]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: document lock orders
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
64672c95
YJ
113/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
114static int __read_mostly cpu_preemption_timer_multi;
115static bool __read_mostly enable_preemption_timer = 1;
116#ifdef CONFIG_X86_64
117module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
118#endif
119
5037878e
GN
120#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
122#define KVM_VM_CR0_ALWAYS_ON \
123 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
124#define KVM_CR4_GUEST_OWNED_BITS \
125 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 126 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 127
cdc0e244
AK
128#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
130
78ac8b47
AK
131#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
132
f4124500
JK
133#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
134
4b8d54f9
ZE
135/*
136 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
137 * ple_gap: upper bound on the amount of time between two successive
138 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 139 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
140 * ple_window: upper bound on the amount of time a guest is allowed to execute
141 * in a PAUSE loop. Tests indicate that most spinlocks are held for
142 * less than 2^12 cycles
143 * Time is measured based on a counter that runs at the same rate as the TSC,
144 * refer SDM volume 3b section 21.6.13 & 22.1.3.
145 */
b4a2d31d
RK
146#define KVM_VMX_DEFAULT_PLE_GAP 128
147#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
148#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
149#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
150#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
151 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
152
4b8d54f9
ZE
153static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
154module_param(ple_gap, int, S_IRUGO);
155
156static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
157module_param(ple_window, int, S_IRUGO);
158
b4a2d31d
RK
159/* Default doubles per-vcpu window every exit. */
160static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
161module_param(ple_window_grow, int, S_IRUGO);
162
163/* Default resets per-vcpu window every exit to ple_window. */
164static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
165module_param(ple_window_shrink, int, S_IRUGO);
166
167/* Default is to compute the maximum so we can never overflow. */
168static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
169static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
170module_param(ple_window_max, int, S_IRUGO);
171
83287ea4
AK
172extern const ulong vmx_return;
173
8bf00a52 174#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 175#define VMCS02_POOL_SIZE 1
61d2ef2c 176
a2fa3e9f
GH
177struct vmcs {
178 u32 revision_id;
179 u32 abort;
180 char data[0];
181};
182
d462b819
NHE
183/*
184 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
185 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
186 * loaded on this CPU (so we can clear them if the CPU goes down).
187 */
188struct loaded_vmcs {
189 struct vmcs *vmcs;
190 int cpu;
191 int launched;
192 struct list_head loaded_vmcss_on_cpu_link;
193};
194
26bb0981
AK
195struct shared_msr_entry {
196 unsigned index;
197 u64 data;
d5696725 198 u64 mask;
26bb0981
AK
199};
200
a9d30f33
NHE
201/*
202 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
203 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
204 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
205 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
206 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
207 * More than one of these structures may exist, if L1 runs multiple L2 guests.
208 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
209 * underlying hardware which will be used to run L2.
210 * This structure is packed to ensure that its layout is identical across
211 * machines (necessary for live migration).
212 * If there are changes in this struct, VMCS12_REVISION must be changed.
213 */
22bd0358 214typedef u64 natural_width;
a9d30f33
NHE
215struct __packed vmcs12 {
216 /* According to the Intel spec, a VMCS region must start with the
217 * following two fields. Then follow implementation-specific data.
218 */
219 u32 revision_id;
220 u32 abort;
22bd0358 221
27d6c865
NHE
222 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
223 u32 padding[7]; /* room for future expansion */
224
22bd0358
NHE
225 u64 io_bitmap_a;
226 u64 io_bitmap_b;
227 u64 msr_bitmap;
228 u64 vm_exit_msr_store_addr;
229 u64 vm_exit_msr_load_addr;
230 u64 vm_entry_msr_load_addr;
231 u64 tsc_offset;
232 u64 virtual_apic_page_addr;
233 u64 apic_access_addr;
705699a1 234 u64 posted_intr_desc_addr;
22bd0358 235 u64 ept_pointer;
608406e2
WV
236 u64 eoi_exit_bitmap0;
237 u64 eoi_exit_bitmap1;
238 u64 eoi_exit_bitmap2;
239 u64 eoi_exit_bitmap3;
81dc01f7 240 u64 xss_exit_bitmap;
22bd0358
NHE
241 u64 guest_physical_address;
242 u64 vmcs_link_pointer;
243 u64 guest_ia32_debugctl;
244 u64 guest_ia32_pat;
245 u64 guest_ia32_efer;
246 u64 guest_ia32_perf_global_ctrl;
247 u64 guest_pdptr0;
248 u64 guest_pdptr1;
249 u64 guest_pdptr2;
250 u64 guest_pdptr3;
36be0b9d 251 u64 guest_bndcfgs;
22bd0358
NHE
252 u64 host_ia32_pat;
253 u64 host_ia32_efer;
254 u64 host_ia32_perf_global_ctrl;
255 u64 padding64[8]; /* room for future expansion */
256 /*
257 * To allow migration of L1 (complete with its L2 guests) between
258 * machines of different natural widths (32 or 64 bit), we cannot have
259 * unsigned long fields with no explict size. We use u64 (aliased
260 * natural_width) instead. Luckily, x86 is little-endian.
261 */
262 natural_width cr0_guest_host_mask;
263 natural_width cr4_guest_host_mask;
264 natural_width cr0_read_shadow;
265 natural_width cr4_read_shadow;
266 natural_width cr3_target_value0;
267 natural_width cr3_target_value1;
268 natural_width cr3_target_value2;
269 natural_width cr3_target_value3;
270 natural_width exit_qualification;
271 natural_width guest_linear_address;
272 natural_width guest_cr0;
273 natural_width guest_cr3;
274 natural_width guest_cr4;
275 natural_width guest_es_base;
276 natural_width guest_cs_base;
277 natural_width guest_ss_base;
278 natural_width guest_ds_base;
279 natural_width guest_fs_base;
280 natural_width guest_gs_base;
281 natural_width guest_ldtr_base;
282 natural_width guest_tr_base;
283 natural_width guest_gdtr_base;
284 natural_width guest_idtr_base;
285 natural_width guest_dr7;
286 natural_width guest_rsp;
287 natural_width guest_rip;
288 natural_width guest_rflags;
289 natural_width guest_pending_dbg_exceptions;
290 natural_width guest_sysenter_esp;
291 natural_width guest_sysenter_eip;
292 natural_width host_cr0;
293 natural_width host_cr3;
294 natural_width host_cr4;
295 natural_width host_fs_base;
296 natural_width host_gs_base;
297 natural_width host_tr_base;
298 natural_width host_gdtr_base;
299 natural_width host_idtr_base;
300 natural_width host_ia32_sysenter_esp;
301 natural_width host_ia32_sysenter_eip;
302 natural_width host_rsp;
303 natural_width host_rip;
304 natural_width paddingl[8]; /* room for future expansion */
305 u32 pin_based_vm_exec_control;
306 u32 cpu_based_vm_exec_control;
307 u32 exception_bitmap;
308 u32 page_fault_error_code_mask;
309 u32 page_fault_error_code_match;
310 u32 cr3_target_count;
311 u32 vm_exit_controls;
312 u32 vm_exit_msr_store_count;
313 u32 vm_exit_msr_load_count;
314 u32 vm_entry_controls;
315 u32 vm_entry_msr_load_count;
316 u32 vm_entry_intr_info_field;
317 u32 vm_entry_exception_error_code;
318 u32 vm_entry_instruction_len;
319 u32 tpr_threshold;
320 u32 secondary_vm_exec_control;
321 u32 vm_instruction_error;
322 u32 vm_exit_reason;
323 u32 vm_exit_intr_info;
324 u32 vm_exit_intr_error_code;
325 u32 idt_vectoring_info_field;
326 u32 idt_vectoring_error_code;
327 u32 vm_exit_instruction_len;
328 u32 vmx_instruction_info;
329 u32 guest_es_limit;
330 u32 guest_cs_limit;
331 u32 guest_ss_limit;
332 u32 guest_ds_limit;
333 u32 guest_fs_limit;
334 u32 guest_gs_limit;
335 u32 guest_ldtr_limit;
336 u32 guest_tr_limit;
337 u32 guest_gdtr_limit;
338 u32 guest_idtr_limit;
339 u32 guest_es_ar_bytes;
340 u32 guest_cs_ar_bytes;
341 u32 guest_ss_ar_bytes;
342 u32 guest_ds_ar_bytes;
343 u32 guest_fs_ar_bytes;
344 u32 guest_gs_ar_bytes;
345 u32 guest_ldtr_ar_bytes;
346 u32 guest_tr_ar_bytes;
347 u32 guest_interruptibility_info;
348 u32 guest_activity_state;
349 u32 guest_sysenter_cs;
350 u32 host_ia32_sysenter_cs;
0238ea91
JK
351 u32 vmx_preemption_timer_value;
352 u32 padding32[7]; /* room for future expansion */
22bd0358 353 u16 virtual_processor_id;
705699a1 354 u16 posted_intr_nv;
22bd0358
NHE
355 u16 guest_es_selector;
356 u16 guest_cs_selector;
357 u16 guest_ss_selector;
358 u16 guest_ds_selector;
359 u16 guest_fs_selector;
360 u16 guest_gs_selector;
361 u16 guest_ldtr_selector;
362 u16 guest_tr_selector;
608406e2 363 u16 guest_intr_status;
22bd0358
NHE
364 u16 host_es_selector;
365 u16 host_cs_selector;
366 u16 host_ss_selector;
367 u16 host_ds_selector;
368 u16 host_fs_selector;
369 u16 host_gs_selector;
370 u16 host_tr_selector;
a9d30f33
NHE
371};
372
373/*
374 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
375 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
376 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
377 */
378#define VMCS12_REVISION 0x11e57ed0
379
380/*
381 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
382 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
383 * current implementation, 4K are reserved to avoid future complications.
384 */
385#define VMCS12_SIZE 0x1000
386
ff2f6fe9
NHE
387/* Used to remember the last vmcs02 used for some recently used vmcs12s */
388struct vmcs02_list {
389 struct list_head list;
390 gpa_t vmptr;
391 struct loaded_vmcs vmcs02;
392};
393
ec378aee
NHE
394/*
395 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
396 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
397 */
398struct nested_vmx {
399 /* Has the level1 guest done vmxon? */
400 bool vmxon;
3573e22c 401 gpa_t vmxon_ptr;
a9d30f33
NHE
402
403 /* The guest-physical address of the current VMCS L1 keeps for L2 */
404 gpa_t current_vmptr;
405 /* The host-usable pointer to the above */
406 struct page *current_vmcs12_page;
407 struct vmcs12 *current_vmcs12;
4f2777bc
DM
408 /*
409 * Cache of the guest's VMCS, existing outside of guest memory.
410 * Loaded from guest memory during VMPTRLD. Flushed to guest
411 * memory during VMXOFF, VMCLEAR, VMPTRLD.
412 */
413 struct vmcs12 *cached_vmcs12;
8de48833 414 struct vmcs *current_shadow_vmcs;
012f83cb
AG
415 /*
416 * Indicates if the shadow vmcs must be updated with the
417 * data hold by vmcs12
418 */
419 bool sync_shadow_vmcs;
ff2f6fe9
NHE
420
421 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
422 struct list_head vmcs02_pool;
423 int vmcs02_num;
fe3ef05c 424 u64 vmcs01_tsc_offset;
dccbfcf5 425 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
426 /* L2 must run next, and mustn't decide to exit to L1. */
427 bool nested_run_pending;
fe3ef05c
NHE
428 /*
429 * Guest pages referred to in vmcs02 with host-physical pointers, so
430 * we must keep them pinned while L2 runs.
431 */
432 struct page *apic_access_page;
a7c0b07d 433 struct page *virtual_apic_page;
705699a1
WV
434 struct page *pi_desc_page;
435 struct pi_desc *pi_desc;
436 bool pi_pending;
437 u16 posted_intr_nv;
f4124500 438
d048c098
RK
439 unsigned long *msr_bitmap;
440
f4124500
JK
441 struct hrtimer preemption_timer;
442 bool preemption_timer_expired;
2996fca0
JK
443
444 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
445 u64 vmcs01_debugctl;
b9c237bb 446
5c614b35
WL
447 u16 vpid02;
448 u16 last_vpid;
449
b9c237bb
WV
450 u32 nested_vmx_procbased_ctls_low;
451 u32 nested_vmx_procbased_ctls_high;
452 u32 nested_vmx_true_procbased_ctls_low;
453 u32 nested_vmx_secondary_ctls_low;
454 u32 nested_vmx_secondary_ctls_high;
455 u32 nested_vmx_pinbased_ctls_low;
456 u32 nested_vmx_pinbased_ctls_high;
457 u32 nested_vmx_exit_ctls_low;
458 u32 nested_vmx_exit_ctls_high;
459 u32 nested_vmx_true_exit_ctls_low;
460 u32 nested_vmx_entry_ctls_low;
461 u32 nested_vmx_entry_ctls_high;
462 u32 nested_vmx_true_entry_ctls_low;
463 u32 nested_vmx_misc_low;
464 u32 nested_vmx_misc_high;
465 u32 nested_vmx_ept_caps;
99b83ac8 466 u32 nested_vmx_vpid_caps;
ec378aee
NHE
467};
468
01e439be 469#define POSTED_INTR_ON 0
ebbfc765
FW
470#define POSTED_INTR_SN 1
471
01e439be
YZ
472/* Posted-Interrupt Descriptor */
473struct pi_desc {
474 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
475 union {
476 struct {
477 /* bit 256 - Outstanding Notification */
478 u16 on : 1,
479 /* bit 257 - Suppress Notification */
480 sn : 1,
481 /* bit 271:258 - Reserved */
482 rsvd_1 : 14;
483 /* bit 279:272 - Notification Vector */
484 u8 nv;
485 /* bit 287:280 - Reserved */
486 u8 rsvd_2;
487 /* bit 319:288 - Notification Destination */
488 u32 ndst;
489 };
490 u64 control;
491 };
492 u32 rsvd[6];
01e439be
YZ
493} __aligned(64);
494
a20ed54d
YZ
495static bool pi_test_and_set_on(struct pi_desc *pi_desc)
496{
497 return test_and_set_bit(POSTED_INTR_ON,
498 (unsigned long *)&pi_desc->control);
499}
500
501static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
502{
503 return test_and_clear_bit(POSTED_INTR_ON,
504 (unsigned long *)&pi_desc->control);
505}
506
507static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
508{
509 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
510}
511
ebbfc765
FW
512static inline void pi_clear_sn(struct pi_desc *pi_desc)
513{
514 return clear_bit(POSTED_INTR_SN,
515 (unsigned long *)&pi_desc->control);
516}
517
518static inline void pi_set_sn(struct pi_desc *pi_desc)
519{
520 return set_bit(POSTED_INTR_SN,
521 (unsigned long *)&pi_desc->control);
522}
523
524static inline int pi_test_on(struct pi_desc *pi_desc)
525{
526 return test_bit(POSTED_INTR_ON,
527 (unsigned long *)&pi_desc->control);
528}
529
530static inline int pi_test_sn(struct pi_desc *pi_desc)
531{
532 return test_bit(POSTED_INTR_SN,
533 (unsigned long *)&pi_desc->control);
534}
535
a2fa3e9f 536struct vcpu_vmx {
fb3f0f51 537 struct kvm_vcpu vcpu;
313dbd49 538 unsigned long host_rsp;
29bd8a78 539 u8 fail;
9d58b931 540 bool nmi_known_unmasked;
51aa01d1 541 u32 exit_intr_info;
1155f76a 542 u32 idt_vectoring_info;
6de12732 543 ulong rflags;
26bb0981 544 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
545 int nmsrs;
546 int save_nmsrs;
a547c6db 547 unsigned long host_idt_base;
a2fa3e9f 548#ifdef CONFIG_X86_64
44ea2b17
AK
549 u64 msr_host_kernel_gs_base;
550 u64 msr_guest_kernel_gs_base;
a2fa3e9f 551#endif
2961e876
GN
552 u32 vm_entry_controls_shadow;
553 u32 vm_exit_controls_shadow;
d462b819
NHE
554 /*
555 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
556 * non-nested (L1) guest, it always points to vmcs01. For a nested
557 * guest (L2), it points to a different VMCS.
558 */
559 struct loaded_vmcs vmcs01;
560 struct loaded_vmcs *loaded_vmcs;
561 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
562 struct msr_autoload {
563 unsigned nr;
564 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
565 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
566 } msr_autoload;
a2fa3e9f
GH
567 struct {
568 int loaded;
569 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
570#ifdef CONFIG_X86_64
571 u16 ds_sel, es_sel;
572#endif
152d3f2f
LV
573 int gs_ldt_reload_needed;
574 int fs_reload_needed;
da8999d3 575 u64 msr_host_bndcfgs;
d974baa3 576 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 577 } host_state;
9c8cba37 578 struct {
7ffd92c5 579 int vm86_active;
78ac8b47 580 ulong save_rflags;
f5f7b2fe
AK
581 struct kvm_segment segs[8];
582 } rmode;
583 struct {
584 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
585 struct kvm_save_segment {
586 u16 selector;
587 unsigned long base;
588 u32 limit;
589 u32 ar;
f5f7b2fe 590 } seg[8];
2fb92db1 591 } segment_cache;
2384d2b3 592 int vpid;
04fa4d32 593 bool emulation_required;
3b86cd99
JK
594
595 /* Support for vnmi-less CPUs */
596 int soft_vnmi_blocked;
597 ktime_t entry_time;
598 s64 vnmi_blocked_time;
a0861c02 599 u32 exit_reason;
4e47c7a6 600
01e439be
YZ
601 /* Posted interrupt descriptor */
602 struct pi_desc pi_desc;
603
ec378aee
NHE
604 /* Support for a guest hypervisor (nested VMX) */
605 struct nested_vmx nested;
a7653ecd
RK
606
607 /* Dynamic PLE window. */
608 int ple_window;
609 bool ple_window_dirty;
843e4330
KH
610
611 /* Support for PML */
612#define PML_ENTITY_NUM 512
613 struct page *pml_pg;
2680d6da 614
64672c95
YJ
615 /* apic deadline value in host tsc */
616 u64 hv_deadline_tsc;
617
2680d6da 618 u64 current_tsc_ratio;
1be0e61c
XG
619
620 bool guest_pkru_valid;
621 u32 guest_pkru;
622 u32 host_pkru;
3b84080b 623
37e4c997
HZ
624 /*
625 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
626 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
627 * in msr_ia32_feature_control_valid_bits.
628 */
3b84080b 629 u64 msr_ia32_feature_control;
37e4c997 630 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
631};
632
2fb92db1
AK
633enum segment_cache_field {
634 SEG_FIELD_SEL = 0,
635 SEG_FIELD_BASE = 1,
636 SEG_FIELD_LIMIT = 2,
637 SEG_FIELD_AR = 3,
638
639 SEG_FIELD_NR = 4
640};
641
a2fa3e9f
GH
642static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
643{
fb3f0f51 644 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
645}
646
efc64404
FW
647static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
648{
649 return &(to_vmx(vcpu)->pi_desc);
650}
651
22bd0358
NHE
652#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
653#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
654#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
655 [number##_HIGH] = VMCS12_OFFSET(name)+4
656
4607c2d7 657
fe2b201b 658static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
659 /*
660 * We do NOT shadow fields that are modified when L0
661 * traps and emulates any vmx instruction (e.g. VMPTRLD,
662 * VMXON...) executed by L1.
663 * For example, VM_INSTRUCTION_ERROR is read
664 * by L1 if a vmx instruction fails (part of the error path).
665 * Note the code assumes this logic. If for some reason
666 * we start shadowing these fields then we need to
667 * force a shadow sync when L0 emulates vmx instructions
668 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
669 * by nested_vmx_failValid)
670 */
671 VM_EXIT_REASON,
672 VM_EXIT_INTR_INFO,
673 VM_EXIT_INSTRUCTION_LEN,
674 IDT_VECTORING_INFO_FIELD,
675 IDT_VECTORING_ERROR_CODE,
676 VM_EXIT_INTR_ERROR_CODE,
677 EXIT_QUALIFICATION,
678 GUEST_LINEAR_ADDRESS,
679 GUEST_PHYSICAL_ADDRESS
680};
fe2b201b 681static int max_shadow_read_only_fields =
4607c2d7
AG
682 ARRAY_SIZE(shadow_read_only_fields);
683
fe2b201b 684static unsigned long shadow_read_write_fields[] = {
a7c0b07d 685 TPR_THRESHOLD,
4607c2d7
AG
686 GUEST_RIP,
687 GUEST_RSP,
688 GUEST_CR0,
689 GUEST_CR3,
690 GUEST_CR4,
691 GUEST_INTERRUPTIBILITY_INFO,
692 GUEST_RFLAGS,
693 GUEST_CS_SELECTOR,
694 GUEST_CS_AR_BYTES,
695 GUEST_CS_LIMIT,
696 GUEST_CS_BASE,
697 GUEST_ES_BASE,
36be0b9d 698 GUEST_BNDCFGS,
4607c2d7
AG
699 CR0_GUEST_HOST_MASK,
700 CR0_READ_SHADOW,
701 CR4_READ_SHADOW,
702 TSC_OFFSET,
703 EXCEPTION_BITMAP,
704 CPU_BASED_VM_EXEC_CONTROL,
705 VM_ENTRY_EXCEPTION_ERROR_CODE,
706 VM_ENTRY_INTR_INFO_FIELD,
707 VM_ENTRY_INSTRUCTION_LEN,
708 VM_ENTRY_EXCEPTION_ERROR_CODE,
709 HOST_FS_BASE,
710 HOST_GS_BASE,
711 HOST_FS_SELECTOR,
712 HOST_GS_SELECTOR
713};
fe2b201b 714static int max_shadow_read_write_fields =
4607c2d7
AG
715 ARRAY_SIZE(shadow_read_write_fields);
716
772e0318 717static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 718 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 719 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
720 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
721 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
722 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
723 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
724 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
725 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
726 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
727 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 728 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
729 FIELD(HOST_ES_SELECTOR, host_es_selector),
730 FIELD(HOST_CS_SELECTOR, host_cs_selector),
731 FIELD(HOST_SS_SELECTOR, host_ss_selector),
732 FIELD(HOST_DS_SELECTOR, host_ds_selector),
733 FIELD(HOST_FS_SELECTOR, host_fs_selector),
734 FIELD(HOST_GS_SELECTOR, host_gs_selector),
735 FIELD(HOST_TR_SELECTOR, host_tr_selector),
736 FIELD64(IO_BITMAP_A, io_bitmap_a),
737 FIELD64(IO_BITMAP_B, io_bitmap_b),
738 FIELD64(MSR_BITMAP, msr_bitmap),
739 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
740 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
741 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
742 FIELD64(TSC_OFFSET, tsc_offset),
743 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
744 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 745 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 746 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
747 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
748 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
749 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
750 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 751 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
752 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
753 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
754 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
755 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
756 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
757 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
758 FIELD64(GUEST_PDPTR0, guest_pdptr0),
759 FIELD64(GUEST_PDPTR1, guest_pdptr1),
760 FIELD64(GUEST_PDPTR2, guest_pdptr2),
761 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 762 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
763 FIELD64(HOST_IA32_PAT, host_ia32_pat),
764 FIELD64(HOST_IA32_EFER, host_ia32_efer),
765 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
766 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
767 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
768 FIELD(EXCEPTION_BITMAP, exception_bitmap),
769 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
770 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
771 FIELD(CR3_TARGET_COUNT, cr3_target_count),
772 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
773 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
774 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
775 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
776 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
777 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
778 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
779 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
780 FIELD(TPR_THRESHOLD, tpr_threshold),
781 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
782 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
783 FIELD(VM_EXIT_REASON, vm_exit_reason),
784 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
785 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
786 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
787 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
788 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
789 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
790 FIELD(GUEST_ES_LIMIT, guest_es_limit),
791 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
792 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
793 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
794 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
795 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
796 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
797 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
798 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
799 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
800 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
801 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
802 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
803 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
804 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
805 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
806 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
807 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
808 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
809 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
810 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
811 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 812 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
813 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
814 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
815 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
816 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
817 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
818 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
819 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
820 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
821 FIELD(EXIT_QUALIFICATION, exit_qualification),
822 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
823 FIELD(GUEST_CR0, guest_cr0),
824 FIELD(GUEST_CR3, guest_cr3),
825 FIELD(GUEST_CR4, guest_cr4),
826 FIELD(GUEST_ES_BASE, guest_es_base),
827 FIELD(GUEST_CS_BASE, guest_cs_base),
828 FIELD(GUEST_SS_BASE, guest_ss_base),
829 FIELD(GUEST_DS_BASE, guest_ds_base),
830 FIELD(GUEST_FS_BASE, guest_fs_base),
831 FIELD(GUEST_GS_BASE, guest_gs_base),
832 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
833 FIELD(GUEST_TR_BASE, guest_tr_base),
834 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
835 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
836 FIELD(GUEST_DR7, guest_dr7),
837 FIELD(GUEST_RSP, guest_rsp),
838 FIELD(GUEST_RIP, guest_rip),
839 FIELD(GUEST_RFLAGS, guest_rflags),
840 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
841 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
842 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
843 FIELD(HOST_CR0, host_cr0),
844 FIELD(HOST_CR3, host_cr3),
845 FIELD(HOST_CR4, host_cr4),
846 FIELD(HOST_FS_BASE, host_fs_base),
847 FIELD(HOST_GS_BASE, host_gs_base),
848 FIELD(HOST_TR_BASE, host_tr_base),
849 FIELD(HOST_GDTR_BASE, host_gdtr_base),
850 FIELD(HOST_IDTR_BASE, host_idtr_base),
851 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
852 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
853 FIELD(HOST_RSP, host_rsp),
854 FIELD(HOST_RIP, host_rip),
855};
22bd0358
NHE
856
857static inline short vmcs_field_to_offset(unsigned long field)
858{
a2ae9df7
PB
859 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
860
861 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
862 vmcs_field_to_offset_table[field] == 0)
863 return -ENOENT;
864
22bd0358
NHE
865 return vmcs_field_to_offset_table[field];
866}
867
a9d30f33
NHE
868static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
869{
4f2777bc 870 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
871}
872
873static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
874{
54bf36aa 875 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 876 if (is_error_page(page))
a9d30f33 877 return NULL;
32cad84f 878
a9d30f33
NHE
879 return page;
880}
881
882static void nested_release_page(struct page *page)
883{
884 kvm_release_page_dirty(page);
885}
886
887static void nested_release_page_clean(struct page *page)
888{
889 kvm_release_page_clean(page);
890}
891
bfd0a56b 892static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 893static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
894static void kvm_cpu_vmxon(u64 addr);
895static void kvm_cpu_vmxoff(void);
f53cd63c 896static bool vmx_xsaves_supported(void);
776e58ea 897static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
898static void vmx_set_segment(struct kvm_vcpu *vcpu,
899 struct kvm_segment *var, int seg);
900static void vmx_get_segment(struct kvm_vcpu *vcpu,
901 struct kvm_segment *var, int seg);
d99e4152
GN
902static bool guest_state_valid(struct kvm_vcpu *vcpu);
903static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 904static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 905static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 906static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 907
6aa8b732
AK
908static DEFINE_PER_CPU(struct vmcs *, vmxarea);
909static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
910/*
911 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
912 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
913 */
914static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 915static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 916
bf9f6ac8
FW
917/*
918 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
919 * can find which vCPU should be waken up.
920 */
921static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
922static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
923
3e7c73e9
AK
924static unsigned long *vmx_io_bitmap_a;
925static unsigned long *vmx_io_bitmap_b;
5897297b
AK
926static unsigned long *vmx_msr_bitmap_legacy;
927static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
928static unsigned long *vmx_msr_bitmap_legacy_x2apic;
929static unsigned long *vmx_msr_bitmap_longmode_x2apic;
f6e90f9e
WL
930static unsigned long *vmx_msr_bitmap_legacy_x2apic_apicv_inactive;
931static unsigned long *vmx_msr_bitmap_longmode_x2apic_apicv_inactive;
4607c2d7
AG
932static unsigned long *vmx_vmread_bitmap;
933static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 934
110312c8 935static bool cpu_has_load_ia32_efer;
8bf00a52 936static bool cpu_has_load_perf_global_ctrl;
110312c8 937
2384d2b3
SY
938static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
939static DEFINE_SPINLOCK(vmx_vpid_lock);
940
1c3d14fe 941static struct vmcs_config {
6aa8b732
AK
942 int size;
943 int order;
9ac7e3e8 944 u32 basic_cap;
6aa8b732 945 u32 revision_id;
1c3d14fe
YS
946 u32 pin_based_exec_ctrl;
947 u32 cpu_based_exec_ctrl;
f78e0e2e 948 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
949 u32 vmexit_ctrl;
950 u32 vmentry_ctrl;
951} vmcs_config;
6aa8b732 952
efff9e53 953static struct vmx_capability {
d56f546d
SY
954 u32 ept;
955 u32 vpid;
956} vmx_capability;
957
6aa8b732
AK
958#define VMX_SEGMENT_FIELD(seg) \
959 [VCPU_SREG_##seg] = { \
960 .selector = GUEST_##seg##_SELECTOR, \
961 .base = GUEST_##seg##_BASE, \
962 .limit = GUEST_##seg##_LIMIT, \
963 .ar_bytes = GUEST_##seg##_AR_BYTES, \
964 }
965
772e0318 966static const struct kvm_vmx_segment_field {
6aa8b732
AK
967 unsigned selector;
968 unsigned base;
969 unsigned limit;
970 unsigned ar_bytes;
971} kvm_vmx_segment_fields[] = {
972 VMX_SEGMENT_FIELD(CS),
973 VMX_SEGMENT_FIELD(DS),
974 VMX_SEGMENT_FIELD(ES),
975 VMX_SEGMENT_FIELD(FS),
976 VMX_SEGMENT_FIELD(GS),
977 VMX_SEGMENT_FIELD(SS),
978 VMX_SEGMENT_FIELD(TR),
979 VMX_SEGMENT_FIELD(LDTR),
980};
981
26bb0981
AK
982static u64 host_efer;
983
6de4f3ad
AK
984static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
985
4d56c8a7 986/*
8c06585d 987 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
988 * away by decrementing the array size.
989 */
6aa8b732 990static const u32 vmx_msr_index[] = {
05b3e0c2 991#ifdef CONFIG_X86_64
44ea2b17 992 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 993#endif
8c06585d 994 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 995};
6aa8b732 996
5bb16016 997static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
998{
999 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1000 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1001 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1002}
1003
6f05485d
JK
1004static inline bool is_debug(u32 intr_info)
1005{
1006 return is_exception_n(intr_info, DB_VECTOR);
1007}
1008
1009static inline bool is_breakpoint(u32 intr_info)
1010{
1011 return is_exception_n(intr_info, BP_VECTOR);
1012}
1013
5bb16016
JK
1014static inline bool is_page_fault(u32 intr_info)
1015{
1016 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1017}
1018
31299944 1019static inline bool is_no_device(u32 intr_info)
2ab455cc 1020{
5bb16016 1021 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1022}
1023
31299944 1024static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1025{
5bb16016 1026 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1027}
1028
31299944 1029static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1030{
1031 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1032 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1033}
1034
31299944 1035static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1036{
1037 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038 INTR_INFO_VALID_MASK)) ==
1039 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1040}
1041
31299944 1042static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1043{
04547156 1044 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1045}
1046
31299944 1047static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1048{
04547156 1049 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1050}
1051
35754c98 1052static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1053{
35754c98 1054 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1055}
1056
31299944 1057static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1058{
04547156
SY
1059 return vmcs_config.cpu_based_exec_ctrl &
1060 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1061}
1062
774ead3a 1063static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1064{
04547156
SY
1065 return vmcs_config.cpu_based_2nd_exec_ctrl &
1066 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1067}
1068
8d14695f
YZ
1069static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1070{
1071 return vmcs_config.cpu_based_2nd_exec_ctrl &
1072 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1073}
1074
83d4c286
YZ
1075static inline bool cpu_has_vmx_apic_register_virt(void)
1076{
1077 return vmcs_config.cpu_based_2nd_exec_ctrl &
1078 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1079}
1080
c7c9c56c
YZ
1081static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1082{
1083 return vmcs_config.cpu_based_2nd_exec_ctrl &
1084 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1085}
1086
64672c95
YJ
1087/*
1088 * Comment's format: document - errata name - stepping - processor name.
1089 * Refer from
1090 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1091 */
1092static u32 vmx_preemption_cpu_tfms[] = {
1093/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
10940x000206E6,
1095/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1096/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1097/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
10980x00020652,
1099/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11000x00020655,
1101/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1102/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1103/*
1104 * 320767.pdf - AAP86 - B1 -
1105 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1106 */
11070x000106E5,
1108/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11090x000106A0,
1110/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11110x000106A1,
1112/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11130x000106A4,
1114 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1115 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1116 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11170x000106A5,
1118};
1119
1120static inline bool cpu_has_broken_vmx_preemption_timer(void)
1121{
1122 u32 eax = cpuid_eax(0x00000001), i;
1123
1124 /* Clear the reserved bits */
1125 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1126 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1127 if (eax == vmx_preemption_cpu_tfms[i])
1128 return true;
1129
1130 return false;
1131}
1132
1133static inline bool cpu_has_vmx_preemption_timer(void)
1134{
64672c95
YJ
1135 return vmcs_config.pin_based_exec_ctrl &
1136 PIN_BASED_VMX_PREEMPTION_TIMER;
1137}
1138
01e439be
YZ
1139static inline bool cpu_has_vmx_posted_intr(void)
1140{
d6a858d1
PB
1141 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1142 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1143}
1144
1145static inline bool cpu_has_vmx_apicv(void)
1146{
1147 return cpu_has_vmx_apic_register_virt() &&
1148 cpu_has_vmx_virtual_intr_delivery() &&
1149 cpu_has_vmx_posted_intr();
1150}
1151
04547156
SY
1152static inline bool cpu_has_vmx_flexpriority(void)
1153{
1154 return cpu_has_vmx_tpr_shadow() &&
1155 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1156}
1157
e799794e
MT
1158static inline bool cpu_has_vmx_ept_execute_only(void)
1159{
31299944 1160 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1161}
1162
e799794e
MT
1163static inline bool cpu_has_vmx_ept_2m_page(void)
1164{
31299944 1165 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1166}
1167
878403b7
SY
1168static inline bool cpu_has_vmx_ept_1g_page(void)
1169{
31299944 1170 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1171}
1172
4bc9b982
SY
1173static inline bool cpu_has_vmx_ept_4levels(void)
1174{
1175 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1176}
1177
83c3a331
XH
1178static inline bool cpu_has_vmx_ept_ad_bits(void)
1179{
1180 return vmx_capability.ept & VMX_EPT_AD_BIT;
1181}
1182
31299944 1183static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1184{
31299944 1185 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1186}
1187
31299944 1188static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1191}
1192
518c8aee
GJ
1193static inline bool cpu_has_vmx_invvpid_single(void)
1194{
1195 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1196}
1197
b9d762fa
GJ
1198static inline bool cpu_has_vmx_invvpid_global(void)
1199{
1200 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1201}
1202
31299944 1203static inline bool cpu_has_vmx_ept(void)
d56f546d 1204{
04547156
SY
1205 return vmcs_config.cpu_based_2nd_exec_ctrl &
1206 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1207}
1208
31299944 1209static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1210{
1211 return vmcs_config.cpu_based_2nd_exec_ctrl &
1212 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1213}
1214
31299944 1215static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1216{
1217 return vmcs_config.cpu_based_2nd_exec_ctrl &
1218 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1219}
1220
9ac7e3e8
JD
1221static inline bool cpu_has_vmx_basic_inout(void)
1222{
1223 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1224}
1225
35754c98 1226static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1227{
35754c98 1228 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1229}
1230
31299944 1231static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1232{
04547156
SY
1233 return vmcs_config.cpu_based_2nd_exec_ctrl &
1234 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1235}
1236
31299944 1237static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1238{
1239 return vmcs_config.cpu_based_2nd_exec_ctrl &
1240 SECONDARY_EXEC_RDTSCP;
1241}
1242
ad756a16
MJ
1243static inline bool cpu_has_vmx_invpcid(void)
1244{
1245 return vmcs_config.cpu_based_2nd_exec_ctrl &
1246 SECONDARY_EXEC_ENABLE_INVPCID;
1247}
1248
31299944 1249static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1250{
1251 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1252}
1253
f5f48ee1
SY
1254static inline bool cpu_has_vmx_wbinvd_exit(void)
1255{
1256 return vmcs_config.cpu_based_2nd_exec_ctrl &
1257 SECONDARY_EXEC_WBINVD_EXITING;
1258}
1259
abc4fc58
AG
1260static inline bool cpu_has_vmx_shadow_vmcs(void)
1261{
1262 u64 vmx_msr;
1263 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1264 /* check if the cpu supports writing r/o exit information fields */
1265 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1266 return false;
1267
1268 return vmcs_config.cpu_based_2nd_exec_ctrl &
1269 SECONDARY_EXEC_SHADOW_VMCS;
1270}
1271
843e4330
KH
1272static inline bool cpu_has_vmx_pml(void)
1273{
1274 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1275}
1276
64903d61
HZ
1277static inline bool cpu_has_vmx_tsc_scaling(void)
1278{
1279 return vmcs_config.cpu_based_2nd_exec_ctrl &
1280 SECONDARY_EXEC_TSC_SCALING;
1281}
1282
04547156
SY
1283static inline bool report_flexpriority(void)
1284{
1285 return flexpriority_enabled;
1286}
1287
fe3ef05c
NHE
1288static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1289{
1290 return vmcs12->cpu_based_vm_exec_control & bit;
1291}
1292
1293static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1294{
1295 return (vmcs12->cpu_based_vm_exec_control &
1296 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1297 (vmcs12->secondary_vm_exec_control & bit);
1298}
1299
f5c4368f 1300static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1301{
1302 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1303}
1304
f4124500
JK
1305static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1306{
1307 return vmcs12->pin_based_vm_exec_control &
1308 PIN_BASED_VMX_PREEMPTION_TIMER;
1309}
1310
155a97a3
NHE
1311static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1312{
1313 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1314}
1315
81dc01f7
WL
1316static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1317{
1318 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1319 vmx_xsaves_supported();
1320}
1321
f2b93280
WV
1322static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1323{
1324 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1325}
1326
5c614b35
WL
1327static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1328{
1329 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1330}
1331
82f0dd4b
WV
1332static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1333{
1334 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1335}
1336
608406e2
WV
1337static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1338{
1339 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1340}
1341
705699a1
WV
1342static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1343{
1344 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1345}
1346
644d711a
NHE
1347static inline bool is_exception(u32 intr_info)
1348{
1349 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1350 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1351}
1352
533558bc
JK
1353static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1354 u32 exit_intr_info,
1355 unsigned long exit_qualification);
7c177938
NHE
1356static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1357 struct vmcs12 *vmcs12,
1358 u32 reason, unsigned long qualification);
1359
8b9cf98c 1360static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1361{
1362 int i;
1363
a2fa3e9f 1364 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1365 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1366 return i;
1367 return -1;
1368}
1369
2384d2b3
SY
1370static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1371{
1372 struct {
1373 u64 vpid : 16;
1374 u64 rsvd : 48;
1375 u64 gva;
1376 } operand = { vpid, 0, gva };
1377
4ecac3fd 1378 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1379 /* CF==1 or ZF==1 --> rc = -1 */
1380 "; ja 1f ; ud2 ; 1:"
1381 : : "a"(&operand), "c"(ext) : "cc", "memory");
1382}
1383
1439442c
SY
1384static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1385{
1386 struct {
1387 u64 eptp, gpa;
1388 } operand = {eptp, gpa};
1389
4ecac3fd 1390 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1391 /* CF==1 or ZF==1 --> rc = -1 */
1392 "; ja 1f ; ud2 ; 1:\n"
1393 : : "a" (&operand), "c" (ext) : "cc", "memory");
1394}
1395
26bb0981 1396static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1397{
1398 int i;
1399
8b9cf98c 1400 i = __find_msr_index(vmx, msr);
a75beee6 1401 if (i >= 0)
a2fa3e9f 1402 return &vmx->guest_msrs[i];
8b6d44c7 1403 return NULL;
7725f0ba
AK
1404}
1405
6aa8b732
AK
1406static void vmcs_clear(struct vmcs *vmcs)
1407{
1408 u64 phys_addr = __pa(vmcs);
1409 u8 error;
1410
4ecac3fd 1411 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1412 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1413 : "cc", "memory");
1414 if (error)
1415 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1416 vmcs, phys_addr);
1417}
1418
d462b819
NHE
1419static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1420{
1421 vmcs_clear(loaded_vmcs->vmcs);
1422 loaded_vmcs->cpu = -1;
1423 loaded_vmcs->launched = 0;
1424}
1425
7725b894
DX
1426static void vmcs_load(struct vmcs *vmcs)
1427{
1428 u64 phys_addr = __pa(vmcs);
1429 u8 error;
1430
1431 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1432 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1433 : "cc", "memory");
1434 if (error)
2844d849 1435 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1436 vmcs, phys_addr);
1437}
1438
2965faa5 1439#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1440/*
1441 * This bitmap is used to indicate whether the vmclear
1442 * operation is enabled on all cpus. All disabled by
1443 * default.
