221{
1222 return vmcs12->pin_based_vm_exec_control &
1223 PIN_BASED_VMX_PREEMPTION_TIMER;
1224}
1225
155a97a3
NHE
1226static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1227{
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1229}
1230
81dc01f7
WL
1231static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1232{
1233 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1234 vmx_xsaves_supported();
1235}
1236
f2b93280
WV
1237static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1238{
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1240}
1241
5c614b35
WL
1242static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1243{
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1245}
1246
82f0dd4b
WV
1247static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1248{
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1250}
1251
608406e2
WV
1252static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1253{
1254 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1255}
1256
705699a1
WV
1257static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1258{
1259 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1260}
1261
644d711a
NHE
1262static inline bool is_exception(u32 intr_info)
1263{
1264 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1265 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1266}
1267
533558bc
JK
1268static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1269 u32 exit_intr_info,
1270 unsigned long exit_qualification);
7c177938
NHE
1271static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1272 struct vmcs12 *vmcs12,
1273 u32 reason, unsigned long qualification);
1274
8b9cf98c 1275static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1276{
1277 int i;
1278
a2fa3e9f 1279 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1280 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1281 return i;
1282 return -1;
1283}
1284
2384d2b3
SY
1285static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1286{
1287 struct {
1288 u64 vpid : 16;
1289 u64 rsvd : 48;
1290 u64 gva;
1291 } operand = { vpid, 0, gva };
1292
4ecac3fd 1293 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1294 /* CF==1 or ZF==1 --> rc = -1 */
1295 "; ja 1f ; ud2 ; 1:"
1296 : : "a"(&operand), "c"(ext) : "cc", "memory");
1297}
1298
1439442c
SY
1299static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1300{
1301 struct {
1302 u64 eptp, gpa;
1303 } operand = {eptp, gpa};
1304
4ecac3fd 1305 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1306 /* CF==1 or ZF==1 --> rc = -1 */
1307 "; ja 1f ; ud2 ; 1:\n"
1308 : : "a" (&operand), "c" (ext) : "cc", "memory");
1309}
1310
26bb0981 1311static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1312{
1313 int i;
1314
8b9cf98c 1315 i = __find_msr_index(vmx, msr);
a75beee6 1316 if (i >= 0)
a2fa3e9f 1317 return &vmx->guest_msrs[i];
8b6d44c7 1318 return NULL;
7725f0ba
AK
1319}
1320
6aa8b732
AK
1321static void vmcs_clear(struct vmcs *vmcs)
1322{
1323 u64 phys_addr = __pa(vmcs);
1324 u8 error;
1325
4ecac3fd 1326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1327 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1328 : "cc", "memory");
1329 if (error)
1330 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1331 vmcs, phys_addr);
1332}
1333
d462b819
NHE
1334static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1335{
1336 vmcs_clear(loaded_vmcs->vmcs);
1337 loaded_vmcs->cpu = -1;
1338 loaded_vmcs->launched = 0;
1339}
1340
7725b894
DX
1341static void vmcs_load(struct vmcs *vmcs)
1342{
1343 u64 phys_addr = __pa(vmcs);
1344 u8 error;
1345
1346 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1347 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1348 : "cc", "memory");
1349 if (error)
2844d849 1350 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1351 vmcs, phys_addr);
1352}
1353
2965faa5 1354#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1355/*
1356 * This bitmap is used to indicate whether the vmclear
1357 * operation is enabled on all cpus. All disabled by
1358 * default.
1359 */
1360static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1361
1362static inline void crash_enable_local_vmclear(int cpu)
1363{
1364 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365}
1366
1367static inline void crash_disable_local_vmclear(int cpu)
1368{
1369 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370}
1371
1372static inline int crash_local_vmclear_enabled(int cpu)
1373{
1374 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1375}
1376
1377static void crash_vmclear_local_loaded_vmcss(void)
1378{
1379 int cpu = raw_smp_processor_id();
1380 struct loaded_vmcs *v;
1381
1382 if (!crash_local_vmclear_enabled(cpu))
1383 return;
1384
1385 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1386 loaded_vmcss_on_cpu_link)
1387 vmcs_clear(v->vmcs);
1388}
1389#else
1390static inline void crash_enable_local_vmclear(int cpu) { }
1391static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1392#endif /* CONFIG_KEXEC_CORE */
8f536b76 1393
d462b819 1394static void __loaded_vmcs_clear(void *arg)
6aa8b732 1395{
d462b819 1396 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1397 int cpu = raw_smp_processor_id();
6aa8b732 1398
d462b819
NHE
1399 if (loaded_vmcs->cpu != cpu)
1400 return; /* vcpu migration can race with cpu offline */
1401 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1402 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1403 crash_disable_local_vmclear(cpu);
d462b819 1404 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1405
1406 /*
1407 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408 * is before setting loaded_vmcs->vcpu to -1 which is done in
1409 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410 * then adds the vmcs into percpu list before it is deleted.
1411 */
1412 smp_wmb();
1413
d462b819 1414 loaded_vmcs_init(loaded_vmcs);
8f536b76 1415 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1416}
1417
d462b819 1418static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1419{
e6c7d321
XG
1420 int cpu = loaded_vmcs->cpu;
1421
1422 if (cpu != -1)
1423 smp_call_function_single(cpu,
1424 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1425}
1426
dd5f5341 1427static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1428{
dd5f5341 1429 if (vpid == 0)
2384d2b3
SY
1430 return;
1431
518c8aee 1432 if (cpu_has_vmx_invvpid_single())
dd5f5341 1433 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1434}
1435
b9d762fa
GJ
1436static inline void vpid_sync_vcpu_global(void)
1437{
1438 if (cpu_has_vmx_invvpid_global())
1439 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1440}
1441
dd5f5341 1442static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1443{
1444 if (cpu_has_vmx_invvpid_single())
dd5f5341 1445 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1446 else
1447 vpid_sync_vcpu_global();
1448}
1449
1439442c
SY
1450static inline void ept_sync_global(void)
1451{
1452 if (cpu_has_vmx_invept_global())
1453 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1454}
1455
1456static inline void ept_sync_context(u64 eptp)
1457{
089d034e 1458 if (enable_ept) {
1439442c
SY
1459 if (cpu_has_vmx_invept_context())
1460 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1461 else
1462 ept_sync_global();
1463 }
1464}
1465
8a86aea9
PB
1466static __always_inline void vmcs_check16(unsigned long field)
1467{
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1469 "16-bit accessor invalid for 64-bit field");
1470 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1471 "16-bit accessor invalid for 64-bit high field");
1472 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1473 "16-bit accessor invalid for 32-bit high field");
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1475 "16-bit accessor invalid for natural width field");
1476}
1477
1478static __always_inline void vmcs_check32(unsigned long field)
1479{
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1481 "32-bit accessor invalid for 16-bit field");
1482 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1483 "32-bit accessor invalid for natural width field");
1484}
1485
1486static __always_inline void vmcs_check64(unsigned long field)
1487{
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1489 "64-bit accessor invalid for 16-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491 "64-bit accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493 "64-bit accessor invalid for 32-bit field");
1494 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1495 "64-bit accessor invalid for natural width field");
1496}
1497
1498static __always_inline void vmcs_checkl(unsigned long field)
1499{
1500 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1501 "Natural width accessor invalid for 16-bit field");
1502 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1503 "Natural width accessor invalid for 64-bit field");
1504 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1505 "Natural width accessor invalid for 64-bit high field");
1506 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1507 "Natural width accessor invalid for 32-bit field");
1508}
1509
1510static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1511{
5e520e62 1512 unsigned long value;
6aa8b732 1513
5e520e62
AK
1514 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1515 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1516 return value;
1517}
1518
96304217 1519static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1520{
8a86aea9
PB
1521 vmcs_check16(field);
1522 return __vmcs_readl(field);
6aa8b732
AK
1523}
1524
96304217 1525static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1526{
8a86aea9
PB
1527 vmcs_check32(field);
1528 return __vmcs_readl(field);
6aa8b732
AK
1529}
1530
96304217 1531static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1532{
8a86aea9 1533 vmcs_check64(field);
05b3e0c2 1534#ifdef CONFIG_X86_64
8a86aea9 1535 return __vmcs_readl(field);
6aa8b732 1536#else
8a86aea9 1537 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1538#endif
1539}
1540
8a86aea9
PB
1541static __always_inline unsigned long vmcs_readl(unsigned long field)
1542{
1543 vmcs_checkl(field);
1544 return __vmcs_readl(field);
1545}
1546
e52de1b8
AK
1547static noinline void vmwrite_error(unsigned long field, unsigned long value)
1548{
1549 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1550 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1551 dump_stack();
1552}
1553
8a86aea9 1554static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1555{
1556 u8 error;
1557
4ecac3fd 1558 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1559 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1560 if (unlikely(error))
1561 vmwrite_error(field, value);
6aa8b732
AK
1562}
1563
8a86aea9 1564static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1565{
8a86aea9
PB
1566 vmcs_check16(field);
1567 __vmcs_writel(field, value);
6aa8b732
AK
1568}
1569
8a86aea9 1570static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1571{
8a86aea9
PB
1572 vmcs_check32(field);
1573 __vmcs_writel(field, value);
6aa8b732
AK
1574}
1575
8a86aea9 1576static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1577{
8a86aea9
PB
1578 vmcs_check64(field);
1579 __vmcs_writel(field, value);
7682f2d0 1580#ifndef CONFIG_X86_64
6aa8b732 1581 asm volatile ("");
8a86aea9 1582 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1583#endif
1584}
1585
8a86aea9 1586static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1587{
8a86aea9
PB
1588 vmcs_checkl(field);
1589 __vmcs_writel(field, value);
2ab455cc
AL
1590}
1591
8a86aea9 1592static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1593{
8a86aea9
PB
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1595 "vmcs_clear_bits does not support 64-bit fields");
1596 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1597}
1598
8a86aea9 1599static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1600{
8a86aea9
PB
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1602 "vmcs_set_bits does not support 64-bit fields");
1603 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1604}
1605
2961e876
GN
1606static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1607{
1608 vmcs_write32(VM_ENTRY_CONTROLS, val);
1609 vmx->vm_entry_controls_shadow = val;
1610}
1611
1612static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1613{
1614 if (vmx->vm_entry_controls_shadow != val)
1615 vm_entry_controls_init(vmx, val);
1616}
1617
1618static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1619{
1620 return vmx->vm_entry_controls_shadow;
1621}
1622
1623
1624static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1625{
1626 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1627}
1628
1629static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1630{
1631 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1632}
1633
1634static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1635{
1636 vmcs_write32(VM_EXIT_CONTROLS, val);
1637 vmx->vm_exit_controls_shadow = val;
1638}
1639
1640static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1641{
1642 if (vmx->vm_exit_controls_shadow != val)
1643 vm_exit_controls_init(vmx, val);
1644}
1645
1646static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1647{
1648 return vmx->vm_exit_controls_shadow;
1649}
1650
1651
1652static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1653{
1654 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1655}
1656
1657static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1658{
1659 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1660}
1661
2fb92db1
AK
1662static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1663{
1664 vmx->segment_cache.bitmask = 0;
1665}
1666
1667static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1668 unsigned field)
1669{
1670 bool ret;
1671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1672
1673 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1674 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1675 vmx->segment_cache.bitmask = 0;
1676 }
1677 ret = vmx->segment_cache.bitmask & mask;
1678 vmx->segment_cache.bitmask |= mask;
1679 return ret;
1680}
1681
1682static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1683{
1684 u16 *p = &vmx->segment_cache.seg[seg].selector;
1685
1686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1688 return *p;
1689}
1690
1691static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1692{
1693 ulong *p = &vmx->segment_cache.seg[seg].base;
1694
1695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1697 return *p;
1698}
1699
1700static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1701{
1702 u32 *p = &vmx->segment_cache.seg[seg].limit;
1703
1704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1706 return *p;
1707}
1708
1709static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1710{
1711 u32 *p = &vmx->segment_cache.seg[seg].ar;
1712
1713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1715 return *p;
1716}
1717
abd3f2d6
AK
1718static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1719{
1720 u32 eb;
1721
fd7373cc 1722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
54a20552 1723 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1724 if ((vcpu->guest_debug &
1725 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1726 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1727 eb |= 1u << BP_VECTOR;
7ffd92c5 1728 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1729 eb = ~0;
089d034e 1730 if (enable_ept)
1439442c 1731 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1732 if (vcpu->fpu_active)
1733 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1734
1735 /* When we are running a nested L2 guest and L1 specified for it a
1736 * certain exception bitmap, we must trap the same exceptions and pass
1737 * them to L1. When running L2, we will only handle the exceptions
1738 * specified above if L1 did not want them.
1739 */
1740 if (is_guest_mode(vcpu))
1741 eb |= get_vmcs12(vcpu)->exception_bitmap;
1742
abd3f2d6
AK
1743 vmcs_write32(EXCEPTION_BITMAP, eb);
1744}
1745
2961e876
GN
1746static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1747 unsigned long entry, unsigned long exit)
8bf00a52 1748{
2961e876
GN
1749 vm_entry_controls_clearbit(vmx, entry);
1750 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1751}
1752
61d2ef2c
AK
1753static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1754{
1755 unsigned i;
1756 struct msr_autoload *m = &vmx->msr_autoload;
1757
8bf00a52
GN
1758 switch (msr) {
1759 case MSR_EFER:
1760 if (cpu_has_load_ia32_efer) {
2961e876
GN
1761 clear_atomic_switch_msr_special(vmx,
1762 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1763 VM_EXIT_LOAD_IA32_EFER);
1764 return;
1765 }
1766 break;
1767 case MSR_CORE_PERF_GLOBAL_CTRL:
1768 if (cpu_has_load_perf_global_ctrl) {
2961e876 1769 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1770 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1772 return;
1773 }
1774 break;
110312c8
AK
1775 }
1776
61d2ef2c
AK
1777 for (i = 0; i < m->nr; ++i)
1778 if (m->guest[i].index == msr)
1779 break;
1780
1781 if (i == m->nr)
1782 return;
1783 --m->nr;
1784 m->guest[i] = m->guest[m->nr];
1785 m->host[i] = m->host[m->nr];
1786 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1787 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1788}
1789
2961e876
GN
1790static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1791 unsigned long entry, unsigned long exit,
1792 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1793 u64 guest_val, u64 host_val)
8bf00a52
GN
1794{
1795 vmcs_write64(guest_val_vmcs, guest_val);
1796 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1797 vm_entry_controls_setbit(vmx, entry);
1798 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1799}
1800
61d2ef2c
AK
1801static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1802 u64 guest_val, u64 host_val)
1803{
1804 unsigned i;
1805 struct msr_autoload *m = &vmx->msr_autoload;
1806
8bf00a52
GN
1807 switch (msr) {
1808 case MSR_EFER:
1809 if (cpu_has_load_ia32_efer) {
2961e876
GN
1810 add_atomic_switch_msr_special(vmx,
1811 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1812 VM_EXIT_LOAD_IA32_EFER,
1813 GUEST_IA32_EFER,
1814 HOST_IA32_EFER,
1815 guest_val, host_val);
1816 return;
1817 }
1818 break;
1819 case MSR_CORE_PERF_GLOBAL_CTRL:
1820 if (cpu_has_load_perf_global_ctrl) {
2961e876 1821 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1822 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1823 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1824 GUEST_IA32_PERF_GLOBAL_CTRL,
1825 HOST_IA32_PERF_GLOBAL_CTRL,
1826 guest_val, host_val);
1827 return;
1828 }
1829 break;
7099e2e1
RK
1830 case MSR_IA32_PEBS_ENABLE:
1831 /* PEBS needs a quiescent period after being disabled (to write
1832 * a record). Disabling PEBS through VMX MSR swapping doesn't
1833 * provide that period, so a CPU could write host's record into
1834 * guest's memory.
1835 */
1836 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1837 }
1838
61d2ef2c
AK
1839 for (i = 0; i < m->nr; ++i)
1840 if (m->guest[i].index == msr)
1841 break;
1842
e7fc6f93 1843 if (i == NR_AUTOLOAD_MSRS) {
60266204 1844 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1845 "Can't add msr %x\n", msr);
1846 return;
1847 } else if (i == m->nr) {
61d2ef2c
AK
1848 ++m->nr;
1849 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1850 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1851 }
1852
1853 m->guest[i].index = msr;
1854 m->guest[i].value = guest_val;
1855 m->host[i].index = msr;
1856 m->host[i].value = host_val;
1857}
1858
33ed6329
AK
1859static void reload_tss(void)
1860{
33ed6329
AK
1861 /*
1862 * VT restores TR but not its size. Useless.
1863 */
89cbc767 1864 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1865 struct desc_struct *descs;
33ed6329 1866
d359192f 1867 descs = (void *)gdt->address;
33ed6329
AK
1868 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1869 load_TR_desc();
33ed6329
AK
1870}
1871
92c0d900 1872static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1873{
844a5fe2
PB
1874 u64 guest_efer = vmx->vcpu.arch.efer;
1875 u64 ignore_bits = 0;
1876
1877 if (!enable_ept) {
1878 /*
1879 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1880 * host CPUID is more efficient than testing guest CPUID
1881 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1882 */
1883 if (boot_cpu_has(X86_FEATURE_SMEP))
1884 guest_efer |= EFER_NX;
1885 else if (!(guest_efer & EFER_NX))
1886 ignore_bits |= EFER_NX;
1887 }
3a34a881 1888
51c6cf66 1889 /*
844a5fe2 1890 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 1891 */
844a5fe2 1892 ignore_bits |= EFER_SCE;
51c6cf66
AK
1893#ifdef CONFIG_X86_64
1894 ignore_bits |= EFER_LMA | EFER_LME;
1895 /* SCE is meaningful only in long mode on Intel */
1896 if (guest_efer & EFER_LMA)
1897 ignore_bits &= ~(u64)EFER_SCE;
1898#endif
84ad33ef
AK
1899
1900 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1901
1902 /*
1903 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904 * On CPUs that support "load IA32_EFER", always switch EFER
1905 * atomically, since it's faster than switching it manually.
1906 */
1907 if (cpu_has_load_ia32_efer ||
1908 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1909 if (!(guest_efer & EFER_LMA))
1910 guest_efer &= ~EFER_LME;
54b98bff
AL
1911 if (guest_efer != host_efer)
1912 add_atomic_switch_msr(vmx, MSR_EFER,
1913 guest_efer, host_efer);
84ad33ef 1914 return false;
844a5fe2
PB
1915 } else {
1916 guest_efer &= ~ignore_bits;
1917 guest_efer |= host_efer & ignore_bits;
1918
1919 vmx->guest_msrs[efer_offset].data = guest_efer;
1920 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 1921
844a5fe2
PB
1922 return true;
1923 }
51c6cf66
AK
1924}
1925
2d49ec72
GN
1926static unsigned long segment_base(u16 selector)
1927{
89cbc767 1928 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1929 struct desc_struct *d;
1930 unsigned long table_base;
1931 unsigned long v;
1932
1933 if (!(selector & ~3))
1934 return 0;
1935
d359192f 1936 table_base = gdt->address;
2d49ec72
GN
1937
1938 if (selector & 4) { /* from ldt */
1939 u16 ldt_selector = kvm_read_ldt();
1940
1941 if (!(ldt_selector & ~3))
1942 return 0;
1943
1944 table_base = segment_base(ldt_selector);
1945 }
1946 d = (struct desc_struct *)(table_base + (selector & ~7));
1947 v = get_desc_base(d);
1948#ifdef CONFIG_X86_64
1949 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1950 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1951#endif
1952 return v;
1953}
1954
1955static inline unsigned long kvm_read_tr_base(void)
1956{
1957 u16 tr;
1958 asm("str %0" : "=g"(tr));
1959 return segment_base(tr);
1960}
1961
04d2cc77 1962static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1963{
04d2cc77 1964 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1965 int i;
04d2cc77 1966
a2fa3e9f 1967 if (vmx->host_state.loaded)
33ed6329
AK
1968 return;
1969
a2fa3e9f 1970 vmx->host_state.loaded = 1;
33ed6329
AK
1971 /*
1972 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1973 * allow segment selectors with cpl > 0 or ti == 1.
1974 */
d6e88aec 1975 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1976 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1977 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1978 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1979 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1980 vmx->host_state.fs_reload_needed = 0;
1981 } else {
33ed6329 1982 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1983 vmx->host_state.fs_reload_needed = 1;
33ed6329 1984 }
9581d442 1985 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1986 if (!(vmx->host_state.gs_sel & 7))
1987 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1988 else {
1989 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1990 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1991 }
1992
b2da15ac
AK
1993#ifdef CONFIG_X86_64
1994 savesegment(ds, vmx->host_state.ds_sel);
1995 savesegment(es, vmx->host_state.es_sel);
1996#endif
1997
33ed6329
AK
1998#ifdef CONFIG_X86_64
1999 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2000 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2001#else
a2fa3e9f
GH
2002 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2003 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2004#endif
707c0874
AK
2005
2006#ifdef CONFIG_X86_64
c8770e7b
AK
2007 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2008 if (is_long_mode(&vmx->vcpu))
44ea2b17 2009 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2010#endif
da8999d3
LJ
2011 if (boot_cpu_has(X86_FEATURE_MPX))
2012 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2013 for (i = 0; i < vmx->save_nmsrs; ++i)
2014 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2015 vmx->guest_msrs[i].data,
2016 vmx->guest_msrs[i].mask);
33ed6329
AK
2017}
2018
a9b21b62 2019static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2020{
a2fa3e9f 2021 if (!vmx->host_state.loaded)
33ed6329
AK
2022 return;
2023
e1beb1d3 2024 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2025 vmx->host_state.loaded = 0;
c8770e7b
AK
2026#ifdef CONFIG_X86_64
2027 if (is_long_mode(&vmx->vcpu))
2028 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2029#endif
152d3f2f 2030 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2031 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2032#ifdef CONFIG_X86_64
9581d442 2033 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2034#else
2035 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2036#endif
33ed6329 2037 }
0a77fe4c
AK
2038 if (vmx->host_state.fs_reload_needed)
2039 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2040#ifdef CONFIG_X86_64
2041 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2042 loadsegment(ds, vmx->host_state.ds_sel);
2043 loadsegment(es, vmx->host_state.es_sel);
2044 }
b2da15ac 2045#endif
152d3f2f 2046 reload_tss();
44ea2b17 2047#ifdef CONFIG_X86_64
c8770e7b 2048 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2049#endif
da8999d3
LJ
2050 if (vmx->host_state.msr_host_bndcfgs)
2051 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
2052 /*
2053 * If the FPU is not active (through the host task or
2054 * the guest vcpu), then restore the cr0.TS bit.
2055 */
3c6dffa9 2056 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 2057 stts();
89cbc767 2058 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2059}
2060
a9b21b62
AK
2061static void vmx_load_host_state(struct vcpu_vmx *vmx)
2062{
2063 preempt_disable();
2064 __vmx_load_host_state(vmx);
2065 preempt_enable();
2066}
2067
28b835d6
FW
2068static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2069{
2070 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2071 struct pi_desc old, new;
2072 unsigned int dest;
2073
2074 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP))
2076 return;
2077
2078 do {
2079 old.control = new.control = pi_desc->control;
2080
2081 /*
2082 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2083 * are two possible cases:
2084 * 1. After running 'pre_block', context switch
2085 * happened. For this case, 'sn' was set in
2086 * vmx_vcpu_put(), so we need to clear it here.
2087 * 2. After running 'pre_block', we were blocked,
2088 * and woken up by some other guy. For this case,
2089 * we don't need to do anything, 'pi_post_block'
2090 * will do everything for us. However, we cannot
2091 * check whether it is case #1 or case #2 here
2092 * (maybe, not needed), so we also clear sn here,
2093 * I think it is not a big deal.
2094 */
2095 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2096 if (vcpu->cpu != cpu) {
2097 dest = cpu_physical_id(cpu);
2098
2099 if (x2apic_enabled())
2100 new.ndst = dest;
2101 else
2102 new.ndst = (dest << 8) & 0xFF00;
2103 }
2104
2105 /* set 'NV' to 'notification vector' */
2106 new.nv = POSTED_INTR_VECTOR;
2107 }
2108
2109 /* Allow posting non-urgent interrupts */
2110 new.sn = 0;
2111 } while (cmpxchg(&pi_desc->control, old.control,
2112 new.control) != old.control);
2113}
1be0e61c 2114
6aa8b732
AK
2115/*
2116 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2117 * vcpu mutex is already taken.
2118 */
15ad7146 2119static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2120{
a2fa3e9f 2121 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2122 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 2123
4610c9cc
DX
2124 if (!vmm_exclusive)
2125 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
2126 else if (vmx->loaded_vmcs->cpu != cpu)
2127 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2128
d462b819
NHE
2129 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2130 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2131 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
2132 }
2133
d462b819 2134 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 2135 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
2136 unsigned long sysenter_esp;
2137
a8eeb04a 2138 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2139 local_irq_disable();
8f536b76 2140 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2141
2142 /*
2143 * Read loaded_vmcs->cpu should be before fetching
2144 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2145 * See the comments in __loaded_vmcs_clear().
2146 */
2147 smp_rmb();
2148
d462b819
NHE
2149 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2150 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2151 crash_enable_local_vmclear(cpu);
92fe13be
DX
2152 local_irq_enable();
2153
6aa8b732
AK
2154 /*
2155 * Linux uses per-cpu TSS and GDT, so set these when switching
2156 * processors.
2157 */
d6e88aec 2158 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2159 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2160
2161 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2162 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2163
d462b819 2164 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2165 }
28b835d6 2166
2680d6da
OH
2167 /* Setup TSC multiplier */
2168 if (kvm_has_tsc_control &&
2169 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2170 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2171 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2172 }
2173
28b835d6 2174 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2175 vmx->host_pkru = read_pkru();
28b835d6
FW
2176}
2177
2178static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2179{
2180 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2181
2182 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2183 !irq_remapping_cap(IRQ_POSTING_CAP))
2184 return;
2185
2186 /* Set SN when the vCPU is preempted */
2187 if (vcpu->preempted)
2188 pi_set_sn(pi_desc);
6aa8b732
AK
2189}
2190
2191static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2192{
28b835d6
FW
2193 vmx_vcpu_pi_put(vcpu);
2194
a9b21b62 2195 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2196 if (!vmm_exclusive) {
d462b819
NHE
2197 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2198 vcpu->cpu = -1;
4610c9cc
DX
2199 kvm_cpu_vmxoff();
2200 }
6aa8b732
AK
2201}
2202
5fd86fcf
AK
2203static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2204{
81231c69
AK
2205 ulong cr0;
2206
5fd86fcf
AK
2207 if (vcpu->fpu_active)
2208 return;
2209 vcpu->fpu_active = 1;
81231c69
AK
2210 cr0 = vmcs_readl(GUEST_CR0);
2211 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2212 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2213 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2214 update_exception_bitmap(vcpu);
edcafe3c 2215 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2216 if (is_guest_mode(vcpu))
2217 vcpu->arch.cr0_guest_owned_bits &=
2218 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2219 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2220}
2221
edcafe3c
AK
2222static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2223
fe3ef05c
NHE
2224/*
2225 * Return the cr0 value that a nested guest would read. This is a combination
2226 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2227 * its hypervisor (cr0_read_shadow).
2228 */
2229static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2230{
2231 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2232 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2233}
2234static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2235{
2236 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2237 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2238}
2239
5fd86fcf
AK
2240static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2241{
36cf24e0
NHE
2242 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2243 * set this *before* calling this function.
2244 */
edcafe3c 2245 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2246 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2247 update_exception_bitmap(vcpu);
edcafe3c
AK
2248 vcpu->arch.cr0_guest_owned_bits = 0;
2249 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2250 if (is_guest_mode(vcpu)) {
2251 /*
2252 * L1's specified read shadow might not contain the TS bit,
2253 * so now that we turned on shadowing of this bit, we need to
2254 * set this bit of the shadow. Like in nested_vmx_run we need
2255 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2256 * up-to-date here because we just decached cr0.TS (and we'll
2257 * only update vmcs12->guest_cr0 on nested exit).
2258 */
2259 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2260 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2261 (vcpu->arch.cr0 & X86_CR0_TS);
2262 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2263 } else
2264 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2265}
2266
6aa8b732
AK
2267static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2268{
78ac8b47 2269 unsigned long rflags, save_rflags;
345dcaa8 2270
6de12732
AK
2271 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2272 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2273 rflags = vmcs_readl(GUEST_RFLAGS);
2274 if (to_vmx(vcpu)->rmode.vm86_active) {
2275 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2276 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2277 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2278 }
2279 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2280 }
6de12732 2281 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2282}
2283
2284static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2285{
6de12732
AK
2286 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2287 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2288 if (to_vmx(vcpu)->rmode.vm86_active) {
2289 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2290 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2291 }
6aa8b732
AK
2292 vmcs_writel(GUEST_RFLAGS, rflags);
2293}
2294
be94f6b7
HH
2295static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2296{
2297 return to_vmx(vcpu)->guest_pkru;
2298}
2299
37ccdcbe 2300static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2301{
2302 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2303 int ret = 0;
2304
2305 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2306 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2307 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2308 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2309
37ccdcbe 2310 return ret;
2809f5d2
GC
2311}
2312
2313static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2314{
2315 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2316 u32 interruptibility = interruptibility_old;
2317
2318 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2319
48005f64 2320 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2321 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2322 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2323 interruptibility |= GUEST_INTR_STATE_STI;
2324
2325 if ((interruptibility != interruptibility_old))
2326 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2327}
2328
6aa8b732
AK
2329static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2330{
2331 unsigned long rip;
6aa8b732 2332
5fdbf976 2333 rip = kvm_rip_read(vcpu);
6aa8b732 2334 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2335 kvm_rip_write(vcpu, rip);
6aa8b732 2336
2809f5d2
GC
2337 /* skipping an emulated instruction also counts */
2338 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2339}
2340
0b6ac343
NHE
2341/*
2342 * KVM wants to inject page-faults which it got to the guest. This function
2343 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2344 */
e011c663 2345static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2346{
2347 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2348
e011c663 2349 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2350 return 0;
2351
533558bc
JK
2352 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2353 vmcs_read32(VM_EXIT_INTR_INFO),
2354 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2355 return 1;
2356}
2357
298101da 2358static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2359 bool has_error_code, u32 error_code,
2360 bool reinject)
298101da 2361{
77ab6db0 2362 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2363 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2364
e011c663
GN
2365 if (!reinject && is_guest_mode(vcpu) &&
2366 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2367 return;
2368
8ab2d2e2 2369 if (has_error_code) {
77ab6db0 2370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2371 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2372 }
77ab6db0 2373
7ffd92c5 2374 if (vmx->rmode.vm86_active) {
71f9833b
SH
2375 int inc_eip = 0;
2376 if (kvm_exception_is_soft(nr))
2377 inc_eip = vcpu->arch.event_exit_inst_len;
2378 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2380 return;
2381 }
2382
66fd3f7f
GN
2383 if (kvm_exception_is_soft(nr)) {
2384 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2385 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2386 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2387 } else
2388 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2389
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2391}
2392
4e47c7a6
SY
2393static bool vmx_rdtscp_supported(void)
2394{
2395 return cpu_has_vmx_rdtscp();
2396}
2397
ad756a16
MJ
2398static bool vmx_invpcid_supported(void)
2399{
2400 return cpu_has_vmx_invpcid() && enable_ept;
2401}
2402
a75beee6
ED
2403/*
2404 * Swap MSR entry in host/guest MSR entry array.
2405 */
8b9cf98c 2406static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2407{
26bb0981 2408 struct shared_msr_entry tmp;
a2fa3e9f
GH
2409
2410 tmp = vmx->guest_msrs[to];
2411 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2412 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2413}
2414
8d14695f
YZ
2415static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2416{
2417 unsigned long *msr_bitmap;
2418
670125bd
WV
2419 if (is_guest_mode(vcpu))
2420 msr_bitmap = vmx_msr_bitmap_nested;
3ce424e4
RK
2421 else if (cpu_has_secondary_exec_ctrls() &&
2422 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2423 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
8d14695f
YZ
2424 if (is_long_mode(vcpu))
2425 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2426 else
2427 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2428 } else {
2429 if (is_long_mode(vcpu))
2430 msr_bitmap = vmx_msr_bitmap_longmode;
2431 else
2432 msr_bitmap = vmx_msr_bitmap_legacy;
2433 }
2434
2435 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2436}
2437
e38aea3e
AK
2438/*
2439 * Set up the vmcs to automatically save and restore system
2440 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2441 * mode, as fiddling with msrs is very expensive.
2442 */
8b9cf98c 2443static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2444{
26bb0981 2445 int save_nmsrs, index;
e38aea3e 2446
a75beee6
ED
2447 save_nmsrs = 0;
2448#ifdef CONFIG_X86_64
8b9cf98c 2449 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2450 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2451 if (index >= 0)
8b9cf98c
RR
2452 move_msr_up(vmx, index, save_nmsrs++);
2453 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2454 if (index >= 0)
8b9cf98c
RR
2455 move_msr_up(vmx, index, save_nmsrs++);
2456 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2457 if (index >= 0)
8b9cf98c 2458 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2459 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2460 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2461 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2462 /*
8c06585d 2463 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2464 * if efer.sce is enabled.
2465 */
8c06585d 2466 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2467 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2468 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2469 }
2470#endif
92c0d900
AK
2471 index = __find_msr_index(vmx, MSR_EFER);
2472 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2473 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2474
26bb0981 2475 vmx->save_nmsrs = save_nmsrs;
5897297b 2476
8d14695f
YZ
2477 if (cpu_has_vmx_msr_bitmap())
2478 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2479}
2480
6aa8b732
AK
2481/*
2482 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2483 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2484 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2485 */
be7b263e 2486static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2487{
2488 u64 host_tsc, tsc_offset;
2489
4ea1636b 2490 host_tsc = rdtsc();
6aa8b732 2491 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2492 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2493}
2494
d5c1785d
NHE
2495/*
2496 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2497 * counter, even if a nested guest (L2) is currently running.
2498 */
48d89b92 2499static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2500{
886b470c 2501 u64 tsc_offset;
d5c1785d 2502
d5c1785d
NHE
2503 tsc_offset = is_guest_mode(vcpu) ?
2504 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2505 vmcs_read64(TSC_OFFSET);
2506 return host_tsc + tsc_offset;
2507}
2508
ba904635
WA
2509static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2510{
2511 return vmcs_read64(TSC_OFFSET);
2512}
2513
6aa8b732 2514/*
99e3e30a 2515 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2516 */
99e3e30a 2517static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2518{
27fc51b2 2519 if (is_guest_mode(vcpu)) {
7991825b 2520 /*
27fc51b2
NHE
2521 * We're here if L1 chose not to trap WRMSR to TSC. According
2522 * to the spec, this should set L1's TSC; The offset that L1
2523 * set for L2 remains unchanged, and still needs to be added
2524 * to the newly set TSC to get L2's TSC.
