]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly fasteoi = 1;
58fbbf26
KT
88module_param(fasteoi, bool, S_IRUGO);
89
5a71785d 90static bool __read_mostly enable_apicv = 1;
01e439be 91module_param(enable_apicv, bool, S_IRUGO);
83d4c286 92
abc4fc58
AG
93static bool __read_mostly enable_shadow_vmcs = 1;
94module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
95/*
96 * If nested=1, nested virtualization is supported, i.e., guests may use
97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98 * use VMX instructions.
99 */
476bc001 100static bool __read_mostly nested = 0;
801d3424
NHE
101module_param(nested, bool, S_IRUGO);
102
20300099
WL
103static u64 __read_mostly host_xss;
104
843e4330
KH
105static bool __read_mostly enable_pml = 1;
106module_param_named(pml, enable_pml, bool, S_IRUGO);
107
64903d61
HZ
108#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
109
64672c95
YJ
110/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
111static int __read_mostly cpu_preemption_timer_multi;
112static bool __read_mostly enable_preemption_timer = 1;
113#ifdef CONFIG_X86_64
114module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
115#endif
116
5037878e
GN
117#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
118#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
119#define KVM_VM_CR0_ALWAYS_ON \
120 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
121#define KVM_CR4_GUEST_OWNED_BITS \
122 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 123 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 124
cdc0e244
AK
125#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
126#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
127
78ac8b47
AK
128#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
129
f4124500
JK
130#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
131
16c2aec6
JD
132/*
133 * Hyper-V requires all of these, so mark them as supported even though
134 * they are just treated the same as all-context.
135 */
136#define VMX_VPID_EXTENT_SUPPORTED_MASK \
137 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
138 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
139 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
140 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
141
4b8d54f9
ZE
142/*
143 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
144 * ple_gap: upper bound on the amount of time between two successive
145 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 146 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
147 * ple_window: upper bound on the amount of time a guest is allowed to execute
148 * in a PAUSE loop. Tests indicate that most spinlocks are held for
149 * less than 2^12 cycles
150 * Time is measured based on a counter that runs at the same rate as the TSC,
151 * refer SDM volume 3b section 21.6.13 & 22.1.3.
152 */
b4a2d31d
RK
153#define KVM_VMX_DEFAULT_PLE_GAP 128
154#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
155#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
156#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
157#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
158 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
159
4b8d54f9
ZE
160static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
161module_param(ple_gap, int, S_IRUGO);
162
163static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
164module_param(ple_window, int, S_IRUGO);
165
b4a2d31d
RK
166/* Default doubles per-vcpu window every exit. */
167static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
168module_param(ple_window_grow, int, S_IRUGO);
169
170/* Default resets per-vcpu window every exit to ple_window. */
171static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
172module_param(ple_window_shrink, int, S_IRUGO);
173
174/* Default is to compute the maximum so we can never overflow. */
175static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
176static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
177module_param(ple_window_max, int, S_IRUGO);
178
83287ea4
AK
179extern const ulong vmx_return;
180
8bf00a52 181#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 182#define VMCS02_POOL_SIZE 1
61d2ef2c 183
a2fa3e9f
GH
184struct vmcs {
185 u32 revision_id;
186 u32 abort;
187 char data[0];
188};
189
d462b819
NHE
190/*
191 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
192 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
193 * loaded on this CPU (so we can clear them if the CPU goes down).
194 */
195struct loaded_vmcs {
196 struct vmcs *vmcs;
355f4fb1 197 struct vmcs *shadow_vmcs;
d462b819
NHE
198 int cpu;
199 int launched;
200 struct list_head loaded_vmcss_on_cpu_link;
201};
202
26bb0981
AK
203struct shared_msr_entry {
204 unsigned index;
205 u64 data;
d5696725 206 u64 mask;
26bb0981
AK
207};
208
a9d30f33
NHE
209/*
210 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
211 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
212 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
213 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
214 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
215 * More than one of these structures may exist, if L1 runs multiple L2 guests.
216 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
217 * underlying hardware which will be used to run L2.
218 * This structure is packed to ensure that its layout is identical across
219 * machines (necessary for live migration).
220 * If there are changes in this struct, VMCS12_REVISION must be changed.
221 */
22bd0358 222typedef u64 natural_width;
a9d30f33
NHE
223struct __packed vmcs12 {
224 /* According to the Intel spec, a VMCS region must start with the
225 * following two fields. Then follow implementation-specific data.
226 */
227 u32 revision_id;
228 u32 abort;
22bd0358 229
27d6c865
NHE
230 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
231 u32 padding[7]; /* room for future expansion */
232
22bd0358
NHE
233 u64 io_bitmap_a;
234 u64 io_bitmap_b;
235 u64 msr_bitmap;
236 u64 vm_exit_msr_store_addr;
237 u64 vm_exit_msr_load_addr;
238 u64 vm_entry_msr_load_addr;
239 u64 tsc_offset;
240 u64 virtual_apic_page_addr;
241 u64 apic_access_addr;
705699a1 242 u64 posted_intr_desc_addr;
22bd0358 243 u64 ept_pointer;
608406e2
WV
244 u64 eoi_exit_bitmap0;
245 u64 eoi_exit_bitmap1;
246 u64 eoi_exit_bitmap2;
247 u64 eoi_exit_bitmap3;
81dc01f7 248 u64 xss_exit_bitmap;
22bd0358
NHE
249 u64 guest_physical_address;
250 u64 vmcs_link_pointer;
251 u64 guest_ia32_debugctl;
252 u64 guest_ia32_pat;
253 u64 guest_ia32_efer;
254 u64 guest_ia32_perf_global_ctrl;
255 u64 guest_pdptr0;
256 u64 guest_pdptr1;
257 u64 guest_pdptr2;
258 u64 guest_pdptr3;
36be0b9d 259 u64 guest_bndcfgs;
22bd0358
NHE
260 u64 host_ia32_pat;
261 u64 host_ia32_efer;
262 u64 host_ia32_perf_global_ctrl;
263 u64 padding64[8]; /* room for future expansion */
264 /*
265 * To allow migration of L1 (complete with its L2 guests) between
266 * machines of different natural widths (32 or 64 bit), we cannot have
267 * unsigned long fields with no explict size. We use u64 (aliased
268 * natural_width) instead. Luckily, x86 is little-endian.
269 */
270 natural_width cr0_guest_host_mask;
271 natural_width cr4_guest_host_mask;
272 natural_width cr0_read_shadow;
273 natural_width cr4_read_shadow;
274 natural_width cr3_target_value0;
275 natural_width cr3_target_value1;
276 natural_width cr3_target_value2;
277 natural_width cr3_target_value3;
278 natural_width exit_qualification;
279 natural_width guest_linear_address;
280 natural_width guest_cr0;
281 natural_width guest_cr3;
282 natural_width guest_cr4;
283 natural_width guest_es_base;
284 natural_width guest_cs_base;
285 natural_width guest_ss_base;
286 natural_width guest_ds_base;
287 natural_width guest_fs_base;
288 natural_width guest_gs_base;
289 natural_width guest_ldtr_base;
290 natural_width guest_tr_base;
291 natural_width guest_gdtr_base;
292 natural_width guest_idtr_base;
293 natural_width guest_dr7;
294 natural_width guest_rsp;
295 natural_width guest_rip;
296 natural_width guest_rflags;
297 natural_width guest_pending_dbg_exceptions;
298 natural_width guest_sysenter_esp;
299 natural_width guest_sysenter_eip;
300 natural_width host_cr0;
301 natural_width host_cr3;
302 natural_width host_cr4;
303 natural_width host_fs_base;
304 natural_width host_gs_base;
305 natural_width host_tr_base;
306 natural_width host_gdtr_base;
307 natural_width host_idtr_base;
308 natural_width host_ia32_sysenter_esp;
309 natural_width host_ia32_sysenter_eip;
310 natural_width host_rsp;
311 natural_width host_rip;
312 natural_width paddingl[8]; /* room for future expansion */
313 u32 pin_based_vm_exec_control;
314 u32 cpu_based_vm_exec_control;
315 u32 exception_bitmap;
316 u32 page_fault_error_code_mask;
317 u32 page_fault_error_code_match;
318 u32 cr3_target_count;
319 u32 vm_exit_controls;
320 u32 vm_exit_msr_store_count;
321 u32 vm_exit_msr_load_count;
322 u32 vm_entry_controls;
323 u32 vm_entry_msr_load_count;
324 u32 vm_entry_intr_info_field;
325 u32 vm_entry_exception_error_code;
326 u32 vm_entry_instruction_len;
327 u32 tpr_threshold;
328 u32 secondary_vm_exec_control;
329 u32 vm_instruction_error;
330 u32 vm_exit_reason;
331 u32 vm_exit_intr_info;
332 u32 vm_exit_intr_error_code;
333 u32 idt_vectoring_info_field;
334 u32 idt_vectoring_error_code;
335 u32 vm_exit_instruction_len;
336 u32 vmx_instruction_info;
337 u32 guest_es_limit;
338 u32 guest_cs_limit;
339 u32 guest_ss_limit;
340 u32 guest_ds_limit;
341 u32 guest_fs_limit;
342 u32 guest_gs_limit;
343 u32 guest_ldtr_limit;
344 u32 guest_tr_limit;
345 u32 guest_gdtr_limit;
346 u32 guest_idtr_limit;
347 u32 guest_es_ar_bytes;
348 u32 guest_cs_ar_bytes;
349 u32 guest_ss_ar_bytes;
350 u32 guest_ds_ar_bytes;
351 u32 guest_fs_ar_bytes;
352 u32 guest_gs_ar_bytes;
353 u32 guest_ldtr_ar_bytes;
354 u32 guest_tr_ar_bytes;
355 u32 guest_interruptibility_info;
356 u32 guest_activity_state;
357 u32 guest_sysenter_cs;
358 u32 host_ia32_sysenter_cs;
0238ea91
JK
359 u32 vmx_preemption_timer_value;
360 u32 padding32[7]; /* room for future expansion */
22bd0358 361 u16 virtual_processor_id;
705699a1 362 u16 posted_intr_nv;
22bd0358
NHE
363 u16 guest_es_selector;
364 u16 guest_cs_selector;
365 u16 guest_ss_selector;
366 u16 guest_ds_selector;
367 u16 guest_fs_selector;
368 u16 guest_gs_selector;
369 u16 guest_ldtr_selector;
370 u16 guest_tr_selector;
608406e2 371 u16 guest_intr_status;
22bd0358
NHE
372 u16 host_es_selector;
373 u16 host_cs_selector;
374 u16 host_ss_selector;
375 u16 host_ds_selector;
376 u16 host_fs_selector;
377 u16 host_gs_selector;
378 u16 host_tr_selector;
a9d30f33
NHE
379};
380
381/*
382 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
383 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
384 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
385 */
386#define VMCS12_REVISION 0x11e57ed0
387
388/*
389 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
390 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
391 * current implementation, 4K are reserved to avoid future complications.
392 */
393#define VMCS12_SIZE 0x1000
394
ff2f6fe9
NHE
395/* Used to remember the last vmcs02 used for some recently used vmcs12s */
396struct vmcs02_list {
397 struct list_head list;
398 gpa_t vmptr;
399 struct loaded_vmcs vmcs02;
400};
401
ec378aee
NHE
402/*
403 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
404 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
405 */
406struct nested_vmx {
407 /* Has the level1 guest done vmxon? */
408 bool vmxon;
3573e22c 409 gpa_t vmxon_ptr;
a9d30f33
NHE
410
411 /* The guest-physical address of the current VMCS L1 keeps for L2 */
412 gpa_t current_vmptr;
413 /* The host-usable pointer to the above */
414 struct page *current_vmcs12_page;
415 struct vmcs12 *current_vmcs12;
4f2777bc
DM
416 /*
417 * Cache of the guest's VMCS, existing outside of guest memory.
418 * Loaded from guest memory during VMPTRLD. Flushed to guest
419 * memory during VMXOFF, VMCLEAR, VMPTRLD.
420 */
421 struct vmcs12 *cached_vmcs12;
012f83cb
AG
422 /*
423 * Indicates if the shadow vmcs must be updated with the
424 * data hold by vmcs12
425 */
426 bool sync_shadow_vmcs;
ff2f6fe9
NHE
427
428 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
429 struct list_head vmcs02_pool;
430 int vmcs02_num;
dccbfcf5 431 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
432 /* L2 must run next, and mustn't decide to exit to L1. */
433 bool nested_run_pending;
fe3ef05c
NHE
434 /*
435 * Guest pages referred to in vmcs02 with host-physical pointers, so
436 * we must keep them pinned while L2 runs.
437 */
438 struct page *apic_access_page;
a7c0b07d 439 struct page *virtual_apic_page;
705699a1
WV
440 struct page *pi_desc_page;
441 struct pi_desc *pi_desc;
442 bool pi_pending;
443 u16 posted_intr_nv;
f4124500 444
d048c098
RK
445 unsigned long *msr_bitmap;
446
f4124500
JK
447 struct hrtimer preemption_timer;
448 bool preemption_timer_expired;
2996fca0
JK
449
450 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
451 u64 vmcs01_debugctl;
b9c237bb 452
5c614b35
WL
453 u16 vpid02;
454 u16 last_vpid;
455
0115f9cb
DM
456 /*
457 * We only store the "true" versions of the VMX capability MSRs. We
458 * generate the "non-true" versions by setting the must-be-1 bits
459 * according to the SDM.
460 */
b9c237bb
WV
461 u32 nested_vmx_procbased_ctls_low;
462 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
463 u32 nested_vmx_secondary_ctls_low;
464 u32 nested_vmx_secondary_ctls_high;
465 u32 nested_vmx_pinbased_ctls_low;
466 u32 nested_vmx_pinbased_ctls_high;
467 u32 nested_vmx_exit_ctls_low;
468 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
469 u32 nested_vmx_entry_ctls_low;
470 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
471 u32 nested_vmx_misc_low;
472 u32 nested_vmx_misc_high;
473 u32 nested_vmx_ept_caps;
99b83ac8 474 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
475 u64 nested_vmx_basic;
476 u64 nested_vmx_cr0_fixed0;
477 u64 nested_vmx_cr0_fixed1;
478 u64 nested_vmx_cr4_fixed0;
479 u64 nested_vmx_cr4_fixed1;
480 u64 nested_vmx_vmcs_enum;
ec378aee
NHE
481};
482
01e439be 483#define POSTED_INTR_ON 0
ebbfc765
FW
484#define POSTED_INTR_SN 1
485
01e439be
YZ
486/* Posted-Interrupt Descriptor */
487struct pi_desc {
488 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
489 union {
490 struct {
491 /* bit 256 - Outstanding Notification */
492 u16 on : 1,
493 /* bit 257 - Suppress Notification */
494 sn : 1,
495 /* bit 271:258 - Reserved */
496 rsvd_1 : 14;
497 /* bit 279:272 - Notification Vector */
498 u8 nv;
499 /* bit 287:280 - Reserved */
500 u8 rsvd_2;
501 /* bit 319:288 - Notification Destination */
502 u32 ndst;
503 };
504 u64 control;
505 };
506 u32 rsvd[6];
01e439be
YZ
507} __aligned(64);
508
a20ed54d
YZ
509static bool pi_test_and_set_on(struct pi_desc *pi_desc)
510{
511 return test_and_set_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513}
514
515static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
516{
517 return test_and_clear_bit(POSTED_INTR_ON,
518 (unsigned long *)&pi_desc->control);
519}
520
521static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
522{
523 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
524}
525
ebbfc765
FW
526static inline void pi_clear_sn(struct pi_desc *pi_desc)
527{
528 return clear_bit(POSTED_INTR_SN,
529 (unsigned long *)&pi_desc->control);
530}
531
532static inline void pi_set_sn(struct pi_desc *pi_desc)
533{
534 return set_bit(POSTED_INTR_SN,
535 (unsigned long *)&pi_desc->control);
536}
537
ad361091
PB
538static inline void pi_clear_on(struct pi_desc *pi_desc)
539{
540 clear_bit(POSTED_INTR_ON,
541 (unsigned long *)&pi_desc->control);
542}
543
ebbfc765
FW
544static inline int pi_test_on(struct pi_desc *pi_desc)
545{
546 return test_bit(POSTED_INTR_ON,
547 (unsigned long *)&pi_desc->control);
548}
549
550static inline int pi_test_sn(struct pi_desc *pi_desc)
551{
552 return test_bit(POSTED_INTR_SN,
553 (unsigned long *)&pi_desc->control);
554}
555
a2fa3e9f 556struct vcpu_vmx {
fb3f0f51 557 struct kvm_vcpu vcpu;
313dbd49 558 unsigned long host_rsp;
29bd8a78 559 u8 fail;
9d58b931 560 bool nmi_known_unmasked;
51aa01d1 561 u32 exit_intr_info;
1155f76a 562 u32 idt_vectoring_info;
6de12732 563 ulong rflags;
26bb0981 564 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
565 int nmsrs;
566 int save_nmsrs;
a547c6db 567 unsigned long host_idt_base;
a2fa3e9f 568#ifdef CONFIG_X86_64
44ea2b17
AK
569 u64 msr_host_kernel_gs_base;
570 u64 msr_guest_kernel_gs_base;
a2fa3e9f 571#endif
2961e876
GN
572 u32 vm_entry_controls_shadow;
573 u32 vm_exit_controls_shadow;
d462b819
NHE
574 /*
575 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
576 * non-nested (L1) guest, it always points to vmcs01. For a nested
577 * guest (L2), it points to a different VMCS.
578 */
579 struct loaded_vmcs vmcs01;
580 struct loaded_vmcs *loaded_vmcs;
581 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
582 struct msr_autoload {
583 unsigned nr;
584 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
585 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
586 } msr_autoload;
a2fa3e9f
GH
587 struct {
588 int loaded;
589 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
590#ifdef CONFIG_X86_64
591 u16 ds_sel, es_sel;
592#endif
152d3f2f
LV
593 int gs_ldt_reload_needed;
594 int fs_reload_needed;
da8999d3 595 u64 msr_host_bndcfgs;
d974baa3 596 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 597 } host_state;
9c8cba37 598 struct {
7ffd92c5 599 int vm86_active;
78ac8b47 600 ulong save_rflags;
f5f7b2fe
AK
601 struct kvm_segment segs[8];
602 } rmode;
603 struct {
604 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
605 struct kvm_save_segment {
606 u16 selector;
607 unsigned long base;
608 u32 limit;
609 u32 ar;
f5f7b2fe 610 } seg[8];
2fb92db1 611 } segment_cache;
2384d2b3 612 int vpid;
04fa4d32 613 bool emulation_required;
3b86cd99 614
a0861c02 615 u32 exit_reason;
4e47c7a6 616
01e439be
YZ
617 /* Posted interrupt descriptor */
618 struct pi_desc pi_desc;
619
ec378aee
NHE
620 /* Support for a guest hypervisor (nested VMX) */
621 struct nested_vmx nested;
a7653ecd
RK
622
623 /* Dynamic PLE window. */
624 int ple_window;
625 bool ple_window_dirty;
843e4330
KH
626
627 /* Support for PML */
628#define PML_ENTITY_NUM 512
629 struct page *pml_pg;
2680d6da 630
64672c95
YJ
631 /* apic deadline value in host tsc */
632 u64 hv_deadline_tsc;
633
2680d6da 634 u64 current_tsc_ratio;
1be0e61c
XG
635
636 bool guest_pkru_valid;
637 u32 guest_pkru;
638 u32 host_pkru;
3b84080b 639
37e4c997
HZ
640 /*
641 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
642 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
643 * in msr_ia32_feature_control_valid_bits.
644 */
3b84080b 645 u64 msr_ia32_feature_control;
37e4c997 646 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
647};
648
2fb92db1
AK
649enum segment_cache_field {
650 SEG_FIELD_SEL = 0,
651 SEG_FIELD_BASE = 1,
652 SEG_FIELD_LIMIT = 2,
653 SEG_FIELD_AR = 3,
654
655 SEG_FIELD_NR = 4
656};
657
a2fa3e9f
GH
658static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
659{
fb3f0f51 660 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
661}
662
efc64404
FW
663static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
664{
665 return &(to_vmx(vcpu)->pi_desc);
666}
667
22bd0358
NHE
668#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
669#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
670#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
671 [number##_HIGH] = VMCS12_OFFSET(name)+4
672
4607c2d7 673
fe2b201b 674static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
675 /*
676 * We do NOT shadow fields that are modified when L0
677 * traps and emulates any vmx instruction (e.g. VMPTRLD,
678 * VMXON...) executed by L1.
679 * For example, VM_INSTRUCTION_ERROR is read
680 * by L1 if a vmx instruction fails (part of the error path).
681 * Note the code assumes this logic. If for some reason
682 * we start shadowing these fields then we need to
683 * force a shadow sync when L0 emulates vmx instructions
684 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
685 * by nested_vmx_failValid)
686 */
687 VM_EXIT_REASON,
688 VM_EXIT_INTR_INFO,
689 VM_EXIT_INSTRUCTION_LEN,
690 IDT_VECTORING_INFO_FIELD,
691 IDT_VECTORING_ERROR_CODE,
692 VM_EXIT_INTR_ERROR_CODE,
693 EXIT_QUALIFICATION,
694 GUEST_LINEAR_ADDRESS,
695 GUEST_PHYSICAL_ADDRESS
696};
fe2b201b 697static int max_shadow_read_only_fields =
4607c2d7
AG
698 ARRAY_SIZE(shadow_read_only_fields);
699
fe2b201b 700static unsigned long shadow_read_write_fields[] = {
a7c0b07d 701 TPR_THRESHOLD,
4607c2d7
AG
702 GUEST_RIP,
703 GUEST_RSP,
704 GUEST_CR0,
705 GUEST_CR3,
706 GUEST_CR4,
707 GUEST_INTERRUPTIBILITY_INFO,
708 GUEST_RFLAGS,
709 GUEST_CS_SELECTOR,
710 GUEST_CS_AR_BYTES,
711 GUEST_CS_LIMIT,
712 GUEST_CS_BASE,
713 GUEST_ES_BASE,
36be0b9d 714 GUEST_BNDCFGS,
4607c2d7
AG
715 CR0_GUEST_HOST_MASK,
716 CR0_READ_SHADOW,
717 CR4_READ_SHADOW,
718 TSC_OFFSET,
719 EXCEPTION_BITMAP,
720 CPU_BASED_VM_EXEC_CONTROL,
721 VM_ENTRY_EXCEPTION_ERROR_CODE,
722 VM_ENTRY_INTR_INFO_FIELD,
723 VM_ENTRY_INSTRUCTION_LEN,
724 VM_ENTRY_EXCEPTION_ERROR_CODE,
725 HOST_FS_BASE,
726 HOST_GS_BASE,
727 HOST_FS_SELECTOR,
728 HOST_GS_SELECTOR
729};
fe2b201b 730static int max_shadow_read_write_fields =
4607c2d7
AG
731 ARRAY_SIZE(shadow_read_write_fields);
732
772e0318 733static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 734 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 735 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
736 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
737 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
738 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
739 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
740 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
741 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
742 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
743 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 744 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
745 FIELD(HOST_ES_SELECTOR, host_es_selector),
746 FIELD(HOST_CS_SELECTOR, host_cs_selector),
747 FIELD(HOST_SS_SELECTOR, host_ss_selector),
748 FIELD(HOST_DS_SELECTOR, host_ds_selector),
749 FIELD(HOST_FS_SELECTOR, host_fs_selector),
750 FIELD(HOST_GS_SELECTOR, host_gs_selector),
751 FIELD(HOST_TR_SELECTOR, host_tr_selector),
752 FIELD64(IO_BITMAP_A, io_bitmap_a),
753 FIELD64(IO_BITMAP_B, io_bitmap_b),
754 FIELD64(MSR_BITMAP, msr_bitmap),
755 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
756 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
757 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
758 FIELD64(TSC_OFFSET, tsc_offset),
759 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
760 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 761 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 762 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
763 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
764 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
765 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
766 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 767 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
768 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
769 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
770 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
771 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
772 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
773 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
774 FIELD64(GUEST_PDPTR0, guest_pdptr0),
775 FIELD64(GUEST_PDPTR1, guest_pdptr1),
776 FIELD64(GUEST_PDPTR2, guest_pdptr2),
777 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 778 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
779 FIELD64(HOST_IA32_PAT, host_ia32_pat),
780 FIELD64(HOST_IA32_EFER, host_ia32_efer),
781 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
782 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
783 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
784 FIELD(EXCEPTION_BITMAP, exception_bitmap),
785 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
786 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
787 FIELD(CR3_TARGET_COUNT, cr3_target_count),
788 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
789 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
790 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
791 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
792 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
793 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
794 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
795 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
796 FIELD(TPR_THRESHOLD, tpr_threshold),
797 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
798 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
799 FIELD(VM_EXIT_REASON, vm_exit_reason),
800 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
801 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
802 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
803 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
804 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
805 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
806 FIELD(GUEST_ES_LIMIT, guest_es_limit),
807 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
808 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
809 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
810 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
811 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
812 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
813 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
814 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
815 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
816 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
817 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
818 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
819 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
820 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
821 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
822 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
823 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
824 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
825 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
826 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
827 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 828 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
829 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
830 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
831 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
832 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
833 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
834 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
835 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
836 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
837 FIELD(EXIT_QUALIFICATION, exit_qualification),
838 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
839 FIELD(GUEST_CR0, guest_cr0),
840 FIELD(GUEST_CR3, guest_cr3),
841 FIELD(GUEST_CR4, guest_cr4),
842 FIELD(GUEST_ES_BASE, guest_es_base),
843 FIELD(GUEST_CS_BASE, guest_cs_base),
844 FIELD(GUEST_SS_BASE, guest_ss_base),
845 FIELD(GUEST_DS_BASE, guest_ds_base),
846 FIELD(GUEST_FS_BASE, guest_fs_base),
847 FIELD(GUEST_GS_BASE, guest_gs_base),
848 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
849 FIELD(GUEST_TR_BASE, guest_tr_base),
850 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
851 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
852 FIELD(GUEST_DR7, guest_dr7),
853 FIELD(GUEST_RSP, guest_rsp),
854 FIELD(GUEST_RIP, guest_rip),
855 FIELD(GUEST_RFLAGS, guest_rflags),
856 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
857 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
858 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
859 FIELD(HOST_CR0, host_cr0),
860 FIELD(HOST_CR3, host_cr3),
861 FIELD(HOST_CR4, host_cr4),
862 FIELD(HOST_FS_BASE, host_fs_base),
863 FIELD(HOST_GS_BASE, host_gs_base),
864 FIELD(HOST_TR_BASE, host_tr_base),
865 FIELD(HOST_GDTR_BASE, host_gdtr_base),
866 FIELD(HOST_IDTR_BASE, host_idtr_base),
867 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
868 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
869 FIELD(HOST_RSP, host_rsp),
870 FIELD(HOST_RIP, host_rip),
871};
22bd0358
NHE
872
873static inline short vmcs_field_to_offset(unsigned long field)
874{
a2ae9df7
PB
875 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
876
877 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
878 vmcs_field_to_offset_table[field] == 0)
879 return -ENOENT;
880
22bd0358
NHE
881 return vmcs_field_to_offset_table[field];
882}
883
a9d30f33
NHE
884static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
885{
4f2777bc 886 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
887}
888
889static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
890{
54bf36aa 891 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 892 if (is_error_page(page))
a9d30f33 893 return NULL;
32cad84f 894
a9d30f33
NHE
895 return page;
896}
897
898static void nested_release_page(struct page *page)
899{
900 kvm_release_page_dirty(page);
901}
902
903static void nested_release_page_clean(struct page *page)
904{
905 kvm_release_page_clean(page);
906}
907
bfd0a56b 908static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 909static u64 construct_eptp(unsigned long root_hpa);
f53cd63c 910static bool vmx_xsaves_supported(void);
776e58ea 911static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
912static void vmx_set_segment(struct kvm_vcpu *vcpu,
913 struct kvm_segment *var, int seg);
914static void vmx_get_segment(struct kvm_vcpu *vcpu,
915 struct kvm_segment *var, int seg);
d99e4152
GN
916static bool guest_state_valid(struct kvm_vcpu *vcpu);
917static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 918static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 919static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 920static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 921
6aa8b732
AK
922static DEFINE_PER_CPU(struct vmcs *, vmxarea);
923static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
924/*
925 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
926 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
927 */
928static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 929static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 930
bf9f6ac8
FW
931/*
932 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
933 * can find which vCPU should be waken up.
934 */
935static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
936static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
937
23611332
RK
938enum {
939 VMX_IO_BITMAP_A,
940 VMX_IO_BITMAP_B,
941 VMX_MSR_BITMAP_LEGACY,
942 VMX_MSR_BITMAP_LONGMODE,
943 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
944 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
945 VMX_MSR_BITMAP_LEGACY_X2APIC,
946 VMX_MSR_BITMAP_LONGMODE_X2APIC,
947 VMX_VMREAD_BITMAP,
948 VMX_VMWRITE_BITMAP,
949 VMX_BITMAP_NR
950};
951
952static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
953
954#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
955#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
956#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
957#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
958#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
959#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
960#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
961#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
962#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
963#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 964
110312c8 965static bool cpu_has_load_ia32_efer;
8bf00a52 966static bool cpu_has_load_perf_global_ctrl;
110312c8 967
2384d2b3
SY
968static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
969static DEFINE_SPINLOCK(vmx_vpid_lock);
970
1c3d14fe 971static struct vmcs_config {
6aa8b732
AK
972 int size;
973 int order;
9ac7e3e8 974 u32 basic_cap;
6aa8b732 975 u32 revision_id;
1c3d14fe
YS
976 u32 pin_based_exec_ctrl;
977 u32 cpu_based_exec_ctrl;
f78e0e2e 978 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
979 u32 vmexit_ctrl;
980 u32 vmentry_ctrl;
981} vmcs_config;
6aa8b732 982
efff9e53 983static struct vmx_capability {
d56f546d
SY
984 u32 ept;
985 u32 vpid;
986} vmx_capability;
987
6aa8b732
AK
988#define VMX_SEGMENT_FIELD(seg) \
989 [VCPU_SREG_##seg] = { \
990 .selector = GUEST_##seg##_SELECTOR, \
991 .base = GUEST_##seg##_BASE, \
992 .limit = GUEST_##seg##_LIMIT, \
993 .ar_bytes = GUEST_##seg##_AR_BYTES, \
994 }
995
772e0318 996static const struct kvm_vmx_segment_field {
6aa8b732
AK
997 unsigned selector;
998 unsigned base;
999 unsigned limit;
1000 unsigned ar_bytes;
1001} kvm_vmx_segment_fields[] = {
1002 VMX_SEGMENT_FIELD(CS),
1003 VMX_SEGMENT_FIELD(DS),
1004 VMX_SEGMENT_FIELD(ES),
1005 VMX_SEGMENT_FIELD(FS),
1006 VMX_SEGMENT_FIELD(GS),
1007 VMX_SEGMENT_FIELD(SS),
1008 VMX_SEGMENT_FIELD(TR),
1009 VMX_SEGMENT_FIELD(LDTR),
1010};
1011
26bb0981
AK
1012static u64 host_efer;
1013
6de4f3ad
AK
1014static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1015
4d56c8a7 1016/*
8c06585d 1017 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1018 * away by decrementing the array size.
1019 */
6aa8b732 1020static const u32 vmx_msr_index[] = {
05b3e0c2 1021#ifdef CONFIG_X86_64
44ea2b17 1022 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1023#endif
8c06585d 1024 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1025};
6aa8b732 1026
5bb16016 1027static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1028{
1029 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1030 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1031 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1032}
1033
6f05485d
JK
1034static inline bool is_debug(u32 intr_info)
1035{
1036 return is_exception_n(intr_info, DB_VECTOR);
1037}
1038
1039static inline bool is_breakpoint(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, BP_VECTOR);
1042}
1043
5bb16016
JK
1044static inline bool is_page_fault(u32 intr_info)
1045{
1046 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1047}
1048
31299944 1049static inline bool is_no_device(u32 intr_info)
2ab455cc 1050{
5bb16016 1051 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1052}
1053
31299944 1054static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1055{
5bb16016 1056 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1057}
1058
31299944 1059static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1060{
1061 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1062 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1063}
1064
31299944 1065static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1066{
1067 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1068 INTR_INFO_VALID_MASK)) ==
1069 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1070}
1071
31299944 1072static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1073{
04547156 1074 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1075}
1076
31299944 1077static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1078{
04547156 1079 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1080}
1081
35754c98 1082static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1083{
35754c98 1084 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1085}
1086
31299944 1087static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1088{
04547156
SY
1089 return vmcs_config.cpu_based_exec_ctrl &
1090 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1091}
1092
774ead3a 1093static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1094{
04547156
SY
1095 return vmcs_config.cpu_based_2nd_exec_ctrl &
1096 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1097}
1098
8d14695f
YZ
1099static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1100{
1101 return vmcs_config.cpu_based_2nd_exec_ctrl &
1102 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1103}
1104
83d4c286
YZ
1105static inline bool cpu_has_vmx_apic_register_virt(void)
1106{
1107 return vmcs_config.cpu_based_2nd_exec_ctrl &
1108 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1109}
1110
c7c9c56c
YZ
1111static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1112{
1113 return vmcs_config.cpu_based_2nd_exec_ctrl &
1114 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1115}
1116
64672c95
YJ
1117/*
1118 * Comment's format: document - errata name - stepping - processor name.