1444 */
1445static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1446
1447static inline void crash_enable_local_vmclear(int cpu)
1448{
1449 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1450}
1451
1452static inline void crash_disable_local_vmclear(int cpu)
1453{
1454 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1455}
1456
1457static inline int crash_local_vmclear_enabled(int cpu)
1458{
1459 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1460}
1461
1462static void crash_vmclear_local_loaded_vmcss(void)
1463{
1464 int cpu = raw_smp_processor_id();
1465 struct loaded_vmcs *v;
1466
1467 if (!crash_local_vmclear_enabled(cpu))
1468 return;
1469
1470 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1471 loaded_vmcss_on_cpu_link)
1472 vmcs_clear(v->vmcs);
1473}
1474#else
1475static inline void crash_enable_local_vmclear(int cpu) { }
1476static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1477#endif /* CONFIG_KEXEC_CORE */
8f536b76 1478
d462b819 1479static void __loaded_vmcs_clear(void *arg)
6aa8b732 1480{
d462b819 1481 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1482 int cpu = raw_smp_processor_id();
6aa8b732 1483
d462b819
NHE
1484 if (loaded_vmcs->cpu != cpu)
1485 return; /* vcpu migration can race with cpu offline */
1486 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1487 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1488 crash_disable_local_vmclear(cpu);
d462b819 1489 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1490
1491 /*
1492 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1493 * is before setting loaded_vmcs->vcpu to -1 which is done in
1494 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1495 * then adds the vmcs into percpu list before it is deleted.
1496 */
1497 smp_wmb();
1498
d462b819 1499 loaded_vmcs_init(loaded_vmcs);
8f536b76 1500 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1501}
1502
d462b819 1503static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1504{
e6c7d321
XG
1505 int cpu = loaded_vmcs->cpu;
1506
1507 if (cpu != -1)
1508 smp_call_function_single(cpu,
1509 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1510}
1511
dd5f5341 1512static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1513{
dd5f5341 1514 if (vpid == 0)
2384d2b3
SY
1515 return;
1516
518c8aee 1517 if (cpu_has_vmx_invvpid_single())
dd5f5341 1518 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1519}
1520
b9d762fa
GJ
1521static inline void vpid_sync_vcpu_global(void)
1522{
1523 if (cpu_has_vmx_invvpid_global())
1524 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1525}
1526
dd5f5341 1527static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1528{
1529 if (cpu_has_vmx_invvpid_single())
dd5f5341 1530 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1531 else
1532 vpid_sync_vcpu_global();
1533}
1534
1439442c
SY
1535static inline void ept_sync_global(void)
1536{
1537 if (cpu_has_vmx_invept_global())
1538 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1539}
1540
1541static inline void ept_sync_context(u64 eptp)
1542{
089d034e 1543 if (enable_ept) {
1439442c
SY
1544 if (cpu_has_vmx_invept_context())
1545 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1546 else
1547 ept_sync_global();
1548 }
1549}
1550
8a86aea9
PB
1551static __always_inline void vmcs_check16(unsigned long field)
1552{
1553 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1554 "16-bit accessor invalid for 64-bit field");
1555 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1556 "16-bit accessor invalid for 64-bit high field");
1557 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1558 "16-bit accessor invalid for 32-bit high field");
1559 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1560 "16-bit accessor invalid for natural width field");
1561}
1562
1563static __always_inline void vmcs_check32(unsigned long field)
1564{
1565 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1566 "32-bit accessor invalid for 16-bit field");
1567 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1568 "32-bit accessor invalid for natural width field");
1569}
1570
1571static __always_inline void vmcs_check64(unsigned long field)
1572{
1573 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1574 "64-bit accessor invalid for 16-bit field");
1575 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1576 "64-bit accessor invalid for 64-bit high field");
1577 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1578 "64-bit accessor invalid for 32-bit field");
1579 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1580 "64-bit accessor invalid for natural width field");
1581}
1582
1583static __always_inline void vmcs_checkl(unsigned long field)
1584{
1585 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1586 "Natural width accessor invalid for 16-bit field");
1587 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1588 "Natural width accessor invalid for 64-bit field");
1589 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1590 "Natural width accessor invalid for 64-bit high field");
1591 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1592 "Natural width accessor invalid for 32-bit field");
1593}
1594
1595static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1596{
5e520e62 1597 unsigned long value;
6aa8b732 1598
5e520e62
AK
1599 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1600 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1601 return value;
1602}
1603
96304217 1604static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1605{
8a86aea9
PB
1606 vmcs_check16(field);
1607 return __vmcs_readl(field);
6aa8b732
AK
1608}
1609
96304217 1610static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1611{
8a86aea9
PB
1612 vmcs_check32(field);
1613 return __vmcs_readl(field);
6aa8b732
AK
1614}
1615
96304217 1616static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1617{
8a86aea9 1618 vmcs_check64(field);
05b3e0c2 1619#ifdef CONFIG_X86_64
8a86aea9 1620 return __vmcs_readl(field);
6aa8b732 1621#else
8a86aea9 1622 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1623#endif
1624}
1625
8a86aea9
PB
1626static __always_inline unsigned long vmcs_readl(unsigned long field)
1627{
1628 vmcs_checkl(field);
1629 return __vmcs_readl(field);
1630}
1631
e52de1b8
AK
1632static noinline void vmwrite_error(unsigned long field, unsigned long value)
1633{
1634 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1635 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1636 dump_stack();
1637}
1638
8a86aea9 1639static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1640{
1641 u8 error;
1642
4ecac3fd 1643 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1644 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1645 if (unlikely(error))
1646 vmwrite_error(field, value);
6aa8b732
AK
1647}
1648
8a86aea9 1649static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1650{
8a86aea9
PB
1651 vmcs_check16(field);
1652 __vmcs_writel(field, value);
6aa8b732
AK
1653}
1654
8a86aea9 1655static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1656{
8a86aea9
PB
1657 vmcs_check32(field);
1658 __vmcs_writel(field, value);
6aa8b732
AK
1659}
1660
8a86aea9 1661static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1662{
8a86aea9
PB
1663 vmcs_check64(field);
1664 __vmcs_writel(field, value);
7682f2d0 1665#ifndef CONFIG_X86_64
6aa8b732 1666 asm volatile ("");
8a86aea9 1667 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1668#endif
1669}
1670
8a86aea9 1671static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1672{
8a86aea9
PB
1673 vmcs_checkl(field);
1674 __vmcs_writel(field, value);
2ab455cc
AL
1675}
1676
8a86aea9 1677static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1678{
8a86aea9
PB
1679 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1680 "vmcs_clear_bits does not support 64-bit fields");
1681 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1682}
1683
8a86aea9 1684static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1685{
8a86aea9
PB
1686 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1687 "vmcs_set_bits does not support 64-bit fields");
1688 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1689}
1690
8391ce44
PB
1691static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1692{
1693 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1694}
1695
2961e876
GN
1696static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1697{
1698 vmcs_write32(VM_ENTRY_CONTROLS, val);
1699 vmx->vm_entry_controls_shadow = val;
1700}
1701
1702static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1703{
1704 if (vmx->vm_entry_controls_shadow != val)
1705 vm_entry_controls_init(vmx, val);
1706}
1707
1708static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1709{
1710 return vmx->vm_entry_controls_shadow;
1711}
1712
1713
1714static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1715{
1716 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1717}
1718
1719static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1720{
1721 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1722}
1723
8391ce44
PB
1724static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1725{
1726 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1727}
1728
2961e876
GN
1729static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1730{
1731 vmcs_write32(VM_EXIT_CONTROLS, val);
1732 vmx->vm_exit_controls_shadow = val;
1733}
1734
1735static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1736{
1737 if (vmx->vm_exit_controls_shadow != val)
1738 vm_exit_controls_init(vmx, val);
1739}
1740
1741static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1742{
1743 return vmx->vm_exit_controls_shadow;
1744}
1745
1746
1747static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1748{
1749 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1750}
1751
1752static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1753{
1754 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1755}
1756
2fb92db1
AK
1757static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1758{
1759 vmx->segment_cache.bitmask = 0;
1760}
1761
1762static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1763 unsigned field)
1764{
1765 bool ret;
1766 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1767
1768 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1769 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1770 vmx->segment_cache.bitmask = 0;
1771 }
1772 ret = vmx->segment_cache.bitmask & mask;
1773 vmx->segment_cache.bitmask |= mask;
1774 return ret;
1775}
1776
1777static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1778{
1779 u16 *p = &vmx->segment_cache.seg[seg].selector;
1780
1781 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1782 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1783 return *p;
1784}
1785
1786static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1787{
1788 ulong *p = &vmx->segment_cache.seg[seg].base;
1789
1790 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1791 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1792 return *p;
1793}
1794
1795static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1796{
1797 u32 *p = &vmx->segment_cache.seg[seg].limit;
1798
1799 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1800 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1801 return *p;
1802}
1803
1804static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1805{
1806 u32 *p = &vmx->segment_cache.seg[seg].ar;
1807
1808 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1809 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1810 return *p;
1811}
1812
abd3f2d6
AK
1813static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1814{
1815 u32 eb;
1816
fd7373cc 1817 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
54a20552 1818 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1819 if ((vcpu->guest_debug &
1820 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1821 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1822 eb |= 1u << BP_VECTOR;
7ffd92c5 1823 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1824 eb = ~0;
089d034e 1825 if (enable_ept)
1439442c 1826 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1827 if (vcpu->fpu_active)
1828 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1829
1830 /* When we are running a nested L2 guest and L1 specified for it a
1831 * certain exception bitmap, we must trap the same exceptions and pass
1832 * them to L1. When running L2, we will only handle the exceptions
1833 * specified above if L1 did not want them.
1834 */
1835 if (is_guest_mode(vcpu))
1836 eb |= get_vmcs12(vcpu)->exception_bitmap;
1837
abd3f2d6
AK
1838 vmcs_write32(EXCEPTION_BITMAP, eb);
1839}
1840
2961e876
GN
1841static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1842 unsigned long entry, unsigned long exit)
8bf00a52 1843{
2961e876
GN
1844 vm_entry_controls_clearbit(vmx, entry);
1845 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1846}
1847
61d2ef2c
AK
1848static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1849{
1850 unsigned i;
1851 struct msr_autoload *m = &vmx->msr_autoload;
1852
8bf00a52
GN
1853 switch (msr) {
1854 case MSR_EFER:
1855 if (cpu_has_load_ia32_efer) {
2961e876
GN
1856 clear_atomic_switch_msr_special(vmx,
1857 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1858 VM_EXIT_LOAD_IA32_EFER);
1859 return;
1860 }
1861 break;
1862 case MSR_CORE_PERF_GLOBAL_CTRL:
1863 if (cpu_has_load_perf_global_ctrl) {
2961e876 1864 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1865 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1866 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1867 return;
1868 }
1869 break;
110312c8
AK
1870 }
1871
61d2ef2c
AK
1872 for (i = 0; i < m->nr; ++i)
1873 if (m->guest[i].index == msr)
1874 break;
1875
1876 if (i == m->nr)
1877 return;
1878 --m->nr;
1879 m->guest[i] = m->guest[m->nr];
1880 m->host[i] = m->host[m->nr];
1881 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1882 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1883}
1884
2961e876
GN
1885static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1886 unsigned long entry, unsigned long exit,
1887 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1888 u64 guest_val, u64 host_val)
8bf00a52
GN
1889{
1890 vmcs_write64(guest_val_vmcs, guest_val);
1891 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1892 vm_entry_controls_setbit(vmx, entry);
1893 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1894}
1895
61d2ef2c
AK
1896static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1897 u64 guest_val, u64 host_val)
1898{
1899 unsigned i;
1900 struct msr_autoload *m = &vmx->msr_autoload;
1901
8bf00a52
GN
1902 switch (msr) {
1903 case MSR_EFER:
1904 if (cpu_has_load_ia32_efer) {
2961e876
GN
1905 add_atomic_switch_msr_special(vmx,
1906 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1907 VM_EXIT_LOAD_IA32_EFER,
1908 GUEST_IA32_EFER,
1909 HOST_IA32_EFER,
1910 guest_val, host_val);
1911 return;
1912 }
1913 break;
1914 case MSR_CORE_PERF_GLOBAL_CTRL:
1915 if (cpu_has_load_perf_global_ctrl) {
2961e876 1916 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1917 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1918 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1919 GUEST_IA32_PERF_GLOBAL_CTRL,
1920 HOST_IA32_PERF_GLOBAL_CTRL,
1921 guest_val, host_val);
1922 return;
1923 }
1924 break;
7099e2e1
RK
1925 case MSR_IA32_PEBS_ENABLE:
1926 /* PEBS needs a quiescent period after being disabled (to write
1927 * a record). Disabling PEBS through VMX MSR swapping doesn't
1928 * provide that period, so a CPU could write host's record into
1929 * guest's memory.
1930 */
1931 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1932 }
1933
61d2ef2c
AK
1934 for (i = 0; i < m->nr; ++i)
1935 if (m->guest[i].index == msr)
1936 break;
1937
e7fc6f93 1938 if (i == NR_AUTOLOAD_MSRS) {
60266204 1939 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1940 "Can't add msr %x\n", msr);
1941 return;
1942 } else if (i == m->nr) {
61d2ef2c
AK
1943 ++m->nr;
1944 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1945 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1946 }
1947
1948 m->guest[i].index = msr;
1949 m->guest[i].value = guest_val;
1950 m->host[i].index = msr;
1951 m->host[i].value = host_val;
1952}
1953
33ed6329
AK
1954static void reload_tss(void)
1955{
33ed6329
AK
1956 /*
1957 * VT restores TR but not its size. Useless.
1958 */
89cbc767 1959 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1960 struct desc_struct *descs;
33ed6329 1961
d359192f 1962 descs = (void *)gdt->address;
33ed6329
AK
1963 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1964 load_TR_desc();
33ed6329
AK
1965}
1966
92c0d900 1967static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1968{
844a5fe2
PB
1969 u64 guest_efer = vmx->vcpu.arch.efer;
1970 u64 ignore_bits = 0;
1971
1972 if (!enable_ept) {
1973 /*
1974 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1975 * host CPUID is more efficient than testing guest CPUID
1976 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1977 */
1978 if (boot_cpu_has(X86_FEATURE_SMEP))
1979 guest_efer |= EFER_NX;
1980 else if (!(guest_efer & EFER_NX))
1981 ignore_bits |= EFER_NX;
1982 }
3a34a881 1983
51c6cf66 1984 /*
844a5fe2 1985 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 1986 */
844a5fe2 1987 ignore_bits |= EFER_SCE;
51c6cf66
AK
1988#ifdef CONFIG_X86_64
1989 ignore_bits |= EFER_LMA | EFER_LME;
1990 /* SCE is meaningful only in long mode on Intel */
1991 if (guest_efer & EFER_LMA)
1992 ignore_bits &= ~(u64)EFER_SCE;
1993#endif
84ad33ef
AK
1994
1995 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1996
1997 /*
1998 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1999 * On CPUs that support "load IA32_EFER", always switch EFER
2000 * atomically, since it's faster than switching it manually.
2001 */
2002 if (cpu_has_load_ia32_efer ||
2003 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2004 if (!(guest_efer & EFER_LMA))
2005 guest_efer &= ~EFER_LME;
54b98bff
AL
2006 if (guest_efer != host_efer)
2007 add_atomic_switch_msr(vmx, MSR_EFER,
2008 guest_efer, host_efer);
84ad33ef 2009 return false;
844a5fe2
PB
2010 } else {
2011 guest_efer &= ~ignore_bits;
2012 guest_efer |= host_efer & ignore_bits;
2013
2014 vmx->guest_msrs[efer_offset].data = guest_efer;
2015 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2016
844a5fe2
PB
2017 return true;
2018 }
51c6cf66
AK
2019}
2020
2d49ec72
GN
2021static unsigned long segment_base(u16 selector)
2022{
89cbc767 2023 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
2024 struct desc_struct *d;
2025 unsigned long table_base;
2026 unsigned long v;
2027
2028 if (!(selector & ~3))
2029 return 0;
2030
d359192f 2031 table_base = gdt->address;
2d49ec72
GN
2032
2033 if (selector & 4) { /* from ldt */
2034 u16 ldt_selector = kvm_read_ldt();
2035
2036 if (!(ldt_selector & ~3))
2037 return 0;
2038
2039 table_base = segment_base(ldt_selector);
2040 }
2041 d = (struct desc_struct *)(table_base + (selector & ~7));
2042 v = get_desc_base(d);
2043#ifdef CONFIG_X86_64
2044 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2045 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2046#endif
2047 return v;
2048}
2049
2050static inline unsigned long kvm_read_tr_base(void)
2051{
2052 u16 tr;
2053 asm("str %0" : "=g"(tr));
2054 return segment_base(tr);
2055}
2056
04d2cc77 2057static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2058{
04d2cc77 2059 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2060 int i;
04d2cc77 2061
a2fa3e9f 2062 if (vmx->host_state.loaded)
33ed6329
AK
2063 return;
2064
a2fa3e9f 2065 vmx->host_state.loaded = 1;
33ed6329
AK
2066 /*
2067 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2068 * allow segment selectors with cpl > 0 or ti == 1.
2069 */
d6e88aec 2070 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2071 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2072 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2073 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2074 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2075 vmx->host_state.fs_reload_needed = 0;
2076 } else {
33ed6329 2077 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2078 vmx->host_state.fs_reload_needed = 1;
33ed6329 2079 }
9581d442 2080 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2081 if (!(vmx->host_state.gs_sel & 7))
2082 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2083 else {
2084 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2085 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2086 }
2087
b2da15ac
AK
2088#ifdef CONFIG_X86_64
2089 savesegment(ds, vmx->host_state.ds_sel);
2090 savesegment(es, vmx->host_state.es_sel);
2091#endif
2092
33ed6329
AK
2093#ifdef CONFIG_X86_64
2094 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2095 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2096#else
a2fa3e9f
GH
2097 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2098 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2099#endif
707c0874
AK
2100
2101#ifdef CONFIG_X86_64
c8770e7b
AK
2102 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2103 if (is_long_mode(&vmx->vcpu))
44ea2b17 2104 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2105#endif
da8999d3
LJ
2106 if (boot_cpu_has(X86_FEATURE_MPX))
2107 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2108 for (i = 0; i < vmx->save_nmsrs; ++i)
2109 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2110 vmx->guest_msrs[i].data,
2111 vmx->guest_msrs[i].mask);
33ed6329
AK
2112}
2113
a9b21b62 2114static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2115{
a2fa3e9f 2116 if (!vmx->host_state.loaded)
33ed6329
AK
2117 return;
2118
e1beb1d3 2119 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2120 vmx->host_state.loaded = 0;
c8770e7b
AK
2121#ifdef CONFIG_X86_64
2122 if (is_long_mode(&vmx->vcpu))
2123 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2124#endif
152d3f2f 2125 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2126 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2127#ifdef CONFIG_X86_64
9581d442 2128 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2129#else
2130 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2131#endif
33ed6329 2132 }
0a77fe4c
AK
2133 if (vmx->host_state.fs_reload_needed)
2134 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2135#ifdef CONFIG_X86_64
2136 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2137 loadsegment(ds, vmx->host_state.ds_sel);
2138 loadsegment(es, vmx->host_state.es_sel);
2139 }
b2da15ac 2140#endif
152d3f2f 2141 reload_tss();
44ea2b17 2142#ifdef CONFIG_X86_64
c8770e7b 2143 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2144#endif
da8999d3
LJ
2145 if (vmx->host_state.msr_host_bndcfgs)
2146 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
2147 /*
2148 * If the FPU is not active (through the host task or
2149 * the guest vcpu), then restore the cr0.TS bit.
2150 */
3c6dffa9 2151 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 2152 stts();
89cbc767 2153 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2154}
2155
a9b21b62
AK
2156static void vmx_load_host_state(struct vcpu_vmx *vmx)
2157{
2158 preempt_disable();
2159 __vmx_load_host_state(vmx);
2160 preempt_enable();
2161}
2162
28b835d6
FW
2163static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2164{
2165 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2166 struct pi_desc old, new;
2167 unsigned int dest;
2168
2169 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2170 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2171 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2172 return;
2173
2174 do {
2175 old.control = new.control = pi_desc->control;
2176
2177 /*
2178 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2179 * are two possible cases:
2180 * 1. After running 'pre_block', context switch
2181 * happened. For this case, 'sn' was set in
2182 * vmx_vcpu_put(), so we need to clear it here.
2183 * 2. After running 'pre_block', we were blocked,
2184 * and woken up by some other guy. For this case,
2185 * we don't need to do anything, 'pi_post_block'
2186 * will do everything for us. However, we cannot
2187 * check whether it is case #1 or case #2 here
2188 * (maybe, not needed), so we also clear sn here,
2189 * I think it is not a big deal.
2190 */
2191 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2192 if (vcpu->cpu != cpu) {
2193 dest = cpu_physical_id(cpu);
2194
2195 if (x2apic_enabled())
2196 new.ndst = dest;
2197 else
2198 new.ndst = (dest << 8) & 0xFF00;
2199 }
2200
2201 /* set 'NV' to 'notification vector' */
2202 new.nv = POSTED_INTR_VECTOR;
2203 }
2204
2205 /* Allow posting non-urgent interrupts */
2206 new.sn = 0;
2207 } while (cmpxchg(&pi_desc->control, old.control,
2208 new.control) != old.control);
2209}
1be0e61c 2210
c95ba92a
PF
2211static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2212{
2213 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2214 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2215}
2216
6aa8b732
AK
2217/*
2218 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2219 * vcpu mutex is already taken.
2220 */
15ad7146 2221static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2222{
a2fa3e9f 2223 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2224 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
b80c76ec 2225 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2226
4610c9cc
DX
2227 if (!vmm_exclusive)
2228 kvm_cpu_vmxon(phys_addr);
b80c76ec 2229 else if (!already_loaded)
d462b819 2230 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2231
b80c76ec 2232 if (!already_loaded) {
92fe13be 2233 local_irq_disable();
8f536b76 2234 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2235
2236 /*
2237 * Read loaded_vmcs->cpu should be before fetching
2238 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2239 * See the comments in __loaded_vmcs_clear().
2240 */
2241 smp_rmb();
2242
d462b819
NHE
2243 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2244 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2245 crash_enable_local_vmclear(cpu);
92fe13be 2246 local_irq_enable();
b80c76ec
JM
2247 }
2248
2249 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2250 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2251 vmcs_load(vmx->loaded_vmcs->vmcs);
2252 }
2253
2254 if (!already_loaded) {
2255 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2256 unsigned long sysenter_esp;
2257
2258 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2259
6aa8b732
AK
2260 /*
2261 * Linux uses per-cpu TSS and GDT, so set these when switching
2262 * processors.
2263 */
d6e88aec 2264 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2265 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2266
2267 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2268 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2269
d462b819 2270 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2271 }
28b835d6 2272
2680d6da
OH
2273 /* Setup TSC multiplier */
2274 if (kvm_has_tsc_control &&
c95ba92a
PF
2275 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2276 decache_tsc_multiplier(vmx);
2680d6da 2277
28b835d6 2278 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2279 vmx->host_pkru = read_pkru();
28b835d6
FW
2280}
2281
2282static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2283{
2284 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2285
2286 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2287 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2288 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2289 return;
2290
2291 /* Set SN when the vCPU is preempted */
2292 if (vcpu->preempted)
2293 pi_set_sn(pi_desc);
6aa8b732
AK
2294}
2295
2296static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2297{
28b835d6
FW
2298 vmx_vcpu_pi_put(vcpu);
2299
a9b21b62 2300 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2301 if (!vmm_exclusive) {
d462b819
NHE
2302 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2303 vcpu->cpu = -1;
4610c9cc
DX
2304 kvm_cpu_vmxoff();
2305 }
6aa8b732
AK
2306}
2307
5fd86fcf
AK
2308static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2309{
81231c69
AK
2310 ulong cr0;
2311
5fd86fcf
AK
2312 if (vcpu->fpu_active)
2313 return;
2314 vcpu->fpu_active = 1;
81231c69
AK
2315 cr0 = vmcs_readl(GUEST_CR0);
2316 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2317 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2318 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2319 update_exception_bitmap(vcpu);
edcafe3c 2320 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2321 if (is_guest_mode(vcpu))
2322 vcpu->arch.cr0_guest_owned_bits &=
2323 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2324 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2325}
2326
edcafe3c
AK
2327static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2328
fe3ef05c
NHE
2329/*
2330 * Return the cr0 value that a nested guest would read. This is a combination
2331 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2332 * its hypervisor (cr0_read_shadow).
2333 */
2334static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2335{
2336 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2337 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2338}
2339static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2340{
2341 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2342 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2343}
2344
5fd86fcf
AK
2345static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2346{
36cf24e0
NHE
2347 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2348 * set this *before* calling this function.
2349 */
edcafe3c 2350 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2351 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2352 update_exception_bitmap(vcpu);
edcafe3c
AK
2353 vcpu->arch.cr0_guest_owned_bits = 0;
2354 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2355 if (is_guest_mode(vcpu)) {
2356 /*
2357 * L1's specified read shadow might not contain the TS bit,
2358 * so now that we turned on shadowing of this bit, we need to
2359 * set this bit of the shadow. Like in nested_vmx_run we need
2360 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2361 * up-to-date here because we just decached cr0.TS (and we'll
2362 * only update vmcs12->guest_cr0 on nested exit).
2363 */
2364 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2365 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2366 (vcpu->arch.cr0 & X86_CR0_TS);
2367 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2368 } else
2369 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2370}
2371
6aa8b732
AK
2372static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2373{
78ac8b47 2374 unsigned long rflags, save_rflags;
345dcaa8 2375
6de12732
AK
2376 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2377 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2378 rflags = vmcs_readl(GUEST_RFLAGS);
2379 if (to_vmx(vcpu)->rmode.vm86_active) {
2380 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2381 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2382 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2383 }
2384 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2385 }
6de12732 2386 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2387}
2388
2389static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2390{
6de12732
AK
2391 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2392 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2393 if (to_vmx(vcpu)->rmode.vm86_active) {
2394 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2395 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2396 }
6aa8b732
AK
2397 vmcs_writel(GUEST_RFLAGS, rflags);
2398}
2399
be94f6b7
HH
2400static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2401{
2402 return to_vmx(vcpu)->guest_pkru;
2403}
2404
37ccdcbe 2405static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2406{
2407 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2408 int ret = 0;
2409
2410 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2411 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2412 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2413 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2414
37ccdcbe 2415 return ret;
2809f5d2
GC
2416}
2417
2418static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2419{
2420 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2421 u32 interruptibility = interruptibility_old;
2422
2423 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2424
48005f64 2425 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2426 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2427 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2428 interruptibility |= GUEST_INTR_STATE_STI;
2429
2430 if ((interruptibility != interruptibility_old))
2431 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2432}
2433
6aa8b732
AK
2434static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2435{
2436 unsigned long rip;
6aa8b732 2437
5fdbf976 2438 rip = kvm_rip_read(vcpu);
6aa8b732 2439 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2440 kvm_rip_write(vcpu, rip);
6aa8b732 2441
2809f5d2
GC
2442 /* skipping an emulated instruction also counts */
2443 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2444}
2445
0b6ac343
NHE
2446/*
2447 * KVM wants to inject page-faults which it got to the guest. This function
2448 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2449 */
e011c663 2450static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2451{
2452 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2453
e011c663 2454 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2455 return 0;
2456
533558bc
JK
2457 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2458 vmcs_read32(VM_EXIT_INTR_INFO),
2459 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2460 return 1;
2461}
2462
298101da 2463static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2464 bool has_error_code, u32 error_code,
2465 bool reinject)
298101da 2466{
77ab6db0 2467 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2468 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2469
e011c663
GN
2470 if (!reinject && is_guest_mode(vcpu) &&
2471 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2472 return;
2473
8ab2d2e2 2474 if (has_error_code) {
77ab6db0 2475 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2476 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2477 }
77ab6db0 2478
7ffd92c5 2479 if (vmx->rmode.vm86_active) {
71f9833b
SH
2480 int inc_eip = 0;
2481 if (kvm_exception_is_soft(nr))
2482 inc_eip = vcpu->arch.event_exit_inst_len;
2483 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2484 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2485 return;
2486 }
2487
66fd3f7f
GN
2488 if (kvm_exception_is_soft(nr)) {
2489 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2490 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2491 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2492 } else
2493 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2494
2495 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2496}
2497
4e47c7a6
SY
2498static bool vmx_rdtscp_supported(void)
2499{
2500 return cpu_has_vmx_rdtscp();
2501}
2502
ad756a16
MJ
2503static bool vmx_invpcid_supported(void)
2504{
2505 return cpu_has_vmx_invpcid() && enable_ept;
2506}
2507
a75beee6
ED
2508/*
2509 * Swap MSR entry in host/guest MSR entry array.
2510 */
8b9cf98c 2511static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2512{
26bb0981 2513 struct shared_msr_entry tmp;
a2fa3e9f
GH
2514
2515 tmp = vmx->guest_msrs[to];
2516 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2517 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2518}
2519
8d14695f
YZ
2520static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2521{
2522 unsigned long *msr_bitmap;
2523
670125bd 2524 if (is_guest_mode(vcpu))
d048c098 2525 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2526 else if (cpu_has_secondary_exec_ctrls() &&
2527 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2528 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2529 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2530 if (is_long_mode(vcpu))
2531 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2532 else
2533 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2534 } else {
2535 if (is_long_mode(vcpu))
2536 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv_inactive;
2537 else
2538 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv_inactive;
2539 }
8d14695f
YZ
2540 } else {
2541 if (is_long_mode(vcpu))
2542 msr_bitmap = vmx_msr_bitmap_longmode;
2543 else
2544 msr_bitmap = vmx_msr_bitmap_legacy;
2545 }
2546
2547 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2548}
2549
e38aea3e
AK
2550/*
2551 * Set up the vmcs to automatically save and restore system
2552 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2553 * mode, as fiddling with msrs is very expensive.
2554 */
8b9cf98c 2555static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2556{
26bb0981 2557 int save_nmsrs, index;
e38aea3e 2558
a75beee6
ED
2559 save_nmsrs = 0;
2560#ifdef CONFIG_X86_64
8b9cf98c 2561 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2562 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2563 if (index >= 0)
8b9cf98c
RR
2564 move_msr_up(vmx, index, save_nmsrs++);
2565 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2566 if (index >= 0)
8b9cf98c
RR
2567 move_msr_up(vmx, index, save_nmsrs++);
2568 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2569 if (index >= 0)
8b9cf98c 2570 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2571 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2572 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2573 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2574 /*
8c06585d 2575 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2576 * if efer.sce is enabled.
2577 */
8c06585d 2578 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2579 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2580 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2581 }
2582#endif
92c0d900
AK
2583 index = __find_msr_index(vmx, MSR_EFER);
2584 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2585 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2586
26bb0981 2587 vmx->save_nmsrs = save_nmsrs;
5897297b 2588
8d14695f
YZ
2589 if (cpu_has_vmx_msr_bitmap())
2590 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2591}
2592
6aa8b732
AK
2593/*
2594 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2595 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2596 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2597 */
be7b263e 2598static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2599{
2600 u64 host_tsc, tsc_offset;
2601
4ea1636b 2602 host_tsc = rdtsc();
6aa8b732 2603 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2604 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2605}
2606
d5c1785d
NHE
2607/*
2608 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2609 * counter, even if a nested guest (L2) is currently running.
2610 */
48d89b92 2611static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2612{
886b470c 2613 u64 tsc_offset;
d5c1785d 2614
d5c1785d
NHE
2615 tsc_offset = is_guest_mode(vcpu) ?
2616 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2617 vmcs_read64(TSC_OFFSET);
2618 return host_tsc + tsc_offset;
2619}
2620
6aa8b732 2621/*
99e3e30a 2622 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2623 */
99e3e30a 2624static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2625{
27fc51b2 2626 if (is_guest_mode(vcpu)) {
7991825b 2627 /*
27fc51b2
NHE
2628 * We're here if L1 chose not to trap WRMSR to TSC. According
2629 * to the spec, this should set L1's TSC; The offset that L1
2630 * set for L2 remains unchanged, and still needs to be added
2631 * to the newly set TSC to get L2's TSC.
7991825b 2632 */
27fc51b2
NHE
2633 struct vmcs12 *vmcs12;
2634 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2635 /* recalculate vmcs02.TSC_OFFSET: */
2636 vmcs12 = get_vmcs12(vcpu);
2637 vmcs_write64(TSC_OFFSET, offset +
2638 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2639 vmcs12->tsc_offset : 0));
2640 } else {
489223ed
YY
2641 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2642 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2643 vmcs_write64(TSC_OFFSET, offset);
2644 }
6aa8b732
AK
2645}
2646
58ea6767 2647static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
e48672fa
ZA
2648{
2649 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2650
e48672fa 2651 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2652 if (is_guest_mode(vcpu)) {
2653 /* Even when running L2, the adjustment needs to apply to L1 */
2654 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2655 } else
2656 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2657 offset + adjustment);
e48672fa
ZA
2658}
2659
801d3424
NHE
2660static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2661{
2662 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2663 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2664}
2665
2666/*
2667 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2668 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2669 * all guests if the "nested" module option is off, and can also be disabled
2670 * for a single guest by disabling its VMX cpuid bit.
2671 */
2672static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2673{
2674 return nested && guest_cpuid_has_vmx(vcpu);
2675}
2676
b87a51ae
NHE
2677/*
2678 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2679 * returned for the various VMX controls MSRs when nested VMX is enabled.
2680 * The same values should also be used to verify that vmcs12 control fields are
2681 * valid during nested entry from L1 to L2.
2682 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2683 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2684 * bit in the high half is on if the corresponding bit in the control field
2685 * may be on. See also vmx_control_verify().
b87a51ae 2686 */
b9c237bb 2687static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2688{
2689 /*
2690 * Note that as a general rule, the high half of the MSRs (bits in
2691 * the control fields which may be 1) should be initialized by the
2692 * intersection of the underlying hardware's MSR (i.e., features which
2693 * can be supported) and the list of features we want to expose -
2694 * because they are known to be properly supported in our code.
2695 * Also, usually, the low half of the MSRs (bits which must be 1) can
2696 * be set to 0, meaning that L1 may turn off any of these bits. The
2697 * reason is that if one of these bits is necessary, it will appear
2698 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2699 * fields of vmcs01 and vmcs02, will turn these bits off - and
2700 * nested_vmx_exit_handled() will not pass related exits to L1.
2701 * These rules have exceptions below.
2702 */
2703
2704 /* pin-based controls */
eabeaacc 2705 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2706 vmx->nested.nested_vmx_pinbased_ctls_low,
2707 vmx->nested.nested_vmx_pinbased_ctls_high);
2708 vmx->nested.nested_vmx_pinbased_ctls_low |=
2709 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2710 vmx->nested.nested_vmx_pinbased_ctls_high &=
2711 PIN_BASED_EXT_INTR_MASK |
2712 PIN_BASED_NMI_EXITING |
2713 PIN_BASED_VIRTUAL_NMIS;
2714 vmx->nested.nested_vmx_pinbased_ctls_high |=
2715 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2716 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2717 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2718 vmx->nested.nested_vmx_pinbased_ctls_high |=
2719 PIN_BASED_POSTED_INTR;
b87a51ae 2720
3dbcd8da 2721 /* exit controls */
c0dfee58 2722 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2723 vmx->nested.nested_vmx_exit_ctls_low,
2724 vmx->nested.nested_vmx_exit_ctls_high);
2725 vmx->nested.nested_vmx_exit_ctls_low =
2726 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2727
b9c237bb 2728 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2729#ifdef CONFIG_X86_64
c0dfee58 2730 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2731#endif
f4124500 2732 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2733 vmx->nested.nested_vmx_exit_ctls_high |=
2734 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2735 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2736 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2737
a87036ad 2738 if (kvm_mpx_supported())
b9c237bb 2739 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2740
2996fca0 2741 /* We support free control of debug control saving. */
b9c237bb
WV
2742 vmx->nested.nested_vmx_true_exit_ctls_low =
2743 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2744 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2745
b87a51ae
NHE
2746 /* entry controls */
2747 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2748 vmx->nested.nested_vmx_entry_ctls_low,
2749 vmx->nested.nested_vmx_entry_ctls_high);
2750 vmx->nested.nested_vmx_entry_ctls_low =
2751 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2752 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2753#ifdef CONFIG_X86_64
2754 VM_ENTRY_IA32E_MODE |
2755#endif
2756 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2757 vmx->nested.nested_vmx_entry_ctls_high |=
2758 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2759 if (kvm_mpx_supported())
b9c237bb 2760 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2761
2996fca0 2762 /* We support free control of debug control loading. */
b9c237bb
WV
2763 vmx->nested.nested_vmx_true_entry_ctls_low =
2764 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2765 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2766
b87a51ae
NHE
2767 /* cpu-based controls */
2768 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2769 vmx->nested.nested_vmx_procbased_ctls_low,
2770 vmx->nested.nested_vmx_procbased_ctls_high);
2771 vmx->nested.nested_vmx_procbased_ctls_low =
2772 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2773 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2774 CPU_BASED_VIRTUAL_INTR_PENDING |
2775 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2776 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2777 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2778 CPU_BASED_CR3_STORE_EXITING |
2779#ifdef CONFIG_X86_64
2780 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2781#endif
2782 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2783 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2784 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2785 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2786 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2787 /*
2788 * We can allow some features even when not supported by the
2789 * hardware. For example, L1 can specify an MSR bitmap - and we
2790 * can use it to avoid exits to L1 - even when L0 runs L2
2791 * without MSR bitmaps.
2792 */
b9c237bb
WV
2793 vmx->nested.nested_vmx_procbased_ctls_high |=
2794 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2795 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2796
3dcdf3ec 2797 /* We support free control of CR3 access interception. */
b9c237bb
WV
2798 vmx->nested.nested_vmx_true_procbased_ctls_low =
2799 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2800 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2801
b87a51ae
NHE
2802 /* secondary cpu-based controls */
2803 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2804 vmx->nested.nested_vmx_secondary_ctls_low,
2805 vmx->nested.nested_vmx_secondary_ctls_high);
2806 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2807 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2808 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2809 SECONDARY_EXEC_RDTSCP |
f2b93280 2810 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2811 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2812 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2813 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2814 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2815 SECONDARY_EXEC_XSAVES;
c18911a2 2816
afa61f75
NHE
2817 if (enable_ept) {
2818 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2819 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2820 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2821 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2822 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2823 VMX_EPT_INVEPT_BIT;
02120c45
BD
2824 if (cpu_has_vmx_ept_execute_only())
2825 vmx->nested.nested_vmx_ept_caps |=
2826 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2827 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817
BD
2828 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2829 VMX_EPT_EXTENT_CONTEXT_BIT;
afa61f75 2830 } else
b9c237bb 2831 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2832
ef697a71
PB
2833 /*
2834 * Old versions of KVM use the single-context version without
2835 * checking for support, so declare that it is supported even
2836 * though it is treated as global context. The alternative is
2837 * not failing the single-context invvpid, and it is worse.
2838 */
089d7b6e
WL
2839 if (enable_vpid)
2840 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
ef697a71 2841 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
089d7b6e
WL
2842 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2843 else
2844 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2845
0790ec17
RK
2846 if (enable_unrestricted_guest)
2847 vmx->nested.nested_vmx_secondary_ctls_high |=
2848 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2849
c18911a2 2850 /* miscellaneous data */
b9c237bb
WV
2851 rdmsr(MSR_IA32_VMX_MISC,
2852 vmx->nested.nested_vmx_misc_low,
2853 vmx->nested.nested_vmx_misc_high);
2854 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2855 vmx->nested.nested_vmx_misc_low |=
2856 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2857 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2858 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2859}
2860
2861static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2862{
2863 /*
2864 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2865 */
2866 return ((control & high) | low) == control;
2867}
2868
2869static inline u64 vmx_control_msr(u32 low, u32 high)
2870{
2871 return low | ((u64)high << 32);
2872}
2873
cae50139 2874/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2875static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2876{
b9c237bb
WV
2877 struct vcpu_vmx *vmx = to_vmx(vcpu);
2878
b87a51ae 2879 switch (msr_index) {
b87a51ae
NHE
2880 case MSR_IA32_VMX_BASIC:
2881 /*
2882 * This MSR reports some information about VMX support. We
2883 * should return information about the VMX we emulate for the
2884 * guest, and the VMCS structure we give it - not about the
2885 * VMX support of the underlying hardware.