7991825b 2525 */
27fc51b2
NHE
2526 struct vmcs12 *vmcs12;
2527 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2528 /* recalculate vmcs02.TSC_OFFSET: */
2529 vmcs12 = get_vmcs12(vcpu);
2530 vmcs_write64(TSC_OFFSET, offset +
2531 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2532 vmcs12->tsc_offset : 0));
2533 } else {
489223ed
YY
2534 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2535 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2536 vmcs_write64(TSC_OFFSET, offset);
2537 }
6aa8b732
AK
2538}
2539
58ea6767 2540static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
e48672fa
ZA
2541{
2542 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2543
e48672fa 2544 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2545 if (is_guest_mode(vcpu)) {
2546 /* Even when running L2, the adjustment needs to apply to L1 */
2547 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2548 } else
2549 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2550 offset + adjustment);
e48672fa
ZA
2551}
2552
801d3424
NHE
2553static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2554{
2555 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2556 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2557}
2558
2559/*
2560 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2561 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2562 * all guests if the "nested" module option is off, and can also be disabled
2563 * for a single guest by disabling its VMX cpuid bit.
2564 */
2565static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2566{
2567 return nested && guest_cpuid_has_vmx(vcpu);
2568}
2569
b87a51ae
NHE
2570/*
2571 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2572 * returned for the various VMX controls MSRs when nested VMX is enabled.
2573 * The same values should also be used to verify that vmcs12 control fields are
2574 * valid during nested entry from L1 to L2.
2575 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2576 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2577 * bit in the high half is on if the corresponding bit in the control field
2578 * may be on. See also vmx_control_verify().
b87a51ae 2579 */
b9c237bb 2580static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2581{
2582 /*
2583 * Note that as a general rule, the high half of the MSRs (bits in
2584 * the control fields which may be 1) should be initialized by the
2585 * intersection of the underlying hardware's MSR (i.e., features which
2586 * can be supported) and the list of features we want to expose -
2587 * because they are known to be properly supported in our code.
2588 * Also, usually, the low half of the MSRs (bits which must be 1) can
2589 * be set to 0, meaning that L1 may turn off any of these bits. The
2590 * reason is that if one of these bits is necessary, it will appear
2591 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2592 * fields of vmcs01 and vmcs02, will turn these bits off - and
2593 * nested_vmx_exit_handled() will not pass related exits to L1.
2594 * These rules have exceptions below.
2595 */
2596
2597 /* pin-based controls */
eabeaacc 2598 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2599 vmx->nested.nested_vmx_pinbased_ctls_low,
2600 vmx->nested.nested_vmx_pinbased_ctls_high);
2601 vmx->nested.nested_vmx_pinbased_ctls_low |=
2602 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2603 vmx->nested.nested_vmx_pinbased_ctls_high &=
2604 PIN_BASED_EXT_INTR_MASK |
2605 PIN_BASED_NMI_EXITING |
2606 PIN_BASED_VIRTUAL_NMIS;
2607 vmx->nested.nested_vmx_pinbased_ctls_high |=
2608 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2609 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2610 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2611 vmx->nested.nested_vmx_pinbased_ctls_high |=
2612 PIN_BASED_POSTED_INTR;
b87a51ae 2613
3dbcd8da 2614 /* exit controls */
c0dfee58 2615 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2616 vmx->nested.nested_vmx_exit_ctls_low,
2617 vmx->nested.nested_vmx_exit_ctls_high);
2618 vmx->nested.nested_vmx_exit_ctls_low =
2619 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2620
b9c237bb 2621 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2622#ifdef CONFIG_X86_64
c0dfee58 2623 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2624#endif
f4124500 2625 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2626 vmx->nested.nested_vmx_exit_ctls_high |=
2627 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2628 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2629 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2630
a87036ad 2631 if (kvm_mpx_supported())
b9c237bb 2632 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2633
2996fca0 2634 /* We support free control of debug control saving. */
b9c237bb
WV
2635 vmx->nested.nested_vmx_true_exit_ctls_low =
2636 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2637 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2638
b87a51ae
NHE
2639 /* entry controls */
2640 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2641 vmx->nested.nested_vmx_entry_ctls_low,
2642 vmx->nested.nested_vmx_entry_ctls_high);
2643 vmx->nested.nested_vmx_entry_ctls_low =
2644 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2645 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2646#ifdef CONFIG_X86_64
2647 VM_ENTRY_IA32E_MODE |
2648#endif
2649 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2650 vmx->nested.nested_vmx_entry_ctls_high |=
2651 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2652 if (kvm_mpx_supported())
b9c237bb 2653 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2654
2996fca0 2655 /* We support free control of debug control loading. */
b9c237bb
WV
2656 vmx->nested.nested_vmx_true_entry_ctls_low =
2657 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2658 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2659
b87a51ae
NHE
2660 /* cpu-based controls */
2661 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2662 vmx->nested.nested_vmx_procbased_ctls_low,
2663 vmx->nested.nested_vmx_procbased_ctls_high);
2664 vmx->nested.nested_vmx_procbased_ctls_low =
2665 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2666 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2667 CPU_BASED_VIRTUAL_INTR_PENDING |
2668 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2669 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2670 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2671 CPU_BASED_CR3_STORE_EXITING |
2672#ifdef CONFIG_X86_64
2673 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2674#endif
2675 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2676 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2677 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2678 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2679 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2680 /*
2681 * We can allow some features even when not supported by the
2682 * hardware. For example, L1 can specify an MSR bitmap - and we
2683 * can use it to avoid exits to L1 - even when L0 runs L2
2684 * without MSR bitmaps.
2685 */
b9c237bb
WV
2686 vmx->nested.nested_vmx_procbased_ctls_high |=
2687 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2688 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2689
3dcdf3ec 2690 /* We support free control of CR3 access interception. */
b9c237bb
WV
2691 vmx->nested.nested_vmx_true_procbased_ctls_low =
2692 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2693 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2694
b87a51ae
NHE
2695 /* secondary cpu-based controls */
2696 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2697 vmx->nested.nested_vmx_secondary_ctls_low,
2698 vmx->nested.nested_vmx_secondary_ctls_high);
2699 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2700 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2701 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2702 SECONDARY_EXEC_RDTSCP |
f2b93280 2703 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2704 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2705 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2706 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2707 SECONDARY_EXEC_WBINVD_EXITING |
8b3e34e4
XG
2708 SECONDARY_EXEC_XSAVES |
2709 SECONDARY_EXEC_PCOMMIT;
c18911a2 2710
afa61f75
NHE
2711 if (enable_ept) {
2712 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2713 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2714 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2715 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2716 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2717 VMX_EPT_INVEPT_BIT;
b9c237bb 2718 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2719 /*
4b855078
BD
2720 * For nested guests, we don't do anything specific
2721 * for single context invalidation. Hence, only advertise
2722 * support for global context invalidation.
afa61f75 2723 */
b9c237bb 2724 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2725 } else
b9c237bb 2726 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2727
ef697a71
PB
2728 /*
2729 * Old versions of KVM use the single-context version without
2730 * checking for support, so declare that it is supported even
2731 * though it is treated as global context. The alternative is
2732 * not failing the single-context invvpid, and it is worse.
2733 */
089d7b6e
WL
2734 if (enable_vpid)
2735 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
ef697a71 2736 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
089d7b6e
WL
2737 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2738 else
2739 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2740
0790ec17
RK
2741 if (enable_unrestricted_guest)
2742 vmx->nested.nested_vmx_secondary_ctls_high |=
2743 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2744
c18911a2 2745 /* miscellaneous data */
b9c237bb
WV
2746 rdmsr(MSR_IA32_VMX_MISC,
2747 vmx->nested.nested_vmx_misc_low,
2748 vmx->nested.nested_vmx_misc_high);
2749 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2750 vmx->nested.nested_vmx_misc_low |=
2751 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2752 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2753 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2754}
2755
2756static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2757{
2758 /*
2759 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2760 */
2761 return ((control & high) | low) == control;
2762}
2763
2764static inline u64 vmx_control_msr(u32 low, u32 high)
2765{
2766 return low | ((u64)high << 32);
2767}
2768
cae50139 2769/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2770static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2771{
b9c237bb
WV
2772 struct vcpu_vmx *vmx = to_vmx(vcpu);
2773
b87a51ae 2774 switch (msr_index) {
b87a51ae
NHE
2775 case MSR_IA32_VMX_BASIC:
2776 /*
2777 * This MSR reports some information about VMX support. We
2778 * should return information about the VMX we emulate for the
2779 * guest, and the VMCS structure we give it - not about the
2780 * VMX support of the underlying hardware.
2781 */
3dbcd8da 2782 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2783 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2784 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2785 break;
2786 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2787 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2788 *pdata = vmx_control_msr(
2789 vmx->nested.nested_vmx_pinbased_ctls_low,
2790 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2791 break;
2792 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2793 *pdata = vmx_control_msr(
2794 vmx->nested.nested_vmx_true_procbased_ctls_low,
2795 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2796 break;
b87a51ae 2797 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2798 *pdata = vmx_control_msr(
2799 vmx->nested.nested_vmx_procbased_ctls_low,
2800 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2801 break;
2802 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2803 *pdata = vmx_control_msr(
2804 vmx->nested.nested_vmx_true_exit_ctls_low,
2805 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2806 break;
b87a51ae 2807 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2808 *pdata = vmx_control_msr(
2809 vmx->nested.nested_vmx_exit_ctls_low,
2810 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2811 break;
2812 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2813 *pdata = vmx_control_msr(
2814 vmx->nested.nested_vmx_true_entry_ctls_low,
2815 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2816 break;
b87a51ae 2817 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2818 *pdata = vmx_control_msr(
2819 vmx->nested.nested_vmx_entry_ctls_low,
2820 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2821 break;
2822 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2823 *pdata = vmx_control_msr(
2824 vmx->nested.nested_vmx_misc_low,
2825 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2826 break;
2827 /*
2828 * These MSRs specify bits which the guest must keep fixed (on or off)
2829 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2830 * We picked the standard core2 setting.
2831 */
2832#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2833#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2834 case MSR_IA32_VMX_CR0_FIXED0:
2835 *pdata = VMXON_CR0_ALWAYSON;
2836 break;
2837 case MSR_IA32_VMX_CR0_FIXED1:
2838 *pdata = -1ULL;
2839 break;
2840 case MSR_IA32_VMX_CR4_FIXED0:
2841 *pdata = VMXON_CR4_ALWAYSON;
2842 break;
2843 case MSR_IA32_VMX_CR4_FIXED1:
2844 *pdata = -1ULL;
2845 break;
2846 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2847 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2848 break;
2849 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2850 *pdata = vmx_control_msr(
2851 vmx->nested.nested_vmx_secondary_ctls_low,
2852 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2853 break;
2854 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2855 /* Currently, no nested vpid support */
089d7b6e
WL
2856 *pdata = vmx->nested.nested_vmx_ept_caps |
2857 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
2858 break;
2859 default:
b87a51ae 2860 return 1;
b3897a49
NHE
2861 }
2862
b87a51ae
NHE
2863 return 0;
2864}
2865
6aa8b732
AK
2866/*
2867 * Reads an msr value (of 'msr_index') into 'pdata'.
2868 * Returns 0 on success, non-0 otherwise.
2869 * Assumes vcpu_load() was already called.
2870 */
609e36d3 2871static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2872{
26bb0981 2873 struct shared_msr_entry *msr;
6aa8b732 2874
609e36d3 2875 switch (msr_info->index) {
05b3e0c2 2876#ifdef CONFIG_X86_64
6aa8b732 2877 case MSR_FS_BASE:
609e36d3 2878 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2879 break;
2880 case MSR_GS_BASE:
609e36d3 2881 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2882 break;
44ea2b17
AK
2883 case MSR_KERNEL_GS_BASE:
2884 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2885 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 2886 break;
26bb0981 2887#endif
6aa8b732 2888 case MSR_EFER:
609e36d3 2889 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 2890 case MSR_IA32_TSC:
be7b263e 2891 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
2892 break;
2893 case MSR_IA32_SYSENTER_CS:
609e36d3 2894 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
2895 break;
2896 case MSR_IA32_SYSENTER_EIP:
609e36d3 2897 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2898 break;
2899 case MSR_IA32_SYSENTER_ESP:
609e36d3 2900 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2901 break;
0dd376e7 2902 case MSR_IA32_BNDCFGS:
a87036ad 2903 if (!kvm_mpx_supported())
93c4adc7 2904 return 1;
609e36d3 2905 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 2906 break;
cae50139
JK
2907 case MSR_IA32_FEATURE_CONTROL:
2908 if (!nested_vmx_allowed(vcpu))
2909 return 1;
609e36d3 2910 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
cae50139
JK
2911 break;
2912 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2913 if (!nested_vmx_allowed(vcpu))
2914 return 1;
609e36d3 2915 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
2916 case MSR_IA32_XSS:
2917 if (!vmx_xsaves_supported())
2918 return 1;
609e36d3 2919 msr_info->data = vcpu->arch.ia32_xss;
20300099 2920 break;
4e47c7a6 2921 case MSR_TSC_AUX:
81b1b9ca 2922 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
2923 return 1;
2924 /* Otherwise falls through */
6aa8b732 2925 default:
609e36d3 2926 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 2927 if (msr) {
609e36d3 2928 msr_info->data = msr->data;
3bab1f5d 2929 break;
6aa8b732 2930 }
609e36d3 2931 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
2932 }
2933
6aa8b732
AK
2934 return 0;
2935}
2936
cae50139
JK
2937static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2938
6aa8b732
AK
2939/*
2940 * Writes msr value into into the appropriate "register".
2941 * Returns 0 on success, non-0 otherwise.
2942 * Assumes vcpu_load() was already called.
2943 */
8fe8ab46 2944static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2945{
a2fa3e9f 2946 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2947 struct shared_msr_entry *msr;
2cc51560 2948 int ret = 0;
8fe8ab46
WA
2949 u32 msr_index = msr_info->index;
2950 u64 data = msr_info->data;
2cc51560 2951
6aa8b732 2952 switch (msr_index) {
3bab1f5d 2953 case MSR_EFER:
8fe8ab46 2954 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2955 break;
16175a79 2956#ifdef CONFIG_X86_64
6aa8b732 2957 case MSR_FS_BASE:
2fb92db1 2958 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2959 vmcs_writel(GUEST_FS_BASE, data);
2960 break;
2961 case MSR_GS_BASE:
2fb92db1 2962 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2963 vmcs_writel(GUEST_GS_BASE, data);
2964 break;
44ea2b17
AK
2965 case MSR_KERNEL_GS_BASE:
2966 vmx_load_host_state(vmx);
2967 vmx->msr_guest_kernel_gs_base = data;
2968 break;
6aa8b732
AK
2969#endif
2970 case MSR_IA32_SYSENTER_CS:
2971 vmcs_write32(GUEST_SYSENTER_CS, data);
2972 break;
2973 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2974 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2975 break;
2976 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2977 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2978 break;
0dd376e7 2979 case MSR_IA32_BNDCFGS:
a87036ad 2980 if (!kvm_mpx_supported())
93c4adc7 2981 return 1;
0dd376e7
LJ
2982 vmcs_write64(GUEST_BNDCFGS, data);
2983 break;
af24a4e4 2984 case MSR_IA32_TSC:
8fe8ab46 2985 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2986 break;
468d472f
SY
2987 case MSR_IA32_CR_PAT:
2988 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2989 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2990 return 1;
468d472f
SY
2991 vmcs_write64(GUEST_IA32_PAT, data);
2992 vcpu->arch.pat = data;
2993 break;
2994 }
8fe8ab46 2995 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2996 break;
ba904635
WA
2997 case MSR_IA32_TSC_ADJUST:
2998 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2999 break;
cae50139
JK
3000 case MSR_IA32_FEATURE_CONTROL:
3001 if (!nested_vmx_allowed(vcpu) ||
3002 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3003 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3004 return 1;
3005 vmx->nested.msr_ia32_feature_control = data;
3006 if (msr_info->host_initiated && data == 0)
3007 vmx_leave_nested(vcpu);
3008 break;
3009 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3010 return 1; /* they are read-only */
20300099
WL
3011 case MSR_IA32_XSS:
3012 if (!vmx_xsaves_supported())
3013 return 1;
3014 /*
3015 * The only supported bit as of Skylake is bit 8, but
3016 * it is not supported on KVM.
3017 */
3018 if (data != 0)
3019 return 1;
3020 vcpu->arch.ia32_xss = data;
3021 if (vcpu->arch.ia32_xss != host_xss)
3022 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3023 vcpu->arch.ia32_xss, host_xss);
3024 else
3025 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3026 break;
4e47c7a6 3027 case MSR_TSC_AUX:
81b1b9ca 3028 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3029 return 1;
3030 /* Check reserved bit, higher 32 bits should be zero */
3031 if ((data >> 32) != 0)
3032 return 1;
3033 /* Otherwise falls through */
6aa8b732 3034 default:
8b9cf98c 3035 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3036 if (msr) {
8b3c3104 3037 u64 old_msr_data = msr->data;
3bab1f5d 3038 msr->data = data;
2225fd56
AK
3039 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3040 preempt_disable();
8b3c3104
AH
3041 ret = kvm_set_shared_msr(msr->index, msr->data,
3042 msr->mask);
2225fd56 3043 preempt_enable();
8b3c3104
AH
3044 if (ret)
3045 msr->data = old_msr_data;
2225fd56 3046 }
3bab1f5d 3047 break;
6aa8b732 3048 }
8fe8ab46 3049 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3050 }
3051
2cc51560 3052 return ret;
6aa8b732
AK
3053}
3054
5fdbf976 3055static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3056{
5fdbf976
MT
3057 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3058 switch (reg) {
3059 case VCPU_REGS_RSP:
3060 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3061 break;
3062 case VCPU_REGS_RIP:
3063 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3064 break;
6de4f3ad
AK
3065 case VCPU_EXREG_PDPTR:
3066 if (enable_ept)
3067 ept_save_pdptrs(vcpu);
3068 break;
5fdbf976
MT
3069 default:
3070 break;
3071 }
6aa8b732
AK
3072}
3073
6aa8b732
AK
3074static __init int cpu_has_kvm_support(void)
3075{
6210e37b 3076 return cpu_has_vmx();
6aa8b732
AK
3077}
3078
3079static __init int vmx_disabled_by_bios(void)
3080{
3081 u64 msr;
3082
3083 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3084 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3085 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3086 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3087 && tboot_enabled())
3088 return 1;
23f3e991 3089 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3090 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3091 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3092 && !tboot_enabled()) {
3093 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3094 "activate TXT before enabling KVM\n");
cafd6659 3095 return 1;
f9335afe 3096 }
23f3e991
JC
3097 /* launched w/o TXT and VMX disabled */
3098 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3099 && !tboot_enabled())
3100 return 1;
cafd6659
SW
3101 }
3102
3103 return 0;
6aa8b732
AK
3104}
3105
7725b894
DX
3106static void kvm_cpu_vmxon(u64 addr)
3107{
1c5ac21a
AS
3108 intel_pt_handle_vmx(1);
3109
7725b894
DX
3110 asm volatile (ASM_VMX_VMXON_RAX
3111 : : "a"(&addr), "m"(addr)
3112 : "memory", "cc");
3113}
3114
13a34e06 3115static int hardware_enable(void)
6aa8b732
AK
3116{
3117 int cpu = raw_smp_processor_id();
3118 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3119 u64 old, test_bits;
6aa8b732 3120
1e02ce4c 3121 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3122 return -EBUSY;
3123
d462b819 3124 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3125 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3126 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3127
3128 /*
3129 * Now we can enable the vmclear operation in kdump
3130 * since the loaded_vmcss_on_cpu list on this cpu
3131 * has been initialized.
3132 *
3133 * Though the cpu is not in VMX operation now, there
3134 * is no problem to enable the vmclear operation
3135 * for the loaded_vmcss_on_cpu list is empty!
3136 */
3137 crash_enable_local_vmclear(cpu);
3138
6aa8b732 3139 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3140
3141 test_bits = FEATURE_CONTROL_LOCKED;
3142 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3143 if (tboot_enabled())
3144 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3145
3146 if ((old & test_bits) != test_bits) {
6aa8b732 3147 /* enable and lock */
cafd6659
SW
3148 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3149 }
375074cc 3150 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3151
4610c9cc
DX
3152 if (vmm_exclusive) {
3153 kvm_cpu_vmxon(phys_addr);
3154 ept_sync_global();
3155 }
10474ae8 3156
89cbc767 3157 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3158
10474ae8 3159 return 0;
6aa8b732
AK
3160}
3161
d462b819 3162static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3163{
3164 int cpu = raw_smp_processor_id();
d462b819 3165 struct loaded_vmcs *v, *n;
543e4243 3166
d462b819
NHE
3167 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3168 loaded_vmcss_on_cpu_link)
3169 __loaded_vmcs_clear(v);
543e4243
AK
3170}
3171
710ff4a8
EH
3172
3173/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3174 * tricks.
3175 */
3176static void kvm_cpu_vmxoff(void)
6aa8b732 3177{
4ecac3fd 3178 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3179
3180 intel_pt_handle_vmx(0);
6aa8b732
AK
3181}
3182
13a34e06 3183static void hardware_disable(void)
710ff4a8 3184{
4610c9cc 3185 if (vmm_exclusive) {
d462b819 3186 vmclear_local_loaded_vmcss();
4610c9cc
DX
3187 kvm_cpu_vmxoff();
3188 }
375074cc 3189 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3190}
3191
1c3d14fe 3192static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3193 u32 msr, u32 *result)
1c3d14fe
YS
3194{
3195 u32 vmx_msr_low, vmx_msr_high;
3196 u32 ctl = ctl_min | ctl_opt;
3197
3198 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3199
3200 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3201 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3202
3203 /* Ensure minimum (required) set of control bits are supported. */
3204 if (ctl_min & ~ctl)
002c7f7c 3205 return -EIO;
1c3d14fe
YS
3206
3207 *result = ctl;
3208 return 0;
3209}
3210
110312c8
AK
3211static __init bool allow_1_setting(u32 msr, u32 ctl)
3212{
3213 u32 vmx_msr_low, vmx_msr_high;
3214
3215 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3216 return vmx_msr_high & ctl;
3217}
3218
002c7f7c 3219static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3220{
3221 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3222 u32 min, opt, min2, opt2;
1c3d14fe
YS
3223 u32 _pin_based_exec_control = 0;
3224 u32 _cpu_based_exec_control = 0;
f78e0e2e 3225 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3226 u32 _vmexit_control = 0;
3227 u32 _vmentry_control = 0;
3228
10166744 3229 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3230#ifdef CONFIG_X86_64
3231 CPU_BASED_CR8_LOAD_EXITING |
3232 CPU_BASED_CR8_STORE_EXITING |
3233#endif
d56f546d
SY
3234 CPU_BASED_CR3_LOAD_EXITING |
3235 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3236 CPU_BASED_USE_IO_BITMAPS |
3237 CPU_BASED_MOV_DR_EXITING |
a7052897 3238 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3239 CPU_BASED_MWAIT_EXITING |
3240 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3241 CPU_BASED_INVLPG_EXITING |
3242 CPU_BASED_RDPMC_EXITING;
443381a8 3243
f78e0e2e 3244 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3245 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3246 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3247 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3248 &_cpu_based_exec_control) < 0)
002c7f7c 3249 return -EIO;
6e5d865c
YS
3250#ifdef CONFIG_X86_64
3251 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3252 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3253 ~CPU_BASED_CR8_STORE_EXITING;
3254#endif
f78e0e2e 3255 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3256 min2 = 0;
3257 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3258 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3259 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3260 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3261 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3262 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3263 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3264 SECONDARY_EXEC_RDTSCP |
83d4c286 3265 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3266 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3267 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3268 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3269 SECONDARY_EXEC_XSAVES |
8b3e34e4 3270 SECONDARY_EXEC_ENABLE_PML |
64903d61
HZ
3271 SECONDARY_EXEC_PCOMMIT |
3272 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3273 if (adjust_vmx_controls(min2, opt2,
3274 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3275 &_cpu_based_2nd_exec_control) < 0)
3276 return -EIO;
3277 }
3278#ifndef CONFIG_X86_64
3279 if (!(_cpu_based_2nd_exec_control &
3280 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3281 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3282#endif
83d4c286
YZ
3283
3284 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3285 _cpu_based_2nd_exec_control &= ~(
8d14695f 3286 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3287 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3288 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3289
d56f546d 3290 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3291 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3292 enabled */
5fff7d27
GN
3293 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3294 CPU_BASED_CR3_STORE_EXITING |
3295 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3296 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3297 vmx_capability.ept, vmx_capability.vpid);
3298 }
1c3d14fe 3299
81908bf4 3300 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3301#ifdef CONFIG_X86_64
3302 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3303#endif
a547c6db 3304 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3305 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3306 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3307 &_vmexit_control) < 0)
002c7f7c 3308 return -EIO;
1c3d14fe 3309
01e439be
YZ
3310 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3311 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3312 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3313 &_pin_based_exec_control) < 0)
3314 return -EIO;
3315
3316 if (!(_cpu_based_2nd_exec_control &
3317 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3318 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3319 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3320
c845f9c6 3321 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3322 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3323 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3324 &_vmentry_control) < 0)
002c7f7c 3325 return -EIO;
6aa8b732 3326
c68876fd 3327 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3328
3329 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3330 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3331 return -EIO;
1c3d14fe
YS
3332
3333#ifdef CONFIG_X86_64
3334 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3335 if (vmx_msr_high & (1u<<16))
002c7f7c 3336 return -EIO;
1c3d14fe
YS
3337#endif
3338
3339 /* Require Write-Back (WB) memory type for VMCS accesses. */
3340 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3341 return -EIO;
1c3d14fe 3342
002c7f7c
YS
3343 vmcs_conf->size = vmx_msr_high & 0x1fff;
3344 vmcs_conf->order = get_order(vmcs_config.size);
3345 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3346
002c7f7c
YS
3347 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3348 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3349 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3350 vmcs_conf->vmexit_ctrl = _vmexit_control;
3351 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3352
110312c8
AK
3353 cpu_has_load_ia32_efer =
3354 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3355 VM_ENTRY_LOAD_IA32_EFER)
3356 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3357 VM_EXIT_LOAD_IA32_EFER);
3358
8bf00a52
GN
3359 cpu_has_load_perf_global_ctrl =
3360 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3361 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3362 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3363 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3364
3365 /*
3366 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3367 * but due to arrata below it can't be used. Workaround is to use
3368 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3369 *
3370 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3371 *
3372 * AAK155 (model 26)
3373 * AAP115 (model 30)
3374 * AAT100 (model 37)
3375 * BC86,AAY89,BD102 (model 44)
3376 * BA97 (model 46)
3377 *
3378 */
3379 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3380 switch (boot_cpu_data.x86_model) {
3381 case 26:
3382 case 30:
3383 case 37:
3384 case 44:
3385 case 46:
3386 cpu_has_load_perf_global_ctrl = false;
3387 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3388 "does not work properly. Using workaround\n");
3389 break;
3390 default:
3391 break;
3392 }
3393 }
3394
782511b0 3395 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3396 rdmsrl(MSR_IA32_XSS, host_xss);
3397
1c3d14fe 3398 return 0;
c68876fd 3399}
6aa8b732
AK
3400
3401static struct vmcs *alloc_vmcs_cpu(int cpu)
3402{
3403 int node = cpu_to_node(cpu);
3404 struct page *pages;
3405 struct vmcs *vmcs;
3406
96db800f 3407 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3408 if (!pages)
3409 return NULL;
3410 vmcs = page_address(pages);
1c3d14fe
YS
3411 memset(vmcs, 0, vmcs_config.size);
3412 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3413 return vmcs;
3414}
3415
3416static struct vmcs *alloc_vmcs(void)
3417{
d3b2c338 3418 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3419}
3420
3421static void free_vmcs(struct vmcs *vmcs)
3422{
1c3d14fe 3423 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3424}
3425
d462b819
NHE
3426/*
3427 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3428 */
3429static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3430{
3431 if (!loaded_vmcs->vmcs)
3432 return;
3433 loaded_vmcs_clear(loaded_vmcs);
3434 free_vmcs(loaded_vmcs->vmcs);
3435 loaded_vmcs->vmcs = NULL;
3436}
3437
39959588 3438static void free_kvm_area(void)
6aa8b732
AK
3439{
3440 int cpu;
3441
3230bb47 3442 for_each_possible_cpu(cpu) {
6aa8b732 3443 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3444 per_cpu(vmxarea, cpu) = NULL;
3445 }
6aa8b732
AK
3446}
3447
fe2b201b
BD
3448static void init_vmcs_shadow_fields(void)
3449{
3450 int i, j;
3451
3452 /* No checks for read only fields yet */
3453
3454 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3455 switch (shadow_read_write_fields[i]) {
3456 case GUEST_BNDCFGS:
a87036ad 3457 if (!kvm_mpx_supported())
fe2b201b
BD
3458 continue;
3459 break;
3460 default:
3461 break;
3462 }
3463
3464 if (j < i)
3465 shadow_read_write_fields[j] =
3466 shadow_read_write_fields[i];
3467 j++;
3468 }
3469 max_shadow_read_write_fields = j;
3470
3471 /* shadowed fields guest access without vmexit */
3472 for (i = 0; i < max_shadow_read_write_fields; i++) {
3473 clear_bit(shadow_read_write_fields[i],
3474 vmx_vmwrite_bitmap);
3475 clear_bit(shadow_read_write_fields[i],
3476 vmx_vmread_bitmap);
3477 }
3478 for (i = 0; i < max_shadow_read_only_fields; i++)
3479 clear_bit(shadow_read_only_fields[i],
3480 vmx_vmread_bitmap);
3481}
3482
6aa8b732
AK
3483static __init int alloc_kvm_area(void)
3484{
3485 int cpu;
3486
3230bb47 3487 for_each_possible_cpu(cpu) {
6aa8b732
AK
3488 struct vmcs *vmcs;
3489
3490 vmcs = alloc_vmcs_cpu(cpu);
3491 if (!vmcs) {
3492 free_kvm_area();
3493 return -ENOMEM;
3494 }
3495
3496 per_cpu(vmxarea, cpu) = vmcs;
3497 }
3498 return 0;
3499}
3500
14168786
GN
3501static bool emulation_required(struct kvm_vcpu *vcpu)
3502{
3503 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3504}
3505
91b0aa2c 3506static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3507 struct kvm_segment *save)
6aa8b732 3508{
d99e4152
GN
3509 if (!emulate_invalid_guest_state) {
3510 /*
3511 * CS and SS RPL should be equal during guest entry according
3512 * to VMX spec, but in reality it is not always so. Since vcpu
3513 * is in the middle of the transition from real mode to
3514 * protected mode it is safe to assume that RPL 0 is a good
3515 * default value.
3516 */
3517 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3518 save->selector &= ~SEGMENT_RPL_MASK;
3519 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3520 save->s = 1;
6aa8b732 3521 }
d99e4152 3522 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3523}
3524
3525static void enter_pmode(struct kvm_vcpu *vcpu)
3526{
3527 unsigned long flags;
a89a8fb9 3528 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3529
d99e4152
GN
3530 /*
3531 * Update real mode segment cache. It may be not up-to-date if sement
3532 * register was written while vcpu was in a guest mode.
3533 */
3534 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3535 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3536 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3537 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3538 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3539 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3540
7ffd92c5 3541 vmx->rmode.vm86_active = 0;
6aa8b732 3542
2fb92db1
AK
3543 vmx_segment_cache_clear(vmx);
3544
f5f7b2fe 3545 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3546
3547 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3548 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3549 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3550 vmcs_writel(GUEST_RFLAGS, flags);
3551
66aee91a
RR
3552 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3553 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3554
3555 update_exception_bitmap(vcpu);
3556
91b0aa2c
GN
3557 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3558 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3559 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3560 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3561 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3562 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3563}
3564
f5f7b2fe 3565static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3566{
772e0318 3567 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3568 struct kvm_segment var = *save;
3569
3570 var.dpl = 0x3;
3571 if (seg == VCPU_SREG_CS)
3572 var.type = 0x3;
3573
3574 if (!emulate_invalid_guest_state) {
3575 var.selector = var.base >> 4;
3576 var.base = var.base & 0xffff0;
3577 var.limit = 0xffff;
3578 var.g = 0;
3579 var.db = 0;
3580 var.present = 1;
3581 var.s = 1;
3582 var.l = 0;
3583 var.unusable = 0;
3584 var.type = 0x3;
3585 var.avl = 0;
3586 if (save->base & 0xf)
3587 printk_once(KERN_WARNING "kvm: segment base is not "
3588 "paragraph aligned when entering "
3589 "protected mode (seg=%d)", seg);
3590 }
6aa8b732 3591
d99e4152
GN
3592 vmcs_write16(sf->selector, var.selector);
3593 vmcs_write32(sf->base, var.base);
3594 vmcs_write32(sf->limit, var.limit);
3595 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3596}
3597
3598static void enter_rmode(struct kvm_vcpu *vcpu)
3599{
3600 unsigned long flags;
a89a8fb9 3601 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3602
f5f7b2fe
AK
3603 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3604 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3605 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3606 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3607 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3608 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3609 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3610
7ffd92c5 3611 vmx->rmode.vm86_active = 1;
6aa8b732 3612
776e58ea
GN
3613 /*
3614 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3615 * vcpu. Warn the user that an update is overdue.
776e58ea 3616 */
4918c6ca 3617 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3618 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3619 "called before entering vcpu\n");
776e58ea 3620
2fb92db1
AK
3621 vmx_segment_cache_clear(vmx);
3622
4918c6ca 3623 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3624 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3625 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3626
3627 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3628 vmx->rmode.save_rflags = flags;
6aa8b732 3629
053de044 3630 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3631
3632 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3633 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3634 update_exception_bitmap(vcpu);
3635
d99e4152
GN
3636 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3637 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3638 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3639 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3640 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3641 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3642
8668a3c4 3643 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3644}
3645
401d10de
AS
3646static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3647{
3648 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3649 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3650
3651 if (!msr)
3652 return;
401d10de 3653
44ea2b17
AK
3654 /*
3655 * Force kernel_gs_base reloading before EFER changes, as control
3656 * of this msr depends on is_long_mode().