1119 * Refer from
1120 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1121 */
1122static u32 vmx_preemption_cpu_tfms[] = {
1123/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11240x000206E6,
1125/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1126/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1127/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11280x00020652,
1129/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11300x00020655,
1131/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1132/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1133/*
1134 * 320767.pdf - AAP86 - B1 -
1135 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1136 */
11370x000106E5,
1138/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11390x000106A0,
1140/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11410x000106A1,
1142/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11430x000106A4,
1144 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1145 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1146 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11470x000106A5,
1148};
1149
1150static inline bool cpu_has_broken_vmx_preemption_timer(void)
1151{
1152 u32 eax = cpuid_eax(0x00000001), i;
1153
1154 /* Clear the reserved bits */
1155 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1156 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1157 if (eax == vmx_preemption_cpu_tfms[i])
1158 return true;
1159
1160 return false;
1161}
1162
1163static inline bool cpu_has_vmx_preemption_timer(void)
1164{
64672c95
YJ
1165 return vmcs_config.pin_based_exec_ctrl &
1166 PIN_BASED_VMX_PREEMPTION_TIMER;
1167}
1168
01e439be
YZ
1169static inline bool cpu_has_vmx_posted_intr(void)
1170{
d6a858d1
PB
1171 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1172 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1173}
1174
1175static inline bool cpu_has_vmx_apicv(void)
1176{
1177 return cpu_has_vmx_apic_register_virt() &&
1178 cpu_has_vmx_virtual_intr_delivery() &&
1179 cpu_has_vmx_posted_intr();
1180}
1181
04547156
SY
1182static inline bool cpu_has_vmx_flexpriority(void)
1183{
1184 return cpu_has_vmx_tpr_shadow() &&
1185 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1186}
1187
e799794e
MT
1188static inline bool cpu_has_vmx_ept_execute_only(void)
1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1191}
1192
e799794e
MT
1193static inline bool cpu_has_vmx_ept_2m_page(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1196}
1197
878403b7
SY
1198static inline bool cpu_has_vmx_ept_1g_page(void)
1199{
31299944 1200 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1201}
1202
4bc9b982
SY
1203static inline bool cpu_has_vmx_ept_4levels(void)
1204{
1205 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1206}
1207
83c3a331
XH
1208static inline bool cpu_has_vmx_ept_ad_bits(void)
1209{
1210 return vmx_capability.ept & VMX_EPT_AD_BIT;
1211}
1212
31299944 1213static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1214{
31299944 1215 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1216}
1217
31299944 1218static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1219{
31299944 1220 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1221}
1222
518c8aee
GJ
1223static inline bool cpu_has_vmx_invvpid_single(void)
1224{
1225 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1226}
1227
b9d762fa
GJ
1228static inline bool cpu_has_vmx_invvpid_global(void)
1229{
1230 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1231}
1232
08d839c4
WL
1233static inline bool cpu_has_vmx_invvpid(void)
1234{
1235 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1236}
1237
31299944 1238static inline bool cpu_has_vmx_ept(void)
d56f546d 1239{
04547156
SY
1240 return vmcs_config.cpu_based_2nd_exec_ctrl &
1241 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1242}
1243
31299944 1244static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1245{
1246 return vmcs_config.cpu_based_2nd_exec_ctrl &
1247 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1248}
1249
31299944 1250static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1251{
1252 return vmcs_config.cpu_based_2nd_exec_ctrl &
1253 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1254}
1255
9ac7e3e8
JD
1256static inline bool cpu_has_vmx_basic_inout(void)
1257{
1258 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1259}
1260
35754c98 1261static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1262{
35754c98 1263 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1264}
1265
31299944 1266static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1267{
04547156
SY
1268 return vmcs_config.cpu_based_2nd_exec_ctrl &
1269 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1270}
1271
31299944 1272static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1273{
1274 return vmcs_config.cpu_based_2nd_exec_ctrl &
1275 SECONDARY_EXEC_RDTSCP;
1276}
1277
ad756a16
MJ
1278static inline bool cpu_has_vmx_invpcid(void)
1279{
1280 return vmcs_config.cpu_based_2nd_exec_ctrl &
1281 SECONDARY_EXEC_ENABLE_INVPCID;
1282}
1283
f5f48ee1
SY
1284static inline bool cpu_has_vmx_wbinvd_exit(void)
1285{
1286 return vmcs_config.cpu_based_2nd_exec_ctrl &
1287 SECONDARY_EXEC_WBINVD_EXITING;
1288}
1289
abc4fc58
AG
1290static inline bool cpu_has_vmx_shadow_vmcs(void)
1291{
1292 u64 vmx_msr;
1293 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1294 /* check if the cpu supports writing r/o exit information fields */
1295 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1296 return false;
1297
1298 return vmcs_config.cpu_based_2nd_exec_ctrl &
1299 SECONDARY_EXEC_SHADOW_VMCS;
1300}
1301
843e4330
KH
1302static inline bool cpu_has_vmx_pml(void)
1303{
1304 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1305}
1306
64903d61
HZ
1307static inline bool cpu_has_vmx_tsc_scaling(void)
1308{
1309 return vmcs_config.cpu_based_2nd_exec_ctrl &
1310 SECONDARY_EXEC_TSC_SCALING;
1311}
1312
04547156
SY
1313static inline bool report_flexpriority(void)
1314{
1315 return flexpriority_enabled;
1316}
1317
fe3ef05c
NHE
1318static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1319{
1320 return vmcs12->cpu_based_vm_exec_control & bit;
1321}
1322
1323static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1324{
1325 return (vmcs12->cpu_based_vm_exec_control &
1326 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1327 (vmcs12->secondary_vm_exec_control & bit);
1328}
1329
f5c4368f 1330static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1331{
1332 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1333}
1334
f4124500
JK
1335static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1336{
1337 return vmcs12->pin_based_vm_exec_control &
1338 PIN_BASED_VMX_PREEMPTION_TIMER;
1339}
1340
155a97a3
NHE
1341static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1342{
1343 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1344}
1345
81dc01f7
WL
1346static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1347{
1348 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1349 vmx_xsaves_supported();
1350}
1351
f2b93280
WV
1352static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1353{
1354 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1355}
1356
5c614b35
WL
1357static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1358{
1359 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1360}
1361
82f0dd4b
WV
1362static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1363{
1364 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1365}
1366
608406e2
WV
1367static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1368{
1369 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1370}
1371
705699a1
WV
1372static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1373{
1374 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1375}
1376
ef85b673 1377static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1378{
1379 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1380 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1381}
1382
533558bc
JK
1383static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1384 u32 exit_intr_info,
1385 unsigned long exit_qualification);
7c177938
NHE
1386static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1387 struct vmcs12 *vmcs12,
1388 u32 reason, unsigned long qualification);
1389
8b9cf98c 1390static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1391{
1392 int i;
1393
a2fa3e9f 1394 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1395 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1396 return i;
1397 return -1;
1398}
1399
2384d2b3
SY
1400static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1401{
1402 struct {
1403 u64 vpid : 16;
1404 u64 rsvd : 48;
1405 u64 gva;
1406 } operand = { vpid, 0, gva };
1407
4ecac3fd 1408 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1409 /* CF==1 or ZF==1 --> rc = -1 */
1410 "; ja 1f ; ud2 ; 1:"
1411 : : "a"(&operand), "c"(ext) : "cc", "memory");
1412}
1413
1439442c
SY
1414static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1415{
1416 struct {
1417 u64 eptp, gpa;
1418 } operand = {eptp, gpa};
1419
4ecac3fd 1420 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1421 /* CF==1 or ZF==1 --> rc = -1 */
1422 "; ja 1f ; ud2 ; 1:\n"
1423 : : "a" (&operand), "c" (ext) : "cc", "memory");
1424}
1425
26bb0981 1426static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1427{
1428 int i;
1429
8b9cf98c 1430 i = __find_msr_index(vmx, msr);
a75beee6 1431 if (i >= 0)
a2fa3e9f 1432 return &vmx->guest_msrs[i];
8b6d44c7 1433 return NULL;
7725f0ba
AK
1434}
1435
6aa8b732
AK
1436static void vmcs_clear(struct vmcs *vmcs)
1437{
1438 u64 phys_addr = __pa(vmcs);
1439 u8 error;
1440
4ecac3fd 1441 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1442 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1443 : "cc", "memory");
1444 if (error)
1445 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1446 vmcs, phys_addr);
1447}
1448
d462b819
NHE
1449static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1450{
1451 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1452 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1453 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1454 loaded_vmcs->cpu = -1;
1455 loaded_vmcs->launched = 0;
1456}
1457
7725b894
DX
1458static void vmcs_load(struct vmcs *vmcs)
1459{
1460 u64 phys_addr = __pa(vmcs);
1461 u8 error;
1462
1463 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1464 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1465 : "cc", "memory");
1466 if (error)
2844d849 1467 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1468 vmcs, phys_addr);
1469}
1470
2965faa5 1471#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1472/*
1473 * This bitmap is used to indicate whether the vmclear
1474 * operation is enabled on all cpus. All disabled by
1475 * default.
1476 */
1477static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1478
1479static inline void crash_enable_local_vmclear(int cpu)
1480{
1481 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1482}
1483
1484static inline void crash_disable_local_vmclear(int cpu)
1485{
1486 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1487}
1488
1489static inline int crash_local_vmclear_enabled(int cpu)
1490{
1491 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1492}
1493
1494static void crash_vmclear_local_loaded_vmcss(void)
1495{
1496 int cpu = raw_smp_processor_id();
1497 struct loaded_vmcs *v;
1498
1499 if (!crash_local_vmclear_enabled(cpu))
1500 return;
1501
1502 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1503 loaded_vmcss_on_cpu_link)
1504 vmcs_clear(v->vmcs);
1505}
1506#else
1507static inline void crash_enable_local_vmclear(int cpu) { }
1508static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1509#endif /* CONFIG_KEXEC_CORE */
8f536b76 1510
d462b819 1511static void __loaded_vmcs_clear(void *arg)
6aa8b732 1512{
d462b819 1513 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1514 int cpu = raw_smp_processor_id();
6aa8b732 1515
d462b819
NHE
1516 if (loaded_vmcs->cpu != cpu)
1517 return; /* vcpu migration can race with cpu offline */
1518 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1519 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1520 crash_disable_local_vmclear(cpu);
d462b819 1521 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1522
1523 /*
1524 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1525 * is before setting loaded_vmcs->vcpu to -1 which is done in
1526 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1527 * then adds the vmcs into percpu list before it is deleted.
1528 */
1529 smp_wmb();
1530
d462b819 1531 loaded_vmcs_init(loaded_vmcs);
8f536b76 1532 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1533}
1534
d462b819 1535static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1536{
e6c7d321
XG
1537 int cpu = loaded_vmcs->cpu;
1538
1539 if (cpu != -1)
1540 smp_call_function_single(cpu,
1541 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1542}
1543
dd5f5341 1544static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1545{
dd5f5341 1546 if (vpid == 0)
2384d2b3
SY
1547 return;
1548
518c8aee 1549 if (cpu_has_vmx_invvpid_single())
dd5f5341 1550 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1551}
1552
b9d762fa
GJ
1553static inline void vpid_sync_vcpu_global(void)
1554{
1555 if (cpu_has_vmx_invvpid_global())
1556 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1557}
1558
dd5f5341 1559static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1560{
1561 if (cpu_has_vmx_invvpid_single())
dd5f5341 1562 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1563 else
1564 vpid_sync_vcpu_global();
1565}
1566
1439442c
SY
1567static inline void ept_sync_global(void)
1568{
1569 if (cpu_has_vmx_invept_global())
1570 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1571}
1572
1573static inline void ept_sync_context(u64 eptp)
1574{
089d034e 1575 if (enable_ept) {
1439442c
SY
1576 if (cpu_has_vmx_invept_context())
1577 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1578 else
1579 ept_sync_global();
1580 }
1581}
1582
8a86aea9
PB
1583static __always_inline void vmcs_check16(unsigned long field)
1584{
1585 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1586 "16-bit accessor invalid for 64-bit field");
1587 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1588 "16-bit accessor invalid for 64-bit high field");
1589 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1590 "16-bit accessor invalid for 32-bit high field");
1591 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1592 "16-bit accessor invalid for natural width field");
1593}
1594
1595static __always_inline void vmcs_check32(unsigned long field)
1596{
1597 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1598 "32-bit accessor invalid for 16-bit field");
1599 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1600 "32-bit accessor invalid for natural width field");
1601}
1602
1603static __always_inline void vmcs_check64(unsigned long field)
1604{
1605 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1606 "64-bit accessor invalid for 16-bit field");
1607 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1608 "64-bit accessor invalid for 64-bit high field");
1609 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1610 "64-bit accessor invalid for 32-bit field");
1611 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1612 "64-bit accessor invalid for natural width field");
1613}
1614
1615static __always_inline void vmcs_checkl(unsigned long field)
1616{
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1618 "Natural width accessor invalid for 16-bit field");
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1620 "Natural width accessor invalid for 64-bit field");
1621 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1622 "Natural width accessor invalid for 64-bit high field");
1623 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1624 "Natural width accessor invalid for 32-bit field");
1625}
1626
1627static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1628{
5e520e62 1629 unsigned long value;
6aa8b732 1630
5e520e62
AK
1631 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1632 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1633 return value;
1634}
1635
96304217 1636static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1637{
8a86aea9
PB
1638 vmcs_check16(field);
1639 return __vmcs_readl(field);
6aa8b732
AK
1640}
1641
96304217 1642static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1643{
8a86aea9
PB
1644 vmcs_check32(field);
1645 return __vmcs_readl(field);
6aa8b732
AK
1646}
1647
96304217 1648static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1649{
8a86aea9 1650 vmcs_check64(field);
05b3e0c2 1651#ifdef CONFIG_X86_64
8a86aea9 1652 return __vmcs_readl(field);
6aa8b732 1653#else
8a86aea9 1654 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1655#endif
1656}
1657
8a86aea9
PB
1658static __always_inline unsigned long vmcs_readl(unsigned long field)
1659{
1660 vmcs_checkl(field);
1661 return __vmcs_readl(field);
1662}
1663
e52de1b8
AK
1664static noinline void vmwrite_error(unsigned long field, unsigned long value)
1665{
1666 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1667 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1668 dump_stack();
1669}
1670
8a86aea9 1671static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1672{
1673 u8 error;
1674
4ecac3fd 1675 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1676 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1677 if (unlikely(error))
1678 vmwrite_error(field, value);
6aa8b732
AK
1679}
1680
8a86aea9 1681static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1682{
8a86aea9
PB
1683 vmcs_check16(field);
1684 __vmcs_writel(field, value);
6aa8b732
AK
1685}
1686
8a86aea9 1687static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1688{
8a86aea9
PB
1689 vmcs_check32(field);
1690 __vmcs_writel(field, value);
6aa8b732
AK
1691}
1692
8a86aea9 1693static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1694{
8a86aea9
PB
1695 vmcs_check64(field);
1696 __vmcs_writel(field, value);
7682f2d0 1697#ifndef CONFIG_X86_64
6aa8b732 1698 asm volatile ("");
8a86aea9 1699 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1700#endif
1701}
1702
8a86aea9 1703static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1704{
8a86aea9
PB
1705 vmcs_checkl(field);
1706 __vmcs_writel(field, value);
2ab455cc
AL
1707}
1708
8a86aea9 1709static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1710{
8a86aea9
PB
1711 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1712 "vmcs_clear_bits does not support 64-bit fields");
1713 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1714}
1715
8a86aea9 1716static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1717{
8a86aea9
PB
1718 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1719 "vmcs_set_bits does not support 64-bit fields");
1720 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1721}
1722
8391ce44
PB
1723static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1724{
1725 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1726}
1727
2961e876
GN
1728static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1729{
1730 vmcs_write32(VM_ENTRY_CONTROLS, val);
1731 vmx->vm_entry_controls_shadow = val;
1732}
1733
1734static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1735{
1736 if (vmx->vm_entry_controls_shadow != val)
1737 vm_entry_controls_init(vmx, val);
1738}
1739
1740static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1741{
1742 return vmx->vm_entry_controls_shadow;
1743}
1744
1745
1746static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1747{
1748 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1749}
1750
1751static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1752{
1753 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1754}
1755
8391ce44
PB
1756static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1757{
1758 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1759}
1760
2961e876
GN
1761static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1762{
1763 vmcs_write32(VM_EXIT_CONTROLS, val);
1764 vmx->vm_exit_controls_shadow = val;
1765}
1766
1767static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1768{
1769 if (vmx->vm_exit_controls_shadow != val)
1770 vm_exit_controls_init(vmx, val);
1771}
1772
1773static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1774{
1775 return vmx->vm_exit_controls_shadow;
1776}
1777
1778
1779static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1780{
1781 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1782}
1783
1784static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1785{
1786 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1787}
1788
2fb92db1
AK
1789static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1790{
1791 vmx->segment_cache.bitmask = 0;
1792}
1793
1794static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1795 unsigned field)
1796{
1797 bool ret;
1798 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1799
1800 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1801 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1802 vmx->segment_cache.bitmask = 0;
1803 }
1804 ret = vmx->segment_cache.bitmask & mask;
1805 vmx->segment_cache.bitmask |= mask;
1806 return ret;
1807}
1808
1809static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1810{
1811 u16 *p = &vmx->segment_cache.seg[seg].selector;
1812
1813 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1814 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1815 return *p;
1816}
1817
1818static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1819{
1820 ulong *p = &vmx->segment_cache.seg[seg].base;
1821
1822 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1823 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1824 return *p;
1825}
1826
1827static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1828{
1829 u32 *p = &vmx->segment_cache.seg[seg].limit;
1830
1831 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1832 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1833 return *p;
1834}
1835
1836static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1837{
1838 u32 *p = &vmx->segment_cache.seg[seg].ar;
1839
1840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1841 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1842 return *p;
1843}
1844
abd3f2d6
AK
1845static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1846{
1847 u32 eb;
1848
fd7373cc 1849 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1850 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1851 if ((vcpu->guest_debug &
1852 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1853 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1854 eb |= 1u << BP_VECTOR;
7ffd92c5 1855 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1856 eb = ~0;
089d034e 1857 if (enable_ept)
1439442c 1858 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1859
1860 /* When we are running a nested L2 guest and L1 specified for it a
1861 * certain exception bitmap, we must trap the same exceptions and pass
1862 * them to L1. When running L2, we will only handle the exceptions
1863 * specified above if L1 did not want them.
1864 */
1865 if (is_guest_mode(vcpu))
1866 eb |= get_vmcs12(vcpu)->exception_bitmap;
1867
abd3f2d6
AK
1868 vmcs_write32(EXCEPTION_BITMAP, eb);
1869}
1870
2961e876
GN
1871static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1872 unsigned long entry, unsigned long exit)
8bf00a52 1873{
2961e876
GN
1874 vm_entry_controls_clearbit(vmx, entry);
1875 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1876}
1877
61d2ef2c
AK
1878static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1879{
1880 unsigned i;
1881 struct msr_autoload *m = &vmx->msr_autoload;
1882
8bf00a52
GN
1883 switch (msr) {
1884 case MSR_EFER:
1885 if (cpu_has_load_ia32_efer) {
2961e876
GN
1886 clear_atomic_switch_msr_special(vmx,
1887 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1888 VM_EXIT_LOAD_IA32_EFER);
1889 return;
1890 }
1891 break;
1892 case MSR_CORE_PERF_GLOBAL_CTRL:
1893 if (cpu_has_load_perf_global_ctrl) {
2961e876 1894 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1895 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1896 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1897 return;
1898 }
1899 break;
110312c8
AK
1900 }
1901
61d2ef2c
AK
1902 for (i = 0; i < m->nr; ++i)
1903 if (m->guest[i].index == msr)
1904 break;
1905
1906 if (i == m->nr)
1907 return;
1908 --m->nr;
1909 m->guest[i] = m->guest[m->nr];
1910 m->host[i] = m->host[m->nr];
1911 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1912 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1913}
1914
2961e876
GN
1915static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1916 unsigned long entry, unsigned long exit,
1917 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1918 u64 guest_val, u64 host_val)
8bf00a52
GN
1919{
1920 vmcs_write64(guest_val_vmcs, guest_val);
1921 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1922 vm_entry_controls_setbit(vmx, entry);
1923 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1924}
1925
61d2ef2c
AK
1926static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1927 u64 guest_val, u64 host_val)
1928{
1929 unsigned i;
1930 struct msr_autoload *m = &vmx->msr_autoload;
1931
8bf00a52
GN
1932 switch (msr) {
1933 case MSR_EFER:
1934 if (cpu_has_load_ia32_efer) {
2961e876
GN
1935 add_atomic_switch_msr_special(vmx,
1936 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1937 VM_EXIT_LOAD_IA32_EFER,
1938 GUEST_IA32_EFER,
1939 HOST_IA32_EFER,
1940 guest_val, host_val);
1941 return;
1942 }
1943 break;
1944 case MSR_CORE_PERF_GLOBAL_CTRL:
1945 if (cpu_has_load_perf_global_ctrl) {
2961e876 1946 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1947 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1948 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1949 GUEST_IA32_PERF_GLOBAL_CTRL,
1950 HOST_IA32_PERF_GLOBAL_CTRL,
1951 guest_val, host_val);
1952 return;
1953 }
1954 break;
7099e2e1
RK
1955 case MSR_IA32_PEBS_ENABLE:
1956 /* PEBS needs a quiescent period after being disabled (to write
1957 * a record). Disabling PEBS through VMX MSR swapping doesn't
1958 * provide that period, so a CPU could write host's record into
1959 * guest's memory.
1960 */
1961 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1962 }
1963
61d2ef2c
AK
1964 for (i = 0; i < m->nr; ++i)
1965 if (m->guest[i].index == msr)
1966 break;
1967
e7fc6f93 1968 if (i == NR_AUTOLOAD_MSRS) {
60266204 1969 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1970 "Can't add msr %x\n", msr);
1971 return;
1972 } else if (i == m->nr) {
61d2ef2c
AK
1973 ++m->nr;
1974 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1975 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1976 }
1977
1978 m->guest[i].index = msr;
1979 m->guest[i].value = guest_val;
1980 m->host[i].index = msr;
1981 m->host[i].value = host_val;
1982}
1983
92c0d900 1984static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1985{
844a5fe2
PB
1986 u64 guest_efer = vmx->vcpu.arch.efer;
1987 u64 ignore_bits = 0;
1988
1989 if (!enable_ept) {
1990 /*
1991 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1992 * host CPUID is more efficient than testing guest CPUID
1993 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1994 */
1995 if (boot_cpu_has(X86_FEATURE_SMEP))
1996 guest_efer |= EFER_NX;
1997 else if (!(guest_efer & EFER_NX))
1998 ignore_bits |= EFER_NX;
1999 }
3a34a881 2000
51c6cf66 2001 /*
844a5fe2 2002 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2003 */
844a5fe2 2004 ignore_bits |= EFER_SCE;
51c6cf66
AK
2005#ifdef CONFIG_X86_64
2006 ignore_bits |= EFER_LMA | EFER_LME;
2007 /* SCE is meaningful only in long mode on Intel */
2008 if (guest_efer & EFER_LMA)
2009 ignore_bits &= ~(u64)EFER_SCE;
2010#endif
84ad33ef
AK
2011
2012 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2013
2014 /*
2015 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2016 * On CPUs that support "load IA32_EFER", always switch EFER
2017 * atomically, since it's faster than switching it manually.
2018 */
2019 if (cpu_has_load_ia32_efer ||
2020 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2021 if (!(guest_efer & EFER_LMA))
2022 guest_efer &= ~EFER_LME;
54b98bff
AL
2023 if (guest_efer != host_efer)
2024 add_atomic_switch_msr(vmx, MSR_EFER,
2025 guest_efer, host_efer);
84ad33ef 2026 return false;
844a5fe2
PB
2027 } else {
2028 guest_efer &= ~ignore_bits;
2029 guest_efer |= host_efer & ignore_bits;
2030
2031 vmx->guest_msrs[efer_offset].data = guest_efer;
2032 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2033
844a5fe2
PB
2034 return true;
2035 }
51c6cf66
AK
2036}
2037
e28baead
AL
2038#ifdef CONFIG_X86_32
2039/*
2040 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2041 * VMCS rather than the segment table. KVM uses this helper to figure
2042 * out the current bases to poke them into the VMCS before entry.
2043 */
2d49ec72
GN
2044static unsigned long segment_base(u16 selector)
2045{
89cbc767 2046 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
8c2e41f7 2047 struct desc_struct *table;
2d49ec72
GN
2048 unsigned long v;
2049
8c2e41f7 2050 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2051 return 0;
2052
8c2e41f7 2053 table = (struct desc_struct *)gdt->address;
2d49ec72 2054
8c2e41f7 2055 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2056 u16 ldt_selector = kvm_read_ldt();
2057
8c2e41f7 2058 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2059 return 0;
2060
8c2e41f7 2061 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2062 }
8c2e41f7 2063 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2064 return v;
2065}
e28baead 2066#endif
2d49ec72 2067
04d2cc77 2068static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2069{
04d2cc77 2070 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2071 int i;
04d2cc77 2072
a2fa3e9f 2073 if (vmx->host_state.loaded)
33ed6329
AK
2074 return;
2075
a2fa3e9f 2076 vmx->host_state.loaded = 1;
33ed6329
AK
2077 /*
2078 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2079 * allow segment selectors with cpl > 0 or ti == 1.
2080 */
d6e88aec 2081 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2082 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2083 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2084 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2085 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2086 vmx->host_state.fs_reload_needed = 0;
2087 } else {
33ed6329 2088 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2089 vmx->host_state.fs_reload_needed = 1;
33ed6329 2090 }
9581d442 2091 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2092 if (!(vmx->host_state.gs_sel & 7))
2093 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2094 else {
2095 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2096 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2097 }
2098
b2da15ac
AK
2099#ifdef CONFIG_X86_64
2100 savesegment(ds, vmx->host_state.ds_sel);
2101 savesegment(es, vmx->host_state.es_sel);
2102#endif
2103
33ed6329
AK
2104#ifdef CONFIG_X86_64
2105 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2106 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2107#else
a2fa3e9f
GH
2108 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2109 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2110#endif
707c0874
AK
2111
2112#ifdef CONFIG_X86_64
c8770e7b
AK
2113 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2114 if (is_long_mode(&vmx->vcpu))
44ea2b17 2115 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2116#endif
da8999d3
LJ
2117 if (boot_cpu_has(X86_FEATURE_MPX))
2118 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2119 for (i = 0; i < vmx->save_nmsrs; ++i)
2120 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2121 vmx->guest_msrs[i].data,
2122 vmx->guest_msrs[i].mask);
33ed6329
AK
2123}
2124
a9b21b62 2125static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2126{
a2fa3e9f 2127 if (!vmx->host_state.loaded)
33ed6329
AK
2128 return;
2129
e1beb1d3 2130 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2131 vmx->host_state.loaded = 0;
c8770e7b
AK
2132#ifdef CONFIG_X86_64
2133 if (is_long_mode(&vmx->vcpu))
2134 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2135#endif
152d3f2f 2136 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2137 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2138#ifdef CONFIG_X86_64
9581d442 2139 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2140#else
2141 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2142#endif
33ed6329 2143 }
0a77fe4c
AK
2144 if (vmx->host_state.fs_reload_needed)
2145 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2146#ifdef CONFIG_X86_64
2147 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2148 loadsegment(ds, vmx->host_state.ds_sel);
2149 loadsegment(es, vmx->host_state.es_sel);
2150 }
b2da15ac 2151#endif
b7ffc44d 2152 invalidate_tss_limit();
44ea2b17 2153#ifdef CONFIG_X86_64
c8770e7b 2154 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2155#endif
da8999d3
LJ
2156 if (vmx->host_state.msr_host_bndcfgs)
2157 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
89cbc767 2158 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2159}
2160
a9b21b62
AK
2161static void vmx_load_host_state(struct vcpu_vmx *vmx)
2162{
2163 preempt_disable();
2164 __vmx_load_host_state(vmx);
2165 preempt_enable();
2166}
2167
28b835d6
FW
2168static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2169{
2170 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2171 struct pi_desc old, new;
2172 unsigned int dest;
2173
2174 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2175 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2176 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2177 return;
2178
2179 do {
2180 old.control = new.control = pi_desc->control;
2181
2182 /*
2183 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2184 * are two possible cases:
2185 * 1. After running 'pre_block', context switch
2186 * happened. For this case, 'sn' was set in
2187 * vmx_vcpu_put(), so we need to clear it here.
2188 * 2. After running 'pre_block', we were blocked,
2189 * and woken up by some other guy. For this case,
2190 * we don't need to do anything, 'pi_post_block'
2191 * will do everything for us. However, we cannot
2192 * check whether it is case #1 or case #2 here
2193 * (maybe, not needed), so we also clear sn here,
2194 * I think it is not a big deal.
2195 */
2196 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2197 if (vcpu->cpu != cpu) {
2198 dest = cpu_physical_id(cpu);
2199
2200 if (x2apic_enabled())
2201 new.ndst = dest;
2202 else
2203 new.ndst = (dest << 8) & 0xFF00;
2204 }
2205
2206 /* set 'NV' to 'notification vector' */
2207 new.nv = POSTED_INTR_VECTOR;
2208 }
2209
2210 /* Allow posting non-urgent interrupts */
2211 new.sn = 0;
2212 } while (cmpxchg(&pi_desc->control, old.control,
2213 new.control) != old.control);
2214}
1be0e61c 2215
c95ba92a
PF
2216static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2217{
2218 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2219 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2220}
2221
6aa8b732
AK
2222/*
2223 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2224 * vcpu mutex is already taken.
2225 */
15ad7146 2226static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2227{
a2fa3e9f 2228 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2229 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2230
b80c76ec 2231 if (!already_loaded) {
fe0e80be 2232 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2233 local_irq_disable();
8f536b76 2234 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2235
2236 /*
2237 * Read loaded_vmcs->cpu should be before fetching
2238 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2239 * See the comments in __loaded_vmcs_clear().
2240 */
2241 smp_rmb();
2242
d462b819
NHE
2243 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2244 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2245 crash_enable_local_vmclear(cpu);
92fe13be 2246 local_irq_enable();
b80c76ec
JM
2247 }
2248
2249 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2250 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2251 vmcs_load(vmx->loaded_vmcs->vmcs);
2252 }
2253
2254 if (!already_loaded) {
2255 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2256 unsigned long sysenter_esp;
2257
2258 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2259
6aa8b732
AK
2260 /*
2261 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2262 * processors. See 22.2.4.
6aa8b732 2263 */
e0c23063
AL
2264 vmcs_writel(HOST_TR_BASE,
2265 (unsigned long)this_cpu_ptr(&cpu_tss));
2266 vmcs_writel(HOST_GDTR_BASE, gdt->address);
6aa8b732 2267
b7ffc44d
AL
2268 /*
2269 * VM exits change the host TR limit to 0x67 after a VM
2270 * exit. This is okay, since 0x67 covers everything except
2271 * the IO bitmap and have have code to handle the IO bitmap
2272 * being lost after a VM exit.
2273 */
2274 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2275
6aa8b732
AK
2276 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2277 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2278
d462b819 2279 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2280 }
28b835d6 2281
2680d6da
OH
2282 /* Setup TSC multiplier */
2283 if (kvm_has_tsc_control &&
c95ba92a
PF
2284 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2285 decache_tsc_multiplier(vmx);
2680d6da 2286
28b835d6 2287 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2288 vmx->host_pkru = read_pkru();
28b835d6
FW
2289}
2290
2291static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2292{
2293 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2294
2295 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2296 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2297 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2298 return;
2299
2300 /* Set SN when the vCPU is preempted */
2301 if (vcpu->preempted)
2302 pi_set_sn(pi_desc);
6aa8b732
AK
2303}
2304
2305static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2306{
28b835d6
FW
2307 vmx_vcpu_pi_put(vcpu);
2308
a9b21b62 2309 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2310}
2311
edcafe3c
AK
2312static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2313
fe3ef05c
NHE
2314/*
2315 * Return the cr0 value that a nested guest would read. This is a combination
2316 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2317 * its hypervisor (cr0_read_shadow).