2886 */
3dbcd8da 2887 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2888 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2889 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
9ac7e3e8
JD
2890 if (cpu_has_vmx_basic_inout())
2891 *pdata |= VMX_BASIC_INOUT;
b87a51ae
NHE
2892 break;
2893 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2894 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2895 *pdata = vmx_control_msr(
2896 vmx->nested.nested_vmx_pinbased_ctls_low,
2897 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2898 break;
2899 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2900 *pdata = vmx_control_msr(
2901 vmx->nested.nested_vmx_true_procbased_ctls_low,
2902 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2903 break;
b87a51ae 2904 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2905 *pdata = vmx_control_msr(
2906 vmx->nested.nested_vmx_procbased_ctls_low,
2907 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2908 break;
2909 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2910 *pdata = vmx_control_msr(
2911 vmx->nested.nested_vmx_true_exit_ctls_low,
2912 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2913 break;
b87a51ae 2914 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2915 *pdata = vmx_control_msr(
2916 vmx->nested.nested_vmx_exit_ctls_low,
2917 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2918 break;
2919 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2920 *pdata = vmx_control_msr(
2921 vmx->nested.nested_vmx_true_entry_ctls_low,
2922 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2923 break;
b87a51ae 2924 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2925 *pdata = vmx_control_msr(
2926 vmx->nested.nested_vmx_entry_ctls_low,
2927 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2928 break;
2929 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2930 *pdata = vmx_control_msr(
2931 vmx->nested.nested_vmx_misc_low,
2932 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2933 break;
2934 /*
2935 * These MSRs specify bits which the guest must keep fixed (on or off)
2936 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2937 * We picked the standard core2 setting.
2938 */
2939#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2940#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2941 case MSR_IA32_VMX_CR0_FIXED0:
2942 *pdata = VMXON_CR0_ALWAYSON;
2943 break;
2944 case MSR_IA32_VMX_CR0_FIXED1:
2945 *pdata = -1ULL;
2946 break;
2947 case MSR_IA32_VMX_CR4_FIXED0:
2948 *pdata = VMXON_CR4_ALWAYSON;
2949 break;
2950 case MSR_IA32_VMX_CR4_FIXED1:
2951 *pdata = -1ULL;
2952 break;
2953 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2954 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2955 break;
2956 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2957 *pdata = vmx_control_msr(
2958 vmx->nested.nested_vmx_secondary_ctls_low,
2959 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2960 break;
2961 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
2962 *pdata = vmx->nested.nested_vmx_ept_caps |
2963 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
2964 break;
2965 default:
b87a51ae 2966 return 1;
b3897a49
NHE
2967 }
2968
b87a51ae
NHE
2969 return 0;
2970}
2971
37e4c997
HZ
2972static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
2973 uint64_t val)
2974{
2975 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
2976
2977 return !(val & ~valid_bits);
2978}
2979
6aa8b732
AK
2980/*
2981 * Reads an msr value (of 'msr_index') into 'pdata'.
2982 * Returns 0 on success, non-0 otherwise.
2983 * Assumes vcpu_load() was already called.
2984 */
609e36d3 2985static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2986{
26bb0981 2987 struct shared_msr_entry *msr;
6aa8b732 2988
609e36d3 2989 switch (msr_info->index) {
05b3e0c2 2990#ifdef CONFIG_X86_64
6aa8b732 2991 case MSR_FS_BASE:
609e36d3 2992 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2993 break;
2994 case MSR_GS_BASE:
609e36d3 2995 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2996 break;
44ea2b17
AK
2997 case MSR_KERNEL_GS_BASE:
2998 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2999 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3000 break;
26bb0981 3001#endif
6aa8b732 3002 case MSR_EFER:
609e36d3 3003 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3004 case MSR_IA32_TSC:
be7b263e 3005 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3006 break;
3007 case MSR_IA32_SYSENTER_CS:
609e36d3 3008 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3009 break;
3010 case MSR_IA32_SYSENTER_EIP:
609e36d3 3011 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3012 break;
3013 case MSR_IA32_SYSENTER_ESP:
609e36d3 3014 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3015 break;
0dd376e7 3016 case MSR_IA32_BNDCFGS:
a87036ad 3017 if (!kvm_mpx_supported())
93c4adc7 3018 return 1;
609e36d3 3019 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3020 break;
c45dcc71
AR
3021 case MSR_IA32_MCG_EXT_CTL:
3022 if (!msr_info->host_initiated &&
3023 !(to_vmx(vcpu)->msr_ia32_feature_control &
3024 FEATURE_CONTROL_LMCE))
cae50139 3025 return 1;
c45dcc71
AR
3026 msr_info->data = vcpu->arch.mcg_ext_ctl;
3027 break;
cae50139 3028 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3029 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3030 break;
3031 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3032 if (!nested_vmx_allowed(vcpu))
3033 return 1;
609e36d3 3034 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3035 case MSR_IA32_XSS:
3036 if (!vmx_xsaves_supported())
3037 return 1;
609e36d3 3038 msr_info->data = vcpu->arch.ia32_xss;
20300099 3039 break;
4e47c7a6 3040 case MSR_TSC_AUX:
81b1b9ca 3041 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3042 return 1;
3043 /* Otherwise falls through */
6aa8b732 3044 default:
609e36d3 3045 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3046 if (msr) {
609e36d3 3047 msr_info->data = msr->data;
3bab1f5d 3048 break;
6aa8b732 3049 }
609e36d3 3050 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3051 }
3052
6aa8b732
AK
3053 return 0;
3054}
3055
cae50139
JK
3056static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3057
6aa8b732
AK
3058/*
3059 * Writes msr value into into the appropriate "register".
3060 * Returns 0 on success, non-0 otherwise.
3061 * Assumes vcpu_load() was already called.
3062 */
8fe8ab46 3063static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3064{
a2fa3e9f 3065 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3066 struct shared_msr_entry *msr;
2cc51560 3067 int ret = 0;
8fe8ab46
WA
3068 u32 msr_index = msr_info->index;
3069 u64 data = msr_info->data;
2cc51560 3070
6aa8b732 3071 switch (msr_index) {
3bab1f5d 3072 case MSR_EFER:
8fe8ab46 3073 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3074 break;
16175a79 3075#ifdef CONFIG_X86_64
6aa8b732 3076 case MSR_FS_BASE:
2fb92db1 3077 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3078 vmcs_writel(GUEST_FS_BASE, data);
3079 break;
3080 case MSR_GS_BASE:
2fb92db1 3081 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3082 vmcs_writel(GUEST_GS_BASE, data);
3083 break;
44ea2b17
AK
3084 case MSR_KERNEL_GS_BASE:
3085 vmx_load_host_state(vmx);
3086 vmx->msr_guest_kernel_gs_base = data;
3087 break;
6aa8b732
AK
3088#endif
3089 case MSR_IA32_SYSENTER_CS:
3090 vmcs_write32(GUEST_SYSENTER_CS, data);
3091 break;
3092 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3093 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3094 break;
3095 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3096 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3097 break;
0dd376e7 3098 case MSR_IA32_BNDCFGS:
a87036ad 3099 if (!kvm_mpx_supported())
93c4adc7 3100 return 1;
0dd376e7
LJ
3101 vmcs_write64(GUEST_BNDCFGS, data);
3102 break;
af24a4e4 3103 case MSR_IA32_TSC:
8fe8ab46 3104 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3105 break;
468d472f
SY
3106 case MSR_IA32_CR_PAT:
3107 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3108 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3109 return 1;
468d472f
SY
3110 vmcs_write64(GUEST_IA32_PAT, data);
3111 vcpu->arch.pat = data;
3112 break;
3113 }
8fe8ab46 3114 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3115 break;
ba904635
WA
3116 case MSR_IA32_TSC_ADJUST:
3117 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3118 break;
c45dcc71
AR
3119 case MSR_IA32_MCG_EXT_CTL:
3120 if ((!msr_info->host_initiated &&
3121 !(to_vmx(vcpu)->msr_ia32_feature_control &
3122 FEATURE_CONTROL_LMCE)) ||
3123 (data & ~MCG_EXT_CTL_LMCE_EN))
3124 return 1;
3125 vcpu->arch.mcg_ext_ctl = data;
3126 break;
cae50139 3127 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3128 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3129 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3130 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3131 return 1;
3b84080b 3132 vmx->msr_ia32_feature_control = data;
cae50139
JK
3133 if (msr_info->host_initiated && data == 0)
3134 vmx_leave_nested(vcpu);
3135 break;
3136 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3137 return 1; /* they are read-only */
20300099
WL
3138 case MSR_IA32_XSS:
3139 if (!vmx_xsaves_supported())
3140 return 1;
3141 /*
3142 * The only supported bit as of Skylake is bit 8, but
3143 * it is not supported on KVM.
3144 */
3145 if (data != 0)
3146 return 1;
3147 vcpu->arch.ia32_xss = data;
3148 if (vcpu->arch.ia32_xss != host_xss)
3149 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3150 vcpu->arch.ia32_xss, host_xss);
3151 else
3152 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3153 break;
4e47c7a6 3154 case MSR_TSC_AUX:
81b1b9ca 3155 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3156 return 1;
3157 /* Check reserved bit, higher 32 bits should be zero */
3158 if ((data >> 32) != 0)
3159 return 1;
3160 /* Otherwise falls through */
6aa8b732 3161 default:
8b9cf98c 3162 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3163 if (msr) {
8b3c3104 3164 u64 old_msr_data = msr->data;
3bab1f5d 3165 msr->data = data;
2225fd56
AK
3166 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3167 preempt_disable();
8b3c3104
AH
3168 ret = kvm_set_shared_msr(msr->index, msr->data,
3169 msr->mask);
2225fd56 3170 preempt_enable();
8b3c3104
AH
3171 if (ret)
3172 msr->data = old_msr_data;
2225fd56 3173 }
3bab1f5d 3174 break;
6aa8b732 3175 }
8fe8ab46 3176 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3177 }
3178
2cc51560 3179 return ret;
6aa8b732
AK
3180}
3181
5fdbf976 3182static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3183{
5fdbf976
MT
3184 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3185 switch (reg) {
3186 case VCPU_REGS_RSP:
3187 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3188 break;
3189 case VCPU_REGS_RIP:
3190 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3191 break;
6de4f3ad
AK
3192 case VCPU_EXREG_PDPTR:
3193 if (enable_ept)
3194 ept_save_pdptrs(vcpu);
3195 break;
5fdbf976
MT
3196 default:
3197 break;
3198 }
6aa8b732
AK
3199}
3200
6aa8b732
AK
3201static __init int cpu_has_kvm_support(void)
3202{
6210e37b 3203 return cpu_has_vmx();
6aa8b732
AK
3204}
3205
3206static __init int vmx_disabled_by_bios(void)
3207{
3208 u64 msr;
3209
3210 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3211 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3212 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3213 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3214 && tboot_enabled())
3215 return 1;
23f3e991 3216 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3217 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3218 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3219 && !tboot_enabled()) {
3220 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3221 "activate TXT before enabling KVM\n");
cafd6659 3222 return 1;
f9335afe 3223 }
23f3e991
JC
3224 /* launched w/o TXT and VMX disabled */
3225 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3226 && !tboot_enabled())
3227 return 1;
cafd6659
SW
3228 }
3229
3230 return 0;
6aa8b732
AK
3231}
3232
7725b894
DX
3233static void kvm_cpu_vmxon(u64 addr)
3234{
1c5ac21a
AS
3235 intel_pt_handle_vmx(1);
3236
7725b894
DX
3237 asm volatile (ASM_VMX_VMXON_RAX
3238 : : "a"(&addr), "m"(addr)
3239 : "memory", "cc");
3240}
3241
13a34e06 3242static int hardware_enable(void)
6aa8b732
AK
3243{
3244 int cpu = raw_smp_processor_id();
3245 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3246 u64 old, test_bits;
6aa8b732 3247
1e02ce4c 3248 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3249 return -EBUSY;
3250
d462b819 3251 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3252 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3253 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3254
3255 /*
3256 * Now we can enable the vmclear operation in kdump
3257 * since the loaded_vmcss_on_cpu list on this cpu
3258 * has been initialized.
3259 *
3260 * Though the cpu is not in VMX operation now, there
3261 * is no problem to enable the vmclear operation
3262 * for the loaded_vmcss_on_cpu list is empty!
3263 */
3264 crash_enable_local_vmclear(cpu);
3265
6aa8b732 3266 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3267
3268 test_bits = FEATURE_CONTROL_LOCKED;
3269 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3270 if (tboot_enabled())
3271 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3272
3273 if ((old & test_bits) != test_bits) {
6aa8b732 3274 /* enable and lock */
cafd6659
SW
3275 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3276 }
375074cc 3277 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3278
4610c9cc
DX
3279 if (vmm_exclusive) {
3280 kvm_cpu_vmxon(phys_addr);
3281 ept_sync_global();
3282 }
10474ae8 3283
89cbc767 3284 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3285
10474ae8 3286 return 0;
6aa8b732
AK
3287}
3288
d462b819 3289static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3290{
3291 int cpu = raw_smp_processor_id();
d462b819 3292 struct loaded_vmcs *v, *n;
543e4243 3293
d462b819
NHE
3294 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3295 loaded_vmcss_on_cpu_link)
3296 __loaded_vmcs_clear(v);
543e4243
AK
3297}
3298
710ff4a8
EH
3299
3300/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3301 * tricks.
3302 */
3303static void kvm_cpu_vmxoff(void)
6aa8b732 3304{
4ecac3fd 3305 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3306
3307 intel_pt_handle_vmx(0);
6aa8b732
AK
3308}
3309
13a34e06 3310static void hardware_disable(void)
710ff4a8 3311{
4610c9cc 3312 if (vmm_exclusive) {
d462b819 3313 vmclear_local_loaded_vmcss();
4610c9cc
DX
3314 kvm_cpu_vmxoff();
3315 }
375074cc 3316 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3317}
3318
1c3d14fe 3319static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3320 u32 msr, u32 *result)
1c3d14fe
YS
3321{
3322 u32 vmx_msr_low, vmx_msr_high;
3323 u32 ctl = ctl_min | ctl_opt;
3324
3325 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3326
3327 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3328 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3329
3330 /* Ensure minimum (required) set of control bits are supported. */
3331 if (ctl_min & ~ctl)
002c7f7c 3332 return -EIO;
1c3d14fe
YS
3333
3334 *result = ctl;
3335 return 0;
3336}
3337
110312c8
AK
3338static __init bool allow_1_setting(u32 msr, u32 ctl)
3339{
3340 u32 vmx_msr_low, vmx_msr_high;
3341
3342 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3343 return vmx_msr_high & ctl;
3344}
3345
002c7f7c 3346static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3347{
3348 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3349 u32 min, opt, min2, opt2;
1c3d14fe
YS
3350 u32 _pin_based_exec_control = 0;
3351 u32 _cpu_based_exec_control = 0;
f78e0e2e 3352 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3353 u32 _vmexit_control = 0;
3354 u32 _vmentry_control = 0;
3355
10166744 3356 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3357#ifdef CONFIG_X86_64
3358 CPU_BASED_CR8_LOAD_EXITING |
3359 CPU_BASED_CR8_STORE_EXITING |
3360#endif
d56f546d
SY
3361 CPU_BASED_CR3_LOAD_EXITING |
3362 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3363 CPU_BASED_USE_IO_BITMAPS |
3364 CPU_BASED_MOV_DR_EXITING |
a7052897 3365 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3366 CPU_BASED_MWAIT_EXITING |
3367 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3368 CPU_BASED_INVLPG_EXITING |
3369 CPU_BASED_RDPMC_EXITING;
443381a8 3370
f78e0e2e 3371 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3372 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3373 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3374 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3375 &_cpu_based_exec_control) < 0)
002c7f7c 3376 return -EIO;
6e5d865c
YS
3377#ifdef CONFIG_X86_64
3378 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3379 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3380 ~CPU_BASED_CR8_STORE_EXITING;
3381#endif
f78e0e2e 3382 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3383 min2 = 0;
3384 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3385 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3386 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3387 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3388 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3389 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3390 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3391 SECONDARY_EXEC_RDTSCP |
83d4c286 3392 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3393 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3394 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3395 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3396 SECONDARY_EXEC_XSAVES |
8b3e34e4 3397 SECONDARY_EXEC_ENABLE_PML |
64903d61 3398 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3399 if (adjust_vmx_controls(min2, opt2,
3400 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3401 &_cpu_based_2nd_exec_control) < 0)
3402 return -EIO;
3403 }
3404#ifndef CONFIG_X86_64
3405 if (!(_cpu_based_2nd_exec_control &
3406 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3407 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3408#endif
83d4c286
YZ
3409
3410 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3411 _cpu_based_2nd_exec_control &= ~(
8d14695f 3412 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3413 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3414 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3415
d56f546d 3416 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3417 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3418 enabled */
5fff7d27
GN
3419 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3420 CPU_BASED_CR3_STORE_EXITING |
3421 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3422 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3423 vmx_capability.ept, vmx_capability.vpid);
3424 }
1c3d14fe 3425
91fa0f8e 3426 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3427#ifdef CONFIG_X86_64
3428 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3429#endif
a547c6db 3430 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3431 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3432 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3433 &_vmexit_control) < 0)
002c7f7c 3434 return -EIO;
1c3d14fe 3435
01e439be 3436 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
64672c95
YJ
3437 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3438 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3439 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3440 &_pin_based_exec_control) < 0)
3441 return -EIO;
3442
1c17c3e6
PB
3443 if (cpu_has_broken_vmx_preemption_timer())
3444 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3445 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3446 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3447 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3448
c845f9c6 3449 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3450 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3451 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3452 &_vmentry_control) < 0)
002c7f7c 3453 return -EIO;
6aa8b732 3454
c68876fd 3455 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3456
3457 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3458 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3459 return -EIO;
1c3d14fe
YS
3460
3461#ifdef CONFIG_X86_64
3462 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3463 if (vmx_msr_high & (1u<<16))
002c7f7c 3464 return -EIO;
1c3d14fe
YS
3465#endif
3466
3467 /* Require Write-Back (WB) memory type for VMCS accesses. */
3468 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3469 return -EIO;
1c3d14fe 3470
002c7f7c 3471 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3472 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3473 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3474 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3475
002c7f7c
YS
3476 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3477 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3478 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3479 vmcs_conf->vmexit_ctrl = _vmexit_control;
3480 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3481
110312c8
AK
3482 cpu_has_load_ia32_efer =
3483 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3484 VM_ENTRY_LOAD_IA32_EFER)
3485 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3486 VM_EXIT_LOAD_IA32_EFER);
3487
8bf00a52
GN
3488 cpu_has_load_perf_global_ctrl =
3489 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3490 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3491 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3492 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3493
3494 /*
3495 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3496 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3497 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3498 *
3499 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3500 *
3501 * AAK155 (model 26)
3502 * AAP115 (model 30)
3503 * AAT100 (model 37)
3504 * BC86,AAY89,BD102 (model 44)
3505 * BA97 (model 46)
3506 *
3507 */
3508 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3509 switch (boot_cpu_data.x86_model) {
3510 case 26:
3511 case 30:
3512 case 37:
3513 case 44:
3514 case 46:
3515 cpu_has_load_perf_global_ctrl = false;
3516 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3517 "does not work properly. Using workaround\n");
3518 break;
3519 default:
3520 break;
3521 }
3522 }
3523
782511b0 3524 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3525 rdmsrl(MSR_IA32_XSS, host_xss);
3526
1c3d14fe 3527 return 0;
c68876fd 3528}
6aa8b732
AK
3529
3530static struct vmcs *alloc_vmcs_cpu(int cpu)
3531{
3532 int node = cpu_to_node(cpu);
3533 struct page *pages;
3534 struct vmcs *vmcs;
3535
96db800f 3536 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3537 if (!pages)
3538 return NULL;
3539 vmcs = page_address(pages);
1c3d14fe
YS
3540 memset(vmcs, 0, vmcs_config.size);
3541 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3542 return vmcs;
3543}
3544
3545static struct vmcs *alloc_vmcs(void)
3546{
d3b2c338 3547 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3548}
3549
3550static void free_vmcs(struct vmcs *vmcs)
3551{
1c3d14fe 3552 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3553}
3554
d462b819
NHE
3555/*
3556 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3557 */
3558static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3559{
3560 if (!loaded_vmcs->vmcs)
3561 return;
3562 loaded_vmcs_clear(loaded_vmcs);
3563 free_vmcs(loaded_vmcs->vmcs);
3564 loaded_vmcs->vmcs = NULL;
3565}
3566
39959588 3567static void free_kvm_area(void)
6aa8b732
AK
3568{
3569 int cpu;
3570
3230bb47 3571 for_each_possible_cpu(cpu) {
6aa8b732 3572 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3573 per_cpu(vmxarea, cpu) = NULL;
3574 }
6aa8b732
AK
3575}
3576
fe2b201b
BD
3577static void init_vmcs_shadow_fields(void)
3578{
3579 int i, j;
3580
3581 /* No checks for read only fields yet */
3582
3583 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3584 switch (shadow_read_write_fields[i]) {
3585 case GUEST_BNDCFGS:
a87036ad 3586 if (!kvm_mpx_supported())
fe2b201b
BD
3587 continue;
3588 break;
3589 default:
3590 break;
3591 }
3592
3593 if (j < i)
3594 shadow_read_write_fields[j] =
3595 shadow_read_write_fields[i];
3596 j++;
3597 }
3598 max_shadow_read_write_fields = j;
3599
3600 /* shadowed fields guest access without vmexit */
3601 for (i = 0; i < max_shadow_read_write_fields; i++) {
3602 clear_bit(shadow_read_write_fields[i],
3603 vmx_vmwrite_bitmap);
3604 clear_bit(shadow_read_write_fields[i],
3605 vmx_vmread_bitmap);
3606 }
3607 for (i = 0; i < max_shadow_read_only_fields; i++)
3608 clear_bit(shadow_read_only_fields[i],
3609 vmx_vmread_bitmap);
3610}
3611
6aa8b732
AK
3612static __init int alloc_kvm_area(void)
3613{
3614 int cpu;
3615
3230bb47 3616 for_each_possible_cpu(cpu) {
6aa8b732
AK
3617 struct vmcs *vmcs;
3618
3619 vmcs = alloc_vmcs_cpu(cpu);
3620 if (!vmcs) {
3621 free_kvm_area();
3622 return -ENOMEM;
3623 }
3624
3625 per_cpu(vmxarea, cpu) = vmcs;
3626 }
3627 return 0;
3628}
3629
14168786
GN
3630static bool emulation_required(struct kvm_vcpu *vcpu)
3631{
3632 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3633}
3634
91b0aa2c 3635static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3636 struct kvm_segment *save)
6aa8b732 3637{
d99e4152
GN
3638 if (!emulate_invalid_guest_state) {
3639 /*
3640 * CS and SS RPL should be equal during guest entry according
3641 * to VMX spec, but in reality it is not always so. Since vcpu
3642 * is in the middle of the transition from real mode to
3643 * protected mode it is safe to assume that RPL 0 is a good
3644 * default value.
3645 */
3646 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3647 save->selector &= ~SEGMENT_RPL_MASK;
3648 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3649 save->s = 1;
6aa8b732 3650 }
d99e4152 3651 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3652}
3653
3654static void enter_pmode(struct kvm_vcpu *vcpu)
3655{
3656 unsigned long flags;
a89a8fb9 3657 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3658
d99e4152
GN
3659 /*
3660 * Update real mode segment cache. It may be not up-to-date if sement
3661 * register was written while vcpu was in a guest mode.
3662 */
3663 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3664 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3665 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3666 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3667 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3668 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3669
7ffd92c5 3670 vmx->rmode.vm86_active = 0;
6aa8b732 3671
2fb92db1
AK
3672 vmx_segment_cache_clear(vmx);
3673
f5f7b2fe 3674 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3675
3676 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3677 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3678 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3679 vmcs_writel(GUEST_RFLAGS, flags);
3680
66aee91a
RR
3681 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3682 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3683
3684 update_exception_bitmap(vcpu);
3685
91b0aa2c
GN
3686 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3687 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3688 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3689 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3690 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3691 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3692}
3693
f5f7b2fe 3694static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3695{
772e0318 3696 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3697 struct kvm_segment var = *save;
3698
3699 var.dpl = 0x3;
3700 if (seg == VCPU_SREG_CS)
3701 var.type = 0x3;
3702
3703 if (!emulate_invalid_guest_state) {
3704 var.selector = var.base >> 4;
3705 var.base = var.base & 0xffff0;
3706 var.limit = 0xffff;
3707 var.g = 0;
3708 var.db = 0;
3709 var.present = 1;
3710 var.s = 1;
3711 var.l = 0;
3712 var.unusable = 0;
3713 var.type = 0x3;
3714 var.avl = 0;
3715 if (save->base & 0xf)
3716 printk_once(KERN_WARNING "kvm: segment base is not "
3717 "paragraph aligned when entering "
3718 "protected mode (seg=%d)", seg);
3719 }
6aa8b732 3720
d99e4152
GN
3721 vmcs_write16(sf->selector, var.selector);
3722 vmcs_write32(sf->base, var.base);
3723 vmcs_write32(sf->limit, var.limit);
3724 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3725}
3726
3727static void enter_rmode(struct kvm_vcpu *vcpu)
3728{
3729 unsigned long flags;
a89a8fb9 3730 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3731
f5f7b2fe
AK
3732 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3733 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3734 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3735 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3736 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3737 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3738 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3739
7ffd92c5 3740 vmx->rmode.vm86_active = 1;
6aa8b732 3741
776e58ea
GN
3742 /*
3743 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3744 * vcpu. Warn the user that an update is overdue.
776e58ea 3745 */
4918c6ca 3746 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3747 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3748 "called before entering vcpu\n");
776e58ea 3749
2fb92db1
AK
3750 vmx_segment_cache_clear(vmx);
3751
4918c6ca 3752 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3753 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3754 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3755
3756 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3757 vmx->rmode.save_rflags = flags;
6aa8b732 3758
053de044 3759 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3760
3761 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3762 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3763 update_exception_bitmap(vcpu);
3764
d99e4152
GN
3765 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3766 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3767 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3768 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3769 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3770 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3771
8668a3c4 3772 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3773}
3774
401d10de
AS
3775static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3776{
3777 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3778 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3779
3780 if (!msr)
3781 return;
401d10de 3782
44ea2b17
AK
3783 /*
3784 * Force kernel_gs_base reloading before EFER changes, as control
3785 * of this msr depends on is_long_mode().
3786 */
3787 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3788 vcpu->arch.efer = efer;
401d10de 3789 if (efer & EFER_LMA) {
2961e876 3790 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3791 msr->data = efer;
3792 } else {
2961e876 3793 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3794
3795 msr->data = efer & ~EFER_LME;
3796 }
3797 setup_msrs(vmx);
3798}
3799
05b3e0c2 3800#ifdef CONFIG_X86_64
6aa8b732
AK
3801
3802static void enter_lmode(struct kvm_vcpu *vcpu)
3803{
3804 u32 guest_tr_ar;
3805
2fb92db1
AK
3806 vmx_segment_cache_clear(to_vmx(vcpu));
3807
6aa8b732 3808 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3809 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3810 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3811 __func__);
6aa8b732 3812 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3813 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3814 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3815 }
da38f438 3816 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3817}
3818
3819static void exit_lmode(struct kvm_vcpu *vcpu)
3820{
2961e876 3821 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3822 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3823}
3824
3825#endif
3826
dd5f5341 3827static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3828{
dd5f5341 3829 vpid_sync_context(vpid);
dd180b3e
XG
3830 if (enable_ept) {
3831 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3832 return;
4e1096d2 3833 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3834 }
2384d2b3
SY
3835}
3836
dd5f5341
WL
3837static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3838{
3839 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3840}
3841
e8467fda
AK
3842static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3843{
3844 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3845
3846 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3847 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3848}
3849
aff48baa
AK
3850static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3851{
3852 if (enable_ept && is_paging(vcpu))
3853 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3854 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3855}
3856
25c4c276 3857static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3858{
fc78f519
AK
3859 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3860
3861 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3862 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3863}
3864
1439442c
SY
3865static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3866{
d0d538b9
GN
3867 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3868
6de4f3ad
AK
3869 if (!test_bit(VCPU_EXREG_PDPTR,
3870 (unsigned long *)&vcpu->arch.regs_dirty))
3871 return;
3872
1439442c 3873 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3874 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3875 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3876 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3877 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3878 }
3879}
3880
8f5d549f
AK
3881static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3882{
d0d538b9
GN
3883 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3884
8f5d549f 3885 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3886 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3887 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3888 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3889 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3890 }
6de4f3ad
AK
3891
3892 __set_bit(VCPU_EXREG_PDPTR,
3893 (unsigned long *)&vcpu->arch.regs_avail);
3894 __set_bit(VCPU_EXREG_PDPTR,
3895 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3896}
3897
5e1746d6 3898static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3899
3900static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3901 unsigned long cr0,
3902 struct kvm_vcpu *vcpu)
3903{
5233dd51
MT
3904 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3905 vmx_decache_cr3(vcpu);
1439442c
SY
3906 if (!(cr0 & X86_CR0_PG)) {
3907 /* From paging/starting to nonpaging */
3908 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3909 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3910 (CPU_BASED_CR3_LOAD_EXITING |
3911 CPU_BASED_CR3_STORE_EXITING));
3912 vcpu->arch.cr0 = cr0;
fc78f519 3913 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3914 } else if (!is_paging(vcpu)) {
3915 /* From nonpaging to paging */
3916 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3917 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3918 ~(CPU_BASED_CR3_LOAD_EXITING |
3919 CPU_BASED_CR3_STORE_EXITING));
3920 vcpu->arch.cr0 = cr0;
fc78f519 3921 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3922 }
95eb84a7
SY
3923
3924 if (!(cr0 & X86_CR0_WP))
3925 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3926}
3927
6aa8b732
AK
3928static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3929{
7ffd92c5 3930 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3931 unsigned long hw_cr0;
3932
5037878e 3933 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3934 if (enable_unrestricted_guest)
5037878e 3935 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3936 else {
5037878e 3937 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3938
218e763f
GN
3939 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3940 enter_pmode(vcpu);
6aa8b732 3941
218e763f
GN
3942 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3943 enter_rmode(vcpu);
3944 }
6aa8b732 3945
05b3e0c2 3946#ifdef CONFIG_X86_64
f6801dff 3947 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3948 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3949 enter_lmode(vcpu);
707d92fa 3950 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3951 exit_lmode(vcpu);
3952 }
3953#endif
3954
089d034e 3955 if (enable_ept)
1439442c
SY
3956 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3957
02daab21 3958 if (!vcpu->fpu_active)
81231c69 3959 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3960
6aa8b732 3961 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3962 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3963 vcpu->arch.cr0 = cr0;
14168786
GN
3964
3965 /* depends on vcpu->arch.cr0 to be set to a new value */
3966 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3967}
3968
1439442c
SY
3969static u64 construct_eptp(unsigned long root_hpa)
3970{
3971 u64 eptp;
3972
3973 /* TODO write the value reading from MSR */
3974 eptp = VMX_EPT_DEFAULT_MT |
3975 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3976 if (enable_ept_ad_bits)
3977 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3978 eptp |= (root_hpa & PAGE_MASK);
3979
3980 return eptp;
3981}
3982
6aa8b732
AK
3983static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3984{
1439442c
SY
3985 unsigned long guest_cr3;
3986 u64 eptp;
3987
3988 guest_cr3 = cr3;
089d034e 3989 if (enable_ept) {
1439442c
SY
3990 eptp = construct_eptp(cr3);
3991 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3992 if (is_paging(vcpu) || is_guest_mode(vcpu))
3993 guest_cr3 = kvm_read_cr3(vcpu);
3994 else
3995 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3996 ept_load_pdptrs(vcpu);
1439442c
SY
3997 }
3998
2384d2b3 3999 vmx_flush_tlb(vcpu);
1439442c 4000 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4001}
4002
5e1746d6 4003static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4004{
085e68ee
BS
4005 /*
4006 * Pass through host's Machine Check Enable value to hw_cr4, which
4007 * is in force while we are in guest mode. Do not let guests control
4008 * this bit, even if host CR4.MCE == 0.
4009 */
4010 unsigned long hw_cr4 =
4011 (cr4_read_shadow() & X86_CR4_MCE) |
4012 (cr4 & ~X86_CR4_MCE) |
4013 (to_vmx(vcpu)->rmode.vm86_active ?
4014 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4015
5e1746d6
NHE
4016 if (cr4 & X86_CR4_VMXE) {
4017 /*
4018 * To use VMXON (and later other VMX instructions), a guest
4019 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4020 * So basically the check on whether to allow nested VMX
4021 * is here.
4022 */
4023 if (!nested_vmx_allowed(vcpu))
4024 return 1;
1a0d74e6
JK
4025 }
4026 if (to_vmx(vcpu)->nested.vmxon &&
4027 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
4028 return 1;
4029
ad312c7c 4030 vcpu->arch.cr4 = cr4;
bc23008b
AK
4031 if (enable_ept) {
4032 if (!is_paging(vcpu)) {
4033 hw_cr4 &= ~X86_CR4_PAE;
4034 hw_cr4 |= X86_CR4_PSE;
4035 } else if (!(cr4 & X86_CR4_PAE)) {
4036 hw_cr4 &= ~X86_CR4_PAE;
4037 }
4038 }
1439442c 4039
656ec4a4
RK
4040 if (!enable_unrestricted_guest && !is_paging(vcpu))
4041 /*
ddba2628
HH
4042 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4043 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4044 * to be manually disabled when guest switches to non-paging
4045 * mode.
4046 *
4047 * If !enable_unrestricted_guest, the CPU is always running
4048 * with CR0.PG=1 and CR4 needs to be modified.
4049 * If enable_unrestricted_guest, the CPU automatically
4050 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4051 */
ddba2628 4052 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4053
1439442c
SY
4054 vmcs_writel(CR4_READ_SHADOW, cr4);
4055 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4056 return 0;
6aa8b732
AK
4057}
4058
6aa8b732
AK
4059static void vmx_get_segment(struct kvm_vcpu *vcpu,
4060 struct kvm_segment *var, int seg)
4061{
a9179499 4062 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4063 u32 ar;
4064
c6ad1153 4065 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4066 *var = vmx->rmode.segs[seg];
a9179499 4067 if (seg == VCPU_SREG_TR
2fb92db1 4068 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4069 return;
1390a28b
AK
4070 var->base = vmx_read_guest_seg_base(vmx, seg);
4071 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4072 return;
a9179499 4073 }
2fb92db1
AK
4074 var->base = vmx_read_guest_seg_base(vmx, seg);
4075 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4076 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4077 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4078 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4079 var->type = ar & 15;
4080 var->s = (ar >> 4) & 1;
4081 var->dpl = (ar >> 5) & 3;
03617c18
GN
4082 /*
4083 * Some userspaces do not preserve unusable property. Since usable
4084 * segment has to be present according to VMX spec we can use present
4085 * property to amend userspace bug by making unusable segment always
4086 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4087 * segment as unusable.
4088 */
4089 var->present = !var->unusable;
6aa8b732
AK
4090 var->avl = (ar >> 12) & 1;
4091 var->l = (ar >> 13) & 1;
4092 var->db = (ar >> 14) & 1;
4093 var->g = (ar >> 15) & 1;
6aa8b732
AK
4094}
4095
a9179499
AK
4096static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4097{
a9179499
AK
4098 struct kvm_segment s;
4099
4100 if (to_vmx(vcpu)->rmode.vm86_active) {
4101 vmx_get_segment(vcpu, &s, seg);
4102 return s.base;
4103 }
2fb92db1 4104 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4105}
4106
b09408d0 4107static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4108{
b09408d0
MT
4109 struct vcpu_vmx *vmx = to_vmx(vcpu);
4110
ae9fedc7 4111 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4112 return 0;
ae9fedc7
PB
4113 else {
4114 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4115 return VMX_AR_DPL(ar);
69c73028 4116 }
69c73028
AK
4117}
4118
653e3108 4119static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4120{
6aa8b732
AK
4121 u32 ar;
4122
f0495f9b 4123 if (var->unusable || !var->present)
6aa8b732
AK
4124 ar = 1 << 16;
4125 else {
4126 ar = var->type & 15;
4127 ar |= (var->s & 1) << 4;
4128 ar |= (var->dpl & 3) << 5;
4129 ar |= (var->present & 1) << 7;
4130 ar |= (var->avl & 1) << 12;
4131 ar |= (var->l & 1) << 13;
4132 ar |= (var->db & 1) << 14;
4133 ar |= (var->g & 1) << 15;
4134 }
653e3108
AK
4135
4136 return ar;
4137}
4138
4139static void vmx_set_segment(struct kvm_vcpu *vcpu,
4140 struct kvm_segment *var, int seg)
4141{
7ffd92c5 4142 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4143 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4144
2fb92db1
AK
4145 vmx_segment_cache_clear(vmx);
4146
1ecd50a9
GN
4147 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4148 vmx->rmode.segs[seg] = *var;
4149 if (seg == VCPU_SREG_TR)
4150 vmcs_write16(sf->selector, var->selector);
4151 else if (var->s)
4152 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4153 goto out;
653e3108 4154 }
1ecd50a9 4155
653e3108
AK
4156 vmcs_writel(sf->base, var->base);
4157 vmcs_write32(sf->limit, var->limit);
4158 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4159
4160 /*
4161 * Fix the "Accessed" bit in AR field of segment registers for older
4162 * qemu binaries.
4163 * IA32 arch specifies that at the time of processor reset the
4164 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4165 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4166 * state vmexit when "unrestricted guest" mode is turned on.
4167 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4168 * tree. Newer qemu binaries with that qemu fix would not need this
4169 * kvm hack.
4170 */
4171 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4172 var->type |= 0x1; /* Accessed */
3a624e29 4173
f924d66d 4174 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4175
4176out:
98eb2f8b 4177 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4178}
4179
6aa8b732
AK
4180static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4181{
2fb92db1 4182 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4183
4184 *db = (ar >> 14) & 1;
4185 *l = (ar >> 13) & 1;
4186}
4187
89a27f4d 4188static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4189{
89a27f4d
GN
4190 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4191 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4192}
4193
89a27f4d 4194static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4195{
89a27f4d
GN
4196 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4197 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4198}
4199
89a27f4d 4200static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4201{
89a27f4d
GN
4202 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4203 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4204}
4205
89a27f4d 4206static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4207{
89a27f4d
GN
4208 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4209 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4210}
4211
648dfaa7
MG
4212static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4213{
4214 struct kvm_segment var;
4215 u32 ar;
4216
4217 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4218 var.dpl = 0x3;
0647f4aa
GN
4219 if (seg == VCPU_SREG_CS)
4220 var.type = 0x3;
648dfaa7
MG
4221 ar = vmx_segment_access_rights(&var);
4222
4223 if (var.base != (var.selector << 4))
4224 return false;
89efbed0 4225 if (var.limit != 0xffff)
648dfaa7 4226 return false;
07f42f5f 4227 if (ar != 0xf3)
648dfaa7
MG
4228 return false;
4229
4230 return true;
4231}
4232
4233static bool code_segment_valid(struct kvm_vcpu *vcpu)
4234{
4235 struct kvm_segment cs;
4236 unsigned int cs_rpl;
4237
4238 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4239 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4240
1872a3f4
AK
4241 if (cs.unusable)
4242 return false;
4d283ec9 4243 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4244 return false;
4245 if (!cs.s)
4246 return false;
4d283ec9 4247 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4248 if (cs.dpl > cs_rpl)
4249 return false;
1872a3f4 4250 } else {
648dfaa7
MG
4251 if (cs.dpl != cs_rpl)
4252 return false;
4253 }
4254 if (!cs.present)
4255 return false;
4256
4257 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4258 return true;
4259}
4260
4261static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4262{
4263 struct kvm_segment ss;
4264 unsigned int ss_rpl;
4265
4266 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4267 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4268
1872a3f4
AK
4269 if (ss.unusable)
4270 return true;
4271 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4272 return false;
4273 if (!ss.s)
4274 return false;
4275 if (ss.dpl != ss_rpl) /* DPL != RPL */
4276 return false;
4277 if (!ss.present)
4278 return false;
4279
4280 return true;
4281}
4282
4283static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4284{
4285 struct kvm_segment var;
4286 unsigned int rpl;
4287
4288 vmx_get_segment(vcpu, &var, seg);
b32a9918 4289 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4290
1872a3f4
AK
4291 if (var.unusable)
4292 return true;
648dfaa7
MG
4293 if (!var.s)
4294 return false;
4295 if (!var.present)
4296 return false;
4d283ec9 4297 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4298 if (var.dpl < rpl) /* DPL < RPL */
4299 return false;
4300 }
4301
4302 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4303 * rights flags
4304 */
4305 return true;
4306}
4307
4308static bool tr_valid(struct kvm_vcpu *vcpu)
4309{
4310 struct kvm_segment tr;
4311
4312 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4313
1872a3f4
AK
4314 if (tr.unusable)
4315 return false;
b32a9918 4316 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4317 return false;
1872a3f4 4318 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4319 return false;
4320 if (!tr.present)
4321 return false;
4322
4323 return true;
4324}
4325
4326static bool ldtr_valid(struct kvm_vcpu *vcpu)
4327{
4328 struct kvm_segment ldtr;
4329
4330 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4331
1872a3f4
AK
4332 if (ldtr.unusable)
4333 return true;
b32a9918 4334 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4335 return false;
4336 if (ldtr.type != 2)
4337 return false;
4338 if (!ldtr.present)
4339 return false;
4340
4341 return true;
4342}
4343
4344static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4345{
4346 struct kvm_segment cs, ss;
4347
4348 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4349 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4350
b32a9918
NA
4351 return ((cs.selector & SEGMENT_RPL_MASK) ==
4352 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4353}
4354
4355/*
4356 * Check if guest state is valid. Returns true if valid, false if
4357 * not.