3657 */
3658 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3659 vcpu->arch.efer = efer;
401d10de 3660 if (efer & EFER_LMA) {
2961e876 3661 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3662 msr->data = efer;
3663 } else {
2961e876 3664 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3665
3666 msr->data = efer & ~EFER_LME;
3667 }
3668 setup_msrs(vmx);
3669}
3670
05b3e0c2 3671#ifdef CONFIG_X86_64
6aa8b732
AK
3672
3673static void enter_lmode(struct kvm_vcpu *vcpu)
3674{
3675 u32 guest_tr_ar;
3676
2fb92db1
AK
3677 vmx_segment_cache_clear(to_vmx(vcpu));
3678
6aa8b732 3679 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3680 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3681 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3682 __func__);
6aa8b732 3683 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3684 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3685 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3686 }
da38f438 3687 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3688}
3689
3690static void exit_lmode(struct kvm_vcpu *vcpu)
3691{
2961e876 3692 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3693 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3694}
3695
3696#endif
3697
dd5f5341 3698static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3699{
dd5f5341 3700 vpid_sync_context(vpid);
dd180b3e
XG
3701 if (enable_ept) {
3702 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3703 return;
4e1096d2 3704 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3705 }
2384d2b3
SY
3706}
3707
dd5f5341
WL
3708static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3709{
3710 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3711}
3712
e8467fda
AK
3713static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3714{
3715 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3716
3717 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3718 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3719}
3720
aff48baa
AK
3721static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3722{
3723 if (enable_ept && is_paging(vcpu))
3724 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3725 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3726}
3727
25c4c276 3728static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3729{
fc78f519
AK
3730 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3731
3732 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3733 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3734}
3735
1439442c
SY
3736static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3737{
d0d538b9
GN
3738 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3739
6de4f3ad
AK
3740 if (!test_bit(VCPU_EXREG_PDPTR,
3741 (unsigned long *)&vcpu->arch.regs_dirty))
3742 return;
3743
1439442c 3744 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3745 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3746 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3747 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3748 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3749 }
3750}
3751
8f5d549f
AK
3752static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3753{
d0d538b9
GN
3754 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3755
8f5d549f 3756 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3757 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3758 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3759 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3760 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3761 }
6de4f3ad
AK
3762
3763 __set_bit(VCPU_EXREG_PDPTR,
3764 (unsigned long *)&vcpu->arch.regs_avail);
3765 __set_bit(VCPU_EXREG_PDPTR,
3766 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3767}
3768
5e1746d6 3769static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3770
3771static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3772 unsigned long cr0,
3773 struct kvm_vcpu *vcpu)
3774{
5233dd51
MT
3775 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3776 vmx_decache_cr3(vcpu);
1439442c
SY
3777 if (!(cr0 & X86_CR0_PG)) {
3778 /* From paging/starting to nonpaging */
3779 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3780 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3781 (CPU_BASED_CR3_LOAD_EXITING |
3782 CPU_BASED_CR3_STORE_EXITING));
3783 vcpu->arch.cr0 = cr0;
fc78f519 3784 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3785 } else if (!is_paging(vcpu)) {
3786 /* From nonpaging to paging */
3787 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3788 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3789 ~(CPU_BASED_CR3_LOAD_EXITING |
3790 CPU_BASED_CR3_STORE_EXITING));
3791 vcpu->arch.cr0 = cr0;
fc78f519 3792 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3793 }
95eb84a7
SY
3794
3795 if (!(cr0 & X86_CR0_WP))
3796 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3797}
3798
6aa8b732
AK
3799static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3800{
7ffd92c5 3801 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3802 unsigned long hw_cr0;
3803
5037878e 3804 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3805 if (enable_unrestricted_guest)
5037878e 3806 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3807 else {
5037878e 3808 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3809
218e763f
GN
3810 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3811 enter_pmode(vcpu);
6aa8b732 3812
218e763f
GN
3813 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3814 enter_rmode(vcpu);
3815 }
6aa8b732 3816
05b3e0c2 3817#ifdef CONFIG_X86_64
f6801dff 3818 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3819 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3820 enter_lmode(vcpu);
707d92fa 3821 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3822 exit_lmode(vcpu);
3823 }
3824#endif
3825
089d034e 3826 if (enable_ept)
1439442c
SY
3827 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3828
02daab21 3829 if (!vcpu->fpu_active)
81231c69 3830 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3831
6aa8b732 3832 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3833 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3834 vcpu->arch.cr0 = cr0;
14168786
GN
3835
3836 /* depends on vcpu->arch.cr0 to be set to a new value */
3837 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3838}
3839
1439442c
SY
3840static u64 construct_eptp(unsigned long root_hpa)
3841{
3842 u64 eptp;
3843
3844 /* TODO write the value reading from MSR */
3845 eptp = VMX_EPT_DEFAULT_MT |
3846 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3847 if (enable_ept_ad_bits)
3848 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3849 eptp |= (root_hpa & PAGE_MASK);
3850
3851 return eptp;
3852}
3853
6aa8b732
AK
3854static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3855{
1439442c
SY
3856 unsigned long guest_cr3;
3857 u64 eptp;
3858
3859 guest_cr3 = cr3;
089d034e 3860 if (enable_ept) {
1439442c
SY
3861 eptp = construct_eptp(cr3);
3862 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3863 if (is_paging(vcpu) || is_guest_mode(vcpu))
3864 guest_cr3 = kvm_read_cr3(vcpu);
3865 else
3866 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3867 ept_load_pdptrs(vcpu);
1439442c
SY
3868 }
3869
2384d2b3 3870 vmx_flush_tlb(vcpu);
1439442c 3871 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3872}
3873
5e1746d6 3874static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3875{
085e68ee
BS
3876 /*
3877 * Pass through host's Machine Check Enable value to hw_cr4, which
3878 * is in force while we are in guest mode. Do not let guests control
3879 * this bit, even if host CR4.MCE == 0.
3880 */
3881 unsigned long hw_cr4 =
3882 (cr4_read_shadow() & X86_CR4_MCE) |
3883 (cr4 & ~X86_CR4_MCE) |
3884 (to_vmx(vcpu)->rmode.vm86_active ?
3885 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 3886
5e1746d6
NHE
3887 if (cr4 & X86_CR4_VMXE) {
3888 /*
3889 * To use VMXON (and later other VMX instructions), a guest
3890 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3891 * So basically the check on whether to allow nested VMX
3892 * is here.
3893 */
3894 if (!nested_vmx_allowed(vcpu))
3895 return 1;
1a0d74e6
JK
3896 }
3897 if (to_vmx(vcpu)->nested.vmxon &&
3898 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3899 return 1;
3900
ad312c7c 3901 vcpu->arch.cr4 = cr4;
bc23008b
AK
3902 if (enable_ept) {
3903 if (!is_paging(vcpu)) {
3904 hw_cr4 &= ~X86_CR4_PAE;
3905 hw_cr4 |= X86_CR4_PSE;
3906 } else if (!(cr4 & X86_CR4_PAE)) {
3907 hw_cr4 &= ~X86_CR4_PAE;
3908 }
3909 }
1439442c 3910
656ec4a4
RK
3911 if (!enable_unrestricted_guest && !is_paging(vcpu))
3912 /*
ddba2628
HH
3913 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3914 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3915 * to be manually disabled when guest switches to non-paging
3916 * mode.
3917 *
3918 * If !enable_unrestricted_guest, the CPU is always running
3919 * with CR0.PG=1 and CR4 needs to be modified.
3920 * If enable_unrestricted_guest, the CPU automatically
3921 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 3922 */
ddba2628 3923 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 3924
1439442c
SY
3925 vmcs_writel(CR4_READ_SHADOW, cr4);
3926 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3927 return 0;
6aa8b732
AK
3928}
3929
6aa8b732
AK
3930static void vmx_get_segment(struct kvm_vcpu *vcpu,
3931 struct kvm_segment *var, int seg)
3932{
a9179499 3933 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3934 u32 ar;
3935
c6ad1153 3936 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3937 *var = vmx->rmode.segs[seg];
a9179499 3938 if (seg == VCPU_SREG_TR
2fb92db1 3939 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3940 return;
1390a28b
AK
3941 var->base = vmx_read_guest_seg_base(vmx, seg);
3942 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3943 return;
a9179499 3944 }
2fb92db1
AK
3945 var->base = vmx_read_guest_seg_base(vmx, seg);
3946 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3947 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3948 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3949 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3950 var->type = ar & 15;
3951 var->s = (ar >> 4) & 1;
3952 var->dpl = (ar >> 5) & 3;
03617c18
GN
3953 /*
3954 * Some userspaces do not preserve unusable property. Since usable
3955 * segment has to be present according to VMX spec we can use present
3956 * property to amend userspace bug by making unusable segment always
3957 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3958 * segment as unusable.
3959 */
3960 var->present = !var->unusable;
6aa8b732
AK
3961 var->avl = (ar >> 12) & 1;
3962 var->l = (ar >> 13) & 1;
3963 var->db = (ar >> 14) & 1;
3964 var->g = (ar >> 15) & 1;
6aa8b732
AK
3965}
3966
a9179499
AK
3967static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3968{
a9179499
AK
3969 struct kvm_segment s;
3970
3971 if (to_vmx(vcpu)->rmode.vm86_active) {
3972 vmx_get_segment(vcpu, &s, seg);
3973 return s.base;
3974 }
2fb92db1 3975 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3976}
3977
b09408d0 3978static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3979{
b09408d0
MT
3980 struct vcpu_vmx *vmx = to_vmx(vcpu);
3981
ae9fedc7 3982 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3983 return 0;
ae9fedc7
PB
3984 else {
3985 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 3986 return VMX_AR_DPL(ar);
69c73028 3987 }
69c73028
AK
3988}
3989
653e3108 3990static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3991{
6aa8b732
AK
3992 u32 ar;
3993
f0495f9b 3994 if (var->unusable || !var->present)
6aa8b732
AK
3995 ar = 1 << 16;
3996 else {
3997 ar = var->type & 15;
3998 ar |= (var->s & 1) << 4;
3999 ar |= (var->dpl & 3) << 5;
4000 ar |= (var->present & 1) << 7;
4001 ar |= (var->avl & 1) << 12;
4002 ar |= (var->l & 1) << 13;
4003 ar |= (var->db & 1) << 14;
4004 ar |= (var->g & 1) << 15;
4005 }
653e3108
AK
4006
4007 return ar;
4008}
4009
4010static void vmx_set_segment(struct kvm_vcpu *vcpu,
4011 struct kvm_segment *var, int seg)
4012{
7ffd92c5 4013 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4014 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4015
2fb92db1
AK
4016 vmx_segment_cache_clear(vmx);
4017
1ecd50a9
GN
4018 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4019 vmx->rmode.segs[seg] = *var;
4020 if (seg == VCPU_SREG_TR)
4021 vmcs_write16(sf->selector, var->selector);
4022 else if (var->s)
4023 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4024 goto out;
653e3108 4025 }
1ecd50a9 4026
653e3108
AK
4027 vmcs_writel(sf->base, var->base);
4028 vmcs_write32(sf->limit, var->limit);
4029 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4030
4031 /*
4032 * Fix the "Accessed" bit in AR field of segment registers for older
4033 * qemu binaries.
4034 * IA32 arch specifies that at the time of processor reset the
4035 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4036 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4037 * state vmexit when "unrestricted guest" mode is turned on.
4038 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4039 * tree. Newer qemu binaries with that qemu fix would not need this
4040 * kvm hack.
4041 */
4042 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4043 var->type |= 0x1; /* Accessed */
3a624e29 4044
f924d66d 4045 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4046
4047out:
98eb2f8b 4048 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4049}
4050
6aa8b732
AK
4051static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4052{
2fb92db1 4053 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4054
4055 *db = (ar >> 14) & 1;
4056 *l = (ar >> 13) & 1;
4057}
4058
89a27f4d 4059static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4060{
89a27f4d
GN
4061 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4062 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4063}
4064
89a27f4d 4065static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4066{
89a27f4d
GN
4067 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4068 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4069}
4070
89a27f4d 4071static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4072{
89a27f4d
GN
4073 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4074 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4075}
4076
89a27f4d 4077static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4078{
89a27f4d
GN
4079 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4080 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4081}
4082
648dfaa7
MG
4083static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4084{
4085 struct kvm_segment var;
4086 u32 ar;
4087
4088 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4089 var.dpl = 0x3;
0647f4aa
GN
4090 if (seg == VCPU_SREG_CS)
4091 var.type = 0x3;
648dfaa7
MG
4092 ar = vmx_segment_access_rights(&var);
4093
4094 if (var.base != (var.selector << 4))
4095 return false;
89efbed0 4096 if (var.limit != 0xffff)
648dfaa7 4097 return false;
07f42f5f 4098 if (ar != 0xf3)
648dfaa7
MG
4099 return false;
4100
4101 return true;
4102}
4103
4104static bool code_segment_valid(struct kvm_vcpu *vcpu)
4105{
4106 struct kvm_segment cs;
4107 unsigned int cs_rpl;
4108
4109 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4110 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4111
1872a3f4
AK
4112 if (cs.unusable)
4113 return false;
4d283ec9 4114 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4115 return false;
4116 if (!cs.s)
4117 return false;
4d283ec9 4118 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4119 if (cs.dpl > cs_rpl)
4120 return false;
1872a3f4 4121 } else {
648dfaa7
MG
4122 if (cs.dpl != cs_rpl)
4123 return false;
4124 }
4125 if (!cs.present)
4126 return false;
4127
4128 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4129 return true;
4130}
4131
4132static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4133{
4134 struct kvm_segment ss;
4135 unsigned int ss_rpl;
4136
4137 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4138 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4139
1872a3f4
AK
4140 if (ss.unusable)
4141 return true;
4142 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4143 return false;
4144 if (!ss.s)
4145 return false;
4146 if (ss.dpl != ss_rpl) /* DPL != RPL */
4147 return false;
4148 if (!ss.present)
4149 return false;
4150
4151 return true;
4152}
4153
4154static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4155{
4156 struct kvm_segment var;
4157 unsigned int rpl;
4158
4159 vmx_get_segment(vcpu, &var, seg);
b32a9918 4160 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4161
1872a3f4
AK
4162 if (var.unusable)
4163 return true;
648dfaa7
MG
4164 if (!var.s)
4165 return false;
4166 if (!var.present)
4167 return false;
4d283ec9 4168 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4169 if (var.dpl < rpl) /* DPL < RPL */
4170 return false;
4171 }
4172
4173 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4174 * rights flags
4175 */
4176 return true;
4177}
4178
4179static bool tr_valid(struct kvm_vcpu *vcpu)
4180{
4181 struct kvm_segment tr;
4182
4183 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4184
1872a3f4
AK
4185 if (tr.unusable)
4186 return false;
b32a9918 4187 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4188 return false;
1872a3f4 4189 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4190 return false;
4191 if (!tr.present)
4192 return false;
4193
4194 return true;
4195}
4196
4197static bool ldtr_valid(struct kvm_vcpu *vcpu)
4198{
4199 struct kvm_segment ldtr;
4200
4201 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4202
1872a3f4
AK
4203 if (ldtr.unusable)
4204 return true;
b32a9918 4205 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4206 return false;
4207 if (ldtr.type != 2)
4208 return false;
4209 if (!ldtr.present)
4210 return false;
4211
4212 return true;
4213}
4214
4215static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4216{
4217 struct kvm_segment cs, ss;
4218
4219 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4220 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4221
b32a9918
NA
4222 return ((cs.selector & SEGMENT_RPL_MASK) ==
4223 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4224}
4225
4226/*
4227 * Check if guest state is valid. Returns true if valid, false if
4228 * not.
4229 * We assume that registers are always usable
4230 */
4231static bool guest_state_valid(struct kvm_vcpu *vcpu)
4232{
c5e97c80
GN
4233 if (enable_unrestricted_guest)
4234 return true;
4235
648dfaa7 4236 /* real mode guest state checks */
f13882d8 4237 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4238 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4239 return false;
4240 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4241 return false;
4242 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4243 return false;
4244 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4245 return false;
4246 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4247 return false;
4248 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4249 return false;
4250 } else {
4251 /* protected mode guest state checks */
4252 if (!cs_ss_rpl_check(vcpu))
4253 return false;
4254 if (!code_segment_valid(vcpu))
4255 return false;
4256 if (!stack_segment_valid(vcpu))
4257 return false;
4258 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4259 return false;
4260 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4261 return false;
4262 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4263 return false;
4264 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4265 return false;
4266 if (!tr_valid(vcpu))
4267 return false;
4268 if (!ldtr_valid(vcpu))
4269 return false;
4270 }
4271 /* TODO:
4272 * - Add checks on RIP
4273 * - Add checks on RFLAGS
4274 */
4275
4276 return true;
4277}
4278
d77c26fc 4279static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4280{
40dcaa9f 4281 gfn_t fn;
195aefde 4282 u16 data = 0;
1f755a82 4283 int idx, r;
6aa8b732 4284
40dcaa9f 4285 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4286 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4287 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4288 if (r < 0)
10589a46 4289 goto out;
195aefde 4290 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4291 r = kvm_write_guest_page(kvm, fn++, &data,
4292 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4293 if (r < 0)
10589a46 4294 goto out;
195aefde
IE
4295 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4296 if (r < 0)
10589a46 4297 goto out;
195aefde
IE
4298 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4299 if (r < 0)
10589a46 4300 goto out;
195aefde 4301 data = ~0;
10589a46
MT
4302 r = kvm_write_guest_page(kvm, fn, &data,
4303 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4304 sizeof(u8));
10589a46 4305out:
40dcaa9f 4306 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4307 return r;
6aa8b732
AK
4308}
4309
b7ebfb05
SY
4310static int init_rmode_identity_map(struct kvm *kvm)
4311{
f51770ed 4312 int i, idx, r = 0;
ba049e93 4313 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4314 u32 tmp;
4315
089d034e 4316 if (!enable_ept)
f51770ed 4317 return 0;
a255d479
TC
4318
4319 /* Protect kvm->arch.ept_identity_pagetable_done. */
4320 mutex_lock(&kvm->slots_lock);
4321
f51770ed 4322 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4323 goto out2;
a255d479 4324
b927a3ce 4325 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4326
4327 r = alloc_identity_pagetable(kvm);
f51770ed 4328 if (r < 0)
a255d479
TC
4329 goto out2;
4330
40dcaa9f 4331 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4332 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4333 if (r < 0)
4334 goto out;
4335 /* Set up identity-mapping pagetable for EPT in real mode */
4336 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4337 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4338 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4339 r = kvm_write_guest_page(kvm, identity_map_pfn,
4340 &tmp, i * sizeof(tmp), sizeof(tmp));
4341 if (r < 0)
4342 goto out;
4343 }
4344 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4345
b7ebfb05 4346out:
40dcaa9f 4347 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4348
4349out2:
4350 mutex_unlock(&kvm->slots_lock);
f51770ed 4351 return r;
b7ebfb05
SY
4352}
4353
6aa8b732
AK
4354static void seg_setup(int seg)
4355{
772e0318 4356 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4357 unsigned int ar;
6aa8b732
AK
4358
4359 vmcs_write16(sf->selector, 0);
4360 vmcs_writel(sf->base, 0);
4361 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4362 ar = 0x93;
4363 if (seg == VCPU_SREG_CS)
4364 ar |= 0x08; /* code segment */
3a624e29
NK
4365
4366 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4367}
4368
f78e0e2e
SY
4369static int alloc_apic_access_page(struct kvm *kvm)
4370{
4484141a 4371 struct page *page;
f78e0e2e
SY
4372 int r = 0;
4373
79fac95e 4374 mutex_lock(&kvm->slots_lock);
c24ae0dc 4375 if (kvm->arch.apic_access_page_done)
f78e0e2e 4376 goto out;
1d8007bd
PB
4377 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4378 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4379 if (r)
4380 goto out;
72dc67a6 4381
73a6d941 4382 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4383 if (is_error_page(page)) {
4384 r = -EFAULT;
4385 goto out;
4386 }
4387
c24ae0dc
TC
4388 /*
4389 * Do not pin the page in memory, so that memory hot-unplug
4390 * is able to migrate it.
4391 */
4392 put_page(page);
4393 kvm->arch.apic_access_page_done = true;
f78e0e2e 4394out:
79fac95e 4395 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4396 return r;
4397}
4398
b7ebfb05
SY
4399static int alloc_identity_pagetable(struct kvm *kvm)
4400{
a255d479
TC
4401 /* Called with kvm->slots_lock held. */
4402
b7ebfb05
SY
4403 int r = 0;
4404
a255d479
TC
4405 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4406
1d8007bd
PB
4407 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4408 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4409
b7ebfb05
SY
4410 return r;
4411}
4412
991e7a0e 4413static int allocate_vpid(void)
2384d2b3
SY
4414{
4415 int vpid;
4416
919818ab 4417 if (!enable_vpid)
991e7a0e 4418 return 0;
2384d2b3
SY
4419 spin_lock(&vmx_vpid_lock);
4420 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4421 if (vpid < VMX_NR_VPIDS)
2384d2b3 4422 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4423 else
4424 vpid = 0;
2384d2b3 4425 spin_unlock(&vmx_vpid_lock);
991e7a0e 4426 return vpid;
2384d2b3
SY
4427}
4428
991e7a0e 4429static void free_vpid(int vpid)
cdbecfc3 4430{
991e7a0e 4431 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4432 return;
4433 spin_lock(&vmx_vpid_lock);
991e7a0e 4434 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4435 spin_unlock(&vmx_vpid_lock);
4436}
4437
8d14695f
YZ
4438#define MSR_TYPE_R 1
4439#define MSR_TYPE_W 2
4440static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4441 u32 msr, int type)
25c5f225 4442{
3e7c73e9 4443 int f = sizeof(unsigned long);
25c5f225
SY
4444
4445 if (!cpu_has_vmx_msr_bitmap())
4446 return;
4447
4448 /*
4449 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4450 * have the write-low and read-high bitmap offsets the wrong way round.
4451 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4452 */
25c5f225 4453 if (msr <= 0x1fff) {
8d14695f
YZ
4454 if (type & MSR_TYPE_R)
4455 /* read-low */
4456 __clear_bit(msr, msr_bitmap + 0x000 / f);
4457
4458 if (type & MSR_TYPE_W)
4459 /* write-low */
4460 __clear_bit(msr, msr_bitmap + 0x800 / f);
4461
25c5f225
SY
4462 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4463 msr &= 0x1fff;
8d14695f
YZ
4464 if (type & MSR_TYPE_R)
4465 /* read-high */
4466 __clear_bit(msr, msr_bitmap + 0x400 / f);
4467
4468 if (type & MSR_TYPE_W)
4469 /* write-high */
4470 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4471
4472 }
4473}
4474
4475static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4476 u32 msr, int type)
4477{
4478 int f = sizeof(unsigned long);
4479
4480 if (!cpu_has_vmx_msr_bitmap())
4481 return;
4482
4483 /*
4484 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4485 * have the write-low and read-high bitmap offsets the wrong way round.
4486 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4487 */
4488 if (msr <= 0x1fff) {
4489 if (type & MSR_TYPE_R)
4490 /* read-low */
4491 __set_bit(msr, msr_bitmap + 0x000 / f);
4492
4493 if (type & MSR_TYPE_W)
4494 /* write-low */
4495 __set_bit(msr, msr_bitmap + 0x800 / f);
4496
4497 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4498 msr &= 0x1fff;
4499 if (type & MSR_TYPE_R)
4500 /* read-high */
4501 __set_bit(msr, msr_bitmap + 0x400 / f);
4502
4503 if (type & MSR_TYPE_W)
4504 /* write-high */
4505 __set_bit(msr, msr_bitmap + 0xc00 / f);
4506
25c5f225 4507 }
25c5f225
SY
4508}
4509
f2b93280
WV
4510/*
4511 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4512 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4513 */
4514static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4515 unsigned long *msr_bitmap_nested,
4516 u32 msr, int type)
4517{
4518 int f = sizeof(unsigned long);
4519
4520 if (!cpu_has_vmx_msr_bitmap()) {
4521 WARN_ON(1);
4522 return;
4523 }
4524
4525 /*
4526 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4527 * have the write-low and read-high bitmap offsets the wrong way round.
4528 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4529 */
4530 if (msr <= 0x1fff) {
4531 if (type & MSR_TYPE_R &&
4532 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4533 /* read-low */
4534 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4535
4536 if (type & MSR_TYPE_W &&
4537 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4538 /* write-low */
4539 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4540
4541 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4542 msr &= 0x1fff;
4543 if (type & MSR_TYPE_R &&
4544 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4545 /* read-high */
4546 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4547
4548 if (type & MSR_TYPE_W &&
4549 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4550 /* write-high */
4551 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4552
4553 }
4554}
4555
5897297b
AK
4556static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4557{
4558 if (!longmode_only)
8d14695f
YZ
4559 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4560 msr, MSR_TYPE_R | MSR_TYPE_W);
4561 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4562 msr, MSR_TYPE_R | MSR_TYPE_W);
4563}
4564
4565static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4566{
4567 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4568 msr, MSR_TYPE_R);
4569 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4570 msr, MSR_TYPE_R);
4571}
4572
4573static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4574{
4575 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4576 msr, MSR_TYPE_R);
4577 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4578 msr, MSR_TYPE_R);
4579}
4580
4581static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4582{
4583 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4584 msr, MSR_TYPE_W);
4585 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4586 msr, MSR_TYPE_W);
5897297b
AK
4587}
4588
d62caabb 4589static bool vmx_get_enable_apicv(void)
d50ab6c1 4590{
d62caabb 4591 return enable_apicv;
d50ab6c1
PB
4592}
4593
705699a1
WV
4594static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4595{
4596 struct vcpu_vmx *vmx = to_vmx(vcpu);
4597 int max_irr;
4598 void *vapic_page;
4599 u16 status;
4600
4601 if (vmx->nested.pi_desc &&
4602 vmx->nested.pi_pending) {
4603 vmx->nested.pi_pending = false;
4604 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4605 return 0;
4606
4607 max_irr = find_last_bit(
4608 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4609
4610 if (max_irr == 256)
4611 return 0;
4612
4613 vapic_page = kmap(vmx->nested.virtual_apic_page);
4614 if (!vapic_page) {
4615 WARN_ON(1);
4616 return -ENOMEM;
4617 }
4618 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4619 kunmap(vmx->nested.virtual_apic_page);
4620
4621 status = vmcs_read16(GUEST_INTR_STATUS);
4622 if ((u8)max_irr > ((u8)status & 0xff)) {
4623 status &= ~0xff;
4624 status |= (u8)max_irr;
4625 vmcs_write16(GUEST_INTR_STATUS, status);
4626 }
4627 }
4628 return 0;
4629}
4630
21bc8dc5
RK
4631static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4632{
4633#ifdef CONFIG_SMP
4634 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4635 struct vcpu_vmx *vmx = to_vmx(vcpu);
4636
4637 /*
4638 * Currently, we don't support urgent interrupt,
4639 * all interrupts are recognized as non-urgent
4640 * interrupt, so we cannot post interrupts when
4641 * 'SN' is set.
4642 *
4643 * If the vcpu is in guest mode, it means it is
4644 * running instead of being scheduled out and
4645 * waiting in the run queue, and that's the only
4646 * case when 'SN' is set currently, warning if
4647 * 'SN' is set.
4648 */
4649 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4650
21bc8dc5
RK
4651 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4652 POSTED_INTR_VECTOR);
4653 return true;
4654 }
4655#endif
4656 return false;
4657}
4658
705699a1
WV
4659static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4660 int vector)
4661{
4662 struct vcpu_vmx *vmx = to_vmx(vcpu);
4663
4664 if (is_guest_mode(vcpu) &&
4665 vector == vmx->nested.posted_intr_nv) {
4666 /* the PIR and ON have been set by L1. */
21bc8dc5 4667 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4668 /*
4669 * If a posted intr is not recognized by hardware,
4670 * we will accomplish it in the next vmentry.
4671 */
4672 vmx->nested.pi_pending = true;
4673 kvm_make_request(KVM_REQ_EVENT, vcpu);
4674 return 0;
4675 }
4676 return -1;
4677}
a20ed54d
YZ
4678/*
4679 * Send interrupt to vcpu via posted interrupt way.
4680 * 1. If target vcpu is running(non-root mode), send posted interrupt
4681 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4682 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4683 * interrupt from PIR in next vmentry.
4684 */
4685static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4686{
4687 struct vcpu_vmx *vmx = to_vmx(vcpu);
4688 int r;
4689
705699a1
WV
4690 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4691 if (!r)
4692 return;
4693
a20ed54d
YZ
4694 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4695 return;
4696
4697 r = pi_test_and_set_on(&vmx->pi_desc);
4698 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4699 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4700 kvm_vcpu_kick(vcpu);
4701}
4702
4703static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4704{
4705 struct vcpu_vmx *vmx = to_vmx(vcpu);
4706
4707 if (!pi_test_and_clear_on(&vmx->pi_desc))
4708 return;
4709
4710 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4711}
4712
a3a8ff8e
NHE
4713/*
4714 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4715 * will not change in the lifetime of the guest.
4716 * Note that host-state that does change is set elsewhere. E.g., host-state
4717 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4718 */
a547c6db 4719static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4720{
4721 u32 low32, high32;
4722 unsigned long tmpl;
4723 struct desc_ptr dt;
d974baa3 4724 unsigned long cr4;
a3a8ff8e 4725
b1a74bf8 4726 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4727 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4728
d974baa3 4729 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4730 cr4 = cr4_read_shadow();
d974baa3
AL
4731 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4732 vmx->host_state.vmcs_host_cr4 = cr4;
4733
a3a8ff8e 4734 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4735#ifdef CONFIG_X86_64
4736 /*
4737 * Load null selectors, so we can avoid reloading them in
4738 * __vmx_load_host_state(), in case userspace uses the null selectors
4739 * too (the expected case).
4740 */
4741 vmcs_write16(HOST_DS_SELECTOR, 0);
4742 vmcs_write16(HOST_ES_SELECTOR, 0);
4743#else
a3a8ff8e
NHE
4744 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4745 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4746#endif
a3a8ff8e
NHE
4747 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4748 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4749
4750 native_store_idt(&dt);
4751 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4752 vmx->host_idt_base = dt.address;
a3a8ff8e 4753
83287ea4 4754 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4755
4756 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4757 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4758 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4759 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4760
4761 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4762 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4763 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4764 }
4765}
4766
bf8179a0
NHE
4767static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4768{
4769 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4770 if (enable_ept)
4771 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4772 if (is_guest_mode(&vmx->vcpu))
4773 vmx->vcpu.arch.cr4_guest_owned_bits &=
4774 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4775 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4776}
4777
01e439be
YZ
4778static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4779{
4780 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4781
d62caabb 4782 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be
YZ
4783 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4784 return pin_based_exec_ctrl;
4785}
4786
d62caabb
AS
4787static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4788{
4789 struct vcpu_vmx *vmx = to_vmx(vcpu);
4790
4791 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
4792 if (cpu_has_secondary_exec_ctrls()) {
4793 if (kvm_vcpu_apicv_active(vcpu))
4794 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4795 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4796 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4797 else
4798 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4799 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4800 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4801 }
4802
4803 if (cpu_has_vmx_msr_bitmap())
4804 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
4805}
4806
bf8179a0
NHE
4807static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4808{
4809 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4810
4811 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4812 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4813
35754c98 4814 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
4815 exec_control &= ~CPU_BASED_TPR_SHADOW;
4816#ifdef CONFIG_X86_64
4817 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4818 CPU_BASED_CR8_LOAD_EXITING;
4819#endif
4820 }
4821 if (!enable_ept)
4822 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4823 CPU_BASED_CR3_LOAD_EXITING |
4824 CPU_BASED_INVLPG_EXITING;
4825 return exec_control;
4826}
4827
4828static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4829{
4830 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 4831 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
4832 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4833 if (vmx->vpid == 0)
4834 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4835 if (!enable_ept) {
4836 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4837 enable_unrestricted_guest = 0;
ad756a16
MJ
4838 /* Enable INVPCID for non-ept guests may cause performance regression. */
4839 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4840 }
4841 if (!enable_unrestricted_guest)
4842 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4843 if (!ple_gap)
4844 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 4845 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
4846 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4847 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4848 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4849 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4850 (handle_vmptrld).
4851 We can NOT enable shadow_vmcs here because we don't have yet
4852 a current VMCS12
4853 */
4854 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
4855
4856 if (!enable_pml)
4857 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 4858
8b3e34e4
XG
4859 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4860 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4861
bf8179a0
NHE
4862 return exec_control;
4863}
4864
ce88decf
XG
4865static void ept_set_mmio_spte_mask(void)
4866{
4867 /*
4868 * EPT Misconfigurations can be generated if the value of bits 2:0
4869 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4870 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4871 * spte.
4872 */
885032b9 4873 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4874}
4875
f53cd63c 4876#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4877/*
4878 * Sets up the vmcs for emulated real mode.
4879 */
8b9cf98c 4880static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4881{
2e4ce7f5 4882#ifdef CONFIG_X86_64
6aa8b732 4883 unsigned long a;
2e4ce7f5 4884#endif
6aa8b732 4885 int i;
6aa8b732 4886
6aa8b732 4887 /* I/O */
3e7c73e9
AK
4888 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4889 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4890
4607c2d7
AG
4891 if (enable_shadow_vmcs) {
4892 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4893 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4894 }
25c5f225 4895 if (cpu_has_vmx_msr_bitmap())
5897297b 4896 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4897
6aa8b732
AK
4898 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4899
6aa8b732 4900 /* Control */
01e439be 4901 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4902
bf8179a0 4903 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4904
8b3e34e4 4905 if (cpu_has_secondary_exec_ctrls())
bf8179a0
NHE
4906 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4907 vmx_secondary_exec_control(vmx));
f78e0e2e 4908
d62caabb 4909 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
4910 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4911 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4912 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4913 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4914
4915 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 4916
0bcf261c 4917 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 4918 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4919 }
4920
4b8d54f9
ZE
4921 if (ple_gap) {
4922 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4923 vmx->ple_window = ple_window;
4924 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4925 }
4926
c3707958
XG
4927 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4928 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4929 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4930
9581d442
AK
4931 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4932 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4933 vmx_set_constant_host_state(vmx);
05b3e0c2 4934#ifdef CONFIG_X86_64
6aa8b732
AK
4935 rdmsrl(MSR_FS_BASE, a);
4936 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4937 rdmsrl(MSR_GS_BASE, a);
4938 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4939#else
4940 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4941 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4942#endif
4943
2cc51560
ED
4944 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4945 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4946 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4947 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4948 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4949
74545705
RK
4950 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4951 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 4952
03916db9 4953 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4954 u32 index = vmx_msr_index[i];
4955 u32 data_low, data_high;
a2fa3e9f 4956 int j = vmx->nmsrs;
6aa8b732
AK
4957
4958 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4959 continue;
432bd6cb
AK
4960 if (wrmsr_safe(index, data_low, data_high) < 0)
4961 continue;
26bb0981
AK
4962 vmx->guest_msrs[j].index = i;
4963 vmx->guest_msrs[j].data = 0;
d5696725 4964 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4965 ++vmx->nmsrs;
6aa8b732 4966 }
6aa8b732 4967
2961e876
GN
4968
4969 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4970
4971 /* 22.2.1, 20.8.1 */
2961e876 4972 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4973
e00c8cf2 4974 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4975 set_cr4_guest_host_mask(vmx);
e00c8cf2 4976
f53cd63c
WL
4977 if (vmx_xsaves_supported())
4978 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4979
e00c8cf2
AK
4980 return 0;
4981}
4982
d28bc9dd 4983static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
4984{
4985 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4986 struct msr_data apic_base_msr;
d28bc9dd 4987 u64 cr0;
e00c8cf2 4988
7ffd92c5 4989 vmx->rmode.vm86_active = 0;
e00c8cf2 4990
3b86cd99
JK
4991 vmx->soft_vnmi_blocked = 0;
4992
ad312c7c 4993 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
4994 kvm_set_cr8(vcpu, 0);
4995
4996 if (!init_event) {
4997 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4998 MSR_IA32_APICBASE_ENABLE;
4999 if (kvm_vcpu_is_reset_bsp(vcpu))
5000 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5001 apic_base_msr.host_initiated = true;
5002 kvm_set_apic_base(vcpu, &apic_base_msr);
5003 }
e00c8cf2 5004
2fb92db1
AK
5005 vmx_segment_cache_clear(vmx);
5006
5706be0d 5007 seg_setup(VCPU_SREG_CS);
66450a21 5008 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5009 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5010
5011 seg_setup(VCPU_SREG_DS);
5012 seg_setup(VCPU_SREG_ES);
5013 seg_setup(VCPU_SREG_FS);
5014 seg_setup(VCPU_SREG_GS);
5015 seg_setup(VCPU_SREG_SS);
5016
5017 vmcs_write16(GUEST_TR_SELECTOR, 0);
5018 vmcs_writel(GUEST_TR_BASE, 0);
5019 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5020 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5021
5022 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5023 vmcs_writel(GUEST_LDTR_BASE, 0);
5024 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5025 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5026
d28bc9dd
NA
5027 if (!init_event) {
5028 vmcs_write32(GUEST_SYSENTER_CS, 0);
5029 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5030 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5031 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5032 }
e00c8cf2
AK
5033
5034 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5035 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5036
e00c8cf2
AK
5037 vmcs_writel(GUEST_GDTR_BASE, 0);
5038 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5039
5040 vmcs_writel(GUEST_IDTR_BASE, 0);
5041 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5042
443381a8 5043 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5044 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5045 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5046
e00c8cf2
AK
5047 setup_msrs(vmx);
5048
6aa8b732
AK
5049 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5050
d28bc9dd 5051 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5052 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5053 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5054 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5055 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5056 vmcs_write32(TPR_THRESHOLD, 0);
5057 }
5058
a73896cb 5059 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5060
d62caabb 5061 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5062 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5063
2384d2b3
SY
5064 if (vmx->vpid != 0)
5065 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5066
d28bc9dd 5067 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5068 vmx->vcpu.arch.cr0 = cr0;
f2463247 5069 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5070 vmx_set_cr4(vcpu, 0);
5690891b 5071 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
5072 vmx_fpu_activate(vcpu);
5073 update_exception_bitmap(vcpu);
6aa8b732 5074
dd5f5341 5075 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5076}
5077
b6f1250e
NHE
5078/*
5079 * In nested virtualization, check if L1 asked to exit on external interrupts.