2318 */
2319static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2320{
2321 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2322 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2323}
2324static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2325{
2326 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2327 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2328}
2329
6aa8b732
AK
2330static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2331{
78ac8b47 2332 unsigned long rflags, save_rflags;
345dcaa8 2333
6de12732
AK
2334 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2335 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2336 rflags = vmcs_readl(GUEST_RFLAGS);
2337 if (to_vmx(vcpu)->rmode.vm86_active) {
2338 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2339 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2340 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2341 }
2342 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2343 }
6de12732 2344 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2345}
2346
2347static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2348{
6de12732
AK
2349 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2350 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2351 if (to_vmx(vcpu)->rmode.vm86_active) {
2352 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2353 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2354 }
6aa8b732
AK
2355 vmcs_writel(GUEST_RFLAGS, rflags);
2356}
2357
be94f6b7
HH
2358static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2359{
2360 return to_vmx(vcpu)->guest_pkru;
2361}
2362
37ccdcbe 2363static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2364{
2365 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2366 int ret = 0;
2367
2368 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2369 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2370 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2371 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2372
37ccdcbe 2373 return ret;
2809f5d2
GC
2374}
2375
2376static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2377{
2378 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2379 u32 interruptibility = interruptibility_old;
2380
2381 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2382
48005f64 2383 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2384 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2385 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2386 interruptibility |= GUEST_INTR_STATE_STI;
2387
2388 if ((interruptibility != interruptibility_old))
2389 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2390}
2391
6aa8b732
AK
2392static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2393{
2394 unsigned long rip;
6aa8b732 2395
5fdbf976 2396 rip = kvm_rip_read(vcpu);
6aa8b732 2397 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2398 kvm_rip_write(vcpu, rip);
6aa8b732 2399
2809f5d2
GC
2400 /* skipping an emulated instruction also counts */
2401 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2402}
2403
0b6ac343
NHE
2404/*
2405 * KVM wants to inject page-faults which it got to the guest. This function
2406 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2407 */
e011c663 2408static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2409{
2410 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2411
e011c663 2412 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2413 return 0;
2414
533558bc
JK
2415 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2416 vmcs_read32(VM_EXIT_INTR_INFO),
2417 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2418 return 1;
2419}
2420
298101da 2421static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2422 bool has_error_code, u32 error_code,
2423 bool reinject)
298101da 2424{
77ab6db0 2425 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2426 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2427
e011c663
GN
2428 if (!reinject && is_guest_mode(vcpu) &&
2429 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2430 return;
2431
8ab2d2e2 2432 if (has_error_code) {
77ab6db0 2433 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2434 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2435 }
77ab6db0 2436
7ffd92c5 2437 if (vmx->rmode.vm86_active) {
71f9833b
SH
2438 int inc_eip = 0;
2439 if (kvm_exception_is_soft(nr))
2440 inc_eip = vcpu->arch.event_exit_inst_len;
2441 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2442 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2443 return;
2444 }
2445
66fd3f7f
GN
2446 if (kvm_exception_is_soft(nr)) {
2447 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2448 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2449 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2450 } else
2451 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2452
2453 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2454}
2455
4e47c7a6
SY
2456static bool vmx_rdtscp_supported(void)
2457{
2458 return cpu_has_vmx_rdtscp();
2459}
2460
ad756a16
MJ
2461static bool vmx_invpcid_supported(void)
2462{
2463 return cpu_has_vmx_invpcid() && enable_ept;
2464}
2465
a75beee6
ED
2466/*
2467 * Swap MSR entry in host/guest MSR entry array.
2468 */
8b9cf98c 2469static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2470{
26bb0981 2471 struct shared_msr_entry tmp;
a2fa3e9f
GH
2472
2473 tmp = vmx->guest_msrs[to];
2474 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2475 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2476}
2477
8d14695f
YZ
2478static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2479{
2480 unsigned long *msr_bitmap;
2481
670125bd 2482 if (is_guest_mode(vcpu))
d048c098 2483 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2484 else if (cpu_has_secondary_exec_ctrls() &&
2485 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2486 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2487 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2488 if (is_long_mode(vcpu))
c63e4563 2489 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2490 else
c63e4563 2491 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2492 } else {
2493 if (is_long_mode(vcpu))
c63e4563 2494 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2495 else
c63e4563 2496 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2497 }
8d14695f
YZ
2498 } else {
2499 if (is_long_mode(vcpu))
2500 msr_bitmap = vmx_msr_bitmap_longmode;
2501 else
2502 msr_bitmap = vmx_msr_bitmap_legacy;
2503 }
2504
2505 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2506}
2507
e38aea3e
AK
2508/*
2509 * Set up the vmcs to automatically save and restore system
2510 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2511 * mode, as fiddling with msrs is very expensive.
2512 */
8b9cf98c 2513static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2514{
26bb0981 2515 int save_nmsrs, index;
e38aea3e 2516
a75beee6
ED
2517 save_nmsrs = 0;
2518#ifdef CONFIG_X86_64
8b9cf98c 2519 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2520 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2521 if (index >= 0)
8b9cf98c
RR
2522 move_msr_up(vmx, index, save_nmsrs++);
2523 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2524 if (index >= 0)
8b9cf98c
RR
2525 move_msr_up(vmx, index, save_nmsrs++);
2526 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2527 if (index >= 0)
8b9cf98c 2528 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2529 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2530 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2531 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2532 /*
8c06585d 2533 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2534 * if efer.sce is enabled.
2535 */
8c06585d 2536 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2537 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2538 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2539 }
2540#endif
92c0d900
AK
2541 index = __find_msr_index(vmx, MSR_EFER);
2542 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2543 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2544
26bb0981 2545 vmx->save_nmsrs = save_nmsrs;
5897297b 2546
8d14695f
YZ
2547 if (cpu_has_vmx_msr_bitmap())
2548 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2549}
2550
6aa8b732
AK
2551/*
2552 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2553 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2554 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2555 */
be7b263e 2556static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2557{
2558 u64 host_tsc, tsc_offset;
2559
4ea1636b 2560 host_tsc = rdtsc();
6aa8b732 2561 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2562 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2563}
2564
2565/*
99e3e30a 2566 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2567 */
99e3e30a 2568static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2569{
27fc51b2 2570 if (is_guest_mode(vcpu)) {
7991825b 2571 /*
27fc51b2
NHE
2572 * We're here if L1 chose not to trap WRMSR to TSC. According
2573 * to the spec, this should set L1's TSC; The offset that L1
2574 * set for L2 remains unchanged, and still needs to be added
2575 * to the newly set TSC to get L2's TSC.
7991825b 2576 */
27fc51b2 2577 struct vmcs12 *vmcs12;
27fc51b2
NHE
2578 /* recalculate vmcs02.TSC_OFFSET: */
2579 vmcs12 = get_vmcs12(vcpu);
2580 vmcs_write64(TSC_OFFSET, offset +
2581 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2582 vmcs12->tsc_offset : 0));
2583 } else {
489223ed
YY
2584 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2585 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2586 vmcs_write64(TSC_OFFSET, offset);
2587 }
6aa8b732
AK
2588}
2589
801d3424
NHE
2590static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2591{
2592 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2593 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2594}
2595
2596/*
2597 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2598 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2599 * all guests if the "nested" module option is off, and can also be disabled
2600 * for a single guest by disabling its VMX cpuid bit.
2601 */
2602static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2603{
2604 return nested && guest_cpuid_has_vmx(vcpu);
2605}
2606
b87a51ae
NHE
2607/*
2608 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2609 * returned for the various VMX controls MSRs when nested VMX is enabled.
2610 * The same values should also be used to verify that vmcs12 control fields are
2611 * valid during nested entry from L1 to L2.
2612 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2613 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2614 * bit in the high half is on if the corresponding bit in the control field
2615 * may be on. See also vmx_control_verify().
b87a51ae 2616 */
b9c237bb 2617static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2618{
2619 /*
2620 * Note that as a general rule, the high half of the MSRs (bits in
2621 * the control fields which may be 1) should be initialized by the
2622 * intersection of the underlying hardware's MSR (i.e., features which
2623 * can be supported) and the list of features we want to expose -
2624 * because they are known to be properly supported in our code.
2625 * Also, usually, the low half of the MSRs (bits which must be 1) can
2626 * be set to 0, meaning that L1 may turn off any of these bits. The
2627 * reason is that if one of these bits is necessary, it will appear
2628 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2629 * fields of vmcs01 and vmcs02, will turn these bits off - and
2630 * nested_vmx_exit_handled() will not pass related exits to L1.
2631 * These rules have exceptions below.
2632 */
2633
2634 /* pin-based controls */
eabeaacc 2635 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2636 vmx->nested.nested_vmx_pinbased_ctls_low,
2637 vmx->nested.nested_vmx_pinbased_ctls_high);
2638 vmx->nested.nested_vmx_pinbased_ctls_low |=
2639 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2640 vmx->nested.nested_vmx_pinbased_ctls_high &=
2641 PIN_BASED_EXT_INTR_MASK |
2642 PIN_BASED_NMI_EXITING |
2643 PIN_BASED_VIRTUAL_NMIS;
2644 vmx->nested.nested_vmx_pinbased_ctls_high |=
2645 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2646 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2647 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2648 vmx->nested.nested_vmx_pinbased_ctls_high |=
2649 PIN_BASED_POSTED_INTR;
b87a51ae 2650
3dbcd8da 2651 /* exit controls */
c0dfee58 2652 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2653 vmx->nested.nested_vmx_exit_ctls_low,
2654 vmx->nested.nested_vmx_exit_ctls_high);
2655 vmx->nested.nested_vmx_exit_ctls_low =
2656 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2657
b9c237bb 2658 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2659#ifdef CONFIG_X86_64
c0dfee58 2660 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2661#endif
f4124500 2662 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2663 vmx->nested.nested_vmx_exit_ctls_high |=
2664 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2665 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2666 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2667
a87036ad 2668 if (kvm_mpx_supported())
b9c237bb 2669 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2670
2996fca0 2671 /* We support free control of debug control saving. */
0115f9cb 2672 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2673
b87a51ae
NHE
2674 /* entry controls */
2675 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2676 vmx->nested.nested_vmx_entry_ctls_low,
2677 vmx->nested.nested_vmx_entry_ctls_high);
2678 vmx->nested.nested_vmx_entry_ctls_low =
2679 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2680 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2681#ifdef CONFIG_X86_64
2682 VM_ENTRY_IA32E_MODE |
2683#endif
2684 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2685 vmx->nested.nested_vmx_entry_ctls_high |=
2686 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2687 if (kvm_mpx_supported())
b9c237bb 2688 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2689
2996fca0 2690 /* We support free control of debug control loading. */
0115f9cb 2691 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2692
b87a51ae
NHE
2693 /* cpu-based controls */
2694 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2695 vmx->nested.nested_vmx_procbased_ctls_low,
2696 vmx->nested.nested_vmx_procbased_ctls_high);
2697 vmx->nested.nested_vmx_procbased_ctls_low =
2698 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2699 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2700 CPU_BASED_VIRTUAL_INTR_PENDING |
2701 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2702 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2703 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2704 CPU_BASED_CR3_STORE_EXITING |
2705#ifdef CONFIG_X86_64
2706 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2707#endif
2708 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2709 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2710 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2711 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2712 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2713 /*
2714 * We can allow some features even when not supported by the
2715 * hardware. For example, L1 can specify an MSR bitmap - and we
2716 * can use it to avoid exits to L1 - even when L0 runs L2
2717 * without MSR bitmaps.
2718 */
b9c237bb
WV
2719 vmx->nested.nested_vmx_procbased_ctls_high |=
2720 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2721 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2722
3dcdf3ec 2723 /* We support free control of CR3 access interception. */
0115f9cb 2724 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2725 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2726
b87a51ae
NHE
2727 /* secondary cpu-based controls */
2728 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2729 vmx->nested.nested_vmx_secondary_ctls_low,
2730 vmx->nested.nested_vmx_secondary_ctls_high);
2731 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2732 vmx->nested.nested_vmx_secondary_ctls_high &=
a5f46457 2733 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
d6851fbe 2734 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2735 SECONDARY_EXEC_RDTSCP |
1b07304c 2736 SECONDARY_EXEC_DESC |
f2b93280 2737 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2738 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2739 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2740 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2741 SECONDARY_EXEC_XSAVES;
c18911a2 2742
afa61f75
NHE
2743 if (enable_ept) {
2744 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2745 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2746 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2747 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2748 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2749 if (cpu_has_vmx_ept_execute_only())
2750 vmx->nested.nested_vmx_ept_caps |=
2751 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2752 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2753 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2754 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2755 VMX_EPT_1GB_PAGE_BIT;
ae1e2d10
PB
2756 if (enable_ept_ad_bits)
2757 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
afa61f75 2758 } else
b9c237bb 2759 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2760
ef697a71
PB
2761 /*
2762 * Old versions of KVM use the single-context version without
2763 * checking for support, so declare that it is supported even
2764 * though it is treated as global context. The alternative is
2765 * not failing the single-context invvpid, and it is worse.
2766 */
63cb6d5f
WL
2767 if (enable_vpid) {
2768 vmx->nested.nested_vmx_secondary_ctls_high |=
2769 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2770 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2771 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2772 } else
089d7b6e 2773 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2774
0790ec17
RK
2775 if (enable_unrestricted_guest)
2776 vmx->nested.nested_vmx_secondary_ctls_high |=
2777 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2778
c18911a2 2779 /* miscellaneous data */
b9c237bb
WV
2780 rdmsr(MSR_IA32_VMX_MISC,
2781 vmx->nested.nested_vmx_misc_low,
2782 vmx->nested.nested_vmx_misc_high);
2783 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2784 vmx->nested.nested_vmx_misc_low |=
2785 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2786 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2787 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2788
2789 /*
2790 * This MSR reports some information about VMX support. We
2791 * should return information about the VMX we emulate for the
2792 * guest, and the VMCS structure we give it - not about the
2793 * VMX support of the underlying hardware.
2794 */
2795 vmx->nested.nested_vmx_basic =
2796 VMCS12_REVISION |
2797 VMX_BASIC_TRUE_CTLS |
2798 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2799 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2800
2801 if (cpu_has_vmx_basic_inout())
2802 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2803
2804 /*
8322ebbb 2805 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2806 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2807 * We picked the standard core2 setting.
2808 */
2809#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2810#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2811 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2812 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2813
2814 /* These MSRs specify bits which the guest must keep fixed off. */
2815 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2816 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2817
2818 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2819 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2820}
2821
3899152c
DM
2822/*
2823 * if fixed0[i] == 1: val[i] must be 1
2824 * if fixed1[i] == 0: val[i] must be 0
2825 */
2826static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2827{
2828 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2829}
2830
2831static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2832{
3899152c 2833 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2834}
2835
2836static inline u64 vmx_control_msr(u32 low, u32 high)
2837{
2838 return low | ((u64)high << 32);
2839}
2840
62cc6b9d
DM
2841static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2842{
2843 superset &= mask;
2844 subset &= mask;
2845
2846 return (superset | subset) == superset;
2847}
2848
2849static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2850{
2851 const u64 feature_and_reserved =
2852 /* feature (except bit 48; see below) */
2853 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2854 /* reserved */
2855 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2856 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2857
2858 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2859 return -EINVAL;
2860
2861 /*
2862 * KVM does not emulate a version of VMX that constrains physical
2863 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2864 */
2865 if (data & BIT_ULL(48))
2866 return -EINVAL;
2867
2868 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2869 vmx_basic_vmcs_revision_id(data))
2870 return -EINVAL;
2871
2872 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2873 return -EINVAL;
2874
2875 vmx->nested.nested_vmx_basic = data;
2876 return 0;
2877}
2878
2879static int
2880vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2881{
2882 u64 supported;
2883 u32 *lowp, *highp;
2884
2885 switch (msr_index) {
2886 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2887 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2888 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2889 break;
2890 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2891 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2892 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2893 break;
2894 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2895 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2896 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2897 break;
2898 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2899 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2900 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2901 break;
2902 case MSR_IA32_VMX_PROCBASED_CTLS2:
2903 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2904 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2905 break;
2906 default:
2907 BUG();
2908 }
2909
2910 supported = vmx_control_msr(*lowp, *highp);
2911
2912 /* Check must-be-1 bits are still 1. */
2913 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2914 return -EINVAL;
2915
2916 /* Check must-be-0 bits are still 0. */
2917 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2918 return -EINVAL;
2919
2920 *lowp = data;
2921 *highp = data >> 32;
2922 return 0;
2923}
2924
2925static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2926{
2927 const u64 feature_and_reserved_bits =
2928 /* feature */
2929 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2930 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2931 /* reserved */
2932 GENMASK_ULL(13, 9) | BIT_ULL(31);
2933 u64 vmx_misc;
2934
2935 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2936 vmx->nested.nested_vmx_misc_high);
2937
2938 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2939 return -EINVAL;
2940
2941 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2942 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2943 vmx_misc_preemption_timer_rate(data) !=
2944 vmx_misc_preemption_timer_rate(vmx_misc))
2945 return -EINVAL;
2946
2947 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2948 return -EINVAL;
2949
2950 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2951 return -EINVAL;
2952
2953 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2954 return -EINVAL;
2955
2956 vmx->nested.nested_vmx_misc_low = data;
2957 vmx->nested.nested_vmx_misc_high = data >> 32;
2958 return 0;
2959}
2960
2961static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2962{
2963 u64 vmx_ept_vpid_cap;
2964
2965 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2966 vmx->nested.nested_vmx_vpid_caps);
2967
2968 /* Every bit is either reserved or a feature bit. */
2969 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2970 return -EINVAL;
2971
2972 vmx->nested.nested_vmx_ept_caps = data;
2973 vmx->nested.nested_vmx_vpid_caps = data >> 32;
2974 return 0;
2975}
2976
2977static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2978{
2979 u64 *msr;
2980
2981 switch (msr_index) {
2982 case MSR_IA32_VMX_CR0_FIXED0:
2983 msr = &vmx->nested.nested_vmx_cr0_fixed0;
2984 break;
2985 case MSR_IA32_VMX_CR4_FIXED0:
2986 msr = &vmx->nested.nested_vmx_cr4_fixed0;
2987 break;
2988 default:
2989 BUG();
2990 }
2991
2992 /*
2993 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
2994 * must be 1 in the restored value.
2995 */
2996 if (!is_bitwise_subset(data, *msr, -1ULL))
2997 return -EINVAL;
2998
2999 *msr = data;
3000 return 0;
3001}
3002
3003/*
3004 * Called when userspace is restoring VMX MSRs.
3005 *
3006 * Returns 0 on success, non-0 otherwise.
3007 */
3008static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3009{
b9c237bb
WV
3010 struct vcpu_vmx *vmx = to_vmx(vcpu);
3011
b87a51ae 3012 switch (msr_index) {
b87a51ae 3013 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3014 return vmx_restore_vmx_basic(vmx, data);
3015 case MSR_IA32_VMX_PINBASED_CTLS:
3016 case MSR_IA32_VMX_PROCBASED_CTLS:
3017 case MSR_IA32_VMX_EXIT_CTLS:
3018 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3019 /*
62cc6b9d
DM
3020 * The "non-true" VMX capability MSRs are generated from the
3021 * "true" MSRs, so we do not support restoring them directly.
3022 *
3023 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3024 * should restore the "true" MSRs with the must-be-1 bits
3025 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3026 * DEFAULT SETTINGS".
b87a51ae 3027 */
62cc6b9d
DM
3028 return -EINVAL;
3029 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3030 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3031 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3032 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3033 case MSR_IA32_VMX_PROCBASED_CTLS2:
3034 return vmx_restore_control_msr(vmx, msr_index, data);
3035 case MSR_IA32_VMX_MISC:
3036 return vmx_restore_vmx_misc(vmx, data);
3037 case MSR_IA32_VMX_CR0_FIXED0:
3038 case MSR_IA32_VMX_CR4_FIXED0:
3039 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3040 case MSR_IA32_VMX_CR0_FIXED1:
3041 case MSR_IA32_VMX_CR4_FIXED1:
3042 /*
3043 * These MSRs are generated based on the vCPU's CPUID, so we
3044 * do not support restoring them directly.
3045 */
3046 return -EINVAL;
3047 case MSR_IA32_VMX_EPT_VPID_CAP:
3048 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3049 case MSR_IA32_VMX_VMCS_ENUM:
3050 vmx->nested.nested_vmx_vmcs_enum = data;
3051 return 0;
3052 default:
b87a51ae 3053 /*
62cc6b9d 3054 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3055 */
62cc6b9d
DM
3056 return -EINVAL;
3057 }
3058}
3059
3060/* Returns 0 on success, non-0 otherwise. */
3061static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3062{
3063 struct vcpu_vmx *vmx = to_vmx(vcpu);
3064
3065 switch (msr_index) {
3066 case MSR_IA32_VMX_BASIC:
3067 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3068 break;
3069 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3070 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3071 *pdata = vmx_control_msr(
3072 vmx->nested.nested_vmx_pinbased_ctls_low,
3073 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3074 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3075 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3076 break;
3077 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3078 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3079 *pdata = vmx_control_msr(
3080 vmx->nested.nested_vmx_procbased_ctls_low,
3081 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3082 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3083 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3084 break;
3085 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3086 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3087 *pdata = vmx_control_msr(
3088 vmx->nested.nested_vmx_exit_ctls_low,
3089 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3090 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3091 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3092 break;
3093 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3094 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3095 *pdata = vmx_control_msr(
3096 vmx->nested.nested_vmx_entry_ctls_low,
3097 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3098 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3099 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3100 break;
3101 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3102 *pdata = vmx_control_msr(
3103 vmx->nested.nested_vmx_misc_low,
3104 vmx->nested.nested_vmx_misc_high);
b87a51ae 3105 break;
b87a51ae 3106 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3107 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3108 break;
3109 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3110 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3111 break;
3112 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3113 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3114 break;
3115 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3116 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3117 break;
3118 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3119 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3120 break;
3121 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3122 *pdata = vmx_control_msr(
3123 vmx->nested.nested_vmx_secondary_ctls_low,
3124 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3125 break;
3126 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3127 *pdata = vmx->nested.nested_vmx_ept_caps |
3128 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
3129 break;
3130 default:
b87a51ae 3131 return 1;
b3897a49
NHE
3132 }
3133
b87a51ae
NHE
3134 return 0;
3135}
3136
37e4c997
HZ
3137static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3138 uint64_t val)
3139{
3140 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3141
3142 return !(val & ~valid_bits);
3143}
3144
6aa8b732
AK
3145/*
3146 * Reads an msr value (of 'msr_index') into 'pdata'.
3147 * Returns 0 on success, non-0 otherwise.
3148 * Assumes vcpu_load() was already called.
3149 */
609e36d3 3150static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3151{
26bb0981 3152 struct shared_msr_entry *msr;
6aa8b732 3153
609e36d3 3154 switch (msr_info->index) {
05b3e0c2 3155#ifdef CONFIG_X86_64
6aa8b732 3156 case MSR_FS_BASE:
609e36d3 3157 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3158 break;
3159 case MSR_GS_BASE:
609e36d3 3160 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3161 break;
44ea2b17
AK
3162 case MSR_KERNEL_GS_BASE:
3163 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3164 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3165 break;
26bb0981 3166#endif
6aa8b732 3167 case MSR_EFER:
609e36d3 3168 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3169 case MSR_IA32_TSC:
be7b263e 3170 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3171 break;
3172 case MSR_IA32_SYSENTER_CS:
609e36d3 3173 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3174 break;
3175 case MSR_IA32_SYSENTER_EIP:
609e36d3 3176 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3177 break;
3178 case MSR_IA32_SYSENTER_ESP:
609e36d3 3179 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3180 break;
0dd376e7 3181 case MSR_IA32_BNDCFGS:
a87036ad 3182 if (!kvm_mpx_supported())
93c4adc7 3183 return 1;
609e36d3 3184 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3185 break;
c45dcc71
AR
3186 case MSR_IA32_MCG_EXT_CTL:
3187 if (!msr_info->host_initiated &&
3188 !(to_vmx(vcpu)->msr_ia32_feature_control &
3189 FEATURE_CONTROL_LMCE))
cae50139 3190 return 1;
c45dcc71
AR
3191 msr_info->data = vcpu->arch.mcg_ext_ctl;
3192 break;
cae50139 3193 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3194 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3195 break;
3196 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3197 if (!nested_vmx_allowed(vcpu))
3198 return 1;
609e36d3 3199 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3200 case MSR_IA32_XSS:
3201 if (!vmx_xsaves_supported())
3202 return 1;
609e36d3 3203 msr_info->data = vcpu->arch.ia32_xss;
20300099 3204 break;
4e47c7a6 3205 case MSR_TSC_AUX:
81b1b9ca 3206 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3207 return 1;
3208 /* Otherwise falls through */
6aa8b732 3209 default:
609e36d3 3210 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3211 if (msr) {
609e36d3 3212 msr_info->data = msr->data;
3bab1f5d 3213 break;
6aa8b732 3214 }
609e36d3 3215 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3216 }
3217
6aa8b732
AK
3218 return 0;
3219}
3220
cae50139
JK
3221static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3222
6aa8b732
AK
3223/*
3224 * Writes msr value into into the appropriate "register".
3225 * Returns 0 on success, non-0 otherwise.
3226 * Assumes vcpu_load() was already called.
3227 */
8fe8ab46 3228static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3229{
a2fa3e9f 3230 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3231 struct shared_msr_entry *msr;
2cc51560 3232 int ret = 0;
8fe8ab46
WA
3233 u32 msr_index = msr_info->index;
3234 u64 data = msr_info->data;
2cc51560 3235
6aa8b732 3236 switch (msr_index) {
3bab1f5d 3237 case MSR_EFER:
8fe8ab46 3238 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3239 break;
16175a79 3240#ifdef CONFIG_X86_64
6aa8b732 3241 case MSR_FS_BASE:
2fb92db1 3242 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3243 vmcs_writel(GUEST_FS_BASE, data);
3244 break;
3245 case MSR_GS_BASE:
2fb92db1 3246 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3247 vmcs_writel(GUEST_GS_BASE, data);
3248 break;
44ea2b17
AK
3249 case MSR_KERNEL_GS_BASE:
3250 vmx_load_host_state(vmx);
3251 vmx->msr_guest_kernel_gs_base = data;
3252 break;
6aa8b732
AK
3253#endif
3254 case MSR_IA32_SYSENTER_CS:
3255 vmcs_write32(GUEST_SYSENTER_CS, data);
3256 break;
3257 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3258 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3259 break;
3260 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3261 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3262 break;
0dd376e7 3263 case MSR_IA32_BNDCFGS:
a87036ad 3264 if (!kvm_mpx_supported())
93c4adc7 3265 return 1;
0dd376e7
LJ
3266 vmcs_write64(GUEST_BNDCFGS, data);
3267 break;
af24a4e4 3268 case MSR_IA32_TSC:
8fe8ab46 3269 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3270 break;
468d472f
SY
3271 case MSR_IA32_CR_PAT:
3272 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3273 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3274 return 1;
468d472f
SY
3275 vmcs_write64(GUEST_IA32_PAT, data);
3276 vcpu->arch.pat = data;
3277 break;
3278 }
8fe8ab46 3279 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3280 break;
ba904635
WA
3281 case MSR_IA32_TSC_ADJUST:
3282 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3283 break;
c45dcc71
AR
3284 case MSR_IA32_MCG_EXT_CTL:
3285 if ((!msr_info->host_initiated &&
3286 !(to_vmx(vcpu)->msr_ia32_feature_control &
3287 FEATURE_CONTROL_LMCE)) ||
3288 (data & ~MCG_EXT_CTL_LMCE_EN))
3289 return 1;
3290 vcpu->arch.mcg_ext_ctl = data;
3291 break;
cae50139 3292 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3293 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3294 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3295 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3296 return 1;
3b84080b 3297 vmx->msr_ia32_feature_control = data;
cae50139
JK
3298 if (msr_info->host_initiated && data == 0)
3299 vmx_leave_nested(vcpu);
3300 break;
3301 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3302 if (!msr_info->host_initiated)
3303 return 1; /* they are read-only */
3304 if (!nested_vmx_allowed(vcpu))
3305 return 1;
3306 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3307 case MSR_IA32_XSS:
3308 if (!vmx_xsaves_supported())
3309 return 1;
3310 /*
3311 * The only supported bit as of Skylake is bit 8, but
3312 * it is not supported on KVM.
3313 */
3314 if (data != 0)
3315 return 1;
3316 vcpu->arch.ia32_xss = data;
3317 if (vcpu->arch.ia32_xss != host_xss)
3318 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3319 vcpu->arch.ia32_xss, host_xss);
3320 else
3321 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3322 break;
4e47c7a6 3323 case MSR_TSC_AUX:
81b1b9ca 3324 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3325 return 1;
3326 /* Check reserved bit, higher 32 bits should be zero */
3327 if ((data >> 32) != 0)
3328 return 1;
3329 /* Otherwise falls through */
6aa8b732 3330 default:
8b9cf98c 3331 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3332 if (msr) {
8b3c3104 3333 u64 old_msr_data = msr->data;
3bab1f5d 3334 msr->data = data;
2225fd56
AK
3335 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3336 preempt_disable();
8b3c3104
AH
3337 ret = kvm_set_shared_msr(msr->index, msr->data,
3338 msr->mask);
2225fd56 3339 preempt_enable();
8b3c3104
AH
3340 if (ret)
3341 msr->data = old_msr_data;
2225fd56 3342 }
3bab1f5d 3343 break;
6aa8b732 3344 }
8fe8ab46 3345 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3346 }
3347
2cc51560 3348 return ret;
6aa8b732
AK
3349}
3350
5fdbf976 3351static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3352{
5fdbf976
MT
3353 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3354 switch (reg) {
3355 case VCPU_REGS_RSP:
3356 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3357 break;
3358 case VCPU_REGS_RIP:
3359 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3360 break;
6de4f3ad
AK
3361 case VCPU_EXREG_PDPTR:
3362 if (enable_ept)
3363 ept_save_pdptrs(vcpu);
3364 break;
5fdbf976
MT
3365 default:
3366 break;
3367 }
6aa8b732
AK
3368}
3369
6aa8b732
AK
3370static __init int cpu_has_kvm_support(void)
3371{
6210e37b 3372 return cpu_has_vmx();
6aa8b732
AK
3373}
3374
3375static __init int vmx_disabled_by_bios(void)
3376{
3377 u64 msr;
3378
3379 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3380 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3381 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3382 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3383 && tboot_enabled())
3384 return 1;
23f3e991 3385 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3386 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3387 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3388 && !tboot_enabled()) {
3389 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3390 "activate TXT before enabling KVM\n");
cafd6659 3391 return 1;
f9335afe 3392 }
23f3e991
JC
3393 /* launched w/o TXT and VMX disabled */
3394 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3395 && !tboot_enabled())
3396 return 1;
cafd6659
SW
3397 }
3398
3399 return 0;
6aa8b732
AK
3400}
3401
7725b894
DX
3402static void kvm_cpu_vmxon(u64 addr)
3403{
fe0e80be 3404 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3405 intel_pt_handle_vmx(1);
3406
7725b894
DX
3407 asm volatile (ASM_VMX_VMXON_RAX
3408 : : "a"(&addr), "m"(addr)
3409 : "memory", "cc");
3410}
3411
13a34e06 3412static int hardware_enable(void)
6aa8b732
AK
3413{
3414 int cpu = raw_smp_processor_id();
3415 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3416 u64 old, test_bits;
6aa8b732 3417
1e02ce4c 3418 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3419 return -EBUSY;
3420
d462b819 3421 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3422 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3423 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3424
3425 /*
3426 * Now we can enable the vmclear operation in kdump
3427 * since the loaded_vmcss_on_cpu list on this cpu
3428 * has been initialized.
3429 *
3430 * Though the cpu is not in VMX operation now, there
3431 * is no problem to enable the vmclear operation
3432 * for the loaded_vmcss_on_cpu list is empty!
3433 */
3434 crash_enable_local_vmclear(cpu);
3435
6aa8b732 3436 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3437
3438 test_bits = FEATURE_CONTROL_LOCKED;
3439 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3440 if (tboot_enabled())
3441 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3442
3443 if ((old & test_bits) != test_bits) {
6aa8b732 3444 /* enable and lock */
cafd6659
SW
3445 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3446 }
fe0e80be
DH
3447 kvm_cpu_vmxon(phys_addr);
3448 ept_sync_global();
10474ae8 3449
89cbc767 3450 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3451
10474ae8 3452 return 0;
6aa8b732
AK
3453}
3454
d462b819 3455static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3456{
3457 int cpu = raw_smp_processor_id();
d462b819 3458 struct loaded_vmcs *v, *n;
543e4243 3459
d462b819
NHE
3460 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3461 loaded_vmcss_on_cpu_link)
3462 __loaded_vmcs_clear(v);
543e4243
AK
3463}
3464
710ff4a8
EH
3465
3466/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3467 * tricks.