4358 * We assume that registers are always usable
4359 */
4360static bool guest_state_valid(struct kvm_vcpu *vcpu)
4361{
c5e97c80
GN
4362 if (enable_unrestricted_guest)
4363 return true;
4364
648dfaa7 4365 /* real mode guest state checks */
f13882d8 4366 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4367 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4368 return false;
4369 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4370 return false;
4371 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4372 return false;
4373 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4374 return false;
4375 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4376 return false;
4377 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4378 return false;
4379 } else {
4380 /* protected mode guest state checks */
4381 if (!cs_ss_rpl_check(vcpu))
4382 return false;
4383 if (!code_segment_valid(vcpu))
4384 return false;
4385 if (!stack_segment_valid(vcpu))
4386 return false;
4387 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4388 return false;
4389 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4390 return false;
4391 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4392 return false;
4393 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4394 return false;
4395 if (!tr_valid(vcpu))
4396 return false;
4397 if (!ldtr_valid(vcpu))
4398 return false;
4399 }
4400 /* TODO:
4401 * - Add checks on RIP
4402 * - Add checks on RFLAGS
4403 */
4404
4405 return true;
4406}
4407
d77c26fc 4408static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4409{
40dcaa9f 4410 gfn_t fn;
195aefde 4411 u16 data = 0;
1f755a82 4412 int idx, r;
6aa8b732 4413
40dcaa9f 4414 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4415 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4416 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4417 if (r < 0)
10589a46 4418 goto out;
195aefde 4419 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4420 r = kvm_write_guest_page(kvm, fn++, &data,
4421 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4422 if (r < 0)
10589a46 4423 goto out;
195aefde
IE
4424 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4425 if (r < 0)
10589a46 4426 goto out;
195aefde
IE
4427 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4428 if (r < 0)
10589a46 4429 goto out;
195aefde 4430 data = ~0;
10589a46
MT
4431 r = kvm_write_guest_page(kvm, fn, &data,
4432 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4433 sizeof(u8));
10589a46 4434out:
40dcaa9f 4435 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4436 return r;
6aa8b732
AK
4437}
4438
b7ebfb05
SY
4439static int init_rmode_identity_map(struct kvm *kvm)
4440{
f51770ed 4441 int i, idx, r = 0;
ba049e93 4442 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4443 u32 tmp;
4444
089d034e 4445 if (!enable_ept)
f51770ed 4446 return 0;
a255d479
TC
4447
4448 /* Protect kvm->arch.ept_identity_pagetable_done. */
4449 mutex_lock(&kvm->slots_lock);
4450
f51770ed 4451 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4452 goto out2;
a255d479 4453
b927a3ce 4454 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4455
4456 r = alloc_identity_pagetable(kvm);
f51770ed 4457 if (r < 0)
a255d479
TC
4458 goto out2;
4459
40dcaa9f 4460 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4461 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4462 if (r < 0)
4463 goto out;
4464 /* Set up identity-mapping pagetable for EPT in real mode */
4465 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4466 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4467 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4468 r = kvm_write_guest_page(kvm, identity_map_pfn,
4469 &tmp, i * sizeof(tmp), sizeof(tmp));
4470 if (r < 0)
4471 goto out;
4472 }
4473 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4474
b7ebfb05 4475out:
40dcaa9f 4476 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4477
4478out2:
4479 mutex_unlock(&kvm->slots_lock);
f51770ed 4480 return r;
b7ebfb05
SY
4481}
4482
6aa8b732
AK
4483static void seg_setup(int seg)
4484{
772e0318 4485 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4486 unsigned int ar;
6aa8b732
AK
4487
4488 vmcs_write16(sf->selector, 0);
4489 vmcs_writel(sf->base, 0);
4490 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4491 ar = 0x93;
4492 if (seg == VCPU_SREG_CS)
4493 ar |= 0x08; /* code segment */
3a624e29
NK
4494
4495 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4496}
4497
f78e0e2e
SY
4498static int alloc_apic_access_page(struct kvm *kvm)
4499{
4484141a 4500 struct page *page;
f78e0e2e
SY
4501 int r = 0;
4502
79fac95e 4503 mutex_lock(&kvm->slots_lock);
c24ae0dc 4504 if (kvm->arch.apic_access_page_done)
f78e0e2e 4505 goto out;
1d8007bd
PB
4506 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4507 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4508 if (r)
4509 goto out;
72dc67a6 4510
73a6d941 4511 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4512 if (is_error_page(page)) {
4513 r = -EFAULT;
4514 goto out;
4515 }
4516
c24ae0dc
TC
4517 /*
4518 * Do not pin the page in memory, so that memory hot-unplug
4519 * is able to migrate it.
4520 */
4521 put_page(page);
4522 kvm->arch.apic_access_page_done = true;
f78e0e2e 4523out:
79fac95e 4524 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4525 return r;
4526}
4527
b7ebfb05
SY
4528static int alloc_identity_pagetable(struct kvm *kvm)
4529{
a255d479
TC
4530 /* Called with kvm->slots_lock held. */
4531
b7ebfb05
SY
4532 int r = 0;
4533
a255d479
TC
4534 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4535
1d8007bd
PB
4536 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4537 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4538
b7ebfb05
SY
4539 return r;
4540}
4541
991e7a0e 4542static int allocate_vpid(void)
2384d2b3
SY
4543{
4544 int vpid;
4545
919818ab 4546 if (!enable_vpid)
991e7a0e 4547 return 0;
2384d2b3
SY
4548 spin_lock(&vmx_vpid_lock);
4549 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4550 if (vpid < VMX_NR_VPIDS)
2384d2b3 4551 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4552 else
4553 vpid = 0;
2384d2b3 4554 spin_unlock(&vmx_vpid_lock);
991e7a0e 4555 return vpid;
2384d2b3
SY
4556}
4557
991e7a0e 4558static void free_vpid(int vpid)
cdbecfc3 4559{
991e7a0e 4560 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4561 return;
4562 spin_lock(&vmx_vpid_lock);
991e7a0e 4563 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4564 spin_unlock(&vmx_vpid_lock);
4565}
4566
8d14695f
YZ
4567#define MSR_TYPE_R 1
4568#define MSR_TYPE_W 2
4569static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4570 u32 msr, int type)
25c5f225 4571{
3e7c73e9 4572 int f = sizeof(unsigned long);
25c5f225
SY
4573
4574 if (!cpu_has_vmx_msr_bitmap())
4575 return;
4576
4577 /*
4578 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4579 * have the write-low and read-high bitmap offsets the wrong way round.
4580 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4581 */
25c5f225 4582 if (msr <= 0x1fff) {
8d14695f
YZ
4583 if (type & MSR_TYPE_R)
4584 /* read-low */
4585 __clear_bit(msr, msr_bitmap + 0x000 / f);
4586
4587 if (type & MSR_TYPE_W)
4588 /* write-low */
4589 __clear_bit(msr, msr_bitmap + 0x800 / f);
4590
25c5f225
SY
4591 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4592 msr &= 0x1fff;
8d14695f
YZ
4593 if (type & MSR_TYPE_R)
4594 /* read-high */
4595 __clear_bit(msr, msr_bitmap + 0x400 / f);
4596
4597 if (type & MSR_TYPE_W)
4598 /* write-high */
4599 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4600
4601 }
4602}
4603
4604static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4605 u32 msr, int type)
4606{
4607 int f = sizeof(unsigned long);
4608
4609 if (!cpu_has_vmx_msr_bitmap())
4610 return;
4611
4612 /*
4613 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4614 * have the write-low and read-high bitmap offsets the wrong way round.
4615 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4616 */
4617 if (msr <= 0x1fff) {
4618 if (type & MSR_TYPE_R)
4619 /* read-low */
4620 __set_bit(msr, msr_bitmap + 0x000 / f);
4621
4622 if (type & MSR_TYPE_W)
4623 /* write-low */
4624 __set_bit(msr, msr_bitmap + 0x800 / f);
4625
4626 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4627 msr &= 0x1fff;
4628 if (type & MSR_TYPE_R)
4629 /* read-high */
4630 __set_bit(msr, msr_bitmap + 0x400 / f);
4631
4632 if (type & MSR_TYPE_W)
4633 /* write-high */
4634 __set_bit(msr, msr_bitmap + 0xc00 / f);
4635
25c5f225 4636 }
25c5f225
SY
4637}
4638
f2b93280
WV
4639/*
4640 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4641 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4642 */
4643static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4644 unsigned long *msr_bitmap_nested,
4645 u32 msr, int type)
4646{
4647 int f = sizeof(unsigned long);
4648
4649 if (!cpu_has_vmx_msr_bitmap()) {
4650 WARN_ON(1);
4651 return;
4652 }
4653
4654 /*
4655 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4656 * have the write-low and read-high bitmap offsets the wrong way round.
4657 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4658 */
4659 if (msr <= 0x1fff) {
4660 if (type & MSR_TYPE_R &&
4661 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4662 /* read-low */
4663 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4664
4665 if (type & MSR_TYPE_W &&
4666 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4667 /* write-low */
4668 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4669
4670 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4671 msr &= 0x1fff;
4672 if (type & MSR_TYPE_R &&
4673 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4674 /* read-high */
4675 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4676
4677 if (type & MSR_TYPE_W &&
4678 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4679 /* write-high */
4680 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4681
4682 }
4683}
4684
5897297b
AK
4685static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4686{
4687 if (!longmode_only)
8d14695f
YZ
4688 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4689 msr, MSR_TYPE_R | MSR_TYPE_W);
4690 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4691 msr, MSR_TYPE_R | MSR_TYPE_W);
4692}
4693
f6e90f9e 4694static void vmx_enable_intercept_msr_read_x2apic(u32 msr, bool apicv_active)
8d14695f 4695{
f6e90f9e
WL
4696 if (apicv_active) {
4697 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4698 msr, MSR_TYPE_R);
4699 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4700 msr, MSR_TYPE_R);
4701 } else {
4702 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
4703 msr, MSR_TYPE_R);
4704 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
4705 msr, MSR_TYPE_R);
4706 }
8d14695f
YZ
4707}
4708
f6e90f9e 4709static void vmx_disable_intercept_msr_read_x2apic(u32 msr, bool apicv_active)
8d14695f 4710{
f6e90f9e
WL
4711 if (apicv_active) {
4712 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4713 msr, MSR_TYPE_R);
4714 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4715 msr, MSR_TYPE_R);
4716 } else {
4717 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
4718 msr, MSR_TYPE_R);
4719 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
4720 msr, MSR_TYPE_R);
4721 }
8d14695f
YZ
4722}
4723
f6e90f9e 4724static void vmx_disable_intercept_msr_write_x2apic(u32 msr, bool apicv_active)
8d14695f 4725{
f6e90f9e
WL
4726 if (apicv_active) {
4727 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4728 msr, MSR_TYPE_W);
4729 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4730 msr, MSR_TYPE_W);
4731 } else {
4732 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
4733 msr, MSR_TYPE_W);
4734 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
4735 msr, MSR_TYPE_W);
4736 }
5897297b
AK
4737}
4738
d62caabb 4739static bool vmx_get_enable_apicv(void)
d50ab6c1 4740{
d62caabb 4741 return enable_apicv;
d50ab6c1
PB
4742}
4743
705699a1
WV
4744static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4745{
4746 struct vcpu_vmx *vmx = to_vmx(vcpu);
4747 int max_irr;
4748 void *vapic_page;
4749 u16 status;
4750
4751 if (vmx->nested.pi_desc &&
4752 vmx->nested.pi_pending) {
4753 vmx->nested.pi_pending = false;
4754 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4755 return 0;
4756
4757 max_irr = find_last_bit(
4758 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4759
4760 if (max_irr == 256)
4761 return 0;
4762
4763 vapic_page = kmap(vmx->nested.virtual_apic_page);
4764 if (!vapic_page) {
4765 WARN_ON(1);
4766 return -ENOMEM;
4767 }
4768 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4769 kunmap(vmx->nested.virtual_apic_page);
4770
4771 status = vmcs_read16(GUEST_INTR_STATUS);
4772 if ((u8)max_irr > ((u8)status & 0xff)) {
4773 status &= ~0xff;
4774 status |= (u8)max_irr;
4775 vmcs_write16(GUEST_INTR_STATUS, status);
4776 }
4777 }
4778 return 0;
4779}
4780
21bc8dc5
RK
4781static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4782{
4783#ifdef CONFIG_SMP
4784 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4785 struct vcpu_vmx *vmx = to_vmx(vcpu);
4786
4787 /*
4788 * Currently, we don't support urgent interrupt,
4789 * all interrupts are recognized as non-urgent
4790 * interrupt, so we cannot post interrupts when
4791 * 'SN' is set.
4792 *
4793 * If the vcpu is in guest mode, it means it is
4794 * running instead of being scheduled out and
4795 * waiting in the run queue, and that's the only
4796 * case when 'SN' is set currently, warning if
4797 * 'SN' is set.
4798 */
4799 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4800
21bc8dc5
RK
4801 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4802 POSTED_INTR_VECTOR);
4803 return true;
4804 }
4805#endif
4806 return false;
4807}
4808
705699a1
WV
4809static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4810 int vector)
4811{
4812 struct vcpu_vmx *vmx = to_vmx(vcpu);
4813
4814 if (is_guest_mode(vcpu) &&
4815 vector == vmx->nested.posted_intr_nv) {
4816 /* the PIR and ON have been set by L1. */
21bc8dc5 4817 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4818 /*
4819 * If a posted intr is not recognized by hardware,
4820 * we will accomplish it in the next vmentry.
4821 */
4822 vmx->nested.pi_pending = true;
4823 kvm_make_request(KVM_REQ_EVENT, vcpu);
4824 return 0;
4825 }
4826 return -1;
4827}
a20ed54d
YZ
4828/*
4829 * Send interrupt to vcpu via posted interrupt way.
4830 * 1. If target vcpu is running(non-root mode), send posted interrupt
4831 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4832 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4833 * interrupt from PIR in next vmentry.
4834 */
4835static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4836{
4837 struct vcpu_vmx *vmx = to_vmx(vcpu);
4838 int r;
4839
705699a1
WV
4840 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4841 if (!r)
4842 return;
4843
a20ed54d
YZ
4844 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4845 return;
4846
4847 r = pi_test_and_set_on(&vmx->pi_desc);
4848 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4849 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4850 kvm_vcpu_kick(vcpu);
4851}
4852
4853static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4854{
4855 struct vcpu_vmx *vmx = to_vmx(vcpu);
4856
4857 if (!pi_test_and_clear_on(&vmx->pi_desc))
4858 return;
4859
4860 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4861}
4862
a3a8ff8e
NHE
4863/*
4864 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4865 * will not change in the lifetime of the guest.
4866 * Note that host-state that does change is set elsewhere. E.g., host-state
4867 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4868 */
a547c6db 4869static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4870{
4871 u32 low32, high32;
4872 unsigned long tmpl;
4873 struct desc_ptr dt;
d974baa3 4874 unsigned long cr4;
a3a8ff8e 4875
b1a74bf8 4876 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4877 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4878
d974baa3 4879 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4880 cr4 = cr4_read_shadow();
d974baa3
AL
4881 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4882 vmx->host_state.vmcs_host_cr4 = cr4;
4883
a3a8ff8e 4884 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4885#ifdef CONFIG_X86_64
4886 /*
4887 * Load null selectors, so we can avoid reloading them in
4888 * __vmx_load_host_state(), in case userspace uses the null selectors
4889 * too (the expected case).
4890 */
4891 vmcs_write16(HOST_DS_SELECTOR, 0);
4892 vmcs_write16(HOST_ES_SELECTOR, 0);
4893#else
a3a8ff8e
NHE
4894 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4895 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4896#endif
a3a8ff8e
NHE
4897 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4898 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4899
4900 native_store_idt(&dt);
4901 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4902 vmx->host_idt_base = dt.address;
a3a8ff8e 4903
83287ea4 4904 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4905
4906 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4907 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4908 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4909 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4910
4911 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4912 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4913 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4914 }
4915}
4916
bf8179a0
NHE
4917static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4918{
4919 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4920 if (enable_ept)
4921 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4922 if (is_guest_mode(&vmx->vcpu))
4923 vmx->vcpu.arch.cr4_guest_owned_bits &=
4924 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4925 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4926}
4927
01e439be
YZ
4928static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4929{
4930 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4931
d62caabb 4932 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 4933 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
4934 /* Enable the preemption timer dynamically */
4935 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
4936 return pin_based_exec_ctrl;
4937}
4938
d62caabb
AS
4939static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4940{
4941 struct vcpu_vmx *vmx = to_vmx(vcpu);
4942
4943 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
4944 if (cpu_has_secondary_exec_ctrls()) {
4945 if (kvm_vcpu_apicv_active(vcpu))
4946 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4947 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4948 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4949 else
4950 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4951 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4952 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4953 }
4954
4955 if (cpu_has_vmx_msr_bitmap())
4956 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
4957}
4958
bf8179a0
NHE
4959static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4960{
4961 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4962
4963 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4964 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4965
35754c98 4966 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
4967 exec_control &= ~CPU_BASED_TPR_SHADOW;
4968#ifdef CONFIG_X86_64
4969 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4970 CPU_BASED_CR8_LOAD_EXITING;
4971#endif
4972 }
4973 if (!enable_ept)
4974 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4975 CPU_BASED_CR3_LOAD_EXITING |
4976 CPU_BASED_INVLPG_EXITING;
4977 return exec_control;
4978}
4979
4980static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4981{
4982 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 4983 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
4984 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4985 if (vmx->vpid == 0)
4986 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4987 if (!enable_ept) {
4988 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4989 enable_unrestricted_guest = 0;
ad756a16
MJ
4990 /* Enable INVPCID for non-ept guests may cause performance regression. */
4991 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4992 }
4993 if (!enable_unrestricted_guest)
4994 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4995 if (!ple_gap)
4996 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 4997 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
4998 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4999 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5000 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5001 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5002 (handle_vmptrld).
5003 We can NOT enable shadow_vmcs here because we don't have yet
5004 a current VMCS12
5005 */
5006 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5007
5008 if (!enable_pml)
5009 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5010
bf8179a0
NHE
5011 return exec_control;
5012}
5013
ce88decf
XG
5014static void ept_set_mmio_spte_mask(void)
5015{
5016 /*
5017 * EPT Misconfigurations can be generated if the value of bits 2:0
5018 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 5019 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
5020 * spte.
5021 */
885032b9 5022 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
5023}
5024
f53cd63c 5025#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5026/*
5027 * Sets up the vmcs for emulated real mode.
5028 */
8b9cf98c 5029static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5030{
2e4ce7f5 5031#ifdef CONFIG_X86_64
6aa8b732 5032 unsigned long a;
2e4ce7f5 5033#endif
6aa8b732 5034 int i;
6aa8b732 5035
6aa8b732 5036 /* I/O */
3e7c73e9
AK
5037 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5038 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5039
4607c2d7
AG
5040 if (enable_shadow_vmcs) {
5041 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5042 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5043 }
25c5f225 5044 if (cpu_has_vmx_msr_bitmap())
5897297b 5045 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5046
6aa8b732
AK
5047 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5048
6aa8b732 5049 /* Control */
01e439be 5050 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5051 vmx->hv_deadline_tsc = -1;
6e5d865c 5052
bf8179a0 5053 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5054
dfa169bb 5055 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5056 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5057 vmx_secondary_exec_control(vmx));
dfa169bb 5058 }
f78e0e2e 5059
d62caabb 5060 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5061 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5062 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5063 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5064 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5065
5066 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5067
0bcf261c 5068 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5069 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5070 }
5071
4b8d54f9
ZE
5072 if (ple_gap) {
5073 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5074 vmx->ple_window = ple_window;
5075 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5076 }
5077
c3707958
XG
5078 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5079 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5080 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5081
9581d442
AK
5082 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5083 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5084 vmx_set_constant_host_state(vmx);
05b3e0c2 5085#ifdef CONFIG_X86_64
6aa8b732
AK
5086 rdmsrl(MSR_FS_BASE, a);
5087 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5088 rdmsrl(MSR_GS_BASE, a);
5089 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5090#else
5091 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5092 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5093#endif
5094
2cc51560
ED
5095 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5096 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5097 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5098 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5099 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5100
74545705
RK
5101 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5102 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5103
03916db9 5104 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5105 u32 index = vmx_msr_index[i];
5106 u32 data_low, data_high;
a2fa3e9f 5107 int j = vmx->nmsrs;
6aa8b732
AK
5108
5109 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5110 continue;
432bd6cb
AK
5111 if (wrmsr_safe(index, data_low, data_high) < 0)
5112 continue;
26bb0981
AK
5113 vmx->guest_msrs[j].index = i;
5114 vmx->guest_msrs[j].data = 0;
d5696725 5115 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5116 ++vmx->nmsrs;
6aa8b732 5117 }
6aa8b732 5118
2961e876
GN
5119
5120 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5121
5122 /* 22.2.1, 20.8.1 */
2961e876 5123 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5124
e00c8cf2 5125 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 5126 set_cr4_guest_host_mask(vmx);
e00c8cf2 5127
f53cd63c
WL
5128 if (vmx_xsaves_supported())
5129 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5130
4e59516a
PF
5131 if (enable_pml) {
5132 ASSERT(vmx->pml_pg);
5133 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5134 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5135 }
5136
e00c8cf2
AK
5137 return 0;
5138}
5139
d28bc9dd 5140static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5141{
5142 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5143 struct msr_data apic_base_msr;
d28bc9dd 5144 u64 cr0;
e00c8cf2 5145
7ffd92c5 5146 vmx->rmode.vm86_active = 0;
e00c8cf2 5147
3b86cd99
JK
5148 vmx->soft_vnmi_blocked = 0;
5149
ad312c7c 5150 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5151 kvm_set_cr8(vcpu, 0);
5152
5153 if (!init_event) {
5154 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5155 MSR_IA32_APICBASE_ENABLE;
5156 if (kvm_vcpu_is_reset_bsp(vcpu))
5157 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5158 apic_base_msr.host_initiated = true;
5159 kvm_set_apic_base(vcpu, &apic_base_msr);
5160 }
e00c8cf2 5161
2fb92db1
AK
5162 vmx_segment_cache_clear(vmx);
5163
5706be0d 5164 seg_setup(VCPU_SREG_CS);
66450a21 5165 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5166 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5167
5168 seg_setup(VCPU_SREG_DS);
5169 seg_setup(VCPU_SREG_ES);
5170 seg_setup(VCPU_SREG_FS);
5171 seg_setup(VCPU_SREG_GS);
5172 seg_setup(VCPU_SREG_SS);
5173
5174 vmcs_write16(GUEST_TR_SELECTOR, 0);
5175 vmcs_writel(GUEST_TR_BASE, 0);
5176 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5177 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5178
5179 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5180 vmcs_writel(GUEST_LDTR_BASE, 0);
5181 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5182 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5183
d28bc9dd
NA
5184 if (!init_event) {
5185 vmcs_write32(GUEST_SYSENTER_CS, 0);
5186 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5187 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5188 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5189 }
e00c8cf2
AK
5190
5191 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5192 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5193
e00c8cf2
AK
5194 vmcs_writel(GUEST_GDTR_BASE, 0);
5195 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5196
5197 vmcs_writel(GUEST_IDTR_BASE, 0);
5198 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5199
443381a8 5200 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5201 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5202 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5203
e00c8cf2
AK
5204 setup_msrs(vmx);
5205
6aa8b732
AK
5206 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5207
d28bc9dd 5208 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5209 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5210 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5211 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5212 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5213 vmcs_write32(TPR_THRESHOLD, 0);
5214 }
5215
a73896cb 5216 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5217
d62caabb 5218 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5219 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5220
2384d2b3
SY
5221 if (vmx->vpid != 0)
5222 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5223
d28bc9dd 5224 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5225 vmx->vcpu.arch.cr0 = cr0;
f2463247 5226 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5227 vmx_set_cr4(vcpu, 0);
5690891b 5228 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
5229 vmx_fpu_activate(vcpu);
5230 update_exception_bitmap(vcpu);
6aa8b732 5231
dd5f5341 5232 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5233}
5234
b6f1250e
NHE
5235/*
5236 * In nested virtualization, check if L1 asked to exit on external interrupts.
5237 * For most existing hypervisors, this will always return true.
5238 */
5239static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5240{
5241 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5242 PIN_BASED_EXT_INTR_MASK;
5243}
5244
77b0f5d6
BD
5245/*
5246 * In nested virtualization, check if L1 has set
5247 * VM_EXIT_ACK_INTR_ON_EXIT
5248 */
5249static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5250{
5251 return get_vmcs12(vcpu)->vm_exit_controls &
5252 VM_EXIT_ACK_INTR_ON_EXIT;
5253}
5254
ea8ceb83
JK
5255static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5256{
5257 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5258 PIN_BASED_NMI_EXITING;
5259}
5260
c9a7953f 5261static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5262{
5263 u32 cpu_based_vm_exec_control;
730dca42 5264
3b86cd99
JK
5265 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5266 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5267 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5268}
5269
c9a7953f 5270static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5271{
5272 u32 cpu_based_vm_exec_control;
5273
c9a7953f
JK
5274 if (!cpu_has_virtual_nmis() ||
5275 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5276 enable_irq_window(vcpu);
5277 return;
5278 }
3b86cd99
JK
5279
5280 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5281 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5282 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5283}
5284
66fd3f7f 5285static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5286{
9c8cba37 5287 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5288 uint32_t intr;
5289 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5290
229456fc 5291 trace_kvm_inj_virq(irq);
2714d1d3 5292
fa89a817 5293 ++vcpu->stat.irq_injections;
7ffd92c5 5294 if (vmx->rmode.vm86_active) {
71f9833b
SH
5295 int inc_eip = 0;
5296 if (vcpu->arch.interrupt.soft)
5297 inc_eip = vcpu->arch.event_exit_inst_len;
5298 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5299 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5300 return;
5301 }
66fd3f7f
GN
5302 intr = irq | INTR_INFO_VALID_MASK;
5303 if (vcpu->arch.interrupt.soft) {
5304 intr |= INTR_TYPE_SOFT_INTR;
5305 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5306 vmx->vcpu.arch.event_exit_inst_len);
5307 } else
5308 intr |= INTR_TYPE_EXT_INTR;
5309 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5310}
5311
f08864b4
SY
5312static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5313{
66a5a347
JK
5314 struct vcpu_vmx *vmx = to_vmx(vcpu);
5315
c5a6d5f7
WL
5316 if (!is_guest_mode(vcpu)) {
5317 if (!cpu_has_virtual_nmis()) {
5318 /*
5319 * Tracking the NMI-blocked state in software is built upon
5320 * finding the next open IRQ window. This, in turn, depends on
5321 * well-behaving guests: They have to keep IRQs disabled at
5322 * least as long as the NMI handler runs. Otherwise we may
5323 * cause NMI nesting, maybe breaking the guest. But as this is
5324 * highly unlikely, we can live with the residual risk.
5325 */
5326 vmx->soft_vnmi_blocked = 1;
5327 vmx->vnmi_blocked_time = 0;
5328 }
0b6ac343 5329
c5a6d5f7
WL
5330 ++vcpu->stat.nmi_injections;
5331 vmx->nmi_known_unmasked = false;
3b86cd99
JK
5332 }
5333
7ffd92c5 5334 if (vmx->rmode.vm86_active) {
71f9833b 5335 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5336 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5337 return;
5338 }
c5a6d5f7 5339
f08864b4
SY
5340 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5341 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5342}
5343
3cfc3092
JK
5344static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5345{
5346 if (!cpu_has_virtual_nmis())
5347 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5348 if (to_vmx(vcpu)->nmi_known_unmasked)
5349 return false;
c332c83a 5350 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5351}
5352
5353static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5354{
5355 struct vcpu_vmx *vmx = to_vmx(vcpu);
5356
5357 if (!cpu_has_virtual_nmis()) {
5358 if (vmx->soft_vnmi_blocked != masked) {
5359 vmx->soft_vnmi_blocked = masked;
5360 vmx->vnmi_blocked_time = 0;
5361 }
5362 } else {
9d58b931 5363 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5364 if (masked)
5365 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5366 GUEST_INTR_STATE_NMI);
5367 else
5368 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5369 GUEST_INTR_STATE_NMI);
5370 }
5371}
5372
2505dc9f
JK
5373static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5374{
b6b8a145
JK
5375 if (to_vmx(vcpu)->nested.nested_run_pending)
5376 return 0;
ea8ceb83 5377
2505dc9f
JK
5378 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5379 return 0;
5380
5381 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5382 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5383 | GUEST_INTR_STATE_NMI));
5384}
5385
78646121
GN
5386static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5387{
b6b8a145
JK
5388 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5389 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5390 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5391 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5392}
5393
cbc94022
IE
5394static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5395{
5396 int ret;
cbc94022 5397
1d8007bd
PB
5398 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5399 PAGE_SIZE * 3);
cbc94022
IE
5400 if (ret)
5401 return ret;
bfc6d222 5402 kvm->arch.tss_addr = addr;
1f755a82 5403 return init_rmode_tss(kvm);
cbc94022
IE
5404}
5405
0ca1b4f4 5406static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5407{
77ab6db0 5408 switch (vec) {
77ab6db0 5409 case BP_VECTOR:
c573cd22
JK
5410 /*
5411 * Update instruction length as we may reinject the exception
5412 * from user space while in guest debugging mode.
5413 */
5414 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5415 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5416 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5417 return false;
5418 /* fall through */
5419 case DB_VECTOR:
5420 if (vcpu->guest_debug &
5421 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5422 return false;
d0bfb940
JK
5423 /* fall through */
5424 case DE_VECTOR:
77ab6db0
JK
5425 case OF_VECTOR:
5426 case BR_VECTOR:
5427 case UD_VECTOR:
5428 case DF_VECTOR:
5429 case SS_VECTOR:
5430 case GP_VECTOR:
5431 case MF_VECTOR:
0ca1b4f4
GN
5432 return true;
5433 break;
77ab6db0 5434 }
0ca1b4f4
GN
5435 return false;
5436}
5437
5438static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5439 int vec, u32 err_code)
5440{
5441 /*
5442 * Instruction with address size override prefix opcode 0x67
5443 * Cause the #SS fault with 0 error code in VM86 mode.
5444 */
5445 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5446 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5447 if (vcpu->arch.halt_request) {
5448 vcpu->arch.halt_request = 0;
5cb56059 5449 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5450 }
5451 return 1;
5452 }
5453 return 0;
5454 }
5455
5456 /*
5457 * Forward all other exceptions that are valid in real mode.
5458 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5459 * the required debugging infrastructure rework.
5460 */
5461 kvm_queue_exception(vcpu, vec);
5462 return 1;
6aa8b732
AK
5463}
5464
a0861c02
AK
5465/*
5466 * Trigger machine check on the host. We assume all the MSRs are already set up
5467 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5468 * We pass a fake environment to the machine check handler because we want
5469 * the guest to be always treated like user space, no matter what context
5470 * it used internally.
5471 */
5472static void kvm_machine_check(void)
5473{
5474#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5475 struct pt_regs regs = {
5476 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5477 .flags = X86_EFLAGS_IF,
5478 };
5479
5480 do_machine_check(&regs, 0);
5481#endif
5482}
5483
851ba692 5484static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5485{
5486 /* already handled by vcpu_run */
5487 return 1;
5488}
5489
851ba692 5490static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5491{
1155f76a 5492 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5493 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5494 u32 intr_info, ex_no, error_code;
42dbaa5a 5495 unsigned long cr2, rip, dr6;
6aa8b732
AK
5496 u32 vect_info;
5497 enum emulation_result er;
5498
1155f76a 5499 vect_info = vmx->idt_vectoring_info;
88786475 5500 intr_info = vmx->exit_intr_info;
6aa8b732 5501
a0861c02 5502 if (is_machine_check(intr_info))
851ba692 5503 return handle_machine_check(vcpu);
a0861c02 5504
e4a41889 5505 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5506 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5507
5508 if (is_no_device(intr_info)) {
5fd86fcf 5509 vmx_fpu_activate(vcpu);
2ab455cc
AL
5510 return 1;
5511 }
5512
7aa81cc0 5513 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5514 if (is_guest_mode(vcpu)) {
5515 kvm_queue_exception(vcpu, UD_VECTOR);
5516 return 1;
5517 }
51d8b661 5518 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5519 if (er != EMULATE_DONE)
7ee5d940 5520 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5521 return 1;
5522 }
5523
6aa8b732 5524 error_code = 0;
2e11384c 5525 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5526 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5527
5528 /*
5529 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5530 * MMIO, it is better to report an internal error.
5531 * See the comments in vmx_handle_exit.
5532 */
5533 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5534 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5535 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5536 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5537 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5538 vcpu->run->internal.data[0] = vect_info;
5539 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5540 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5541 return 0;
5542 }
5543
6aa8b732 5544 if (is_page_fault(intr_info)) {
1439442c 5545 /* EPT won't cause page fault directly */
cf3ace79 5546 BUG_ON(enable_ept);
6aa8b732 5547 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5548 trace_kvm_page_fault(cr2, error_code);
5549
3298b75c 5550 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5551 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5552 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5553 }
5554
d0bfb940 5555 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5556
5557 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5558 return handle_rmode_exception(vcpu, ex_no, error_code);
5559
42dbaa5a 5560 switch (ex_no) {
54a20552
EN
5561 case AC_VECTOR:
5562 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5563 return 1;
42dbaa5a
JK
5564 case DB_VECTOR:
5565 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5566 if (!(vcpu->guest_debug &
5567 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5568 vcpu->arch.dr6 &= ~15;
6f43ed01 5569 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5570 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5571 skip_emulated_instruction(vcpu);
5572
42dbaa5a
JK
5573 kvm_queue_exception(vcpu, DB_VECTOR);
5574 return 1;
5575 }
5576 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5577 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5578 /* fall through */
5579 case BP_VECTOR:
c573cd22
JK
5580 /*
5581 * Update instruction length as we may reinject #BP from
5582 * user space while in guest debugging mode. Reading it for
5583 * #DB as well causes no harm, it is not used in that case.
5584 */
5585 vmx->vcpu.arch.event_exit_inst_len =
5586 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5587 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5588 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5589 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5590 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5591 break;
5592 default:
d0bfb940
JK
5593 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5594 kvm_run->ex.exception = ex_no;
5595 kvm_run->ex.error_code = error_code;
42dbaa5a 5596 break;
6aa8b732 5597 }
6aa8b732
AK
5598 return 0;
5599}
5600
851ba692 5601static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5602{
1165f5fe 5603 ++vcpu->stat.irq_exits;
6aa8b732
AK
5604 return 1;
5605}
5606
851ba692 5607static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5608{
851ba692 5609 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5610 return 0;
5611}
6aa8b732 5612
851ba692 5613static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5614{
bfdaab09 5615 unsigned long exit_qualification;
34c33d16 5616 int size, in, string;
039576c0 5617 unsigned port;
6aa8b732 5618
bfdaab09 5619 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5620 string = (exit_qualification & 16) != 0;
cf8f70bf 5621 in = (exit_qualification & 8) != 0;
e70669ab 5622
cf8f70bf 5623 ++vcpu->stat.io_exits;
e70669ab 5624
cf8f70bf 5625 if (string || in)
51d8b661 5626 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5627
cf8f70bf
GN
5628 port = exit_qualification >> 16;
5629 size = (exit_qualification & 7) + 1;
e93f36bc 5630 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5631
5632 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5633}
5634
102d8325
IM
5635static void
5636vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5637{
5638 /*
5639 * Patch in the VMCALL instruction:
5640 */
5641 hypercall[0] = 0x0f;
5642 hypercall[1] = 0x01;
5643 hypercall[2] = 0xc1;
102d8325
IM
5644}
5645
b9c237bb 5646static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5647{
5648 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5649 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5650
b9c237bb 5651 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5652 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5653 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5654 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5655 return (val & always_on) == always_on;
5656}
5657
0fa06071 5658/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5659static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5660{
eeadf9e7 5661 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5662 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5663 unsigned long orig_val = val;
5664
eeadf9e7
NHE
5665 /*
5666 * We get here when L2 changed cr0 in a way that did not change
5667 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5668 * but did change L0 shadowed bits. So we first calculate the
5669 * effective cr0 value that L1 would like to write into the
5670 * hardware. It consists of the L2-owned bits from the new
5671 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5672 */
1a0d74e6
JK
5673 val = (val & ~vmcs12->cr0_guest_host_mask) |
5674 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5675
b9c237bb 5676 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5677 return 1;
1a0d74e6
JK
5678
5679 if (kvm_set_cr0(vcpu, val))
5680 return 1;
5681 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5682 return 0;
1a0d74e6
JK
5683 } else {
5684 if (to_vmx(vcpu)->nested.vmxon &&
5685 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5686 return 1;
eeadf9e7 5687 return kvm_set_cr0(vcpu, val);
1a0d74e6 5688 }
eeadf9e7
NHE
5689}
5690
5691static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5692{
5693 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5694 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5695 unsigned long orig_val = val;
5696
5697 /* analogously to handle_set_cr0 */
5698 val = (val & ~vmcs12->cr4_guest_host_mask) |
5699 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5700 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5701 return 1;
1a0d74e6 5702 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5703 return 0;
5704 } else
5705 return kvm_set_cr4(vcpu, val);
5706}
5707
6a6256f9 5708/* called to set cr0 as appropriate for clts instruction exit. */
eeadf9e7
NHE
5709static void handle_clts(struct kvm_vcpu *vcpu)
5710{
5711 if (is_guest_mode(vcpu)) {
5712 /*
5713 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5714 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5715 * just pretend it's off (also in arch.cr0 for fpu_activate).
5716 */
5717 vmcs_writel(CR0_READ_SHADOW,
5718 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5719 vcpu->arch.cr0 &= ~X86_CR0_TS;
5720 } else
5721 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5722}
5723
851ba692 5724static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5725{
229456fc 5726 unsigned long exit_qualification, val;
6aa8b732
AK
5727 int cr;
5728 int reg;
49a9b07e 5729 int err;
6aa8b732 5730
bfdaab09 5731 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5732 cr = exit_qualification & 15;
5733 reg = (exit_qualification >> 8) & 15;
5734 switch ((exit_qualification >> 4) & 3) {
5735 case 0: /* mov to cr */
1e32c079 5736 val = kvm_register_readl(vcpu, reg);
229456fc 5737 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5738 switch (cr) {
5739 case 0:
eeadf9e7 5740 err = handle_set_cr0(vcpu, val);
db8fcefa 5741 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5742 return 1;
5743 case 3:
2390218b 5744 err = kvm_set_cr3(vcpu, val);
db8fcefa 5745 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5746 return 1;
5747 case 4:
eeadf9e7 5748 err = handle_set_cr4(vcpu, val);
db8fcefa 5749 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5750 return 1;
0a5fff19
GN
5751 case 8: {
5752 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5753 u8 cr8 = (u8)val;
eea1cff9 5754 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5755 kvm_complete_insn_gp(vcpu, err);
35754c98 5756 if (lapic_in_kernel(vcpu))
0a5fff19
GN
5757 return 1;
5758 if (cr8_prev <= cr8)
5759 return 1;
851ba692 5760 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5761 return 0;
5762 }
4b8073e4 5763 }
6aa8b732 5764 break;
25c4c276 5765 case 2: /* clts */
eeadf9e7 5766 handle_clts(vcpu);
4d4ec087 5767 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5768 skip_emulated_instruction(vcpu);
6b52d186 5769 vmx_fpu_activate(vcpu);
25c4c276 5770 return 1;
6aa8b732
AK
5771 case 1: /*mov from cr*/
5772 switch (cr) {
5773 case 3:
9f8fe504
AK
5774 val = kvm_read_cr3(vcpu);
5775 kvm_register_write(vcpu, reg, val);
5776 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5777 skip_emulated_instruction(vcpu);
5778 return 1;
5779 case 8:
229456fc
MT
5780 val = kvm_get_cr8(vcpu);
5781 kvm_register_write(vcpu, reg, val);
5782 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5783 skip_emulated_instruction(vcpu);
5784 return 1;
5785 }
5786 break;
5787 case 3: /* lmsw */
a1f83a74 5788 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5789 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5790 kvm_lmsw(vcpu, val);
6aa8b732
AK
5791
5792 skip_emulated_instruction(vcpu);
5793 return 1;
5794 default:
5795 break;
5796 }
851ba692 5797 vcpu->run->exit_reason = 0;
a737f256 5798 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5799 (int)(exit_qualification >> 4) & 3, cr);
5800 return 0;
5801}
5802
851ba692 5803static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5804{
bfdaab09 5805 unsigned long exit_qualification;
16f8a6f9
NA
5806 int dr, dr7, reg;
5807
5808 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5809 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5810
5811 /* First, if DR does not exist, trigger UD */
5812 if (!kvm_require_dr(vcpu, dr))
5813 return 1;
6aa8b732 5814
f2483415 5815 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5816 if (!kvm_require_cpl(vcpu, 0))
5817 return 1;
16f8a6f9
NA
5818 dr7 = vmcs_readl(GUEST_DR7);
5819 if (dr7 & DR7_GD) {
42dbaa5a
JK
5820 /*
5821 * As the vm-exit takes precedence over the debug trap, we
5822 * need to emulate the latter, either for the host or the
5823 * guest debugging itself.