5080 * For most existing hypervisors, this will always return true.
5081 */
5082static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5083{
5084 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5085 PIN_BASED_EXT_INTR_MASK;
5086}
5087
77b0f5d6
BD
5088/*
5089 * In nested virtualization, check if L1 has set
5090 * VM_EXIT_ACK_INTR_ON_EXIT
5091 */
5092static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5093{
5094 return get_vmcs12(vcpu)->vm_exit_controls &
5095 VM_EXIT_ACK_INTR_ON_EXIT;
5096}
5097
ea8ceb83
JK
5098static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5099{
5100 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5101 PIN_BASED_NMI_EXITING;
5102}
5103
c9a7953f 5104static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5105{
5106 u32 cpu_based_vm_exec_control;
730dca42 5107
3b86cd99
JK
5108 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5109 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5110 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5111}
5112
c9a7953f 5113static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5114{
5115 u32 cpu_based_vm_exec_control;
5116
c9a7953f
JK
5117 if (!cpu_has_virtual_nmis() ||
5118 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5119 enable_irq_window(vcpu);
5120 return;
5121 }
3b86cd99
JK
5122
5123 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5124 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5125 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5126}
5127
66fd3f7f 5128static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5129{
9c8cba37 5130 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5131 uint32_t intr;
5132 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5133
229456fc 5134 trace_kvm_inj_virq(irq);
2714d1d3 5135
fa89a817 5136 ++vcpu->stat.irq_injections;
7ffd92c5 5137 if (vmx->rmode.vm86_active) {
71f9833b
SH
5138 int inc_eip = 0;
5139 if (vcpu->arch.interrupt.soft)
5140 inc_eip = vcpu->arch.event_exit_inst_len;
5141 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5142 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5143 return;
5144 }
66fd3f7f
GN
5145 intr = irq | INTR_INFO_VALID_MASK;
5146 if (vcpu->arch.interrupt.soft) {
5147 intr |= INTR_TYPE_SOFT_INTR;
5148 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5149 vmx->vcpu.arch.event_exit_inst_len);
5150 } else
5151 intr |= INTR_TYPE_EXT_INTR;
5152 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5153}
5154
f08864b4
SY
5155static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5156{
66a5a347
JK
5157 struct vcpu_vmx *vmx = to_vmx(vcpu);
5158
0b6ac343
NHE
5159 if (is_guest_mode(vcpu))
5160 return;
5161
3b86cd99
JK
5162 if (!cpu_has_virtual_nmis()) {
5163 /*
5164 * Tracking the NMI-blocked state in software is built upon
5165 * finding the next open IRQ window. This, in turn, depends on
5166 * well-behaving guests: They have to keep IRQs disabled at
5167 * least as long as the NMI handler runs. Otherwise we may
5168 * cause NMI nesting, maybe breaking the guest. But as this is
5169 * highly unlikely, we can live with the residual risk.
5170 */
5171 vmx->soft_vnmi_blocked = 1;
5172 vmx->vnmi_blocked_time = 0;
5173 }
5174
487b391d 5175 ++vcpu->stat.nmi_injections;
9d58b931 5176 vmx->nmi_known_unmasked = false;
7ffd92c5 5177 if (vmx->rmode.vm86_active) {
71f9833b 5178 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5179 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5180 return;
5181 }
f08864b4
SY
5182 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5183 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5184}
5185
3cfc3092
JK
5186static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5187{
5188 if (!cpu_has_virtual_nmis())
5189 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5190 if (to_vmx(vcpu)->nmi_known_unmasked)
5191 return false;
c332c83a 5192 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5193}
5194
5195static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5196{
5197 struct vcpu_vmx *vmx = to_vmx(vcpu);
5198
5199 if (!cpu_has_virtual_nmis()) {
5200 if (vmx->soft_vnmi_blocked != masked) {
5201 vmx->soft_vnmi_blocked = masked;
5202 vmx->vnmi_blocked_time = 0;
5203 }
5204 } else {
9d58b931 5205 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5206 if (masked)
5207 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5208 GUEST_INTR_STATE_NMI);
5209 else
5210 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5211 GUEST_INTR_STATE_NMI);
5212 }
5213}
5214
2505dc9f
JK
5215static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5216{
b6b8a145
JK
5217 if (to_vmx(vcpu)->nested.nested_run_pending)
5218 return 0;
ea8ceb83 5219
2505dc9f
JK
5220 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5221 return 0;
5222
5223 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5224 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5225 | GUEST_INTR_STATE_NMI));
5226}
5227
78646121
GN
5228static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5229{
b6b8a145
JK
5230 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5231 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5232 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5233 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5234}
5235
cbc94022
IE
5236static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5237{
5238 int ret;
cbc94022 5239
1d8007bd
PB
5240 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5241 PAGE_SIZE * 3);
cbc94022
IE
5242 if (ret)
5243 return ret;
bfc6d222 5244 kvm->arch.tss_addr = addr;
1f755a82 5245 return init_rmode_tss(kvm);
cbc94022
IE
5246}
5247
0ca1b4f4 5248static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5249{
77ab6db0 5250 switch (vec) {
77ab6db0 5251 case BP_VECTOR:
c573cd22
JK
5252 /*
5253 * Update instruction length as we may reinject the exception
5254 * from user space while in guest debugging mode.
5255 */
5256 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5257 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5258 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5259 return false;
5260 /* fall through */
5261 case DB_VECTOR:
5262 if (vcpu->guest_debug &
5263 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5264 return false;
d0bfb940
JK
5265 /* fall through */
5266 case DE_VECTOR:
77ab6db0
JK
5267 case OF_VECTOR:
5268 case BR_VECTOR:
5269 case UD_VECTOR:
5270 case DF_VECTOR:
5271 case SS_VECTOR:
5272 case GP_VECTOR:
5273 case MF_VECTOR:
0ca1b4f4
GN
5274 return true;
5275 break;
77ab6db0 5276 }
0ca1b4f4
GN
5277 return false;
5278}
5279
5280static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5281 int vec, u32 err_code)
5282{
5283 /*
5284 * Instruction with address size override prefix opcode 0x67
5285 * Cause the #SS fault with 0 error code in VM86 mode.
5286 */
5287 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5288 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5289 if (vcpu->arch.halt_request) {
5290 vcpu->arch.halt_request = 0;
5cb56059 5291 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5292 }
5293 return 1;
5294 }
5295 return 0;
5296 }
5297
5298 /*
5299 * Forward all other exceptions that are valid in real mode.
5300 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5301 * the required debugging infrastructure rework.
5302 */
5303 kvm_queue_exception(vcpu, vec);
5304 return 1;
6aa8b732
AK
5305}
5306
a0861c02
AK
5307/*
5308 * Trigger machine check on the host. We assume all the MSRs are already set up
5309 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5310 * We pass a fake environment to the machine check handler because we want
5311 * the guest to be always treated like user space, no matter what context
5312 * it used internally.
5313 */
5314static void kvm_machine_check(void)
5315{
5316#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5317 struct pt_regs regs = {
5318 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5319 .flags = X86_EFLAGS_IF,
5320 };
5321
5322 do_machine_check(&regs, 0);
5323#endif
5324}
5325
851ba692 5326static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5327{
5328 /* already handled by vcpu_run */
5329 return 1;
5330}
5331
851ba692 5332static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5333{
1155f76a 5334 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5335 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5336 u32 intr_info, ex_no, error_code;
42dbaa5a 5337 unsigned long cr2, rip, dr6;
6aa8b732
AK
5338 u32 vect_info;
5339 enum emulation_result er;
5340
1155f76a 5341 vect_info = vmx->idt_vectoring_info;
88786475 5342 intr_info = vmx->exit_intr_info;
6aa8b732 5343
a0861c02 5344 if (is_machine_check(intr_info))
851ba692 5345 return handle_machine_check(vcpu);
a0861c02 5346
e4a41889 5347 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5348 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5349
5350 if (is_no_device(intr_info)) {
5fd86fcf 5351 vmx_fpu_activate(vcpu);
2ab455cc
AL
5352 return 1;
5353 }
5354
7aa81cc0 5355 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5356 if (is_guest_mode(vcpu)) {
5357 kvm_queue_exception(vcpu, UD_VECTOR);
5358 return 1;
5359 }
51d8b661 5360 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5361 if (er != EMULATE_DONE)
7ee5d940 5362 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5363 return 1;
5364 }
5365
6aa8b732 5366 error_code = 0;
2e11384c 5367 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5368 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5369
5370 /*
5371 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5372 * MMIO, it is better to report an internal error.
5373 * See the comments in vmx_handle_exit.
5374 */
5375 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5376 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5377 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5378 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5379 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5380 vcpu->run->internal.data[0] = vect_info;
5381 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5382 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5383 return 0;
5384 }
5385
6aa8b732 5386 if (is_page_fault(intr_info)) {
1439442c 5387 /* EPT won't cause page fault directly */
cf3ace79 5388 BUG_ON(enable_ept);
6aa8b732 5389 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5390 trace_kvm_page_fault(cr2, error_code);
5391
3298b75c 5392 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5393 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5394 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5395 }
5396
d0bfb940 5397 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5398
5399 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5400 return handle_rmode_exception(vcpu, ex_no, error_code);
5401
42dbaa5a 5402 switch (ex_no) {
54a20552
EN
5403 case AC_VECTOR:
5404 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5405 return 1;
42dbaa5a
JK
5406 case DB_VECTOR:
5407 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5408 if (!(vcpu->guest_debug &
5409 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5410 vcpu->arch.dr6 &= ~15;
6f43ed01 5411 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5412 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5413 skip_emulated_instruction(vcpu);
5414
42dbaa5a
JK
5415 kvm_queue_exception(vcpu, DB_VECTOR);
5416 return 1;
5417 }
5418 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5419 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5420 /* fall through */
5421 case BP_VECTOR:
c573cd22
JK
5422 /*
5423 * Update instruction length as we may reinject #BP from
5424 * user space while in guest debugging mode. Reading it for
5425 * #DB as well causes no harm, it is not used in that case.
5426 */
5427 vmx->vcpu.arch.event_exit_inst_len =
5428 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5429 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5430 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5431 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5432 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5433 break;
5434 default:
d0bfb940
JK
5435 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5436 kvm_run->ex.exception = ex_no;
5437 kvm_run->ex.error_code = error_code;
42dbaa5a 5438 break;
6aa8b732 5439 }
6aa8b732
AK
5440 return 0;
5441}
5442
851ba692 5443static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5444{
1165f5fe 5445 ++vcpu->stat.irq_exits;
6aa8b732
AK
5446 return 1;
5447}
5448
851ba692 5449static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5450{
851ba692 5451 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5452 return 0;
5453}
6aa8b732 5454
851ba692 5455static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5456{
bfdaab09 5457 unsigned long exit_qualification;
34c33d16 5458 int size, in, string;
039576c0 5459 unsigned port;
6aa8b732 5460
bfdaab09 5461 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5462 string = (exit_qualification & 16) != 0;
cf8f70bf 5463 in = (exit_qualification & 8) != 0;
e70669ab 5464
cf8f70bf 5465 ++vcpu->stat.io_exits;
e70669ab 5466
cf8f70bf 5467 if (string || in)
51d8b661 5468 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5469
cf8f70bf
GN
5470 port = exit_qualification >> 16;
5471 size = (exit_qualification & 7) + 1;
e93f36bc 5472 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5473
5474 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5475}
5476
102d8325
IM
5477static void
5478vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5479{
5480 /*
5481 * Patch in the VMCALL instruction:
5482 */
5483 hypercall[0] = 0x0f;
5484 hypercall[1] = 0x01;
5485 hypercall[2] = 0xc1;
102d8325
IM
5486}
5487
b9c237bb 5488static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5489{
5490 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5491 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5492
b9c237bb 5493 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5494 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5495 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5496 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5497 return (val & always_on) == always_on;
5498}
5499
0fa06071 5500/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5501static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5502{
eeadf9e7 5503 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5504 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5505 unsigned long orig_val = val;
5506
eeadf9e7
NHE
5507 /*
5508 * We get here when L2 changed cr0 in a way that did not change
5509 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5510 * but did change L0 shadowed bits. So we first calculate the
5511 * effective cr0 value that L1 would like to write into the
5512 * hardware. It consists of the L2-owned bits from the new
5513 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5514 */
1a0d74e6
JK
5515 val = (val & ~vmcs12->cr0_guest_host_mask) |
5516 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5517
b9c237bb 5518 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5519 return 1;
1a0d74e6
JK
5520
5521 if (kvm_set_cr0(vcpu, val))
5522 return 1;
5523 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5524 return 0;
1a0d74e6
JK
5525 } else {
5526 if (to_vmx(vcpu)->nested.vmxon &&
5527 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5528 return 1;
eeadf9e7 5529 return kvm_set_cr0(vcpu, val);
1a0d74e6 5530 }
eeadf9e7
NHE
5531}
5532
5533static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5534{
5535 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5536 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5537 unsigned long orig_val = val;
5538
5539 /* analogously to handle_set_cr0 */
5540 val = (val & ~vmcs12->cr4_guest_host_mask) |
5541 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5542 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5543 return 1;
1a0d74e6 5544 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5545 return 0;
5546 } else
5547 return kvm_set_cr4(vcpu, val);
5548}
5549
6a6256f9 5550/* called to set cr0 as appropriate for clts instruction exit. */
eeadf9e7
NHE
5551static void handle_clts(struct kvm_vcpu *vcpu)
5552{
5553 if (is_guest_mode(vcpu)) {
5554 /*
5555 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5556 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5557 * just pretend it's off (also in arch.cr0 for fpu_activate).
5558 */
5559 vmcs_writel(CR0_READ_SHADOW,
5560 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5561 vcpu->arch.cr0 &= ~X86_CR0_TS;
5562 } else
5563 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5564}
5565
851ba692 5566static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5567{
229456fc 5568 unsigned long exit_qualification, val;
6aa8b732
AK
5569 int cr;
5570 int reg;
49a9b07e 5571 int err;
6aa8b732 5572
bfdaab09 5573 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5574 cr = exit_qualification & 15;
5575 reg = (exit_qualification >> 8) & 15;
5576 switch ((exit_qualification >> 4) & 3) {
5577 case 0: /* mov to cr */
1e32c079 5578 val = kvm_register_readl(vcpu, reg);
229456fc 5579 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5580 switch (cr) {
5581 case 0:
eeadf9e7 5582 err = handle_set_cr0(vcpu, val);
db8fcefa 5583 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5584 return 1;
5585 case 3:
2390218b 5586 err = kvm_set_cr3(vcpu, val);
db8fcefa 5587 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5588 return 1;
5589 case 4:
eeadf9e7 5590 err = handle_set_cr4(vcpu, val);
db8fcefa 5591 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5592 return 1;
0a5fff19
GN
5593 case 8: {
5594 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5595 u8 cr8 = (u8)val;
eea1cff9 5596 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5597 kvm_complete_insn_gp(vcpu, err);
35754c98 5598 if (lapic_in_kernel(vcpu))
0a5fff19
GN
5599 return 1;
5600 if (cr8_prev <= cr8)
5601 return 1;
851ba692 5602 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5603 return 0;
5604 }
4b8073e4 5605 }
6aa8b732 5606 break;
25c4c276 5607 case 2: /* clts */
eeadf9e7 5608 handle_clts(vcpu);
4d4ec087 5609 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5610 skip_emulated_instruction(vcpu);
6b52d186 5611 vmx_fpu_activate(vcpu);
25c4c276 5612 return 1;
6aa8b732
AK
5613 case 1: /*mov from cr*/
5614 switch (cr) {
5615 case 3:
9f8fe504
AK
5616 val = kvm_read_cr3(vcpu);
5617 kvm_register_write(vcpu, reg, val);
5618 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5619 skip_emulated_instruction(vcpu);
5620 return 1;
5621 case 8:
229456fc
MT
5622 val = kvm_get_cr8(vcpu);
5623 kvm_register_write(vcpu, reg, val);
5624 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5625 skip_emulated_instruction(vcpu);
5626 return 1;
5627 }
5628 break;
5629 case 3: /* lmsw */
a1f83a74 5630 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5631 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5632 kvm_lmsw(vcpu, val);
6aa8b732
AK
5633
5634 skip_emulated_instruction(vcpu);
5635 return 1;
5636 default:
5637 break;
5638 }
851ba692 5639 vcpu->run->exit_reason = 0;
a737f256 5640 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5641 (int)(exit_qualification >> 4) & 3, cr);
5642 return 0;
5643}
5644
851ba692 5645static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5646{
bfdaab09 5647 unsigned long exit_qualification;
16f8a6f9
NA
5648 int dr, dr7, reg;
5649
5650 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5651 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5652
5653 /* First, if DR does not exist, trigger UD */
5654 if (!kvm_require_dr(vcpu, dr))
5655 return 1;
6aa8b732 5656
f2483415 5657 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5658 if (!kvm_require_cpl(vcpu, 0))
5659 return 1;
16f8a6f9
NA
5660 dr7 = vmcs_readl(GUEST_DR7);
5661 if (dr7 & DR7_GD) {
42dbaa5a
JK
5662 /*
5663 * As the vm-exit takes precedence over the debug trap, we
5664 * need to emulate the latter, either for the host or the
5665 * guest debugging itself.
5666 */
5667 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5668 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5669 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5670 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5671 vcpu->run->debug.arch.exception = DB_VECTOR;
5672 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5673 return 0;
5674 } else {
7305eb5d 5675 vcpu->arch.dr6 &= ~15;
6f43ed01 5676 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5677 kvm_queue_exception(vcpu, DB_VECTOR);
5678 return 1;
5679 }
5680 }
5681
81908bf4 5682 if (vcpu->guest_debug == 0) {
8f22372f
PB
5683 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5684 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5685
5686 /*
5687 * No more DR vmexits; force a reload of the debug registers
5688 * and reenter on this instruction. The next vmexit will
5689 * retrieve the full state of the debug registers.
5690 */
5691 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5692 return 1;
5693 }
5694
42dbaa5a
JK
5695 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5696 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5697 unsigned long val;
4c4d563b
JK
5698
5699 if (kvm_get_dr(vcpu, dr, &val))
5700 return 1;
5701 kvm_register_write(vcpu, reg, val);
020df079 5702 } else
5777392e 5703 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5704 return 1;
5705
6aa8b732
AK
5706 skip_emulated_instruction(vcpu);
5707 return 1;
5708}
5709
73aaf249
JK
5710static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5711{
5712 return vcpu->arch.dr6;
5713}
5714
5715static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5716{
5717}
5718
81908bf4
PB
5719static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5720{
81908bf4
PB
5721 get_debugreg(vcpu->arch.db[0], 0);
5722 get_debugreg(vcpu->arch.db[1], 1);
5723 get_debugreg(vcpu->arch.db[2], 2);
5724 get_debugreg(vcpu->arch.db[3], 3);
5725 get_debugreg(vcpu->arch.dr6, 6);
5726 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5727
5728 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5729 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5730}
5731
020df079
GN
5732static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5733{
5734 vmcs_writel(GUEST_DR7, val);
5735}
5736
851ba692 5737static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5738{
06465c5a
AK
5739 kvm_emulate_cpuid(vcpu);
5740 return 1;
6aa8b732
AK
5741}
5742
851ba692 5743static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5744{
ad312c7c 5745 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5746 struct msr_data msr_info;
6aa8b732 5747
609e36d3
PB
5748 msr_info.index = ecx;
5749 msr_info.host_initiated = false;
5750 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5751 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5752 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5753 return 1;
5754 }
5755
609e36d3 5756 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5757
6aa8b732 5758 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5759 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5760 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5761 skip_emulated_instruction(vcpu);
5762 return 1;
5763}
5764
851ba692 5765static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5766{
8fe8ab46 5767 struct msr_data msr;
ad312c7c
ZX
5768 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5769 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5770 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5771
8fe8ab46
WA
5772 msr.data = data;
5773 msr.index = ecx;
5774 msr.host_initiated = false;
854e8bb1 5775 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5776 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5777 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5778 return 1;
5779 }
5780
59200273 5781 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5782 skip_emulated_instruction(vcpu);
5783 return 1;
5784}
5785
851ba692 5786static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5787{
3842d135 5788 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5789 return 1;
5790}
5791
851ba692 5792static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5793{
85f455f7
ED
5794 u32 cpu_based_vm_exec_control;
5795
5796 /* clear pending irq */
5797 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5798 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5799 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5800
3842d135
AK
5801 kvm_make_request(KVM_REQ_EVENT, vcpu);
5802
a26bf12a 5803 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
5804 return 1;
5805}
5806
851ba692 5807static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5808{
d3bef15f 5809 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5810}
5811
851ba692 5812static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5813{
0d9c055e 5814 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
5815}
5816
ec25d5e6
GN
5817static int handle_invd(struct kvm_vcpu *vcpu)
5818{
51d8b661 5819 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5820}
5821
851ba692 5822static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5823{
f9c617f6 5824 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5825
5826 kvm_mmu_invlpg(vcpu, exit_qualification);
5827 skip_emulated_instruction(vcpu);
5828 return 1;
5829}
5830
fee84b07
AK
5831static int handle_rdpmc(struct kvm_vcpu *vcpu)
5832{
5833 int err;
5834
5835 err = kvm_rdpmc(vcpu);
5836 kvm_complete_insn_gp(vcpu, err);
5837
5838 return 1;
5839}
5840
851ba692 5841static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5842{
f5f48ee1 5843 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5844 return 1;
5845}
5846
2acf923e
DC
5847static int handle_xsetbv(struct kvm_vcpu *vcpu)
5848{
5849 u64 new_bv = kvm_read_edx_eax(vcpu);
5850 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5851
5852 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5853 skip_emulated_instruction(vcpu);
5854 return 1;
5855}
5856
f53cd63c
WL
5857static int handle_xsaves(struct kvm_vcpu *vcpu)
5858{
5859 skip_emulated_instruction(vcpu);
5860 WARN(1, "this should never happen\n");
5861 return 1;
5862}
5863
5864static int handle_xrstors(struct kvm_vcpu *vcpu)
5865{
5866 skip_emulated_instruction(vcpu);
5867 WARN(1, "this should never happen\n");
5868 return 1;
5869}
5870
851ba692 5871static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5872{
58fbbf26
KT
5873 if (likely(fasteoi)) {
5874 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5875 int access_type, offset;
5876
5877 access_type = exit_qualification & APIC_ACCESS_TYPE;
5878 offset = exit_qualification & APIC_ACCESS_OFFSET;
5879 /*
5880 * Sane guest uses MOV to write EOI, with written value
5881 * not cared. So make a short-circuit here by avoiding
5882 * heavy instruction emulation.
5883 */
5884 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5885 (offset == APIC_EOI)) {
5886 kvm_lapic_set_eoi(vcpu);
5887 skip_emulated_instruction(vcpu);
5888 return 1;
5889 }
5890 }
51d8b661 5891 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5892}
5893
c7c9c56c
YZ
5894static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5895{
5896 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5897 int vector = exit_qualification & 0xff;
5898
5899 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5900 kvm_apic_set_eoi_accelerated(vcpu, vector);
5901 return 1;
5902}
5903
83d4c286
YZ
5904static int handle_apic_write(struct kvm_vcpu *vcpu)
5905{
5906 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5907 u32 offset = exit_qualification & 0xfff;
5908
5909 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5910 kvm_apic_write_nodecode(vcpu, offset);
5911 return 1;
5912}
5913
851ba692 5914static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5915{
60637aac 5916 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5917 unsigned long exit_qualification;
e269fb21
JK
5918 bool has_error_code = false;
5919 u32 error_code = 0;
37817f29 5920 u16 tss_selector;
7f3d35fd 5921 int reason, type, idt_v, idt_index;
64a7ec06
GN
5922
5923 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5924 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5925 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5926
5927 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5928
5929 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5930 if (reason == TASK_SWITCH_GATE && idt_v) {
5931 switch (type) {
5932 case INTR_TYPE_NMI_INTR:
5933 vcpu->arch.nmi_injected = false;
654f06fc 5934 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5935 break;
5936 case INTR_TYPE_EXT_INTR:
66fd3f7f 5937 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5938 kvm_clear_interrupt_queue(vcpu);
5939 break;
5940 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5941 if (vmx->idt_vectoring_info &
5942 VECTORING_INFO_DELIVER_CODE_MASK) {
5943 has_error_code = true;
5944 error_code =
5945 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5946 }
5947 /* fall through */
64a7ec06
GN
5948 case INTR_TYPE_SOFT_EXCEPTION:
5949 kvm_clear_exception_queue(vcpu);
5950 break;
5951 default:
5952 break;
5953 }
60637aac 5954 }
37817f29
IE
5955 tss_selector = exit_qualification;
5956
64a7ec06
GN
5957 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5958 type != INTR_TYPE_EXT_INTR &&
5959 type != INTR_TYPE_NMI_INTR))
5960 skip_emulated_instruction(vcpu);
5961
7f3d35fd
KW
5962 if (kvm_task_switch(vcpu, tss_selector,
5963 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5964 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5965 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5966 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5967 vcpu->run->internal.ndata = 0;
42dbaa5a 5968 return 0;
acb54517 5969 }
42dbaa5a 5970
42dbaa5a
JK
5971 /*
5972 * TODO: What about debug traps on tss switch?
5973 * Are we supposed to inject them and update dr6?
5974 */
5975
5976 return 1;
37817f29
IE
5977}
5978
851ba692 5979static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5980{
f9c617f6 5981 unsigned long exit_qualification;
1439442c 5982 gpa_t gpa;
4f5982a5 5983 u32 error_code;
1439442c 5984 int gla_validity;
1439442c 5985
f9c617f6 5986 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5987
1439442c
SY
5988 gla_validity = (exit_qualification >> 7) & 0x3;
5989 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5990 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5991 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5992 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5993 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5994 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5995 (long unsigned int)exit_qualification);
851ba692
AK
5996 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5997 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5998 return 0;
1439442c
SY
5999 }
6000
0be9c7a8
GN
6001 /*
6002 * EPT violation happened while executing iret from NMI,
6003 * "blocked by NMI" bit has to be set before next VM entry.
6004 * There are errata that may cause this bit to not be set:
6005 * AAK134, BY25.
6006 */
bcd1c294
GN
6007 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6008 cpu_has_virtual_nmis() &&
6009 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6010 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6011
1439442c 6012 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6013 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
6014
6015 /* It is a write fault? */
81ed33e4 6016 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 6017 /* It is a fetch fault? */
81ed33e4 6018 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 6019 /* ept page table is present? */
81ed33e4 6020 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 6021
25d92081
YZ
6022 vcpu->arch.exit_qualification = exit_qualification;
6023
4f5982a5 6024 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6025}
6026
851ba692 6027static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6028{
f735d4af 6029 int ret;
68f89400
MT
6030 gpa_t gpa;
6031
6032 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6033 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1 6034 skip_emulated_instruction(vcpu);
931c33b1 6035 trace_kvm_fast_mmio(gpa);
68c3b4d1
MT
6036 return 1;
6037 }
68f89400 6038
450869d6 6039 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 6040 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6041 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6042 EMULATE_DONE;
f8f55942
XG
6043
6044 if (unlikely(ret == RET_MMIO_PF_INVALID))
6045 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6046
b37fbea6 6047 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6048 return 1;
6049
6050 /* It is the real ept misconfig */
f735d4af 6051 WARN_ON(1);
68f89400 6052
851ba692
AK
6053 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6054 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6055
6056 return 0;
6057}
6058
851ba692 6059static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
6060{
6061 u32 cpu_based_vm_exec_control;
6062
6063 /* clear pending NMI */
6064 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6065 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6066 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6067 ++vcpu->stat.nmi_window_exits;
3842d135 6068 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6069
6070 return 1;
6071}
6072
80ced186 6073static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6074{
8b3079a5
AK
6075 struct vcpu_vmx *vmx = to_vmx(vcpu);
6076 enum emulation_result err = EMULATE_DONE;
80ced186 6077 int ret = 1;
49e9d557
AK
6078 u32 cpu_exec_ctrl;
6079 bool intr_window_requested;
b8405c18 6080 unsigned count = 130;
49e9d557
AK
6081
6082 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6083 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6084
98eb2f8b 6085 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6086 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6087 return handle_interrupt_window(&vmx->vcpu);
6088
de87dcdd
AK
6089 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6090 return 1;
6091
991eebf9 6092 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6093
ac0a48c3 6094 if (err == EMULATE_USER_EXIT) {
94452b9e 6095 ++vcpu->stat.mmio_exits;
80ced186
MG
6096 ret = 0;
6097 goto out;
6098 }
1d5a4d9b 6099
de5f70e0
AK
6100 if (err != EMULATE_DONE) {
6101 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6102 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6103 vcpu->run->internal.ndata = 0;
6d77dbfc 6104 return 0;
de5f70e0 6105 }
ea953ef0 6106
8d76c49e
GN
6107 if (vcpu->arch.halt_request) {
6108 vcpu->arch.halt_request = 0;
5cb56059 6109 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6110 goto out;
6111 }
6112
ea953ef0 6113 if (signal_pending(current))
80ced186 6114 goto out;
ea953ef0
MG
6115 if (need_resched())
6116 schedule();
6117 }
6118
80ced186
MG
6119out:
6120 return ret;
ea953ef0
MG
6121}
6122
b4a2d31d
RK
6123static int __grow_ple_window(int val)
6124{
6125 if (ple_window_grow < 1)
6126 return ple_window;
6127
6128 val = min(val, ple_window_actual_max);
6129
6130 if (ple_window_grow < ple_window)
6131 val *= ple_window_grow;
6132 else
6133 val += ple_window_grow;
6134
6135 return val;
6136}
6137
6138static int __shrink_ple_window(int val, int modifier, int minimum)
6139{
6140 if (modifier < 1)
6141 return ple_window;
6142
6143 if (modifier < ple_window)
6144 val /= modifier;
6145 else
6146 val -= modifier;
6147
6148 return max(val, minimum);
6149}
6150
6151static void grow_ple_window(struct kvm_vcpu *vcpu)
6152{
6153 struct vcpu_vmx *vmx = to_vmx(vcpu);
6154 int old = vmx->ple_window;
6155
6156 vmx->ple_window = __grow_ple_window(old);
6157
6158 if (vmx->ple_window != old)
6159 vmx->ple_window_dirty = true;
7b46268d
RK
6160
6161 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6162}
6163
6164static void shrink_ple_window(struct kvm_vcpu *vcpu)
6165{
6166 struct vcpu_vmx *vmx = to_vmx(vcpu);
6167 int old = vmx->ple_window;
6168
6169 vmx->ple_window = __shrink_ple_window(old,
6170 ple_window_shrink, ple_window);
6171
6172 if (vmx->ple_window != old)
6173 vmx->ple_window_dirty = true;
7b46268d
RK
6174
6175 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6176}
6177
6178/*
6179 * ple_window_actual_max is computed to be one grow_ple_window() below
6180 * ple_window_max. (See __grow_ple_window for the reason.)
6181 * This prevents overflows, because ple_window_max is int.
6182 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6183 * this process.
6184 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6185 */
6186static void update_ple_window_actual_max(void)
6187{
6188 ple_window_actual_max =
6189 __shrink_ple_window(max(ple_window_max, ple_window),
6190 ple_window_grow, INT_MIN);
6191}
6192
bf9f6ac8
FW
6193/*
6194 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6195 */
6196static void wakeup_handler(void)
6197{
6198 struct kvm_vcpu *vcpu;
6199 int cpu = smp_processor_id();
6200
6201 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6202 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6203 blocked_vcpu_list) {
6204 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6205
6206 if (pi_test_on(pi_desc) == 1)
6207 kvm_vcpu_kick(vcpu);
6208 }
6209 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6210}
6211
f2c7648d
TC
6212static __init int hardware_setup(void)
6213{
34a1cd60
TC
6214 int r = -ENOMEM, i, msr;
6215
6216 rdmsrl_safe(MSR_EFER, &host_efer);
6217
6218 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6219 kvm_define_shared_msr(i, vmx_msr_index[i]);
6220
6221 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6222 if (!vmx_io_bitmap_a)
6223 return r;
6224
6225 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6226 if (!vmx_io_bitmap_b)
6227 goto out;
6228
6229 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6230 if (!vmx_msr_bitmap_legacy)
6231 goto out1;
6232
6233 vmx_msr_bitmap_legacy_x2apic =
6234 (unsigned long *)__get_free_page(GFP_KERNEL);
6235 if (!vmx_msr_bitmap_legacy_x2apic)
6236 goto out2;
6237
6238 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6239 if (!vmx_msr_bitmap_longmode)
6240 goto out3;
6241
6242 vmx_msr_bitmap_longmode_x2apic =
6243 (unsigned long *)__get_free_page(GFP_KERNEL);
6244 if (!vmx_msr_bitmap_longmode_x2apic)
6245 goto out4;
3af18d9c
WV
6246
6247 if (nested) {
6248 vmx_msr_bitmap_nested =
6249 (unsigned long *)__get_free_page(GFP_KERNEL);
6250 if (!vmx_msr_bitmap_nested)
6251 goto out5;
6252 }
6253
34a1cd60
TC
6254 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6255 if (!vmx_vmread_bitmap)
3af18d9c 6256 goto out6;
34a1cd60
TC
6257
6258 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6259 if (!vmx_vmwrite_bitmap)
3af18d9c 6260 goto out7;
34a1cd60
TC
6261
6262 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6263 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6264
6265 /*
6266 * Allow direct access to the PC debug port (it is often used for I/O
6267 * delays, but the vmexits simply slow things down).