3468 */
3469static void kvm_cpu_vmxoff(void)
6aa8b732 3470{
4ecac3fd 3471 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3472
3473 intel_pt_handle_vmx(0);
fe0e80be 3474 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3475}
3476
13a34e06 3477static void hardware_disable(void)
710ff4a8 3478{
fe0e80be
DH
3479 vmclear_local_loaded_vmcss();
3480 kvm_cpu_vmxoff();
710ff4a8
EH
3481}
3482
1c3d14fe 3483static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3484 u32 msr, u32 *result)
1c3d14fe
YS
3485{
3486 u32 vmx_msr_low, vmx_msr_high;
3487 u32 ctl = ctl_min | ctl_opt;
3488
3489 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3490
3491 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3492 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3493
3494 /* Ensure minimum (required) set of control bits are supported. */
3495 if (ctl_min & ~ctl)
002c7f7c 3496 return -EIO;
1c3d14fe
YS
3497
3498 *result = ctl;
3499 return 0;
3500}
3501
110312c8
AK
3502static __init bool allow_1_setting(u32 msr, u32 ctl)
3503{
3504 u32 vmx_msr_low, vmx_msr_high;
3505
3506 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3507 return vmx_msr_high & ctl;
3508}
3509
002c7f7c 3510static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3511{
3512 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3513 u32 min, opt, min2, opt2;
1c3d14fe
YS
3514 u32 _pin_based_exec_control = 0;
3515 u32 _cpu_based_exec_control = 0;
f78e0e2e 3516 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3517 u32 _vmexit_control = 0;
3518 u32 _vmentry_control = 0;
3519
10166744 3520 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3521#ifdef CONFIG_X86_64
3522 CPU_BASED_CR8_LOAD_EXITING |
3523 CPU_BASED_CR8_STORE_EXITING |
3524#endif
d56f546d
SY
3525 CPU_BASED_CR3_LOAD_EXITING |
3526 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3527 CPU_BASED_USE_IO_BITMAPS |
3528 CPU_BASED_MOV_DR_EXITING |
a7052897 3529 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3530 CPU_BASED_INVLPG_EXITING |
3531 CPU_BASED_RDPMC_EXITING;
443381a8 3532
668fffa3
MT
3533 if (!kvm_mwait_in_guest())
3534 min |= CPU_BASED_MWAIT_EXITING |
3535 CPU_BASED_MONITOR_EXITING;
3536
f78e0e2e 3537 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3538 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3539 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3540 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3541 &_cpu_based_exec_control) < 0)
002c7f7c 3542 return -EIO;
6e5d865c
YS
3543#ifdef CONFIG_X86_64
3544 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3545 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3546 ~CPU_BASED_CR8_STORE_EXITING;
3547#endif
f78e0e2e 3548 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3549 min2 = 0;
3550 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3551 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3552 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3553 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3554 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3555 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3556 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3557 SECONDARY_EXEC_RDTSCP |
83d4c286 3558 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3559 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3560 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3561 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3562 SECONDARY_EXEC_XSAVES |
8b3e34e4 3563 SECONDARY_EXEC_ENABLE_PML |
64903d61 3564 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3565 if (adjust_vmx_controls(min2, opt2,
3566 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3567 &_cpu_based_2nd_exec_control) < 0)
3568 return -EIO;
3569 }
3570#ifndef CONFIG_X86_64
3571 if (!(_cpu_based_2nd_exec_control &
3572 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3573 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3574#endif
83d4c286
YZ
3575
3576 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3577 _cpu_based_2nd_exec_control &= ~(
8d14695f 3578 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3579 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3580 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3581
d56f546d 3582 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3583 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3584 enabled */
5fff7d27
GN
3585 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3586 CPU_BASED_CR3_STORE_EXITING |
3587 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3588 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3589 vmx_capability.ept, vmx_capability.vpid);
3590 }
1c3d14fe 3591
91fa0f8e 3592 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3593#ifdef CONFIG_X86_64
3594 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3595#endif
a547c6db 3596 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3597 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3598 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3599 &_vmexit_control) < 0)
002c7f7c 3600 return -EIO;
1c3d14fe 3601
2c82878b
PB
3602 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3603 PIN_BASED_VIRTUAL_NMIS;
3604 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3605 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3606 &_pin_based_exec_control) < 0)
3607 return -EIO;
3608
1c17c3e6
PB
3609 if (cpu_has_broken_vmx_preemption_timer())
3610 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3611 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3612 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3613 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3614
c845f9c6 3615 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3616 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3617 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3618 &_vmentry_control) < 0)
002c7f7c 3619 return -EIO;
6aa8b732 3620
c68876fd 3621 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3622
3623 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3624 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3625 return -EIO;
1c3d14fe
YS
3626
3627#ifdef CONFIG_X86_64
3628 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3629 if (vmx_msr_high & (1u<<16))
002c7f7c 3630 return -EIO;
1c3d14fe
YS
3631#endif
3632
3633 /* Require Write-Back (WB) memory type for VMCS accesses. */
3634 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3635 return -EIO;
1c3d14fe 3636
002c7f7c 3637 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3638 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3639 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3640 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3641
002c7f7c
YS
3642 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3643 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3644 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3645 vmcs_conf->vmexit_ctrl = _vmexit_control;
3646 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3647
110312c8
AK
3648 cpu_has_load_ia32_efer =
3649 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3650 VM_ENTRY_LOAD_IA32_EFER)
3651 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3652 VM_EXIT_LOAD_IA32_EFER);
3653
8bf00a52
GN
3654 cpu_has_load_perf_global_ctrl =
3655 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3656 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3657 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3658 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3659
3660 /*
3661 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3662 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3663 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3664 *
3665 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3666 *
3667 * AAK155 (model 26)
3668 * AAP115 (model 30)
3669 * AAT100 (model 37)
3670 * BC86,AAY89,BD102 (model 44)
3671 * BA97 (model 46)
3672 *
3673 */
3674 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3675 switch (boot_cpu_data.x86_model) {
3676 case 26:
3677 case 30:
3678 case 37:
3679 case 44:
3680 case 46:
3681 cpu_has_load_perf_global_ctrl = false;
3682 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3683 "does not work properly. Using workaround\n");
3684 break;
3685 default:
3686 break;
3687 }
3688 }
3689
782511b0 3690 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3691 rdmsrl(MSR_IA32_XSS, host_xss);
3692
1c3d14fe 3693 return 0;
c68876fd 3694}
6aa8b732
AK
3695
3696static struct vmcs *alloc_vmcs_cpu(int cpu)
3697{
3698 int node = cpu_to_node(cpu);
3699 struct page *pages;
3700 struct vmcs *vmcs;
3701
96db800f 3702 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3703 if (!pages)
3704 return NULL;
3705 vmcs = page_address(pages);
1c3d14fe
YS
3706 memset(vmcs, 0, vmcs_config.size);
3707 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3708 return vmcs;
3709}
3710
3711static struct vmcs *alloc_vmcs(void)
3712{
d3b2c338 3713 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3714}
3715
3716static void free_vmcs(struct vmcs *vmcs)
3717{
1c3d14fe 3718 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3719}
3720
d462b819
NHE
3721/*
3722 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3723 */
3724static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3725{
3726 if (!loaded_vmcs->vmcs)
3727 return;
3728 loaded_vmcs_clear(loaded_vmcs);
3729 free_vmcs(loaded_vmcs->vmcs);
3730 loaded_vmcs->vmcs = NULL;
355f4fb1 3731 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3732}
3733
39959588 3734static void free_kvm_area(void)
6aa8b732
AK
3735{
3736 int cpu;
3737
3230bb47 3738 for_each_possible_cpu(cpu) {
6aa8b732 3739 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3740 per_cpu(vmxarea, cpu) = NULL;
3741 }
6aa8b732
AK
3742}
3743
fe2b201b
BD
3744static void init_vmcs_shadow_fields(void)
3745{
3746 int i, j;
3747
3748 /* No checks for read only fields yet */
3749
3750 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3751 switch (shadow_read_write_fields[i]) {
3752 case GUEST_BNDCFGS:
a87036ad 3753 if (!kvm_mpx_supported())
fe2b201b
BD
3754 continue;
3755 break;
3756 default:
3757 break;
3758 }
3759
3760 if (j < i)
3761 shadow_read_write_fields[j] =
3762 shadow_read_write_fields[i];
3763 j++;
3764 }
3765 max_shadow_read_write_fields = j;
3766
3767 /* shadowed fields guest access without vmexit */
3768 for (i = 0; i < max_shadow_read_write_fields; i++) {
3769 clear_bit(shadow_read_write_fields[i],
3770 vmx_vmwrite_bitmap);
3771 clear_bit(shadow_read_write_fields[i],
3772 vmx_vmread_bitmap);
3773 }
3774 for (i = 0; i < max_shadow_read_only_fields; i++)
3775 clear_bit(shadow_read_only_fields[i],
3776 vmx_vmread_bitmap);
3777}
3778
6aa8b732
AK
3779static __init int alloc_kvm_area(void)
3780{
3781 int cpu;
3782
3230bb47 3783 for_each_possible_cpu(cpu) {
6aa8b732
AK
3784 struct vmcs *vmcs;
3785
3786 vmcs = alloc_vmcs_cpu(cpu);
3787 if (!vmcs) {
3788 free_kvm_area();
3789 return -ENOMEM;
3790 }
3791
3792 per_cpu(vmxarea, cpu) = vmcs;
3793 }
3794 return 0;
3795}
3796
14168786
GN
3797static bool emulation_required(struct kvm_vcpu *vcpu)
3798{
3799 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3800}
3801
91b0aa2c 3802static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3803 struct kvm_segment *save)
6aa8b732 3804{
d99e4152
GN
3805 if (!emulate_invalid_guest_state) {
3806 /*
3807 * CS and SS RPL should be equal during guest entry according
3808 * to VMX spec, but in reality it is not always so. Since vcpu
3809 * is in the middle of the transition from real mode to
3810 * protected mode it is safe to assume that RPL 0 is a good
3811 * default value.
3812 */
3813 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3814 save->selector &= ~SEGMENT_RPL_MASK;
3815 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3816 save->s = 1;
6aa8b732 3817 }
d99e4152 3818 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3819}
3820
3821static void enter_pmode(struct kvm_vcpu *vcpu)
3822{
3823 unsigned long flags;
a89a8fb9 3824 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3825
d99e4152
GN
3826 /*
3827 * Update real mode segment cache. It may be not up-to-date if sement
3828 * register was written while vcpu was in a guest mode.
3829 */
3830 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3831 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3832 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3833 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3834 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3835 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3836
7ffd92c5 3837 vmx->rmode.vm86_active = 0;
6aa8b732 3838
2fb92db1
AK
3839 vmx_segment_cache_clear(vmx);
3840
f5f7b2fe 3841 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3842
3843 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3844 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3845 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3846 vmcs_writel(GUEST_RFLAGS, flags);
3847
66aee91a
RR
3848 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3849 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3850
3851 update_exception_bitmap(vcpu);
3852
91b0aa2c
GN
3853 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3854 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3855 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3856 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3857 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3858 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3859}
3860
f5f7b2fe 3861static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3862{
772e0318 3863 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3864 struct kvm_segment var = *save;
3865
3866 var.dpl = 0x3;
3867 if (seg == VCPU_SREG_CS)
3868 var.type = 0x3;
3869
3870 if (!emulate_invalid_guest_state) {
3871 var.selector = var.base >> 4;
3872 var.base = var.base & 0xffff0;
3873 var.limit = 0xffff;
3874 var.g = 0;
3875 var.db = 0;
3876 var.present = 1;
3877 var.s = 1;
3878 var.l = 0;
3879 var.unusable = 0;
3880 var.type = 0x3;
3881 var.avl = 0;
3882 if (save->base & 0xf)
3883 printk_once(KERN_WARNING "kvm: segment base is not "
3884 "paragraph aligned when entering "
3885 "protected mode (seg=%d)", seg);
3886 }
6aa8b732 3887
d99e4152 3888 vmcs_write16(sf->selector, var.selector);
96794e4e 3889 vmcs_writel(sf->base, var.base);
d99e4152
GN
3890 vmcs_write32(sf->limit, var.limit);
3891 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3892}
3893
3894static void enter_rmode(struct kvm_vcpu *vcpu)
3895{
3896 unsigned long flags;
a89a8fb9 3897 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3898
f5f7b2fe
AK
3899 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3900 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3901 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3902 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3903 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3904 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3905 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3906
7ffd92c5 3907 vmx->rmode.vm86_active = 1;
6aa8b732 3908
776e58ea
GN
3909 /*
3910 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3911 * vcpu. Warn the user that an update is overdue.
776e58ea 3912 */
4918c6ca 3913 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3914 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3915 "called before entering vcpu\n");
776e58ea 3916
2fb92db1
AK
3917 vmx_segment_cache_clear(vmx);
3918
4918c6ca 3919 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3920 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3921 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3922
3923 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3924 vmx->rmode.save_rflags = flags;
6aa8b732 3925
053de044 3926 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3927
3928 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3929 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3930 update_exception_bitmap(vcpu);
3931
d99e4152
GN
3932 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3933 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3934 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3935 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3936 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3937 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3938
8668a3c4 3939 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3940}
3941
401d10de
AS
3942static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3943{
3944 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3945 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3946
3947 if (!msr)
3948 return;
401d10de 3949
44ea2b17
AK
3950 /*
3951 * Force kernel_gs_base reloading before EFER changes, as control
3952 * of this msr depends on is_long_mode().
3953 */
3954 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3955 vcpu->arch.efer = efer;
401d10de 3956 if (efer & EFER_LMA) {
2961e876 3957 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3958 msr->data = efer;
3959 } else {
2961e876 3960 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3961
3962 msr->data = efer & ~EFER_LME;
3963 }
3964 setup_msrs(vmx);
3965}
3966
05b3e0c2 3967#ifdef CONFIG_X86_64
6aa8b732
AK
3968
3969static void enter_lmode(struct kvm_vcpu *vcpu)
3970{
3971 u32 guest_tr_ar;
3972
2fb92db1
AK
3973 vmx_segment_cache_clear(to_vmx(vcpu));
3974
6aa8b732 3975 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3976 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3977 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3978 __func__);
6aa8b732 3979 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3980 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3981 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3982 }
da38f438 3983 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3984}
3985
3986static void exit_lmode(struct kvm_vcpu *vcpu)
3987{
2961e876 3988 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3989 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3990}
3991
3992#endif
3993
dd5f5341 3994static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3995{
dd180b3e
XG
3996 if (enable_ept) {
3997 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3998 return;
4e1096d2 3999 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4000 } else {
4001 vpid_sync_context(vpid);
dd180b3e 4002 }
2384d2b3
SY
4003}
4004
dd5f5341
WL
4005static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4006{
4007 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4008}
4009
fb6c8198
JM
4010static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4011{
4012 if (enable_ept)
4013 vmx_flush_tlb(vcpu);
4014}
4015
e8467fda
AK
4016static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4017{
4018 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4019
4020 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4021 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4022}
4023
aff48baa
AK
4024static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4025{
4026 if (enable_ept && is_paging(vcpu))
4027 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4028 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4029}
4030
25c4c276 4031static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4032{
fc78f519
AK
4033 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4034
4035 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4036 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4037}
4038
1439442c
SY
4039static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4040{
d0d538b9
GN
4041 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4042
6de4f3ad
AK
4043 if (!test_bit(VCPU_EXREG_PDPTR,
4044 (unsigned long *)&vcpu->arch.regs_dirty))
4045 return;
4046
1439442c 4047 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4048 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4049 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4050 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4051 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4052 }
4053}
4054
8f5d549f
AK
4055static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4056{
d0d538b9
GN
4057 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4058
8f5d549f 4059 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4060 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4061 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4062 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4063 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4064 }
6de4f3ad
AK
4065
4066 __set_bit(VCPU_EXREG_PDPTR,
4067 (unsigned long *)&vcpu->arch.regs_avail);
4068 __set_bit(VCPU_EXREG_PDPTR,
4069 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4070}
4071
3899152c
DM
4072static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4073{
4074 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4075 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4076 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4077
4078 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4079 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4080 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4081 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4082
4083 return fixed_bits_valid(val, fixed0, fixed1);
4084}
4085
4086static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4087{
4088 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4089 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4090
4091 return fixed_bits_valid(val, fixed0, fixed1);
4092}
4093
4094static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4095{
4096 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4097 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4098
4099 return fixed_bits_valid(val, fixed0, fixed1);
4100}
4101
4102/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4103#define nested_guest_cr4_valid nested_cr4_valid
4104#define nested_host_cr4_valid nested_cr4_valid
4105
5e1746d6 4106static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4107
4108static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4109 unsigned long cr0,
4110 struct kvm_vcpu *vcpu)
4111{
5233dd51
MT
4112 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4113 vmx_decache_cr3(vcpu);
1439442c
SY
4114 if (!(cr0 & X86_CR0_PG)) {
4115 /* From paging/starting to nonpaging */
4116 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4117 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4118 (CPU_BASED_CR3_LOAD_EXITING |
4119 CPU_BASED_CR3_STORE_EXITING));
4120 vcpu->arch.cr0 = cr0;
fc78f519 4121 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4122 } else if (!is_paging(vcpu)) {
4123 /* From nonpaging to paging */
4124 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4125 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4126 ~(CPU_BASED_CR3_LOAD_EXITING |
4127 CPU_BASED_CR3_STORE_EXITING));
4128 vcpu->arch.cr0 = cr0;
fc78f519 4129 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4130 }
95eb84a7
SY
4131
4132 if (!(cr0 & X86_CR0_WP))
4133 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4134}
4135
6aa8b732
AK
4136static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4137{
7ffd92c5 4138 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4139 unsigned long hw_cr0;
4140
5037878e 4141 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4142 if (enable_unrestricted_guest)
5037878e 4143 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4144 else {
5037878e 4145 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4146
218e763f
GN
4147 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4148 enter_pmode(vcpu);
6aa8b732 4149
218e763f
GN
4150 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4151 enter_rmode(vcpu);
4152 }
6aa8b732 4153
05b3e0c2 4154#ifdef CONFIG_X86_64
f6801dff 4155 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4156 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4157 enter_lmode(vcpu);
707d92fa 4158 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4159 exit_lmode(vcpu);
4160 }
4161#endif
4162
089d034e 4163 if (enable_ept)
1439442c
SY
4164 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4165
6aa8b732 4166 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4167 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4168 vcpu->arch.cr0 = cr0;
14168786
GN
4169
4170 /* depends on vcpu->arch.cr0 to be set to a new value */
4171 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4172}
4173
1439442c
SY
4174static u64 construct_eptp(unsigned long root_hpa)
4175{
4176 u64 eptp;
4177
4178 /* TODO write the value reading from MSR */
4179 eptp = VMX_EPT_DEFAULT_MT |
4180 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
4181 if (enable_ept_ad_bits)
4182 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
4183 eptp |= (root_hpa & PAGE_MASK);
4184
4185 return eptp;
4186}
4187
6aa8b732
AK
4188static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4189{
1439442c
SY
4190 unsigned long guest_cr3;
4191 u64 eptp;
4192
4193 guest_cr3 = cr3;
089d034e 4194 if (enable_ept) {
1439442c
SY
4195 eptp = construct_eptp(cr3);
4196 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4197 if (is_paging(vcpu) || is_guest_mode(vcpu))
4198 guest_cr3 = kvm_read_cr3(vcpu);
4199 else
4200 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4201 ept_load_pdptrs(vcpu);
1439442c
SY
4202 }
4203
2384d2b3 4204 vmx_flush_tlb(vcpu);
1439442c 4205 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4206}
4207
5e1746d6 4208static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4209{
085e68ee
BS
4210 /*
4211 * Pass through host's Machine Check Enable value to hw_cr4, which
4212 * is in force while we are in guest mode. Do not let guests control
4213 * this bit, even if host CR4.MCE == 0.
4214 */
4215 unsigned long hw_cr4 =
4216 (cr4_read_shadow() & X86_CR4_MCE) |
4217 (cr4 & ~X86_CR4_MCE) |
4218 (to_vmx(vcpu)->rmode.vm86_active ?
4219 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4220
5e1746d6
NHE
4221 if (cr4 & X86_CR4_VMXE) {
4222 /*
4223 * To use VMXON (and later other VMX instructions), a guest
4224 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4225 * So basically the check on whether to allow nested VMX
4226 * is here.
4227 */
4228 if (!nested_vmx_allowed(vcpu))
4229 return 1;
1a0d74e6 4230 }
3899152c
DM
4231
4232 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4233 return 1;
4234
ad312c7c 4235 vcpu->arch.cr4 = cr4;
bc23008b
AK
4236 if (enable_ept) {
4237 if (!is_paging(vcpu)) {
4238 hw_cr4 &= ~X86_CR4_PAE;
4239 hw_cr4 |= X86_CR4_PSE;
4240 } else if (!(cr4 & X86_CR4_PAE)) {
4241 hw_cr4 &= ~X86_CR4_PAE;
4242 }
4243 }
1439442c 4244
656ec4a4
RK
4245 if (!enable_unrestricted_guest && !is_paging(vcpu))
4246 /*
ddba2628
HH
4247 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4248 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4249 * to be manually disabled when guest switches to non-paging
4250 * mode.
4251 *
4252 * If !enable_unrestricted_guest, the CPU is always running
4253 * with CR0.PG=1 and CR4 needs to be modified.
4254 * If enable_unrestricted_guest, the CPU automatically
4255 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4256 */
ddba2628 4257 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4258
1439442c
SY
4259 vmcs_writel(CR4_READ_SHADOW, cr4);
4260 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4261 return 0;
6aa8b732
AK
4262}
4263
6aa8b732
AK
4264static void vmx_get_segment(struct kvm_vcpu *vcpu,
4265 struct kvm_segment *var, int seg)
4266{
a9179499 4267 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4268 u32 ar;
4269
c6ad1153 4270 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4271 *var = vmx->rmode.segs[seg];
a9179499 4272 if (seg == VCPU_SREG_TR
2fb92db1 4273 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4274 return;
1390a28b
AK
4275 var->base = vmx_read_guest_seg_base(vmx, seg);
4276 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4277 return;
a9179499 4278 }
2fb92db1
AK
4279 var->base = vmx_read_guest_seg_base(vmx, seg);
4280 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4281 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4282 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4283 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4284 var->type = ar & 15;
4285 var->s = (ar >> 4) & 1;
4286 var->dpl = (ar >> 5) & 3;
03617c18
GN
4287 /*
4288 * Some userspaces do not preserve unusable property. Since usable
4289 * segment has to be present according to VMX spec we can use present
4290 * property to amend userspace bug by making unusable segment always
4291 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4292 * segment as unusable.
4293 */
4294 var->present = !var->unusable;
6aa8b732
AK
4295 var->avl = (ar >> 12) & 1;
4296 var->l = (ar >> 13) & 1;
4297 var->db = (ar >> 14) & 1;
4298 var->g = (ar >> 15) & 1;
6aa8b732
AK
4299}
4300
a9179499
AK
4301static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4302{
a9179499
AK
4303 struct kvm_segment s;
4304
4305 if (to_vmx(vcpu)->rmode.vm86_active) {
4306 vmx_get_segment(vcpu, &s, seg);
4307 return s.base;
4308 }
2fb92db1 4309 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4310}
4311
b09408d0 4312static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4313{
b09408d0
MT
4314 struct vcpu_vmx *vmx = to_vmx(vcpu);
4315
ae9fedc7 4316 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4317 return 0;
ae9fedc7
PB
4318 else {
4319 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4320 return VMX_AR_DPL(ar);
69c73028 4321 }
69c73028
AK
4322}
4323
653e3108 4324static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4325{
6aa8b732
AK
4326 u32 ar;
4327
f0495f9b 4328 if (var->unusable || !var->present)
6aa8b732
AK
4329 ar = 1 << 16;
4330 else {
4331 ar = var->type & 15;
4332 ar |= (var->s & 1) << 4;
4333 ar |= (var->dpl & 3) << 5;
4334 ar |= (var->present & 1) << 7;
4335 ar |= (var->avl & 1) << 12;
4336 ar |= (var->l & 1) << 13;
4337 ar |= (var->db & 1) << 14;
4338 ar |= (var->g & 1) << 15;
4339 }
653e3108
AK
4340
4341 return ar;
4342}
4343
4344static void vmx_set_segment(struct kvm_vcpu *vcpu,
4345 struct kvm_segment *var, int seg)
4346{
7ffd92c5 4347 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4348 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4349
2fb92db1
AK
4350 vmx_segment_cache_clear(vmx);
4351
1ecd50a9
GN
4352 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4353 vmx->rmode.segs[seg] = *var;
4354 if (seg == VCPU_SREG_TR)
4355 vmcs_write16(sf->selector, var->selector);
4356 else if (var->s)
4357 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4358 goto out;
653e3108 4359 }
1ecd50a9 4360
653e3108
AK
4361 vmcs_writel(sf->base, var->base);
4362 vmcs_write32(sf->limit, var->limit);
4363 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4364
4365 /*
4366 * Fix the "Accessed" bit in AR field of segment registers for older
4367 * qemu binaries.
4368 * IA32 arch specifies that at the time of processor reset the
4369 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4370 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4371 * state vmexit when "unrestricted guest" mode is turned on.
4372 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4373 * tree. Newer qemu binaries with that qemu fix would not need this
4374 * kvm hack.
4375 */
4376 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4377 var->type |= 0x1; /* Accessed */
3a624e29 4378
f924d66d 4379 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4380
4381out:
98eb2f8b 4382 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4383}
4384
6aa8b732
AK
4385static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4386{
2fb92db1 4387 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4388
4389 *db = (ar >> 14) & 1;
4390 *l = (ar >> 13) & 1;
4391}
4392
89a27f4d 4393static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4394{
89a27f4d
GN
4395 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4396 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4397}
4398
89a27f4d 4399static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4400{
89a27f4d
GN
4401 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4402 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4403}
4404
89a27f4d 4405static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4406{
89a27f4d
GN
4407 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4408 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4409}
4410
89a27f4d 4411static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4412{
89a27f4d
GN
4413 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4414 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4415}
4416
648dfaa7
MG
4417static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4418{
4419 struct kvm_segment var;
4420 u32 ar;
4421
4422 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4423 var.dpl = 0x3;
0647f4aa
GN
4424 if (seg == VCPU_SREG_CS)
4425 var.type = 0x3;
648dfaa7
MG
4426 ar = vmx_segment_access_rights(&var);
4427
4428 if (var.base != (var.selector << 4))
4429 return false;
89efbed0 4430 if (var.limit != 0xffff)
648dfaa7 4431 return false;
07f42f5f 4432 if (ar != 0xf3)
648dfaa7
MG
4433 return false;
4434
4435 return true;
4436}
4437
4438static bool code_segment_valid(struct kvm_vcpu *vcpu)
4439{
4440 struct kvm_segment cs;
4441 unsigned int cs_rpl;
4442
4443 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4444 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4445
1872a3f4
AK
4446 if (cs.unusable)
4447 return false;
4d283ec9 4448 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4449 return false;
4450 if (!cs.s)
4451 return false;
4d283ec9 4452 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4453 if (cs.dpl > cs_rpl)
4454 return false;
1872a3f4 4455 } else {
648dfaa7
MG
4456 if (cs.dpl != cs_rpl)
4457 return false;
4458 }
4459 if (!cs.present)
4460 return false;
4461
4462 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4463 return true;
4464}
4465
4466static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4467{
4468 struct kvm_segment ss;
4469 unsigned int ss_rpl;
4470
4471 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4472 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4473
1872a3f4
AK
4474 if (ss.unusable)
4475 return true;
4476 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4477 return false;
4478 if (!ss.s)
4479 return false;
4480 if (ss.dpl != ss_rpl) /* DPL != RPL */
4481 return false;
4482 if (!ss.present)
4483 return false;
4484
4485 return true;
4486}
4487
4488static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4489{
4490 struct kvm_segment var;
4491 unsigned int rpl;
4492
4493 vmx_get_segment(vcpu, &var, seg);
b32a9918 4494 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4495
1872a3f4
AK
4496 if (var.unusable)
4497 return true;
648dfaa7
MG
4498 if (!var.s)
4499 return false;
4500 if (!var.present)
4501 return false;
4d283ec9 4502 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4503 if (var.dpl < rpl) /* DPL < RPL */
4504 return false;
4505 }
4506
4507 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4508 * rights flags
4509 */
4510 return true;
4511}
4512
4513static bool tr_valid(struct kvm_vcpu *vcpu)
4514{
4515 struct kvm_segment tr;
4516
4517 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4518
1872a3f4
AK
4519 if (tr.unusable)
4520 return false;
b32a9918 4521 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4522 return false;
1872a3f4 4523 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4524 return false;
4525 if (!tr.present)
4526 return false;
4527
4528 return true;
4529}
4530
4531static bool ldtr_valid(struct kvm_vcpu *vcpu)
4532{
4533 struct kvm_segment ldtr;
4534
4535 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4536
1872a3f4
AK
4537 if (ldtr.unusable)
4538 return true;
b32a9918 4539 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4540 return false;
4541 if (ldtr.type != 2)
4542 return false;
4543 if (!ldtr.present)
4544 return false;
4545
4546 return true;
4547}
4548
4549static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4550{
4551 struct kvm_segment cs, ss;
4552
4553 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4554 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4555
b32a9918
NA
4556 return ((cs.selector & SEGMENT_RPL_MASK) ==
4557 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4558}
4559
4560/*
4561 * Check if guest state is valid. Returns true if valid, false if
4562 * not.
4563 * We assume that registers are always usable
4564 */
4565static bool guest_state_valid(struct kvm_vcpu *vcpu)
4566{
c5e97c80
GN
4567 if (enable_unrestricted_guest)
4568 return true;
4569
648dfaa7 4570 /* real mode guest state checks */
f13882d8 4571 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4572 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4573 return false;
4574 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4575 return false;
4576 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4577 return false;
4578 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4579 return false;
4580 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4581 return false;
4582 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4583 return false;
4584 } else {
4585 /* protected mode guest state checks */
4586 if (!cs_ss_rpl_check(vcpu))
4587 return false;
4588 if (!code_segment_valid(vcpu))
4589 return false;
4590 if (!stack_segment_valid(vcpu))
4591 return false;
4592 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4593 return false;
4594 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4595 return false;
4596 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4597 return false;
4598 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4599 return false;
4600 if (!tr_valid(vcpu))
4601 return false;
4602 if (!ldtr_valid(vcpu))
4603 return false;
4604 }
4605 /* TODO:
4606 * - Add checks on RIP
4607 * - Add checks on RFLAGS
4608 */
4609
4610 return true;
4611}
4612
d77c26fc 4613static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4614{
40dcaa9f 4615 gfn_t fn;
195aefde 4616 u16 data = 0;
1f755a82 4617 int idx, r;
6aa8b732 4618
40dcaa9f 4619 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4620 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4621 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4622 if (r < 0)
10589a46 4623 goto out;
195aefde 4624 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4625 r = kvm_write_guest_page(kvm, fn++, &data,
4626 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4627 if (r < 0)
10589a46 4628 goto out;
195aefde
IE
4629 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4630 if (r < 0)
10589a46 4631 goto out;
195aefde
IE
4632 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4633 if (r < 0)
10589a46 4634 goto out;
195aefde 4635 data = ~0;
10589a46
MT
4636 r = kvm_write_guest_page(kvm, fn, &data,
4637 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4638 sizeof(u8));
10589a46 4639out:
40dcaa9f 4640 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4641 return r;
6aa8b732
AK
4642}
4643
b7ebfb05
SY
4644static int init_rmode_identity_map(struct kvm *kvm)
4645{
f51770ed 4646 int i, idx, r = 0;
ba049e93 4647 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4648 u32 tmp;
4649
089d034e 4650 if (!enable_ept)
f51770ed 4651 return 0;
a255d479
TC
4652
4653 /* Protect kvm->arch.ept_identity_pagetable_done. */
4654 mutex_lock(&kvm->slots_lock);
4655
f51770ed 4656 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4657 goto out2;
a255d479 4658
b927a3ce 4659 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4660
4661 r = alloc_identity_pagetable(kvm);
f51770ed 4662 if (r < 0)
a255d479
TC
4663 goto out2;
4664
40dcaa9f 4665 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4666 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4667 if (r < 0)
4668 goto out;
4669 /* Set up identity-mapping pagetable for EPT in real mode */
4670 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4671 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4672 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4673 r = kvm_write_guest_page(kvm, identity_map_pfn,
4674 &tmp, i * sizeof(tmp), sizeof(tmp));
4675 if (r < 0)
4676 goto out;
4677 }
4678 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4679
b7ebfb05 4680out:
40dcaa9f 4681 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4682
4683out2:
4684 mutex_unlock(&kvm->slots_lock);
f51770ed 4685 return r;
b7ebfb05
SY
4686}
4687
6aa8b732
AK
4688static void seg_setup(int seg)
4689{
772e0318 4690 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4691 unsigned int ar;
6aa8b732
AK
4692
4693 vmcs_write16(sf->selector, 0);
4694 vmcs_writel(sf->base, 0);
4695 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4696 ar = 0x93;
4697 if (seg == VCPU_SREG_CS)
4698 ar |= 0x08; /* code segment */
3a624e29
NK
4699
4700 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4701}
4702
f78e0e2e
SY
4703static int alloc_apic_access_page(struct kvm *kvm)
4704{
4484141a 4705 struct page *page;
f78e0e2e
SY
4706 int r = 0;
4707
79fac95e 4708 mutex_lock(&kvm->slots_lock);
c24ae0dc 4709 if (kvm->arch.apic_access_page_done)
f78e0e2e 4710 goto out;
1d8007bd
PB
4711 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4712 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4713 if (r)
4714 goto out;
72dc67a6 4715
73a6d941 4716 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4717 if (is_error_page(page)) {
4718 r = -EFAULT;
4719 goto out;
4720 }
4721
c24ae0dc
TC
4722 /*
4723 * Do not pin the page in memory, so that memory hot-unplug
4724 * is able to migrate it.