5824 */
5825 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5826 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5827 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5828 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5829 vcpu->run->debug.arch.exception = DB_VECTOR;
5830 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5831 return 0;
5832 } else {
7305eb5d 5833 vcpu->arch.dr6 &= ~15;
6f43ed01 5834 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5835 kvm_queue_exception(vcpu, DB_VECTOR);
5836 return 1;
5837 }
5838 }
5839
81908bf4 5840 if (vcpu->guest_debug == 0) {
8f22372f
PB
5841 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5842 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5843
5844 /*
5845 * No more DR vmexits; force a reload of the debug registers
5846 * and reenter on this instruction. The next vmexit will
5847 * retrieve the full state of the debug registers.
5848 */
5849 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5850 return 1;
5851 }
5852
42dbaa5a
JK
5853 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5854 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5855 unsigned long val;
4c4d563b
JK
5856
5857 if (kvm_get_dr(vcpu, dr, &val))
5858 return 1;
5859 kvm_register_write(vcpu, reg, val);
020df079 5860 } else
5777392e 5861 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5862 return 1;
5863
6aa8b732
AK
5864 skip_emulated_instruction(vcpu);
5865 return 1;
5866}
5867
73aaf249
JK
5868static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5869{
5870 return vcpu->arch.dr6;
5871}
5872
5873static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5874{
5875}
5876
81908bf4
PB
5877static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5878{
81908bf4
PB
5879 get_debugreg(vcpu->arch.db[0], 0);
5880 get_debugreg(vcpu->arch.db[1], 1);
5881 get_debugreg(vcpu->arch.db[2], 2);
5882 get_debugreg(vcpu->arch.db[3], 3);
5883 get_debugreg(vcpu->arch.dr6, 6);
5884 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5885
5886 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5887 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5888}
5889
020df079
GN
5890static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5891{
5892 vmcs_writel(GUEST_DR7, val);
5893}
5894
851ba692 5895static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5896{
06465c5a
AK
5897 kvm_emulate_cpuid(vcpu);
5898 return 1;
6aa8b732
AK
5899}
5900
851ba692 5901static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5902{
ad312c7c 5903 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5904 struct msr_data msr_info;
6aa8b732 5905
609e36d3
PB
5906 msr_info.index = ecx;
5907 msr_info.host_initiated = false;
5908 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5909 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5910 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5911 return 1;
5912 }
5913
609e36d3 5914 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5915
6aa8b732 5916 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5917 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5918 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5919 skip_emulated_instruction(vcpu);
5920 return 1;
5921}
5922
851ba692 5923static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5924{
8fe8ab46 5925 struct msr_data msr;
ad312c7c
ZX
5926 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5927 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5928 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5929
8fe8ab46
WA
5930 msr.data = data;
5931 msr.index = ecx;
5932 msr.host_initiated = false;
854e8bb1 5933 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5934 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5935 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5936 return 1;
5937 }
5938
59200273 5939 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5940 skip_emulated_instruction(vcpu);
5941 return 1;
5942}
5943
851ba692 5944static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5945{
3842d135 5946 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5947 return 1;
5948}
5949
851ba692 5950static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5951{
85f455f7
ED
5952 u32 cpu_based_vm_exec_control;
5953
5954 /* clear pending irq */
5955 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5956 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5957 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5958
3842d135
AK
5959 kvm_make_request(KVM_REQ_EVENT, vcpu);
5960
a26bf12a 5961 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
5962 return 1;
5963}
5964
851ba692 5965static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5966{
d3bef15f 5967 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5968}
5969
851ba692 5970static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5971{
0d9c055e 5972 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
5973}
5974
ec25d5e6
GN
5975static int handle_invd(struct kvm_vcpu *vcpu)
5976{
51d8b661 5977 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5978}
5979
851ba692 5980static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5981{
f9c617f6 5982 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5983
5984 kvm_mmu_invlpg(vcpu, exit_qualification);
5985 skip_emulated_instruction(vcpu);
5986 return 1;
5987}
5988
fee84b07
AK
5989static int handle_rdpmc(struct kvm_vcpu *vcpu)
5990{
5991 int err;
5992
5993 err = kvm_rdpmc(vcpu);
5994 kvm_complete_insn_gp(vcpu, err);
5995
5996 return 1;
5997}
5998
851ba692 5999static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6000{
f5f48ee1 6001 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6002 return 1;
6003}
6004
2acf923e
DC
6005static int handle_xsetbv(struct kvm_vcpu *vcpu)
6006{
6007 u64 new_bv = kvm_read_edx_eax(vcpu);
6008 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6009
6010 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6011 skip_emulated_instruction(vcpu);
6012 return 1;
6013}
6014
f53cd63c
WL
6015static int handle_xsaves(struct kvm_vcpu *vcpu)
6016{
6017 skip_emulated_instruction(vcpu);
6018 WARN(1, "this should never happen\n");
6019 return 1;
6020}
6021
6022static int handle_xrstors(struct kvm_vcpu *vcpu)
6023{
6024 skip_emulated_instruction(vcpu);
6025 WARN(1, "this should never happen\n");
6026 return 1;
6027}
6028
851ba692 6029static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6030{
58fbbf26
KT
6031 if (likely(fasteoi)) {
6032 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6033 int access_type, offset;
6034
6035 access_type = exit_qualification & APIC_ACCESS_TYPE;
6036 offset = exit_qualification & APIC_ACCESS_OFFSET;
6037 /*
6038 * Sane guest uses MOV to write EOI, with written value
6039 * not cared. So make a short-circuit here by avoiding
6040 * heavy instruction emulation.
6041 */
6042 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6043 (offset == APIC_EOI)) {
6044 kvm_lapic_set_eoi(vcpu);
6045 skip_emulated_instruction(vcpu);
6046 return 1;
6047 }
6048 }
51d8b661 6049 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6050}
6051
c7c9c56c
YZ
6052static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6053{
6054 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6055 int vector = exit_qualification & 0xff;
6056
6057 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6058 kvm_apic_set_eoi_accelerated(vcpu, vector);
6059 return 1;
6060}
6061
83d4c286
YZ
6062static int handle_apic_write(struct kvm_vcpu *vcpu)
6063{
6064 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6065 u32 offset = exit_qualification & 0xfff;
6066
6067 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6068 kvm_apic_write_nodecode(vcpu, offset);
6069 return 1;
6070}
6071
851ba692 6072static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6073{
60637aac 6074 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6075 unsigned long exit_qualification;
e269fb21
JK
6076 bool has_error_code = false;
6077 u32 error_code = 0;
37817f29 6078 u16 tss_selector;
7f3d35fd 6079 int reason, type, idt_v, idt_index;
64a7ec06
GN
6080
6081 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6082 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6083 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6084
6085 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6086
6087 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6088 if (reason == TASK_SWITCH_GATE && idt_v) {
6089 switch (type) {
6090 case INTR_TYPE_NMI_INTR:
6091 vcpu->arch.nmi_injected = false;
654f06fc 6092 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6093 break;
6094 case INTR_TYPE_EXT_INTR:
66fd3f7f 6095 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6096 kvm_clear_interrupt_queue(vcpu);
6097 break;
6098 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6099 if (vmx->idt_vectoring_info &
6100 VECTORING_INFO_DELIVER_CODE_MASK) {
6101 has_error_code = true;
6102 error_code =
6103 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6104 }
6105 /* fall through */
64a7ec06
GN
6106 case INTR_TYPE_SOFT_EXCEPTION:
6107 kvm_clear_exception_queue(vcpu);
6108 break;
6109 default:
6110 break;
6111 }
60637aac 6112 }
37817f29
IE
6113 tss_selector = exit_qualification;
6114
64a7ec06
GN
6115 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6116 type != INTR_TYPE_EXT_INTR &&
6117 type != INTR_TYPE_NMI_INTR))
6118 skip_emulated_instruction(vcpu);
6119
7f3d35fd
KW
6120 if (kvm_task_switch(vcpu, tss_selector,
6121 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6122 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6123 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6124 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6125 vcpu->run->internal.ndata = 0;
42dbaa5a 6126 return 0;
acb54517 6127 }
42dbaa5a 6128
42dbaa5a
JK
6129 /*
6130 * TODO: What about debug traps on tss switch?
6131 * Are we supposed to inject them and update dr6?
6132 */
6133
6134 return 1;
37817f29
IE
6135}
6136
851ba692 6137static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6138{
f9c617f6 6139 unsigned long exit_qualification;
1439442c 6140 gpa_t gpa;
4f5982a5 6141 u32 error_code;
1439442c 6142 int gla_validity;
1439442c 6143
f9c617f6 6144 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6145
1439442c 6146 gla_validity = (exit_qualification >> 7) & 0x3;
72e0ae58 6147 if (gla_validity == 0x2) {
1439442c
SY
6148 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6149 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6150 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 6151 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
6152 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6153 (long unsigned int)exit_qualification);
851ba692
AK
6154 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6155 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 6156 return 0;
1439442c
SY
6157 }
6158
0be9c7a8
GN
6159 /*
6160 * EPT violation happened while executing iret from NMI,
6161 * "blocked by NMI" bit has to be set before next VM entry.
6162 * There are errata that may cause this bit to not be set:
6163 * AAK134, BY25.
6164 */
bcd1c294
GN
6165 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6166 cpu_has_virtual_nmis() &&
6167 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6168 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6169
1439442c 6170 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6171 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6172
d95c5568
BD
6173 /* it is a read fault? */
6174 error_code = (exit_qualification << 2) & PFERR_USER_MASK;
6175 /* it is a write fault? */
6176 error_code |= exit_qualification & PFERR_WRITE_MASK;
25d92081 6177 /* It is a fetch fault? */
81ed33e4 6178 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 6179 /* ept page table is present? */
d95c5568 6180 error_code |= (exit_qualification & 0x38) != 0;
4f5982a5 6181
25d92081
YZ
6182 vcpu->arch.exit_qualification = exit_qualification;
6183
4f5982a5 6184 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6185}
6186
851ba692 6187static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6188{
f735d4af 6189 int ret;
68f89400
MT
6190 gpa_t gpa;
6191
6192 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6193 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1 6194 skip_emulated_instruction(vcpu);
931c33b1 6195 trace_kvm_fast_mmio(gpa);
68c3b4d1
MT
6196 return 1;
6197 }
68f89400 6198
450869d6 6199 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 6200 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6201 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6202 EMULATE_DONE;
f8f55942
XG
6203
6204 if (unlikely(ret == RET_MMIO_PF_INVALID))
6205 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6206
b37fbea6 6207 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6208 return 1;
6209
6210 /* It is the real ept misconfig */
f735d4af 6211 WARN_ON(1);
68f89400 6212
851ba692
AK
6213 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6214 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6215
6216 return 0;
6217}
6218
851ba692 6219static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
6220{
6221 u32 cpu_based_vm_exec_control;
6222
6223 /* clear pending NMI */
6224 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6225 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6226 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6227 ++vcpu->stat.nmi_window_exits;
3842d135 6228 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6229
6230 return 1;
6231}
6232
80ced186 6233static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6234{
8b3079a5
AK
6235 struct vcpu_vmx *vmx = to_vmx(vcpu);
6236 enum emulation_result err = EMULATE_DONE;
80ced186 6237 int ret = 1;
49e9d557
AK
6238 u32 cpu_exec_ctrl;
6239 bool intr_window_requested;
b8405c18 6240 unsigned count = 130;
49e9d557
AK
6241
6242 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6243 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6244
98eb2f8b 6245 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6246 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6247 return handle_interrupt_window(&vmx->vcpu);
6248
de87dcdd
AK
6249 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6250 return 1;
6251
991eebf9 6252 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6253
ac0a48c3 6254 if (err == EMULATE_USER_EXIT) {
94452b9e 6255 ++vcpu->stat.mmio_exits;
80ced186
MG
6256 ret = 0;
6257 goto out;
6258 }
1d5a4d9b 6259
de5f70e0
AK
6260 if (err != EMULATE_DONE) {
6261 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6262 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6263 vcpu->run->internal.ndata = 0;
6d77dbfc 6264 return 0;
de5f70e0 6265 }
ea953ef0 6266
8d76c49e
GN
6267 if (vcpu->arch.halt_request) {
6268 vcpu->arch.halt_request = 0;
5cb56059 6269 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6270 goto out;
6271 }
6272
ea953ef0 6273 if (signal_pending(current))
80ced186 6274 goto out;
ea953ef0
MG
6275 if (need_resched())
6276 schedule();
6277 }
6278
80ced186
MG
6279out:
6280 return ret;
ea953ef0
MG
6281}
6282
b4a2d31d
RK
6283static int __grow_ple_window(int val)
6284{
6285 if (ple_window_grow < 1)
6286 return ple_window;
6287
6288 val = min(val, ple_window_actual_max);
6289
6290 if (ple_window_grow < ple_window)
6291 val *= ple_window_grow;
6292 else
6293 val += ple_window_grow;
6294
6295 return val;
6296}
6297
6298static int __shrink_ple_window(int val, int modifier, int minimum)
6299{
6300 if (modifier < 1)
6301 return ple_window;
6302
6303 if (modifier < ple_window)
6304 val /= modifier;
6305 else
6306 val -= modifier;
6307
6308 return max(val, minimum);
6309}
6310
6311static void grow_ple_window(struct kvm_vcpu *vcpu)
6312{
6313 struct vcpu_vmx *vmx = to_vmx(vcpu);
6314 int old = vmx->ple_window;
6315
6316 vmx->ple_window = __grow_ple_window(old);
6317
6318 if (vmx->ple_window != old)
6319 vmx->ple_window_dirty = true;
7b46268d
RK
6320
6321 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6322}
6323
6324static void shrink_ple_window(struct kvm_vcpu *vcpu)
6325{
6326 struct vcpu_vmx *vmx = to_vmx(vcpu);
6327 int old = vmx->ple_window;
6328
6329 vmx->ple_window = __shrink_ple_window(old,
6330 ple_window_shrink, ple_window);
6331
6332 if (vmx->ple_window != old)
6333 vmx->ple_window_dirty = true;
7b46268d
RK
6334
6335 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6336}
6337
6338/*
6339 * ple_window_actual_max is computed to be one grow_ple_window() below
6340 * ple_window_max. (See __grow_ple_window for the reason.)
6341 * This prevents overflows, because ple_window_max is int.
6342 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6343 * this process.
6344 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6345 */
6346static void update_ple_window_actual_max(void)
6347{
6348 ple_window_actual_max =
6349 __shrink_ple_window(max(ple_window_max, ple_window),
6350 ple_window_grow, INT_MIN);
6351}
6352
bf9f6ac8
FW
6353/*
6354 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6355 */
6356static void wakeup_handler(void)
6357{
6358 struct kvm_vcpu *vcpu;
6359 int cpu = smp_processor_id();
6360
6361 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6362 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6363 blocked_vcpu_list) {
6364 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6365
6366 if (pi_test_on(pi_desc) == 1)
6367 kvm_vcpu_kick(vcpu);
6368 }
6369 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6370}
6371
f2c7648d
TC
6372static __init int hardware_setup(void)
6373{
34a1cd60
TC
6374 int r = -ENOMEM, i, msr;
6375
6376 rdmsrl_safe(MSR_EFER, &host_efer);
6377
6378 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6379 kvm_define_shared_msr(i, vmx_msr_index[i]);
6380
6381 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6382 if (!vmx_io_bitmap_a)
6383 return r;
6384
6385 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6386 if (!vmx_io_bitmap_b)
6387 goto out;
6388
6389 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6390 if (!vmx_msr_bitmap_legacy)
6391 goto out1;
6392
6393 vmx_msr_bitmap_legacy_x2apic =
6394 (unsigned long *)__get_free_page(GFP_KERNEL);
6395 if (!vmx_msr_bitmap_legacy_x2apic)
6396 goto out2;
6397
f6e90f9e
WL
6398 vmx_msr_bitmap_legacy_x2apic_apicv_inactive =
6399 (unsigned long *)__get_free_page(GFP_KERNEL);
6400 if (!vmx_msr_bitmap_legacy_x2apic_apicv_inactive)
6401 goto out3;
6402
34a1cd60
TC
6403 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6404 if (!vmx_msr_bitmap_longmode)
f6e90f9e 6405 goto out4;
34a1cd60
TC
6406
6407 vmx_msr_bitmap_longmode_x2apic =
6408 (unsigned long *)__get_free_page(GFP_KERNEL);
6409 if (!vmx_msr_bitmap_longmode_x2apic)
f6e90f9e
WL
6410 goto out5;
6411
6412 vmx_msr_bitmap_longmode_x2apic_apicv_inactive =
6413 (unsigned long *)__get_free_page(GFP_KERNEL);
6414 if (!vmx_msr_bitmap_longmode_x2apic_apicv_inactive)
6415 goto out6;
3af18d9c 6416
34a1cd60
TC
6417 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6418 if (!vmx_vmread_bitmap)
f6e90f9e 6419 goto out7;
34a1cd60
TC
6420
6421 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6422 if (!vmx_vmwrite_bitmap)
f6e90f9e 6423 goto out8;
34a1cd60
TC
6424
6425 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6426 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6427
6428 /*
6429 * Allow direct access to the PC debug port (it is often used for I/O
6430 * delays, but the vmexits simply slow things down).
6431 */
6432 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6433 clear_bit(0x80, vmx_io_bitmap_a);
6434
6435 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6436
6437 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6438 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6439
34a1cd60
TC
6440 if (setup_vmcs_config(&vmcs_config) < 0) {
6441 r = -EIO;
f6e90f9e 6442 goto out9;
baa03522 6443 }
f2c7648d
TC
6444
6445 if (boot_cpu_has(X86_FEATURE_NX))
6446 kvm_enable_efer_bits(EFER_NX);
6447
6448 if (!cpu_has_vmx_vpid())
6449 enable_vpid = 0;
6450 if (!cpu_has_vmx_shadow_vmcs())
6451 enable_shadow_vmcs = 0;
6452 if (enable_shadow_vmcs)
6453 init_vmcs_shadow_fields();
6454
6455 if (!cpu_has_vmx_ept() ||
6456 !cpu_has_vmx_ept_4levels()) {
6457 enable_ept = 0;
6458 enable_unrestricted_guest = 0;
6459 enable_ept_ad_bits = 0;
6460 }
6461
6462 if (!cpu_has_vmx_ept_ad_bits())
6463 enable_ept_ad_bits = 0;
6464
6465 if (!cpu_has_vmx_unrestricted_guest())
6466 enable_unrestricted_guest = 0;
6467
ad15a296 6468 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6469 flexpriority_enabled = 0;
6470
ad15a296
PB
6471 /*
6472 * set_apic_access_page_addr() is used to reload apic access
6473 * page upon invalidation. No need to do anything if not
6474 * using the APIC_ACCESS_ADDR VMCS field.
6475 */
6476 if (!flexpriority_enabled)
f2c7648d 6477 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6478
6479 if (!cpu_has_vmx_tpr_shadow())
6480 kvm_x86_ops->update_cr8_intercept = NULL;
6481
6482 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6483 kvm_disable_largepages();
6484
6485 if (!cpu_has_vmx_ple())
6486 ple_gap = 0;
6487
6488 if (!cpu_has_vmx_apicv())
6489 enable_apicv = 0;
6490
64903d61
HZ
6491 if (cpu_has_vmx_tsc_scaling()) {
6492 kvm_has_tsc_control = true;
6493 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6494 kvm_tsc_scaling_ratio_frac_bits = 48;
6495 }
6496
baa03522
TC
6497 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6498 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6499 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6500 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6501 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6502 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6503 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6504
6505 memcpy(vmx_msr_bitmap_legacy_x2apic,
6506 vmx_msr_bitmap_legacy, PAGE_SIZE);
6507 memcpy(vmx_msr_bitmap_longmode_x2apic,
6508 vmx_msr_bitmap_longmode, PAGE_SIZE);
f6e90f9e
WL
6509 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv_inactive,
6510 vmx_msr_bitmap_legacy, PAGE_SIZE);
6511 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv_inactive,
6512 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6513
04bb92e4
WL
6514 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6515
f6e90f9e
WL
6516 /*
6517 * enable_apicv && kvm_vcpu_apicv_active()
6518 */
3ce424e4 6519 for (msr = 0x800; msr <= 0x8ff; msr++)
f6e90f9e 6520 vmx_disable_intercept_msr_read_x2apic(msr, true);
3ce424e4 6521
3ce424e4 6522 /* TMCCT */
f6e90f9e 6523 vmx_enable_intercept_msr_read_x2apic(0x839, true);
3ce424e4 6524 /* TPR */
f6e90f9e 6525 vmx_disable_intercept_msr_write_x2apic(0x808, true);
3ce424e4 6526 /* EOI */
f6e90f9e 6527 vmx_disable_intercept_msr_write_x2apic(0x80b, true);
3ce424e4 6528 /* SELF-IPI */
f6e90f9e
WL
6529 vmx_disable_intercept_msr_write_x2apic(0x83f, true);
6530
6531 /*
6532 * (enable_apicv && !kvm_vcpu_apicv_active()) ||
6533 * !enable_apicv
6534 */
6535 /* TPR */
6536 vmx_disable_intercept_msr_read_x2apic(0x808, false);
6537 vmx_disable_intercept_msr_write_x2apic(0x808, false);
baa03522
TC
6538
6539 if (enable_ept) {
d95c5568 6540 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
baa03522
TC
6541 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6542 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
d95c5568
BD
6543 0ull, VMX_EPT_EXECUTABLE_MASK,
6544 cpu_has_vmx_ept_execute_only() ?
6545 0ull : VMX_EPT_READABLE_MASK);
baa03522
TC
6546 ept_set_mmio_spte_mask();
6547 kvm_enable_tdp();
6548 } else
6549 kvm_disable_tdp();
6550
6551 update_ple_window_actual_max();
6552
843e4330
KH
6553 /*
6554 * Only enable PML when hardware supports PML feature, and both EPT
6555 * and EPT A/D bit features are enabled -- PML depends on them to work.
6556 */
6557 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6558 enable_pml = 0;
6559
6560 if (!enable_pml) {
6561 kvm_x86_ops->slot_enable_log_dirty = NULL;
6562 kvm_x86_ops->slot_disable_log_dirty = NULL;
6563 kvm_x86_ops->flush_log_dirty = NULL;
6564 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6565 }
6566
64672c95
YJ
6567 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6568 u64 vmx_msr;
6569
6570 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6571 cpu_preemption_timer_multi =
6572 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6573 } else {
6574 kvm_x86_ops->set_hv_timer = NULL;
6575 kvm_x86_ops->cancel_hv_timer = NULL;
6576 }
6577
bf9f6ac8
FW
6578 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6579
c45dcc71
AR
6580 kvm_mce_cap_supported |= MCG_LMCE_P;
6581
f2c7648d 6582 return alloc_kvm_area();
34a1cd60 6583
f6e90f9e 6584out9:
34a1cd60 6585 free_page((unsigned long)vmx_vmwrite_bitmap);
f6e90f9e 6586out8:
34a1cd60 6587 free_page((unsigned long)vmx_vmread_bitmap);
f6e90f9e
WL
6588out7:
6589 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic_apicv_inactive);
3af18d9c 6590out6:
34a1cd60 6591 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
f6e90f9e 6592out5:
34a1cd60 6593 free_page((unsigned long)vmx_msr_bitmap_longmode);
f6e90f9e
WL
6594out4:
6595 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic_apicv_inactive);
34a1cd60
TC
6596out3:
6597 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6598out2:
6599 free_page((unsigned long)vmx_msr_bitmap_legacy);
6600out1:
6601 free_page((unsigned long)vmx_io_bitmap_b);
6602out:
6603 free_page((unsigned long)vmx_io_bitmap_a);
6604
6605 return r;
f2c7648d
TC
6606}
6607
6608static __exit void hardware_unsetup(void)
6609{
34a1cd60 6610 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
f6e90f9e 6611 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic_apicv_inactive);
34a1cd60 6612 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
f6e90f9e 6613 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic_apicv_inactive);
34a1cd60
TC
6614 free_page((unsigned long)vmx_msr_bitmap_legacy);
6615 free_page((unsigned long)vmx_msr_bitmap_longmode);
6616 free_page((unsigned long)vmx_io_bitmap_b);
6617 free_page((unsigned long)vmx_io_bitmap_a);
6618 free_page((unsigned long)vmx_vmwrite_bitmap);
6619 free_page((unsigned long)vmx_vmread_bitmap);
6620
f2c7648d
TC
6621 free_kvm_area();
6622}
6623
4b8d54f9
ZE
6624/*
6625 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6626 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6627 */
9fb41ba8 6628static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6629{
b4a2d31d
RK
6630 if (ple_gap)
6631 grow_ple_window(vcpu);
6632
4b8d54f9
ZE
6633 skip_emulated_instruction(vcpu);
6634 kvm_vcpu_on_spin(vcpu);
6635
6636 return 1;
6637}
6638
87c00572 6639static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6640{
87c00572 6641 skip_emulated_instruction(vcpu);
59708670
SY
6642 return 1;
6643}
6644
87c00572
GS
6645static int handle_mwait(struct kvm_vcpu *vcpu)
6646{
6647 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6648 return handle_nop(vcpu);
6649}
6650
5f3d45e7
MD
6651static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6652{
6653 return 1;
6654}
6655
87c00572
GS
6656static int handle_monitor(struct kvm_vcpu *vcpu)
6657{
6658 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6659 return handle_nop(vcpu);
6660}
6661
ff2f6fe9
NHE
6662/*
6663 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6664 * We could reuse a single VMCS for all the L2 guests, but we also want the
6665 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6666 * allows keeping them loaded on the processor, and in the future will allow
6667 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6668 * every entry if they never change.
6669 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6670 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6671 *
6672 * The following functions allocate and free a vmcs02 in this pool.
6673 */
6674
6675/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6676static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6677{
6678 struct vmcs02_list *item;
6679 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6680 if (item->vmptr == vmx->nested.current_vmptr) {
6681 list_move(&item->list, &vmx->nested.vmcs02_pool);
6682 return &item->vmcs02;
6683 }
6684
6685 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6686 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6687 item = list_last_entry(&vmx->nested.vmcs02_pool,
6688 struct vmcs02_list, list);
ff2f6fe9
NHE
6689 item->vmptr = vmx->nested.current_vmptr;
6690 list_move(&item->list, &vmx->nested.vmcs02_pool);
6691 return &item->vmcs02;
6692 }
6693
6694 /* Create a new VMCS */
0fa24ce3 6695 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6696 if (!item)
6697 return NULL;
6698 item->vmcs02.vmcs = alloc_vmcs();
6699 if (!item->vmcs02.vmcs) {
6700 kfree(item);
6701 return NULL;
6702 }
6703 loaded_vmcs_init(&item->vmcs02);
6704 item->vmptr = vmx->nested.current_vmptr;
6705 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6706 vmx->nested.vmcs02_num++;
6707 return &item->vmcs02;
6708}
6709
6710/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6711static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6712{
6713 struct vmcs02_list *item;
6714 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6715 if (item->vmptr == vmptr) {
6716 free_loaded_vmcs(&item->vmcs02);
6717 list_del(&item->list);
6718 kfree(item);
6719 vmx->nested.vmcs02_num--;
6720 return;
6721 }
6722}
6723
6724/*
6725 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6726 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6727 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6728 */
6729static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6730{
6731 struct vmcs02_list *item, *n;
4fa7734c
PB
6732
6733 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6734 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6735 /*
6736 * Something will leak if the above WARN triggers. Better than
6737 * a use-after-free.
6738 */
6739 if (vmx->loaded_vmcs == &item->vmcs02)
6740 continue;
6741
6742 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6743 list_del(&item->list);
6744 kfree(item);
4fa7734c 6745 vmx->nested.vmcs02_num--;
ff2f6fe9 6746 }
ff2f6fe9
NHE
6747}
6748
0658fbaa
ACL
6749/*
6750 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6751 * set the success or error code of an emulated VMX instruction, as specified
6752 * by Vol 2B, VMX Instruction Reference, "Conventions".
6753 */
6754static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6755{
6756 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6757 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6758 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6759}
6760
6761static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6762{
6763 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6764 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6765 X86_EFLAGS_SF | X86_EFLAGS_OF))
6766 | X86_EFLAGS_CF);
6767}
6768
145c28dd 6769static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6770 u32 vm_instruction_error)
6771{
6772 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6773 /*
6774 * failValid writes the error number to the current VMCS, which
6775 * can't be done there isn't a current VMCS.
6776 */
6777 nested_vmx_failInvalid(vcpu);
6778 return;
6779 }
6780 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6781 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6782 X86_EFLAGS_SF | X86_EFLAGS_OF))
6783 | X86_EFLAGS_ZF);
6784 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6785 /*
6786 * We don't need to force a shadow sync because
6787 * VM_INSTRUCTION_ERROR is not shadowed
6788 */
6789}
145c28dd 6790
ff651cb6
WV
6791static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6792{
6793 /* TODO: not to reset guest simply here. */
6794 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6795 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6796}
6797
f4124500
JK
6798static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6799{
6800 struct vcpu_vmx *vmx =
6801 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6802
6803 vmx->nested.preemption_timer_expired = true;
6804 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6805 kvm_vcpu_kick(&vmx->vcpu);
6806
6807 return HRTIMER_NORESTART;
6808}
6809
19677e32
BD
6810/*
6811 * Decode the memory-address operand of a vmx instruction, as recorded on an
6812 * exit caused by such an instruction (run by a guest hypervisor).
6813 * On success, returns 0. When the operand is invalid, returns 1 and throws
6814 * #UD or #GP.
6815 */
6816static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6817 unsigned long exit_qualification,
f9eb4af6 6818 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6819{
f9eb4af6
EK
6820 gva_t off;
6821 bool exn;
6822 struct kvm_segment s;
6823
19677e32
BD
6824 /*
6825 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6826 * Execution", on an exit, vmx_instruction_info holds most of the
6827 * addressing components of the operand. Only the displacement part
6828 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6829 * For how an actual address is calculated from all these components,
6830 * refer to Vol. 1, "Operand Addressing".
6831 */
6832 int scaling = vmx_instruction_info & 3;
6833 int addr_size = (vmx_instruction_info >> 7) & 7;
6834 bool is_reg = vmx_instruction_info & (1u << 10);
6835 int seg_reg = (vmx_instruction_info >> 15) & 7;
6836 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6837 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6838 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6839 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6840
6841 if (is_reg) {
6842 kvm_queue_exception(vcpu, UD_VECTOR);
6843 return 1;
6844 }
6845
6846 /* Addr = segment_base + offset */
6847 /* offset = base + [index * scale] + displacement */
f9eb4af6 6848 off = exit_qualification; /* holds the displacement */
19677e32 6849 if (base_is_valid)
f9eb4af6 6850 off += kvm_register_read(vcpu, base_reg);
19677e32 6851 if (index_is_valid)
f9eb4af6
EK
6852 off += kvm_register_read(vcpu, index_reg)<<scaling;
6853 vmx_get_segment(vcpu, &s, seg_reg);
6854 *ret = s.base + off;
19677e32
BD
6855
6856 if (addr_size == 1) /* 32 bit */
6857 *ret &= 0xffffffff;
6858
f9eb4af6
EK
6859 /* Checks for #GP/#SS exceptions. */
6860 exn = false;
ff30ef40
QC
6861 if (is_long_mode(vcpu)) {
6862 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6863 * non-canonical form. This is the only check on the memory
6864 * destination for long mode!
6865 */
6866 exn = is_noncanonical_address(*ret);
6867 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
6868 /* Protected mode: apply checks for segment validity in the
6869 * following order:
6870 * - segment type check (#GP(0) may be thrown)
6871 * - usability check (#GP(0)/#SS(0))
6872 * - limit check (#GP(0)/#SS(0))
6873 */
6874 if (wr)
6875 /* #GP(0) if the destination operand is located in a
6876 * read-only data segment or any code segment.
6877 */
6878 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6879 else
6880 /* #GP(0) if the source operand is located in an
6881 * execute-only code segment
6882 */
6883 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
6884 if (exn) {
6885 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6886 return 1;
6887 }
f9eb4af6
EK
6888 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6889 */
6890 exn = (s.unusable != 0);
6891 /* Protected mode: #GP(0)/#SS(0) if the memory
6892 * operand is outside the segment limit.
6893 */
6894 exn = exn || (off + sizeof(u64) > s.limit);
6895 }
6896 if (exn) {
6897 kvm_queue_exception_e(vcpu,
6898 seg_reg == VCPU_SREG_SS ?
6899 SS_VECTOR : GP_VECTOR,
6900 0);
6901 return 1;
6902 }
6903
19677e32
BD
6904 return 0;
6905}
6906
3573e22c
BD
6907/*
6908 * This function performs the various checks including
6909 * - if it's 4KB aligned
6910 * - No bits beyond the physical address width are set
6911 * - Returns 0 on success or else 1
4291b588 6912 * (Intel SDM Section 30.3)
3573e22c 6913 */
4291b588
BD
6914static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6915 gpa_t *vmpointer)
3573e22c
BD
6916{
6917 gva_t gva;
6918 gpa_t vmptr;
6919 struct x86_exception e;
6920 struct page *page;
6921 struct vcpu_vmx *vmx = to_vmx(vcpu);
6922 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6923
6924 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6925 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6926 return 1;
6927
6928 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6929 sizeof(vmptr), &e)) {
6930 kvm_inject_page_fault(vcpu, &e);
6931 return 1;
6932 }
6933
6934 switch (exit_reason) {
6935 case EXIT_REASON_VMON:
6936 /*
6937 * SDM 3: 24.11.5
6938 * The first 4 bytes of VMXON region contain the supported
6939 * VMCS revision identifier
6940 *
6941 * Note - IA32_VMX_BASIC[48] will never be 1
6942 * for the nested case;
6943 * which replaces physical address width with 32
6944 *
6945 */
bc39c4db 6946 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6947 nested_vmx_failInvalid(vcpu);
6948 skip_emulated_instruction(vcpu);
6949 return 1;
6950 }
6951
6952 page = nested_get_page(vcpu, vmptr);
6953 if (page == NULL ||
6954 *(u32 *)kmap(page) != VMCS12_REVISION) {
6955 nested_vmx_failInvalid(vcpu);
6956 kunmap(page);
6957 skip_emulated_instruction(vcpu);
6958 return 1;
6959 }
6960 kunmap(page);
6961 vmx->nested.vmxon_ptr = vmptr;
6962 break;
4291b588 6963 case EXIT_REASON_VMCLEAR:
bc39c4db 6964 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6965 nested_vmx_failValid(vcpu,
6966 VMXERR_VMCLEAR_INVALID_ADDRESS);
6967 skip_emulated_instruction(vcpu);
6968 return 1;
6969 }
6970
6971 if (vmptr == vmx->nested.vmxon_ptr) {
6972 nested_vmx_failValid(vcpu,
6973 VMXERR_VMCLEAR_VMXON_POINTER);
6974 skip_emulated_instruction(vcpu);
6975 return 1;
6976 }
6977 break;
6978 case EXIT_REASON_VMPTRLD:
bc39c4db 6979 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6980 nested_vmx_failValid(vcpu,
6981 VMXERR_VMPTRLD_INVALID_ADDRESS);
6982 skip_emulated_instruction(vcpu);
6983 return 1;
6984 }
3573e22c 6985
4291b588
BD
6986 if (vmptr == vmx->nested.vmxon_ptr) {
6987 nested_vmx_failValid(vcpu,
6988 VMXERR_VMCLEAR_VMXON_POINTER);
6989 skip_emulated_instruction(vcpu);
6990 return 1;
6991 }
6992 break;
3573e22c
BD
6993 default:
6994 return 1; /* shouldn't happen */
6995 }
6996
4291b588
BD
6997 if (vmpointer)
6998 *vmpointer = vmptr;
3573e22c
BD
6999 return 0;
7000}
7001
ec378aee
NHE
7002/*
7003 * Emulate the VMXON instruction.
7004 * Currently, we just remember that VMX is active, and do not save or even
7005 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7006 * do not currently need to store anything in that guest-allocated memory
7007 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7008 * argument is different from the VMXON pointer (which the spec says they do).
7009 */
7010static int handle_vmon(struct kvm_vcpu *vcpu)
7011{
7012 struct kvm_segment cs;
7013 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 7014 struct vmcs *shadow_vmcs;
b3897a49
NHE
7015 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7016 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
7017
7018 /* The Intel VMX Instruction Reference lists a bunch of bits that
7019 * are prerequisite to running VMXON, most notably cr4.VMXE must be
7020 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7021 * Otherwise, we should fail with #UD. We test these now:
7022 */
7023 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7024 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7025 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7026 kvm_queue_exception(vcpu, UD_VECTOR);
7027 return 1;
7028 }
7029
7030 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7031 if (is_long_mode(vcpu) && !cs.l) {
7032 kvm_queue_exception(vcpu, UD_VECTOR);
7033 return 1;
7034 }
7035
7036 if (vmx_get_cpl(vcpu)) {
7037 kvm_inject_gp(vcpu, 0);
7038 return 1;
7039 }
3573e22c 7040
4291b588 7041 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
7042 return 1;
7043
145c28dd
AG
7044 if (vmx->nested.vmxon) {
7045 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7046 skip_emulated_instruction(vcpu);
7047 return 1;
7048 }
b3897a49 7049
3b84080b 7050 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7051 != VMXON_NEEDED_FEATURES) {
7052 kvm_inject_gp(vcpu, 0);
7053 return 1;
7054 }
7055
d048c098
RK
7056 if (cpu_has_vmx_msr_bitmap()) {
7057 vmx->nested.msr_bitmap =
7058 (unsigned long *)__get_free_page(GFP_KERNEL);
7059 if (!vmx->nested.msr_bitmap)
7060 goto out_msr_bitmap;
7061 }
7062
4f2777bc
DM
7063 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7064 if (!vmx->nested.cached_vmcs12)
d048c098 7065 goto out_cached_vmcs12;
4f2777bc 7066
8de48833
AG
7067 if (enable_shadow_vmcs) {
7068 shadow_vmcs = alloc_vmcs();
d048c098
RK
7069 if (!shadow_vmcs)
7070 goto out_shadow_vmcs;
8de48833
AG
7071 /* mark vmcs as shadow */
7072 shadow_vmcs->revision_id |= (1u << 31);
7073 /* init shadow vmcs */
7074 vmcs_clear(shadow_vmcs);
7075 vmx->nested.current_shadow_vmcs = shadow_vmcs;
7076 }
ec378aee 7077
ff2f6fe9
NHE
7078 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7079 vmx->nested.vmcs02_num = 0;
7080
f4124500 7081 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
f15a75ee 7082 HRTIMER_MODE_REL_PINNED);
f4124500
JK
7083 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7084
ec378aee
NHE
7085 vmx->nested.vmxon = true;
7086
7087 skip_emulated_instruction(vcpu);
a25eb114 7088 nested_vmx_succeed(vcpu);
ec378aee 7089 return 1;
d048c098
RK
7090
7091out_shadow_vmcs:
7092 kfree(vmx->nested.cached_vmcs12);
7093
7094out_cached_vmcs12:
7095 free_page((unsigned long)vmx->nested.msr_bitmap);
7096
7097out_msr_bitmap:
7098 return -ENOMEM;
ec378aee
NHE
7099}
7100
7101/*
7102 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7103 * for running VMX instructions (except VMXON, whose prerequisites are
7104 * slightly different). It also specifies what exception to inject otherwise.
7105 */
7106static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7107{
7108 struct kvm_segment cs;
7109 struct vcpu_vmx *vmx = to_vmx(vcpu);
7110
7111 if (!vmx->nested.vmxon) {
7112 kvm_queue_exception(vcpu, UD_VECTOR);
7113 return 0;
7114 }
7115
7116 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7117 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7118 (is_long_mode(vcpu) && !cs.l)) {
7119 kvm_queue_exception(vcpu, UD_VECTOR);
7120 return 0;
7121 }
7122
7123 if (vmx_get_cpl(vcpu)) {
7124 kvm_inject_gp(vcpu, 0);
7125 return 0;
7126 }
7127
7128 return 1;
7129}
7130
e7953d7f
AG
7131static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7132{
9a2a05b9
PB
7133 if (vmx->nested.current_vmptr == -1ull)
7134 return;
7135
7136 /* current_vmptr and current_vmcs12 are always set/reset together */
7137 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7138 return;
7139
012f83cb 7140 if (enable_shadow_vmcs) {
9a2a05b9
PB
7141 /* copy to memory all shadowed fields in case
7142 they were modified */
7143 copy_shadow_to_vmcs12(vmx);
7144 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
7145 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7146 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 7147 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 7148 }
705699a1 7149 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7150
7151 /* Flush VMCS12 to guest memory */
7152 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7153 VMCS12_SIZE);
7154
e7953d7f
AG
7155 kunmap(vmx->nested.current_vmcs12_page);
7156 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
7157 vmx->nested.current_vmptr = -1ull;
7158 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
7159}
7160
ec378aee
NHE
7161/*
7162 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7163 * just stops using VMX.