6268 */
6269 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6270 clear_bit(0x80, vmx_io_bitmap_a);
6271
6272 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6273
6274 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6275 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
6276 if (nested)
6277 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 6278
34a1cd60
TC
6279 if (setup_vmcs_config(&vmcs_config) < 0) {
6280 r = -EIO;
3af18d9c 6281 goto out8;
baa03522 6282 }
f2c7648d
TC
6283
6284 if (boot_cpu_has(X86_FEATURE_NX))
6285 kvm_enable_efer_bits(EFER_NX);
6286
6287 if (!cpu_has_vmx_vpid())
6288 enable_vpid = 0;
6289 if (!cpu_has_vmx_shadow_vmcs())
6290 enable_shadow_vmcs = 0;
6291 if (enable_shadow_vmcs)
6292 init_vmcs_shadow_fields();
6293
6294 if (!cpu_has_vmx_ept() ||
6295 !cpu_has_vmx_ept_4levels()) {
6296 enable_ept = 0;
6297 enable_unrestricted_guest = 0;
6298 enable_ept_ad_bits = 0;
6299 }
6300
6301 if (!cpu_has_vmx_ept_ad_bits())
6302 enable_ept_ad_bits = 0;
6303
6304 if (!cpu_has_vmx_unrestricted_guest())
6305 enable_unrestricted_guest = 0;
6306
ad15a296 6307 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6308 flexpriority_enabled = 0;
6309
ad15a296
PB
6310 /*
6311 * set_apic_access_page_addr() is used to reload apic access
6312 * page upon invalidation. No need to do anything if not
6313 * using the APIC_ACCESS_ADDR VMCS field.
6314 */
6315 if (!flexpriority_enabled)
f2c7648d 6316 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6317
6318 if (!cpu_has_vmx_tpr_shadow())
6319 kvm_x86_ops->update_cr8_intercept = NULL;
6320
6321 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6322 kvm_disable_largepages();
6323
6324 if (!cpu_has_vmx_ple())
6325 ple_gap = 0;
6326
6327 if (!cpu_has_vmx_apicv())
6328 enable_apicv = 0;
6329
64903d61
HZ
6330 if (cpu_has_vmx_tsc_scaling()) {
6331 kvm_has_tsc_control = true;
6332 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6333 kvm_tsc_scaling_ratio_frac_bits = 48;
6334 }
6335
baa03522
TC
6336 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6337 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6338 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6339 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6340 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6341 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6342 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6343
6344 memcpy(vmx_msr_bitmap_legacy_x2apic,
6345 vmx_msr_bitmap_legacy, PAGE_SIZE);
6346 memcpy(vmx_msr_bitmap_longmode_x2apic,
6347 vmx_msr_bitmap_longmode, PAGE_SIZE);
6348
04bb92e4
WL
6349 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6350
3ce424e4
RK
6351 for (msr = 0x800; msr <= 0x8ff; msr++)
6352 vmx_disable_intercept_msr_read_x2apic(msr);
6353
6354 /* According SDM, in x2apic mode, the whole id reg is used. But in
6355 * KVM, it only use the highest eight bits. Need to intercept it */
6356 vmx_enable_intercept_msr_read_x2apic(0x802);
6357 /* TMCCT */
6358 vmx_enable_intercept_msr_read_x2apic(0x839);
6359 /* TPR */
6360 vmx_disable_intercept_msr_write_x2apic(0x808);
6361 /* EOI */
6362 vmx_disable_intercept_msr_write_x2apic(0x80b);
6363 /* SELF-IPI */
6364 vmx_disable_intercept_msr_write_x2apic(0x83f);
baa03522
TC
6365
6366 if (enable_ept) {
6367 kvm_mmu_set_mask_ptes(0ull,
6368 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6369 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6370 0ull, VMX_EPT_EXECUTABLE_MASK);
6371 ept_set_mmio_spte_mask();
6372 kvm_enable_tdp();
6373 } else
6374 kvm_disable_tdp();
6375
6376 update_ple_window_actual_max();
6377
843e4330
KH
6378 /*
6379 * Only enable PML when hardware supports PML feature, and both EPT
6380 * and EPT A/D bit features are enabled -- PML depends on them to work.
6381 */
6382 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6383 enable_pml = 0;
6384
6385 if (!enable_pml) {
6386 kvm_x86_ops->slot_enable_log_dirty = NULL;
6387 kvm_x86_ops->slot_disable_log_dirty = NULL;
6388 kvm_x86_ops->flush_log_dirty = NULL;
6389 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6390 }
6391
bf9f6ac8
FW
6392 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6393
f2c7648d 6394 return alloc_kvm_area();
34a1cd60 6395
3af18d9c 6396out8:
34a1cd60 6397 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6398out7:
34a1cd60 6399 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6400out6:
6401 if (nested)
6402 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6403out5:
6404 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6405out4:
6406 free_page((unsigned long)vmx_msr_bitmap_longmode);
6407out3:
6408 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6409out2:
6410 free_page((unsigned long)vmx_msr_bitmap_legacy);
6411out1:
6412 free_page((unsigned long)vmx_io_bitmap_b);
6413out:
6414 free_page((unsigned long)vmx_io_bitmap_a);
6415
6416 return r;
f2c7648d
TC
6417}
6418
6419static __exit void hardware_unsetup(void)
6420{
34a1cd60
TC
6421 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6422 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6423 free_page((unsigned long)vmx_msr_bitmap_legacy);
6424 free_page((unsigned long)vmx_msr_bitmap_longmode);
6425 free_page((unsigned long)vmx_io_bitmap_b);
6426 free_page((unsigned long)vmx_io_bitmap_a);
6427 free_page((unsigned long)vmx_vmwrite_bitmap);
6428 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6429 if (nested)
6430 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6431
f2c7648d
TC
6432 free_kvm_area();
6433}
6434
4b8d54f9
ZE
6435/*
6436 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6437 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6438 */
9fb41ba8 6439static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6440{
b4a2d31d
RK
6441 if (ple_gap)
6442 grow_ple_window(vcpu);
6443
4b8d54f9
ZE
6444 skip_emulated_instruction(vcpu);
6445 kvm_vcpu_on_spin(vcpu);
6446
6447 return 1;
6448}
6449
87c00572 6450static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6451{
87c00572 6452 skip_emulated_instruction(vcpu);
59708670
SY
6453 return 1;
6454}
6455
87c00572
GS
6456static int handle_mwait(struct kvm_vcpu *vcpu)
6457{
6458 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6459 return handle_nop(vcpu);
6460}
6461
5f3d45e7
MD
6462static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6463{
6464 return 1;
6465}
6466
87c00572
GS
6467static int handle_monitor(struct kvm_vcpu *vcpu)
6468{
6469 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6470 return handle_nop(vcpu);
6471}
6472
ff2f6fe9
NHE
6473/*
6474 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6475 * We could reuse a single VMCS for all the L2 guests, but we also want the
6476 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6477 * allows keeping them loaded on the processor, and in the future will allow
6478 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6479 * every entry if they never change.
6480 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6481 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6482 *
6483 * The following functions allocate and free a vmcs02 in this pool.
6484 */
6485
6486/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6487static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6488{
6489 struct vmcs02_list *item;
6490 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6491 if (item->vmptr == vmx->nested.current_vmptr) {
6492 list_move(&item->list, &vmx->nested.vmcs02_pool);
6493 return &item->vmcs02;
6494 }
6495
6496 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6497 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6498 item = list_last_entry(&vmx->nested.vmcs02_pool,
6499 struct vmcs02_list, list);
ff2f6fe9
NHE
6500 item->vmptr = vmx->nested.current_vmptr;
6501 list_move(&item->list, &vmx->nested.vmcs02_pool);
6502 return &item->vmcs02;
6503 }
6504
6505 /* Create a new VMCS */
0fa24ce3 6506 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6507 if (!item)
6508 return NULL;
6509 item->vmcs02.vmcs = alloc_vmcs();
6510 if (!item->vmcs02.vmcs) {
6511 kfree(item);
6512 return NULL;
6513 }
6514 loaded_vmcs_init(&item->vmcs02);
6515 item->vmptr = vmx->nested.current_vmptr;
6516 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6517 vmx->nested.vmcs02_num++;
6518 return &item->vmcs02;
6519}
6520
6521/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6522static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6523{
6524 struct vmcs02_list *item;
6525 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6526 if (item->vmptr == vmptr) {
6527 free_loaded_vmcs(&item->vmcs02);
6528 list_del(&item->list);
6529 kfree(item);
6530 vmx->nested.vmcs02_num--;
6531 return;
6532 }
6533}
6534
6535/*
6536 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6537 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6538 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6539 */
6540static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6541{
6542 struct vmcs02_list *item, *n;
4fa7734c
PB
6543
6544 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6545 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6546 /*
6547 * Something will leak if the above WARN triggers. Better than
6548 * a use-after-free.
6549 */
6550 if (vmx->loaded_vmcs == &item->vmcs02)
6551 continue;
6552
6553 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6554 list_del(&item->list);
6555 kfree(item);
4fa7734c 6556 vmx->nested.vmcs02_num--;
ff2f6fe9 6557 }
ff2f6fe9
NHE
6558}
6559
0658fbaa
ACL
6560/*
6561 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6562 * set the success or error code of an emulated VMX instruction, as specified
6563 * by Vol 2B, VMX Instruction Reference, "Conventions".
6564 */
6565static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6566{
6567 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6568 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6569 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6570}
6571
6572static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6573{
6574 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6575 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6576 X86_EFLAGS_SF | X86_EFLAGS_OF))
6577 | X86_EFLAGS_CF);
6578}
6579
145c28dd 6580static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6581 u32 vm_instruction_error)
6582{
6583 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6584 /*
6585 * failValid writes the error number to the current VMCS, which
6586 * can't be done there isn't a current VMCS.
6587 */
6588 nested_vmx_failInvalid(vcpu);
6589 return;
6590 }
6591 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6592 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6593 X86_EFLAGS_SF | X86_EFLAGS_OF))
6594 | X86_EFLAGS_ZF);
6595 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6596 /*
6597 * We don't need to force a shadow sync because
6598 * VM_INSTRUCTION_ERROR is not shadowed
6599 */
6600}
145c28dd 6601
ff651cb6
WV
6602static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6603{
6604 /* TODO: not to reset guest simply here. */
6605 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6606 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6607}
6608
f4124500
JK
6609static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6610{
6611 struct vcpu_vmx *vmx =
6612 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6613
6614 vmx->nested.preemption_timer_expired = true;
6615 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6616 kvm_vcpu_kick(&vmx->vcpu);
6617
6618 return HRTIMER_NORESTART;
6619}
6620
19677e32
BD
6621/*
6622 * Decode the memory-address operand of a vmx instruction, as recorded on an
6623 * exit caused by such an instruction (run by a guest hypervisor).
6624 * On success, returns 0. When the operand is invalid, returns 1 and throws
6625 * #UD or #GP.
6626 */
6627static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6628 unsigned long exit_qualification,
f9eb4af6 6629 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6630{
f9eb4af6
EK
6631 gva_t off;
6632 bool exn;
6633 struct kvm_segment s;
6634
19677e32
BD
6635 /*
6636 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6637 * Execution", on an exit, vmx_instruction_info holds most of the
6638 * addressing components of the operand. Only the displacement part
6639 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6640 * For how an actual address is calculated from all these components,
6641 * refer to Vol. 1, "Operand Addressing".
6642 */
6643 int scaling = vmx_instruction_info & 3;
6644 int addr_size = (vmx_instruction_info >> 7) & 7;
6645 bool is_reg = vmx_instruction_info & (1u << 10);
6646 int seg_reg = (vmx_instruction_info >> 15) & 7;
6647 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6648 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6649 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6650 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6651
6652 if (is_reg) {
6653 kvm_queue_exception(vcpu, UD_VECTOR);
6654 return 1;
6655 }
6656
6657 /* Addr = segment_base + offset */
6658 /* offset = base + [index * scale] + displacement */
f9eb4af6 6659 off = exit_qualification; /* holds the displacement */
19677e32 6660 if (base_is_valid)
f9eb4af6 6661 off += kvm_register_read(vcpu, base_reg);
19677e32 6662 if (index_is_valid)
f9eb4af6
EK
6663 off += kvm_register_read(vcpu, index_reg)<<scaling;
6664 vmx_get_segment(vcpu, &s, seg_reg);
6665 *ret = s.base + off;
19677e32
BD
6666
6667 if (addr_size == 1) /* 32 bit */
6668 *ret &= 0xffffffff;
6669
f9eb4af6
EK
6670 /* Checks for #GP/#SS exceptions. */
6671 exn = false;
6672 if (is_protmode(vcpu)) {
6673 /* Protected mode: apply checks for segment validity in the
6674 * following order:
6675 * - segment type check (#GP(0) may be thrown)
6676 * - usability check (#GP(0)/#SS(0))
6677 * - limit check (#GP(0)/#SS(0))
6678 */
6679 if (wr)
6680 /* #GP(0) if the destination operand is located in a
6681 * read-only data segment or any code segment.
6682 */
6683 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6684 else
6685 /* #GP(0) if the source operand is located in an
6686 * execute-only code segment
6687 */
6688 exn = ((s.type & 0xa) == 8);
6689 }
6690 if (exn) {
6691 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6692 return 1;
6693 }
6694 if (is_long_mode(vcpu)) {
6695 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6696 * non-canonical form. This is an only check for long mode.
6697 */
6698 exn = is_noncanonical_address(*ret);
6699 } else if (is_protmode(vcpu)) {
6700 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6701 */
6702 exn = (s.unusable != 0);
6703 /* Protected mode: #GP(0)/#SS(0) if the memory
6704 * operand is outside the segment limit.
6705 */
6706 exn = exn || (off + sizeof(u64) > s.limit);
6707 }
6708 if (exn) {
6709 kvm_queue_exception_e(vcpu,
6710 seg_reg == VCPU_SREG_SS ?
6711 SS_VECTOR : GP_VECTOR,
6712 0);
6713 return 1;
6714 }
6715
19677e32
BD
6716 return 0;
6717}
6718
3573e22c
BD
6719/*
6720 * This function performs the various checks including
6721 * - if it's 4KB aligned
6722 * - No bits beyond the physical address width are set
6723 * - Returns 0 on success or else 1
4291b588 6724 * (Intel SDM Section 30.3)
3573e22c 6725 */
4291b588
BD
6726static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6727 gpa_t *vmpointer)
3573e22c
BD
6728{
6729 gva_t gva;
6730 gpa_t vmptr;
6731 struct x86_exception e;
6732 struct page *page;
6733 struct vcpu_vmx *vmx = to_vmx(vcpu);
6734 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6735
6736 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6737 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6738 return 1;
6739
6740 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6741 sizeof(vmptr), &e)) {
6742 kvm_inject_page_fault(vcpu, &e);
6743 return 1;
6744 }
6745
6746 switch (exit_reason) {
6747 case EXIT_REASON_VMON:
6748 /*
6749 * SDM 3: 24.11.5
6750 * The first 4 bytes of VMXON region contain the supported
6751 * VMCS revision identifier
6752 *
6753 * Note - IA32_VMX_BASIC[48] will never be 1
6754 * for the nested case;
6755 * which replaces physical address width with 32
6756 *
6757 */
bc39c4db 6758 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6759 nested_vmx_failInvalid(vcpu);
6760 skip_emulated_instruction(vcpu);
6761 return 1;
6762 }
6763
6764 page = nested_get_page(vcpu, vmptr);
6765 if (page == NULL ||
6766 *(u32 *)kmap(page) != VMCS12_REVISION) {
6767 nested_vmx_failInvalid(vcpu);
6768 kunmap(page);
6769 skip_emulated_instruction(vcpu);
6770 return 1;
6771 }
6772 kunmap(page);
6773 vmx->nested.vmxon_ptr = vmptr;
6774 break;
4291b588 6775 case EXIT_REASON_VMCLEAR:
bc39c4db 6776 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6777 nested_vmx_failValid(vcpu,
6778 VMXERR_VMCLEAR_INVALID_ADDRESS);
6779 skip_emulated_instruction(vcpu);
6780 return 1;
6781 }
6782
6783 if (vmptr == vmx->nested.vmxon_ptr) {
6784 nested_vmx_failValid(vcpu,
6785 VMXERR_VMCLEAR_VMXON_POINTER);
6786 skip_emulated_instruction(vcpu);
6787 return 1;
6788 }
6789 break;
6790 case EXIT_REASON_VMPTRLD:
bc39c4db 6791 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6792 nested_vmx_failValid(vcpu,
6793 VMXERR_VMPTRLD_INVALID_ADDRESS);
6794 skip_emulated_instruction(vcpu);
6795 return 1;
6796 }
3573e22c 6797
4291b588
BD
6798 if (vmptr == vmx->nested.vmxon_ptr) {
6799 nested_vmx_failValid(vcpu,
6800 VMXERR_VMCLEAR_VMXON_POINTER);
6801 skip_emulated_instruction(vcpu);
6802 return 1;
6803 }
6804 break;
3573e22c
BD
6805 default:
6806 return 1; /* shouldn't happen */
6807 }
6808
4291b588
BD
6809 if (vmpointer)
6810 *vmpointer = vmptr;
3573e22c
BD
6811 return 0;
6812}
6813
ec378aee
NHE
6814/*
6815 * Emulate the VMXON instruction.
6816 * Currently, we just remember that VMX is active, and do not save or even
6817 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6818 * do not currently need to store anything in that guest-allocated memory
6819 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6820 * argument is different from the VMXON pointer (which the spec says they do).
6821 */
6822static int handle_vmon(struct kvm_vcpu *vcpu)
6823{
6824 struct kvm_segment cs;
6825 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6826 struct vmcs *shadow_vmcs;
b3897a49
NHE
6827 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6828 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6829
6830 /* The Intel VMX Instruction Reference lists a bunch of bits that
6831 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6832 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6833 * Otherwise, we should fail with #UD. We test these now:
6834 */
6835 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6836 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6837 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6838 kvm_queue_exception(vcpu, UD_VECTOR);
6839 return 1;
6840 }
6841
6842 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6843 if (is_long_mode(vcpu) && !cs.l) {
6844 kvm_queue_exception(vcpu, UD_VECTOR);
6845 return 1;
6846 }
6847
6848 if (vmx_get_cpl(vcpu)) {
6849 kvm_inject_gp(vcpu, 0);
6850 return 1;
6851 }
3573e22c 6852
4291b588 6853 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6854 return 1;
6855
145c28dd
AG
6856 if (vmx->nested.vmxon) {
6857 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6858 skip_emulated_instruction(vcpu);
6859 return 1;
6860 }
b3897a49
NHE
6861
6862 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6863 != VMXON_NEEDED_FEATURES) {
6864 kvm_inject_gp(vcpu, 0);
6865 return 1;
6866 }
6867
8de48833
AG
6868 if (enable_shadow_vmcs) {
6869 shadow_vmcs = alloc_vmcs();
6870 if (!shadow_vmcs)
6871 return -ENOMEM;
6872 /* mark vmcs as shadow */
6873 shadow_vmcs->revision_id |= (1u << 31);
6874 /* init shadow vmcs */
6875 vmcs_clear(shadow_vmcs);
6876 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6877 }
ec378aee 6878
ff2f6fe9
NHE
6879 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6880 vmx->nested.vmcs02_num = 0;
6881
f4124500
JK
6882 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6883 HRTIMER_MODE_REL);
6884 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6885
ec378aee
NHE
6886 vmx->nested.vmxon = true;
6887
6888 skip_emulated_instruction(vcpu);
a25eb114 6889 nested_vmx_succeed(vcpu);
ec378aee
NHE
6890 return 1;
6891}
6892
6893/*
6894 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6895 * for running VMX instructions (except VMXON, whose prerequisites are
6896 * slightly different). It also specifies what exception to inject otherwise.
6897 */
6898static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6899{
6900 struct kvm_segment cs;
6901 struct vcpu_vmx *vmx = to_vmx(vcpu);
6902
6903 if (!vmx->nested.vmxon) {
6904 kvm_queue_exception(vcpu, UD_VECTOR);
6905 return 0;
6906 }
6907
6908 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6909 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6910 (is_long_mode(vcpu) && !cs.l)) {
6911 kvm_queue_exception(vcpu, UD_VECTOR);
6912 return 0;
6913 }
6914
6915 if (vmx_get_cpl(vcpu)) {
6916 kvm_inject_gp(vcpu, 0);
6917 return 0;
6918 }
6919
6920 return 1;
6921}
6922
e7953d7f
AG
6923static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6924{
9a2a05b9
PB
6925 if (vmx->nested.current_vmptr == -1ull)
6926 return;
6927
6928 /* current_vmptr and current_vmcs12 are always set/reset together */
6929 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6930 return;
6931
012f83cb 6932 if (enable_shadow_vmcs) {
9a2a05b9
PB
6933 /* copy to memory all shadowed fields in case
6934 they were modified */
6935 copy_shadow_to_vmcs12(vmx);
6936 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
6937 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6938 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 6939 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6940 }
705699a1 6941 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6942 kunmap(vmx->nested.current_vmcs12_page);
6943 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6944 vmx->nested.current_vmptr = -1ull;
6945 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6946}
6947
ec378aee
NHE
6948/*
6949 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6950 * just stops using VMX.
6951 */
6952static void free_nested(struct vcpu_vmx *vmx)
6953{
6954 if (!vmx->nested.vmxon)
6955 return;
9a2a05b9 6956
ec378aee 6957 vmx->nested.vmxon = false;
5c614b35 6958 free_vpid(vmx->nested.vpid02);
9a2a05b9 6959 nested_release_vmcs12(vmx);
e7953d7f
AG
6960 if (enable_shadow_vmcs)
6961 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6962 /* Unpin physical memory we referred to in current vmcs02 */
6963 if (vmx->nested.apic_access_page) {
6964 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6965 vmx->nested.apic_access_page = NULL;
fe3ef05c 6966 }
a7c0b07d
WL
6967 if (vmx->nested.virtual_apic_page) {
6968 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6969 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6970 }
705699a1
WV
6971 if (vmx->nested.pi_desc_page) {
6972 kunmap(vmx->nested.pi_desc_page);
6973 nested_release_page(vmx->nested.pi_desc_page);
6974 vmx->nested.pi_desc_page = NULL;
6975 vmx->nested.pi_desc = NULL;
6976 }
ff2f6fe9
NHE
6977
6978 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6979}
6980
6981/* Emulate the VMXOFF instruction */
6982static int handle_vmoff(struct kvm_vcpu *vcpu)
6983{
6984 if (!nested_vmx_check_permission(vcpu))
6985 return 1;
6986 free_nested(to_vmx(vcpu));
6987 skip_emulated_instruction(vcpu);
a25eb114 6988 nested_vmx_succeed(vcpu);
ec378aee
NHE
6989 return 1;
6990}
6991
27d6c865
NHE
6992/* Emulate the VMCLEAR instruction */
6993static int handle_vmclear(struct kvm_vcpu *vcpu)
6994{
6995 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6996 gpa_t vmptr;
6997 struct vmcs12 *vmcs12;
6998 struct page *page;
27d6c865
NHE
6999
7000 if (!nested_vmx_check_permission(vcpu))
7001 return 1;
7002
4291b588 7003 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 7004 return 1;
27d6c865 7005
9a2a05b9 7006 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7007 nested_release_vmcs12(vmx);
27d6c865
NHE
7008
7009 page = nested_get_page(vcpu, vmptr);
7010 if (page == NULL) {
7011 /*
7012 * For accurate processor emulation, VMCLEAR beyond available
7013 * physical memory should do nothing at all. However, it is
7014 * possible that a nested vmx bug, not a guest hypervisor bug,
7015 * resulted in this case, so let's shut down before doing any
7016 * more damage:
7017 */
7018 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7019 return 1;
7020 }
7021 vmcs12 = kmap(page);
7022 vmcs12->launch_state = 0;
7023 kunmap(page);
7024 nested_release_page(page);
7025
7026 nested_free_vmcs02(vmx, vmptr);
7027
7028 skip_emulated_instruction(vcpu);
7029 nested_vmx_succeed(vcpu);
7030 return 1;
7031}
7032
cd232ad0
NHE
7033static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7034
7035/* Emulate the VMLAUNCH instruction */
7036static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7037{
7038 return nested_vmx_run(vcpu, true);
7039}
7040
7041/* Emulate the VMRESUME instruction */
7042static int handle_vmresume(struct kvm_vcpu *vcpu)
7043{
7044
7045 return nested_vmx_run(vcpu, false);
7046}
7047
49f705c5
NHE
7048enum vmcs_field_type {
7049 VMCS_FIELD_TYPE_U16 = 0,
7050 VMCS_FIELD_TYPE_U64 = 1,
7051 VMCS_FIELD_TYPE_U32 = 2,
7052 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7053};
7054
7055static inline int vmcs_field_type(unsigned long field)
7056{
7057 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7058 return VMCS_FIELD_TYPE_U32;
7059 return (field >> 13) & 0x3 ;
7060}
7061
7062static inline int vmcs_field_readonly(unsigned long field)
7063{
7064 return (((field >> 10) & 0x3) == 1);
7065}
7066
7067/*
7068 * Read a vmcs12 field. Since these can have varying lengths and we return
7069 * one type, we chose the biggest type (u64) and zero-extend the return value
7070 * to that size. Note that the caller, handle_vmread, might need to use only
7071 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7072 * 64-bit fields are to be returned).
7073 */
a2ae9df7
PB
7074static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7075 unsigned long field, u64 *ret)
49f705c5
NHE
7076{
7077 short offset = vmcs_field_to_offset(field);
7078 char *p;
7079
7080 if (offset < 0)
a2ae9df7 7081 return offset;
49f705c5
NHE
7082
7083 p = ((char *)(get_vmcs12(vcpu))) + offset;
7084
7085 switch (vmcs_field_type(field)) {
7086 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7087 *ret = *((natural_width *)p);
a2ae9df7 7088 return 0;
49f705c5
NHE
7089 case VMCS_FIELD_TYPE_U16:
7090 *ret = *((u16 *)p);
a2ae9df7 7091 return 0;
49f705c5
NHE
7092 case VMCS_FIELD_TYPE_U32:
7093 *ret = *((u32 *)p);
a2ae9df7 7094 return 0;
49f705c5
NHE
7095 case VMCS_FIELD_TYPE_U64:
7096 *ret = *((u64 *)p);
a2ae9df7 7097 return 0;
49f705c5 7098 default:
a2ae9df7
PB
7099 WARN_ON(1);
7100 return -ENOENT;
49f705c5
NHE
7101 }
7102}
7103
20b97fea 7104
a2ae9df7
PB
7105static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7106 unsigned long field, u64 field_value){
20b97fea
AG
7107 short offset = vmcs_field_to_offset(field);
7108 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7109 if (offset < 0)
a2ae9df7 7110 return offset;
20b97fea
AG
7111
7112 switch (vmcs_field_type(field)) {
7113 case VMCS_FIELD_TYPE_U16:
7114 *(u16 *)p = field_value;
a2ae9df7 7115 return 0;
20b97fea
AG
7116 case VMCS_FIELD_TYPE_U32:
7117 *(u32 *)p = field_value;
a2ae9df7 7118 return 0;
20b97fea
AG
7119 case VMCS_FIELD_TYPE_U64:
7120 *(u64 *)p = field_value;
a2ae9df7 7121 return 0;
20b97fea
AG
7122 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7123 *(natural_width *)p = field_value;
a2ae9df7 7124 return 0;
20b97fea 7125 default:
a2ae9df7
PB
7126 WARN_ON(1);
7127 return -ENOENT;
20b97fea
AG
7128 }
7129
7130}
7131
16f5b903
AG
7132static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7133{
7134 int i;
7135 unsigned long field;
7136 u64 field_value;
7137 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
7138 const unsigned long *fields = shadow_read_write_fields;
7139 const int num_fields = max_shadow_read_write_fields;
16f5b903 7140
282da870
JK
7141 preempt_disable();
7142
16f5b903
AG
7143 vmcs_load(shadow_vmcs);
7144
7145 for (i = 0; i < num_fields; i++) {
7146 field = fields[i];
7147 switch (vmcs_field_type(field)) {
7148 case VMCS_FIELD_TYPE_U16:
7149 field_value = vmcs_read16(field);
7150 break;
7151 case VMCS_FIELD_TYPE_U32:
7152 field_value = vmcs_read32(field);
7153 break;
7154 case VMCS_FIELD_TYPE_U64:
7155 field_value = vmcs_read64(field);
7156 break;
7157 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7158 field_value = vmcs_readl(field);
7159 break;
a2ae9df7
PB
7160 default:
7161 WARN_ON(1);
7162 continue;
16f5b903
AG
7163 }
7164 vmcs12_write_any(&vmx->vcpu, field, field_value);
7165 }
7166
7167 vmcs_clear(shadow_vmcs);
7168 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7169
7170 preempt_enable();
16f5b903
AG
7171}
7172
c3114420
AG
7173static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7174{
c2bae893
MK
7175 const unsigned long *fields[] = {
7176 shadow_read_write_fields,
7177 shadow_read_only_fields
c3114420 7178 };
c2bae893 7179 const int max_fields[] = {
c3114420
AG
7180 max_shadow_read_write_fields,
7181 max_shadow_read_only_fields
7182 };
7183 int i, q;
7184 unsigned long field;
7185 u64 field_value = 0;
7186 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7187
7188 vmcs_load(shadow_vmcs);
7189
c2bae893 7190 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7191 for (i = 0; i < max_fields[q]; i++) {
7192 field = fields[q][i];
7193 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7194
7195 switch (vmcs_field_type(field)) {
7196 case VMCS_FIELD_TYPE_U16:
7197 vmcs_write16(field, (u16)field_value);
7198 break;
7199 case VMCS_FIELD_TYPE_U32:
7200 vmcs_write32(field, (u32)field_value);
7201 break;
7202 case VMCS_FIELD_TYPE_U64:
7203 vmcs_write64(field, (u64)field_value);
7204 break;
7205 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7206 vmcs_writel(field, (long)field_value);
7207 break;
a2ae9df7
PB
7208 default:
7209 WARN_ON(1);
7210 break;
c3114420
AG
7211 }
7212 }
7213 }
7214
7215 vmcs_clear(shadow_vmcs);
7216 vmcs_load(vmx->loaded_vmcs->vmcs);
7217}
7218
49f705c5
NHE
7219/*
7220 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7221 * used before) all generate the same failure when it is missing.
7222 */
7223static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7224{
7225 struct vcpu_vmx *vmx = to_vmx(vcpu);
7226 if (vmx->nested.current_vmptr == -1ull) {
7227 nested_vmx_failInvalid(vcpu);
7228 skip_emulated_instruction(vcpu);
7229 return 0;
7230 }
7231 return 1;
7232}
7233
7234static int handle_vmread(struct kvm_vcpu *vcpu)
7235{
7236 unsigned long field;
7237 u64 field_value;
7238 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7239 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7240 gva_t gva = 0;
7241
7242 if (!nested_vmx_check_permission(vcpu) ||
7243 !nested_vmx_check_vmcs12(vcpu))
7244 return 1;
7245
7246 /* Decode instruction info and find the field to read */
27e6fb5d 7247 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7248 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7249 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
7250 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7251 skip_emulated_instruction(vcpu);
7252 return 1;
7253 }
7254 /*
7255 * Now copy part of this value to register or memory, as requested.
7256 * Note that the number of bits actually copied is 32 or 64 depending
7257 * on the guest's mode (32 or 64 bit), not on the given field's length.
7258 */
7259 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7260 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7261 field_value);
7262 } else {
7263 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7264 vmx_instruction_info, true, &gva))
49f705c5
NHE
7265 return 1;
7266 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7267 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7268 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7269 }
7270
7271 nested_vmx_succeed(vcpu);
7272 skip_emulated_instruction(vcpu);
7273 return 1;
7274}
7275
7276
7277static int handle_vmwrite(struct kvm_vcpu *vcpu)
7278{
7279 unsigned long field;
7280 gva_t gva;
7281 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7282 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7283 /* The value to write might be 32 or 64 bits, depending on L1's long
7284 * mode, and eventually we need to write that into a field of several
7285 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7286 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7287 * bits into the vmcs12 field.
7288 */
7289 u64 field_value = 0;
7290 struct x86_exception e;
7291
7292 if (!nested_vmx_check_permission(vcpu) ||
7293 !nested_vmx_check_vmcs12(vcpu))
7294 return 1;
7295
7296 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7297 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7298 (((vmx_instruction_info) >> 3) & 0xf));
7299 else {
7300 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7301 vmx_instruction_info, false, &gva))
49f705c5
NHE
7302 return 1;
7303 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7304 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7305 kvm_inject_page_fault(vcpu, &e);
7306 return 1;
7307 }
7308 }
7309
7310
27e6fb5d 7311 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7312 if (vmcs_field_readonly(field)) {
7313 nested_vmx_failValid(vcpu,
7314 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7315 skip_emulated_instruction(vcpu);
7316 return 1;
7317 }
7318
a2ae9df7 7319 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7320 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7321 skip_emulated_instruction(vcpu);
7322 return 1;
7323 }
7324
7325 nested_vmx_succeed(vcpu);
7326 skip_emulated_instruction(vcpu);
7327 return 1;
7328}
7329
63846663
NHE
7330/* Emulate the VMPTRLD instruction */
7331static int handle_vmptrld(struct kvm_vcpu *vcpu)
7332{
7333 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7334 gpa_t vmptr;
63846663
NHE
7335
7336 if (!nested_vmx_check_permission(vcpu))
7337 return 1;
7338
4291b588 7339 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7340 return 1;
63846663
NHE
7341
7342 if (vmx->nested.current_vmptr != vmptr) {
7343 struct vmcs12 *new_vmcs12;
7344 struct page *page;
7345 page = nested_get_page(vcpu, vmptr);
7346 if (page == NULL) {
7347 nested_vmx_failInvalid(vcpu);
7348 skip_emulated_instruction(vcpu);
7349 return 1;
7350 }
7351 new_vmcs12 = kmap(page);
7352 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7353 kunmap(page);
7354 nested_release_page_clean(page);
7355 nested_vmx_failValid(vcpu,
7356 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7357 skip_emulated_instruction(vcpu);
7358 return 1;
7359 }
63846663 7360
9a2a05b9 7361 nested_release_vmcs12(vmx);
63846663
NHE
7362 vmx->nested.current_vmptr = vmptr;
7363 vmx->nested.current_vmcs12 = new_vmcs12;
7364 vmx->nested.current_vmcs12_page = page;
012f83cb 7365 if (enable_shadow_vmcs) {
7ec36296
XG
7366 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7367 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0
AG
7368 vmcs_write64(VMCS_LINK_POINTER,
7369 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7370 vmx->nested.sync_shadow_vmcs = true;
7371 }
63846663
NHE
7372 }
7373
7374 nested_vmx_succeed(vcpu);
7375 skip_emulated_instruction(vcpu);
7376 return 1;
7377}
7378
6a4d7550
NHE
7379/* Emulate the VMPTRST instruction */
7380static int handle_vmptrst(struct kvm_vcpu *vcpu)
7381{
7382 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7383 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7384 gva_t vmcs_gva;
7385 struct x86_exception e;
7386
7387 if (!nested_vmx_check_permission(vcpu))
7388 return 1;
7389
7390 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7391 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7392 return 1;
7393 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7394 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7395 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7396 sizeof(u64), &e)) {
7397 kvm_inject_page_fault(vcpu, &e);
7398 return 1;
7399 }
7400 nested_vmx_succeed(vcpu);
7401 skip_emulated_instruction(vcpu);
7402 return 1;
7403}
7404
bfd0a56b
NHE
7405/* Emulate the INVEPT instruction */
7406static int handle_invept(struct kvm_vcpu *vcpu)
7407{
b9c237bb 7408 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7409 u32 vmx_instruction_info, types;
7410 unsigned long type;
7411 gva_t gva;
7412 struct x86_exception e;
7413 struct {
7414 u64 eptp, gpa;
7415 } operand;
bfd0a56b 7416
b9c237bb
WV
7417 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7418 SECONDARY_EXEC_ENABLE_EPT) ||
7419 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7420 kvm_queue_exception(vcpu, UD_VECTOR);
7421 return 1;
7422 }
7423
7424 if (!nested_vmx_check_permission(vcpu))
7425 return 1;
7426
7427 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7428 kvm_queue_exception(vcpu, UD_VECTOR);
7429 return 1;
7430 }
7431
7432 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7433 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7434
b9c237bb 7435 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7436
7437 if (!(types & (1UL << type))) {
7438 nested_vmx_failValid(vcpu,
7439 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
2849eb4f 7440 skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7441 return 1;
7442 }
7443
7444 /* According to the Intel VMX instruction reference, the memory
7445 * operand is read even if it isn't needed (e.g., for type==global)
7446 */
7447 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7448 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7449 return 1;
7450 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7451 sizeof(operand), &e)) {
7452 kvm_inject_page_fault(vcpu, &e);
7453 return 1;
7454 }
7455
7456 switch (type) {
bfd0a56b
NHE
7457 case VMX_EPT_EXTENT_GLOBAL:
7458 kvm_mmu_sync_roots(vcpu);
77c3913b 7459 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7460 nested_vmx_succeed(vcpu);
7461 break;
7462 default:
4b855078 7463 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7464 BUG_ON(1);
7465 break;
7466 }
7467
7468 skip_emulated_instruction(vcpu);
7469 return 1;
7470}
7471
a642fc30
PM
7472static int handle_invvpid(struct kvm_vcpu *vcpu)
7473{
99b83ac8
WL
7474 struct vcpu_vmx *vmx = to_vmx(vcpu);
7475 u32 vmx_instruction_info;
7476 unsigned long type, types;
7477 gva_t gva;
7478 struct x86_exception e;
7479 int vpid;
7480
7481 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7482 SECONDARY_EXEC_ENABLE_VPID) ||
7483 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7484 kvm_queue_exception(vcpu, UD_VECTOR);
7485 return 1;
7486 }
7487
7488 if (!nested_vmx_check_permission(vcpu))
7489 return 1;
7490
7491 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7492 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7493
7494 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7495
7496 if (!(types & (1UL << type))) {
7497 nested_vmx_failValid(vcpu,
7498 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
f6870ee9 7499 skip_emulated_instruction(vcpu);
99b83ac8
WL
7500 return 1;
7501 }
7502
7503 /* according to the intel vmx instruction reference, the memory
7504 * operand is read even if it isn't needed (e.g., for type==global)
7505 */
7506 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7507 vmx_instruction_info, false, &gva))
7508 return 1;
7509 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7510 sizeof(u32), &e)) {
7511 kvm_inject_page_fault(vcpu, &e);
7512 return 1;
7513 }
7514
7515 switch (type) {
ef697a71
PB
7516 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7517 /*
7518 * Old versions of KVM use the single-context version so we
7519 * have to support it; just treat it the same as all-context.