4725 */
4726 put_page(page);
4727 kvm->arch.apic_access_page_done = true;
f78e0e2e 4728out:
79fac95e 4729 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4730 return r;
4731}
4732
b7ebfb05
SY
4733static int alloc_identity_pagetable(struct kvm *kvm)
4734{
a255d479
TC
4735 /* Called with kvm->slots_lock held. */
4736
b7ebfb05
SY
4737 int r = 0;
4738
a255d479
TC
4739 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4740
1d8007bd
PB
4741 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4742 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4743
b7ebfb05
SY
4744 return r;
4745}
4746
991e7a0e 4747static int allocate_vpid(void)
2384d2b3
SY
4748{
4749 int vpid;
4750
919818ab 4751 if (!enable_vpid)
991e7a0e 4752 return 0;
2384d2b3
SY
4753 spin_lock(&vmx_vpid_lock);
4754 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4755 if (vpid < VMX_NR_VPIDS)
2384d2b3 4756 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4757 else
4758 vpid = 0;
2384d2b3 4759 spin_unlock(&vmx_vpid_lock);
991e7a0e 4760 return vpid;
2384d2b3
SY
4761}
4762
991e7a0e 4763static void free_vpid(int vpid)
cdbecfc3 4764{
991e7a0e 4765 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4766 return;
4767 spin_lock(&vmx_vpid_lock);
991e7a0e 4768 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4769 spin_unlock(&vmx_vpid_lock);
4770}
4771
8d14695f
YZ
4772#define MSR_TYPE_R 1
4773#define MSR_TYPE_W 2
4774static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4775 u32 msr, int type)
25c5f225 4776{
3e7c73e9 4777 int f = sizeof(unsigned long);
25c5f225
SY
4778
4779 if (!cpu_has_vmx_msr_bitmap())
4780 return;
4781
4782 /*
4783 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4784 * have the write-low and read-high bitmap offsets the wrong way round.
4785 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4786 */
25c5f225 4787 if (msr <= 0x1fff) {
8d14695f
YZ
4788 if (type & MSR_TYPE_R)
4789 /* read-low */
4790 __clear_bit(msr, msr_bitmap + 0x000 / f);
4791
4792 if (type & MSR_TYPE_W)
4793 /* write-low */
4794 __clear_bit(msr, msr_bitmap + 0x800 / f);
4795
25c5f225
SY
4796 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4797 msr &= 0x1fff;
8d14695f
YZ
4798 if (type & MSR_TYPE_R)
4799 /* read-high */
4800 __clear_bit(msr, msr_bitmap + 0x400 / f);
4801
4802 if (type & MSR_TYPE_W)
4803 /* write-high */
4804 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4805
4806 }
4807}
4808
f2b93280
WV
4809/*
4810 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4811 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4812 */
4813static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4814 unsigned long *msr_bitmap_nested,
4815 u32 msr, int type)
4816{
4817 int f = sizeof(unsigned long);
4818
4819 if (!cpu_has_vmx_msr_bitmap()) {
4820 WARN_ON(1);
4821 return;
4822 }
4823
4824 /*
4825 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4826 * have the write-low and read-high bitmap offsets the wrong way round.
4827 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4828 */
4829 if (msr <= 0x1fff) {
4830 if (type & MSR_TYPE_R &&
4831 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4832 /* read-low */
4833 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4834
4835 if (type & MSR_TYPE_W &&
4836 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4837 /* write-low */
4838 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4839
4840 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4841 msr &= 0x1fff;
4842 if (type & MSR_TYPE_R &&
4843 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4844 /* read-high */
4845 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4846
4847 if (type & MSR_TYPE_W &&
4848 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4849 /* write-high */
4850 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4851
4852 }
4853}
4854
5897297b
AK
4855static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4856{
4857 if (!longmode_only)
8d14695f
YZ
4858 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4859 msr, MSR_TYPE_R | MSR_TYPE_W);
4860 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4861 msr, MSR_TYPE_R | MSR_TYPE_W);
4862}
4863
2e69f865 4864static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4865{
f6e90f9e 4866 if (apicv_active) {
c63e4563 4867 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 4868 msr, type);
c63e4563 4869 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 4870 msr, type);
f6e90f9e 4871 } else {
f6e90f9e 4872 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 4873 msr, type);
f6e90f9e 4874 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 4875 msr, type);
f6e90f9e 4876 }
5897297b
AK
4877}
4878
d62caabb 4879static bool vmx_get_enable_apicv(void)
d50ab6c1 4880{
d62caabb 4881 return enable_apicv;
d50ab6c1
PB
4882}
4883
6342c50a 4884static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
4885{
4886 struct vcpu_vmx *vmx = to_vmx(vcpu);
4887 int max_irr;
4888 void *vapic_page;
4889 u16 status;
4890
4891 if (vmx->nested.pi_desc &&
4892 vmx->nested.pi_pending) {
4893 vmx->nested.pi_pending = false;
4894 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
6342c50a 4895 return;
705699a1
WV
4896
4897 max_irr = find_last_bit(
4898 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4899
4900 if (max_irr == 256)
6342c50a 4901 return;
705699a1
WV
4902
4903 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
4904 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4905 kunmap(vmx->nested.virtual_apic_page);
4906
4907 status = vmcs_read16(GUEST_INTR_STATUS);
4908 if ((u8)max_irr > ((u8)status & 0xff)) {
4909 status &= ~0xff;
4910 status |= (u8)max_irr;
4911 vmcs_write16(GUEST_INTR_STATUS, status);
4912 }
4913 }
705699a1
WV
4914}
4915
21bc8dc5
RK
4916static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4917{
4918#ifdef CONFIG_SMP
4919 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4920 struct vcpu_vmx *vmx = to_vmx(vcpu);
4921
4922 /*
4923 * Currently, we don't support urgent interrupt,
4924 * all interrupts are recognized as non-urgent
4925 * interrupt, so we cannot post interrupts when
4926 * 'SN' is set.
4927 *
4928 * If the vcpu is in guest mode, it means it is
4929 * running instead of being scheduled out and
4930 * waiting in the run queue, and that's the only
4931 * case when 'SN' is set currently, warning if
4932 * 'SN' is set.
4933 */
4934 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4935
21bc8dc5
RK
4936 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4937 POSTED_INTR_VECTOR);
4938 return true;
4939 }
4940#endif
4941 return false;
4942}
4943
705699a1
WV
4944static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4945 int vector)
4946{
4947 struct vcpu_vmx *vmx = to_vmx(vcpu);
4948
4949 if (is_guest_mode(vcpu) &&
4950 vector == vmx->nested.posted_intr_nv) {
4951 /* the PIR and ON have been set by L1. */
21bc8dc5 4952 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4953 /*
4954 * If a posted intr is not recognized by hardware,
4955 * we will accomplish it in the next vmentry.
4956 */
4957 vmx->nested.pi_pending = true;
4958 kvm_make_request(KVM_REQ_EVENT, vcpu);
4959 return 0;
4960 }
4961 return -1;
4962}
a20ed54d
YZ
4963/*
4964 * Send interrupt to vcpu via posted interrupt way.
4965 * 1. If target vcpu is running(non-root mode), send posted interrupt
4966 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4967 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4968 * interrupt from PIR in next vmentry.
4969 */
4970static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4971{
4972 struct vcpu_vmx *vmx = to_vmx(vcpu);
4973 int r;
4974
705699a1
WV
4975 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4976 if (!r)
4977 return;
4978
a20ed54d
YZ
4979 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4980 return;
4981
b95234c8
PB
4982 /* If a previous notification has sent the IPI, nothing to do. */
4983 if (pi_test_and_set_on(&vmx->pi_desc))
4984 return;
4985
4986 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4987 kvm_vcpu_kick(vcpu);
4988}
4989
a3a8ff8e
NHE
4990/*
4991 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4992 * will not change in the lifetime of the guest.
4993 * Note that host-state that does change is set elsewhere. E.g., host-state
4994 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4995 */
a547c6db 4996static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4997{
4998 u32 low32, high32;
4999 unsigned long tmpl;
5000 struct desc_ptr dt;
04ac88ab 5001 unsigned long cr0, cr4;
a3a8ff8e 5002
04ac88ab
AL
5003 cr0 = read_cr0();
5004 WARN_ON(cr0 & X86_CR0_TS);
5005 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
a3a8ff8e
NHE
5006 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
5007
d974baa3 5008 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5009 cr4 = cr4_read_shadow();
d974baa3
AL
5010 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5011 vmx->host_state.vmcs_host_cr4 = cr4;
5012
a3a8ff8e 5013 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5014#ifdef CONFIG_X86_64
5015 /*
5016 * Load null selectors, so we can avoid reloading them in
5017 * __vmx_load_host_state(), in case userspace uses the null selectors
5018 * too (the expected case).
5019 */
5020 vmcs_write16(HOST_DS_SELECTOR, 0);
5021 vmcs_write16(HOST_ES_SELECTOR, 0);
5022#else
a3a8ff8e
NHE
5023 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5024 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5025#endif
a3a8ff8e
NHE
5026 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5027 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5028
5029 native_store_idt(&dt);
5030 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5031 vmx->host_idt_base = dt.address;
a3a8ff8e 5032
83287ea4 5033 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5034
5035 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5036 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5037 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5038 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5039
5040 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5041 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5042 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5043 }
5044}
5045
bf8179a0
NHE
5046static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5047{
5048 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5049 if (enable_ept)
5050 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5051 if (is_guest_mode(&vmx->vcpu))
5052 vmx->vcpu.arch.cr4_guest_owned_bits &=
5053 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5054 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5055}
5056
01e439be
YZ
5057static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5058{
5059 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5060
d62caabb 5061 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5062 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5063 /* Enable the preemption timer dynamically */
5064 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5065 return pin_based_exec_ctrl;
5066}
5067
d62caabb
AS
5068static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5069{
5070 struct vcpu_vmx *vmx = to_vmx(vcpu);
5071
5072 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5073 if (cpu_has_secondary_exec_ctrls()) {
5074 if (kvm_vcpu_apicv_active(vcpu))
5075 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5076 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5077 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5078 else
5079 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5080 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5081 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5082 }
5083
5084 if (cpu_has_vmx_msr_bitmap())
5085 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5086}
5087
bf8179a0
NHE
5088static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5089{
5090 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5091
5092 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5093 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5094
35754c98 5095 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5096 exec_control &= ~CPU_BASED_TPR_SHADOW;
5097#ifdef CONFIG_X86_64
5098 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5099 CPU_BASED_CR8_LOAD_EXITING;
5100#endif
5101 }
5102 if (!enable_ept)
5103 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5104 CPU_BASED_CR3_LOAD_EXITING |
5105 CPU_BASED_INVLPG_EXITING;
5106 return exec_control;
5107}
5108
5109static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5110{
5111 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 5112 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
5113 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5114 if (vmx->vpid == 0)
5115 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5116 if (!enable_ept) {
5117 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5118 enable_unrestricted_guest = 0;
ad756a16
MJ
5119 /* Enable INVPCID for non-ept guests may cause performance regression. */
5120 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5121 }
5122 if (!enable_unrestricted_guest)
5123 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5124 if (!ple_gap)
5125 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 5126 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
5127 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5128 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5129 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5130 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5131 (handle_vmptrld).
5132 We can NOT enable shadow_vmcs here because we don't have yet
5133 a current VMCS12
5134 */
5135 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5136
5137 if (!enable_pml)
5138 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5139
bf8179a0
NHE
5140 return exec_control;
5141}
5142
ce88decf
XG
5143static void ept_set_mmio_spte_mask(void)
5144{
5145 /*
5146 * EPT Misconfigurations can be generated if the value of bits 2:0
5147 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5148 */
312b616b 5149 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5150}
5151
f53cd63c 5152#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5153/*
5154 * Sets up the vmcs for emulated real mode.
5155 */
8b9cf98c 5156static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5157{
2e4ce7f5 5158#ifdef CONFIG_X86_64
6aa8b732 5159 unsigned long a;
2e4ce7f5 5160#endif
6aa8b732 5161 int i;
6aa8b732 5162
6aa8b732 5163 /* I/O */
3e7c73e9
AK
5164 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5165 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5166
4607c2d7
AG
5167 if (enable_shadow_vmcs) {
5168 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5169 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5170 }
25c5f225 5171 if (cpu_has_vmx_msr_bitmap())
5897297b 5172 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5173
6aa8b732
AK
5174 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5175
6aa8b732 5176 /* Control */
01e439be 5177 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5178 vmx->hv_deadline_tsc = -1;
6e5d865c 5179
bf8179a0 5180 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5181
dfa169bb 5182 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5183 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5184 vmx_secondary_exec_control(vmx));
dfa169bb 5185 }
f78e0e2e 5186
d62caabb 5187 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5188 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5189 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5190 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5191 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5192
5193 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5194
0bcf261c 5195 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5196 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5197 }
5198
4b8d54f9
ZE
5199 if (ple_gap) {
5200 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5201 vmx->ple_window = ple_window;
5202 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5203 }
5204
c3707958
XG
5205 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5206 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5207 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5208
9581d442
AK
5209 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5210 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5211 vmx_set_constant_host_state(vmx);
05b3e0c2 5212#ifdef CONFIG_X86_64
6aa8b732
AK
5213 rdmsrl(MSR_FS_BASE, a);
5214 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5215 rdmsrl(MSR_GS_BASE, a);
5216 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5217#else
5218 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5219 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5220#endif
5221
2cc51560
ED
5222 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5223 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5224 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5225 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5226 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5227
74545705
RK
5228 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5229 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5230
03916db9 5231 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5232 u32 index = vmx_msr_index[i];
5233 u32 data_low, data_high;
a2fa3e9f 5234 int j = vmx->nmsrs;
6aa8b732
AK
5235
5236 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5237 continue;
432bd6cb
AK
5238 if (wrmsr_safe(index, data_low, data_high) < 0)
5239 continue;
26bb0981
AK
5240 vmx->guest_msrs[j].index = i;
5241 vmx->guest_msrs[j].data = 0;
d5696725 5242 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5243 ++vmx->nmsrs;
6aa8b732 5244 }
6aa8b732 5245
2961e876
GN
5246
5247 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5248
5249 /* 22.2.1, 20.8.1 */
2961e876 5250 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5251
bd7e5b08
PB
5252 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5253 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5254
bf8179a0 5255 set_cr4_guest_host_mask(vmx);
e00c8cf2 5256
f53cd63c
WL
5257 if (vmx_xsaves_supported())
5258 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5259
4e59516a
PF
5260 if (enable_pml) {
5261 ASSERT(vmx->pml_pg);
5262 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5263 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5264 }
5265
e00c8cf2
AK
5266 return 0;
5267}
5268
d28bc9dd 5269static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5270{
5271 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5272 struct msr_data apic_base_msr;
d28bc9dd 5273 u64 cr0;
e00c8cf2 5274
7ffd92c5 5275 vmx->rmode.vm86_active = 0;
e00c8cf2 5276
ad312c7c 5277 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5278 kvm_set_cr8(vcpu, 0);
5279
5280 if (!init_event) {
5281 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5282 MSR_IA32_APICBASE_ENABLE;
5283 if (kvm_vcpu_is_reset_bsp(vcpu))
5284 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5285 apic_base_msr.host_initiated = true;
5286 kvm_set_apic_base(vcpu, &apic_base_msr);
5287 }
e00c8cf2 5288
2fb92db1
AK
5289 vmx_segment_cache_clear(vmx);
5290
5706be0d 5291 seg_setup(VCPU_SREG_CS);
66450a21 5292 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5293 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5294
5295 seg_setup(VCPU_SREG_DS);
5296 seg_setup(VCPU_SREG_ES);
5297 seg_setup(VCPU_SREG_FS);
5298 seg_setup(VCPU_SREG_GS);
5299 seg_setup(VCPU_SREG_SS);
5300
5301 vmcs_write16(GUEST_TR_SELECTOR, 0);
5302 vmcs_writel(GUEST_TR_BASE, 0);
5303 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5304 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5305
5306 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5307 vmcs_writel(GUEST_LDTR_BASE, 0);
5308 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5309 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5310
d28bc9dd
NA
5311 if (!init_event) {
5312 vmcs_write32(GUEST_SYSENTER_CS, 0);
5313 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5314 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5315 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5316 }
e00c8cf2
AK
5317
5318 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5319 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5320
e00c8cf2
AK
5321 vmcs_writel(GUEST_GDTR_BASE, 0);
5322 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5323
5324 vmcs_writel(GUEST_IDTR_BASE, 0);
5325 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5326
443381a8 5327 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5328 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5329 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5330
e00c8cf2
AK
5331 setup_msrs(vmx);
5332
6aa8b732
AK
5333 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5334
d28bc9dd 5335 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5336 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5337 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5338 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5339 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5340 vmcs_write32(TPR_THRESHOLD, 0);
5341 }
5342
a73896cb 5343 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5344
d62caabb 5345 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5346 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5347
2384d2b3
SY
5348 if (vmx->vpid != 0)
5349 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5350
d28bc9dd 5351 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5352 vmx->vcpu.arch.cr0 = cr0;
f2463247 5353 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5354 vmx_set_cr4(vcpu, 0);
5690891b 5355 vmx_set_efer(vcpu, 0);
bd7e5b08 5356
d28bc9dd 5357 update_exception_bitmap(vcpu);
6aa8b732 5358
dd5f5341 5359 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5360}
5361
b6f1250e
NHE
5362/*
5363 * In nested virtualization, check if L1 asked to exit on external interrupts.
5364 * For most existing hypervisors, this will always return true.
5365 */
5366static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5367{
5368 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5369 PIN_BASED_EXT_INTR_MASK;
5370}
5371
77b0f5d6
BD
5372/*
5373 * In nested virtualization, check if L1 has set
5374 * VM_EXIT_ACK_INTR_ON_EXIT
5375 */
5376static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5377{
5378 return get_vmcs12(vcpu)->vm_exit_controls &
5379 VM_EXIT_ACK_INTR_ON_EXIT;
5380}
5381
ea8ceb83
JK
5382static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5383{
5384 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5385 PIN_BASED_NMI_EXITING;
5386}
5387
c9a7953f 5388static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5389{
47c0152e
PB
5390 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5391 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5392}
5393
c9a7953f 5394static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5395{
2c82878b 5396 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5397 enable_irq_window(vcpu);
5398 return;
5399 }
3b86cd99 5400
47c0152e
PB
5401 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5402 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5403}
5404
66fd3f7f 5405static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5406{
9c8cba37 5407 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5408 uint32_t intr;
5409 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5410
229456fc 5411 trace_kvm_inj_virq(irq);
2714d1d3 5412
fa89a817 5413 ++vcpu->stat.irq_injections;
7ffd92c5 5414 if (vmx->rmode.vm86_active) {
71f9833b
SH
5415 int inc_eip = 0;
5416 if (vcpu->arch.interrupt.soft)
5417 inc_eip = vcpu->arch.event_exit_inst_len;
5418 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5419 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5420 return;
5421 }
66fd3f7f
GN
5422 intr = irq | INTR_INFO_VALID_MASK;
5423 if (vcpu->arch.interrupt.soft) {
5424 intr |= INTR_TYPE_SOFT_INTR;
5425 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5426 vmx->vcpu.arch.event_exit_inst_len);
5427 } else
5428 intr |= INTR_TYPE_EXT_INTR;
5429 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5430}
5431
f08864b4
SY
5432static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5433{
66a5a347
JK
5434 struct vcpu_vmx *vmx = to_vmx(vcpu);
5435
c5a6d5f7 5436 if (!is_guest_mode(vcpu)) {
c5a6d5f7
WL
5437 ++vcpu->stat.nmi_injections;
5438 vmx->nmi_known_unmasked = false;
3b86cd99
JK
5439 }
5440
7ffd92c5 5441 if (vmx->rmode.vm86_active) {
71f9833b 5442 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5443 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5444 return;
5445 }
c5a6d5f7 5446
f08864b4
SY
5447 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5448 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5449}
5450
3cfc3092
JK
5451static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5452{
9d58b931
AK
5453 if (to_vmx(vcpu)->nmi_known_unmasked)
5454 return false;
c332c83a 5455 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5456}
5457
5458static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5459{
5460 struct vcpu_vmx *vmx = to_vmx(vcpu);
5461
2c82878b
PB
5462 vmx->nmi_known_unmasked = !masked;
5463 if (masked)
5464 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5465 GUEST_INTR_STATE_NMI);
5466 else
5467 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5468 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5469}
5470
2505dc9f
JK
5471static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5472{
b6b8a145
JK
5473 if (to_vmx(vcpu)->nested.nested_run_pending)
5474 return 0;
ea8ceb83 5475
2505dc9f
JK
5476 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5477 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5478 | GUEST_INTR_STATE_NMI));
5479}
5480
78646121
GN
5481static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5482{
b6b8a145
JK
5483 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5484 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5485 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5486 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5487}
5488
cbc94022
IE
5489static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5490{
5491 int ret;
cbc94022 5492
1d8007bd
PB
5493 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5494 PAGE_SIZE * 3);
cbc94022
IE
5495 if (ret)
5496 return ret;
bfc6d222 5497 kvm->arch.tss_addr = addr;
1f755a82 5498 return init_rmode_tss(kvm);
cbc94022
IE
5499}
5500
0ca1b4f4 5501static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5502{
77ab6db0 5503 switch (vec) {
77ab6db0 5504 case BP_VECTOR:
c573cd22
JK
5505 /*
5506 * Update instruction length as we may reinject the exception
5507 * from user space while in guest debugging mode.
5508 */
5509 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5510 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5511 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5512 return false;
5513 /* fall through */
5514 case DB_VECTOR:
5515 if (vcpu->guest_debug &
5516 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5517 return false;
d0bfb940
JK
5518 /* fall through */
5519 case DE_VECTOR:
77ab6db0
JK
5520 case OF_VECTOR:
5521 case BR_VECTOR:
5522 case UD_VECTOR:
5523 case DF_VECTOR:
5524 case SS_VECTOR:
5525 case GP_VECTOR:
5526 case MF_VECTOR:
0ca1b4f4
GN
5527 return true;
5528 break;
77ab6db0 5529 }
0ca1b4f4
GN
5530 return false;
5531}
5532
5533static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5534 int vec, u32 err_code)
5535{
5536 /*
5537 * Instruction with address size override prefix opcode 0x67
5538 * Cause the #SS fault with 0 error code in VM86 mode.
5539 */
5540 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5541 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5542 if (vcpu->arch.halt_request) {
5543 vcpu->arch.halt_request = 0;
5cb56059 5544 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5545 }
5546 return 1;
5547 }
5548 return 0;
5549 }
5550
5551 /*
5552 * Forward all other exceptions that are valid in real mode.
5553 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5554 * the required debugging infrastructure rework.
5555 */
5556 kvm_queue_exception(vcpu, vec);
5557 return 1;
6aa8b732
AK
5558}
5559
a0861c02
AK
5560/*
5561 * Trigger machine check on the host. We assume all the MSRs are already set up
5562 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5563 * We pass a fake environment to the machine check handler because we want
5564 * the guest to be always treated like user space, no matter what context
5565 * it used internally.
5566 */
5567static void kvm_machine_check(void)
5568{
5569#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5570 struct pt_regs regs = {
5571 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5572 .flags = X86_EFLAGS_IF,
5573 };
5574
5575 do_machine_check(&regs, 0);
5576#endif
5577}
5578
851ba692 5579static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5580{
5581 /* already handled by vcpu_run */
5582 return 1;
5583}
5584
851ba692 5585static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5586{
1155f76a 5587 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5588 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5589 u32 intr_info, ex_no, error_code;
42dbaa5a 5590 unsigned long cr2, rip, dr6;
6aa8b732
AK
5591 u32 vect_info;
5592 enum emulation_result er;
5593
1155f76a 5594 vect_info = vmx->idt_vectoring_info;
88786475 5595 intr_info = vmx->exit_intr_info;
6aa8b732 5596
a0861c02 5597 if (is_machine_check(intr_info))
851ba692 5598 return handle_machine_check(vcpu);
a0861c02 5599
ef85b673 5600 if (is_nmi(intr_info))
1b6269db 5601 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5602
7aa81cc0 5603 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5604 if (is_guest_mode(vcpu)) {
5605 kvm_queue_exception(vcpu, UD_VECTOR);
5606 return 1;
5607 }
51d8b661 5608 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5609 if (er != EMULATE_DONE)
7ee5d940 5610 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5611 return 1;
5612 }
5613
6aa8b732 5614 error_code = 0;
2e11384c 5615 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5616 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5617
5618 /*
5619 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5620 * MMIO, it is better to report an internal error.
5621 * See the comments in vmx_handle_exit.
5622 */
5623 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5624 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5625 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5626 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5627 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5628 vcpu->run->internal.data[0] = vect_info;
5629 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5630 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5631 return 0;
5632 }
5633
6aa8b732 5634 if (is_page_fault(intr_info)) {
1439442c 5635 /* EPT won't cause page fault directly */
cf3ace79 5636 BUG_ON(enable_ept);
6aa8b732 5637 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5638 trace_kvm_page_fault(cr2, error_code);
5639
3298b75c 5640 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5641 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5642 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5643 }
5644
d0bfb940 5645 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5646
5647 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5648 return handle_rmode_exception(vcpu, ex_no, error_code);
5649
42dbaa5a 5650 switch (ex_no) {
54a20552
EN
5651 case AC_VECTOR:
5652 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5653 return 1;
42dbaa5a
JK
5654 case DB_VECTOR:
5655 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5656 if (!(vcpu->guest_debug &
5657 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5658 vcpu->arch.dr6 &= ~15;
6f43ed01 5659 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5660 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5661 skip_emulated_instruction(vcpu);
5662
42dbaa5a
JK
5663 kvm_queue_exception(vcpu, DB_VECTOR);
5664 return 1;
5665 }
5666 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5667 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5668 /* fall through */
5669 case BP_VECTOR:
c573cd22
JK
5670 /*
5671 * Update instruction length as we may reinject #BP from
5672 * user space while in guest debugging mode. Reading it for
5673 * #DB as well causes no harm, it is not used in that case.
5674 */
5675 vmx->vcpu.arch.event_exit_inst_len =
5676 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5677 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5678 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5679 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5680 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5681 break;
5682 default:
d0bfb940
JK
5683 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5684 kvm_run->ex.exception = ex_no;
5685 kvm_run->ex.error_code = error_code;
42dbaa5a 5686 break;
6aa8b732 5687 }
6aa8b732
AK
5688 return 0;
5689}
5690
851ba692 5691static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5692{
1165f5fe 5693 ++vcpu->stat.irq_exits;
6aa8b732
AK
5694 return 1;
5695}
5696
851ba692 5697static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5698{
851ba692 5699 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5700 return 0;
5701}
6aa8b732 5702
851ba692 5703static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5704{
bfdaab09 5705 unsigned long exit_qualification;
6affcbed 5706 int size, in, string, ret;
039576c0 5707 unsigned port;
6aa8b732 5708
bfdaab09 5709 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5710 string = (exit_qualification & 16) != 0;
cf8f70bf 5711 in = (exit_qualification & 8) != 0;
e70669ab 5712
cf8f70bf 5713 ++vcpu->stat.io_exits;
e70669ab 5714
cf8f70bf 5715 if (string || in)
51d8b661 5716 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5717
cf8f70bf
GN
5718 port = exit_qualification >> 16;
5719 size = (exit_qualification & 7) + 1;
cf8f70bf 5720
6affcbed
KH
5721 ret = kvm_skip_emulated_instruction(vcpu);
5722
5723 /*
5724 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5725 * KVM_EXIT_DEBUG here.
5726 */
5727 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5728}
5729
102d8325
IM
5730static void
5731vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5732{
5733 /*
5734 * Patch in the VMCALL instruction:
5735 */
5736 hypercall[0] = 0x0f;
5737 hypercall[1] = 0x01;
5738 hypercall[2] = 0xc1;
102d8325
IM
5739}
5740
0fa06071 5741/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5742static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5743{
eeadf9e7 5744 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5745 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5746 unsigned long orig_val = val;
5747
eeadf9e7
NHE
5748 /*
5749 * We get here when L2 changed cr0 in a way that did not change
5750 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5751 * but did change L0 shadowed bits. So we first calculate the
5752 * effective cr0 value that L1 would like to write into the
5753 * hardware. It consists of the L2-owned bits from the new
5754 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5755 */
1a0d74e6
JK
5756 val = (val & ~vmcs12->cr0_guest_host_mask) |
5757 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5758
3899152c 5759 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 5760 return 1;
1a0d74e6
JK
5761
5762 if (kvm_set_cr0(vcpu, val))
5763 return 1;
5764 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5765 return 0;
1a0d74e6
JK
5766 } else {
5767 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 5768 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 5769 return 1;
3899152c 5770
eeadf9e7 5771 return kvm_set_cr0(vcpu, val);
1a0d74e6 5772 }
eeadf9e7
NHE
5773}
5774
5775static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5776{
5777 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5778 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5779 unsigned long orig_val = val;
5780
5781 /* analogously to handle_set_cr0 */
5782 val = (val & ~vmcs12->cr4_guest_host_mask) |
5783 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5784 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5785 return 1;
1a0d74e6 5786 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5787 return 0;
5788 } else
5789 return kvm_set_cr4(vcpu, val);
5790}
5791
851ba692 5792static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5793{
229456fc 5794 unsigned long exit_qualification, val;
6aa8b732
AK
5795 int cr;
5796 int reg;
49a9b07e 5797 int err;
6affcbed 5798 int ret;
6aa8b732 5799
bfdaab09 5800 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5801 cr = exit_qualification & 15;
5802 reg = (exit_qualification >> 8) & 15;
5803 switch ((exit_qualification >> 4) & 3) {
5804 case 0: /* mov to cr */
1e32c079 5805 val = kvm_register_readl(vcpu, reg);
229456fc 5806 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5807 switch (cr) {
5808 case 0:
eeadf9e7 5809 err = handle_set_cr0(vcpu, val);
6affcbed 5810 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5811 case 3:
2390218b 5812 err = kvm_set_cr3(vcpu, val);
6affcbed 5813 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5814 case 4:
eeadf9e7 5815 err = handle_set_cr4(vcpu, val);
6affcbed 5816 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5817 case 8: {
5818 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5819 u8 cr8 = (u8)val;
eea1cff9 5820 err = kvm_set_cr8(vcpu, cr8);
6affcbed 5821 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 5822 if (lapic_in_kernel(vcpu))
6affcbed 5823 return ret;
0a5fff19 5824 if (cr8_prev <= cr8)
6affcbed
KH
5825 return ret;
5826 /*
5827 * TODO: we might be squashing a
5828 * KVM_GUESTDBG_SINGLESTEP-triggered
5829 * KVM_EXIT_DEBUG here.
5830 */
851ba692 5831 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5832 return 0;
5833 }
4b8073e4 5834 }
6aa8b732 5835 break;
25c4c276 5836 case 2: /* clts */
bd7e5b08
PB
5837 WARN_ONCE(1, "Guest should always own CR0.TS");
5838 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 5839 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 5840 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5841 case 1: /*mov from cr*/
5842 switch (cr) {
5843 case 3:
9f8fe504
AK
5844 val = kvm_read_cr3(vcpu);
5845 kvm_register_write(vcpu, reg, val);
5846 trace_kvm_cr_read(cr, val);
6affcbed 5847 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 5848 case 8:
229456fc
MT
5849 val = kvm_get_cr8(vcpu);
5850 kvm_register_write(vcpu, reg, val);
5851 trace_kvm_cr_read(cr, val);
6affcbed 5852 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5853 }
5854 break;
5855 case 3: /* lmsw */
a1f83a74 5856 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5857 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5858 kvm_lmsw(vcpu, val);
6aa8b732 5859
6affcbed 5860 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5861 default:
5862 break;
5863 }
851ba692 5864 vcpu->run->exit_reason = 0;
a737f256 5865 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5866 (int)(exit_qualification >> 4) & 3, cr);
5867 return 0;
5868}
5869
851ba692 5870static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5871{
bfdaab09 5872 unsigned long exit_qualification;
16f8a6f9
NA
5873 int dr, dr7, reg;
5874
5875 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5876 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5877
5878 /* First, if DR does not exist, trigger UD */
5879 if (!kvm_require_dr(vcpu, dr))
5880 return 1;
6aa8b732 5881
f2483415 5882 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5883 if (!kvm_require_cpl(vcpu, 0))
5884 return 1;
16f8a6f9
NA
5885 dr7 = vmcs_readl(GUEST_DR7);
5886 if (dr7 & DR7_GD) {
42dbaa5a
JK
5887 /*
5888 * As the vm-exit takes precedence over the debug trap, we
5889 * need to emulate the latter, either for the host or the
5890 * guest debugging itself.
5891 */
5892 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5893 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5894 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5895 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5896 vcpu->run->debug.arch.exception = DB_VECTOR;
5897 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5898 return 0;
5899 } else {
7305eb5d 5900 vcpu->arch.dr6 &= ~15;
6f43ed01 5901 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5902 kvm_queue_exception(vcpu, DB_VECTOR);
5903 return 1;
5904 }
5905 }
5906
81908bf4 5907 if (vcpu->guest_debug == 0) {
8f22372f
PB
5908 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5909 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5910
5911 /*
5912 * No more DR vmexits; force a reload of the debug registers
5913 * and reenter on this instruction. The next vmexit will
5914 * retrieve the full state of the debug registers.