7164 */
7165static void free_nested(struct vcpu_vmx *vmx)
7166{
7167 if (!vmx->nested.vmxon)
7168 return;
9a2a05b9 7169
ec378aee 7170 vmx->nested.vmxon = false;
5c614b35 7171 free_vpid(vmx->nested.vpid02);
9a2a05b9 7172 nested_release_vmcs12(vmx);
d048c098
RK
7173 if (vmx->nested.msr_bitmap) {
7174 free_page((unsigned long)vmx->nested.msr_bitmap);
7175 vmx->nested.msr_bitmap = NULL;
7176 }
e7953d7f
AG
7177 if (enable_shadow_vmcs)
7178 free_vmcs(vmx->nested.current_shadow_vmcs);
4f2777bc 7179 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7180 /* Unpin physical memory we referred to in current vmcs02 */
7181 if (vmx->nested.apic_access_page) {
7182 nested_release_page(vmx->nested.apic_access_page);
48d89b92 7183 vmx->nested.apic_access_page = NULL;
fe3ef05c 7184 }
a7c0b07d
WL
7185 if (vmx->nested.virtual_apic_page) {
7186 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 7187 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7188 }
705699a1
WV
7189 if (vmx->nested.pi_desc_page) {
7190 kunmap(vmx->nested.pi_desc_page);
7191 nested_release_page(vmx->nested.pi_desc_page);
7192 vmx->nested.pi_desc_page = NULL;
7193 vmx->nested.pi_desc = NULL;
7194 }
ff2f6fe9
NHE
7195
7196 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7197}
7198
7199/* Emulate the VMXOFF instruction */
7200static int handle_vmoff(struct kvm_vcpu *vcpu)
7201{
7202 if (!nested_vmx_check_permission(vcpu))
7203 return 1;
7204 free_nested(to_vmx(vcpu));
7205 skip_emulated_instruction(vcpu);
a25eb114 7206 nested_vmx_succeed(vcpu);
ec378aee
NHE
7207 return 1;
7208}
7209
27d6c865
NHE
7210/* Emulate the VMCLEAR instruction */
7211static int handle_vmclear(struct kvm_vcpu *vcpu)
7212{
7213 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
7214 gpa_t vmptr;
7215 struct vmcs12 *vmcs12;
7216 struct page *page;
27d6c865
NHE
7217
7218 if (!nested_vmx_check_permission(vcpu))
7219 return 1;
7220
4291b588 7221 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 7222 return 1;
27d6c865 7223
9a2a05b9 7224 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7225 nested_release_vmcs12(vmx);
27d6c865
NHE
7226
7227 page = nested_get_page(vcpu, vmptr);
7228 if (page == NULL) {
7229 /*
7230 * For accurate processor emulation, VMCLEAR beyond available
7231 * physical memory should do nothing at all. However, it is
7232 * possible that a nested vmx bug, not a guest hypervisor bug,
7233 * resulted in this case, so let's shut down before doing any
7234 * more damage:
7235 */
7236 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7237 return 1;
7238 }
7239 vmcs12 = kmap(page);
7240 vmcs12->launch_state = 0;
7241 kunmap(page);
7242 nested_release_page(page);
7243
7244 nested_free_vmcs02(vmx, vmptr);
7245
7246 skip_emulated_instruction(vcpu);
7247 nested_vmx_succeed(vcpu);
7248 return 1;
7249}
7250
cd232ad0
NHE
7251static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7252
7253/* Emulate the VMLAUNCH instruction */
7254static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7255{
7256 return nested_vmx_run(vcpu, true);
7257}
7258
7259/* Emulate the VMRESUME instruction */
7260static int handle_vmresume(struct kvm_vcpu *vcpu)
7261{
7262
7263 return nested_vmx_run(vcpu, false);
7264}
7265
49f705c5
NHE
7266enum vmcs_field_type {
7267 VMCS_FIELD_TYPE_U16 = 0,
7268 VMCS_FIELD_TYPE_U64 = 1,
7269 VMCS_FIELD_TYPE_U32 = 2,
7270 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7271};
7272
7273static inline int vmcs_field_type(unsigned long field)
7274{
7275 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7276 return VMCS_FIELD_TYPE_U32;
7277 return (field >> 13) & 0x3 ;
7278}
7279
7280static inline int vmcs_field_readonly(unsigned long field)
7281{
7282 return (((field >> 10) & 0x3) == 1);
7283}
7284
7285/*
7286 * Read a vmcs12 field. Since these can have varying lengths and we return
7287 * one type, we chose the biggest type (u64) and zero-extend the return value
7288 * to that size. Note that the caller, handle_vmread, might need to use only
7289 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7290 * 64-bit fields are to be returned).
7291 */
a2ae9df7
PB
7292static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7293 unsigned long field, u64 *ret)
49f705c5
NHE
7294{
7295 short offset = vmcs_field_to_offset(field);
7296 char *p;
7297
7298 if (offset < 0)
a2ae9df7 7299 return offset;
49f705c5
NHE
7300
7301 p = ((char *)(get_vmcs12(vcpu))) + offset;
7302
7303 switch (vmcs_field_type(field)) {
7304 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7305 *ret = *((natural_width *)p);
a2ae9df7 7306 return 0;
49f705c5
NHE
7307 case VMCS_FIELD_TYPE_U16:
7308 *ret = *((u16 *)p);
a2ae9df7 7309 return 0;
49f705c5
NHE
7310 case VMCS_FIELD_TYPE_U32:
7311 *ret = *((u32 *)p);
a2ae9df7 7312 return 0;
49f705c5
NHE
7313 case VMCS_FIELD_TYPE_U64:
7314 *ret = *((u64 *)p);
a2ae9df7 7315 return 0;
49f705c5 7316 default:
a2ae9df7
PB
7317 WARN_ON(1);
7318 return -ENOENT;
49f705c5
NHE
7319 }
7320}
7321
20b97fea 7322
a2ae9df7
PB
7323static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7324 unsigned long field, u64 field_value){
20b97fea
AG
7325 short offset = vmcs_field_to_offset(field);
7326 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7327 if (offset < 0)
a2ae9df7 7328 return offset;
20b97fea
AG
7329
7330 switch (vmcs_field_type(field)) {
7331 case VMCS_FIELD_TYPE_U16:
7332 *(u16 *)p = field_value;
a2ae9df7 7333 return 0;
20b97fea
AG
7334 case VMCS_FIELD_TYPE_U32:
7335 *(u32 *)p = field_value;
a2ae9df7 7336 return 0;
20b97fea
AG
7337 case VMCS_FIELD_TYPE_U64:
7338 *(u64 *)p = field_value;
a2ae9df7 7339 return 0;
20b97fea
AG
7340 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7341 *(natural_width *)p = field_value;
a2ae9df7 7342 return 0;
20b97fea 7343 default:
a2ae9df7
PB
7344 WARN_ON(1);
7345 return -ENOENT;
20b97fea
AG
7346 }
7347
7348}
7349
16f5b903
AG
7350static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7351{
7352 int i;
7353 unsigned long field;
7354 u64 field_value;
7355 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
7356 const unsigned long *fields = shadow_read_write_fields;
7357 const int num_fields = max_shadow_read_write_fields;
16f5b903 7358
282da870
JK
7359 preempt_disable();
7360
16f5b903
AG
7361 vmcs_load(shadow_vmcs);
7362
7363 for (i = 0; i < num_fields; i++) {
7364 field = fields[i];
7365 switch (vmcs_field_type(field)) {
7366 case VMCS_FIELD_TYPE_U16:
7367 field_value = vmcs_read16(field);
7368 break;
7369 case VMCS_FIELD_TYPE_U32:
7370 field_value = vmcs_read32(field);
7371 break;
7372 case VMCS_FIELD_TYPE_U64:
7373 field_value = vmcs_read64(field);
7374 break;
7375 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7376 field_value = vmcs_readl(field);
7377 break;
a2ae9df7
PB
7378 default:
7379 WARN_ON(1);
7380 continue;
16f5b903
AG
7381 }
7382 vmcs12_write_any(&vmx->vcpu, field, field_value);
7383 }
7384
7385 vmcs_clear(shadow_vmcs);
7386 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7387
7388 preempt_enable();
16f5b903
AG
7389}
7390
c3114420
AG
7391static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7392{
c2bae893
MK
7393 const unsigned long *fields[] = {
7394 shadow_read_write_fields,
7395 shadow_read_only_fields
c3114420 7396 };
c2bae893 7397 const int max_fields[] = {
c3114420
AG
7398 max_shadow_read_write_fields,
7399 max_shadow_read_only_fields
7400 };
7401 int i, q;
7402 unsigned long field;
7403 u64 field_value = 0;
7404 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7405
7406 vmcs_load(shadow_vmcs);
7407
c2bae893 7408 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7409 for (i = 0; i < max_fields[q]; i++) {
7410 field = fields[q][i];
7411 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7412
7413 switch (vmcs_field_type(field)) {
7414 case VMCS_FIELD_TYPE_U16:
7415 vmcs_write16(field, (u16)field_value);
7416 break;
7417 case VMCS_FIELD_TYPE_U32:
7418 vmcs_write32(field, (u32)field_value);
7419 break;
7420 case VMCS_FIELD_TYPE_U64:
7421 vmcs_write64(field, (u64)field_value);
7422 break;
7423 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7424 vmcs_writel(field, (long)field_value);
7425 break;
a2ae9df7
PB
7426 default:
7427 WARN_ON(1);
7428 break;
c3114420
AG
7429 }
7430 }
7431 }
7432
7433 vmcs_clear(shadow_vmcs);
7434 vmcs_load(vmx->loaded_vmcs->vmcs);
7435}
7436
49f705c5
NHE
7437/*
7438 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7439 * used before) all generate the same failure when it is missing.
7440 */
7441static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7442{
7443 struct vcpu_vmx *vmx = to_vmx(vcpu);
7444 if (vmx->nested.current_vmptr == -1ull) {
7445 nested_vmx_failInvalid(vcpu);
7446 skip_emulated_instruction(vcpu);
7447 return 0;
7448 }
7449 return 1;
7450}
7451
7452static int handle_vmread(struct kvm_vcpu *vcpu)
7453{
7454 unsigned long field;
7455 u64 field_value;
7456 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7457 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7458 gva_t gva = 0;
7459
7460 if (!nested_vmx_check_permission(vcpu) ||
7461 !nested_vmx_check_vmcs12(vcpu))
7462 return 1;
7463
7464 /* Decode instruction info and find the field to read */
27e6fb5d 7465 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7466 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7467 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
7468 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7469 skip_emulated_instruction(vcpu);
7470 return 1;
7471 }
7472 /*
7473 * Now copy part of this value to register or memory, as requested.
7474 * Note that the number of bits actually copied is 32 or 64 depending
7475 * on the guest's mode (32 or 64 bit), not on the given field's length.
7476 */
7477 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7478 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7479 field_value);
7480 } else {
7481 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7482 vmx_instruction_info, true, &gva))
49f705c5
NHE
7483 return 1;
7484 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7485 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7486 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7487 }
7488
7489 nested_vmx_succeed(vcpu);
7490 skip_emulated_instruction(vcpu);
7491 return 1;
7492}
7493
7494
7495static int handle_vmwrite(struct kvm_vcpu *vcpu)
7496{
7497 unsigned long field;
7498 gva_t gva;
7499 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7500 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7501 /* The value to write might be 32 or 64 bits, depending on L1's long
7502 * mode, and eventually we need to write that into a field of several
7503 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7504 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7505 * bits into the vmcs12 field.
7506 */
7507 u64 field_value = 0;
7508 struct x86_exception e;
7509
7510 if (!nested_vmx_check_permission(vcpu) ||
7511 !nested_vmx_check_vmcs12(vcpu))
7512 return 1;
7513
7514 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7515 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7516 (((vmx_instruction_info) >> 3) & 0xf));
7517 else {
7518 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7519 vmx_instruction_info, false, &gva))
49f705c5
NHE
7520 return 1;
7521 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7522 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7523 kvm_inject_page_fault(vcpu, &e);
7524 return 1;
7525 }
7526 }
7527
7528
27e6fb5d 7529 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7530 if (vmcs_field_readonly(field)) {
7531 nested_vmx_failValid(vcpu,
7532 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7533 skip_emulated_instruction(vcpu);
7534 return 1;
7535 }
7536
a2ae9df7 7537 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7538 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7539 skip_emulated_instruction(vcpu);
7540 return 1;
7541 }
7542
7543 nested_vmx_succeed(vcpu);
7544 skip_emulated_instruction(vcpu);
7545 return 1;
7546}
7547
63846663
NHE
7548/* Emulate the VMPTRLD instruction */
7549static int handle_vmptrld(struct kvm_vcpu *vcpu)
7550{
7551 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7552 gpa_t vmptr;
63846663
NHE
7553
7554 if (!nested_vmx_check_permission(vcpu))
7555 return 1;
7556
4291b588 7557 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7558 return 1;
63846663
NHE
7559
7560 if (vmx->nested.current_vmptr != vmptr) {
7561 struct vmcs12 *new_vmcs12;
7562 struct page *page;
7563 page = nested_get_page(vcpu, vmptr);
7564 if (page == NULL) {
7565 nested_vmx_failInvalid(vcpu);
7566 skip_emulated_instruction(vcpu);
7567 return 1;
7568 }
7569 new_vmcs12 = kmap(page);
7570 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7571 kunmap(page);
7572 nested_release_page_clean(page);
7573 nested_vmx_failValid(vcpu,
7574 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7575 skip_emulated_instruction(vcpu);
7576 return 1;
7577 }
63846663 7578
9a2a05b9 7579 nested_release_vmcs12(vmx);
63846663
NHE
7580 vmx->nested.current_vmptr = vmptr;
7581 vmx->nested.current_vmcs12 = new_vmcs12;
7582 vmx->nested.current_vmcs12_page = page;
4f2777bc
DM
7583 /*
7584 * Load VMCS12 from guest memory since it is not already
7585 * cached.
7586 */
7587 memcpy(vmx->nested.cached_vmcs12,
7588 vmx->nested.current_vmcs12, VMCS12_SIZE);
7589
012f83cb 7590 if (enable_shadow_vmcs) {
7ec36296
XG
7591 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7592 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0
AG
7593 vmcs_write64(VMCS_LINK_POINTER,
7594 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7595 vmx->nested.sync_shadow_vmcs = true;
7596 }
63846663
NHE
7597 }
7598
7599 nested_vmx_succeed(vcpu);
7600 skip_emulated_instruction(vcpu);
7601 return 1;
7602}
7603
6a4d7550
NHE
7604/* Emulate the VMPTRST instruction */
7605static int handle_vmptrst(struct kvm_vcpu *vcpu)
7606{
7607 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7608 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7609 gva_t vmcs_gva;
7610 struct x86_exception e;
7611
7612 if (!nested_vmx_check_permission(vcpu))
7613 return 1;
7614
7615 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7616 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7617 return 1;
7618 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7619 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7620 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7621 sizeof(u64), &e)) {
7622 kvm_inject_page_fault(vcpu, &e);
7623 return 1;
7624 }
7625 nested_vmx_succeed(vcpu);
7626 skip_emulated_instruction(vcpu);
7627 return 1;
7628}
7629
bfd0a56b
NHE
7630/* Emulate the INVEPT instruction */
7631static int handle_invept(struct kvm_vcpu *vcpu)
7632{
b9c237bb 7633 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7634 u32 vmx_instruction_info, types;
7635 unsigned long type;
7636 gva_t gva;
7637 struct x86_exception e;
7638 struct {
7639 u64 eptp, gpa;
7640 } operand;
bfd0a56b 7641
b9c237bb
WV
7642 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7643 SECONDARY_EXEC_ENABLE_EPT) ||
7644 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7645 kvm_queue_exception(vcpu, UD_VECTOR);
7646 return 1;
7647 }
7648
7649 if (!nested_vmx_check_permission(vcpu))
7650 return 1;
7651
7652 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7653 kvm_queue_exception(vcpu, UD_VECTOR);
7654 return 1;
7655 }
7656
7657 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7658 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7659
b9c237bb 7660 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7661
7662 if (!(types & (1UL << type))) {
7663 nested_vmx_failValid(vcpu,
7664 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
2849eb4f 7665 skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7666 return 1;
7667 }
7668
7669 /* According to the Intel VMX instruction reference, the memory
7670 * operand is read even if it isn't needed (e.g., for type==global)
7671 */
7672 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7673 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7674 return 1;
7675 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7676 sizeof(operand), &e)) {
7677 kvm_inject_page_fault(vcpu, &e);
7678 return 1;
7679 }
7680
7681 switch (type) {
bfd0a56b 7682 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7683 /*
7684 * TODO: track mappings and invalidate
7685 * single context requests appropriately
7686 */
7687 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7688 kvm_mmu_sync_roots(vcpu);
77c3913b 7689 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7690 nested_vmx_succeed(vcpu);
7691 break;
7692 default:
7693 BUG_ON(1);
7694 break;
7695 }
7696
7697 skip_emulated_instruction(vcpu);
7698 return 1;
7699}
7700
a642fc30
PM
7701static int handle_invvpid(struct kvm_vcpu *vcpu)
7702{
99b83ac8
WL
7703 struct vcpu_vmx *vmx = to_vmx(vcpu);
7704 u32 vmx_instruction_info;
7705 unsigned long type, types;
7706 gva_t gva;
7707 struct x86_exception e;
7708 int vpid;
7709
7710 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7711 SECONDARY_EXEC_ENABLE_VPID) ||
7712 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7713 kvm_queue_exception(vcpu, UD_VECTOR);
7714 return 1;
7715 }
7716
7717 if (!nested_vmx_check_permission(vcpu))
7718 return 1;
7719
7720 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7721 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7722
7723 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7724
7725 if (!(types & (1UL << type))) {
7726 nested_vmx_failValid(vcpu,
7727 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
f6870ee9 7728 skip_emulated_instruction(vcpu);
99b83ac8
WL
7729 return 1;
7730 }
7731
7732 /* according to the intel vmx instruction reference, the memory
7733 * operand is read even if it isn't needed (e.g., for type==global)
7734 */
7735 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7736 vmx_instruction_info, false, &gva))
7737 return 1;
7738 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7739 sizeof(u32), &e)) {
7740 kvm_inject_page_fault(vcpu, &e);
7741 return 1;
7742 }
7743
7744 switch (type) {
ef697a71
PB
7745 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7746 /*
7747 * Old versions of KVM use the single-context version so we
7748 * have to support it; just treat it the same as all-context.
7749 */
99b83ac8 7750 case VMX_VPID_EXTENT_ALL_CONTEXT:
5c614b35 7751 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
99b83ac8
WL
7752 nested_vmx_succeed(vcpu);
7753 break;
7754 default:
ef697a71 7755 /* Trap individual address invalidation invvpid calls */
99b83ac8
WL
7756 BUG_ON(1);
7757 break;
7758 }
7759
7760 skip_emulated_instruction(vcpu);
a642fc30
PM
7761 return 1;
7762}
7763
843e4330
KH
7764static int handle_pml_full(struct kvm_vcpu *vcpu)
7765{
7766 unsigned long exit_qualification;
7767
7768 trace_kvm_pml_full(vcpu->vcpu_id);
7769
7770 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7771
7772 /*
7773 * PML buffer FULL happened while executing iret from NMI,
7774 * "blocked by NMI" bit has to be set before next VM entry.
7775 */
7776 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7777 cpu_has_virtual_nmis() &&
7778 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7779 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7780 GUEST_INTR_STATE_NMI);
7781
7782 /*
7783 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7784 * here.., and there's no userspace involvement needed for PML.
7785 */
7786 return 1;
7787}
7788
64672c95
YJ
7789static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7790{
7791 kvm_lapic_expired_hv_timer(vcpu);
7792 return 1;
7793}
7794
6aa8b732
AK
7795/*
7796 * The exit handlers return 1 if the exit was handled fully and guest execution
7797 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7798 * to be done to userspace and return 0.
7799 */
772e0318 7800static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7801 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7802 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7803 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7804 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7805 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7806 [EXIT_REASON_CR_ACCESS] = handle_cr,
7807 [EXIT_REASON_DR_ACCESS] = handle_dr,
7808 [EXIT_REASON_CPUID] = handle_cpuid,
7809 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7810 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7811 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7812 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7813 [EXIT_REASON_INVD] = handle_invd,
a7052897 7814 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7815 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7816 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7817 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7818 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7819 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7820 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7821 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7822 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7823 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7824 [EXIT_REASON_VMOFF] = handle_vmoff,
7825 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7826 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7827 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7828 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7829 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7830 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7831 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7832 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7833 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7834 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7835 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7836 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7837 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7838 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7839 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7840 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7841 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7842 [EXIT_REASON_XSAVES] = handle_xsaves,
7843 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7844 [EXIT_REASON_PML_FULL] = handle_pml_full,
64672c95 7845 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
7846};
7847
7848static const int kvm_vmx_max_exit_handlers =
50a3485c 7849 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7850
908a7bdd
JK
7851static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7852 struct vmcs12 *vmcs12)
7853{
7854 unsigned long exit_qualification;
7855 gpa_t bitmap, last_bitmap;
7856 unsigned int port;
7857 int size;
7858 u8 b;
7859
908a7bdd 7860 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7861 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7862
7863 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7864
7865 port = exit_qualification >> 16;
7866 size = (exit_qualification & 7) + 1;
7867
7868 last_bitmap = (gpa_t)-1;
7869 b = -1;
7870
7871 while (size > 0) {
7872 if (port < 0x8000)
7873 bitmap = vmcs12->io_bitmap_a;
7874 else if (port < 0x10000)
7875 bitmap = vmcs12->io_bitmap_b;
7876 else
1d804d07 7877 return true;
908a7bdd
JK
7878 bitmap += (port & 0x7fff) / 8;
7879
7880 if (last_bitmap != bitmap)
54bf36aa 7881 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7882 return true;
908a7bdd 7883 if (b & (1 << (port & 7)))
1d804d07 7884 return true;
908a7bdd
JK
7885
7886 port++;
7887 size--;
7888 last_bitmap = bitmap;
7889 }
7890
1d804d07 7891 return false;
908a7bdd
JK
7892}
7893
644d711a
NHE
7894/*
7895 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7896 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7897 * disinterest in the current event (read or write a specific MSR) by using an
7898 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7899 */
7900static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7901 struct vmcs12 *vmcs12, u32 exit_reason)
7902{
7903 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7904 gpa_t bitmap;
7905
cbd29cb6 7906 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7907 return true;
644d711a
NHE
7908
7909 /*
7910 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7911 * for the four combinations of read/write and low/high MSR numbers.
7912 * First we need to figure out which of the four to use:
7913 */
7914 bitmap = vmcs12->msr_bitmap;
7915 if (exit_reason == EXIT_REASON_MSR_WRITE)
7916 bitmap += 2048;
7917 if (msr_index >= 0xc0000000) {
7918 msr_index -= 0xc0000000;
7919 bitmap += 1024;
7920 }
7921
7922 /* Then read the msr_index'th bit from this bitmap: */
7923 if (msr_index < 1024*8) {
7924 unsigned char b;
54bf36aa 7925 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7926 return true;
644d711a
NHE
7927 return 1 & (b >> (msr_index & 7));
7928 } else
1d804d07 7929 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7930}
7931
7932/*
7933 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7934 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7935 * intercept (via guest_host_mask etc.) the current event.
7936 */
7937static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7938 struct vmcs12 *vmcs12)
7939{
7940 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7941 int cr = exit_qualification & 15;
7942 int reg = (exit_qualification >> 8) & 15;
1e32c079 7943 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7944
7945 switch ((exit_qualification >> 4) & 3) {
7946 case 0: /* mov to cr */
7947 switch (cr) {
7948 case 0:
7949 if (vmcs12->cr0_guest_host_mask &
7950 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7951 return true;
644d711a
NHE
7952 break;
7953 case 3:
7954 if ((vmcs12->cr3_target_count >= 1 &&
7955 vmcs12->cr3_target_value0 == val) ||
7956 (vmcs12->cr3_target_count >= 2 &&
7957 vmcs12->cr3_target_value1 == val) ||
7958 (vmcs12->cr3_target_count >= 3 &&
7959 vmcs12->cr3_target_value2 == val) ||
7960 (vmcs12->cr3_target_count >= 4 &&
7961 vmcs12->cr3_target_value3 == val))
1d804d07 7962 return false;
644d711a 7963 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7964 return true;
644d711a
NHE
7965 break;
7966 case 4:
7967 if (vmcs12->cr4_guest_host_mask &
7968 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7969 return true;
644d711a
NHE
7970 break;
7971 case 8:
7972 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7973 return true;
644d711a
NHE
7974 break;
7975 }
7976 break;
7977 case 2: /* clts */
7978 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7979 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7980 return true;
644d711a
NHE
7981 break;
7982 case 1: /* mov from cr */
7983 switch (cr) {
7984 case 3:
7985 if (vmcs12->cpu_based_vm_exec_control &
7986 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7987 return true;
644d711a
NHE
7988 break;
7989 case 8:
7990 if (vmcs12->cpu_based_vm_exec_control &
7991 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7992 return true;
644d711a
NHE
7993 break;
7994 }
7995 break;
7996 case 3: /* lmsw */
7997 /*
7998 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7999 * cr0. Other attempted changes are ignored, with no exit.
8000 */
8001 if (vmcs12->cr0_guest_host_mask & 0xe &
8002 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8003 return true;
644d711a
NHE
8004 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8005 !(vmcs12->cr0_read_shadow & 0x1) &&
8006 (val & 0x1))
1d804d07 8007 return true;
644d711a
NHE
8008 break;
8009 }
1d804d07 8010 return false;
644d711a
NHE
8011}
8012
8013/*
8014 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8015 * should handle it ourselves in L0 (and then continue L2). Only call this
8016 * when in is_guest_mode (L2).
8017 */
8018static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8019{
644d711a
NHE
8020 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8021 struct vcpu_vmx *vmx = to_vmx(vcpu);
8022 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 8023 u32 exit_reason = vmx->exit_reason;
644d711a 8024
542060ea
JK
8025 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8026 vmcs_readl(EXIT_QUALIFICATION),
8027 vmx->idt_vectoring_info,
8028 intr_info,
8029 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8030 KVM_ISA_VMX);
8031
644d711a 8032 if (vmx->nested.nested_run_pending)
1d804d07 8033 return false;
644d711a
NHE
8034
8035 if (unlikely(vmx->fail)) {
bd80158a
JK
8036 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8037 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 8038 return true;
644d711a
NHE
8039 }
8040
8041 switch (exit_reason) {
8042 case EXIT_REASON_EXCEPTION_NMI:
8043 if (!is_exception(intr_info))
1d804d07 8044 return false;
644d711a
NHE
8045 else if (is_page_fault(intr_info))
8046 return enable_ept;
e504c909 8047 else if (is_no_device(intr_info) &&
ccf9844e 8048 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8049 return false;
6f05485d
JK
8050 else if (is_debug(intr_info) &&
8051 vcpu->guest_debug &
8052 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8053 return false;
8054 else if (is_breakpoint(intr_info) &&
8055 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8056 return false;
644d711a
NHE
8057 return vmcs12->exception_bitmap &
8058 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8059 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8060 return false;
644d711a 8061 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8062 return true;
644d711a 8063 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8064 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8065 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8066 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8067 case EXIT_REASON_TASK_SWITCH:
1d804d07 8068 return true;
644d711a 8069 case EXIT_REASON_CPUID:
bc613494 8070 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
8071 return false;
8072 return true;
644d711a
NHE
8073 case EXIT_REASON_HLT:
8074 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8075 case EXIT_REASON_INVD:
1d804d07 8076 return true;
644d711a
NHE
8077 case EXIT_REASON_INVLPG:
8078 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8079 case EXIT_REASON_RDPMC:
8080 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 8081 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8082 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8083 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8084 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8085 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8086 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8087 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8088 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8089 /*
8090 * VMX instructions trap unconditionally. This allows L1 to
8091 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8092 */
1d804d07 8093 return true;
644d711a
NHE
8094 case EXIT_REASON_CR_ACCESS:
8095 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8096 case EXIT_REASON_DR_ACCESS:
8097 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8098 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8099 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
8100 case EXIT_REASON_MSR_READ:
8101 case EXIT_REASON_MSR_WRITE:
8102 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8103 case EXIT_REASON_INVALID_STATE:
1d804d07 8104 return true;
644d711a
NHE
8105 case EXIT_REASON_MWAIT_INSTRUCTION:
8106 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8107 case EXIT_REASON_MONITOR_TRAP_FLAG:
8108 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8109 case EXIT_REASON_MONITOR_INSTRUCTION:
8110 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8111 case EXIT_REASON_PAUSE_INSTRUCTION:
8112 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8113 nested_cpu_has2(vmcs12,
8114 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8115 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8116 return false;
644d711a 8117 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8118 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8119 case EXIT_REASON_APIC_ACCESS:
8120 return nested_cpu_has2(vmcs12,
8121 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8122 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8123 case EXIT_REASON_EOI_INDUCED:
8124 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8125 return true;
644d711a 8126 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8127 /*
8128 * L0 always deals with the EPT violation. If nested EPT is
8129 * used, and the nested mmu code discovers that the address is
8130 * missing in the guest EPT table (EPT12), the EPT violation
8131 * will be injected with nested_ept_inject_page_fault()
8132 */
1d804d07 8133 return false;
644d711a 8134 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8135 /*
8136 * L2 never uses directly L1's EPT, but rather L0's own EPT
8137 * table (shadow on EPT) or a merged EPT table that L0 built
8138 * (EPT on EPT). So any problems with the structure of the
8139 * table is L0's fault.
8140 */
1d804d07 8141 return false;
644d711a
NHE
8142 case EXIT_REASON_WBINVD:
8143 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8144 case EXIT_REASON_XSETBV:
1d804d07 8145 return true;
81dc01f7
WL
8146 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8147 /*
8148 * This should never happen, since it is not possible to
8149 * set XSS to a non-zero value---neither in L1 nor in L2.
8150 * If if it were, XSS would have to be checked against
8151 * the XSS exit bitmap in vmcs12.
8152 */
8153 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8154 case EXIT_REASON_PREEMPTION_TIMER:
8155 return false;
644d711a 8156 default:
1d804d07 8157 return true;
644d711a
NHE
8158 }
8159}
8160
586f9607
AK
8161static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8162{
8163 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8164 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8165}
8166
a3eaa864 8167static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8168{
a3eaa864
KH
8169 if (vmx->pml_pg) {
8170 __free_page(vmx->pml_pg);
8171 vmx->pml_pg = NULL;
8172 }
843e4330
KH
8173}
8174
54bf36aa 8175static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8176{
54bf36aa 8177 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8178 u64 *pml_buf;
8179 u16 pml_idx;
8180
8181 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8182
8183 /* Do nothing if PML buffer is empty */
8184 if (pml_idx == (PML_ENTITY_NUM - 1))
8185 return;
8186
8187 /* PML index always points to next available PML buffer entity */
8188 if (pml_idx >= PML_ENTITY_NUM)
8189 pml_idx = 0;
8190 else
8191 pml_idx++;
8192
8193 pml_buf = page_address(vmx->pml_pg);
8194 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8195 u64 gpa;
8196
8197 gpa = pml_buf[pml_idx];
8198 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8199 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8200 }
8201
8202 /* reset PML index */
8203 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8204}
8205
8206/*
8207 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8208 * Called before reporting dirty_bitmap to userspace.
8209 */
8210static void kvm_flush_pml_buffers(struct kvm *kvm)
8211{
8212 int i;
8213 struct kvm_vcpu *vcpu;
8214 /*
8215 * We only need to kick vcpu out of guest mode here, as PML buffer
8216 * is flushed at beginning of all VMEXITs, and it's obvious that only
8217 * vcpus running in guest are possible to have unflushed GPAs in PML
8218 * buffer.
8219 */
8220 kvm_for_each_vcpu(i, vcpu, kvm)
8221 kvm_vcpu_kick(vcpu);
8222}
8223
4eb64dce
PB
8224static void vmx_dump_sel(char *name, uint32_t sel)
8225{
8226 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8227 name, vmcs_read32(sel),
8228 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8229 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8230 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8231}
8232
8233static void vmx_dump_dtsel(char *name, uint32_t limit)
8234{
8235 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8236 name, vmcs_read32(limit),
8237 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8238}
8239
8240static void dump_vmcs(void)
8241{
8242 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8243 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8244 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8245 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8246 u32 secondary_exec_control = 0;
8247 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8248 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8249 int i, n;
8250
8251 if (cpu_has_secondary_exec_ctrls())
8252 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8253
8254 pr_err("*** Guest State ***\n");
8255 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8256 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8257 vmcs_readl(CR0_GUEST_HOST_MASK));
8258 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8259 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8260 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8261 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8262 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8263 {
845c5b40
PB
8264 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8265 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8266 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8267 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8268 }
8269 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8270 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8271 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8272 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8273 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8274 vmcs_readl(GUEST_SYSENTER_ESP),
8275 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8276 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8277 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8278 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8279 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8280 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8281 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8282 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8283 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8284 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8285 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8286 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8287 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8288 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8289 efer, vmcs_read64(GUEST_IA32_PAT));
8290 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8291 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8292 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8293 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8294 pr_err("PerfGlobCtl = 0x%016llx\n",
8295 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8296 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8297 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8298 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8299 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8300 vmcs_read32(GUEST_ACTIVITY_STATE));
8301 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8302 pr_err("InterruptStatus = %04x\n",
8303 vmcs_read16(GUEST_INTR_STATUS));
8304
8305 pr_err("*** Host State ***\n");
8306 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8307 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8308 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8309 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8310 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8311 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8312 vmcs_read16(HOST_TR_SELECTOR));
8313 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8314 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8315 vmcs_readl(HOST_TR_BASE));
8316 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8317 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8318 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8319 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8320 vmcs_readl(HOST_CR4));
8321 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8322 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8323 vmcs_read32(HOST_IA32_SYSENTER_CS),
8324 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8325 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8326 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8327 vmcs_read64(HOST_IA32_EFER),
8328 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8329 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8330 pr_err("PerfGlobCtl = 0x%016llx\n",
8331 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8332
8333 pr_err("*** Control State ***\n");
8334 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8335 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8336 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8337 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8338 vmcs_read32(EXCEPTION_BITMAP),
8339 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8340 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8341 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8342 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8343 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8344 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8345 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8346 vmcs_read32(VM_EXIT_INTR_INFO),
8347 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8348 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8349 pr_err(" reason=%08x qualification=%016lx\n",
8350 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8351 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8352 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8353 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8354 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8355 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8356 pr_err("TSC Multiplier = 0x%016llx\n",
8357 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8358 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8359 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8360 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8361 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8362 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8363 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8364 n = vmcs_read32(CR3_TARGET_COUNT);
8365 for (i = 0; i + 1 < n; i += 4)
8366 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8367 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8368 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8369 if (i < n)
8370 pr_err("CR3 target%u=%016lx\n",
8371 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8372 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8373 pr_err("PLE Gap=%08x Window=%08x\n",
8374 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8375 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8376 pr_err("Virtual processor ID = 0x%04x\n",
8377 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8378}
8379
6aa8b732
AK
8380/*
8381 * The guest has exited. See if we can fix it or if we need userspace
8382 * assistance.
8383 */
851ba692 8384static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8385{
29bd8a78 8386 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8387 u32 exit_reason = vmx->exit_reason;
1155f76a 8388 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8389
8b89fe1f
PB
8390 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8391
843e4330
KH
8392 /*
8393 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8394 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8395 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8396 * mode as if vcpus is in root mode, the PML buffer must has been
8397 * flushed already.
8398 */
8399 if (enable_pml)
54bf36aa 8400 vmx_flush_pml_buffer(vcpu);
843e4330 8401
80ced186 8402 /* If guest state is invalid, start emulating */
14168786 8403 if (vmx->emulation_required)
80ced186 8404 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8405
644d711a 8406 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8407 nested_vmx_vmexit(vcpu, exit_reason,
8408 vmcs_read32(VM_EXIT_INTR_INFO),
8409 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8410 return 1;
8411 }
8412
5120702e 8413 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8414 dump_vmcs();
5120702e
MG
8415 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8416 vcpu->run->fail_entry.hardware_entry_failure_reason
8417 = exit_reason;
8418 return 0;
8419 }
8420
29bd8a78 8421 if (unlikely(vmx->fail)) {
851ba692
AK
8422 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8423 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8424 = vmcs_read32(VM_INSTRUCTION_ERROR);
8425 return 0;
8426 }
6aa8b732 8427
b9bf6882
XG
8428 /*
8429 * Note:
8430 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8431 * delivery event since it indicates guest is accessing MMIO.
8432 * The vm-exit can be triggered again after return to guest that
8433 * will cause infinite loop.
8434 */
d77c26fc 8435 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8436 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8437 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8438 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8439 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8440 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8441 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8442 vcpu->run->internal.ndata = 2;
8443 vcpu->run->internal.data[0] = vectoring_info;
8444 vcpu->run->internal.data[1] = exit_reason;
8445 return 0;
8446 }
3b86cd99 8447
644d711a
NHE
8448 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8449 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8450 get_vmcs12(vcpu))))) {
c4282df9 8451 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8452 vmx->soft_vnmi_blocked = 0;
3b86cd99 8453 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8454 vcpu->arch.nmi_pending) {
3b86cd99
JK
8455 /*
8456 * This CPU don't support us in finding the end of an
8457 * NMI-blocked window if the guest runs with IRQs
8458 * disabled. So we pull the trigger after 1 s of
8459 * futile waiting, but inform the user about this.
8460 */
8461 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8462 "state on VCPU %d after 1 s timeout\n",
8463 __func__, vcpu->vcpu_id);
8464 vmx->soft_vnmi_blocked = 0;
3b86cd99 8465 }
3b86cd99
JK
8466 }
8467
6aa8b732
AK
8468 if (exit_reason < kvm_vmx_max_exit_handlers
8469 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8470 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8471 else {
2bc19dc3
MT
8472 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8473 kvm_queue_exception(vcpu, UD_VECTOR);
8474 return 1;
6aa8b732 8475 }
6aa8b732
AK
8476}
8477
95ba8273 8478static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8479{
a7c0b07d
WL
8480 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8481
8482 if (is_guest_mode(vcpu) &&
8483 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8484 return;
8485
95ba8273 8486 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8487 vmcs_write32(TPR_THRESHOLD, 0);
8488 return;
8489 }
8490
95ba8273 8491 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8492}
8493
8d14695f
YZ
8494static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8495{
8496 u32 sec_exec_control;
8497
dccbfcf5
RK
8498 /* Postpone execution until vmcs01 is the current VMCS. */
8499 if (is_guest_mode(vcpu)) {
8500 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8501 return;
8502 }
8503
f6e90f9e 8504 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8505 return;
8506
35754c98 8507 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8508 return;
8509
8510 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8511
8512 if (set) {
8513 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8514 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8515 } else {
8516 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8517 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8518 }
8519 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8520
8521 vmx_set_msr_bitmap(vcpu);
8522}
8523
38b99173
TC
8524static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8525{
8526 struct vcpu_vmx *vmx = to_vmx(vcpu);
8527
8528 /*
8529 * Currently we do not handle the nested case where L2 has an
8530 * APIC access page of its own; that page is still pinned.
8531 * Hence, we skip the case where the VCPU is in guest mode _and_
8532 * L1 prepared an APIC access page for L2.
8533 *
8534 * For the case where L1 and L2 share the same APIC access page
8535 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8536 * in the vmcs12), this function will only update either the vmcs01
8537 * or the vmcs02. If the former, the vmcs02 will be updated by
8538 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8539 * the next L2->L1 exit.
8540 */
8541 if (!is_guest_mode(vcpu) ||
4f2777bc 8542 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
38b99173
TC
8543 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8544 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8545}
8546
67c9dddc 8547static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8548{
8549 u16 status;
8550 u8 old;
8551
67c9dddc
PB
8552 if (max_isr == -1)
8553 max_isr = 0;
c7c9c56c
YZ
8554
8555 status = vmcs_read16(GUEST_INTR_STATUS);
8556 old = status >> 8;
67c9dddc 8557 if (max_isr != old) {
c7c9c56c 8558 status &= 0xff;
67c9dddc 8559 status |= max_isr << 8;
c7c9c56c
YZ
8560 vmcs_write16(GUEST_INTR_STATUS, status);
8561 }
8562}
8563
8564static void vmx_set_rvi(int vector)
8565{
8566 u16 status;
8567 u8 old;
8568
4114c27d
WW
8569 if (vector == -1)
8570 vector = 0;
8571
c7c9c56c
YZ
8572 status = vmcs_read16(GUEST_INTR_STATUS);
8573 old = (u8)status & 0xff;
8574 if ((u8)vector != old) {
8575 status &= ~0xff;
8576 status |= (u8)vector;
8577 vmcs_write16(GUEST_INTR_STATUS, status);
8578 }
8579}
8580
8581static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8582{
4114c27d
WW
8583 if (!is_guest_mode(vcpu)) {
8584 vmx_set_rvi(max_irr);
8585 return;
8586 }
8587
c7c9c56c
YZ
8588 if (max_irr == -1)
8589 return;
8590
963fee16 8591 /*
4114c27d
WW
8592 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8593 * handles it.