7520 */
99b83ac8 7521 case VMX_VPID_EXTENT_ALL_CONTEXT:
5c614b35 7522 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
99b83ac8
WL
7523 nested_vmx_succeed(vcpu);
7524 break;
7525 default:
ef697a71 7526 /* Trap individual address invalidation invvpid calls */
99b83ac8
WL
7527 BUG_ON(1);
7528 break;
7529 }
7530
7531 skip_emulated_instruction(vcpu);
a642fc30
PM
7532 return 1;
7533}
7534
843e4330
KH
7535static int handle_pml_full(struct kvm_vcpu *vcpu)
7536{
7537 unsigned long exit_qualification;
7538
7539 trace_kvm_pml_full(vcpu->vcpu_id);
7540
7541 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7542
7543 /*
7544 * PML buffer FULL happened while executing iret from NMI,
7545 * "blocked by NMI" bit has to be set before next VM entry.
7546 */
7547 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7548 cpu_has_virtual_nmis() &&
7549 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7550 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7551 GUEST_INTR_STATE_NMI);
7552
7553 /*
7554 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7555 * here.., and there's no userspace involvement needed for PML.
7556 */
7557 return 1;
7558}
7559
8b3e34e4
XG
7560static int handle_pcommit(struct kvm_vcpu *vcpu)
7561{
7562 /* we never catch pcommit instruct for L1 guest. */
7563 WARN_ON(1);
7564 return 1;
7565}
7566
6aa8b732
AK
7567/*
7568 * The exit handlers return 1 if the exit was handled fully and guest execution
7569 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7570 * to be done to userspace and return 0.
7571 */
772e0318 7572static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7573 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7574 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7575 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7576 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7577 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7578 [EXIT_REASON_CR_ACCESS] = handle_cr,
7579 [EXIT_REASON_DR_ACCESS] = handle_dr,
7580 [EXIT_REASON_CPUID] = handle_cpuid,
7581 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7582 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7583 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7584 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7585 [EXIT_REASON_INVD] = handle_invd,
a7052897 7586 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7587 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7588 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7589 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7590 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7591 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7592 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7593 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7594 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7595 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7596 [EXIT_REASON_VMOFF] = handle_vmoff,
7597 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7598 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7599 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7600 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7601 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7602 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7603 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7604 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7605 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7606 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7607 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7608 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7609 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7610 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7611 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7612 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7613 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7614 [EXIT_REASON_XSAVES] = handle_xsaves,
7615 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7616 [EXIT_REASON_PML_FULL] = handle_pml_full,
8b3e34e4 7617 [EXIT_REASON_PCOMMIT] = handle_pcommit,
6aa8b732
AK
7618};
7619
7620static const int kvm_vmx_max_exit_handlers =
50a3485c 7621 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7622
908a7bdd
JK
7623static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7624 struct vmcs12 *vmcs12)
7625{
7626 unsigned long exit_qualification;
7627 gpa_t bitmap, last_bitmap;
7628 unsigned int port;
7629 int size;
7630 u8 b;
7631
908a7bdd 7632 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7633 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7634
7635 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7636
7637 port = exit_qualification >> 16;
7638 size = (exit_qualification & 7) + 1;
7639
7640 last_bitmap = (gpa_t)-1;
7641 b = -1;
7642
7643 while (size > 0) {
7644 if (port < 0x8000)
7645 bitmap = vmcs12->io_bitmap_a;
7646 else if (port < 0x10000)
7647 bitmap = vmcs12->io_bitmap_b;
7648 else
1d804d07 7649 return true;
908a7bdd
JK
7650 bitmap += (port & 0x7fff) / 8;
7651
7652 if (last_bitmap != bitmap)
54bf36aa 7653 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7654 return true;
908a7bdd 7655 if (b & (1 << (port & 7)))
1d804d07 7656 return true;
908a7bdd
JK
7657
7658 port++;
7659 size--;
7660 last_bitmap = bitmap;
7661 }
7662
1d804d07 7663 return false;
908a7bdd
JK
7664}
7665
644d711a
NHE
7666/*
7667 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7668 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7669 * disinterest in the current event (read or write a specific MSR) by using an
7670 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7671 */
7672static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7673 struct vmcs12 *vmcs12, u32 exit_reason)
7674{
7675 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7676 gpa_t bitmap;
7677
cbd29cb6 7678 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7679 return true;
644d711a
NHE
7680
7681 /*
7682 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7683 * for the four combinations of read/write and low/high MSR numbers.
7684 * First we need to figure out which of the four to use:
7685 */
7686 bitmap = vmcs12->msr_bitmap;
7687 if (exit_reason == EXIT_REASON_MSR_WRITE)
7688 bitmap += 2048;
7689 if (msr_index >= 0xc0000000) {
7690 msr_index -= 0xc0000000;
7691 bitmap += 1024;
7692 }
7693
7694 /* Then read the msr_index'th bit from this bitmap: */
7695 if (msr_index < 1024*8) {
7696 unsigned char b;
54bf36aa 7697 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7698 return true;
644d711a
NHE
7699 return 1 & (b >> (msr_index & 7));
7700 } else
1d804d07 7701 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7702}
7703
7704/*
7705 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7706 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7707 * intercept (via guest_host_mask etc.) the current event.
7708 */
7709static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7710 struct vmcs12 *vmcs12)
7711{
7712 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7713 int cr = exit_qualification & 15;
7714 int reg = (exit_qualification >> 8) & 15;
1e32c079 7715 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7716
7717 switch ((exit_qualification >> 4) & 3) {
7718 case 0: /* mov to cr */
7719 switch (cr) {
7720 case 0:
7721 if (vmcs12->cr0_guest_host_mask &
7722 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7723 return true;
644d711a
NHE
7724 break;
7725 case 3:
7726 if ((vmcs12->cr3_target_count >= 1 &&
7727 vmcs12->cr3_target_value0 == val) ||
7728 (vmcs12->cr3_target_count >= 2 &&
7729 vmcs12->cr3_target_value1 == val) ||
7730 (vmcs12->cr3_target_count >= 3 &&
7731 vmcs12->cr3_target_value2 == val) ||
7732 (vmcs12->cr3_target_count >= 4 &&
7733 vmcs12->cr3_target_value3 == val))
1d804d07 7734 return false;
644d711a 7735 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7736 return true;
644d711a
NHE
7737 break;
7738 case 4:
7739 if (vmcs12->cr4_guest_host_mask &
7740 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7741 return true;
644d711a
NHE
7742 break;
7743 case 8:
7744 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7745 return true;
644d711a
NHE
7746 break;
7747 }
7748 break;
7749 case 2: /* clts */
7750 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7751 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7752 return true;
644d711a
NHE
7753 break;
7754 case 1: /* mov from cr */
7755 switch (cr) {
7756 case 3:
7757 if (vmcs12->cpu_based_vm_exec_control &
7758 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7759 return true;
644d711a
NHE
7760 break;
7761 case 8:
7762 if (vmcs12->cpu_based_vm_exec_control &
7763 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7764 return true;
644d711a
NHE
7765 break;
7766 }
7767 break;
7768 case 3: /* lmsw */
7769 /*
7770 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7771 * cr0. Other attempted changes are ignored, with no exit.
7772 */
7773 if (vmcs12->cr0_guest_host_mask & 0xe &
7774 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7775 return true;
644d711a
NHE
7776 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7777 !(vmcs12->cr0_read_shadow & 0x1) &&
7778 (val & 0x1))
1d804d07 7779 return true;
644d711a
NHE
7780 break;
7781 }
1d804d07 7782 return false;
644d711a
NHE
7783}
7784
7785/*
7786 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7787 * should handle it ourselves in L0 (and then continue L2). Only call this
7788 * when in is_guest_mode (L2).
7789 */
7790static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7791{
644d711a
NHE
7792 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7793 struct vcpu_vmx *vmx = to_vmx(vcpu);
7794 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7795 u32 exit_reason = vmx->exit_reason;
644d711a 7796
542060ea
JK
7797 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7798 vmcs_readl(EXIT_QUALIFICATION),
7799 vmx->idt_vectoring_info,
7800 intr_info,
7801 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7802 KVM_ISA_VMX);
7803
644d711a 7804 if (vmx->nested.nested_run_pending)
1d804d07 7805 return false;
644d711a
NHE
7806
7807 if (unlikely(vmx->fail)) {
bd80158a
JK
7808 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7809 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7810 return true;
644d711a
NHE
7811 }
7812
7813 switch (exit_reason) {
7814 case EXIT_REASON_EXCEPTION_NMI:
7815 if (!is_exception(intr_info))
1d804d07 7816 return false;
644d711a
NHE
7817 else if (is_page_fault(intr_info))
7818 return enable_ept;
e504c909 7819 else if (is_no_device(intr_info) &&
ccf9844e 7820 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 7821 return false;
6f05485d
JK
7822 else if (is_debug(intr_info) &&
7823 vcpu->guest_debug &
7824 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7825 return false;
7826 else if (is_breakpoint(intr_info) &&
7827 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7828 return false;
644d711a
NHE
7829 return vmcs12->exception_bitmap &
7830 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7831 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 7832 return false;
644d711a 7833 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 7834 return true;
644d711a 7835 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7836 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7837 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7838 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 7839 case EXIT_REASON_TASK_SWITCH:
1d804d07 7840 return true;
644d711a 7841 case EXIT_REASON_CPUID:
bc613494 7842 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
7843 return false;
7844 return true;
644d711a
NHE
7845 case EXIT_REASON_HLT:
7846 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7847 case EXIT_REASON_INVD:
1d804d07 7848 return true;
644d711a
NHE
7849 case EXIT_REASON_INVLPG:
7850 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7851 case EXIT_REASON_RDPMC:
7852 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7853 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7854 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7855 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7856 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7857 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7858 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7859 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7860 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7861 /*
7862 * VMX instructions trap unconditionally. This allows L1 to
7863 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7864 */
1d804d07 7865 return true;
644d711a
NHE
7866 case EXIT_REASON_CR_ACCESS:
7867 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7868 case EXIT_REASON_DR_ACCESS:
7869 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7870 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7871 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7872 case EXIT_REASON_MSR_READ:
7873 case EXIT_REASON_MSR_WRITE:
7874 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7875 case EXIT_REASON_INVALID_STATE:
1d804d07 7876 return true;
644d711a
NHE
7877 case EXIT_REASON_MWAIT_INSTRUCTION:
7878 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
7879 case EXIT_REASON_MONITOR_TRAP_FLAG:
7880 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
7881 case EXIT_REASON_MONITOR_INSTRUCTION:
7882 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7883 case EXIT_REASON_PAUSE_INSTRUCTION:
7884 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7885 nested_cpu_has2(vmcs12,
7886 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7887 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 7888 return false;
644d711a 7889 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7890 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7891 case EXIT_REASON_APIC_ACCESS:
7892 return nested_cpu_has2(vmcs12,
7893 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7894 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7895 case EXIT_REASON_EOI_INDUCED:
7896 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 7897 return true;
644d711a 7898 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7899 /*
7900 * L0 always deals with the EPT violation. If nested EPT is
7901 * used, and the nested mmu code discovers that the address is
7902 * missing in the guest EPT table (EPT12), the EPT violation
7903 * will be injected with nested_ept_inject_page_fault()
7904 */
1d804d07 7905 return false;
644d711a 7906 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7907 /*
7908 * L2 never uses directly L1's EPT, but rather L0's own EPT
7909 * table (shadow on EPT) or a merged EPT table that L0 built
7910 * (EPT on EPT). So any problems with the structure of the
7911 * table is L0's fault.
7912 */
1d804d07 7913 return false;
644d711a
NHE
7914 case EXIT_REASON_WBINVD:
7915 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7916 case EXIT_REASON_XSETBV:
1d804d07 7917 return true;
81dc01f7
WL
7918 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7919 /*
7920 * This should never happen, since it is not possible to
7921 * set XSS to a non-zero value---neither in L1 nor in L2.
7922 * If if it were, XSS would have to be checked against
7923 * the XSS exit bitmap in vmcs12.
7924 */
7925 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8b3e34e4
XG
7926 case EXIT_REASON_PCOMMIT:
7927 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
644d711a 7928 default:
1d804d07 7929 return true;
644d711a
NHE
7930 }
7931}
7932
586f9607
AK
7933static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7934{
7935 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7936 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7937}
7938
a3eaa864 7939static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
843e4330
KH
7940{
7941 struct page *pml_pg;
843e4330
KH
7942
7943 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7944 if (!pml_pg)
7945 return -ENOMEM;
7946
7947 vmx->pml_pg = pml_pg;
7948
7949 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7950 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7951
843e4330
KH
7952 return 0;
7953}
7954
a3eaa864 7955static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 7956{
a3eaa864
KH
7957 if (vmx->pml_pg) {
7958 __free_page(vmx->pml_pg);
7959 vmx->pml_pg = NULL;
7960 }
843e4330
KH
7961}
7962
54bf36aa 7963static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 7964{
54bf36aa 7965 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
7966 u64 *pml_buf;
7967 u16 pml_idx;
7968
7969 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7970
7971 /* Do nothing if PML buffer is empty */
7972 if (pml_idx == (PML_ENTITY_NUM - 1))
7973 return;
7974
7975 /* PML index always points to next available PML buffer entity */
7976 if (pml_idx >= PML_ENTITY_NUM)
7977 pml_idx = 0;
7978 else
7979 pml_idx++;
7980
7981 pml_buf = page_address(vmx->pml_pg);
7982 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7983 u64 gpa;
7984
7985 gpa = pml_buf[pml_idx];
7986 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 7987 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
7988 }
7989
7990 /* reset PML index */
7991 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7992}
7993
7994/*
7995 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7996 * Called before reporting dirty_bitmap to userspace.
7997 */
7998static void kvm_flush_pml_buffers(struct kvm *kvm)
7999{
8000 int i;
8001 struct kvm_vcpu *vcpu;
8002 /*
8003 * We only need to kick vcpu out of guest mode here, as PML buffer
8004 * is flushed at beginning of all VMEXITs, and it's obvious that only
8005 * vcpus running in guest are possible to have unflushed GPAs in PML
8006 * buffer.
8007 */
8008 kvm_for_each_vcpu(i, vcpu, kvm)
8009 kvm_vcpu_kick(vcpu);
8010}
8011
4eb64dce
PB
8012static void vmx_dump_sel(char *name, uint32_t sel)
8013{
8014 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8015 name, vmcs_read32(sel),
8016 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8017 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8018 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8019}
8020
8021static void vmx_dump_dtsel(char *name, uint32_t limit)
8022{
8023 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8024 name, vmcs_read32(limit),
8025 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8026}
8027
8028static void dump_vmcs(void)
8029{
8030 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8031 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8032 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8033 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8034 u32 secondary_exec_control = 0;
8035 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8036 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8037 int i, n;
8038
8039 if (cpu_has_secondary_exec_ctrls())
8040 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8041
8042 pr_err("*** Guest State ***\n");
8043 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8044 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8045 vmcs_readl(CR0_GUEST_HOST_MASK));
8046 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8047 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8048 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8049 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8050 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8051 {
845c5b40
PB
8052 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8053 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8054 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8055 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8056 }
8057 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8058 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8059 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8060 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8061 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8062 vmcs_readl(GUEST_SYSENTER_ESP),
8063 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8064 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8065 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8066 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8067 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8068 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8069 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8070 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8071 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8072 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8073 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8074 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8075 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8076 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8077 efer, vmcs_read64(GUEST_IA32_PAT));
8078 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8079 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8080 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8081 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8082 pr_err("PerfGlobCtl = 0x%016llx\n",
8083 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8084 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8085 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8086 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8087 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8088 vmcs_read32(GUEST_ACTIVITY_STATE));
8089 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8090 pr_err("InterruptStatus = %04x\n",
8091 vmcs_read16(GUEST_INTR_STATUS));
8092
8093 pr_err("*** Host State ***\n");
8094 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8095 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8096 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8097 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8098 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8099 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8100 vmcs_read16(HOST_TR_SELECTOR));
8101 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8102 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8103 vmcs_readl(HOST_TR_BASE));
8104 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8105 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8106 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8107 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8108 vmcs_readl(HOST_CR4));
8109 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8110 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8111 vmcs_read32(HOST_IA32_SYSENTER_CS),
8112 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8113 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8114 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8115 vmcs_read64(HOST_IA32_EFER),
8116 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8117 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8118 pr_err("PerfGlobCtl = 0x%016llx\n",
8119 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8120
8121 pr_err("*** Control State ***\n");
8122 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8123 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8124 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8125 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8126 vmcs_read32(EXCEPTION_BITMAP),
8127 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8128 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8129 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8130 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8131 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8132 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8133 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8134 vmcs_read32(VM_EXIT_INTR_INFO),
8135 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8136 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8137 pr_err(" reason=%08x qualification=%016lx\n",
8138 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8139 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8140 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8141 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8142 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8143 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8144 pr_err("TSC Multiplier = 0x%016llx\n",
8145 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8146 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8147 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8148 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8149 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8150 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8151 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8152 n = vmcs_read32(CR3_TARGET_COUNT);
8153 for (i = 0; i + 1 < n; i += 4)
8154 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8155 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8156 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8157 if (i < n)
8158 pr_err("CR3 target%u=%016lx\n",
8159 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8160 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8161 pr_err("PLE Gap=%08x Window=%08x\n",
8162 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8163 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8164 pr_err("Virtual processor ID = 0x%04x\n",
8165 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8166}
8167
6aa8b732
AK
8168/*
8169 * The guest has exited. See if we can fix it or if we need userspace
8170 * assistance.
8171 */
851ba692 8172static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8173{
29bd8a78 8174 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8175 u32 exit_reason = vmx->exit_reason;
1155f76a 8176 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8177
8b89fe1f
PB
8178 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8179
843e4330
KH
8180 /*
8181 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8182 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8183 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8184 * mode as if vcpus is in root mode, the PML buffer must has been
8185 * flushed already.
8186 */
8187 if (enable_pml)
54bf36aa 8188 vmx_flush_pml_buffer(vcpu);
843e4330 8189
80ced186 8190 /* If guest state is invalid, start emulating */
14168786 8191 if (vmx->emulation_required)
80ced186 8192 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8193
644d711a 8194 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8195 nested_vmx_vmexit(vcpu, exit_reason,
8196 vmcs_read32(VM_EXIT_INTR_INFO),
8197 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8198 return 1;
8199 }
8200
5120702e 8201 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8202 dump_vmcs();
5120702e
MG
8203 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8204 vcpu->run->fail_entry.hardware_entry_failure_reason
8205 = exit_reason;
8206 return 0;
8207 }
8208
29bd8a78 8209 if (unlikely(vmx->fail)) {
851ba692
AK
8210 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8211 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8212 = vmcs_read32(VM_INSTRUCTION_ERROR);
8213 return 0;
8214 }
6aa8b732 8215
b9bf6882
XG
8216 /*
8217 * Note:
8218 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8219 * delivery event since it indicates guest is accessing MMIO.
8220 * The vm-exit can be triggered again after return to guest that
8221 * will cause infinite loop.
8222 */
d77c26fc 8223 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8224 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8225 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
8226 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8227 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8228 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8229 vcpu->run->internal.ndata = 2;
8230 vcpu->run->internal.data[0] = vectoring_info;
8231 vcpu->run->internal.data[1] = exit_reason;
8232 return 0;
8233 }
3b86cd99 8234
644d711a
NHE
8235 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8236 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8237 get_vmcs12(vcpu))))) {
c4282df9 8238 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8239 vmx->soft_vnmi_blocked = 0;
3b86cd99 8240 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8241 vcpu->arch.nmi_pending) {
3b86cd99
JK
8242 /*
8243 * This CPU don't support us in finding the end of an
8244 * NMI-blocked window if the guest runs with IRQs
8245 * disabled. So we pull the trigger after 1 s of
8246 * futile waiting, but inform the user about this.
8247 */
8248 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8249 "state on VCPU %d after 1 s timeout\n",
8250 __func__, vcpu->vcpu_id);
8251 vmx->soft_vnmi_blocked = 0;
3b86cd99 8252 }
3b86cd99
JK
8253 }
8254
6aa8b732
AK
8255 if (exit_reason < kvm_vmx_max_exit_handlers
8256 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8257 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8258 else {
2bc19dc3
MT
8259 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8260 kvm_queue_exception(vcpu, UD_VECTOR);
8261 return 1;
6aa8b732 8262 }
6aa8b732
AK
8263}
8264
95ba8273 8265static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8266{
a7c0b07d
WL
8267 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8268
8269 if (is_guest_mode(vcpu) &&
8270 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8271 return;
8272
95ba8273 8273 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8274 vmcs_write32(TPR_THRESHOLD, 0);
8275 return;
8276 }
8277
95ba8273 8278 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8279}
8280
8d14695f
YZ
8281static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8282{
8283 u32 sec_exec_control;
8284
8285 /*
8286 * There is not point to enable virtualize x2apic without enable
8287 * apicv
8288 */
c7c9c56c 8289 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
d62caabb 8290 !kvm_vcpu_apicv_active(vcpu))
8d14695f
YZ
8291 return;
8292
35754c98 8293 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8294 return;
8295
8296 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8297
8298 if (set) {
8299 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8300 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8301 } else {
8302 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8303 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8304 }
8305 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8306
8307 vmx_set_msr_bitmap(vcpu);
8308}
8309
38b99173
TC
8310static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8311{
8312 struct vcpu_vmx *vmx = to_vmx(vcpu);
8313
8314 /*
8315 * Currently we do not handle the nested case where L2 has an
8316 * APIC access page of its own; that page is still pinned.
8317 * Hence, we skip the case where the VCPU is in guest mode _and_
8318 * L1 prepared an APIC access page for L2.
8319 *
8320 * For the case where L1 and L2 share the same APIC access page
8321 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8322 * in the vmcs12), this function will only update either the vmcs01
8323 * or the vmcs02. If the former, the vmcs02 will be updated by
8324 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8325 * the next L2->L1 exit.
8326 */
8327 if (!is_guest_mode(vcpu) ||
8328 !nested_cpu_has2(vmx->nested.current_vmcs12,
8329 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8330 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8331}
8332
67c9dddc 8333static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8334{
8335 u16 status;
8336 u8 old;
8337
67c9dddc
PB
8338 if (max_isr == -1)
8339 max_isr = 0;
c7c9c56c
YZ
8340
8341 status = vmcs_read16(GUEST_INTR_STATUS);
8342 old = status >> 8;
67c9dddc 8343 if (max_isr != old) {
c7c9c56c 8344 status &= 0xff;
67c9dddc 8345 status |= max_isr << 8;
c7c9c56c
YZ
8346 vmcs_write16(GUEST_INTR_STATUS, status);
8347 }
8348}
8349
8350static void vmx_set_rvi(int vector)
8351{
8352 u16 status;
8353 u8 old;
8354
4114c27d
WW
8355 if (vector == -1)
8356 vector = 0;
8357
c7c9c56c
YZ
8358 status = vmcs_read16(GUEST_INTR_STATUS);
8359 old = (u8)status & 0xff;
8360 if ((u8)vector != old) {
8361 status &= ~0xff;
8362 status |= (u8)vector;
8363 vmcs_write16(GUEST_INTR_STATUS, status);
8364 }
8365}
8366
8367static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8368{
4114c27d
WW
8369 if (!is_guest_mode(vcpu)) {
8370 vmx_set_rvi(max_irr);
8371 return;
8372 }
8373
c7c9c56c
YZ
8374 if (max_irr == -1)
8375 return;
8376
963fee16 8377 /*
4114c27d
WW
8378 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8379 * handles it.
963fee16 8380 */
4114c27d 8381 if (nested_exit_on_intr(vcpu))
963fee16
WL
8382 return;
8383
963fee16 8384 /*
4114c27d 8385 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8386 * is run without virtual interrupt delivery.
8387 */
8388 if (!kvm_event_needs_reinjection(vcpu) &&
8389 vmx_interrupt_allowed(vcpu)) {
8390 kvm_queue_interrupt(vcpu, max_irr, false);
8391 vmx_inject_irq(vcpu);
8392 }
c7c9c56c
YZ
8393}
8394
6308630b 8395static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8396{
d62caabb 8397 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8398 return;
8399
c7c9c56c
YZ
8400 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8401 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8402 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8403 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8404}
8405
51aa01d1 8406static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8407{
00eba012
AK
8408 u32 exit_intr_info;
8409
8410 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8411 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8412 return;
8413
c5ca8e57 8414 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8415 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8416
8417 /* Handle machine checks before interrupts are enabled */
00eba012 8418 if (is_machine_check(exit_intr_info))
a0861c02
AK
8419 kvm_machine_check();
8420
20f65983 8421 /* We need to handle NMIs before interrupts are enabled */
00eba012 8422 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8423 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8424 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8425 asm("int $2");
ff9d07a0
ZY
8426 kvm_after_handle_nmi(&vmx->vcpu);
8427 }
51aa01d1 8428}
20f65983 8429
a547c6db
YZ
8430static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8431{
8432 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8433 register void *__sp asm(_ASM_SP);
a547c6db
YZ
8434
8435 /*
8436 * If external interrupt exists, IF bit is set in rflags/eflags on the
8437 * interrupt stack frame, and interrupt will be enabled on a return
8438 * from interrupt handler.
8439 */
8440 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8441 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8442 unsigned int vector;
8443 unsigned long entry;
8444 gate_desc *desc;
8445 struct vcpu_vmx *vmx = to_vmx(vcpu);
8446#ifdef CONFIG_X86_64
8447 unsigned long tmp;
8448#endif
8449
8450 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8451 desc = (gate_desc *)vmx->host_idt_base + vector;
8452 entry = gate_offset(*desc);
8453 asm volatile(
8454#ifdef CONFIG_X86_64
8455 "mov %%" _ASM_SP ", %[sp]\n\t"
8456 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8457 "push $%c[ss]\n\t"
8458 "push %[sp]\n\t"
8459#endif
8460 "pushf\n\t"
8461 "orl $0x200, (%%" _ASM_SP ")\n\t"
8462 __ASM_SIZE(push) " $%c[cs]\n\t"
8463 "call *%[entry]\n\t"
8464 :
8465#ifdef CONFIG_X86_64
3f62de5f 8466 [sp]"=&r"(tmp),
a547c6db 8467#endif
3f62de5f 8468 "+r"(__sp)
a547c6db
YZ
8469 :
8470 [entry]"r"(entry),
8471 [ss]"i"(__KERNEL_DS),
8472 [cs]"i"(__KERNEL_CS)
8473 );
8474 } else
8475 local_irq_enable();
8476}
8477
6d396b55
PB
8478static bool vmx_has_high_real_mode_segbase(void)
8479{
8480 return enable_unrestricted_guest || emulate_invalid_guest_state;
8481}
8482
da8999d3
LJ
8483static bool vmx_mpx_supported(void)
8484{
8485 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8486 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8487}
8488
55412b2e
WL
8489static bool vmx_xsaves_supported(void)
8490{
8491 return vmcs_config.cpu_based_2nd_exec_ctrl &
8492 SECONDARY_EXEC_XSAVES;
8493}
8494
51aa01d1
AK
8495static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8496{
c5ca8e57 8497 u32 exit_intr_info;
51aa01d1
AK
8498 bool unblock_nmi;
8499 u8 vector;
8500 bool idtv_info_valid;
8501
8502 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8503
cf393f75 8504 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8505 if (vmx->nmi_known_unmasked)
8506 return;
c5ca8e57
AK
8507 /*
8508 * Can't use vmx->exit_intr_info since we're not sure what
8509 * the exit reason is.
8510 */
8511 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8512 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8513 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8514 /*
7b4a25cb 8515 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8516 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8517 * a guest IRET fault.
7b4a25cb
GN
8518 * SDM 3: 23.2.2 (September 2008)
8519 * Bit 12 is undefined in any of the following cases:
8520 * If the VM exit sets the valid bit in the IDT-vectoring
8521 * information field.
8522 * If the VM exit is due to a double fault.
cf393f75 8523 */
7b4a25cb
GN
8524 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8525 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8526 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8527 GUEST_INTR_STATE_NMI);
9d58b931
AK
8528 else
8529 vmx->nmi_known_unmasked =
8530 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8531 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8532 } else if (unlikely(vmx->soft_vnmi_blocked))
8533 vmx->vnmi_blocked_time +=
8534 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8535}
8536
3ab66e8a 8537static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8538 u32 idt_vectoring_info,
8539 int instr_len_field,
8540 int error_code_field)
51aa01d1 8541{
51aa01d1
AK
8542 u8 vector;
8543 int type;
8544 bool idtv_info_valid;
8545
8546 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8547
3ab66e8a
JK
8548 vcpu->arch.nmi_injected = false;
8549 kvm_clear_exception_queue(vcpu);
8550 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8551
8552 if (!idtv_info_valid)
8553 return;
8554
3ab66e8a 8555 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8556
668f612f
AK
8557 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8558 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8559
64a7ec06 8560 switch (type) {
37b96e98 8561 case INTR_TYPE_NMI_INTR:
3ab66e8a 8562 vcpu->arch.nmi_injected = true;
668f612f 8563 /*
7b4a25cb 8564 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8565 * Clear bit "block by NMI" before VM entry if a NMI
8566 * delivery faulted.