5915 */
5916 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5917 return 1;
5918 }
5919
42dbaa5a
JK
5920 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5921 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5922 unsigned long val;
4c4d563b
JK
5923
5924 if (kvm_get_dr(vcpu, dr, &val))
5925 return 1;
5926 kvm_register_write(vcpu, reg, val);
020df079 5927 } else
5777392e 5928 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5929 return 1;
5930
6affcbed 5931 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5932}
5933
73aaf249
JK
5934static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5935{
5936 return vcpu->arch.dr6;
5937}
5938
5939static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5940{
5941}
5942
81908bf4
PB
5943static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5944{
81908bf4
PB
5945 get_debugreg(vcpu->arch.db[0], 0);
5946 get_debugreg(vcpu->arch.db[1], 1);
5947 get_debugreg(vcpu->arch.db[2], 2);
5948 get_debugreg(vcpu->arch.db[3], 3);
5949 get_debugreg(vcpu->arch.dr6, 6);
5950 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5951
5952 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5953 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5954}
5955
020df079
GN
5956static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5957{
5958 vmcs_writel(GUEST_DR7, val);
5959}
5960
851ba692 5961static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5962{
6a908b62 5963 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
5964}
5965
851ba692 5966static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5967{
ad312c7c 5968 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5969 struct msr_data msr_info;
6aa8b732 5970
609e36d3
PB
5971 msr_info.index = ecx;
5972 msr_info.host_initiated = false;
5973 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5974 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5975 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5976 return 1;
5977 }
5978
609e36d3 5979 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5980
6aa8b732 5981 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5982 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5983 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 5984 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5985}
5986
851ba692 5987static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5988{
8fe8ab46 5989 struct msr_data msr;
ad312c7c
ZX
5990 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5991 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5992 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5993
8fe8ab46
WA
5994 msr.data = data;
5995 msr.index = ecx;
5996 msr.host_initiated = false;
854e8bb1 5997 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5998 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5999 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6000 return 1;
6001 }
6002
59200273 6003 trace_kvm_msr_write(ecx, data);
6affcbed 6004 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6005}
6006
851ba692 6007static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6008{
eb90f341 6009 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6010 return 1;
6011}
6012
851ba692 6013static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6014{
47c0152e
PB
6015 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6016 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6017
3842d135
AK
6018 kvm_make_request(KVM_REQ_EVENT, vcpu);
6019
a26bf12a 6020 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6021 return 1;
6022}
6023
851ba692 6024static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6025{
d3bef15f 6026 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6027}
6028
851ba692 6029static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6030{
0d9c055e 6031 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6032}
6033
ec25d5e6
GN
6034static int handle_invd(struct kvm_vcpu *vcpu)
6035{
51d8b661 6036 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6037}
6038
851ba692 6039static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6040{
f9c617f6 6041 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6042
6043 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6044 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6045}
6046
fee84b07
AK
6047static int handle_rdpmc(struct kvm_vcpu *vcpu)
6048{
6049 int err;
6050
6051 err = kvm_rdpmc(vcpu);
6affcbed 6052 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6053}
6054
851ba692 6055static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6056{
6affcbed 6057 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6058}
6059
2acf923e
DC
6060static int handle_xsetbv(struct kvm_vcpu *vcpu)
6061{
6062 u64 new_bv = kvm_read_edx_eax(vcpu);
6063 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6064
6065 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6066 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6067 return 1;
6068}
6069
f53cd63c
WL
6070static int handle_xsaves(struct kvm_vcpu *vcpu)
6071{
6affcbed 6072 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6073 WARN(1, "this should never happen\n");
6074 return 1;
6075}
6076
6077static int handle_xrstors(struct kvm_vcpu *vcpu)
6078{
6affcbed 6079 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6080 WARN(1, "this should never happen\n");
6081 return 1;
6082}
6083
851ba692 6084static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6085{
58fbbf26
KT
6086 if (likely(fasteoi)) {
6087 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6088 int access_type, offset;
6089
6090 access_type = exit_qualification & APIC_ACCESS_TYPE;
6091 offset = exit_qualification & APIC_ACCESS_OFFSET;
6092 /*
6093 * Sane guest uses MOV to write EOI, with written value
6094 * not cared. So make a short-circuit here by avoiding
6095 * heavy instruction emulation.
6096 */
6097 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6098 (offset == APIC_EOI)) {
6099 kvm_lapic_set_eoi(vcpu);
6affcbed 6100 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6101 }
6102 }
51d8b661 6103 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6104}
6105
c7c9c56c
YZ
6106static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6107{
6108 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6109 int vector = exit_qualification & 0xff;
6110
6111 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6112 kvm_apic_set_eoi_accelerated(vcpu, vector);
6113 return 1;
6114}
6115
83d4c286
YZ
6116static int handle_apic_write(struct kvm_vcpu *vcpu)
6117{
6118 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6119 u32 offset = exit_qualification & 0xfff;
6120
6121 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6122 kvm_apic_write_nodecode(vcpu, offset);
6123 return 1;
6124}
6125
851ba692 6126static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6127{
60637aac 6128 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6129 unsigned long exit_qualification;
e269fb21
JK
6130 bool has_error_code = false;
6131 u32 error_code = 0;
37817f29 6132 u16 tss_selector;
7f3d35fd 6133 int reason, type, idt_v, idt_index;
64a7ec06
GN
6134
6135 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6136 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6137 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6138
6139 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6140
6141 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6142 if (reason == TASK_SWITCH_GATE && idt_v) {
6143 switch (type) {
6144 case INTR_TYPE_NMI_INTR:
6145 vcpu->arch.nmi_injected = false;
654f06fc 6146 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6147 break;
6148 case INTR_TYPE_EXT_INTR:
66fd3f7f 6149 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6150 kvm_clear_interrupt_queue(vcpu);
6151 break;
6152 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6153 if (vmx->idt_vectoring_info &
6154 VECTORING_INFO_DELIVER_CODE_MASK) {
6155 has_error_code = true;
6156 error_code =
6157 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6158 }
6159 /* fall through */
64a7ec06
GN
6160 case INTR_TYPE_SOFT_EXCEPTION:
6161 kvm_clear_exception_queue(vcpu);
6162 break;
6163 default:
6164 break;
6165 }
60637aac 6166 }
37817f29
IE
6167 tss_selector = exit_qualification;
6168
64a7ec06
GN
6169 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6170 type != INTR_TYPE_EXT_INTR &&
6171 type != INTR_TYPE_NMI_INTR))
6172 skip_emulated_instruction(vcpu);
6173
7f3d35fd
KW
6174 if (kvm_task_switch(vcpu, tss_selector,
6175 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6176 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6177 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6178 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6179 vcpu->run->internal.ndata = 0;
42dbaa5a 6180 return 0;
acb54517 6181 }
42dbaa5a 6182
42dbaa5a
JK
6183 /*
6184 * TODO: What about debug traps on tss switch?
6185 * Are we supposed to inject them and update dr6?
6186 */
6187
6188 return 1;
37817f29
IE
6189}
6190
851ba692 6191static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6192{
f9c617f6 6193 unsigned long exit_qualification;
1439442c 6194 gpa_t gpa;
4f5982a5 6195 u32 error_code;
1439442c 6196
f9c617f6 6197 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6198
ae1e2d10
PB
6199 if (is_guest_mode(vcpu)
6200 && !(exit_qualification & EPT_VIOLATION_GVA_TRANSLATED)) {
6201 /*
6202 * Fix up exit_qualification according to whether guest
6203 * page table accesses are reads or writes.
6204 */
6205 u64 eptp = nested_ept_get_cr3(vcpu);
33251870 6206 if (!(eptp & VMX_EPT_AD_ENABLE_BIT))
ae1e2d10
PB
6207 exit_qualification &= ~EPT_VIOLATION_ACC_WRITE;
6208 }
6209
0be9c7a8
GN
6210 /*
6211 * EPT violation happened while executing iret from NMI,
6212 * "blocked by NMI" bit has to be set before next VM entry.
6213 * There are errata that may cause this bit to not be set:
6214 * AAK134, BY25.
6215 */
bcd1c294 6216 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6217 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6218 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6219
1439442c 6220 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6221 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6222
27959a44 6223 /* Is it a read fault? */
ab22a473 6224 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6225 ? PFERR_USER_MASK : 0;
6226 /* Is it a write fault? */
ab22a473 6227 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6228 ? PFERR_WRITE_MASK : 0;
6229 /* Is it a fetch fault? */
ab22a473 6230 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6231 ? PFERR_FETCH_MASK : 0;
6232 /* ept page table entry is present? */
6233 error_code |= (exit_qualification &
6234 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6235 EPT_VIOLATION_EXECUTABLE))
6236 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6237
db1c056c 6238 vcpu->arch.gpa_available = true;
25d92081
YZ
6239 vcpu->arch.exit_qualification = exit_qualification;
6240
4f5982a5 6241 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6242}
6243
851ba692 6244static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6245{
f735d4af 6246 int ret;
68f89400
MT
6247 gpa_t gpa;
6248
6249 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6250 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6251 trace_kvm_fast_mmio(gpa);
6affcbed 6252 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6253 }
68f89400 6254
450869d6 6255 ret = handle_mmio_page_fault(vcpu, gpa, true);
db1c056c 6256 vcpu->arch.gpa_available = true;
b37fbea6 6257 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6258 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6259 EMULATE_DONE;
f8f55942
XG
6260
6261 if (unlikely(ret == RET_MMIO_PF_INVALID))
6262 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6263
b37fbea6 6264 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6265 return 1;
6266
6267 /* It is the real ept misconfig */
f735d4af 6268 WARN_ON(1);
68f89400 6269
851ba692
AK
6270 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6271 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6272
6273 return 0;
6274}
6275
851ba692 6276static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6277{
47c0152e
PB
6278 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6279 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6280 ++vcpu->stat.nmi_window_exits;
3842d135 6281 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6282
6283 return 1;
6284}
6285
80ced186 6286static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6287{
8b3079a5
AK
6288 struct vcpu_vmx *vmx = to_vmx(vcpu);
6289 enum emulation_result err = EMULATE_DONE;
80ced186 6290 int ret = 1;
49e9d557
AK
6291 u32 cpu_exec_ctrl;
6292 bool intr_window_requested;
b8405c18 6293 unsigned count = 130;
49e9d557
AK
6294
6295 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6296 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6297
98eb2f8b 6298 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6299 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6300 return handle_interrupt_window(&vmx->vcpu);
6301
72875d8a 6302 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6303 return 1;
6304
991eebf9 6305 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6306
ac0a48c3 6307 if (err == EMULATE_USER_EXIT) {
94452b9e 6308 ++vcpu->stat.mmio_exits;
80ced186
MG
6309 ret = 0;
6310 goto out;
6311 }
1d5a4d9b 6312
de5f70e0
AK
6313 if (err != EMULATE_DONE) {
6314 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6315 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6316 vcpu->run->internal.ndata = 0;
6d77dbfc 6317 return 0;
de5f70e0 6318 }
ea953ef0 6319
8d76c49e
GN
6320 if (vcpu->arch.halt_request) {
6321 vcpu->arch.halt_request = 0;
5cb56059 6322 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6323 goto out;
6324 }
6325
ea953ef0 6326 if (signal_pending(current))
80ced186 6327 goto out;
ea953ef0
MG
6328 if (need_resched())
6329 schedule();
6330 }
6331
80ced186
MG
6332out:
6333 return ret;
ea953ef0
MG
6334}
6335
b4a2d31d
RK
6336static int __grow_ple_window(int val)
6337{
6338 if (ple_window_grow < 1)
6339 return ple_window;
6340
6341 val = min(val, ple_window_actual_max);
6342
6343 if (ple_window_grow < ple_window)
6344 val *= ple_window_grow;
6345 else
6346 val += ple_window_grow;
6347
6348 return val;
6349}
6350
6351static int __shrink_ple_window(int val, int modifier, int minimum)
6352{
6353 if (modifier < 1)
6354 return ple_window;
6355
6356 if (modifier < ple_window)
6357 val /= modifier;
6358 else
6359 val -= modifier;
6360
6361 return max(val, minimum);
6362}
6363
6364static void grow_ple_window(struct kvm_vcpu *vcpu)
6365{
6366 struct vcpu_vmx *vmx = to_vmx(vcpu);
6367 int old = vmx->ple_window;
6368
6369 vmx->ple_window = __grow_ple_window(old);
6370
6371 if (vmx->ple_window != old)
6372 vmx->ple_window_dirty = true;
7b46268d
RK
6373
6374 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6375}
6376
6377static void shrink_ple_window(struct kvm_vcpu *vcpu)
6378{
6379 struct vcpu_vmx *vmx = to_vmx(vcpu);
6380 int old = vmx->ple_window;
6381
6382 vmx->ple_window = __shrink_ple_window(old,
6383 ple_window_shrink, ple_window);
6384
6385 if (vmx->ple_window != old)
6386 vmx->ple_window_dirty = true;
7b46268d
RK
6387
6388 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6389}
6390
6391/*
6392 * ple_window_actual_max is computed to be one grow_ple_window() below
6393 * ple_window_max. (See __grow_ple_window for the reason.)
6394 * This prevents overflows, because ple_window_max is int.
6395 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6396 * this process.
6397 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6398 */
6399static void update_ple_window_actual_max(void)
6400{
6401 ple_window_actual_max =
6402 __shrink_ple_window(max(ple_window_max, ple_window),
6403 ple_window_grow, INT_MIN);
6404}
6405
bf9f6ac8
FW
6406/*
6407 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6408 */
6409static void wakeup_handler(void)
6410{
6411 struct kvm_vcpu *vcpu;
6412 int cpu = smp_processor_id();
6413
6414 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6415 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6416 blocked_vcpu_list) {
6417 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6418
6419 if (pi_test_on(pi_desc) == 1)
6420 kvm_vcpu_kick(vcpu);
6421 }
6422 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6423}
6424
f160c7b7
JS
6425void vmx_enable_tdp(void)
6426{
6427 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6428 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6429 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6430 0ull, VMX_EPT_EXECUTABLE_MASK,
6431 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
312b616b 6432 enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
f160c7b7
JS
6433
6434 ept_set_mmio_spte_mask();
6435 kvm_enable_tdp();
6436}
6437
f2c7648d
TC
6438static __init int hardware_setup(void)
6439{
34a1cd60
TC
6440 int r = -ENOMEM, i, msr;
6441
6442 rdmsrl_safe(MSR_EFER, &host_efer);
6443
6444 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6445 kvm_define_shared_msr(i, vmx_msr_index[i]);
6446
23611332
RK
6447 for (i = 0; i < VMX_BITMAP_NR; i++) {
6448 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6449 if (!vmx_bitmap[i])
6450 goto out;
6451 }
34a1cd60
TC
6452
6453 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6454 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6455 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6456
6457 /*
6458 * Allow direct access to the PC debug port (it is often used for I/O
6459 * delays, but the vmexits simply slow things down).
6460 */
6461 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6462 clear_bit(0x80, vmx_io_bitmap_a);
6463
6464 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6465
6466 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6467 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6468
34a1cd60
TC
6469 if (setup_vmcs_config(&vmcs_config) < 0) {
6470 r = -EIO;
23611332 6471 goto out;
baa03522 6472 }
f2c7648d
TC
6473
6474 if (boot_cpu_has(X86_FEATURE_NX))
6475 kvm_enable_efer_bits(EFER_NX);
6476
08d839c4
WL
6477 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6478 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6479 enable_vpid = 0;
08d839c4 6480
f2c7648d
TC
6481 if (!cpu_has_vmx_shadow_vmcs())
6482 enable_shadow_vmcs = 0;
6483 if (enable_shadow_vmcs)
6484 init_vmcs_shadow_fields();
6485
6486 if (!cpu_has_vmx_ept() ||
6487 !cpu_has_vmx_ept_4levels()) {
6488 enable_ept = 0;
6489 enable_unrestricted_guest = 0;
6490 enable_ept_ad_bits = 0;
6491 }
6492
6493 if (!cpu_has_vmx_ept_ad_bits())
6494 enable_ept_ad_bits = 0;
6495
6496 if (!cpu_has_vmx_unrestricted_guest())
6497 enable_unrestricted_guest = 0;
6498
ad15a296 6499 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6500 flexpriority_enabled = 0;
6501
ad15a296
PB
6502 /*
6503 * set_apic_access_page_addr() is used to reload apic access
6504 * page upon invalidation. No need to do anything if not
6505 * using the APIC_ACCESS_ADDR VMCS field.
6506 */
6507 if (!flexpriority_enabled)
f2c7648d 6508 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6509
6510 if (!cpu_has_vmx_tpr_shadow())
6511 kvm_x86_ops->update_cr8_intercept = NULL;
6512
6513 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6514 kvm_disable_largepages();
6515
6516 if (!cpu_has_vmx_ple())
6517 ple_gap = 0;
6518
76dfafd5 6519 if (!cpu_has_vmx_apicv()) {
f2c7648d 6520 enable_apicv = 0;
76dfafd5
PB
6521 kvm_x86_ops->sync_pir_to_irr = NULL;
6522 }
f2c7648d 6523
64903d61
HZ
6524 if (cpu_has_vmx_tsc_scaling()) {
6525 kvm_has_tsc_control = true;
6526 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6527 kvm_tsc_scaling_ratio_frac_bits = 48;
6528 }
6529
baa03522
TC
6530 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6531 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6532 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6533 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6534 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6535 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6536 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6537
c63e4563 6538 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6539 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6540 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6541 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6542 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6543 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6544 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6545 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6546
04bb92e4
WL
6547 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6548
40d8338d
RK
6549 for (msr = 0x800; msr <= 0x8ff; msr++) {
6550 if (msr == 0x839 /* TMCCT */)
6551 continue;
2e69f865 6552 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6553 }
3ce424e4 6554
f6e90f9e 6555 /*
2e69f865
RK
6556 * TPR reads and writes can be virtualized even if virtual interrupt
6557 * delivery is not in use.
f6e90f9e 6558 */
2e69f865
RK
6559 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6560 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6561
3ce424e4 6562 /* EOI */
2e69f865 6563 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6564 /* SELF-IPI */
2e69f865 6565 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6566
f160c7b7
JS
6567 if (enable_ept)
6568 vmx_enable_tdp();
6569 else
baa03522
TC
6570 kvm_disable_tdp();
6571
6572 update_ple_window_actual_max();
6573
843e4330
KH
6574 /*
6575 * Only enable PML when hardware supports PML feature, and both EPT
6576 * and EPT A/D bit features are enabled -- PML depends on them to work.
6577 */
6578 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6579 enable_pml = 0;
6580
6581 if (!enable_pml) {
6582 kvm_x86_ops->slot_enable_log_dirty = NULL;
6583 kvm_x86_ops->slot_disable_log_dirty = NULL;
6584 kvm_x86_ops->flush_log_dirty = NULL;
6585 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6586 }
6587
64672c95
YJ
6588 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6589 u64 vmx_msr;
6590
6591 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6592 cpu_preemption_timer_multi =
6593 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6594 } else {
6595 kvm_x86_ops->set_hv_timer = NULL;
6596 kvm_x86_ops->cancel_hv_timer = NULL;
6597 }
6598
bf9f6ac8
FW
6599 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6600
c45dcc71
AR
6601 kvm_mce_cap_supported |= MCG_LMCE_P;
6602
f2c7648d 6603 return alloc_kvm_area();
34a1cd60 6604
34a1cd60 6605out:
23611332
RK
6606 for (i = 0; i < VMX_BITMAP_NR; i++)
6607 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6608
6609 return r;
f2c7648d
TC
6610}
6611
6612static __exit void hardware_unsetup(void)
6613{
23611332
RK
6614 int i;
6615
6616 for (i = 0; i < VMX_BITMAP_NR; i++)
6617 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6618
f2c7648d
TC
6619 free_kvm_area();
6620}
6621
4b8d54f9
ZE
6622/*
6623 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6624 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6625 */
9fb41ba8 6626static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6627{
b4a2d31d
RK
6628 if (ple_gap)
6629 grow_ple_window(vcpu);
6630
4b8d54f9 6631 kvm_vcpu_on_spin(vcpu);
6affcbed 6632 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6633}
6634
87c00572 6635static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6636{
6affcbed 6637 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6638}
6639
87c00572
GS
6640static int handle_mwait(struct kvm_vcpu *vcpu)
6641{
6642 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6643 return handle_nop(vcpu);
6644}
6645
5f3d45e7
MD
6646static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6647{
6648 return 1;
6649}
6650
87c00572
GS
6651static int handle_monitor(struct kvm_vcpu *vcpu)
6652{
6653 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6654 return handle_nop(vcpu);
6655}
6656
ff2f6fe9
NHE
6657/*
6658 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6659 * We could reuse a single VMCS for all the L2 guests, but we also want the
6660 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6661 * allows keeping them loaded on the processor, and in the future will allow
6662 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6663 * every entry if they never change.
6664 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6665 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6666 *
6667 * The following functions allocate and free a vmcs02 in this pool.
6668 */
6669
6670/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6671static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6672{
6673 struct vmcs02_list *item;
6674 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6675 if (item->vmptr == vmx->nested.current_vmptr) {
6676 list_move(&item->list, &vmx->nested.vmcs02_pool);
6677 return &item->vmcs02;
6678 }
6679
6680 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6681 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6682 item = list_last_entry(&vmx->nested.vmcs02_pool,
6683 struct vmcs02_list, list);
ff2f6fe9
NHE
6684 item->vmptr = vmx->nested.current_vmptr;
6685 list_move(&item->list, &vmx->nested.vmcs02_pool);
6686 return &item->vmcs02;
6687 }
6688
6689 /* Create a new VMCS */
0fa24ce3 6690 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6691 if (!item)
6692 return NULL;
6693 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6694 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6695 if (!item->vmcs02.vmcs) {
6696 kfree(item);
6697 return NULL;
6698 }
6699 loaded_vmcs_init(&item->vmcs02);
6700 item->vmptr = vmx->nested.current_vmptr;
6701 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6702 vmx->nested.vmcs02_num++;
6703 return &item->vmcs02;
6704}
6705
6706/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6707static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6708{
6709 struct vmcs02_list *item;
6710 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6711 if (item->vmptr == vmptr) {
6712 free_loaded_vmcs(&item->vmcs02);
6713 list_del(&item->list);
6714 kfree(item);
6715 vmx->nested.vmcs02_num--;
6716 return;
6717 }
6718}
6719
6720/*
6721 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6722 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6723 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6724 */
6725static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6726{
6727 struct vmcs02_list *item, *n;
4fa7734c
PB
6728
6729 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6730 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6731 /*
6732 * Something will leak if the above WARN triggers. Better than
6733 * a use-after-free.
6734 */
6735 if (vmx->loaded_vmcs == &item->vmcs02)
6736 continue;
6737
6738 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6739 list_del(&item->list);
6740 kfree(item);
4fa7734c 6741 vmx->nested.vmcs02_num--;
ff2f6fe9 6742 }
ff2f6fe9
NHE
6743}
6744
0658fbaa
ACL
6745/*
6746 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6747 * set the success or error code of an emulated VMX instruction, as specified
6748 * by Vol 2B, VMX Instruction Reference, "Conventions".
6749 */
6750static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6751{
6752 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6753 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6754 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6755}
6756
6757static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6758{
6759 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6760 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6761 X86_EFLAGS_SF | X86_EFLAGS_OF))
6762 | X86_EFLAGS_CF);
6763}
6764
145c28dd 6765static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6766 u32 vm_instruction_error)
6767{
6768 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6769 /*
6770 * failValid writes the error number to the current VMCS, which
6771 * can't be done there isn't a current VMCS.
6772 */
6773 nested_vmx_failInvalid(vcpu);
6774 return;
6775 }
6776 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6777 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6778 X86_EFLAGS_SF | X86_EFLAGS_OF))
6779 | X86_EFLAGS_ZF);
6780 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6781 /*
6782 * We don't need to force a shadow sync because
6783 * VM_INSTRUCTION_ERROR is not shadowed
6784 */
6785}
145c28dd 6786
ff651cb6
WV
6787static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6788{
6789 /* TODO: not to reset guest simply here. */
6790 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6791 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6792}
6793
f4124500
JK
6794static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6795{
6796 struct vcpu_vmx *vmx =
6797 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6798
6799 vmx->nested.preemption_timer_expired = true;
6800 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6801 kvm_vcpu_kick(&vmx->vcpu);
6802
6803 return HRTIMER_NORESTART;
6804}
6805
19677e32
BD
6806/*
6807 * Decode the memory-address operand of a vmx instruction, as recorded on an
6808 * exit caused by such an instruction (run by a guest hypervisor).
6809 * On success, returns 0. When the operand is invalid, returns 1 and throws
6810 * #UD or #GP.
6811 */
6812static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6813 unsigned long exit_qualification,
f9eb4af6 6814 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6815{
f9eb4af6
EK
6816 gva_t off;
6817 bool exn;
6818 struct kvm_segment s;
6819
19677e32
BD
6820 /*
6821 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6822 * Execution", on an exit, vmx_instruction_info holds most of the
6823 * addressing components of the operand. Only the displacement part
6824 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6825 * For how an actual address is calculated from all these components,
6826 * refer to Vol. 1, "Operand Addressing".
6827 */
6828 int scaling = vmx_instruction_info & 3;
6829 int addr_size = (vmx_instruction_info >> 7) & 7;
6830 bool is_reg = vmx_instruction_info & (1u << 10);
6831 int seg_reg = (vmx_instruction_info >> 15) & 7;
6832 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6833 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6834 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6835 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6836
6837 if (is_reg) {
6838 kvm_queue_exception(vcpu, UD_VECTOR);
6839 return 1;
6840 }
6841
6842 /* Addr = segment_base + offset */
6843 /* offset = base + [index * scale] + displacement */
f9eb4af6 6844 off = exit_qualification; /* holds the displacement */
19677e32 6845 if (base_is_valid)
f9eb4af6 6846 off += kvm_register_read(vcpu, base_reg);
19677e32 6847 if (index_is_valid)
f9eb4af6
EK
6848 off += kvm_register_read(vcpu, index_reg)<<scaling;
6849 vmx_get_segment(vcpu, &s, seg_reg);
6850 *ret = s.base + off;
19677e32
BD
6851
6852 if (addr_size == 1) /* 32 bit */
6853 *ret &= 0xffffffff;
6854
f9eb4af6
EK
6855 /* Checks for #GP/#SS exceptions. */
6856 exn = false;
ff30ef40
QC
6857 if (is_long_mode(vcpu)) {
6858 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6859 * non-canonical form. This is the only check on the memory
6860 * destination for long mode!
6861 */
6862 exn = is_noncanonical_address(*ret);
6863 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
6864 /* Protected mode: apply checks for segment validity in the
6865 * following order:
6866 * - segment type check (#GP(0) may be thrown)
6867 * - usability check (#GP(0)/#SS(0))
6868 * - limit check (#GP(0)/#SS(0))
6869 */
6870 if (wr)
6871 /* #GP(0) if the destination operand is located in a
6872 * read-only data segment or any code segment.
6873 */
6874 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6875 else
6876 /* #GP(0) if the source operand is located in an
6877 * execute-only code segment
6878 */
6879 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
6880 if (exn) {
6881 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6882 return 1;
6883 }
f9eb4af6
EK
6884 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6885 */
6886 exn = (s.unusable != 0);
6887 /* Protected mode: #GP(0)/#SS(0) if the memory
6888 * operand is outside the segment limit.
6889 */
6890 exn = exn || (off + sizeof(u64) > s.limit);
6891 }
6892 if (exn) {
6893 kvm_queue_exception_e(vcpu,
6894 seg_reg == VCPU_SREG_SS ?
6895 SS_VECTOR : GP_VECTOR,
6896 0);
6897 return 1;
6898 }
6899
19677e32
BD
6900 return 0;
6901}
6902
3573e22c
BD
6903/*
6904 * This function performs the various checks including
6905 * - if it's 4KB aligned
6906 * - No bits beyond the physical address width are set
6907 * - Returns 0 on success or else 1
4291b588 6908 * (Intel SDM Section 30.3)
3573e22c 6909 */
4291b588
BD
6910static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6911 gpa_t *vmpointer)
3573e22c
BD
6912{
6913 gva_t gva;
6914 gpa_t vmptr;
6915 struct x86_exception e;
6916 struct page *page;
6917 struct vcpu_vmx *vmx = to_vmx(vcpu);
6918 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6919
6920 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6921 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6922 return 1;
6923
6924 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6925 sizeof(vmptr), &e)) {
6926 kvm_inject_page_fault(vcpu, &e);
6927 return 1;
6928 }
6929
6930 switch (exit_reason) {
6931 case EXIT_REASON_VMON:
6932 /*
6933 * SDM 3: 24.11.5
6934 * The first 4 bytes of VMXON region contain the supported
6935 * VMCS revision identifier
6936 *
6937 * Note - IA32_VMX_BASIC[48] will never be 1
6938 * for the nested case;
6939 * which replaces physical address width with 32
6940 *
6941 */
bc39c4db 6942 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c 6943 nested_vmx_failInvalid(vcpu);
6affcbed 6944 return kvm_skip_emulated_instruction(vcpu);
3573e22c
BD
6945 }
6946
6947 page = nested_get_page(vcpu, vmptr);
06ce521a 6948 if (page == NULL) {
3573e22c 6949 nested_vmx_failInvalid(vcpu);
06ce521a
PB
6950 return kvm_skip_emulated_instruction(vcpu);
6951 }
6952 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
3573e22c 6953 kunmap(page);
06ce521a
PB
6954 nested_release_page_clean(page);
6955 nested_vmx_failInvalid(vcpu);
6affcbed 6956 return kvm_skip_emulated_instruction(vcpu);
3573e22c
BD
6957 }
6958 kunmap(page);
06ce521a 6959 nested_release_page_clean(page);
3573e22c
BD
6960 vmx->nested.vmxon_ptr = vmptr;
6961 break;
4291b588 6962 case EXIT_REASON_VMCLEAR:
bc39c4db 6963 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6964 nested_vmx_failValid(vcpu,
6965 VMXERR_VMCLEAR_INVALID_ADDRESS);
6affcbed 6966 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
6967 }
6968
6969 if (vmptr == vmx->nested.vmxon_ptr) {
6970 nested_vmx_failValid(vcpu,
6971 VMXERR_VMCLEAR_VMXON_POINTER);
6affcbed 6972 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
6973 }
6974 break;
6975 case EXIT_REASON_VMPTRLD:
bc39c4db 6976 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6977 nested_vmx_failValid(vcpu,
6978 VMXERR_VMPTRLD_INVALID_ADDRESS);
6affcbed 6979 return kvm_skip_emulated_instruction(vcpu);
4291b588 6980 }
3573e22c 6981
4291b588
BD
6982 if (vmptr == vmx->nested.vmxon_ptr) {
6983 nested_vmx_failValid(vcpu,
37b9a671 6984 VMXERR_VMPTRLD_VMXON_POINTER);
6affcbed 6985 return kvm_skip_emulated_instruction(vcpu);
4291b588
BD
6986 }
6987 break;
3573e22c
BD
6988 default:
6989 return 1; /* shouldn't happen */
6990 }
6991
4291b588
BD
6992 if (vmpointer)
6993 *vmpointer = vmptr;
3573e22c
BD
6994 return 0;
6995}
6996
e29acc55
JM
6997static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6998{
6999 struct vcpu_vmx *vmx = to_vmx(vcpu);
7000 struct vmcs *shadow_vmcs;
7001
7002 if (cpu_has_vmx_msr_bitmap()) {
7003 vmx->nested.msr_bitmap =
7004 (unsigned long *)__get_free_page(GFP_KERNEL);
7005 if (!vmx->nested.msr_bitmap)
7006 goto out_msr_bitmap;
7007 }
7008
7009 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7010 if (!vmx->nested.cached_vmcs12)
7011 goto out_cached_vmcs12;
7012
7013 if (enable_shadow_vmcs) {
7014 shadow_vmcs = alloc_vmcs();
7015 if (!shadow_vmcs)
7016 goto out_shadow_vmcs;
7017 /* mark vmcs as shadow */
7018 shadow_vmcs->revision_id |= (1u << 31);
7019 /* init shadow vmcs */
7020 vmcs_clear(shadow_vmcs);
7021 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7022 }
7023
7024 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7025 vmx->nested.vmcs02_num = 0;
7026
7027 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7028 HRTIMER_MODE_REL_PINNED);
7029 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7030
7031 vmx->nested.vmxon = true;
7032 return 0;
7033
7034out_shadow_vmcs:
7035 kfree(vmx->nested.cached_vmcs12);
7036
7037out_cached_vmcs12:
7038 free_page((unsigned long)vmx->nested.msr_bitmap);
7039
7040out_msr_bitmap:
7041 return -ENOMEM;
7042}
7043
ec378aee
NHE
7044/*
7045 * Emulate the VMXON instruction.
7046 * Currently, we just remember that VMX is active, and do not save or even
7047 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7048 * do not currently need to store anything in that guest-allocated memory
7049 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7050 * argument is different from the VMXON pointer (which the spec says they do).