963fee16 8594 */
4114c27d 8595 if (nested_exit_on_intr(vcpu))
963fee16
WL
8596 return;
8597
963fee16 8598 /*
4114c27d 8599 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8600 * is run without virtual interrupt delivery.
8601 */
8602 if (!kvm_event_needs_reinjection(vcpu) &&
8603 vmx_interrupt_allowed(vcpu)) {
8604 kvm_queue_interrupt(vcpu, max_irr, false);
8605 vmx_inject_irq(vcpu);
8606 }
c7c9c56c
YZ
8607}
8608
6308630b 8609static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8610{
d62caabb 8611 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8612 return;
8613
c7c9c56c
YZ
8614 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8615 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8616 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8617 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8618}
8619
51aa01d1 8620static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8621{
00eba012
AK
8622 u32 exit_intr_info;
8623
8624 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8625 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8626 return;
8627
c5ca8e57 8628 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8629 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8630
8631 /* Handle machine checks before interrupts are enabled */
00eba012 8632 if (is_machine_check(exit_intr_info))
a0861c02
AK
8633 kvm_machine_check();
8634
20f65983 8635 /* We need to handle NMIs before interrupts are enabled */
00eba012 8636 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8637 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8638 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8639 asm("int $2");
ff9d07a0
ZY
8640 kvm_after_handle_nmi(&vmx->vcpu);
8641 }
51aa01d1 8642}
20f65983 8643
a547c6db
YZ
8644static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8645{
8646 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8647 register void *__sp asm(_ASM_SP);
a547c6db
YZ
8648
8649 /*
8650 * If external interrupt exists, IF bit is set in rflags/eflags on the
8651 * interrupt stack frame, and interrupt will be enabled on a return
8652 * from interrupt handler.
8653 */
8654 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8655 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8656 unsigned int vector;
8657 unsigned long entry;
8658 gate_desc *desc;
8659 struct vcpu_vmx *vmx = to_vmx(vcpu);
8660#ifdef CONFIG_X86_64
8661 unsigned long tmp;
8662#endif
8663
8664 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8665 desc = (gate_desc *)vmx->host_idt_base + vector;
8666 entry = gate_offset(*desc);
8667 asm volatile(
8668#ifdef CONFIG_X86_64
8669 "mov %%" _ASM_SP ", %[sp]\n\t"
8670 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8671 "push $%c[ss]\n\t"
8672 "push %[sp]\n\t"
8673#endif
8674 "pushf\n\t"
a547c6db
YZ
8675 __ASM_SIZE(push) " $%c[cs]\n\t"
8676 "call *%[entry]\n\t"
8677 :
8678#ifdef CONFIG_X86_64
3f62de5f 8679 [sp]"=&r"(tmp),
a547c6db 8680#endif
3f62de5f 8681 "+r"(__sp)
a547c6db
YZ
8682 :
8683 [entry]"r"(entry),
8684 [ss]"i"(__KERNEL_DS),
8685 [cs]"i"(__KERNEL_CS)
8686 );
f2485b3e 8687 }
a547c6db
YZ
8688}
8689
6d396b55
PB
8690static bool vmx_has_high_real_mode_segbase(void)
8691{
8692 return enable_unrestricted_guest || emulate_invalid_guest_state;
8693}
8694
da8999d3
LJ
8695static bool vmx_mpx_supported(void)
8696{
8697 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8698 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8699}
8700
55412b2e
WL
8701static bool vmx_xsaves_supported(void)
8702{
8703 return vmcs_config.cpu_based_2nd_exec_ctrl &
8704 SECONDARY_EXEC_XSAVES;
8705}
8706
51aa01d1
AK
8707static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8708{
c5ca8e57 8709 u32 exit_intr_info;
51aa01d1
AK
8710 bool unblock_nmi;
8711 u8 vector;
8712 bool idtv_info_valid;
8713
8714 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8715
cf393f75 8716 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8717 if (vmx->nmi_known_unmasked)
8718 return;
c5ca8e57
AK
8719 /*
8720 * Can't use vmx->exit_intr_info since we're not sure what
8721 * the exit reason is.
8722 */
8723 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8724 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8725 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8726 /*
7b4a25cb 8727 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8728 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8729 * a guest IRET fault.
7b4a25cb
GN
8730 * SDM 3: 23.2.2 (September 2008)
8731 * Bit 12 is undefined in any of the following cases:
8732 * If the VM exit sets the valid bit in the IDT-vectoring
8733 * information field.
8734 * If the VM exit is due to a double fault.
cf393f75 8735 */
7b4a25cb
GN
8736 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8737 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8738 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8739 GUEST_INTR_STATE_NMI);
9d58b931
AK
8740 else
8741 vmx->nmi_known_unmasked =
8742 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8743 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8744 } else if (unlikely(vmx->soft_vnmi_blocked))
8745 vmx->vnmi_blocked_time +=
8746 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8747}
8748
3ab66e8a 8749static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8750 u32 idt_vectoring_info,
8751 int instr_len_field,
8752 int error_code_field)
51aa01d1 8753{
51aa01d1
AK
8754 u8 vector;
8755 int type;
8756 bool idtv_info_valid;
8757
8758 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8759
3ab66e8a
JK
8760 vcpu->arch.nmi_injected = false;
8761 kvm_clear_exception_queue(vcpu);
8762 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8763
8764 if (!idtv_info_valid)
8765 return;
8766
3ab66e8a 8767 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8768
668f612f
AK
8769 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8770 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8771
64a7ec06 8772 switch (type) {
37b96e98 8773 case INTR_TYPE_NMI_INTR:
3ab66e8a 8774 vcpu->arch.nmi_injected = true;
668f612f 8775 /*
7b4a25cb 8776 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8777 * Clear bit "block by NMI" before VM entry if a NMI
8778 * delivery faulted.
668f612f 8779 */
3ab66e8a 8780 vmx_set_nmi_mask(vcpu, false);
37b96e98 8781 break;
37b96e98 8782 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8783 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8784 /* fall through */
8785 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8786 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8787 u32 err = vmcs_read32(error_code_field);
851eb667 8788 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8789 } else
851eb667 8790 kvm_requeue_exception(vcpu, vector);
37b96e98 8791 break;
66fd3f7f 8792 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8793 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8794 /* fall through */
37b96e98 8795 case INTR_TYPE_EXT_INTR:
3ab66e8a 8796 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8797 break;
8798 default:
8799 break;
f7d9238f 8800 }
cf393f75
AK
8801}
8802
83422e17
AK
8803static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8804{
3ab66e8a 8805 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8806 VM_EXIT_INSTRUCTION_LEN,
8807 IDT_VECTORING_ERROR_CODE);
8808}
8809
b463a6f7
AK
8810static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8811{
3ab66e8a 8812 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8813 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8814 VM_ENTRY_INSTRUCTION_LEN,
8815 VM_ENTRY_EXCEPTION_ERROR_CODE);
8816
8817 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8818}
8819
d7cd9796
GN
8820static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8821{
8822 int i, nr_msrs;
8823 struct perf_guest_switch_msr *msrs;
8824
8825 msrs = perf_guest_get_msrs(&nr_msrs);
8826
8827 if (!msrs)
8828 return;
8829
8830 for (i = 0; i < nr_msrs; i++)
8831 if (msrs[i].host == msrs[i].guest)
8832 clear_atomic_switch_msr(vmx, msrs[i].msr);
8833 else
8834 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8835 msrs[i].host);
8836}
8837
64672c95
YJ
8838void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8839{
8840 struct vcpu_vmx *vmx = to_vmx(vcpu);
8841 u64 tscl;
8842 u32 delta_tsc;
8843
8844 if (vmx->hv_deadline_tsc == -1)
8845 return;
8846
8847 tscl = rdtsc();
8848 if (vmx->hv_deadline_tsc > tscl)
8849 /* sure to be 32 bit only because checked on set_hv_timer */
8850 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8851 cpu_preemption_timer_multi);
8852 else
8853 delta_tsc = 0;
8854
8855 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8856}
8857
a3b5ba49 8858static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8859{
a2fa3e9f 8860 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8861 unsigned long debugctlmsr, cr4;
104f226b
AK
8862
8863 /* Record the guest's net vcpu time for enforced NMI injections. */
8864 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8865 vmx->entry_time = ktime_get();
8866
8867 /* Don't enter VMX if guest state is invalid, let the exit handler
8868 start emulation until we arrive back to a valid state */
14168786 8869 if (vmx->emulation_required)
104f226b
AK
8870 return;
8871
a7653ecd
RK
8872 if (vmx->ple_window_dirty) {
8873 vmx->ple_window_dirty = false;
8874 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8875 }
8876
012f83cb
AG
8877 if (vmx->nested.sync_shadow_vmcs) {
8878 copy_vmcs12_to_shadow(vmx);
8879 vmx->nested.sync_shadow_vmcs = false;
8880 }
8881
104f226b
AK
8882 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8883 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8884 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8885 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8886
1e02ce4c 8887 cr4 = cr4_read_shadow();
d974baa3
AL
8888 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8889 vmcs_writel(HOST_CR4, cr4);
8890 vmx->host_state.vmcs_host_cr4 = cr4;
8891 }
8892
104f226b
AK
8893 /* When single-stepping over STI and MOV SS, we must clear the
8894 * corresponding interruptibility bits in the guest state. Otherwise
8895 * vmentry fails as it then expects bit 14 (BS) in pending debug
8896 * exceptions being set, but that's not correct for the guest debugging
8897 * case. */
8898 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8899 vmx_set_interrupt_shadow(vcpu, 0);
8900
1be0e61c
XG
8901 if (vmx->guest_pkru_valid)
8902 __write_pkru(vmx->guest_pkru);
8903
d7cd9796 8904 atomic_switch_perf_msrs(vmx);
2a7921b7 8905 debugctlmsr = get_debugctlmsr();
d7cd9796 8906
64672c95
YJ
8907 vmx_arm_hv_timer(vcpu);
8908
d462b819 8909 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8910 asm(
6aa8b732 8911 /* Store host registers */
b188c81f
AK
8912 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8913 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8914 "push %%" _ASM_CX " \n\t"
8915 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8916 "je 1f \n\t"
b188c81f 8917 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8918 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8919 "1: \n\t"
d3edefc0 8920 /* Reload cr2 if changed */
b188c81f
AK
8921 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8922 "mov %%cr2, %%" _ASM_DX " \n\t"
8923 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8924 "je 2f \n\t"
b188c81f 8925 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8926 "2: \n\t"
6aa8b732 8927 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8928 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8929 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8930 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8931 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8932 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8933 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8934 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8935 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8936#ifdef CONFIG_X86_64
e08aa78a
AK
8937 "mov %c[r8](%0), %%r8 \n\t"
8938 "mov %c[r9](%0), %%r9 \n\t"
8939 "mov %c[r10](%0), %%r10 \n\t"
8940 "mov %c[r11](%0), %%r11 \n\t"
8941 "mov %c[r12](%0), %%r12 \n\t"
8942 "mov %c[r13](%0), %%r13 \n\t"
8943 "mov %c[r14](%0), %%r14 \n\t"
8944 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8945#endif
b188c81f 8946 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8947
6aa8b732 8948 /* Enter guest mode */
83287ea4 8949 "jne 1f \n\t"
4ecac3fd 8950 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8951 "jmp 2f \n\t"
8952 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8953 "2: "
6aa8b732 8954 /* Save guest registers, load host registers, keep flags */
b188c81f 8955 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8956 "pop %0 \n\t"
b188c81f
AK
8957 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8958 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8959 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8960 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8961 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8962 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8963 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8964#ifdef CONFIG_X86_64
e08aa78a
AK
8965 "mov %%r8, %c[r8](%0) \n\t"
8966 "mov %%r9, %c[r9](%0) \n\t"
8967 "mov %%r10, %c[r10](%0) \n\t"
8968 "mov %%r11, %c[r11](%0) \n\t"
8969 "mov %%r12, %c[r12](%0) \n\t"
8970 "mov %%r13, %c[r13](%0) \n\t"
8971 "mov %%r14, %c[r14](%0) \n\t"
8972 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8973#endif
b188c81f
AK
8974 "mov %%cr2, %%" _ASM_AX " \n\t"
8975 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8976
b188c81f 8977 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8978 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8979 ".pushsection .rodata \n\t"
8980 ".global vmx_return \n\t"
8981 "vmx_return: " _ASM_PTR " 2b \n\t"
8982 ".popsection"
e08aa78a 8983 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8984 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8985 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8986 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8987 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8988 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8989 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8990 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8991 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8992 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8993 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8994#ifdef CONFIG_X86_64
ad312c7c
ZX
8995 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8996 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8997 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8998 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8999 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9000 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9001 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9002 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9003#endif
40712fae
AK
9004 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9005 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9006 : "cc", "memory"
9007#ifdef CONFIG_X86_64
b188c81f 9008 , "rax", "rbx", "rdi", "rsi"
c2036300 9009 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9010#else
9011 , "eax", "ebx", "edi", "esi"
c2036300
LV
9012#endif
9013 );
6aa8b732 9014
2a7921b7
GN
9015 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9016 if (debugctlmsr)
9017 update_debugctlmsr(debugctlmsr);
9018
aa67f609
AK
9019#ifndef CONFIG_X86_64
9020 /*
9021 * The sysexit path does not restore ds/es, so we must set them to
9022 * a reasonable value ourselves.
9023 *
9024 * We can't defer this to vmx_load_host_state() since that function
9025 * may be executed in interrupt context, which saves and restore segments
9026 * around it, nullifying its effect.
9027 */
9028 loadsegment(ds, __USER_DS);
9029 loadsegment(es, __USER_DS);
9030#endif
9031
6de4f3ad 9032 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9033 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9034 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9035 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9036 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9037 vcpu->arch.regs_dirty = 0;
9038
1155f76a
AK
9039 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9040
d462b819 9041 vmx->loaded_vmcs->launched = 1;
1b6269db 9042
51aa01d1 9043 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9044
1be0e61c
XG
9045 /*
9046 * eager fpu is enabled if PKEY is supported and CR4 is switched
9047 * back on host, so it is safe to read guest PKRU from current
9048 * XSAVE.
9049 */
9050 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9051 vmx->guest_pkru = __read_pkru();
9052 if (vmx->guest_pkru != vmx->host_pkru) {
9053 vmx->guest_pkru_valid = true;
9054 __write_pkru(vmx->host_pkru);
9055 } else
9056 vmx->guest_pkru_valid = false;
9057 }
9058
e0b890d3
GN
9059 /*
9060 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9061 * we did not inject a still-pending event to L1 now because of
9062 * nested_run_pending, we need to re-enable this bit.
9063 */
9064 if (vmx->nested.nested_run_pending)
9065 kvm_make_request(KVM_REQ_EVENT, vcpu);
9066
9067 vmx->nested.nested_run_pending = 0;
9068
51aa01d1
AK
9069 vmx_complete_atomic_exit(vmx);
9070 vmx_recover_nmi_blocking(vmx);
cf393f75 9071 vmx_complete_interrupts(vmx);
6aa8b732
AK
9072}
9073
4fa7734c
PB
9074static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9075{
9076 struct vcpu_vmx *vmx = to_vmx(vcpu);
9077 int cpu;
9078
9079 if (vmx->loaded_vmcs == &vmx->vmcs01)
9080 return;
9081
9082 cpu = get_cpu();
9083 vmx->loaded_vmcs = &vmx->vmcs01;
9084 vmx_vcpu_put(vcpu);
9085 vmx_vcpu_load(vcpu, cpu);
9086 vcpu->cpu = cpu;
9087 put_cpu();
9088}
9089
2f1fe811
JM
9090/*
9091 * Ensure that the current vmcs of the logical processor is the
9092 * vmcs01 of the vcpu before calling free_nested().
9093 */
9094static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9095{
9096 struct vcpu_vmx *vmx = to_vmx(vcpu);
9097 int r;
9098
9099 r = vcpu_load(vcpu);
9100 BUG_ON(r);
9101 vmx_load_vmcs01(vcpu);
9102 free_nested(vmx);
9103 vcpu_put(vcpu);
9104}
9105
6aa8b732
AK
9106static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9107{
fb3f0f51
RR
9108 struct vcpu_vmx *vmx = to_vmx(vcpu);
9109
843e4330 9110 if (enable_pml)
a3eaa864 9111 vmx_destroy_pml_buffer(vmx);
991e7a0e 9112 free_vpid(vmx->vpid);
4fa7734c 9113 leave_guest_mode(vcpu);
2f1fe811 9114 vmx_free_vcpu_nested(vcpu);
4fa7734c 9115 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9116 kfree(vmx->guest_msrs);
9117 kvm_vcpu_uninit(vcpu);
a4770347 9118 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9119}
9120
fb3f0f51 9121static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9122{
fb3f0f51 9123 int err;
c16f862d 9124 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9125 int cpu;
6aa8b732 9126
a2fa3e9f 9127 if (!vmx)
fb3f0f51
RR
9128 return ERR_PTR(-ENOMEM);
9129
991e7a0e 9130 vmx->vpid = allocate_vpid();
2384d2b3 9131
fb3f0f51
RR
9132 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9133 if (err)
9134 goto free_vcpu;
965b58a5 9135
4e59516a
PF
9136 err = -ENOMEM;
9137
9138 /*
9139 * If PML is turned on, failure on enabling PML just results in failure
9140 * of creating the vcpu, therefore we can simplify PML logic (by
9141 * avoiding dealing with cases, such as enabling PML partially on vcpus
9142 * for the guest, etc.
9143 */
9144 if (enable_pml) {
9145 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9146 if (!vmx->pml_pg)
9147 goto uninit_vcpu;
9148 }
9149
a2fa3e9f 9150 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9151 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9152 > PAGE_SIZE);
0123be42 9153
4e59516a
PF
9154 if (!vmx->guest_msrs)
9155 goto free_pml;
965b58a5 9156
d462b819
NHE
9157 vmx->loaded_vmcs = &vmx->vmcs01;
9158 vmx->loaded_vmcs->vmcs = alloc_vmcs();
9159 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9160 goto free_msrs;
d462b819
NHE
9161 if (!vmm_exclusive)
9162 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9163 loaded_vmcs_init(vmx->loaded_vmcs);
9164 if (!vmm_exclusive)
9165 kvm_cpu_vmxoff();
a2fa3e9f 9166
15ad7146
AK
9167 cpu = get_cpu();
9168 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9169 vmx->vcpu.cpu = cpu;
8b9cf98c 9170 err = vmx_vcpu_setup(vmx);
fb3f0f51 9171 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9172 put_cpu();
fb3f0f51
RR
9173 if (err)
9174 goto free_vmcs;
35754c98 9175 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9176 err = alloc_apic_access_page(kvm);
9177 if (err)
5e4a0b3c 9178 goto free_vmcs;
a63cb560 9179 }
fb3f0f51 9180
b927a3ce
SY
9181 if (enable_ept) {
9182 if (!kvm->arch.ept_identity_map_addr)
9183 kvm->arch.ept_identity_map_addr =
9184 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9185 err = init_rmode_identity_map(kvm);
9186 if (err)
93ea5388 9187 goto free_vmcs;
b927a3ce 9188 }
b7ebfb05 9189
5c614b35 9190 if (nested) {
b9c237bb 9191 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9192 vmx->nested.vpid02 = allocate_vpid();
9193 }
b9c237bb 9194
705699a1 9195 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
9196 vmx->nested.current_vmptr = -1ull;
9197 vmx->nested.current_vmcs12 = NULL;
9198
37e4c997
HZ
9199 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9200
fb3f0f51
RR
9201 return &vmx->vcpu;
9202
9203free_vmcs:
5c614b35 9204 free_vpid(vmx->nested.vpid02);
5f3fbc34 9205 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9206free_msrs:
fb3f0f51 9207 kfree(vmx->guest_msrs);
4e59516a
PF
9208free_pml:
9209 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9210uninit_vcpu:
9211 kvm_vcpu_uninit(&vmx->vcpu);
9212free_vcpu:
991e7a0e 9213 free_vpid(vmx->vpid);
a4770347 9214 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9215 return ERR_PTR(err);
6aa8b732
AK
9216}
9217
002c7f7c
YS
9218static void __init vmx_check_processor_compat(void *rtn)
9219{
9220 struct vmcs_config vmcs_conf;
9221
9222 *(int *)rtn = 0;
9223 if (setup_vmcs_config(&vmcs_conf) < 0)
9224 *(int *)rtn = -EIO;
9225 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9226 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9227 smp_processor_id());
9228 *(int *)rtn = -EIO;
9229 }
9230}
9231
67253af5
SY
9232static int get_ept_level(void)
9233{
9234 return VMX_EPT_DEFAULT_GAW + 1;
9235}
9236
4b12f0de 9237static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9238{
b18d5431
XG
9239 u8 cache;
9240 u64 ipat = 0;
4b12f0de 9241
522c68c4 9242 /* For VT-d and EPT combination
606decd6 9243 * 1. MMIO: always map as UC
522c68c4
SY
9244 * 2. EPT with VT-d:
9245 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9246 * result, try to trust guest.
522c68c4
SY
9247 * b. VT-d with snooping control feature: snooping control feature of
9248 * VT-d engine can guarantee the cache correctness. Just set it
9249 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9250 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9251 * consistent with host MTRR
9252 */
606decd6
PB
9253 if (is_mmio) {
9254 cache = MTRR_TYPE_UNCACHABLE;
9255 goto exit;
9256 }
9257
9258 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9259 ipat = VMX_EPT_IPAT_BIT;
9260 cache = MTRR_TYPE_WRBACK;
9261 goto exit;
9262 }
9263
9264 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9265 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9266 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9267 cache = MTRR_TYPE_WRBACK;
9268 else
9269 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9270 goto exit;
9271 }
9272
ff53604b 9273 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9274
9275exit:
9276 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9277}
9278
17cc3935 9279static int vmx_get_lpage_level(void)
344f414f 9280{
878403b7
SY
9281 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9282 return PT_DIRECTORY_LEVEL;
9283 else
9284 /* For shadow and EPT supported 1GB page */
9285 return PT_PDPE_LEVEL;
344f414f
JR
9286}
9287
feda805f
XG
9288static void vmcs_set_secondary_exec_control(u32 new_ctl)
9289{
9290 /*
9291 * These bits in the secondary execution controls field
9292 * are dynamic, the others are mostly based on the hypervisor
9293 * architecture and the guest's CPUID. Do not touch the
9294 * dynamic bits.
9295 */
9296 u32 mask =
9297 SECONDARY_EXEC_SHADOW_VMCS |
9298 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9299 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9300
9301 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9302
9303 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9304 (new_ctl & ~mask) | (cur_ctl & mask));
9305}
9306
0e851880
SY
9307static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9308{
4e47c7a6
SY
9309 struct kvm_cpuid_entry2 *best;
9310 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9311 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9312
4e47c7a6 9313 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9314 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9315 if (!rdtscp_enabled)
feda805f 9316 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9317
8b97265a 9318 if (nested) {
1cea0ce6 9319 if (rdtscp_enabled)
8b97265a
PB
9320 vmx->nested.nested_vmx_secondary_ctls_high |=
9321 SECONDARY_EXEC_RDTSCP;
9322 else
9323 vmx->nested.nested_vmx_secondary_ctls_high &=
9324 ~SECONDARY_EXEC_RDTSCP;
9325 }
4e47c7a6 9326 }
ad756a16 9327
ad756a16
MJ
9328 /* Exposing INVPCID only when PCID is exposed */
9329 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9330 if (vmx_invpcid_supported() &&
29541bb8
XG
9331 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9332 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9333 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9334
ad756a16 9335 if (best)
4f977045 9336 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9337 }
8b3e34e4 9338
45bdbcfd
HH
9339 if (cpu_has_secondary_exec_ctrls())
9340 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9341
37e4c997
HZ
9342 if (nested_vmx_allowed(vcpu))
9343 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9344 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9345 else
9346 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9347 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
0e851880
SY
9348}
9349
d4330ef2
JR
9350static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9351{
7b8050f5
NHE
9352 if (func == 1 && nested)
9353 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9354}
9355
25d92081
YZ
9356static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9357 struct x86_exception *fault)
9358{
533558bc
JK
9359 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9360 u32 exit_reason;
25d92081
YZ
9361
9362 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9363 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9364 else
533558bc
JK
9365 exit_reason = EXIT_REASON_EPT_VIOLATION;
9366 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9367 vmcs12->guest_physical_address = fault->address;
9368}
9369
155a97a3
NHE
9370/* Callbacks for nested_ept_init_mmu_context: */
9371
9372static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9373{
9374 /* return the page table to be shadowed - in our case, EPT12 */
9375 return get_vmcs12(vcpu)->ept_pointer;
9376}
9377
8a3c1a33 9378static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9379{
ad896af0
PB
9380 WARN_ON(mmu_is_nested(vcpu));
9381 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
9382 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9383 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
9384 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9385 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9386 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9387
9388 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
9389}
9390
9391static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9392{
9393 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9394}
9395
19d5f10b
EK
9396static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9397 u16 error_code)
9398{
9399 bool inequality, bit;
9400
9401 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9402 inequality =
9403 (error_code & vmcs12->page_fault_error_code_mask) !=
9404 vmcs12->page_fault_error_code_match;
9405 return inequality ^ bit;
9406}
9407
feaf0c7d
GN
9408static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9409 struct x86_exception *fault)
9410{
9411 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9412
9413 WARN_ON(!is_guest_mode(vcpu));
9414
19d5f10b 9415 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9416 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9417 vmcs_read32(VM_EXIT_INTR_INFO),
9418 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9419 else
9420 kvm_inject_page_fault(vcpu, fault);
9421}
9422
a2bcba50
WL
9423static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9424 struct vmcs12 *vmcs12)
9425{
9426 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9427 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9428
9429 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9430 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9431 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9432 return false;
9433
9434 /*
9435 * Translate L1 physical address to host physical
9436 * address for vmcs02. Keep the page pinned, so this
9437 * physical address remains valid. We keep a reference
9438 * to it so we can release it later.
9439 */
9440 if (vmx->nested.apic_access_page) /* shouldn't happen */
9441 nested_release_page(vmx->nested.apic_access_page);
9442 vmx->nested.apic_access_page =
9443 nested_get_page(vcpu, vmcs12->apic_access_addr);
9444 }
a7c0b07d
WL
9445
9446 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9447 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9448 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9449 return false;
9450
9451 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9452 nested_release_page(vmx->nested.virtual_apic_page);
9453 vmx->nested.virtual_apic_page =
9454 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9455
9456 /*
9457 * Failing the vm entry is _not_ what the processor does
9458 * but it's basically the only possibility we have.
9459 * We could still enter the guest if CR8 load exits are
9460 * enabled, CR8 store exits are enabled, and virtualize APIC
9461 * access is disabled; in this case the processor would never
9462 * use the TPR shadow and we could simply clear the bit from
9463 * the execution control. But such a configuration is useless,
9464 * so let's keep the code simple.
9465 */
9466 if (!vmx->nested.virtual_apic_page)
9467 return false;
9468 }
9469
705699a1 9470 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9471 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9472 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9473 return false;
9474
9475 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9476 kunmap(vmx->nested.pi_desc_page);
9477 nested_release_page(vmx->nested.pi_desc_page);
9478 }
9479 vmx->nested.pi_desc_page =
9480 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9481 if (!vmx->nested.pi_desc_page)
9482 return false;
9483
9484 vmx->nested.pi_desc =
9485 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9486 if (!vmx->nested.pi_desc) {
9487 nested_release_page_clean(vmx->nested.pi_desc_page);
9488 return false;
9489 }
9490 vmx->nested.pi_desc =
9491 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9492 (unsigned long)(vmcs12->posted_intr_desc_addr &
9493 (PAGE_SIZE - 1)));
9494 }
9495
a2bcba50
WL
9496 return true;
9497}
9498
f4124500
JK
9499static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9500{
9501 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9502 struct vcpu_vmx *vmx = to_vmx(vcpu);
9503
9504 if (vcpu->arch.virtual_tsc_khz == 0)
9505 return;
9506
9507 /* Make sure short timeouts reliably trigger an immediate vmexit.
9508 * hrtimer_start does not guarantee this. */
9509 if (preemption_timeout <= 1) {
9510 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9511 return;
9512 }
9513
9514 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9515 preemption_timeout *= 1000000;
9516 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9517 hrtimer_start(&vmx->nested.preemption_timer,
9518 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9519}
9520
3af18d9c
WV
9521static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9522 struct vmcs12 *vmcs12)
9523{
9524 int maxphyaddr;
9525 u64 addr;
9526
9527 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9528 return 0;
9529
9530 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9531 WARN_ON(1);
9532 return -EINVAL;
9533 }
9534 maxphyaddr = cpuid_maxphyaddr(vcpu);
9535
9536 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9537 ((addr + PAGE_SIZE) >> maxphyaddr))
9538 return -EINVAL;
9539
9540 return 0;
9541}
9542
9543/*
9544 * Merge L0's and L1's MSR bitmap, return false to indicate that
9545 * we do not use the hardware.
9546 */
9547static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9548 struct vmcs12 *vmcs12)
9549{
82f0dd4b 9550 int msr;
f2b93280 9551 struct page *page;
d048c098
RK
9552 unsigned long *msr_bitmap_l1;
9553 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9554
d048c098 9555 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9556 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9557 return false;
9558
9559 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9560 if (!page) {
9561 WARN_ON(1);
9562 return false;
9563 }
d048c098
RK
9564 msr_bitmap_l1 = (unsigned long *)kmap(page);
9565 if (!msr_bitmap_l1) {
f2b93280
WV
9566 nested_release_page_clean(page);
9567 WARN_ON(1);
9568 return false;
9569 }
9570
d048c098
RK
9571 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9572
f2b93280 9573 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9574 if (nested_cpu_has_apic_reg_virt(vmcs12))
9575 for (msr = 0x800; msr <= 0x8ff; msr++)
9576 nested_vmx_disable_intercept_for_msr(
d048c098 9577 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9578 msr, MSR_TYPE_R);
d048c098
RK
9579
9580 nested_vmx_disable_intercept_for_msr(
9581 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9582 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9583 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9584
608406e2 9585 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9586 nested_vmx_disable_intercept_for_msr(
d048c098 9587 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9588 APIC_BASE_MSR + (APIC_EOI >> 4),
9589 MSR_TYPE_W);
9590 nested_vmx_disable_intercept_for_msr(
d048c098 9591 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9592 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9593 MSR_TYPE_W);
9594 }
82f0dd4b 9595 }
f2b93280
WV
9596 kunmap(page);
9597 nested_release_page_clean(page);
9598
9599 return true;
9600}
9601
9602static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9603 struct vmcs12 *vmcs12)
9604{
82f0dd4b 9605 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9606 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9607 !nested_cpu_has_vid(vmcs12) &&
9608 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9609 return 0;
9610
9611 /*
9612 * If virtualize x2apic mode is enabled,
9613 * virtualize apic access must be disabled.
9614 */
82f0dd4b
WV
9615 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9616 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9617 return -EINVAL;
9618
608406e2
WV
9619 /*
9620 * If virtual interrupt delivery is enabled,
9621 * we must exit on external interrupts.
9622 */
9623 if (nested_cpu_has_vid(vmcs12) &&
9624 !nested_exit_on_intr(vcpu))
9625 return -EINVAL;
9626
705699a1
WV
9627 /*
9628 * bits 15:8 should be zero in posted_intr_nv,
9629 * the descriptor address has been already checked
9630 * in nested_get_vmcs12_pages.
9631 */
9632 if (nested_cpu_has_posted_intr(vmcs12) &&
9633 (!nested_cpu_has_vid(vmcs12) ||
9634 !nested_exit_intr_ack_set(vcpu) ||
9635 vmcs12->posted_intr_nv & 0xff00))
9636 return -EINVAL;
9637
f2b93280
WV
9638 /* tpr shadow is needed by all apicv features. */
9639 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9640 return -EINVAL;
9641
9642 return 0;
3af18d9c
WV
9643}
9644
e9ac033e
EK
9645static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9646 unsigned long count_field,
92d71bc6 9647 unsigned long addr_field)
ff651cb6 9648{
92d71bc6 9649 int maxphyaddr;
e9ac033e
EK
9650 u64 count, addr;
9651
9652 if (vmcs12_read_any(vcpu, count_field, &count) ||
9653 vmcs12_read_any(vcpu, addr_field, &addr)) {
9654 WARN_ON(1);
9655 return -EINVAL;
9656 }
9657 if (count == 0)
9658 return 0;
92d71bc6 9659 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9660 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9661 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 9662 pr_debug_ratelimited(
e9ac033e
EK
9663 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9664 addr_field, maxphyaddr, count, addr);
9665 return -EINVAL;
9666 }
9667 return 0;
9668}
9669
9670static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9671 struct vmcs12 *vmcs12)
9672{
e9ac033e
EK
9673 if (vmcs12->vm_exit_msr_load_count == 0 &&
9674 vmcs12->vm_exit_msr_store_count == 0 &&
9675 vmcs12->vm_entry_msr_load_count == 0)
9676 return 0; /* Fast path */
e9ac033e 9677 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9678 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9679 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9680 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9681 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9682 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9683 return -EINVAL;
9684 return 0;
9685}
9686
9687static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9688 struct vmx_msr_entry *e)
9689{
9690 /* x2APIC MSR accesses are not allowed */
8a9781f7 9691 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9692 return -EINVAL;
9693 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9694 e->index == MSR_IA32_UCODE_REV)
9695 return -EINVAL;
9696 if (e->reserved != 0)
ff651cb6
WV
9697 return -EINVAL;
9698 return 0;
9699}
9700
e9ac033e
EK
9701static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9702 struct vmx_msr_entry *e)
ff651cb6
WV
9703{
9704 if (e->index == MSR_FS_BASE ||
9705 e->index == MSR_GS_BASE ||
e9ac033e
EK
9706 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9707 nested_vmx_msr_check_common(vcpu, e))
9708 return -EINVAL;
9709 return 0;
9710}
9711
9712static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9713 struct vmx_msr_entry *e)
9714{
9715 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9716 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9717 return -EINVAL;
9718 return 0;
9719}
9720
9721/*
9722 * Load guest's/host's msr at nested entry/exit.
9723 * return 0 for success, entry index for failure.
9724 */
9725static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9726{
9727 u32 i;
9728 struct vmx_msr_entry e;
9729 struct msr_data msr;
9730
9731 msr.host_initiated = false;
9732 for (i = 0; i < count; i++) {
54bf36aa
PB
9733 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9734 &e, sizeof(e))) {
bbe41b95 9735 pr_debug_ratelimited(
e9ac033e
EK
9736 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9737 __func__, i, gpa + i * sizeof(e));
ff651cb6 9738 goto fail;
e9ac033e
EK
9739 }
9740 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 9741 pr_debug_ratelimited(
e9ac033e
EK
9742 "%s check failed (%u, 0x%x, 0x%x)\n",
9743 __func__, i, e.index, e.reserved);
9744 goto fail;
9745 }
ff651cb6
WV
9746 msr.index = e.index;
9747 msr.data = e.value;
e9ac033e 9748 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 9749 pr_debug_ratelimited(
e9ac033e
EK
9750 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9751 __func__, i, e.index, e.value);
ff651cb6 9752 goto fail;
e9ac033e 9753 }
ff651cb6
WV
9754 }
9755 return 0;
9756fail:
9757 return i + 1;
9758}
9759
9760static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9761{
9762 u32 i;
9763 struct vmx_msr_entry e;
9764
9765 for (i = 0; i < count; i++) {
609e36d3 9766 struct msr_data msr_info;
54bf36aa
PB
9767 if (kvm_vcpu_read_guest(vcpu,
9768 gpa + i * sizeof(e),
9769 &e, 2 * sizeof(u32))) {
bbe41b95 9770 pr_debug_ratelimited(
e9ac033e
EK
9771 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9772 __func__, i, gpa + i * sizeof(e));
ff651cb6 9773 return -EINVAL;
e9ac033e
EK
9774 }
9775 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 9776 pr_debug_ratelimited(
e9ac033e
EK
9777 "%s check failed (%u, 0x%x, 0x%x)\n",
9778 __func__, i, e.index, e.reserved);
ff651cb6 9779 return -EINVAL;
e9ac033e 9780 }
609e36d3
PB
9781 msr_info.host_initiated = false;
9782 msr_info.index = e.index;
9783 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 9784 pr_debug_ratelimited(
e9ac033e
EK
9785 "%s cannot read MSR (%u, 0x%x)\n",
9786 __func__, i, e.index);
9787 return -EINVAL;
9788 }
54bf36aa
PB
9789 if (kvm_vcpu_write_guest(vcpu,
9790 gpa + i * sizeof(e) +
9791 offsetof(struct vmx_msr_entry, value),
9792 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 9793 pr_debug_ratelimited(
e9ac033e 9794 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9795 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9796 return -EINVAL;
9797 }
ff651cb6
WV
9798 }
9799 return 0;
9800}
9801
fe3ef05c
NHE
9802/*
9803 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9804 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9805 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9806 * guest in a way that will both be appropriate to L1's requests, and our
9807 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9808 * function also has additional necessary side-effects, like setting various
9809 * vcpu->arch fields.
9810 */
9811static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9812{
9813 struct vcpu_vmx *vmx = to_vmx(vcpu);
9814 u32 exec_control;
9815
9816 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9817 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9818 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9819 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9820 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9821 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9822 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9823 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9824 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9825 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9826 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9827 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9828 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9829 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9830 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9831 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9832 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9833 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9834 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9835 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9836 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9837 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9838 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9839 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9840 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9841 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9842 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9843 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9844 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9845 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9846 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9847 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9848 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9849 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9850 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9851 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9852
2996fca0
JK
9853 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9854 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9855 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9856 } else {
9857 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9858 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9859 }
fe3ef05c
NHE
9860 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9861 vmcs12->vm_entry_intr_info_field);
9862 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9863 vmcs12->vm_entry_exception_error_code);
9864 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9865 vmcs12->vm_entry_instruction_len);
9866 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9867 vmcs12->guest_interruptibility_info);
fe3ef05c 9868 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9869 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9870 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9871 vmcs12->guest_pending_dbg_exceptions);
9872 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9873 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9874
81dc01f7
WL
9875 if (nested_cpu_has_xsaves(vmcs12))
9876 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9877 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9878
f4124500 9879 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
9880
9881 /* Preemption timer setting is only taken from vmcs01. */
705699a1 9882 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
9883 exec_control |= vmcs_config.pin_based_exec_ctrl;
9884 if (vmx->hv_deadline_tsc == -1)
9885 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 9886
9314006d 9887 /* Posted interrupts setting is only taken from vmcs12. */
705699a1
WV
9888 if (nested_cpu_has_posted_intr(vmcs12)) {
9889 /*
9890 * Note that we use L0's vector here and in
9891 * vmx_deliver_nested_posted_interrupt.
9892 */
9893 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9894 vmx->nested.pi_pending = false;
0bcf261c 9895 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
705699a1
WV
9896 vmcs_write64(POSTED_INTR_DESC_ADDR,
9897 page_to_phys(vmx->nested.pi_desc_page) +
9898 (unsigned long)(vmcs12->posted_intr_desc_addr &
9899 (PAGE_SIZE - 1)));
9900 } else
9901 exec_control &= ~PIN_BASED_POSTED_INTR;
9902
f4124500 9903 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9904
f4124500
JK
9905 vmx->nested.preemption_timer_expired = false;
9906 if (nested_cpu_has_preemption_timer(vmcs12))
9907 vmx_start_preemption_timer(vcpu);
0238ea91 9908
fe3ef05c
NHE
9909 /*
9910 * Whether page-faults are trapped is determined by a combination of
9911 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9912 * If enable_ept, L0 doesn't care about page faults and we should
9913 * set all of these to L1's desires. However, if !enable_ept, L0 does
9914 * care about (at least some) page faults, and because it is not easy
9915 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9916 * to exit on each and every L2 page fault. This is done by setting
9917 * MASK=MATCH=0 and (see below) EB.PF=1.
9918 * Note that below we don't need special code to set EB.PF beyond the
9919 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9920 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9921 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9922 *
9923 * A problem with this approach (when !enable_ept) is that L1 may be
9924 * injected with more page faults than it asked for. This could have
9925 * caused problems, but in practice existing hypervisors don't care.
9926 * To fix this, we will need to emulate the PFEC checking (on the L1
9927 * page tables), using walk_addr(), when injecting PFs to L1.
9928 */
9929 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9930 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9931 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9932 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9933
9934 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9935 exec_control = vmx_secondary_exec_control(vmx);
e2821620 9936
fe3ef05c 9937 /* Take the following fields only from vmcs12 */
696dfd95 9938 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9939 SECONDARY_EXEC_RDTSCP |
696dfd95 9940 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
dfa169bb 9941 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
9942 if (nested_cpu_has(vmcs12,
9943 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9944 exec_control |= vmcs12->secondary_vm_exec_control;
9945
9946 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9947 /*
9948 * If translation failed, no matter: This feature asks
9949 * to exit when accessing the given address, and if it
9950 * can never be accessed, this feature won't do
9951 * anything anyway.