668f612f 8567 */
3ab66e8a 8568 vmx_set_nmi_mask(vcpu, false);
37b96e98 8569 break;
37b96e98 8570 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8571 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8572 /* fall through */
8573 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8574 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8575 u32 err = vmcs_read32(error_code_field);
851eb667 8576 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8577 } else
851eb667 8578 kvm_requeue_exception(vcpu, vector);
37b96e98 8579 break;
66fd3f7f 8580 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8581 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8582 /* fall through */
37b96e98 8583 case INTR_TYPE_EXT_INTR:
3ab66e8a 8584 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8585 break;
8586 default:
8587 break;
f7d9238f 8588 }
cf393f75
AK
8589}
8590
83422e17
AK
8591static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8592{
3ab66e8a 8593 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8594 VM_EXIT_INSTRUCTION_LEN,
8595 IDT_VECTORING_ERROR_CODE);
8596}
8597
b463a6f7
AK
8598static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8599{
3ab66e8a 8600 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8601 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8602 VM_ENTRY_INSTRUCTION_LEN,
8603 VM_ENTRY_EXCEPTION_ERROR_CODE);
8604
8605 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8606}
8607
d7cd9796
GN
8608static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8609{
8610 int i, nr_msrs;
8611 struct perf_guest_switch_msr *msrs;
8612
8613 msrs = perf_guest_get_msrs(&nr_msrs);
8614
8615 if (!msrs)
8616 return;
8617
8618 for (i = 0; i < nr_msrs; i++)
8619 if (msrs[i].host == msrs[i].guest)
8620 clear_atomic_switch_msr(vmx, msrs[i].msr);
8621 else
8622 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8623 msrs[i].host);
8624}
8625
a3b5ba49 8626static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8627{
a2fa3e9f 8628 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8629 unsigned long debugctlmsr, cr4;
104f226b
AK
8630
8631 /* Record the guest's net vcpu time for enforced NMI injections. */
8632 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8633 vmx->entry_time = ktime_get();
8634
8635 /* Don't enter VMX if guest state is invalid, let the exit handler
8636 start emulation until we arrive back to a valid state */
14168786 8637 if (vmx->emulation_required)
104f226b
AK
8638 return;
8639
a7653ecd
RK
8640 if (vmx->ple_window_dirty) {
8641 vmx->ple_window_dirty = false;
8642 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8643 }
8644
012f83cb
AG
8645 if (vmx->nested.sync_shadow_vmcs) {
8646 copy_vmcs12_to_shadow(vmx);
8647 vmx->nested.sync_shadow_vmcs = false;
8648 }
8649
104f226b
AK
8650 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8651 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8652 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8653 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8654
1e02ce4c 8655 cr4 = cr4_read_shadow();
d974baa3
AL
8656 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8657 vmcs_writel(HOST_CR4, cr4);
8658 vmx->host_state.vmcs_host_cr4 = cr4;
8659 }
8660
104f226b
AK
8661 /* When single-stepping over STI and MOV SS, we must clear the
8662 * corresponding interruptibility bits in the guest state. Otherwise
8663 * vmentry fails as it then expects bit 14 (BS) in pending debug
8664 * exceptions being set, but that's not correct for the guest debugging
8665 * case. */
8666 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8667 vmx_set_interrupt_shadow(vcpu, 0);
8668
1be0e61c
XG
8669 if (vmx->guest_pkru_valid)
8670 __write_pkru(vmx->guest_pkru);
8671
d7cd9796 8672 atomic_switch_perf_msrs(vmx);
2a7921b7 8673 debugctlmsr = get_debugctlmsr();
d7cd9796 8674
d462b819 8675 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8676 asm(
6aa8b732 8677 /* Store host registers */
b188c81f
AK
8678 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8679 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8680 "push %%" _ASM_CX " \n\t"
8681 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8682 "je 1f \n\t"
b188c81f 8683 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8684 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8685 "1: \n\t"
d3edefc0 8686 /* Reload cr2 if changed */
b188c81f
AK
8687 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8688 "mov %%cr2, %%" _ASM_DX " \n\t"
8689 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8690 "je 2f \n\t"
b188c81f 8691 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8692 "2: \n\t"
6aa8b732 8693 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8694 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8695 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8696 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8697 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8698 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8699 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8700 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8701 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8702#ifdef CONFIG_X86_64
e08aa78a
AK
8703 "mov %c[r8](%0), %%r8 \n\t"
8704 "mov %c[r9](%0), %%r9 \n\t"
8705 "mov %c[r10](%0), %%r10 \n\t"
8706 "mov %c[r11](%0), %%r11 \n\t"
8707 "mov %c[r12](%0), %%r12 \n\t"
8708 "mov %c[r13](%0), %%r13 \n\t"
8709 "mov %c[r14](%0), %%r14 \n\t"
8710 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8711#endif
b188c81f 8712 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8713
6aa8b732 8714 /* Enter guest mode */
83287ea4 8715 "jne 1f \n\t"
4ecac3fd 8716 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8717 "jmp 2f \n\t"
8718 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8719 "2: "
6aa8b732 8720 /* Save guest registers, load host registers, keep flags */
b188c81f 8721 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8722 "pop %0 \n\t"
b188c81f
AK
8723 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8724 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8725 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8726 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8727 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8728 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8729 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8730#ifdef CONFIG_X86_64
e08aa78a
AK
8731 "mov %%r8, %c[r8](%0) \n\t"
8732 "mov %%r9, %c[r9](%0) \n\t"
8733 "mov %%r10, %c[r10](%0) \n\t"
8734 "mov %%r11, %c[r11](%0) \n\t"
8735 "mov %%r12, %c[r12](%0) \n\t"
8736 "mov %%r13, %c[r13](%0) \n\t"
8737 "mov %%r14, %c[r14](%0) \n\t"
8738 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8739#endif
b188c81f
AK
8740 "mov %%cr2, %%" _ASM_AX " \n\t"
8741 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8742
b188c81f 8743 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8744 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8745 ".pushsection .rodata \n\t"
8746 ".global vmx_return \n\t"
8747 "vmx_return: " _ASM_PTR " 2b \n\t"
8748 ".popsection"
e08aa78a 8749 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8750 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8751 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8752 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8753 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8754 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8755 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8756 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8757 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8758 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8759 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8760#ifdef CONFIG_X86_64
ad312c7c
ZX
8761 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8762 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8763 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8764 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8765 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8766 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8767 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8768 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8769#endif
40712fae
AK
8770 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8771 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8772 : "cc", "memory"
8773#ifdef CONFIG_X86_64
b188c81f 8774 , "rax", "rbx", "rdi", "rsi"
c2036300 8775 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8776#else
8777 , "eax", "ebx", "edi", "esi"
c2036300
LV
8778#endif
8779 );
6aa8b732 8780
2a7921b7
GN
8781 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8782 if (debugctlmsr)
8783 update_debugctlmsr(debugctlmsr);
8784
aa67f609
AK
8785#ifndef CONFIG_X86_64
8786 /*
8787 * The sysexit path does not restore ds/es, so we must set them to
8788 * a reasonable value ourselves.
8789 *
8790 * We can't defer this to vmx_load_host_state() since that function
8791 * may be executed in interrupt context, which saves and restore segments
8792 * around it, nullifying its effect.
8793 */
8794 loadsegment(ds, __USER_DS);
8795 loadsegment(es, __USER_DS);
8796#endif
8797
6de4f3ad 8798 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8799 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8800 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8801 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8802 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8803 vcpu->arch.regs_dirty = 0;
8804
1155f76a
AK
8805 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8806
d462b819 8807 vmx->loaded_vmcs->launched = 1;
1b6269db 8808
51aa01d1 8809 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 8810
1be0e61c
XG
8811 /*
8812 * eager fpu is enabled if PKEY is supported and CR4 is switched
8813 * back on host, so it is safe to read guest PKRU from current
8814 * XSAVE.
8815 */
8816 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8817 vmx->guest_pkru = __read_pkru();
8818 if (vmx->guest_pkru != vmx->host_pkru) {
8819 vmx->guest_pkru_valid = true;
8820 __write_pkru(vmx->host_pkru);
8821 } else
8822 vmx->guest_pkru_valid = false;
8823 }
8824
e0b890d3
GN
8825 /*
8826 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8827 * we did not inject a still-pending event to L1 now because of
8828 * nested_run_pending, we need to re-enable this bit.
8829 */
8830 if (vmx->nested.nested_run_pending)
8831 kvm_make_request(KVM_REQ_EVENT, vcpu);
8832
8833 vmx->nested.nested_run_pending = 0;
8834
51aa01d1
AK
8835 vmx_complete_atomic_exit(vmx);
8836 vmx_recover_nmi_blocking(vmx);
cf393f75 8837 vmx_complete_interrupts(vmx);
6aa8b732
AK
8838}
8839
4fa7734c
PB
8840static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8841{
8842 struct vcpu_vmx *vmx = to_vmx(vcpu);
8843 int cpu;
8844
8845 if (vmx->loaded_vmcs == &vmx->vmcs01)
8846 return;
8847
8848 cpu = get_cpu();
8849 vmx->loaded_vmcs = &vmx->vmcs01;
8850 vmx_vcpu_put(vcpu);
8851 vmx_vcpu_load(vcpu, cpu);
8852 vcpu->cpu = cpu;
8853 put_cpu();
8854}
8855
6aa8b732
AK
8856static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8857{
fb3f0f51
RR
8858 struct vcpu_vmx *vmx = to_vmx(vcpu);
8859
843e4330 8860 if (enable_pml)
a3eaa864 8861 vmx_destroy_pml_buffer(vmx);
991e7a0e 8862 free_vpid(vmx->vpid);
4fa7734c
PB
8863 leave_guest_mode(vcpu);
8864 vmx_load_vmcs01(vcpu);
26a865f4 8865 free_nested(vmx);
4fa7734c 8866 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8867 kfree(vmx->guest_msrs);
8868 kvm_vcpu_uninit(vcpu);
a4770347 8869 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8870}
8871
fb3f0f51 8872static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8873{
fb3f0f51 8874 int err;
c16f862d 8875 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8876 int cpu;
6aa8b732 8877
a2fa3e9f 8878 if (!vmx)
fb3f0f51
RR
8879 return ERR_PTR(-ENOMEM);
8880
991e7a0e 8881 vmx->vpid = allocate_vpid();
2384d2b3 8882
fb3f0f51
RR
8883 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8884 if (err)
8885 goto free_vcpu;
965b58a5 8886
a2fa3e9f 8887 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8888 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8889 > PAGE_SIZE);
0123be42 8890
be6d05cf 8891 err = -ENOMEM;
fb3f0f51 8892 if (!vmx->guest_msrs) {
fb3f0f51
RR
8893 goto uninit_vcpu;
8894 }
965b58a5 8895
d462b819
NHE
8896 vmx->loaded_vmcs = &vmx->vmcs01;
8897 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8898 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8899 goto free_msrs;
d462b819
NHE
8900 if (!vmm_exclusive)
8901 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8902 loaded_vmcs_init(vmx->loaded_vmcs);
8903 if (!vmm_exclusive)
8904 kvm_cpu_vmxoff();
a2fa3e9f 8905
15ad7146
AK
8906 cpu = get_cpu();
8907 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8908 vmx->vcpu.cpu = cpu;
8b9cf98c 8909 err = vmx_vcpu_setup(vmx);
fb3f0f51 8910 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8911 put_cpu();
fb3f0f51
RR
8912 if (err)
8913 goto free_vmcs;
35754c98 8914 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
8915 err = alloc_apic_access_page(kvm);
8916 if (err)
5e4a0b3c 8917 goto free_vmcs;
a63cb560 8918 }
fb3f0f51 8919
b927a3ce
SY
8920 if (enable_ept) {
8921 if (!kvm->arch.ept_identity_map_addr)
8922 kvm->arch.ept_identity_map_addr =
8923 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8924 err = init_rmode_identity_map(kvm);
8925 if (err)
93ea5388 8926 goto free_vmcs;
b927a3ce 8927 }
b7ebfb05 8928
5c614b35 8929 if (nested) {
b9c237bb 8930 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
8931 vmx->nested.vpid02 = allocate_vpid();
8932 }
b9c237bb 8933
705699a1 8934 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8935 vmx->nested.current_vmptr = -1ull;
8936 vmx->nested.current_vmcs12 = NULL;
8937
843e4330
KH
8938 /*
8939 * If PML is turned on, failure on enabling PML just results in failure
8940 * of creating the vcpu, therefore we can simplify PML logic (by
8941 * avoiding dealing with cases, such as enabling PML partially on vcpus
8942 * for the guest, etc.
8943 */
8944 if (enable_pml) {
a3eaa864 8945 err = vmx_create_pml_buffer(vmx);
843e4330
KH
8946 if (err)
8947 goto free_vmcs;
8948 }
8949
fb3f0f51
RR
8950 return &vmx->vcpu;
8951
8952free_vmcs:
5c614b35 8953 free_vpid(vmx->nested.vpid02);
5f3fbc34 8954 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8955free_msrs:
fb3f0f51
RR
8956 kfree(vmx->guest_msrs);
8957uninit_vcpu:
8958 kvm_vcpu_uninit(&vmx->vcpu);
8959free_vcpu:
991e7a0e 8960 free_vpid(vmx->vpid);
a4770347 8961 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8962 return ERR_PTR(err);
6aa8b732
AK
8963}
8964
002c7f7c
YS
8965static void __init vmx_check_processor_compat(void *rtn)
8966{
8967 struct vmcs_config vmcs_conf;
8968
8969 *(int *)rtn = 0;
8970 if (setup_vmcs_config(&vmcs_conf) < 0)
8971 *(int *)rtn = -EIO;
8972 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8973 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8974 smp_processor_id());
8975 *(int *)rtn = -EIO;
8976 }
8977}
8978
67253af5
SY
8979static int get_ept_level(void)
8980{
8981 return VMX_EPT_DEFAULT_GAW + 1;
8982}
8983
4b12f0de 8984static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8985{
b18d5431
XG
8986 u8 cache;
8987 u64 ipat = 0;
4b12f0de 8988
522c68c4 8989 /* For VT-d and EPT combination
606decd6 8990 * 1. MMIO: always map as UC
522c68c4
SY
8991 * 2. EPT with VT-d:
8992 * a. VT-d without snooping control feature: can't guarantee the
606decd6 8993 * result, try to trust guest.
522c68c4
SY
8994 * b. VT-d with snooping control feature: snooping control feature of
8995 * VT-d engine can guarantee the cache correctness. Just set it
8996 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8997 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8998 * consistent with host MTRR
8999 */
606decd6
PB
9000 if (is_mmio) {
9001 cache = MTRR_TYPE_UNCACHABLE;
9002 goto exit;
9003 }
9004
9005 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9006 ipat = VMX_EPT_IPAT_BIT;
9007 cache = MTRR_TYPE_WRBACK;
9008 goto exit;
9009 }
9010
9011 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9012 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9013 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9014 cache = MTRR_TYPE_WRBACK;
9015 else
9016 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9017 goto exit;
9018 }
9019
ff53604b 9020 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9021
9022exit:
9023 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9024}
9025
17cc3935 9026static int vmx_get_lpage_level(void)
344f414f 9027{
878403b7
SY
9028 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9029 return PT_DIRECTORY_LEVEL;
9030 else
9031 /* For shadow and EPT supported 1GB page */
9032 return PT_PDPE_LEVEL;
344f414f
JR
9033}
9034
feda805f
XG
9035static void vmcs_set_secondary_exec_control(u32 new_ctl)
9036{
9037 /*
9038 * These bits in the secondary execution controls field
9039 * are dynamic, the others are mostly based on the hypervisor
9040 * architecture and the guest's CPUID. Do not touch the
9041 * dynamic bits.
9042 */
9043 u32 mask =
9044 SECONDARY_EXEC_SHADOW_VMCS |
9045 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9046 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9047
9048 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9049
9050 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9051 (new_ctl & ~mask) | (cur_ctl & mask));
9052}
9053
0e851880
SY
9054static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9055{
4e47c7a6
SY
9056 struct kvm_cpuid_entry2 *best;
9057 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9058 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9059
4e47c7a6 9060 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9061 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9062 if (!rdtscp_enabled)
feda805f 9063 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9064
8b97265a 9065 if (nested) {
1cea0ce6 9066 if (rdtscp_enabled)
8b97265a
PB
9067 vmx->nested.nested_vmx_secondary_ctls_high |=
9068 SECONDARY_EXEC_RDTSCP;
9069 else
9070 vmx->nested.nested_vmx_secondary_ctls_high &=
9071 ~SECONDARY_EXEC_RDTSCP;
9072 }
4e47c7a6 9073 }
ad756a16 9074
ad756a16
MJ
9075 /* Exposing INVPCID only when PCID is exposed */
9076 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9077 if (vmx_invpcid_supported() &&
29541bb8
XG
9078 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9079 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9080 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9081
ad756a16 9082 if (best)
4f977045 9083 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9084 }
8b3e34e4 9085
45bdbcfd
HH
9086 if (cpu_has_secondary_exec_ctrls())
9087 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9088
8b3e34e4
XG
9089 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9090 if (guest_cpuid_has_pcommit(vcpu))
9091 vmx->nested.nested_vmx_secondary_ctls_high |=
9092 SECONDARY_EXEC_PCOMMIT;
9093 else
9094 vmx->nested.nested_vmx_secondary_ctls_high &=
9095 ~SECONDARY_EXEC_PCOMMIT;
9096 }
0e851880
SY
9097}
9098
d4330ef2
JR
9099static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9100{
7b8050f5
NHE
9101 if (func == 1 && nested)
9102 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9103}
9104
25d92081
YZ
9105static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9106 struct x86_exception *fault)
9107{
533558bc
JK
9108 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9109 u32 exit_reason;
25d92081
YZ
9110
9111 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9112 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9113 else
533558bc
JK
9114 exit_reason = EXIT_REASON_EPT_VIOLATION;
9115 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9116 vmcs12->guest_physical_address = fault->address;
9117}
9118
155a97a3
NHE
9119/* Callbacks for nested_ept_init_mmu_context: */
9120
9121static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9122{
9123 /* return the page table to be shadowed - in our case, EPT12 */
9124 return get_vmcs12(vcpu)->ept_pointer;
9125}
9126
8a3c1a33 9127static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9128{
ad896af0
PB
9129 WARN_ON(mmu_is_nested(vcpu));
9130 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
9131 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9132 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
9133 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9134 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9135 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9136
9137 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
9138}
9139
9140static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9141{
9142 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9143}
9144
19d5f10b
EK
9145static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9146 u16 error_code)
9147{
9148 bool inequality, bit;
9149
9150 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9151 inequality =
9152 (error_code & vmcs12->page_fault_error_code_mask) !=
9153 vmcs12->page_fault_error_code_match;
9154 return inequality ^ bit;
9155}
9156
feaf0c7d
GN
9157static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9158 struct x86_exception *fault)
9159{
9160 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9161
9162 WARN_ON(!is_guest_mode(vcpu));
9163
19d5f10b 9164 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9165 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9166 vmcs_read32(VM_EXIT_INTR_INFO),
9167 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9168 else
9169 kvm_inject_page_fault(vcpu, fault);
9170}
9171
a2bcba50
WL
9172static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9173 struct vmcs12 *vmcs12)
9174{
9175 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9176 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9177
9178 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9179 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9180 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9181 return false;
9182
9183 /*
9184 * Translate L1 physical address to host physical
9185 * address for vmcs02. Keep the page pinned, so this
9186 * physical address remains valid. We keep a reference
9187 * to it so we can release it later.
9188 */
9189 if (vmx->nested.apic_access_page) /* shouldn't happen */
9190 nested_release_page(vmx->nested.apic_access_page);
9191 vmx->nested.apic_access_page =
9192 nested_get_page(vcpu, vmcs12->apic_access_addr);
9193 }
a7c0b07d
WL
9194
9195 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9196 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9197 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9198 return false;
9199
9200 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9201 nested_release_page(vmx->nested.virtual_apic_page);
9202 vmx->nested.virtual_apic_page =
9203 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9204
9205 /*
9206 * Failing the vm entry is _not_ what the processor does
9207 * but it's basically the only possibility we have.
9208 * We could still enter the guest if CR8 load exits are
9209 * enabled, CR8 store exits are enabled, and virtualize APIC
9210 * access is disabled; in this case the processor would never
9211 * use the TPR shadow and we could simply clear the bit from
9212 * the execution control. But such a configuration is useless,
9213 * so let's keep the code simple.
9214 */
9215 if (!vmx->nested.virtual_apic_page)
9216 return false;
9217 }
9218
705699a1 9219 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9220 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9221 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9222 return false;
9223
9224 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9225 kunmap(vmx->nested.pi_desc_page);
9226 nested_release_page(vmx->nested.pi_desc_page);
9227 }
9228 vmx->nested.pi_desc_page =
9229 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9230 if (!vmx->nested.pi_desc_page)
9231 return false;
9232
9233 vmx->nested.pi_desc =
9234 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9235 if (!vmx->nested.pi_desc) {
9236 nested_release_page_clean(vmx->nested.pi_desc_page);
9237 return false;
9238 }
9239 vmx->nested.pi_desc =
9240 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9241 (unsigned long)(vmcs12->posted_intr_desc_addr &
9242 (PAGE_SIZE - 1)));
9243 }
9244
a2bcba50
WL
9245 return true;
9246}
9247
f4124500
JK
9248static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9249{
9250 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9251 struct vcpu_vmx *vmx = to_vmx(vcpu);
9252
9253 if (vcpu->arch.virtual_tsc_khz == 0)
9254 return;
9255
9256 /* Make sure short timeouts reliably trigger an immediate vmexit.
9257 * hrtimer_start does not guarantee this. */
9258 if (preemption_timeout <= 1) {
9259 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9260 return;
9261 }
9262
9263 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9264 preemption_timeout *= 1000000;
9265 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9266 hrtimer_start(&vmx->nested.preemption_timer,
9267 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9268}
9269
3af18d9c
WV
9270static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9271 struct vmcs12 *vmcs12)
9272{
9273 int maxphyaddr;
9274 u64 addr;
9275
9276 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9277 return 0;
9278
9279 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9280 WARN_ON(1);
9281 return -EINVAL;
9282 }
9283 maxphyaddr = cpuid_maxphyaddr(vcpu);
9284
9285 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9286 ((addr + PAGE_SIZE) >> maxphyaddr))
9287 return -EINVAL;
9288
9289 return 0;
9290}
9291
9292/*
9293 * Merge L0's and L1's MSR bitmap, return false to indicate that
9294 * we do not use the hardware.
9295 */
9296static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9297 struct vmcs12 *vmcs12)
9298{
82f0dd4b 9299 int msr;
f2b93280
WV
9300 struct page *page;
9301 unsigned long *msr_bitmap;
9302
9303 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9304 return false;
9305
9306 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9307 if (!page) {
9308 WARN_ON(1);
9309 return false;
9310 }
9311 msr_bitmap = (unsigned long *)kmap(page);
9312 if (!msr_bitmap) {
9313 nested_release_page_clean(page);
9314 WARN_ON(1);
9315 return false;
9316 }
9317
9318 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9319 if (nested_cpu_has_apic_reg_virt(vmcs12))
9320 for (msr = 0x800; msr <= 0x8ff; msr++)
9321 nested_vmx_disable_intercept_for_msr(
9322 msr_bitmap,
9323 vmx_msr_bitmap_nested,
9324 msr, MSR_TYPE_R);
f2b93280
WV
9325 /* TPR is allowed */
9326 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9327 vmx_msr_bitmap_nested,
9328 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9329 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
9330 if (nested_cpu_has_vid(vmcs12)) {
9331 /* EOI and self-IPI are allowed */
9332 nested_vmx_disable_intercept_for_msr(
9333 msr_bitmap,
9334 vmx_msr_bitmap_nested,
9335 APIC_BASE_MSR + (APIC_EOI >> 4),
9336 MSR_TYPE_W);
9337 nested_vmx_disable_intercept_for_msr(
9338 msr_bitmap,
9339 vmx_msr_bitmap_nested,
9340 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9341 MSR_TYPE_W);
9342 }
82f0dd4b
WV
9343 } else {
9344 /*
9345 * Enable reading intercept of all the x2apic
9346 * MSRs. We should not rely on vmcs12 to do any
9347 * optimizations here, it may have been modified
9348 * by L1.
9349 */
9350 for (msr = 0x800; msr <= 0x8ff; msr++)
9351 __vmx_enable_intercept_for_msr(
9352 vmx_msr_bitmap_nested,
9353 msr,
9354 MSR_TYPE_R);
9355
f2b93280
WV
9356 __vmx_enable_intercept_for_msr(
9357 vmx_msr_bitmap_nested,
9358 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 9359 MSR_TYPE_W);
608406e2
WV
9360 __vmx_enable_intercept_for_msr(
9361 vmx_msr_bitmap_nested,
9362 APIC_BASE_MSR + (APIC_EOI >> 4),
9363 MSR_TYPE_W);
9364 __vmx_enable_intercept_for_msr(
9365 vmx_msr_bitmap_nested,
9366 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9367 MSR_TYPE_W);
82f0dd4b 9368 }
f2b93280
WV
9369 kunmap(page);
9370 nested_release_page_clean(page);
9371
9372 return true;
9373}
9374
9375static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9376 struct vmcs12 *vmcs12)
9377{
82f0dd4b 9378 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9379 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9380 !nested_cpu_has_vid(vmcs12) &&
9381 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9382 return 0;
9383
9384 /*
9385 * If virtualize x2apic mode is enabled,
9386 * virtualize apic access must be disabled.
9387 */
82f0dd4b
WV
9388 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9389 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9390 return -EINVAL;
9391
608406e2
WV
9392 /*
9393 * If virtual interrupt delivery is enabled,
9394 * we must exit on external interrupts.
9395 */
9396 if (nested_cpu_has_vid(vmcs12) &&
9397 !nested_exit_on_intr(vcpu))
9398 return -EINVAL;
9399
705699a1
WV
9400 /*
9401 * bits 15:8 should be zero in posted_intr_nv,
9402 * the descriptor address has been already checked
9403 * in nested_get_vmcs12_pages.
9404 */
9405 if (nested_cpu_has_posted_intr(vmcs12) &&
9406 (!nested_cpu_has_vid(vmcs12) ||
9407 !nested_exit_intr_ack_set(vcpu) ||
9408 vmcs12->posted_intr_nv & 0xff00))
9409 return -EINVAL;
9410
f2b93280
WV
9411 /* tpr shadow is needed by all apicv features. */
9412 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9413 return -EINVAL;
9414
9415 return 0;
3af18d9c
WV
9416}
9417
e9ac033e
EK
9418static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9419 unsigned long count_field,
92d71bc6 9420 unsigned long addr_field)
ff651cb6 9421{
92d71bc6 9422 int maxphyaddr;
e9ac033e
EK
9423 u64 count, addr;
9424
9425 if (vmcs12_read_any(vcpu, count_field, &count) ||
9426 vmcs12_read_any(vcpu, addr_field, &addr)) {
9427 WARN_ON(1);
9428 return -EINVAL;
9429 }
9430 if (count == 0)
9431 return 0;
92d71bc6 9432 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9433 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9434 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9435 pr_warn_ratelimited(
9436 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9437 addr_field, maxphyaddr, count, addr);
9438 return -EINVAL;
9439 }
9440 return 0;
9441}
9442
9443static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9444 struct vmcs12 *vmcs12)
9445{
e9ac033e
EK
9446 if (vmcs12->vm_exit_msr_load_count == 0 &&
9447 vmcs12->vm_exit_msr_store_count == 0 &&
9448 vmcs12->vm_entry_msr_load_count == 0)
9449 return 0; /* Fast path */
e9ac033e 9450 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9451 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9452 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9453 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9454 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9455 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9456 return -EINVAL;
9457 return 0;
9458}
9459
9460static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9461 struct vmx_msr_entry *e)
9462{
9463 /* x2APIC MSR accesses are not allowed */
8a9781f7 9464 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9465 return -EINVAL;
9466 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9467 e->index == MSR_IA32_UCODE_REV)
9468 return -EINVAL;
9469 if (e->reserved != 0)
ff651cb6
WV
9470 return -EINVAL;
9471 return 0;
9472}
9473
e9ac033e
EK
9474static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9475 struct vmx_msr_entry *e)
ff651cb6
WV
9476{
9477 if (e->index == MSR_FS_BASE ||
9478 e->index == MSR_GS_BASE ||
e9ac033e
EK
9479 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9480 nested_vmx_msr_check_common(vcpu, e))
9481 return -EINVAL;
9482 return 0;
9483}
9484
9485static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9486 struct vmx_msr_entry *e)
9487{
9488 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9489 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9490 return -EINVAL;
9491 return 0;
9492}
9493
9494/*
9495 * Load guest's/host's msr at nested entry/exit.
9496 * return 0 for success, entry index for failure.
9497 */
9498static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9499{
9500 u32 i;
9501 struct vmx_msr_entry e;
9502 struct msr_data msr;
9503
9504 msr.host_initiated = false;
9505 for (i = 0; i < count; i++) {
54bf36aa
PB
9506 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9507 &e, sizeof(e))) {
e9ac033e
EK
9508 pr_warn_ratelimited(
9509 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9510 __func__, i, gpa + i * sizeof(e));
ff651cb6 9511 goto fail;
e9ac033e
EK
9512 }
9513 if (nested_vmx_load_msr_check(vcpu, &e)) {
9514 pr_warn_ratelimited(
9515 "%s check failed (%u, 0x%x, 0x%x)\n",
9516 __func__, i, e.index, e.reserved);
9517 goto fail;
9518 }
ff651cb6
WV
9519 msr.index = e.index;
9520 msr.data = e.value;
e9ac033e
EK
9521 if (kvm_set_msr(vcpu, &msr)) {
9522 pr_warn_ratelimited(
9523 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9524 __func__, i, e.index, e.value);
ff651cb6 9525 goto fail;
e9ac033e 9526 }
ff651cb6
WV
9527 }
9528 return 0;
9529fail:
9530 return i + 1;
9531}
9532
9533static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9534{
9535 u32 i;
9536 struct vmx_msr_entry e;
9537
9538 for (i = 0; i < count; i++) {
609e36d3 9539 struct msr_data msr_info;
54bf36aa
PB
9540 if (kvm_vcpu_read_guest(vcpu,
9541 gpa + i * sizeof(e),
9542 &e, 2 * sizeof(u32))) {
e9ac033e
EK
9543 pr_warn_ratelimited(
9544 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9545 __func__, i, gpa + i * sizeof(e));
ff651cb6 9546 return -EINVAL;
e9ac033e
EK
9547 }
9548 if (nested_vmx_store_msr_check(vcpu, &e)) {
9549 pr_warn_ratelimited(
9550 "%s check failed (%u, 0x%x, 0x%x)\n",
9551 __func__, i, e.index, e.reserved);
ff651cb6 9552 return -EINVAL;
e9ac033e 9553 }
609e36d3
PB
9554 msr_info.host_initiated = false;
9555 msr_info.index = e.index;
9556 if (kvm_get_msr(vcpu, &msr_info)) {
e9ac033e
EK
9557 pr_warn_ratelimited(
9558 "%s cannot read MSR (%u, 0x%x)\n",
9559 __func__, i, e.index);
9560 return -EINVAL;
9561 }
54bf36aa
PB
9562 if (kvm_vcpu_write_guest(vcpu,
9563 gpa + i * sizeof(e) +
9564 offsetof(struct vmx_msr_entry, value),
9565 &msr_info.data, sizeof(msr_info.data))) {
e9ac033e
EK
9566 pr_warn_ratelimited(
9567 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9568 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9569 return -EINVAL;
9570 }
ff651cb6
WV
9571 }
9572 return 0;
9573}
9574
fe3ef05c
NHE
9575/*
9576 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9577 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9578 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9579 * guest in a way that will both be appropriate to L1's requests, and our
9580 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9581 * function also has additional necessary side-effects, like setting various
9582 * vcpu->arch fields.
9583 */
9584static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9585{
9586 struct vcpu_vmx *vmx = to_vmx(vcpu);
9587 u32 exec_control;
9588
9589 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9590 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9591 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9592 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9593 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9594 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9595 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9596 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9597 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9598 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9599 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9600 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9601 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9602 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9603 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9604 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9605 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9606 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9607 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9608 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9609 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9610 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9611 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9612 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9613 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9614 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9615 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9616 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9617 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9618 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9619 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9620 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9621 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9622 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9623 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9624 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9625
2996fca0
JK
9626 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9627 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9628 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9629 } else {
9630 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9631 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9632 }
fe3ef05c
NHE
9633 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9634 vmcs12->vm_entry_intr_info_field);
9635 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9636 vmcs12->vm_entry_exception_error_code);
9637 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9638 vmcs12->vm_entry_instruction_len);
9639 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9640 vmcs12->guest_interruptibility_info);
fe3ef05c 9641 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9642 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9643 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9644 vmcs12->guest_pending_dbg_exceptions);
9645 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9646 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9647
81dc01f7
WL
9648 if (nested_cpu_has_xsaves(vmcs12))
9649 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9650 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9651
f4124500
JK
9652 exec_control = vmcs12->pin_based_vm_exec_control;
9653 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9654 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9655
9656 if (nested_cpu_has_posted_intr(vmcs12)) {
9657 /*
9658 * Note that we use L0's vector here and in
9659 * vmx_deliver_nested_posted_interrupt.
9660 */
9661 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9662 vmx->nested.pi_pending = false;
0bcf261c 9663 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
705699a1
WV
9664 vmcs_write64(POSTED_INTR_DESC_ADDR,
9665 page_to_phys(vmx->nested.pi_desc_page) +
9666 (unsigned long)(vmcs12->posted_intr_desc_addr &
9667 (PAGE_SIZE - 1)));
9668 } else
9669 exec_control &= ~PIN_BASED_POSTED_INTR;
9670
f4124500 9671 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9672
f4124500
JK
9673 vmx->nested.preemption_timer_expired = false;
9674 if (nested_cpu_has_preemption_timer(vmcs12))
9675 vmx_start_preemption_timer(vcpu);
0238ea91 9676
fe3ef05c
NHE
9677 /*
9678 * Whether page-faults are trapped is determined by a combination of
9679 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9680 * If enable_ept, L0 doesn't care about page faults and we should
9681 * set all of these to L1's desires. However, if !enable_ept, L0 does
9682 * care about (at least some) page faults, and because it is not easy
9683 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9684 * to exit on each and every L2 page fault. This is done by setting
9685 * MASK=MATCH=0 and (see below) EB.PF=1.
9686 * Note that below we don't need special code to set EB.PF beyond the
9687 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9688 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9689 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9690 *
9691 * A problem with this approach (when !enable_ept) is that L1 may be
9692 * injected with more page faults than it asked for. This could have
9693 * caused problems, but in practice existing hypervisors don't care.
9694 * To fix this, we will need to emulate the PFEC checking (on the L1
9695 * page tables), using walk_addr(), when injecting PFs to L1.
9696 */
9697 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9698 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9699 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9700 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9701
9702 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9703 exec_control = vmx_secondary_exec_control(vmx);
e2821620 9704
fe3ef05c 9705 /* Take the following fields only from vmcs12 */
696dfd95 9706 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9707 SECONDARY_EXEC_RDTSCP |
696dfd95 9708 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8b3e34e4
XG
9709 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9710 SECONDARY_EXEC_PCOMMIT);
fe3ef05c
NHE
9711 if (nested_cpu_has(vmcs12,
9712 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9713 exec_control |= vmcs12->secondary_vm_exec_control;
9714
9715 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9716 /*
9717 * If translation failed, no matter: This feature asks
9718 * to exit when accessing the given address, and if it
9719 * can never be accessed, this feature won't do
9720 * anything anyway.
9721 */
9722 if (!vmx->nested.apic_access_page)
9723 exec_control &=
9724 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9725 else
9726 vmcs_write64(APIC_ACCESS_ADDR,
9727 page_to_phys(vmx->nested.apic_access_page));
f2b93280 9728 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 9729 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
9730 exec_control |=
9731 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9732 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9733 }
9734
608406e2
WV
9735 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9736 vmcs_write64(EOI_EXIT_BITMAP0,
9737 vmcs12->eoi_exit_bitmap0);
9738 vmcs_write64(EOI_EXIT_BITMAP1,
9739 vmcs12->eoi_exit_bitmap1);
9740 vmcs_write64(EOI_EXIT_BITMAP2,
9741 vmcs12->eoi_exit_bitmap2);
9742 vmcs_write64(EOI_EXIT_BITMAP3,
9743 vmcs12->eoi_exit_bitmap3);
9744 vmcs_write16(GUEST_INTR_STATUS,
9745 vmcs12->guest_intr_status);
9746 }
9747
fe3ef05c
NHE
9748 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9749 }
9750
9751
9752 /*
9753 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9754 * Some constant fields are set here by vmx_set_constant_host_state().
9755 * Other fields are different per CPU, and will be set later when
9756 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9757 */
a547c6db 9758 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9759
9760 /*
9761 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9762 * entry, but only if the current (host) sp changed from the value
9763 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9764 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9765 * here we just force the write to happen on entry.
9766 */
9767 vmx->host_rsp = 0;
9768
9769 exec_control = vmx_exec_control(vmx); /* L0's desires */
9770 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9771 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9772 exec_control &= ~CPU_BASED_TPR_SHADOW;
9773 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9774
9775 if (exec_control & CPU_BASED_TPR_SHADOW) {
9776 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9777 page_to_phys(vmx->nested.virtual_apic_page));
9778 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9779 }
9780
3af18d9c 9781 if (cpu_has_vmx_msr_bitmap() &&
670125bd
WV
9782 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9783 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9784 /* MSR_BITMAP will be set by following vmx_set_efer. */
3af18d9c
WV
9785 } else
9786 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9787
fe3ef05c 9788 /*
3af18d9c 9789 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9790 * Rather, exit every time.
9791 */
fe3ef05c
NHE
9792 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9793 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9794
9795 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9796
9797 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9798 * bitwise-or of what L1 wants to trap for L2, and what we want to
9799 * trap. Note that CR0.TS also needs updating - we do this later.