7051 */
7052static int handle_vmon(struct kvm_vcpu *vcpu)
7053{
e29acc55 7054 int ret;
ec378aee 7055 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7056 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7057 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7058
70f3aac9
JM
7059 /*
7060 * The Intel VMX Instruction Reference lists a bunch of bits that are
7061 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7062 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7063 * Otherwise, we should fail with #UD. But most faulting conditions
7064 * have already been checked by hardware, prior to the VM-exit for
7065 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7066 * that bit set to 1 in non-root mode.
ec378aee 7067 */
70f3aac9 7068 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7069 kvm_queue_exception(vcpu, UD_VECTOR);
7070 return 1;
7071 }
7072
145c28dd
AG
7073 if (vmx->nested.vmxon) {
7074 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7075 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7076 }
b3897a49 7077
3b84080b 7078 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7079 != VMXON_NEEDED_FEATURES) {
7080 kvm_inject_gp(vcpu, 0);
7081 return 1;
7082 }
7083
21e7fbe7
JM
7084 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7085 return 1;
e29acc55
JM
7086
7087 ret = enter_vmx_operation(vcpu);
7088 if (ret)
7089 return ret;
ec378aee 7090
a25eb114 7091 nested_vmx_succeed(vcpu);
6affcbed 7092 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7093}
7094
7095/*
7096 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7097 * for running VMX instructions (except VMXON, whose prerequisites are
7098 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7099 * Note that many of these exceptions have priority over VM exits, so they
7100 * don't have to be checked again here.
ec378aee
NHE
7101 */
7102static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7103{
70f3aac9 7104 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7105 kvm_queue_exception(vcpu, UD_VECTOR);
7106 return 0;
7107 }
ec378aee
NHE
7108 return 1;
7109}
7110
e7953d7f
AG
7111static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7112{
9a2a05b9
PB
7113 if (vmx->nested.current_vmptr == -1ull)
7114 return;
7115
7116 /* current_vmptr and current_vmcs12 are always set/reset together */
7117 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7118 return;
7119
012f83cb 7120 if (enable_shadow_vmcs) {
9a2a05b9
PB
7121 /* copy to memory all shadowed fields in case
7122 they were modified */
7123 copy_shadow_to_vmcs12(vmx);
7124 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
7125 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7126 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 7127 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 7128 }
705699a1 7129 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7130
7131 /* Flush VMCS12 to guest memory */
7132 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7133 VMCS12_SIZE);
7134
e7953d7f
AG
7135 kunmap(vmx->nested.current_vmcs12_page);
7136 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
7137 vmx->nested.current_vmptr = -1ull;
7138 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
7139}
7140
ec378aee
NHE
7141/*
7142 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7143 * just stops using VMX.
7144 */
7145static void free_nested(struct vcpu_vmx *vmx)
7146{
7147 if (!vmx->nested.vmxon)
7148 return;
9a2a05b9 7149
ec378aee 7150 vmx->nested.vmxon = false;
5c614b35 7151 free_vpid(vmx->nested.vpid02);
9a2a05b9 7152 nested_release_vmcs12(vmx);
d048c098
RK
7153 if (vmx->nested.msr_bitmap) {
7154 free_page((unsigned long)vmx->nested.msr_bitmap);
7155 vmx->nested.msr_bitmap = NULL;
7156 }
355f4fb1
JM
7157 if (enable_shadow_vmcs) {
7158 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7159 free_vmcs(vmx->vmcs01.shadow_vmcs);
7160 vmx->vmcs01.shadow_vmcs = NULL;
7161 }
4f2777bc 7162 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7163 /* Unpin physical memory we referred to in current vmcs02 */
7164 if (vmx->nested.apic_access_page) {
7165 nested_release_page(vmx->nested.apic_access_page);
48d89b92 7166 vmx->nested.apic_access_page = NULL;
fe3ef05c 7167 }
a7c0b07d
WL
7168 if (vmx->nested.virtual_apic_page) {
7169 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 7170 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7171 }
705699a1
WV
7172 if (vmx->nested.pi_desc_page) {
7173 kunmap(vmx->nested.pi_desc_page);
7174 nested_release_page(vmx->nested.pi_desc_page);
7175 vmx->nested.pi_desc_page = NULL;
7176 vmx->nested.pi_desc = NULL;
7177 }
ff2f6fe9
NHE
7178
7179 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7180}
7181
7182/* Emulate the VMXOFF instruction */
7183static int handle_vmoff(struct kvm_vcpu *vcpu)
7184{
7185 if (!nested_vmx_check_permission(vcpu))
7186 return 1;
7187 free_nested(to_vmx(vcpu));
a25eb114 7188 nested_vmx_succeed(vcpu);
6affcbed 7189 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7190}
7191
27d6c865
NHE
7192/* Emulate the VMCLEAR instruction */
7193static int handle_vmclear(struct kvm_vcpu *vcpu)
7194{
7195 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7196 u32 zero = 0;
27d6c865 7197 gpa_t vmptr;
27d6c865
NHE
7198
7199 if (!nested_vmx_check_permission(vcpu))
7200 return 1;
7201
4291b588 7202 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 7203 return 1;
27d6c865 7204
9a2a05b9 7205 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7206 nested_release_vmcs12(vmx);
27d6c865 7207
587d7e72
JM
7208 kvm_vcpu_write_guest(vcpu,
7209 vmptr + offsetof(struct vmcs12, launch_state),
7210 &zero, sizeof(zero));
27d6c865
NHE
7211
7212 nested_free_vmcs02(vmx, vmptr);
7213
27d6c865 7214 nested_vmx_succeed(vcpu);
6affcbed 7215 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7216}
7217
cd232ad0
NHE
7218static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7219
7220/* Emulate the VMLAUNCH instruction */
7221static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7222{
7223 return nested_vmx_run(vcpu, true);
7224}
7225
7226/* Emulate the VMRESUME instruction */
7227static int handle_vmresume(struct kvm_vcpu *vcpu)
7228{
7229
7230 return nested_vmx_run(vcpu, false);
7231}
7232
49f705c5
NHE
7233enum vmcs_field_type {
7234 VMCS_FIELD_TYPE_U16 = 0,
7235 VMCS_FIELD_TYPE_U64 = 1,
7236 VMCS_FIELD_TYPE_U32 = 2,
7237 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7238};
7239
7240static inline int vmcs_field_type(unsigned long field)
7241{
7242 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7243 return VMCS_FIELD_TYPE_U32;
7244 return (field >> 13) & 0x3 ;
7245}
7246
7247static inline int vmcs_field_readonly(unsigned long field)
7248{
7249 return (((field >> 10) & 0x3) == 1);
7250}
7251
7252/*
7253 * Read a vmcs12 field. Since these can have varying lengths and we return
7254 * one type, we chose the biggest type (u64) and zero-extend the return value
7255 * to that size. Note that the caller, handle_vmread, might need to use only
7256 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7257 * 64-bit fields are to be returned).
7258 */
a2ae9df7
PB
7259static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7260 unsigned long field, u64 *ret)
49f705c5
NHE
7261{
7262 short offset = vmcs_field_to_offset(field);
7263 char *p;
7264
7265 if (offset < 0)
a2ae9df7 7266 return offset;
49f705c5
NHE
7267
7268 p = ((char *)(get_vmcs12(vcpu))) + offset;
7269
7270 switch (vmcs_field_type(field)) {
7271 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7272 *ret = *((natural_width *)p);
a2ae9df7 7273 return 0;
49f705c5
NHE
7274 case VMCS_FIELD_TYPE_U16:
7275 *ret = *((u16 *)p);
a2ae9df7 7276 return 0;
49f705c5
NHE
7277 case VMCS_FIELD_TYPE_U32:
7278 *ret = *((u32 *)p);
a2ae9df7 7279 return 0;
49f705c5
NHE
7280 case VMCS_FIELD_TYPE_U64:
7281 *ret = *((u64 *)p);
a2ae9df7 7282 return 0;
49f705c5 7283 default:
a2ae9df7
PB
7284 WARN_ON(1);
7285 return -ENOENT;
49f705c5
NHE
7286 }
7287}
7288
20b97fea 7289
a2ae9df7
PB
7290static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7291 unsigned long field, u64 field_value){
20b97fea
AG
7292 short offset = vmcs_field_to_offset(field);
7293 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7294 if (offset < 0)
a2ae9df7 7295 return offset;
20b97fea
AG
7296
7297 switch (vmcs_field_type(field)) {
7298 case VMCS_FIELD_TYPE_U16:
7299 *(u16 *)p = field_value;
a2ae9df7 7300 return 0;
20b97fea
AG
7301 case VMCS_FIELD_TYPE_U32:
7302 *(u32 *)p = field_value;
a2ae9df7 7303 return 0;
20b97fea
AG
7304 case VMCS_FIELD_TYPE_U64:
7305 *(u64 *)p = field_value;
a2ae9df7 7306 return 0;
20b97fea
AG
7307 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7308 *(natural_width *)p = field_value;
a2ae9df7 7309 return 0;
20b97fea 7310 default:
a2ae9df7
PB
7311 WARN_ON(1);
7312 return -ENOENT;
20b97fea
AG
7313 }
7314
7315}
7316
16f5b903
AG
7317static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7318{
7319 int i;
7320 unsigned long field;
7321 u64 field_value;
355f4fb1 7322 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7323 const unsigned long *fields = shadow_read_write_fields;
7324 const int num_fields = max_shadow_read_write_fields;
16f5b903 7325
282da870
JK
7326 preempt_disable();
7327
16f5b903
AG
7328 vmcs_load(shadow_vmcs);
7329
7330 for (i = 0; i < num_fields; i++) {
7331 field = fields[i];
7332 switch (vmcs_field_type(field)) {
7333 case VMCS_FIELD_TYPE_U16:
7334 field_value = vmcs_read16(field);
7335 break;
7336 case VMCS_FIELD_TYPE_U32:
7337 field_value = vmcs_read32(field);
7338 break;
7339 case VMCS_FIELD_TYPE_U64:
7340 field_value = vmcs_read64(field);
7341 break;
7342 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7343 field_value = vmcs_readl(field);
7344 break;
a2ae9df7
PB
7345 default:
7346 WARN_ON(1);
7347 continue;
16f5b903
AG
7348 }
7349 vmcs12_write_any(&vmx->vcpu, field, field_value);
7350 }
7351
7352 vmcs_clear(shadow_vmcs);
7353 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7354
7355 preempt_enable();
16f5b903
AG
7356}
7357
c3114420
AG
7358static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7359{
c2bae893
MK
7360 const unsigned long *fields[] = {
7361 shadow_read_write_fields,
7362 shadow_read_only_fields
c3114420 7363 };
c2bae893 7364 const int max_fields[] = {
c3114420
AG
7365 max_shadow_read_write_fields,
7366 max_shadow_read_only_fields
7367 };
7368 int i, q;
7369 unsigned long field;
7370 u64 field_value = 0;
355f4fb1 7371 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7372
7373 vmcs_load(shadow_vmcs);
7374
c2bae893 7375 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7376 for (i = 0; i < max_fields[q]; i++) {
7377 field = fields[q][i];
7378 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7379
7380 switch (vmcs_field_type(field)) {
7381 case VMCS_FIELD_TYPE_U16:
7382 vmcs_write16(field, (u16)field_value);
7383 break;
7384 case VMCS_FIELD_TYPE_U32:
7385 vmcs_write32(field, (u32)field_value);
7386 break;
7387 case VMCS_FIELD_TYPE_U64:
7388 vmcs_write64(field, (u64)field_value);
7389 break;
7390 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7391 vmcs_writel(field, (long)field_value);
7392 break;
a2ae9df7
PB
7393 default:
7394 WARN_ON(1);
7395 break;
c3114420
AG
7396 }
7397 }
7398 }
7399
7400 vmcs_clear(shadow_vmcs);
7401 vmcs_load(vmx->loaded_vmcs->vmcs);
7402}
7403
49f705c5
NHE
7404/*
7405 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7406 * used before) all generate the same failure when it is missing.
7407 */
7408static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7409{
7410 struct vcpu_vmx *vmx = to_vmx(vcpu);
7411 if (vmx->nested.current_vmptr == -1ull) {
7412 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7413 return 0;
7414 }
7415 return 1;
7416}
7417
7418static int handle_vmread(struct kvm_vcpu *vcpu)
7419{
7420 unsigned long field;
7421 u64 field_value;
7422 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7423 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7424 gva_t gva = 0;
7425
eb277562 7426 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7427 return 1;
7428
6affcbed
KH
7429 if (!nested_vmx_check_vmcs12(vcpu))
7430 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7431
7432 /* Decode instruction info and find the field to read */
27e6fb5d 7433 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7434 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7435 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7436 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7437 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7438 }
7439 /*
7440 * Now copy part of this value to register or memory, as requested.
7441 * Note that the number of bits actually copied is 32 or 64 depending
7442 * on the guest's mode (32 or 64 bit), not on the given field's length.
7443 */
7444 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7445 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7446 field_value);
7447 } else {
7448 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7449 vmx_instruction_info, true, &gva))
49f705c5 7450 return 1;
70f3aac9 7451 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7452 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7453 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7454 }
7455
7456 nested_vmx_succeed(vcpu);
6affcbed 7457 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7458}
7459
7460
7461static int handle_vmwrite(struct kvm_vcpu *vcpu)
7462{
7463 unsigned long field;
7464 gva_t gva;
7465 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7466 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7467 /* The value to write might be 32 or 64 bits, depending on L1's long
7468 * mode, and eventually we need to write that into a field of several
7469 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7470 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7471 * bits into the vmcs12 field.
7472 */
7473 u64 field_value = 0;
7474 struct x86_exception e;
7475
eb277562 7476 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7477 return 1;
7478
6affcbed
KH
7479 if (!nested_vmx_check_vmcs12(vcpu))
7480 return kvm_skip_emulated_instruction(vcpu);
eb277562 7481
49f705c5 7482 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7483 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7484 (((vmx_instruction_info) >> 3) & 0xf));
7485 else {
7486 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7487 vmx_instruction_info, false, &gva))
49f705c5
NHE
7488 return 1;
7489 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7490 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7491 kvm_inject_page_fault(vcpu, &e);
7492 return 1;
7493 }
7494 }
7495
7496
27e6fb5d 7497 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7498 if (vmcs_field_readonly(field)) {
7499 nested_vmx_failValid(vcpu,
7500 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7501 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7502 }
7503
a2ae9df7 7504 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7505 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7506 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7507 }
7508
7509 nested_vmx_succeed(vcpu);
6affcbed 7510 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7511}
7512
a8bc284e
JM
7513static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7514{
7515 vmx->nested.current_vmptr = vmptr;
7516 if (enable_shadow_vmcs) {
7517 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7518 SECONDARY_EXEC_SHADOW_VMCS);
7519 vmcs_write64(VMCS_LINK_POINTER,
7520 __pa(vmx->vmcs01.shadow_vmcs));
7521 vmx->nested.sync_shadow_vmcs = true;
7522 }
7523}
7524
63846663
NHE
7525/* Emulate the VMPTRLD instruction */
7526static int handle_vmptrld(struct kvm_vcpu *vcpu)
7527{
7528 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7529 gpa_t vmptr;
63846663
NHE
7530
7531 if (!nested_vmx_check_permission(vcpu))
7532 return 1;
7533
4291b588 7534 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7535 return 1;
63846663
NHE
7536
7537 if (vmx->nested.current_vmptr != vmptr) {
7538 struct vmcs12 *new_vmcs12;
7539 struct page *page;
7540 page = nested_get_page(vcpu, vmptr);
7541 if (page == NULL) {
7542 nested_vmx_failInvalid(vcpu);
6affcbed 7543 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7544 }
7545 new_vmcs12 = kmap(page);
7546 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7547 kunmap(page);
7548 nested_release_page_clean(page);
7549 nested_vmx_failValid(vcpu,
7550 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7551 return kvm_skip_emulated_instruction(vcpu);
63846663 7552 }
63846663 7553
9a2a05b9 7554 nested_release_vmcs12(vmx);
63846663
NHE
7555 vmx->nested.current_vmcs12 = new_vmcs12;
7556 vmx->nested.current_vmcs12_page = page;
4f2777bc
DM
7557 /*
7558 * Load VMCS12 from guest memory since it is not already
7559 * cached.
7560 */
7561 memcpy(vmx->nested.cached_vmcs12,
7562 vmx->nested.current_vmcs12, VMCS12_SIZE);
a8bc284e 7563 set_current_vmptr(vmx, vmptr);
63846663
NHE
7564 }
7565
7566 nested_vmx_succeed(vcpu);
6affcbed 7567 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7568}
7569
6a4d7550
NHE
7570/* Emulate the VMPTRST instruction */
7571static int handle_vmptrst(struct kvm_vcpu *vcpu)
7572{
7573 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7574 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7575 gva_t vmcs_gva;
7576 struct x86_exception e;
7577
7578 if (!nested_vmx_check_permission(vcpu))
7579 return 1;
7580
7581 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7582 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7583 return 1;
70f3aac9 7584 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7585 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7586 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7587 sizeof(u64), &e)) {
7588 kvm_inject_page_fault(vcpu, &e);
7589 return 1;
7590 }
7591 nested_vmx_succeed(vcpu);
6affcbed 7592 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7593}
7594
bfd0a56b
NHE
7595/* Emulate the INVEPT instruction */
7596static int handle_invept(struct kvm_vcpu *vcpu)
7597{
b9c237bb 7598 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7599 u32 vmx_instruction_info, types;
7600 unsigned long type;
7601 gva_t gva;
7602 struct x86_exception e;
7603 struct {
7604 u64 eptp, gpa;
7605 } operand;
bfd0a56b 7606
b9c237bb
WV
7607 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7608 SECONDARY_EXEC_ENABLE_EPT) ||
7609 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7610 kvm_queue_exception(vcpu, UD_VECTOR);
7611 return 1;
7612 }
7613
7614 if (!nested_vmx_check_permission(vcpu))
7615 return 1;
7616
bfd0a56b 7617 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7618 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7619
b9c237bb 7620 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7621
85c856b3 7622 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7623 nested_vmx_failValid(vcpu,
7624 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7625 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7626 }
7627
7628 /* According to the Intel VMX instruction reference, the memory
7629 * operand is read even if it isn't needed (e.g., for type==global)
7630 */
7631 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7632 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7633 return 1;
7634 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7635 sizeof(operand), &e)) {
7636 kvm_inject_page_fault(vcpu, &e);
7637 return 1;
7638 }
7639
7640 switch (type) {
bfd0a56b 7641 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7642 /*
7643 * TODO: track mappings and invalidate
7644 * single context requests appropriately
7645 */
7646 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7647 kvm_mmu_sync_roots(vcpu);
77c3913b 7648 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7649 nested_vmx_succeed(vcpu);
7650 break;
7651 default:
7652 BUG_ON(1);
7653 break;
7654 }
7655
6affcbed 7656 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7657}
7658
a642fc30
PM
7659static int handle_invvpid(struct kvm_vcpu *vcpu)
7660{
99b83ac8
WL
7661 struct vcpu_vmx *vmx = to_vmx(vcpu);
7662 u32 vmx_instruction_info;
7663 unsigned long type, types;
7664 gva_t gva;
7665 struct x86_exception e;
7666 int vpid;
7667
7668 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7669 SECONDARY_EXEC_ENABLE_VPID) ||
7670 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7671 kvm_queue_exception(vcpu, UD_VECTOR);
7672 return 1;
7673 }
7674
7675 if (!nested_vmx_check_permission(vcpu))
7676 return 1;
7677
7678 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7679 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7680
bcdde302
JD
7681 types = (vmx->nested.nested_vmx_vpid_caps &
7682 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7683
85c856b3 7684 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7685 nested_vmx_failValid(vcpu,
7686 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7687 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7688 }
7689
7690 /* according to the intel vmx instruction reference, the memory
7691 * operand is read even if it isn't needed (e.g., for type==global)
7692 */
7693 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7694 vmx_instruction_info, false, &gva))
7695 return 1;
7696 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7697 sizeof(u32), &e)) {
7698 kvm_inject_page_fault(vcpu, &e);
7699 return 1;
7700 }
7701
7702 switch (type) {
bcdde302 7703 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
ef697a71 7704 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302
JD
7705 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7706 if (!vpid) {
7707 nested_vmx_failValid(vcpu,
7708 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7709 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7710 }
7711 break;
99b83ac8 7712 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7713 break;
7714 default:
bcdde302 7715 WARN_ON_ONCE(1);
6affcbed 7716 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7717 }
7718
bcdde302
JD
7719 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7720 nested_vmx_succeed(vcpu);
7721
6affcbed 7722 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7723}
7724
843e4330
KH
7725static int handle_pml_full(struct kvm_vcpu *vcpu)
7726{
7727 unsigned long exit_qualification;
7728
7729 trace_kvm_pml_full(vcpu->vcpu_id);
7730
7731 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7732
7733 /*
7734 * PML buffer FULL happened while executing iret from NMI,
7735 * "blocked by NMI" bit has to be set before next VM entry.
7736 */
7737 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7738 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7739 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7740 GUEST_INTR_STATE_NMI);
7741
7742 /*
7743 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7744 * here.., and there's no userspace involvement needed for PML.
7745 */
7746 return 1;
7747}
7748
64672c95
YJ
7749static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7750{
7751 kvm_lapic_expired_hv_timer(vcpu);
7752 return 1;
7753}
7754
6aa8b732
AK
7755/*
7756 * The exit handlers return 1 if the exit was handled fully and guest execution
7757 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7758 * to be done to userspace and return 0.
7759 */
772e0318 7760static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7761 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7762 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7763 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7764 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7765 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7766 [EXIT_REASON_CR_ACCESS] = handle_cr,
7767 [EXIT_REASON_DR_ACCESS] = handle_dr,
7768 [EXIT_REASON_CPUID] = handle_cpuid,
7769 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7770 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7771 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7772 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7773 [EXIT_REASON_INVD] = handle_invd,
a7052897 7774 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7775 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7776 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7777 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7778 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7779 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7780 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7781 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7782 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7783 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7784 [EXIT_REASON_VMOFF] = handle_vmoff,
7785 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7786 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7787 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7788 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7789 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7790 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7791 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7792 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7793 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7794 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7795 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7796 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7797 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7798 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7799 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7800 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7801 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7802 [EXIT_REASON_XSAVES] = handle_xsaves,
7803 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7804 [EXIT_REASON_PML_FULL] = handle_pml_full,
64672c95 7805 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
7806};
7807
7808static const int kvm_vmx_max_exit_handlers =
50a3485c 7809 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7810
908a7bdd
JK
7811static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7812 struct vmcs12 *vmcs12)
7813{
7814 unsigned long exit_qualification;
7815 gpa_t bitmap, last_bitmap;
7816 unsigned int port;
7817 int size;
7818 u8 b;
7819
908a7bdd 7820 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7821 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7822
7823 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7824
7825 port = exit_qualification >> 16;
7826 size = (exit_qualification & 7) + 1;
7827
7828 last_bitmap = (gpa_t)-1;
7829 b = -1;
7830
7831 while (size > 0) {
7832 if (port < 0x8000)
7833 bitmap = vmcs12->io_bitmap_a;
7834 else if (port < 0x10000)
7835 bitmap = vmcs12->io_bitmap_b;
7836 else
1d804d07 7837 return true;
908a7bdd
JK
7838 bitmap += (port & 0x7fff) / 8;
7839
7840 if (last_bitmap != bitmap)
54bf36aa 7841 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7842 return true;
908a7bdd 7843 if (b & (1 << (port & 7)))
1d804d07 7844 return true;
908a7bdd
JK
7845
7846 port++;
7847 size--;
7848 last_bitmap = bitmap;
7849 }
7850
1d804d07 7851 return false;
908a7bdd
JK
7852}
7853
644d711a
NHE
7854/*
7855 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7856 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7857 * disinterest in the current event (read or write a specific MSR) by using an
7858 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7859 */
7860static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7861 struct vmcs12 *vmcs12, u32 exit_reason)
7862{
7863 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7864 gpa_t bitmap;
7865
cbd29cb6 7866 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7867 return true;
644d711a
NHE
7868
7869 /*
7870 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7871 * for the four combinations of read/write and low/high MSR numbers.
7872 * First we need to figure out which of the four to use:
7873 */
7874 bitmap = vmcs12->msr_bitmap;
7875 if (exit_reason == EXIT_REASON_MSR_WRITE)
7876 bitmap += 2048;
7877 if (msr_index >= 0xc0000000) {
7878 msr_index -= 0xc0000000;
7879 bitmap += 1024;
7880 }
7881
7882 /* Then read the msr_index'th bit from this bitmap: */
7883 if (msr_index < 1024*8) {
7884 unsigned char b;
54bf36aa 7885 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7886 return true;
644d711a
NHE
7887 return 1 & (b >> (msr_index & 7));
7888 } else
1d804d07 7889 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7890}
7891
7892/*
7893 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7894 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7895 * intercept (via guest_host_mask etc.) the current event.
7896 */
7897static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7898 struct vmcs12 *vmcs12)
7899{
7900 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7901 int cr = exit_qualification & 15;
7902 int reg = (exit_qualification >> 8) & 15;
1e32c079 7903 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7904
7905 switch ((exit_qualification >> 4) & 3) {
7906 case 0: /* mov to cr */
7907 switch (cr) {
7908 case 0:
7909 if (vmcs12->cr0_guest_host_mask &
7910 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7911 return true;
644d711a
NHE
7912 break;
7913 case 3:
7914 if ((vmcs12->cr3_target_count >= 1 &&
7915 vmcs12->cr3_target_value0 == val) ||
7916 (vmcs12->cr3_target_count >= 2 &&
7917 vmcs12->cr3_target_value1 == val) ||
7918 (vmcs12->cr3_target_count >= 3 &&
7919 vmcs12->cr3_target_value2 == val) ||
7920 (vmcs12->cr3_target_count >= 4 &&
7921 vmcs12->cr3_target_value3 == val))
1d804d07 7922 return false;
644d711a 7923 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7924 return true;
644d711a
NHE
7925 break;
7926 case 4:
7927 if (vmcs12->cr4_guest_host_mask &
7928 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7929 return true;
644d711a
NHE
7930 break;
7931 case 8:
7932 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7933 return true;
644d711a
NHE
7934 break;
7935 }
7936 break;
7937 case 2: /* clts */
7938 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7939 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7940 return true;
644d711a
NHE
7941 break;
7942 case 1: /* mov from cr */
7943 switch (cr) {
7944 case 3:
7945 if (vmcs12->cpu_based_vm_exec_control &
7946 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7947 return true;
644d711a
NHE
7948 break;
7949 case 8:
7950 if (vmcs12->cpu_based_vm_exec_control &
7951 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7952 return true;
644d711a
NHE
7953 break;
7954 }
7955 break;
7956 case 3: /* lmsw */
7957 /*
7958 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7959 * cr0. Other attempted changes are ignored, with no exit.
7960 */
7961 if (vmcs12->cr0_guest_host_mask & 0xe &
7962 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7963 return true;
644d711a
NHE
7964 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7965 !(vmcs12->cr0_read_shadow & 0x1) &&
7966 (val & 0x1))
1d804d07 7967 return true;
644d711a
NHE
7968 break;
7969 }
1d804d07 7970 return false;
644d711a
NHE
7971}
7972
7973/*
7974 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7975 * should handle it ourselves in L0 (and then continue L2). Only call this
7976 * when in is_guest_mode (L2).
7977 */
7978static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7979{
644d711a
NHE
7980 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7981 struct vcpu_vmx *vmx = to_vmx(vcpu);
7982 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7983 u32 exit_reason = vmx->exit_reason;
644d711a 7984
542060ea
JK
7985 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7986 vmcs_readl(EXIT_QUALIFICATION),
7987 vmx->idt_vectoring_info,
7988 intr_info,
7989 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7990 KVM_ISA_VMX);
7991
644d711a 7992 if (vmx->nested.nested_run_pending)
1d804d07 7993 return false;
644d711a
NHE
7994
7995 if (unlikely(vmx->fail)) {
bd80158a
JK
7996 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7997 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7998 return true;
644d711a
NHE
7999 }
8000
8001 switch (exit_reason) {
8002 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8003 if (is_nmi(intr_info))
1d804d07 8004 return false;
644d711a
NHE
8005 else if (is_page_fault(intr_info))
8006 return enable_ept;
e504c909 8007 else if (is_no_device(intr_info) &&
ccf9844e 8008 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8009 return false;
6f05485d
JK
8010 else if (is_debug(intr_info) &&
8011 vcpu->guest_debug &
8012 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8013 return false;
8014 else if (is_breakpoint(intr_info) &&
8015 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8016 return false;
644d711a
NHE
8017 return vmcs12->exception_bitmap &
8018 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8019 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8020 return false;
644d711a 8021 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8022 return true;
644d711a 8023 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8024 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8025 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8026 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8027 case EXIT_REASON_TASK_SWITCH:
1d804d07 8028 return true;
644d711a 8029 case EXIT_REASON_CPUID:
1d804d07 8030 return true;
644d711a
NHE
8031 case EXIT_REASON_HLT:
8032 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8033 case EXIT_REASON_INVD:
1d804d07 8034 return true;
644d711a
NHE
8035 case EXIT_REASON_INVLPG:
8036 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8037 case EXIT_REASON_RDPMC:
8038 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8039 case EXIT_REASON_RDRAND:
8040 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8041 case EXIT_REASON_RDSEED:
8042 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8043 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8044 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8045 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8046 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8047 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8048 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8049 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8050 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8051 /*
8052 * VMX instructions trap unconditionally. This allows L1 to
8053 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8054 */
1d804d07 8055 return true;
644d711a
NHE
8056 case EXIT_REASON_CR_ACCESS:
8057 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8058 case EXIT_REASON_DR_ACCESS:
8059 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8060 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8061 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8062 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8063 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8064 case EXIT_REASON_MSR_READ:
8065 case EXIT_REASON_MSR_WRITE:
8066 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8067 case EXIT_REASON_INVALID_STATE:
1d804d07 8068 return true;
644d711a
NHE
8069 case EXIT_REASON_MWAIT_INSTRUCTION:
8070 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8071 case EXIT_REASON_MONITOR_TRAP_FLAG:
8072 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8073 case EXIT_REASON_MONITOR_INSTRUCTION:
8074 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8075 case EXIT_REASON_PAUSE_INSTRUCTION:
8076 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8077 nested_cpu_has2(vmcs12,
8078 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8079 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8080 return false;
644d711a 8081 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8082 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8083 case EXIT_REASON_APIC_ACCESS:
8084 return nested_cpu_has2(vmcs12,
8085 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8086 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8087 case EXIT_REASON_EOI_INDUCED:
8088 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8089 return true;
644d711a 8090 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8091 /*
8092 * L0 always deals with the EPT violation. If nested EPT is
8093 * used, and the nested mmu code discovers that the address is
8094 * missing in the guest EPT table (EPT12), the EPT violation
8095 * will be injected with nested_ept_inject_page_fault()
8096 */
1d804d07 8097 return false;
644d711a 8098 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8099 /*
8100 * L2 never uses directly L1's EPT, but rather L0's own EPT
8101 * table (shadow on EPT) or a merged EPT table that L0 built
8102 * (EPT on EPT). So any problems with the structure of the
8103 * table is L0's fault.
8104 */
1d804d07 8105 return false;
644d711a
NHE
8106 case EXIT_REASON_WBINVD:
8107 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8108 case EXIT_REASON_XSETBV:
1d804d07 8109 return true;
81dc01f7
WL
8110 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8111 /*
8112 * This should never happen, since it is not possible to
8113 * set XSS to a non-zero value---neither in L1 nor in L2.
8114 * If if it were, XSS would have to be checked against
8115 * the XSS exit bitmap in vmcs12.
8116 */
8117 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8118 case EXIT_REASON_PREEMPTION_TIMER:
8119 return false;
644d711a 8120 default:
1d804d07 8121 return true;
644d711a
NHE
8122 }
8123}
8124
586f9607
AK
8125static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8126{
8127 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8128 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8129}
8130
a3eaa864 8131static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8132{
a3eaa864
KH
8133 if (vmx->pml_pg) {
8134 __free_page(vmx->pml_pg);
8135 vmx->pml_pg = NULL;
8136 }
843e4330
KH
8137}
8138
54bf36aa 8139static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8140{
54bf36aa 8141 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8142 u64 *pml_buf;
8143 u16 pml_idx;
8144
8145 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8146
8147 /* Do nothing if PML buffer is empty */
8148 if (pml_idx == (PML_ENTITY_NUM - 1))
8149 return;
8150
8151 /* PML index always points to next available PML buffer entity */
8152 if (pml_idx >= PML_ENTITY_NUM)
8153 pml_idx = 0;
8154 else
8155 pml_idx++;
8156
8157 pml_buf = page_address(vmx->pml_pg);
8158 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8159 u64 gpa;
8160
8161 gpa = pml_buf[pml_idx];
8162 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8163 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8164 }
8165
8166 /* reset PML index */
8167 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8168}
8169
8170/*
8171 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8172 * Called before reporting dirty_bitmap to userspace.
8173 */
8174static void kvm_flush_pml_buffers(struct kvm *kvm)
8175{
8176 int i;
8177 struct kvm_vcpu *vcpu;
8178 /*
8179 * We only need to kick vcpu out of guest mode here, as PML buffer
8180 * is flushed at beginning of all VMEXITs, and it's obvious that only
8181 * vcpus running in guest are possible to have unflushed GPAs in PML
8182 * buffer.