9952 */
9953 if (!vmx->nested.apic_access_page)
9954 exec_control &=
9955 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9956 else
9957 vmcs_write64(APIC_ACCESS_ADDR,
9958 page_to_phys(vmx->nested.apic_access_page));
f2b93280 9959 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 9960 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
9961 exec_control |=
9962 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9963 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9964 }
9965
608406e2
WV
9966 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9967 vmcs_write64(EOI_EXIT_BITMAP0,
9968 vmcs12->eoi_exit_bitmap0);
9969 vmcs_write64(EOI_EXIT_BITMAP1,
9970 vmcs12->eoi_exit_bitmap1);
9971 vmcs_write64(EOI_EXIT_BITMAP2,
9972 vmcs12->eoi_exit_bitmap2);
9973 vmcs_write64(EOI_EXIT_BITMAP3,
9974 vmcs12->eoi_exit_bitmap3);
9975 vmcs_write16(GUEST_INTR_STATUS,
9976 vmcs12->guest_intr_status);
9977 }
9978
fe3ef05c
NHE
9979 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9980 }
9981
9982
9983 /*
9984 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9985 * Some constant fields are set here by vmx_set_constant_host_state().
9986 * Other fields are different per CPU, and will be set later when
9987 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9988 */
a547c6db 9989 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9990
9991 /*
9992 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9993 * entry, but only if the current (host) sp changed from the value
9994 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9995 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9996 * here we just force the write to happen on entry.
9997 */
9998 vmx->host_rsp = 0;
9999
10000 exec_control = vmx_exec_control(vmx); /* L0's desires */
10001 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10002 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10003 exec_control &= ~CPU_BASED_TPR_SHADOW;
10004 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
10005
10006 if (exec_control & CPU_BASED_TPR_SHADOW) {
10007 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
10008 page_to_phys(vmx->nested.virtual_apic_page));
10009 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10010 }
10011
3af18d9c 10012 if (cpu_has_vmx_msr_bitmap() &&
d048c098
RK
10013 exec_control & CPU_BASED_USE_MSR_BITMAPS &&
10014 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10015 ; /* MSR_BITMAP will be set by following vmx_set_efer. */
10016 else
3af18d9c
WV
10017 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
10018
fe3ef05c 10019 /*
3af18d9c 10020 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10021 * Rather, exit every time.
10022 */
fe3ef05c
NHE
10023 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10024 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10025
10026 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10027
10028 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10029 * bitwise-or of what L1 wants to trap for L2, and what we want to
10030 * trap. Note that CR0.TS also needs updating - we do this later.
10031 */
10032 update_exception_bitmap(vcpu);
10033 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10034 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10035
8049d651
NHE
10036 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10037 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10038 * bits are further modified by vmx_set_efer() below.
10039 */
f4124500 10040 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10041
10042 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10043 * emulated by vmx_set_efer(), below.
10044 */
2961e876 10045 vm_entry_controls_init(vmx,
8049d651
NHE
10046 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10047 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10048 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10049
44811c02 10050 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10051 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
10052 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10053 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
10054 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10055
10056
10057 set_cr4_guest_host_mask(vmx);
10058
36be0b9d
PB
10059 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10060 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10061
27fc51b2
NHE
10062 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10063 vmcs_write64(TSC_OFFSET,
10064 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
10065 else
10066 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
c95ba92a
PF
10067 if (kvm_has_tsc_control)
10068 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10069
10070 if (enable_vpid) {
10071 /*
5c614b35
WL
10072 * There is no direct mapping between vpid02 and vpid12, the
10073 * vpid02 is per-vCPU for L0 and reused while the value of
10074 * vpid12 is changed w/ one invvpid during nested vmentry.
10075 * The vpid12 is allocated by L1 for L2, so it will not
10076 * influence global bitmap(for vpid01 and vpid02 allocation)
10077 * even if spawn a lot of nested vCPUs.
fe3ef05c 10078 */
5c614b35
WL
10079 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10080 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10081 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10082 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10083 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10084 }
10085 } else {
10086 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10087 vmx_flush_tlb(vcpu);
10088 }
10089
fe3ef05c
NHE
10090 }
10091
155a97a3
NHE
10092 if (nested_cpu_has_ept(vmcs12)) {
10093 kvm_mmu_unload(vcpu);
10094 nested_ept_init_mmu_context(vcpu);
10095 }
10096
fe3ef05c
NHE
10097 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
10098 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 10099 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
10100 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10101 else
10102 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10103 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10104 vmx_set_efer(vcpu, vcpu->arch.efer);
10105
10106 /*
10107 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10108 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10109 * The CR0_READ_SHADOW is what L2 should have expected to read given
10110 * the specifications by L1; It's not enough to take
10111 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10112 * have more bits than L1 expected.
10113 */
10114 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10115 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10116
10117 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10118 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10119
10120 /* shadow page tables on either EPT or shadow page tables */
10121 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
10122 kvm_mmu_reset_context(vcpu);
10123
feaf0c7d
GN
10124 if (!enable_ept)
10125 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10126
3633cfc3
NHE
10127 /*
10128 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10129 */
10130 if (enable_ept) {
10131 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10132 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10133 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10134 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10135 }
10136
fe3ef05c
NHE
10137 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10138 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10139}
10140
cd232ad0
NHE
10141/*
10142 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10143 * for running an L2 nested guest.
10144 */
10145static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10146{
10147 struct vmcs12 *vmcs12;
10148 struct vcpu_vmx *vmx = to_vmx(vcpu);
10149 int cpu;
10150 struct loaded_vmcs *vmcs02;
384bb783 10151 bool ia32e;
ff651cb6 10152 u32 msr_entry_idx;
cd232ad0
NHE
10153
10154 if (!nested_vmx_check_permission(vcpu) ||
10155 !nested_vmx_check_vmcs12(vcpu))
10156 return 1;
10157
10158 skip_emulated_instruction(vcpu);
10159 vmcs12 = get_vmcs12(vcpu);
10160
012f83cb
AG
10161 if (enable_shadow_vmcs)
10162 copy_shadow_to_vmcs12(vmx);
10163
7c177938
NHE
10164 /*
10165 * The nested entry process starts with enforcing various prerequisites
10166 * on vmcs12 as required by the Intel SDM, and act appropriately when
10167 * they fail: As the SDM explains, some conditions should cause the
10168 * instruction to fail, while others will cause the instruction to seem
10169 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10170 * To speed up the normal (success) code path, we should avoid checking
10171 * for misconfigurations which will anyway be caught by the processor
10172 * when using the merged vmcs02.
10173 */
10174 if (vmcs12->launch_state == launch) {
10175 nested_vmx_failValid(vcpu,
10176 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10177 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10178 return 1;
10179 }
10180
6dfacadd
JK
10181 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10182 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
10183 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10184 return 1;
10185 }
10186
3af18d9c 10187 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
10188 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10189 return 1;
10190 }
10191
3af18d9c 10192 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
10193 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10194 return 1;
10195 }
10196
f2b93280
WV
10197 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10198 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10199 return 1;
10200 }
10201
e9ac033e
EK
10202 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10203 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10204 return 1;
10205 }
10206
7c177938 10207 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
10208 vmx->nested.nested_vmx_true_procbased_ctls_low,
10209 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 10210 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
10211 vmx->nested.nested_vmx_secondary_ctls_low,
10212 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 10213 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10214 vmx->nested.nested_vmx_pinbased_ctls_low,
10215 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10216 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
10217 vmx->nested.nested_vmx_true_exit_ctls_low,
10218 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10219 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
10220 vmx->nested.nested_vmx_true_entry_ctls_low,
10221 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
10222 {
10223 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10224 return 1;
10225 }
10226
10227 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10228 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10229 nested_vmx_failValid(vcpu,
10230 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10231 return 1;
10232 }
10233
b9c237bb 10234 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
10235 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10236 nested_vmx_entry_failure(vcpu, vmcs12,
10237 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10238 return 1;
10239 }
10240 if (vmcs12->vmcs_link_pointer != -1ull) {
10241 nested_vmx_entry_failure(vcpu, vmcs12,
10242 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10243 return 1;
10244 }
10245
384bb783 10246 /*
cb0c8cda 10247 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10248 * are performed on the field for the IA32_EFER MSR:
10249 * - Bits reserved in the IA32_EFER MSR must be 0.
10250 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10251 * the IA-32e mode guest VM-exit control. It must also be identical
10252 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10253 * CR0.PG) is 1.
10254 */
10255 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10256 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10257 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10258 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10259 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10260 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10261 nested_vmx_entry_failure(vcpu, vmcs12,
10262 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10263 return 1;
10264 }
10265 }
10266
10267 /*
10268 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10269 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10270 * the values of the LMA and LME bits in the field must each be that of
10271 * the host address-space size VM-exit control.
10272 */
10273 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10274 ia32e = (vmcs12->vm_exit_controls &
10275 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10276 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10277 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10278 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10279 nested_vmx_entry_failure(vcpu, vmcs12,
10280 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10281 return 1;
10282 }
10283 }
10284
7c177938
NHE
10285 /*
10286 * We're finally done with prerequisite checking, and can start with
10287 * the nested entry.
10288 */
10289
cd232ad0
NHE
10290 vmcs02 = nested_get_current_vmcs02(vmx);
10291 if (!vmcs02)
10292 return -ENOMEM;
10293
10294 enter_guest_mode(vcpu);
10295
10296 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10297
2996fca0
JK
10298 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10299 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10300
cd232ad0
NHE
10301 cpu = get_cpu();
10302 vmx->loaded_vmcs = vmcs02;
10303 vmx_vcpu_put(vcpu);
10304 vmx_vcpu_load(vcpu, cpu);
10305 vcpu->cpu = cpu;
10306 put_cpu();
10307
36c3cc42
JK
10308 vmx_segment_cache_clear(vmx);
10309
cd232ad0
NHE
10310 prepare_vmcs02(vcpu, vmcs12);
10311
ff651cb6
WV
10312 msr_entry_idx = nested_vmx_load_msr(vcpu,
10313 vmcs12->vm_entry_msr_load_addr,
10314 vmcs12->vm_entry_msr_load_count);
10315 if (msr_entry_idx) {
10316 leave_guest_mode(vcpu);
10317 vmx_load_vmcs01(vcpu);
10318 nested_vmx_entry_failure(vcpu, vmcs12,
10319 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10320 return 1;
10321 }
10322
10323 vmcs12->launch_state = 1;
10324
6dfacadd 10325 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10326 return kvm_vcpu_halt(vcpu);
6dfacadd 10327
7af40ad3
JK
10328 vmx->nested.nested_run_pending = 1;
10329
cd232ad0
NHE
10330 /*
10331 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10332 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10333 * returned as far as L1 is concerned. It will only return (and set
10334 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10335 */
10336 return 1;
10337}
10338
4704d0be
NHE
10339/*
10340 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10341 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10342 * This function returns the new value we should put in vmcs12.guest_cr0.
10343 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10344 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10345 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10346 * didn't trap the bit, because if L1 did, so would L0).
10347 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10348 * been modified by L2, and L1 knows it. So just leave the old value of
10349 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10350 * isn't relevant, because if L0 traps this bit it can set it to anything.
10351 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10352 * changed these bits, and therefore they need to be updated, but L0
10353 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10354 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10355 */
10356static inline unsigned long
10357vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10358{
10359 return
10360 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10361 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10362 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10363 vcpu->arch.cr0_guest_owned_bits));
10364}
10365
10366static inline unsigned long
10367vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10368{
10369 return
10370 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10371 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10372 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10373 vcpu->arch.cr4_guest_owned_bits));
10374}
10375
5f3d5799
JK
10376static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10377 struct vmcs12 *vmcs12)
10378{
10379 u32 idt_vectoring;
10380 unsigned int nr;
10381
851eb667 10382 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10383 nr = vcpu->arch.exception.nr;
10384 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10385
10386 if (kvm_exception_is_soft(nr)) {
10387 vmcs12->vm_exit_instruction_len =
10388 vcpu->arch.event_exit_inst_len;
10389 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10390 } else
10391 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10392
10393 if (vcpu->arch.exception.has_error_code) {
10394 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10395 vmcs12->idt_vectoring_error_code =
10396 vcpu->arch.exception.error_code;
10397 }
10398
10399 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10400 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10401 vmcs12->idt_vectoring_info_field =
10402 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10403 } else if (vcpu->arch.interrupt.pending) {
10404 nr = vcpu->arch.interrupt.nr;
10405 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10406
10407 if (vcpu->arch.interrupt.soft) {
10408 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10409 vmcs12->vm_entry_instruction_len =
10410 vcpu->arch.event_exit_inst_len;
10411 } else
10412 idt_vectoring |= INTR_TYPE_EXT_INTR;
10413
10414 vmcs12->idt_vectoring_info_field = idt_vectoring;
10415 }
10416}
10417
b6b8a145
JK
10418static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10419{
10420 struct vcpu_vmx *vmx = to_vmx(vcpu);
10421
f4124500
JK
10422 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10423 vmx->nested.preemption_timer_expired) {
10424 if (vmx->nested.nested_run_pending)
10425 return -EBUSY;
10426 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10427 return 0;
10428 }
10429
b6b8a145 10430 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10431 if (vmx->nested.nested_run_pending ||
10432 vcpu->arch.interrupt.pending)
b6b8a145
JK
10433 return -EBUSY;
10434 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10435 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10436 INTR_INFO_VALID_MASK, 0);
10437 /*
10438 * The NMI-triggered VM exit counts as injection:
10439 * clear this one and block further NMIs.
10440 */
10441 vcpu->arch.nmi_pending = 0;
10442 vmx_set_nmi_mask(vcpu, true);
10443 return 0;
10444 }
10445
10446 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10447 nested_exit_on_intr(vcpu)) {
10448 if (vmx->nested.nested_run_pending)
10449 return -EBUSY;
10450 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10451 return 0;
b6b8a145
JK
10452 }
10453
705699a1 10454 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10455}
10456
f4124500
JK
10457static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10458{
10459 ktime_t remaining =
10460 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10461 u64 value;
10462
10463 if (ktime_to_ns(remaining) <= 0)
10464 return 0;
10465
10466 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10467 do_div(value, 1000000);
10468 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10469}
10470
4704d0be
NHE
10471/*
10472 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10473 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10474 * and this function updates it to reflect the changes to the guest state while
10475 * L2 was running (and perhaps made some exits which were handled directly by L0
10476 * without going back to L1), and to reflect the exit reason.
10477 * Note that we do not have to copy here all VMCS fields, just those that
10478 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10479 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10480 * which already writes to vmcs12 directly.
10481 */
533558bc
JK
10482static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10483 u32 exit_reason, u32 exit_intr_info,
10484 unsigned long exit_qualification)
4704d0be
NHE
10485{
10486 /* update guest state fields: */
10487 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10488 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10489
4704d0be
NHE
10490 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10491 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10492 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10493
10494 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10495 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10496 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10497 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10498 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10499 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10500 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10501 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10502 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10503 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10504 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10505 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10506 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10507 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10508 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10509 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10510 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10511 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10512 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10513 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10514 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10515 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10516 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10517 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10518 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10519 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10520 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10521 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10522 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10523 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10524 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10525 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10526 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10527 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10528 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10529 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10530
4704d0be
NHE
10531 vmcs12->guest_interruptibility_info =
10532 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10533 vmcs12->guest_pending_dbg_exceptions =
10534 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10535 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10536 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10537 else
10538 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10539
f4124500
JK
10540 if (nested_cpu_has_preemption_timer(vmcs12)) {
10541 if (vmcs12->vm_exit_controls &
10542 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10543 vmcs12->vmx_preemption_timer_value =
10544 vmx_get_preemption_timer_value(vcpu);
10545 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10546 }
7854cbca 10547
3633cfc3
NHE
10548 /*
10549 * In some cases (usually, nested EPT), L2 is allowed to change its
10550 * own CR3 without exiting. If it has changed it, we must keep it.
10551 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10552 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10553 *
10554 * Additionally, restore L2's PDPTR to vmcs12.
10555 */
10556 if (enable_ept) {
f3531054 10557 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10558 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10559 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10560 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10561 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10562 }
10563
119a9c01
JD
10564 if (nested_cpu_has_ept(vmcs12))
10565 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10566
608406e2
WV
10567 if (nested_cpu_has_vid(vmcs12))
10568 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10569
c18911a2
JK
10570 vmcs12->vm_entry_controls =
10571 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10572 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10573
2996fca0
JK
10574 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10575 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10576 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10577 }
10578
4704d0be
NHE
10579 /* TODO: These cannot have changed unless we have MSR bitmaps and
10580 * the relevant bit asks not to trap the change */
b8c07d55 10581 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10582 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10583 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10584 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10585 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10586 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10587 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10588 if (kvm_mpx_supported())
36be0b9d 10589 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10590 if (nested_cpu_has_xsaves(vmcs12))
10591 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10592
10593 /* update exit information fields: */
10594
533558bc
JK
10595 vmcs12->vm_exit_reason = exit_reason;
10596 vmcs12->exit_qualification = exit_qualification;
4704d0be 10597
533558bc 10598 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10599 if ((vmcs12->vm_exit_intr_info &
10600 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10601 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10602 vmcs12->vm_exit_intr_error_code =
10603 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10604 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10605 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10606 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10607
5f3d5799
JK
10608 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10609 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10610 * instead of reading the real value. */
4704d0be 10611 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10612
10613 /*
10614 * Transfer the event that L0 or L1 may wanted to inject into
10615 * L2 to IDT_VECTORING_INFO_FIELD.
10616 */
10617 vmcs12_save_pending_event(vcpu, vmcs12);
10618 }
10619
10620 /*
10621 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10622 * preserved above and would only end up incorrectly in L1.
10623 */
10624 vcpu->arch.nmi_injected = false;
10625 kvm_clear_exception_queue(vcpu);
10626 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10627}
10628
10629/*
10630 * A part of what we need to when the nested L2 guest exits and we want to
10631 * run its L1 parent, is to reset L1's guest state to the host state specified
10632 * in vmcs12.
10633 * This function is to be called not only on normal nested exit, but also on
10634 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10635 * Failures During or After Loading Guest State").
10636 * This function should be called when the active VMCS is L1's (vmcs01).
10637 */
733568f9
JK
10638static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10639 struct vmcs12 *vmcs12)
4704d0be 10640{
21feb4eb
ACL
10641 struct kvm_segment seg;
10642
4704d0be
NHE
10643 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10644 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10645 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10646 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10647 else
10648 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10649 vmx_set_efer(vcpu, vcpu->arch.efer);
10650
10651 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10652 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10653 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10654 /*
10655 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10656 * actually changed, because it depends on the current state of
10657 * fpu_active (which may have changed).
10658 * Note that vmx_set_cr0 refers to efer set above.
10659 */
9e3e4dbf 10660 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10661 /*
10662 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10663 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10664 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10665 */
10666 update_exception_bitmap(vcpu);
10667 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10668 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10669
10670 /*
10671 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10672 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10673 */
10674 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10675 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10676
29bf08f1 10677 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10678
4704d0be
NHE
10679 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10680 kvm_mmu_reset_context(vcpu);
10681
feaf0c7d
GN
10682 if (!enable_ept)
10683 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10684
4704d0be
NHE
10685 if (enable_vpid) {
10686 /*
10687 * Trivially support vpid by letting L2s share their parent
10688 * L1's vpid. TODO: move to a more elaborate solution, giving
10689 * each L2 its own vpid and exposing the vpid feature to L1.
10690 */
10691 vmx_flush_tlb(vcpu);
10692 }
10693
10694
10695 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10696 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10697 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10698 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10699 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10700
36be0b9d
PB
10701 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10702 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10703 vmcs_write64(GUEST_BNDCFGS, 0);
10704
44811c02 10705 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10706 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10707 vcpu->arch.pat = vmcs12->host_ia32_pat;
10708 }
4704d0be
NHE
10709 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10710 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10711 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10712
21feb4eb
ACL
10713 /* Set L1 segment info according to Intel SDM
10714 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10715 seg = (struct kvm_segment) {
10716 .base = 0,
10717 .limit = 0xFFFFFFFF,
10718 .selector = vmcs12->host_cs_selector,
10719 .type = 11,
10720 .present = 1,
10721 .s = 1,
10722 .g = 1
10723 };
10724 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10725 seg.l = 1;
10726 else
10727 seg.db = 1;
10728 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10729 seg = (struct kvm_segment) {
10730 .base = 0,
10731 .limit = 0xFFFFFFFF,
10732 .type = 3,
10733 .present = 1,
10734 .s = 1,
10735 .db = 1,
10736 .g = 1
10737 };
10738 seg.selector = vmcs12->host_ds_selector;
10739 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10740 seg.selector = vmcs12->host_es_selector;
10741 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10742 seg.selector = vmcs12->host_ss_selector;
10743 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10744 seg.selector = vmcs12->host_fs_selector;
10745 seg.base = vmcs12->host_fs_base;
10746 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10747 seg.selector = vmcs12->host_gs_selector;
10748 seg.base = vmcs12->host_gs_base;
10749 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10750 seg = (struct kvm_segment) {
205befd9 10751 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10752 .limit = 0x67,
10753 .selector = vmcs12->host_tr_selector,
10754 .type = 11,
10755 .present = 1
10756 };
10757 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10758
503cd0c5
JK
10759 kvm_set_dr(vcpu, 7, 0x400);
10760 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10761
3af18d9c
WV
10762 if (cpu_has_vmx_msr_bitmap())
10763 vmx_set_msr_bitmap(vcpu);
10764
ff651cb6
WV
10765 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10766 vmcs12->vm_exit_msr_load_count))
10767 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10768}
10769
10770/*
10771 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10772 * and modify vmcs12 to make it see what it would expect to see there if
10773 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10774 */
533558bc
JK
10775static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10776 u32 exit_intr_info,
10777 unsigned long exit_qualification)
4704d0be
NHE
10778{
10779 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10780 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10781
5f3d5799
JK
10782 /* trying to cancel vmlaunch/vmresume is a bug */
10783 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10784
4704d0be 10785 leave_guest_mode(vcpu);
533558bc
JK
10786 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10787 exit_qualification);
4704d0be 10788
ff651cb6
WV
10789 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10790 vmcs12->vm_exit_msr_store_count))
10791 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10792
f3380ca5
WL
10793 vmx_load_vmcs01(vcpu);
10794
77b0f5d6
BD
10795 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10796 && nested_exit_intr_ack_set(vcpu)) {
10797 int irq = kvm_cpu_get_interrupt(vcpu);
10798 WARN_ON(irq < 0);
10799 vmcs12->vm_exit_intr_info = irq |
10800 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10801 }
10802
542060ea
JK
10803 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10804 vmcs12->exit_qualification,
10805 vmcs12->idt_vectoring_info_field,
10806 vmcs12->vm_exit_intr_info,
10807 vmcs12->vm_exit_intr_error_code,
10808 KVM_ISA_VMX);
4704d0be 10809
8391ce44
PB
10810 vm_entry_controls_reset_shadow(vmx);
10811 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
10812 vmx_segment_cache_clear(vmx);
10813
4704d0be
NHE
10814 /* if no vmcs02 cache requested, remove the one we used */
10815 if (VMCS02_POOL_SIZE == 0)
10816 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10817
10818 load_vmcs12_host_state(vcpu, vmcs12);
10819
9314006d 10820 /* Update any VMCS fields that might have changed while L2 ran */
4704d0be 10821 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9314006d
PB
10822 if (vmx->hv_deadline_tsc == -1)
10823 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10824 PIN_BASED_VMX_PREEMPTION_TIMER);
10825 else
10826 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10827 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
10828 if (kvm_has_tsc_control)
10829 decache_tsc_multiplier(vmx);
4704d0be 10830
dccbfcf5
RK
10831 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10832 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10833 vmx_set_virtual_x2apic_mode(vcpu,
10834 vcpu->arch.apic_base & X2APIC_ENABLE);
10835 }
4704d0be
NHE
10836
10837 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10838 vmx->host_rsp = 0;
10839
10840 /* Unpin physical memory we referred to in vmcs02 */
10841 if (vmx->nested.apic_access_page) {
10842 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10843 vmx->nested.apic_access_page = NULL;
4704d0be 10844 }
a7c0b07d
WL
10845 if (vmx->nested.virtual_apic_page) {
10846 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10847 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10848 }
705699a1
WV
10849 if (vmx->nested.pi_desc_page) {
10850 kunmap(vmx->nested.pi_desc_page);
10851 nested_release_page(vmx->nested.pi_desc_page);
10852 vmx->nested.pi_desc_page = NULL;
10853 vmx->nested.pi_desc = NULL;
10854 }
4704d0be 10855
38b99173
TC
10856 /*
10857 * We are now running in L2, mmu_notifier will force to reload the
10858 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10859 */
c83b6d15 10860 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 10861
4704d0be
NHE
10862 /*
10863 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10864 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10865 * success or failure flag accordingly.
10866 */
10867 if (unlikely(vmx->fail)) {
10868 vmx->fail = 0;
10869 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10870 } else
10871 nested_vmx_succeed(vcpu);
012f83cb
AG
10872 if (enable_shadow_vmcs)
10873 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10874
10875 /* in case we halted in L2 */
10876 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10877}
10878
42124925
JK
10879/*
10880 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10881 */
10882static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10883{
10884 if (is_guest_mode(vcpu))
533558bc 10885 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10886 free_nested(to_vmx(vcpu));
10887}
10888
7c177938
NHE
10889/*
10890 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10891 * 23.7 "VM-entry failures during or after loading guest state" (this also
10892 * lists the acceptable exit-reason and exit-qualification parameters).
10893 * It should only be called before L2 actually succeeded to run, and when
10894 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10895 */
10896static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10897 struct vmcs12 *vmcs12,
10898 u32 reason, unsigned long qualification)
10899{
10900 load_vmcs12_host_state(vcpu, vmcs12);
10901 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10902 vmcs12->exit_qualification = qualification;
10903 nested_vmx_succeed(vcpu);
012f83cb
AG
10904 if (enable_shadow_vmcs)
10905 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10906}
10907
8a76d7f2
JR
10908static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10909 struct x86_instruction_info *info,
10910 enum x86_intercept_stage stage)
10911{
10912 return X86EMUL_CONTINUE;
10913}
10914
64672c95
YJ
10915#ifdef CONFIG_X86_64
10916/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
10917static inline int u64_shl_div_u64(u64 a, unsigned int shift,
10918 u64 divisor, u64 *result)
10919{
10920 u64 low = a << shift, high = a >> (64 - shift);
10921
10922 /* To avoid the overflow on divq */
10923 if (high >= divisor)
10924 return 1;
10925
10926 /* Low hold the result, high hold rem which is discarded */
10927 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
10928 "rm" (divisor), "0" (low), "1" (high));
10929 *result = low;
10930
10931 return 0;
10932}
10933
10934static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
10935{
10936 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
10937 u64 tscl = rdtsc();
10938 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
10939 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
10940
10941 /* Convert to host delta tsc if tsc scaling is enabled */
10942 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
10943 u64_shl_div_u64(delta_tsc,
10944 kvm_tsc_scaling_ratio_frac_bits,
10945 vcpu->arch.tsc_scaling_ratio,
10946 &delta_tsc))
10947 return -ERANGE;
10948
10949 /*
10950 * If the delta tsc can't fit in the 32 bit after the multi shift,
10951 * we can't use the preemption timer.
10952 * It's possible that it fits on later vmentries, but checking
10953 * on every vmentry is costly so we just use an hrtimer.
10954 */
10955 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
10956 return -ERANGE;
10957
10958 vmx->hv_deadline_tsc = tscl + delta_tsc;
10959 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10960 PIN_BASED_VMX_PREEMPTION_TIMER);
10961 return 0;
10962}
10963
10964static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
10965{
10966 struct vcpu_vmx *vmx = to_vmx(vcpu);
10967 vmx->hv_deadline_tsc = -1;
10968 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10969 PIN_BASED_VMX_PREEMPTION_TIMER);
10970}
10971#endif
10972
48d89b92 10973static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10974{
b4a2d31d
RK
10975 if (ple_gap)
10976 shrink_ple_window(vcpu);
ae97a3b8
RK
10977}
10978
843e4330
KH
10979static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10980 struct kvm_memory_slot *slot)
10981{
10982 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10983 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10984}
10985
10986static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10987 struct kvm_memory_slot *slot)
10988{
10989 kvm_mmu_slot_set_dirty(kvm, slot);
10990}
10991
10992static void vmx_flush_log_dirty(struct kvm *kvm)
10993{
10994 kvm_flush_pml_buffers(kvm);
10995}
10996
10997static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10998 struct kvm_memory_slot *memslot,
10999 gfn_t offset, unsigned long mask)
11000{
11001 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11002}
11003
bf9f6ac8
FW
11004/*
11005 * This routine does the following things for vCPU which is going
11006 * to be blocked if VT-d PI is enabled.
11007 * - Store the vCPU to the wakeup list, so when interrupts happen
11008 * we can find the right vCPU to wake up.
11009 * - Change the Posted-interrupt descriptor as below:
11010 * 'NDST' <-- vcpu->pre_pcpu
11011 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11012 * - If 'ON' is set during this process, which means at least one
11013 * interrupt is posted for this vCPU, we cannot block it, in
11014 * this case, return 1, otherwise, return 0.
11015 *
11016 */
bc22512b 11017static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11018{
11019 unsigned long flags;
11020 unsigned int dest;
11021 struct pi_desc old, new;
11022 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11023
11024 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11025 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11026 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11027 return 0;
11028
11029 vcpu->pre_pcpu = vcpu->cpu;
11030 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11031 vcpu->pre_pcpu), flags);
11032 list_add_tail(&vcpu->blocked_vcpu_list,
11033 &per_cpu(blocked_vcpu_on_cpu,
11034 vcpu->pre_pcpu));
11035 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11036 vcpu->pre_pcpu), flags);
11037
11038 do {
11039 old.control = new.control = pi_desc->control;
11040
11041 /*
11042 * We should not block the vCPU if
11043 * an interrupt is posted for it.
11044 */
11045 if (pi_test_on(pi_desc) == 1) {
11046 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11047 vcpu->pre_pcpu), flags);
11048 list_del(&vcpu->blocked_vcpu_list);
11049 spin_unlock_irqrestore(
11050 &per_cpu(blocked_vcpu_on_cpu_lock,
11051 vcpu->pre_pcpu), flags);
11052 vcpu->pre_pcpu = -1;
11053
11054 return 1;
11055 }
11056
11057 WARN((pi_desc->sn == 1),
11058 "Warning: SN field of posted-interrupts "
11059 "is set before blocking\n");
11060
11061 /*
11062 * Since vCPU can be preempted during this process,
11063 * vcpu->cpu could be different with pre_pcpu, we
11064 * need to set pre_pcpu as the destination of wakeup
11065 * notification event, then we can find the right vCPU
11066 * to wakeup in wakeup handler if interrupts happen
11067 * when the vCPU is in blocked state.
11068 */
11069 dest = cpu_physical_id(vcpu->pre_pcpu);
11070
11071 if (x2apic_enabled())
11072 new.ndst = dest;
11073 else
11074 new.ndst = (dest << 8) & 0xFF00;
11075
11076 /* set 'NV' to 'wakeup vector' */
11077 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11078 } while (cmpxchg(&pi_desc->control, old.control,
11079 new.control) != old.control);
11080
11081 return 0;
11082}
11083
bc22512b
YJ
11084static int vmx_pre_block(struct kvm_vcpu *vcpu)
11085{
11086 if (pi_pre_block(vcpu))
11087 return 1;
11088
64672c95
YJ
11089 if (kvm_lapic_hv_timer_in_use(vcpu))
11090 kvm_lapic_switch_to_sw_timer(vcpu);
11091
bc22512b
YJ
11092 return 0;
11093}
11094
11095static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11096{
11097 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11098 struct pi_desc old, new;
11099 unsigned int dest;
11100 unsigned long flags;
11101
11102 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11103 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11104 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11105 return;
11106
11107 do {
11108 old.control = new.control = pi_desc->control;
11109
11110 dest = cpu_physical_id(vcpu->cpu);
11111
11112 if (x2apic_enabled())
11113 new.ndst = dest;
11114 else
11115 new.ndst = (dest << 8) & 0xFF00;
11116
11117 /* Allow posting non-urgent interrupts */
11118 new.sn = 0;
11119
11120 /* set 'NV' to 'notification vector' */
11121 new.nv = POSTED_INTR_VECTOR;
11122 } while (cmpxchg(&pi_desc->control, old.control,
11123 new.control) != old.control);
11124
11125 if(vcpu->pre_pcpu != -1) {
11126 spin_lock_irqsave(
11127 &per_cpu(blocked_vcpu_on_cpu_lock,
11128 vcpu->pre_pcpu), flags);
11129 list_del(&vcpu->blocked_vcpu_list);
11130 spin_unlock_irqrestore(
11131 &per_cpu(blocked_vcpu_on_cpu_lock,
11132 vcpu->pre_pcpu), flags);
11133 vcpu->pre_pcpu = -1;
11134 }
11135}
11136
bc22512b
YJ
11137static void vmx_post_block(struct kvm_vcpu *vcpu)
11138{
64672c95
YJ
11139 if (kvm_x86_ops->set_hv_timer)
11140 kvm_lapic_switch_to_hv_timer(vcpu);
11141
bc22512b
YJ
11142 pi_post_block(vcpu);
11143}
11144
efc64404
FW
11145/*
11146 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11147 *
11148 * @kvm: kvm
11149 * @host_irq: host irq of the interrupt
11150 * @guest_irq: gsi of the interrupt
11151 * @set: set or unset PI
11152 * returns 0 on success, < 0 on failure
11153 */
11154static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11155 uint32_t guest_irq, bool set)
11156{
11157 struct kvm_kernel_irq_routing_entry *e;
11158 struct kvm_irq_routing_table *irq_rt;
11159 struct kvm_lapic_irq irq;
11160 struct kvm_vcpu *vcpu;
11161 struct vcpu_data vcpu_info;
11162 int idx, ret = -EINVAL;
11163
11164 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11165 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11166 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11167 return 0;
11168
11169 idx = srcu_read_lock(&kvm->irq_srcu);
11170 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11171 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11172
11173 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11174 if (e->type != KVM_IRQ_ROUTING_MSI)
11175 continue;
11176 /*
11177 * VT-d PI cannot support posting multicast/broadcast
11178 * interrupts to a vCPU, we still use interrupt remapping
11179 * for these kind of interrupts.
11180 *
11181 * For lowest-priority interrupts, we only support
11182 * those with single CPU as the destination, e.g. user
11183 * configures the interrupts via /proc/irq or uses
11184 * irqbalance to make the interrupts single-CPU.
11185 *
11186 * We will support full lowest-priority interrupt later.
11187 */
11188
37131313 11189 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11190 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11191 /*
11192 * Make sure the IRTE is in remapped mode if
11193 * we don't handle it in posted mode.
11194 */
11195 ret = irq_set_vcpu_affinity(host_irq, NULL);
11196 if (ret < 0) {
11197 printk(KERN_INFO
11198 "failed to back to remapped mode, irq: %u\n",
11199 host_irq);
11200 goto out;
11201 }
11202
efc64404 11203 continue;
23a1c257 11204 }
efc64404
FW
11205
11206 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11207 vcpu_info.vector = irq.vector;
11208
b6ce9780 11209 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11210 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11211
11212 if (set)
11213 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11214 else {
11215 /* suppress notification event before unposting */
11216 pi_set_sn(vcpu_to_pi_desc(vcpu));
11217 ret = irq_set_vcpu_affinity(host_irq, NULL);
11218 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11219 }
11220
11221 if (ret < 0) {
11222 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11223 __func__);
11224 goto out;
11225 }
11226 }
11227
11228 ret = 0;
11229out:
11230 srcu_read_unlock(&kvm->irq_srcu, idx);
11231 return ret;
11232}
11233
c45dcc71
AR
11234static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11235{
11236 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11237 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11238 FEATURE_CONTROL_LMCE;
11239 else
11240 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11241 ~FEATURE_CONTROL_LMCE;
11242}
11243
404f6aac 11244static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11245 .cpu_has_kvm_support = cpu_has_kvm_support,
11246 .disabled_by_bios = vmx_disabled_by_bios,
11247 .hardware_setup = hardware_setup,
11248 .hardware_unsetup = hardware_unsetup,
002c7f7c 11249 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11250 .hardware_enable = hardware_enable,
11251 .hardware_disable = hardware_disable,
04547156 11252 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11253 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11254
11255 .vcpu_create = vmx_create_vcpu,
11256 .vcpu_free = vmx_free_vcpu,
04d2cc77 11257 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11258
04d2cc77 11259 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11260 .vcpu_load = vmx_vcpu_load,
11261 .vcpu_put = vmx_vcpu_put,
11262
a96036b8 11263 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11264 .get_msr = vmx_get_msr,
11265 .set_msr = vmx_set_msr,
11266 .get_segment_base = vmx_get_segment_base,
11267 .get_segment = vmx_get_segment,
11268 .set_segment = vmx_set_segment,
2e4d2653 11269 .get_cpl = vmx_get_cpl,
6aa8b732 11270 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11271 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11272 .decache_cr3 = vmx_decache_cr3,
25c4c276 11273 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11274 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11275 .set_cr3 = vmx_set_cr3,
11276 .set_cr4 = vmx_set_cr4,
6aa8b732 11277 .set_efer = vmx_set_efer,
6aa8b732
AK
11278 .get_idt = vmx_get_idt,
11279 .set_idt = vmx_set_idt,
11280 .get_gdt = vmx_get_gdt,
11281 .set_gdt = vmx_set_gdt,
73aaf249
JK
11282 .get_dr6 = vmx_get_dr6,
11283 .set_dr6 = vmx_set_dr6,
020df079 11284 .set_dr7 = vmx_set_dr7,
81908bf4 11285 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11286 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11287 .get_rflags = vmx_get_rflags,
11288 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11289
11290 .get_pkru = vmx_get_pkru,
11291
0fdd74f7 11292 .fpu_activate = vmx_fpu_activate,
02daab21 11293 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
11294
11295 .tlb_flush = vmx_flush_tlb,
6aa8b732 11296
6aa8b732 11297 .run = vmx_vcpu_run,
6062d012 11298 .handle_exit = vmx_handle_exit,
6aa8b732 11299 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11300 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11301 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11302 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11303 .set_irq = vmx_inject_irq,
95ba8273 11304 .set_nmi = vmx_inject_nmi,
298101da 11305 .queue_exception = vmx_queue_exception,
b463a6f7 11306 .cancel_injection = vmx_cancel_injection,
78646121 11307 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11308 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11309 .get_nmi_mask = vmx_get_nmi_mask,
11310 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11311 .enable_nmi_window = enable_nmi_window,
11312 .enable_irq_window = enable_irq_window,
11313 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11314 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11315 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11316 .get_enable_apicv = vmx_get_enable_apicv,
11317 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c
YZ
11318 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11319 .hwapic_irr_update = vmx_hwapic_irr_update,
11320 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11321 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11322 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11323
cbc94022 11324 .set_tss_addr = vmx_set_tss_addr,
67253af5 11325 .get_tdp_level = get_ept_level,
4b12f0de 11326 .get_mt_mask = vmx_get_mt_mask,
229456fc 11327
586f9607 11328 .get_exit_info = vmx_get_exit_info,
586f9607 11329
17cc3935 11330 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11331
11332 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11333
11334 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11335 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11336
11337 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11338
11339 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11340
11341 .write_tsc_offset = vmx_write_tsc_offset,
58ea6767 11342 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
d5c1785d 11343 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
11344
11345 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11346
11347 .check_intercept = vmx_check_intercept,
a547c6db 11348 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11349 .mpx_supported = vmx_mpx_supported,
55412b2e 11350 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11351
11352 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11353
11354 .sched_in = vmx_sched_in,
843e4330
KH
11355
11356 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11357 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11358 .flush_log_dirty = vmx_flush_log_dirty,
11359 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11360
bf9f6ac8
FW
11361 .pre_block = vmx_pre_block,
11362 .post_block = vmx_post_block,
11363
25462f7f 11364 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11365
11366 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11367
11368#ifdef CONFIG_X86_64
11369 .set_hv_timer = vmx_set_hv_timer,
11370 .cancel_hv_timer = vmx_cancel_hv_timer,
11371#endif
c45dcc71
AR
11372
11373 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11374};
11375
11376static int __init vmx_init(void)
11377{
34a1cd60
TC
11378 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11379 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11380 if (r)
34a1cd60 11381 return r;
25c5f225 11382
2965faa5 11383#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11384 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11385 crash_vmclear_local_loaded_vmcss);
11386#endif
11387
fdef3ad1 11388 return 0;
6aa8b732
AK
11389}
11390
11391static void __exit vmx_exit(void)
11392{
2965faa5 11393#ifdef CONFIG_KEXEC_CORE
3b63a43f 11394 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11395 synchronize_rcu();
11396#endif
11397
cb498ea2 11398 kvm_exit();
6aa8b732
AK
11399}
11400
11401module_init(vmx_init)
11402module_exit(vmx_exit)