9800 */
9801 update_exception_bitmap(vcpu);
9802 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9803 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9804
8049d651
NHE
9805 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9806 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9807 * bits are further modified by vmx_set_efer() below.
9808 */
f4124500 9809 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9810
9811 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9812 * emulated by vmx_set_efer(), below.
9813 */
2961e876 9814 vm_entry_controls_init(vmx,
8049d651
NHE
9815 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9816 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9817 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9818
44811c02 9819 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9820 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9821 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9822 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9823 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9824
9825
9826 set_cr4_guest_host_mask(vmx);
9827
36be0b9d
PB
9828 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9829 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9830
27fc51b2
NHE
9831 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9832 vmcs_write64(TSC_OFFSET,
9833 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9834 else
9835 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9836
9837 if (enable_vpid) {
9838 /*
5c614b35
WL
9839 * There is no direct mapping between vpid02 and vpid12, the
9840 * vpid02 is per-vCPU for L0 and reused while the value of
9841 * vpid12 is changed w/ one invvpid during nested vmentry.
9842 * The vpid12 is allocated by L1 for L2, so it will not
9843 * influence global bitmap(for vpid01 and vpid02 allocation)
9844 * even if spawn a lot of nested vCPUs.
fe3ef05c 9845 */
5c614b35
WL
9846 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9847 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9848 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9849 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9850 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9851 }
9852 } else {
9853 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9854 vmx_flush_tlb(vcpu);
9855 }
9856
fe3ef05c
NHE
9857 }
9858
155a97a3
NHE
9859 if (nested_cpu_has_ept(vmcs12)) {
9860 kvm_mmu_unload(vcpu);
9861 nested_ept_init_mmu_context(vcpu);
9862 }
9863
fe3ef05c
NHE
9864 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9865 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9866 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9867 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9868 else
9869 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9870 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9871 vmx_set_efer(vcpu, vcpu->arch.efer);
9872
9873 /*
9874 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9875 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9876 * The CR0_READ_SHADOW is what L2 should have expected to read given
9877 * the specifications by L1; It's not enough to take
9878 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9879 * have more bits than L1 expected.
9880 */
9881 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9882 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9883
9884 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9885 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9886
9887 /* shadow page tables on either EPT or shadow page tables */
9888 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9889 kvm_mmu_reset_context(vcpu);
9890
feaf0c7d
GN
9891 if (!enable_ept)
9892 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9893
3633cfc3
NHE
9894 /*
9895 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9896 */
9897 if (enable_ept) {
9898 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9899 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9900 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9901 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9902 }
9903
fe3ef05c
NHE
9904 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9905 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9906}
9907
cd232ad0
NHE
9908/*
9909 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9910 * for running an L2 nested guest.
9911 */
9912static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9913{
9914 struct vmcs12 *vmcs12;
9915 struct vcpu_vmx *vmx = to_vmx(vcpu);
9916 int cpu;
9917 struct loaded_vmcs *vmcs02;
384bb783 9918 bool ia32e;
ff651cb6 9919 u32 msr_entry_idx;
cd232ad0
NHE
9920
9921 if (!nested_vmx_check_permission(vcpu) ||
9922 !nested_vmx_check_vmcs12(vcpu))
9923 return 1;
9924
9925 skip_emulated_instruction(vcpu);
9926 vmcs12 = get_vmcs12(vcpu);
9927
012f83cb
AG
9928 if (enable_shadow_vmcs)
9929 copy_shadow_to_vmcs12(vmx);
9930
7c177938
NHE
9931 /*
9932 * The nested entry process starts with enforcing various prerequisites
9933 * on vmcs12 as required by the Intel SDM, and act appropriately when
9934 * they fail: As the SDM explains, some conditions should cause the
9935 * instruction to fail, while others will cause the instruction to seem
9936 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9937 * To speed up the normal (success) code path, we should avoid checking
9938 * for misconfigurations which will anyway be caught by the processor
9939 * when using the merged vmcs02.
9940 */
9941 if (vmcs12->launch_state == launch) {
9942 nested_vmx_failValid(vcpu,
9943 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9944 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9945 return 1;
9946 }
9947
6dfacadd
JK
9948 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9949 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9950 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9951 return 1;
9952 }
9953
3af18d9c 9954 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9955 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9956 return 1;
9957 }
9958
3af18d9c 9959 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9960 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9961 return 1;
9962 }
9963
f2b93280
WV
9964 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9965 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9966 return 1;
9967 }
9968
e9ac033e
EK
9969 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9970 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9971 return 1;
9972 }
9973
7c177938 9974 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9975 vmx->nested.nested_vmx_true_procbased_ctls_low,
9976 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9977 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9978 vmx->nested.nested_vmx_secondary_ctls_low,
9979 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9980 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9981 vmx->nested.nested_vmx_pinbased_ctls_low,
9982 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9983 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9984 vmx->nested.nested_vmx_true_exit_ctls_low,
9985 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9986 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9987 vmx->nested.nested_vmx_true_entry_ctls_low,
9988 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9989 {
9990 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9991 return 1;
9992 }
9993
9994 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9995 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9996 nested_vmx_failValid(vcpu,
9997 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9998 return 1;
9999 }
10000
b9c237bb 10001 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
10002 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10003 nested_vmx_entry_failure(vcpu, vmcs12,
10004 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10005 return 1;
10006 }
10007 if (vmcs12->vmcs_link_pointer != -1ull) {
10008 nested_vmx_entry_failure(vcpu, vmcs12,
10009 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10010 return 1;
10011 }
10012
384bb783 10013 /*
cb0c8cda 10014 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10015 * are performed on the field for the IA32_EFER MSR:
10016 * - Bits reserved in the IA32_EFER MSR must be 0.
10017 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10018 * the IA-32e mode guest VM-exit control. It must also be identical
10019 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10020 * CR0.PG) is 1.
10021 */
10022 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10023 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10024 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10025 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10026 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10027 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10028 nested_vmx_entry_failure(vcpu, vmcs12,
10029 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10030 return 1;
10031 }
10032 }
10033
10034 /*
10035 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10036 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10037 * the values of the LMA and LME bits in the field must each be that of
10038 * the host address-space size VM-exit control.
10039 */
10040 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10041 ia32e = (vmcs12->vm_exit_controls &
10042 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10043 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10044 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10045 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10046 nested_vmx_entry_failure(vcpu, vmcs12,
10047 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10048 return 1;
10049 }
10050 }
10051
7c177938
NHE
10052 /*
10053 * We're finally done with prerequisite checking, and can start with
10054 * the nested entry.
10055 */
10056
cd232ad0
NHE
10057 vmcs02 = nested_get_current_vmcs02(vmx);
10058 if (!vmcs02)
10059 return -ENOMEM;
10060
10061 enter_guest_mode(vcpu);
10062
10063 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10064
2996fca0
JK
10065 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10066 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10067
cd232ad0
NHE
10068 cpu = get_cpu();
10069 vmx->loaded_vmcs = vmcs02;
10070 vmx_vcpu_put(vcpu);
10071 vmx_vcpu_load(vcpu, cpu);
10072 vcpu->cpu = cpu;
10073 put_cpu();
10074
36c3cc42
JK
10075 vmx_segment_cache_clear(vmx);
10076
cd232ad0
NHE
10077 prepare_vmcs02(vcpu, vmcs12);
10078
ff651cb6
WV
10079 msr_entry_idx = nested_vmx_load_msr(vcpu,
10080 vmcs12->vm_entry_msr_load_addr,
10081 vmcs12->vm_entry_msr_load_count);
10082 if (msr_entry_idx) {
10083 leave_guest_mode(vcpu);
10084 vmx_load_vmcs01(vcpu);
10085 nested_vmx_entry_failure(vcpu, vmcs12,
10086 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10087 return 1;
10088 }
10089
10090 vmcs12->launch_state = 1;
10091
6dfacadd 10092 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10093 return kvm_vcpu_halt(vcpu);
6dfacadd 10094
7af40ad3
JK
10095 vmx->nested.nested_run_pending = 1;
10096
cd232ad0
NHE
10097 /*
10098 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10099 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10100 * returned as far as L1 is concerned. It will only return (and set
10101 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10102 */
10103 return 1;
10104}
10105
4704d0be
NHE
10106/*
10107 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10108 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10109 * This function returns the new value we should put in vmcs12.guest_cr0.
10110 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10111 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10112 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10113 * didn't trap the bit, because if L1 did, so would L0).
10114 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10115 * been modified by L2, and L1 knows it. So just leave the old value of
10116 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10117 * isn't relevant, because if L0 traps this bit it can set it to anything.
10118 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10119 * changed these bits, and therefore they need to be updated, but L0
10120 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10121 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10122 */
10123static inline unsigned long
10124vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10125{
10126 return
10127 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10128 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10129 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10130 vcpu->arch.cr0_guest_owned_bits));
10131}
10132
10133static inline unsigned long
10134vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10135{
10136 return
10137 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10138 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10139 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10140 vcpu->arch.cr4_guest_owned_bits));
10141}
10142
5f3d5799
JK
10143static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10144 struct vmcs12 *vmcs12)
10145{
10146 u32 idt_vectoring;
10147 unsigned int nr;
10148
851eb667 10149 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10150 nr = vcpu->arch.exception.nr;
10151 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10152
10153 if (kvm_exception_is_soft(nr)) {
10154 vmcs12->vm_exit_instruction_len =
10155 vcpu->arch.event_exit_inst_len;
10156 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10157 } else
10158 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10159
10160 if (vcpu->arch.exception.has_error_code) {
10161 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10162 vmcs12->idt_vectoring_error_code =
10163 vcpu->arch.exception.error_code;
10164 }
10165
10166 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10167 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10168 vmcs12->idt_vectoring_info_field =
10169 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10170 } else if (vcpu->arch.interrupt.pending) {
10171 nr = vcpu->arch.interrupt.nr;
10172 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10173
10174 if (vcpu->arch.interrupt.soft) {
10175 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10176 vmcs12->vm_entry_instruction_len =
10177 vcpu->arch.event_exit_inst_len;
10178 } else
10179 idt_vectoring |= INTR_TYPE_EXT_INTR;
10180
10181 vmcs12->idt_vectoring_info_field = idt_vectoring;
10182 }
10183}
10184
b6b8a145
JK
10185static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10186{
10187 struct vcpu_vmx *vmx = to_vmx(vcpu);
10188
f4124500
JK
10189 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10190 vmx->nested.preemption_timer_expired) {
10191 if (vmx->nested.nested_run_pending)
10192 return -EBUSY;
10193 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10194 return 0;
10195 }
10196
b6b8a145 10197 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10198 if (vmx->nested.nested_run_pending ||
10199 vcpu->arch.interrupt.pending)
b6b8a145
JK
10200 return -EBUSY;
10201 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10202 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10203 INTR_INFO_VALID_MASK, 0);
10204 /*
10205 * The NMI-triggered VM exit counts as injection:
10206 * clear this one and block further NMIs.
10207 */
10208 vcpu->arch.nmi_pending = 0;
10209 vmx_set_nmi_mask(vcpu, true);
10210 return 0;
10211 }
10212
10213 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10214 nested_exit_on_intr(vcpu)) {
10215 if (vmx->nested.nested_run_pending)
10216 return -EBUSY;
10217 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10218 return 0;
b6b8a145
JK
10219 }
10220
705699a1 10221 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10222}
10223
f4124500
JK
10224static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10225{
10226 ktime_t remaining =
10227 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10228 u64 value;
10229
10230 if (ktime_to_ns(remaining) <= 0)
10231 return 0;
10232
10233 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10234 do_div(value, 1000000);
10235 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10236}
10237
4704d0be
NHE
10238/*
10239 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10240 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10241 * and this function updates it to reflect the changes to the guest state while
10242 * L2 was running (and perhaps made some exits which were handled directly by L0
10243 * without going back to L1), and to reflect the exit reason.
10244 * Note that we do not have to copy here all VMCS fields, just those that
10245 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10246 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10247 * which already writes to vmcs12 directly.
10248 */
533558bc
JK
10249static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10250 u32 exit_reason, u32 exit_intr_info,
10251 unsigned long exit_qualification)
4704d0be
NHE
10252{
10253 /* update guest state fields: */
10254 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10255 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10256
4704d0be
NHE
10257 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10258 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10259 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10260
10261 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10262 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10263 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10264 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10265 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10266 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10267 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10268 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10269 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10270 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10271 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10272 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10273 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10274 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10275 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10276 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10277 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10278 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10279 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10280 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10281 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10282 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10283 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10284 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10285 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10286 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10287 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10288 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10289 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10290 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10291 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10292 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10293 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10294 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10295 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10296 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10297
4704d0be
NHE
10298 vmcs12->guest_interruptibility_info =
10299 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10300 vmcs12->guest_pending_dbg_exceptions =
10301 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10302 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10303 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10304 else
10305 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10306
f4124500
JK
10307 if (nested_cpu_has_preemption_timer(vmcs12)) {
10308 if (vmcs12->vm_exit_controls &
10309 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10310 vmcs12->vmx_preemption_timer_value =
10311 vmx_get_preemption_timer_value(vcpu);
10312 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10313 }
7854cbca 10314
3633cfc3
NHE
10315 /*
10316 * In some cases (usually, nested EPT), L2 is allowed to change its
10317 * own CR3 without exiting. If it has changed it, we must keep it.
10318 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10319 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10320 *
10321 * Additionally, restore L2's PDPTR to vmcs12.
10322 */
10323 if (enable_ept) {
f3531054 10324 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10325 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10326 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10327 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10328 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10329 }
10330
608406e2
WV
10331 if (nested_cpu_has_vid(vmcs12))
10332 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10333
c18911a2
JK
10334 vmcs12->vm_entry_controls =
10335 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10336 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10337
2996fca0
JK
10338 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10339 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10340 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10341 }
10342
4704d0be
NHE
10343 /* TODO: These cannot have changed unless we have MSR bitmaps and
10344 * the relevant bit asks not to trap the change */
b8c07d55 10345 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10346 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10347 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10348 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10349 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10350 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10351 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10352 if (kvm_mpx_supported())
36be0b9d 10353 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10354 if (nested_cpu_has_xsaves(vmcs12))
10355 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10356
10357 /* update exit information fields: */
10358
533558bc
JK
10359 vmcs12->vm_exit_reason = exit_reason;
10360 vmcs12->exit_qualification = exit_qualification;
4704d0be 10361
533558bc 10362 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10363 if ((vmcs12->vm_exit_intr_info &
10364 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10365 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10366 vmcs12->vm_exit_intr_error_code =
10367 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10368 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10369 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10370 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10371
5f3d5799
JK
10372 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10373 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10374 * instead of reading the real value. */
4704d0be 10375 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10376
10377 /*
10378 * Transfer the event that L0 or L1 may wanted to inject into
10379 * L2 to IDT_VECTORING_INFO_FIELD.
10380 */
10381 vmcs12_save_pending_event(vcpu, vmcs12);
10382 }
10383
10384 /*
10385 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10386 * preserved above and would only end up incorrectly in L1.
10387 */
10388 vcpu->arch.nmi_injected = false;
10389 kvm_clear_exception_queue(vcpu);
10390 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10391}
10392
10393/*
10394 * A part of what we need to when the nested L2 guest exits and we want to
10395 * run its L1 parent, is to reset L1's guest state to the host state specified
10396 * in vmcs12.
10397 * This function is to be called not only on normal nested exit, but also on
10398 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10399 * Failures During or After Loading Guest State").
10400 * This function should be called when the active VMCS is L1's (vmcs01).
10401 */
733568f9
JK
10402static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10403 struct vmcs12 *vmcs12)
4704d0be 10404{
21feb4eb
ACL
10405 struct kvm_segment seg;
10406
4704d0be
NHE
10407 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10408 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10409 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10410 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10411 else
10412 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10413 vmx_set_efer(vcpu, vcpu->arch.efer);
10414
10415 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10416 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10417 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10418 /*
10419 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10420 * actually changed, because it depends on the current state of
10421 * fpu_active (which may have changed).
10422 * Note that vmx_set_cr0 refers to efer set above.
10423 */
9e3e4dbf 10424 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10425 /*
10426 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10427 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10428 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10429 */
10430 update_exception_bitmap(vcpu);
10431 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10432 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10433
10434 /*
10435 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10436 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10437 */
10438 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10439 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10440
29bf08f1 10441 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10442
4704d0be
NHE
10443 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10444 kvm_mmu_reset_context(vcpu);
10445
feaf0c7d
GN
10446 if (!enable_ept)
10447 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10448
4704d0be
NHE
10449 if (enable_vpid) {
10450 /*
10451 * Trivially support vpid by letting L2s share their parent
10452 * L1's vpid. TODO: move to a more elaborate solution, giving
10453 * each L2 its own vpid and exposing the vpid feature to L1.
10454 */
10455 vmx_flush_tlb(vcpu);
10456 }
10457
10458
10459 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10460 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10461 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10462 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10463 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10464
36be0b9d
PB
10465 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10466 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10467 vmcs_write64(GUEST_BNDCFGS, 0);
10468
44811c02 10469 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10470 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10471 vcpu->arch.pat = vmcs12->host_ia32_pat;
10472 }
4704d0be
NHE
10473 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10474 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10475 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10476
21feb4eb
ACL
10477 /* Set L1 segment info according to Intel SDM
10478 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10479 seg = (struct kvm_segment) {
10480 .base = 0,
10481 .limit = 0xFFFFFFFF,
10482 .selector = vmcs12->host_cs_selector,
10483 .type = 11,
10484 .present = 1,
10485 .s = 1,
10486 .g = 1
10487 };
10488 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10489 seg.l = 1;
10490 else
10491 seg.db = 1;
10492 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10493 seg = (struct kvm_segment) {
10494 .base = 0,
10495 .limit = 0xFFFFFFFF,
10496 .type = 3,
10497 .present = 1,
10498 .s = 1,
10499 .db = 1,
10500 .g = 1
10501 };
10502 seg.selector = vmcs12->host_ds_selector;
10503 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10504 seg.selector = vmcs12->host_es_selector;
10505 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10506 seg.selector = vmcs12->host_ss_selector;
10507 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10508 seg.selector = vmcs12->host_fs_selector;
10509 seg.base = vmcs12->host_fs_base;
10510 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10511 seg.selector = vmcs12->host_gs_selector;
10512 seg.base = vmcs12->host_gs_base;
10513 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10514 seg = (struct kvm_segment) {
205befd9 10515 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10516 .limit = 0x67,
10517 .selector = vmcs12->host_tr_selector,
10518 .type = 11,
10519 .present = 1
10520 };
10521 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10522
503cd0c5
JK
10523 kvm_set_dr(vcpu, 7, 0x400);
10524 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10525
3af18d9c
WV
10526 if (cpu_has_vmx_msr_bitmap())
10527 vmx_set_msr_bitmap(vcpu);
10528
ff651cb6
WV
10529 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10530 vmcs12->vm_exit_msr_load_count))
10531 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10532}
10533
10534/*
10535 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10536 * and modify vmcs12 to make it see what it would expect to see there if
10537 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10538 */
533558bc
JK
10539static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10540 u32 exit_intr_info,
10541 unsigned long exit_qualification)
4704d0be
NHE
10542{
10543 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10544 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10545
5f3d5799
JK
10546 /* trying to cancel vmlaunch/vmresume is a bug */
10547 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10548
4704d0be 10549 leave_guest_mode(vcpu);
533558bc
JK
10550 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10551 exit_qualification);
4704d0be 10552
ff651cb6
WV
10553 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10554 vmcs12->vm_exit_msr_store_count))
10555 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10556
f3380ca5
WL
10557 vmx_load_vmcs01(vcpu);
10558
77b0f5d6
BD
10559 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10560 && nested_exit_intr_ack_set(vcpu)) {
10561 int irq = kvm_cpu_get_interrupt(vcpu);
10562 WARN_ON(irq < 0);
10563 vmcs12->vm_exit_intr_info = irq |
10564 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10565 }
10566
542060ea
JK
10567 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10568 vmcs12->exit_qualification,
10569 vmcs12->idt_vectoring_info_field,
10570 vmcs12->vm_exit_intr_info,
10571 vmcs12->vm_exit_intr_error_code,
10572 KVM_ISA_VMX);
4704d0be 10573
2961e876
GN
10574 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10575 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10576 vmx_segment_cache_clear(vmx);
10577
4704d0be
NHE
10578 /* if no vmcs02 cache requested, remove the one we used */
10579 if (VMCS02_POOL_SIZE == 0)
10580 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10581
10582 load_vmcs12_host_state(vcpu, vmcs12);
10583
27fc51b2 10584 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10585 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10586
10587 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10588 vmx->host_rsp = 0;
10589
10590 /* Unpin physical memory we referred to in vmcs02 */
10591 if (vmx->nested.apic_access_page) {
10592 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10593 vmx->nested.apic_access_page = NULL;
4704d0be 10594 }
a7c0b07d
WL
10595 if (vmx->nested.virtual_apic_page) {
10596 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10597 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10598 }
705699a1
WV
10599 if (vmx->nested.pi_desc_page) {
10600 kunmap(vmx->nested.pi_desc_page);
10601 nested_release_page(vmx->nested.pi_desc_page);
10602 vmx->nested.pi_desc_page = NULL;
10603 vmx->nested.pi_desc = NULL;
10604 }
4704d0be 10605
38b99173
TC
10606 /*
10607 * We are now running in L2, mmu_notifier will force to reload the
10608 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10609 */
10610 kvm_vcpu_reload_apic_access_page(vcpu);
10611
4704d0be
NHE
10612 /*
10613 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10614 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10615 * success or failure flag accordingly.
10616 */
10617 if (unlikely(vmx->fail)) {
10618 vmx->fail = 0;
10619 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10620 } else
10621 nested_vmx_succeed(vcpu);
012f83cb
AG
10622 if (enable_shadow_vmcs)
10623 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10624
10625 /* in case we halted in L2 */
10626 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10627}
10628
42124925
JK
10629/*
10630 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10631 */
10632static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10633{
10634 if (is_guest_mode(vcpu))
533558bc 10635 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10636 free_nested(to_vmx(vcpu));
10637}
10638
7c177938
NHE
10639/*
10640 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10641 * 23.7 "VM-entry failures during or after loading guest state" (this also
10642 * lists the acceptable exit-reason and exit-qualification parameters).
10643 * It should only be called before L2 actually succeeded to run, and when
10644 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10645 */
10646static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10647 struct vmcs12 *vmcs12,
10648 u32 reason, unsigned long qualification)
10649{
10650 load_vmcs12_host_state(vcpu, vmcs12);
10651 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10652 vmcs12->exit_qualification = qualification;
10653 nested_vmx_succeed(vcpu);
012f83cb
AG
10654 if (enable_shadow_vmcs)
10655 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10656}
10657
8a76d7f2
JR
10658static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10659 struct x86_instruction_info *info,
10660 enum x86_intercept_stage stage)
10661{
10662 return X86EMUL_CONTINUE;
10663}
10664
48d89b92 10665static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10666{
b4a2d31d
RK
10667 if (ple_gap)
10668 shrink_ple_window(vcpu);
ae97a3b8
RK
10669}
10670
843e4330
KH
10671static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10672 struct kvm_memory_slot *slot)
10673{
10674 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10675 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10676}
10677
10678static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10679 struct kvm_memory_slot *slot)
10680{
10681 kvm_mmu_slot_set_dirty(kvm, slot);
10682}
10683
10684static void vmx_flush_log_dirty(struct kvm *kvm)
10685{
10686 kvm_flush_pml_buffers(kvm);
10687}
10688
10689static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10690 struct kvm_memory_slot *memslot,
10691 gfn_t offset, unsigned long mask)
10692{
10693 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10694}
10695
bf9f6ac8
FW
10696/*
10697 * This routine does the following things for vCPU which is going
10698 * to be blocked if VT-d PI is enabled.
10699 * - Store the vCPU to the wakeup list, so when interrupts happen
10700 * we can find the right vCPU to wake up.
10701 * - Change the Posted-interrupt descriptor as below:
10702 * 'NDST' <-- vcpu->pre_pcpu
10703 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10704 * - If 'ON' is set during this process, which means at least one
10705 * interrupt is posted for this vCPU, we cannot block it, in
10706 * this case, return 1, otherwise, return 0.
10707 *
10708 */
10709static int vmx_pre_block(struct kvm_vcpu *vcpu)
10710{
10711 unsigned long flags;
10712 unsigned int dest;
10713 struct pi_desc old, new;
10714 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10715
10716 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10717 !irq_remapping_cap(IRQ_POSTING_CAP))
10718 return 0;
10719
10720 vcpu->pre_pcpu = vcpu->cpu;
10721 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10722 vcpu->pre_pcpu), flags);
10723 list_add_tail(&vcpu->blocked_vcpu_list,
10724 &per_cpu(blocked_vcpu_on_cpu,
10725 vcpu->pre_pcpu));
10726 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10727 vcpu->pre_pcpu), flags);
10728
10729 do {
10730 old.control = new.control = pi_desc->control;
10731
10732 /*
10733 * We should not block the vCPU if
10734 * an interrupt is posted for it.
10735 */
10736 if (pi_test_on(pi_desc) == 1) {
10737 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10738 vcpu->pre_pcpu), flags);
10739 list_del(&vcpu->blocked_vcpu_list);
10740 spin_unlock_irqrestore(
10741 &per_cpu(blocked_vcpu_on_cpu_lock,
10742 vcpu->pre_pcpu), flags);
10743 vcpu->pre_pcpu = -1;
10744
10745 return 1;
10746 }
10747
10748 WARN((pi_desc->sn == 1),
10749 "Warning: SN field of posted-interrupts "
10750 "is set before blocking\n");
10751
10752 /*
10753 * Since vCPU can be preempted during this process,
10754 * vcpu->cpu could be different with pre_pcpu, we
10755 * need to set pre_pcpu as the destination of wakeup
10756 * notification event, then we can find the right vCPU
10757 * to wakeup in wakeup handler if interrupts happen
10758 * when the vCPU is in blocked state.
10759 */
10760 dest = cpu_physical_id(vcpu->pre_pcpu);
10761
10762 if (x2apic_enabled())
10763 new.ndst = dest;
10764 else
10765 new.ndst = (dest << 8) & 0xFF00;
10766
10767 /* set 'NV' to 'wakeup vector' */
10768 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10769 } while (cmpxchg(&pi_desc->control, old.control,
10770 new.control) != old.control);
10771
10772 return 0;
10773}
10774
10775static void vmx_post_block(struct kvm_vcpu *vcpu)
10776{
10777 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10778 struct pi_desc old, new;
10779 unsigned int dest;
10780 unsigned long flags;
10781
10782 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10783 !irq_remapping_cap(IRQ_POSTING_CAP))
10784 return;
10785
10786 do {
10787 old.control = new.control = pi_desc->control;
10788
10789 dest = cpu_physical_id(vcpu->cpu);
10790
10791 if (x2apic_enabled())
10792 new.ndst = dest;
10793 else
10794 new.ndst = (dest << 8) & 0xFF00;
10795
10796 /* Allow posting non-urgent interrupts */
10797 new.sn = 0;
10798
10799 /* set 'NV' to 'notification vector' */
10800 new.nv = POSTED_INTR_VECTOR;
10801 } while (cmpxchg(&pi_desc->control, old.control,
10802 new.control) != old.control);
10803
10804 if(vcpu->pre_pcpu != -1) {
10805 spin_lock_irqsave(
10806 &per_cpu(blocked_vcpu_on_cpu_lock,
10807 vcpu->pre_pcpu), flags);
10808 list_del(&vcpu->blocked_vcpu_list);
10809 spin_unlock_irqrestore(
10810 &per_cpu(blocked_vcpu_on_cpu_lock,
10811 vcpu->pre_pcpu), flags);
10812 vcpu->pre_pcpu = -1;
10813 }
10814}
10815
efc64404
FW
10816/*
10817 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10818 *
10819 * @kvm: kvm
10820 * @host_irq: host irq of the interrupt
10821 * @guest_irq: gsi of the interrupt
10822 * @set: set or unset PI
10823 * returns 0 on success, < 0 on failure
10824 */
10825static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10826 uint32_t guest_irq, bool set)
10827{
10828 struct kvm_kernel_irq_routing_entry *e;
10829 struct kvm_irq_routing_table *irq_rt;
10830 struct kvm_lapic_irq irq;
10831 struct kvm_vcpu *vcpu;
10832 struct vcpu_data vcpu_info;
10833 int idx, ret = -EINVAL;
10834
10835 if (!kvm_arch_has_assigned_device(kvm) ||
10836 !irq_remapping_cap(IRQ_POSTING_CAP))
10837 return 0;
10838
10839 idx = srcu_read_lock(&kvm->irq_srcu);
10840 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10841 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10842
10843 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10844 if (e->type != KVM_IRQ_ROUTING_MSI)
10845 continue;
10846 /*
10847 * VT-d PI cannot support posting multicast/broadcast
10848 * interrupts to a vCPU, we still use interrupt remapping
10849 * for these kind of interrupts.
10850 *
10851 * For lowest-priority interrupts, we only support
10852 * those with single CPU as the destination, e.g. user
10853 * configures the interrupts via /proc/irq or uses
10854 * irqbalance to make the interrupts single-CPU.
10855 *
10856 * We will support full lowest-priority interrupt later.
10857 */
10858
10859 kvm_set_msi_irq(e, &irq);
23a1c257
FW
10860 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10861 /*
10862 * Make sure the IRTE is in remapped mode if
10863 * we don't handle it in posted mode.
10864 */
10865 ret = irq_set_vcpu_affinity(host_irq, NULL);
10866 if (ret < 0) {
10867 printk(KERN_INFO
10868 "failed to back to remapped mode, irq: %u\n",
10869 host_irq);
10870 goto out;
10871 }
10872
efc64404 10873 continue;
23a1c257 10874 }
efc64404
FW
10875
10876 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10877 vcpu_info.vector = irq.vector;
10878
b6ce9780 10879 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
10880 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10881
10882 if (set)
10883 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10884 else {
10885 /* suppress notification event before unposting */
10886 pi_set_sn(vcpu_to_pi_desc(vcpu));
10887 ret = irq_set_vcpu_affinity(host_irq, NULL);
10888 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10889 }
10890
10891 if (ret < 0) {
10892 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10893 __func__);
10894 goto out;
10895 }
10896 }
10897
10898 ret = 0;
10899out:
10900 srcu_read_unlock(&kvm->irq_srcu, idx);
10901 return ret;
10902}
10903
cbdd1bea 10904static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10905 .cpu_has_kvm_support = cpu_has_kvm_support,
10906 .disabled_by_bios = vmx_disabled_by_bios,
10907 .hardware_setup = hardware_setup,
10908 .hardware_unsetup = hardware_unsetup,
002c7f7c 10909 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10910 .hardware_enable = hardware_enable,
10911 .hardware_disable = hardware_disable,
04547156 10912 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 10913 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
10914
10915 .vcpu_create = vmx_create_vcpu,
10916 .vcpu_free = vmx_free_vcpu,
04d2cc77 10917 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10918
04d2cc77 10919 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10920 .vcpu_load = vmx_vcpu_load,
10921 .vcpu_put = vmx_vcpu_put,
10922
a96036b8 10923 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10924 .get_msr = vmx_get_msr,
10925 .set_msr = vmx_set_msr,
10926 .get_segment_base = vmx_get_segment_base,
10927 .get_segment = vmx_get_segment,
10928 .set_segment = vmx_set_segment,
2e4d2653 10929 .get_cpl = vmx_get_cpl,
6aa8b732 10930 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10931 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10932 .decache_cr3 = vmx_decache_cr3,
25c4c276 10933 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10934 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10935 .set_cr3 = vmx_set_cr3,
10936 .set_cr4 = vmx_set_cr4,
6aa8b732 10937 .set_efer = vmx_set_efer,
6aa8b732
AK
10938 .get_idt = vmx_get_idt,
10939 .set_idt = vmx_set_idt,
10940 .get_gdt = vmx_get_gdt,
10941 .set_gdt = vmx_set_gdt,
73aaf249
JK
10942 .get_dr6 = vmx_get_dr6,
10943 .set_dr6 = vmx_set_dr6,
020df079 10944 .set_dr7 = vmx_set_dr7,
81908bf4 10945 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10946 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10947 .get_rflags = vmx_get_rflags,
10948 .set_rflags = vmx_set_rflags,
be94f6b7
HH
10949
10950 .get_pkru = vmx_get_pkru,
10951
0fdd74f7 10952 .fpu_activate = vmx_fpu_activate,
02daab21 10953 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10954
10955 .tlb_flush = vmx_flush_tlb,
6aa8b732 10956
6aa8b732 10957 .run = vmx_vcpu_run,
6062d012 10958 .handle_exit = vmx_handle_exit,
6aa8b732 10959 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10960 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10961 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10962 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10963 .set_irq = vmx_inject_irq,
95ba8273 10964 .set_nmi = vmx_inject_nmi,
298101da 10965 .queue_exception = vmx_queue_exception,
b463a6f7 10966 .cancel_injection = vmx_cancel_injection,
78646121 10967 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10968 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10969 .get_nmi_mask = vmx_get_nmi_mask,
10970 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10971 .enable_nmi_window = enable_nmi_window,
10972 .enable_irq_window = enable_irq_window,
10973 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10974 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10975 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
10976 .get_enable_apicv = vmx_get_enable_apicv,
10977 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c
YZ
10978 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10979 .hwapic_irr_update = vmx_hwapic_irr_update,
10980 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10981 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10982 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10983
cbc94022 10984 .set_tss_addr = vmx_set_tss_addr,
67253af5 10985 .get_tdp_level = get_ept_level,
4b12f0de 10986 .get_mt_mask = vmx_get_mt_mask,
229456fc 10987
586f9607 10988 .get_exit_info = vmx_get_exit_info,
586f9607 10989
17cc3935 10990 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10991
10992 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10993
10994 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10995 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10996
10997 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10998
10999 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 11000
ba904635 11001 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 11002 .write_tsc_offset = vmx_write_tsc_offset,
58ea6767 11003 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
d5c1785d 11004 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
11005
11006 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11007
11008 .check_intercept = vmx_check_intercept,
a547c6db 11009 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11010 .mpx_supported = vmx_mpx_supported,
55412b2e 11011 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11012
11013 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11014
11015 .sched_in = vmx_sched_in,
843e4330
KH
11016
11017 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11018 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11019 .flush_log_dirty = vmx_flush_log_dirty,
11020 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11021
bf9f6ac8
FW
11022 .pre_block = vmx_pre_block,
11023 .post_block = vmx_post_block,
11024
25462f7f 11025 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11026
11027 .update_pi_irte = vmx_update_pi_irte,
6aa8b732
AK
11028};
11029
11030static int __init vmx_init(void)
11031{
34a1cd60
TC
11032 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11033 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11034 if (r)
34a1cd60 11035 return r;
25c5f225 11036
2965faa5 11037#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11038 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11039 crash_vmclear_local_loaded_vmcss);
11040#endif
11041
fdef3ad1 11042 return 0;
6aa8b732
AK
11043}
11044
11045static void __exit vmx_exit(void)
11046{
2965faa5 11047#ifdef CONFIG_KEXEC_CORE
3b63a43f 11048 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11049 synchronize_rcu();
11050#endif
11051
cb498ea2 11052 kvm_exit();
6aa8b732
AK
11053}
11054
11055module_init(vmx_init)
11056module_exit(vmx_exit)