8183 */
8184 kvm_for_each_vcpu(i, vcpu, kvm)
8185 kvm_vcpu_kick(vcpu);
8186}
8187
4eb64dce
PB
8188static void vmx_dump_sel(char *name, uint32_t sel)
8189{
8190 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8191 name, vmcs_read16(sel),
4eb64dce
PB
8192 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8193 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8194 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8195}
8196
8197static void vmx_dump_dtsel(char *name, uint32_t limit)
8198{
8199 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8200 name, vmcs_read32(limit),
8201 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8202}
8203
8204static void dump_vmcs(void)
8205{
8206 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8207 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8208 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8209 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8210 u32 secondary_exec_control = 0;
8211 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8212 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8213 int i, n;
8214
8215 if (cpu_has_secondary_exec_ctrls())
8216 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8217
8218 pr_err("*** Guest State ***\n");
8219 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8220 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8221 vmcs_readl(CR0_GUEST_HOST_MASK));
8222 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8223 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8224 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8225 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8226 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8227 {
845c5b40
PB
8228 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8229 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8230 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8231 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8232 }
8233 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8234 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8235 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8236 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8237 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8238 vmcs_readl(GUEST_SYSENTER_ESP),
8239 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8240 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8241 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8242 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8243 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8244 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8245 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8246 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8247 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8248 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8249 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8250 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8251 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8252 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8253 efer, vmcs_read64(GUEST_IA32_PAT));
8254 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8255 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8256 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8257 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8258 pr_err("PerfGlobCtl = 0x%016llx\n",
8259 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8260 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8261 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8262 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8263 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8264 vmcs_read32(GUEST_ACTIVITY_STATE));
8265 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8266 pr_err("InterruptStatus = %04x\n",
8267 vmcs_read16(GUEST_INTR_STATUS));
8268
8269 pr_err("*** Host State ***\n");
8270 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8271 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8272 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8273 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8274 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8275 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8276 vmcs_read16(HOST_TR_SELECTOR));
8277 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8278 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8279 vmcs_readl(HOST_TR_BASE));
8280 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8281 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8282 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8283 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8284 vmcs_readl(HOST_CR4));
8285 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8286 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8287 vmcs_read32(HOST_IA32_SYSENTER_CS),
8288 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8289 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8290 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8291 vmcs_read64(HOST_IA32_EFER),
8292 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8293 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8294 pr_err("PerfGlobCtl = 0x%016llx\n",
8295 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8296
8297 pr_err("*** Control State ***\n");
8298 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8299 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8300 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8301 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8302 vmcs_read32(EXCEPTION_BITMAP),
8303 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8304 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8305 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8306 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8307 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8308 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8309 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8310 vmcs_read32(VM_EXIT_INTR_INFO),
8311 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8312 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8313 pr_err(" reason=%08x qualification=%016lx\n",
8314 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8315 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8316 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8317 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8318 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8319 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8320 pr_err("TSC Multiplier = 0x%016llx\n",
8321 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8322 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8323 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8324 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8325 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8326 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8327 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8328 n = vmcs_read32(CR3_TARGET_COUNT);
8329 for (i = 0; i + 1 < n; i += 4)
8330 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8331 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8332 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8333 if (i < n)
8334 pr_err("CR3 target%u=%016lx\n",
8335 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8336 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8337 pr_err("PLE Gap=%08x Window=%08x\n",
8338 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8339 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8340 pr_err("Virtual processor ID = 0x%04x\n",
8341 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8342}
8343
6aa8b732
AK
8344/*
8345 * The guest has exited. See if we can fix it or if we need userspace
8346 * assistance.
8347 */
851ba692 8348static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8349{
29bd8a78 8350 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8351 u32 exit_reason = vmx->exit_reason;
1155f76a 8352 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8353
8b89fe1f 8354 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
db1c056c 8355 vcpu->arch.gpa_available = false;
8b89fe1f 8356
843e4330
KH
8357 /*
8358 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8359 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8360 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8361 * mode as if vcpus is in root mode, the PML buffer must has been
8362 * flushed already.
8363 */
8364 if (enable_pml)
54bf36aa 8365 vmx_flush_pml_buffer(vcpu);
843e4330 8366
80ced186 8367 /* If guest state is invalid, start emulating */
14168786 8368 if (vmx->emulation_required)
80ced186 8369 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8370
644d711a 8371 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8372 nested_vmx_vmexit(vcpu, exit_reason,
8373 vmcs_read32(VM_EXIT_INTR_INFO),
8374 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8375 return 1;
8376 }
8377
5120702e 8378 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8379 dump_vmcs();
5120702e
MG
8380 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8381 vcpu->run->fail_entry.hardware_entry_failure_reason
8382 = exit_reason;
8383 return 0;
8384 }
8385
29bd8a78 8386 if (unlikely(vmx->fail)) {
851ba692
AK
8387 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8388 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8389 = vmcs_read32(VM_INSTRUCTION_ERROR);
8390 return 0;
8391 }
6aa8b732 8392
b9bf6882
XG
8393 /*
8394 * Note:
8395 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8396 * delivery event since it indicates guest is accessing MMIO.
8397 * The vm-exit can be triggered again after return to guest that
8398 * will cause infinite loop.
8399 */
d77c26fc 8400 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8401 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8402 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8403 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8404 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8405 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8406 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8407 vcpu->run->internal.ndata = 2;
8408 vcpu->run->internal.data[0] = vectoring_info;
8409 vcpu->run->internal.data[1] = exit_reason;
8410 return 0;
8411 }
3b86cd99 8412
6aa8b732
AK
8413 if (exit_reason < kvm_vmx_max_exit_handlers
8414 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8415 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8416 else {
6c6c5e03
RK
8417 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8418 exit_reason);
2bc19dc3
MT
8419 kvm_queue_exception(vcpu, UD_VECTOR);
8420 return 1;
6aa8b732 8421 }
6aa8b732
AK
8422}
8423
95ba8273 8424static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8425{
a7c0b07d
WL
8426 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8427
8428 if (is_guest_mode(vcpu) &&
8429 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8430 return;
8431
95ba8273 8432 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8433 vmcs_write32(TPR_THRESHOLD, 0);
8434 return;
8435 }
8436
95ba8273 8437 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8438}
8439
8d14695f
YZ
8440static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8441{
8442 u32 sec_exec_control;
8443
dccbfcf5
RK
8444 /* Postpone execution until vmcs01 is the current VMCS. */
8445 if (is_guest_mode(vcpu)) {
8446 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8447 return;
8448 }
8449
f6e90f9e 8450 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8451 return;
8452
35754c98 8453 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8454 return;
8455
8456 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8457
8458 if (set) {
8459 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8460 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8461 } else {
8462 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8463 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8464 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8465 }
8466 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8467
8468 vmx_set_msr_bitmap(vcpu);
8469}
8470
38b99173
TC
8471static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8472{
8473 struct vcpu_vmx *vmx = to_vmx(vcpu);
8474
8475 /*
8476 * Currently we do not handle the nested case where L2 has an
8477 * APIC access page of its own; that page is still pinned.
8478 * Hence, we skip the case where the VCPU is in guest mode _and_
8479 * L1 prepared an APIC access page for L2.
8480 *
8481 * For the case where L1 and L2 share the same APIC access page
8482 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8483 * in the vmcs12), this function will only update either the vmcs01
8484 * or the vmcs02. If the former, the vmcs02 will be updated by
8485 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8486 * the next L2->L1 exit.
8487 */
8488 if (!is_guest_mode(vcpu) ||
4f2777bc 8489 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8490 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8491 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8492 vmx_flush_tlb_ept_only(vcpu);
8493 }
38b99173
TC
8494}
8495
67c9dddc 8496static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8497{
8498 u16 status;
8499 u8 old;
8500
67c9dddc
PB
8501 if (max_isr == -1)
8502 max_isr = 0;
c7c9c56c
YZ
8503
8504 status = vmcs_read16(GUEST_INTR_STATUS);
8505 old = status >> 8;
67c9dddc 8506 if (max_isr != old) {
c7c9c56c 8507 status &= 0xff;
67c9dddc 8508 status |= max_isr << 8;
c7c9c56c
YZ
8509 vmcs_write16(GUEST_INTR_STATUS, status);
8510 }
8511}
8512
8513static void vmx_set_rvi(int vector)
8514{
8515 u16 status;
8516 u8 old;
8517
4114c27d
WW
8518 if (vector == -1)
8519 vector = 0;
8520
c7c9c56c
YZ
8521 status = vmcs_read16(GUEST_INTR_STATUS);
8522 old = (u8)status & 0xff;
8523 if ((u8)vector != old) {
8524 status &= ~0xff;
8525 status |= (u8)vector;
8526 vmcs_write16(GUEST_INTR_STATUS, status);
8527 }
8528}
8529
8530static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8531{
4114c27d
WW
8532 if (!is_guest_mode(vcpu)) {
8533 vmx_set_rvi(max_irr);
8534 return;
8535 }
8536
c7c9c56c
YZ
8537 if (max_irr == -1)
8538 return;
8539
963fee16 8540 /*
4114c27d
WW
8541 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8542 * handles it.
963fee16 8543 */
4114c27d 8544 if (nested_exit_on_intr(vcpu))
963fee16
WL
8545 return;
8546
963fee16 8547 /*
4114c27d 8548 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8549 * is run without virtual interrupt delivery.
8550 */
8551 if (!kvm_event_needs_reinjection(vcpu) &&
8552 vmx_interrupt_allowed(vcpu)) {
8553 kvm_queue_interrupt(vcpu, max_irr, false);
8554 vmx_inject_irq(vcpu);
8555 }
c7c9c56c
YZ
8556}
8557
76dfafd5 8558static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8559{
8560 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8561 int max_irr;
810e6def 8562
76dfafd5
PB
8563 WARN_ON(!vcpu->arch.apicv_active);
8564 if (pi_test_on(&vmx->pi_desc)) {
8565 pi_clear_on(&vmx->pi_desc);
8566 /*
8567 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8568 * But on x86 this is just a compiler barrier anyway.
8569 */
8570 smp_mb__after_atomic();
8571 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8572 } else {
8573 max_irr = kvm_lapic_find_highest_irr(vcpu);
8574 }
8575 vmx_hwapic_irr_update(vcpu, max_irr);
8576 return max_irr;
810e6def
PB
8577}
8578
6308630b 8579static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8580{
d62caabb 8581 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8582 return;
8583
c7c9c56c
YZ
8584 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8585 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8586 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8587 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8588}
8589
967235d3
PB
8590static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8591{
8592 struct vcpu_vmx *vmx = to_vmx(vcpu);
8593
8594 pi_clear_on(&vmx->pi_desc);
8595 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8596}
8597
51aa01d1 8598static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8599{
00eba012
AK
8600 u32 exit_intr_info;
8601
8602 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8603 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8604 return;
8605
c5ca8e57 8606 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8607 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8608
8609 /* Handle machine checks before interrupts are enabled */
00eba012 8610 if (is_machine_check(exit_intr_info))
a0861c02
AK
8611 kvm_machine_check();
8612
20f65983 8613 /* We need to handle NMIs before interrupts are enabled */
ef85b673 8614 if (is_nmi(exit_intr_info)) {
ff9d07a0 8615 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8616 asm("int $2");
ff9d07a0
ZY
8617 kvm_after_handle_nmi(&vmx->vcpu);
8618 }
51aa01d1 8619}
20f65983 8620
a547c6db
YZ
8621static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8622{
8623 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8624 register void *__sp asm(_ASM_SP);
a547c6db 8625
a547c6db
YZ
8626 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8627 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8628 unsigned int vector;
8629 unsigned long entry;
8630 gate_desc *desc;
8631 struct vcpu_vmx *vmx = to_vmx(vcpu);
8632#ifdef CONFIG_X86_64
8633 unsigned long tmp;
8634#endif
8635
8636 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8637 desc = (gate_desc *)vmx->host_idt_base + vector;
8638 entry = gate_offset(*desc);
8639 asm volatile(
8640#ifdef CONFIG_X86_64
8641 "mov %%" _ASM_SP ", %[sp]\n\t"
8642 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8643 "push $%c[ss]\n\t"
8644 "push %[sp]\n\t"
8645#endif
8646 "pushf\n\t"
a547c6db
YZ
8647 __ASM_SIZE(push) " $%c[cs]\n\t"
8648 "call *%[entry]\n\t"
8649 :
8650#ifdef CONFIG_X86_64
3f62de5f 8651 [sp]"=&r"(tmp),
a547c6db 8652#endif
3f62de5f 8653 "+r"(__sp)
a547c6db
YZ
8654 :
8655 [entry]"r"(entry),
8656 [ss]"i"(__KERNEL_DS),
8657 [cs]"i"(__KERNEL_CS)
8658 );
f2485b3e 8659 }
a547c6db
YZ
8660}
8661
6d396b55
PB
8662static bool vmx_has_high_real_mode_segbase(void)
8663{
8664 return enable_unrestricted_guest || emulate_invalid_guest_state;
8665}
8666
da8999d3
LJ
8667static bool vmx_mpx_supported(void)
8668{
8669 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8670 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8671}
8672
55412b2e
WL
8673static bool vmx_xsaves_supported(void)
8674{
8675 return vmcs_config.cpu_based_2nd_exec_ctrl &
8676 SECONDARY_EXEC_XSAVES;
8677}
8678
51aa01d1
AK
8679static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8680{
c5ca8e57 8681 u32 exit_intr_info;
51aa01d1
AK
8682 bool unblock_nmi;
8683 u8 vector;
8684 bool idtv_info_valid;
8685
8686 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8687
2c82878b
PB
8688 if (vmx->nmi_known_unmasked)
8689 return;
8690 /*
8691 * Can't use vmx->exit_intr_info since we're not sure what
8692 * the exit reason is.
8693 */
8694 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8695 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8696 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8697 /*
8698 * SDM 3: 27.7.1.2 (September 2008)
8699 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8700 * a guest IRET fault.
8701 * SDM 3: 23.2.2 (September 2008)
8702 * Bit 12 is undefined in any of the following cases:
8703 * If the VM exit sets the valid bit in the IDT-vectoring
8704 * information field.
8705 * If the VM exit is due to a double fault.
8706 */
8707 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8708 vector != DF_VECTOR && !idtv_info_valid)
8709 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8710 GUEST_INTR_STATE_NMI);
8711 else
8712 vmx->nmi_known_unmasked =
8713 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8714 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
8715}
8716
3ab66e8a 8717static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8718 u32 idt_vectoring_info,
8719 int instr_len_field,
8720 int error_code_field)
51aa01d1 8721{
51aa01d1
AK
8722 u8 vector;
8723 int type;
8724 bool idtv_info_valid;
8725
8726 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8727
3ab66e8a
JK
8728 vcpu->arch.nmi_injected = false;
8729 kvm_clear_exception_queue(vcpu);
8730 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8731
8732 if (!idtv_info_valid)
8733 return;
8734
3ab66e8a 8735 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8736
668f612f
AK
8737 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8738 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8739
64a7ec06 8740 switch (type) {
37b96e98 8741 case INTR_TYPE_NMI_INTR:
3ab66e8a 8742 vcpu->arch.nmi_injected = true;
668f612f 8743 /*
7b4a25cb 8744 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8745 * Clear bit "block by NMI" before VM entry if a NMI
8746 * delivery faulted.
668f612f 8747 */
3ab66e8a 8748 vmx_set_nmi_mask(vcpu, false);
37b96e98 8749 break;
37b96e98 8750 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8751 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8752 /* fall through */
8753 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8754 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8755 u32 err = vmcs_read32(error_code_field);
851eb667 8756 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8757 } else
851eb667 8758 kvm_requeue_exception(vcpu, vector);
37b96e98 8759 break;
66fd3f7f 8760 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8761 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8762 /* fall through */
37b96e98 8763 case INTR_TYPE_EXT_INTR:
3ab66e8a 8764 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8765 break;
8766 default:
8767 break;
f7d9238f 8768 }
cf393f75
AK
8769}
8770
83422e17
AK
8771static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8772{
3ab66e8a 8773 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8774 VM_EXIT_INSTRUCTION_LEN,
8775 IDT_VECTORING_ERROR_CODE);
8776}
8777
b463a6f7
AK
8778static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8779{
3ab66e8a 8780 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8781 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8782 VM_ENTRY_INSTRUCTION_LEN,
8783 VM_ENTRY_EXCEPTION_ERROR_CODE);
8784
8785 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8786}
8787
d7cd9796
GN
8788static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8789{
8790 int i, nr_msrs;
8791 struct perf_guest_switch_msr *msrs;
8792
8793 msrs = perf_guest_get_msrs(&nr_msrs);
8794
8795 if (!msrs)
8796 return;
8797
8798 for (i = 0; i < nr_msrs; i++)
8799 if (msrs[i].host == msrs[i].guest)
8800 clear_atomic_switch_msr(vmx, msrs[i].msr);
8801 else
8802 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8803 msrs[i].host);
8804}
8805
33365e7a 8806static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
8807{
8808 struct vcpu_vmx *vmx = to_vmx(vcpu);
8809 u64 tscl;
8810 u32 delta_tsc;
8811
8812 if (vmx->hv_deadline_tsc == -1)
8813 return;
8814
8815 tscl = rdtsc();
8816 if (vmx->hv_deadline_tsc > tscl)
8817 /* sure to be 32 bit only because checked on set_hv_timer */
8818 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8819 cpu_preemption_timer_multi);
8820 else
8821 delta_tsc = 0;
8822
8823 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8824}
8825
a3b5ba49 8826static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8827{
a2fa3e9f 8828 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8829 unsigned long debugctlmsr, cr4;
104f226b 8830
104f226b
AK
8831 /* Don't enter VMX if guest state is invalid, let the exit handler
8832 start emulation until we arrive back to a valid state */
14168786 8833 if (vmx->emulation_required)
104f226b
AK
8834 return;
8835
a7653ecd
RK
8836 if (vmx->ple_window_dirty) {
8837 vmx->ple_window_dirty = false;
8838 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8839 }
8840
012f83cb
AG
8841 if (vmx->nested.sync_shadow_vmcs) {
8842 copy_vmcs12_to_shadow(vmx);
8843 vmx->nested.sync_shadow_vmcs = false;
8844 }
8845
104f226b
AK
8846 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8847 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8848 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8849 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8850
1e02ce4c 8851 cr4 = cr4_read_shadow();
d974baa3
AL
8852 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8853 vmcs_writel(HOST_CR4, cr4);
8854 vmx->host_state.vmcs_host_cr4 = cr4;
8855 }
8856
104f226b
AK
8857 /* When single-stepping over STI and MOV SS, we must clear the
8858 * corresponding interruptibility bits in the guest state. Otherwise
8859 * vmentry fails as it then expects bit 14 (BS) in pending debug
8860 * exceptions being set, but that's not correct for the guest debugging
8861 * case. */
8862 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8863 vmx_set_interrupt_shadow(vcpu, 0);
8864
1be0e61c
XG
8865 if (vmx->guest_pkru_valid)
8866 __write_pkru(vmx->guest_pkru);
8867
d7cd9796 8868 atomic_switch_perf_msrs(vmx);
2a7921b7 8869 debugctlmsr = get_debugctlmsr();
d7cd9796 8870
64672c95
YJ
8871 vmx_arm_hv_timer(vcpu);
8872
d462b819 8873 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8874 asm(
6aa8b732 8875 /* Store host registers */
b188c81f
AK
8876 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8877 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8878 "push %%" _ASM_CX " \n\t"
8879 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8880 "je 1f \n\t"
b188c81f 8881 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8882 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8883 "1: \n\t"
d3edefc0 8884 /* Reload cr2 if changed */
b188c81f
AK
8885 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8886 "mov %%cr2, %%" _ASM_DX " \n\t"
8887 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8888 "je 2f \n\t"
b188c81f 8889 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8890 "2: \n\t"
6aa8b732 8891 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8892 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8893 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8894 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8895 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8896 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8897 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8898 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8899 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8900#ifdef CONFIG_X86_64
e08aa78a
AK
8901 "mov %c[r8](%0), %%r8 \n\t"
8902 "mov %c[r9](%0), %%r9 \n\t"
8903 "mov %c[r10](%0), %%r10 \n\t"
8904 "mov %c[r11](%0), %%r11 \n\t"
8905 "mov %c[r12](%0), %%r12 \n\t"
8906 "mov %c[r13](%0), %%r13 \n\t"
8907 "mov %c[r14](%0), %%r14 \n\t"
8908 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8909#endif
b188c81f 8910 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8911
6aa8b732 8912 /* Enter guest mode */
83287ea4 8913 "jne 1f \n\t"
4ecac3fd 8914 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8915 "jmp 2f \n\t"
8916 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8917 "2: "
6aa8b732 8918 /* Save guest registers, load host registers, keep flags */
b188c81f 8919 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8920 "pop %0 \n\t"
b188c81f
AK
8921 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8922 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8923 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8924 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8925 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8926 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8927 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8928#ifdef CONFIG_X86_64
e08aa78a
AK
8929 "mov %%r8, %c[r8](%0) \n\t"
8930 "mov %%r9, %c[r9](%0) \n\t"
8931 "mov %%r10, %c[r10](%0) \n\t"
8932 "mov %%r11, %c[r11](%0) \n\t"
8933 "mov %%r12, %c[r12](%0) \n\t"
8934 "mov %%r13, %c[r13](%0) \n\t"
8935 "mov %%r14, %c[r14](%0) \n\t"
8936 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8937#endif
b188c81f
AK
8938 "mov %%cr2, %%" _ASM_AX " \n\t"
8939 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8940
b188c81f 8941 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8942 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8943 ".pushsection .rodata \n\t"
8944 ".global vmx_return \n\t"
8945 "vmx_return: " _ASM_PTR " 2b \n\t"
8946 ".popsection"
e08aa78a 8947 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8948 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8949 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8950 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8951 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8952 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8953 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8954 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8955 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8956 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8957 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8958#ifdef CONFIG_X86_64
ad312c7c
ZX
8959 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8960 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8961 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8962 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8963 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8964 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8965 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8966 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8967#endif
40712fae
AK
8968 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8969 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8970 : "cc", "memory"
8971#ifdef CONFIG_X86_64
b188c81f 8972 , "rax", "rbx", "rdi", "rsi"
c2036300 8973 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8974#else
8975 , "eax", "ebx", "edi", "esi"
c2036300
LV
8976#endif
8977 );
6aa8b732 8978
2a7921b7
GN
8979 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8980 if (debugctlmsr)
8981 update_debugctlmsr(debugctlmsr);
8982
aa67f609
AK
8983#ifndef CONFIG_X86_64
8984 /*
8985 * The sysexit path does not restore ds/es, so we must set them to
8986 * a reasonable value ourselves.
8987 *
8988 * We can't defer this to vmx_load_host_state() since that function
8989 * may be executed in interrupt context, which saves and restore segments
8990 * around it, nullifying its effect.
8991 */
8992 loadsegment(ds, __USER_DS);
8993 loadsegment(es, __USER_DS);
8994#endif
8995
6de4f3ad 8996 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8997 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8998 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8999 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9000 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9001 vcpu->arch.regs_dirty = 0;
9002
1155f76a
AK
9003 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9004
d462b819 9005 vmx->loaded_vmcs->launched = 1;
1b6269db 9006
51aa01d1 9007 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9008
1be0e61c
XG
9009 /*
9010 * eager fpu is enabled if PKEY is supported and CR4 is switched
9011 * back on host, so it is safe to read guest PKRU from current
9012 * XSAVE.
9013 */
9014 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9015 vmx->guest_pkru = __read_pkru();
9016 if (vmx->guest_pkru != vmx->host_pkru) {
9017 vmx->guest_pkru_valid = true;
9018 __write_pkru(vmx->host_pkru);
9019 } else
9020 vmx->guest_pkru_valid = false;
9021 }
9022
e0b890d3
GN
9023 /*
9024 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9025 * we did not inject a still-pending event to L1 now because of
9026 * nested_run_pending, we need to re-enable this bit.
9027 */
9028 if (vmx->nested.nested_run_pending)
9029 kvm_make_request(KVM_REQ_EVENT, vcpu);
9030
9031 vmx->nested.nested_run_pending = 0;
9032
51aa01d1
AK
9033 vmx_complete_atomic_exit(vmx);
9034 vmx_recover_nmi_blocking(vmx);
cf393f75 9035 vmx_complete_interrupts(vmx);
6aa8b732
AK
9036}
9037
1279a6b1 9038static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9039{
9040 struct vcpu_vmx *vmx = to_vmx(vcpu);
9041 int cpu;
9042
1279a6b1 9043 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9044 return;
9045
9046 cpu = get_cpu();
1279a6b1 9047 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9048 vmx_vcpu_put(vcpu);
9049 vmx_vcpu_load(vcpu, cpu);
9050 vcpu->cpu = cpu;
9051 put_cpu();
9052}
9053
2f1fe811
JM
9054/*
9055 * Ensure that the current vmcs of the logical processor is the
9056 * vmcs01 of the vcpu before calling free_nested().
9057 */
9058static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9059{
9060 struct vcpu_vmx *vmx = to_vmx(vcpu);
9061 int r;
9062
9063 r = vcpu_load(vcpu);
9064 BUG_ON(r);
1279a6b1 9065 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9066 free_nested(vmx);
9067 vcpu_put(vcpu);
9068}
9069
6aa8b732
AK
9070static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9071{
fb3f0f51
RR
9072 struct vcpu_vmx *vmx = to_vmx(vcpu);
9073
843e4330 9074 if (enable_pml)
a3eaa864 9075 vmx_destroy_pml_buffer(vmx);
991e7a0e 9076 free_vpid(vmx->vpid);
4fa7734c 9077 leave_guest_mode(vcpu);
2f1fe811 9078 vmx_free_vcpu_nested(vcpu);
4fa7734c 9079 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9080 kfree(vmx->guest_msrs);
9081 kvm_vcpu_uninit(vcpu);
a4770347 9082 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9083}
9084
fb3f0f51 9085static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9086{
fb3f0f51 9087 int err;
c16f862d 9088 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9089 int cpu;
6aa8b732 9090
a2fa3e9f 9091 if (!vmx)
fb3f0f51
RR
9092 return ERR_PTR(-ENOMEM);
9093
991e7a0e 9094 vmx->vpid = allocate_vpid();
2384d2b3 9095
fb3f0f51
RR
9096 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9097 if (err)
9098 goto free_vcpu;
965b58a5 9099
4e59516a
PF
9100 err = -ENOMEM;
9101
9102 /*
9103 * If PML is turned on, failure on enabling PML just results in failure
9104 * of creating the vcpu, therefore we can simplify PML logic (by
9105 * avoiding dealing with cases, such as enabling PML partially on vcpus
9106 * for the guest, etc.
9107 */
9108 if (enable_pml) {
9109 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9110 if (!vmx->pml_pg)
9111 goto uninit_vcpu;
9112 }
9113
a2fa3e9f 9114 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9115 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9116 > PAGE_SIZE);
0123be42 9117
4e59516a
PF
9118 if (!vmx->guest_msrs)
9119 goto free_pml;
965b58a5 9120
d462b819
NHE
9121 vmx->loaded_vmcs = &vmx->vmcs01;
9122 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9123 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9124 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9125 goto free_msrs;
d462b819 9126 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9127
15ad7146
AK
9128 cpu = get_cpu();
9129 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9130 vmx->vcpu.cpu = cpu;
8b9cf98c 9131 err = vmx_vcpu_setup(vmx);
fb3f0f51 9132 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9133 put_cpu();
fb3f0f51
RR
9134 if (err)
9135 goto free_vmcs;
35754c98 9136 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9137 err = alloc_apic_access_page(kvm);
9138 if (err)
5e4a0b3c 9139 goto free_vmcs;
a63cb560 9140 }
fb3f0f51 9141
b927a3ce
SY
9142 if (enable_ept) {
9143 if (!kvm->arch.ept_identity_map_addr)
9144 kvm->arch.ept_identity_map_addr =
9145 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9146 err = init_rmode_identity_map(kvm);
9147 if (err)
93ea5388 9148 goto free_vmcs;
b927a3ce 9149 }
b7ebfb05 9150
5c614b35 9151 if (nested) {
b9c237bb 9152 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9153 vmx->nested.vpid02 = allocate_vpid();
9154 }
b9c237bb 9155
705699a1 9156 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
9157 vmx->nested.current_vmptr = -1ull;
9158 vmx->nested.current_vmcs12 = NULL;
9159
37e4c997
HZ
9160 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9161
fb3f0f51
RR
9162 return &vmx->vcpu;
9163
9164free_vmcs:
5c614b35 9165 free_vpid(vmx->nested.vpid02);
5f3fbc34 9166 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9167free_msrs:
fb3f0f51 9168 kfree(vmx->guest_msrs);
4e59516a
PF
9169free_pml:
9170 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9171uninit_vcpu:
9172 kvm_vcpu_uninit(&vmx->vcpu);
9173free_vcpu:
991e7a0e 9174 free_vpid(vmx->vpid);
a4770347 9175 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9176 return ERR_PTR(err);
6aa8b732
AK
9177}
9178
002c7f7c
YS
9179static void __init vmx_check_processor_compat(void *rtn)
9180{
9181 struct vmcs_config vmcs_conf;
9182
9183 *(int *)rtn = 0;
9184 if (setup_vmcs_config(&vmcs_conf) < 0)
9185 *(int *)rtn = -EIO;
9186 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9187 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9188 smp_processor_id());
9189 *(int *)rtn = -EIO;
9190 }
9191}
9192
67253af5
SY
9193static int get_ept_level(void)
9194{
9195 return VMX_EPT_DEFAULT_GAW + 1;
9196}
9197
4b12f0de 9198static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9199{
b18d5431
XG
9200 u8 cache;
9201 u64 ipat = 0;
4b12f0de 9202
522c68c4 9203 /* For VT-d and EPT combination
606decd6 9204 * 1. MMIO: always map as UC
522c68c4
SY
9205 * 2. EPT with VT-d:
9206 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9207 * result, try to trust guest.
522c68c4
SY
9208 * b. VT-d with snooping control feature: snooping control feature of
9209 * VT-d engine can guarantee the cache correctness. Just set it
9210 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9211 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9212 * consistent with host MTRR
9213 */
606decd6
PB
9214 if (is_mmio) {
9215 cache = MTRR_TYPE_UNCACHABLE;
9216 goto exit;
9217 }
9218
9219 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9220 ipat = VMX_EPT_IPAT_BIT;
9221 cache = MTRR_TYPE_WRBACK;
9222 goto exit;
9223 }
9224
9225 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9226 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9227 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9228 cache = MTRR_TYPE_WRBACK;
9229 else
9230 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9231 goto exit;
9232 }
9233
ff53604b 9234 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9235
9236exit:
9237 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9238}
9239
17cc3935 9240static int vmx_get_lpage_level(void)
344f414f 9241{
878403b7
SY
9242 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9243 return PT_DIRECTORY_LEVEL;
9244 else
9245 /* For shadow and EPT supported 1GB page */
9246 return PT_PDPE_LEVEL;
344f414f
JR
9247}
9248
feda805f
XG
9249static void vmcs_set_secondary_exec_control(u32 new_ctl)
9250{
9251 /*
9252 * These bits in the secondary execution controls field
9253 * are dynamic, the others are mostly based on the hypervisor
9254 * architecture and the guest's CPUID. Do not touch the
9255 * dynamic bits.
9256 */
9257 u32 mask =
9258 SECONDARY_EXEC_SHADOW_VMCS |
9259 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9260 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9261
9262 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9263
9264 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9265 (new_ctl & ~mask) | (cur_ctl & mask));
9266}
9267
8322ebbb
DM
9268/*
9269 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9270 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9271 */
9272static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9273{
9274 struct vcpu_vmx *vmx = to_vmx(vcpu);
9275 struct kvm_cpuid_entry2 *entry;
9276
9277 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9278 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9279
9280#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9281 if (entry && (entry->_reg & (_cpuid_mask))) \
9282 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9283} while (0)
9284
9285 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9286 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9287 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9288 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9289 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9290 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9291 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9292 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9293 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9294 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9295 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9296 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9297 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9298 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9299 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9300
9301 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9302 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9303 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9304 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9305 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9306 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9307 cr4_fixed1_update(bit(11), ecx, bit(2));
9308
9309#undef cr4_fixed1_update
9310}
9311
0e851880
SY
9312static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9313{
4e47c7a6
SY
9314 struct kvm_cpuid_entry2 *best;
9315 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9316 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9317
4e47c7a6 9318 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9319 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9320 if (!rdtscp_enabled)
feda805f 9321 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9322
8b97265a 9323 if (nested) {
1cea0ce6 9324 if (rdtscp_enabled)
8b97265a
PB
9325 vmx->nested.nested_vmx_secondary_ctls_high |=
9326 SECONDARY_EXEC_RDTSCP;
9327 else
9328 vmx->nested.nested_vmx_secondary_ctls_high &=
9329 ~SECONDARY_EXEC_RDTSCP;
9330 }
4e47c7a6 9331 }
ad756a16 9332
ad756a16
MJ
9333 /* Exposing INVPCID only when PCID is exposed */
9334 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9335 if (vmx_invpcid_supported() &&
29541bb8
XG
9336 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9337 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9338 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9339
ad756a16 9340 if (best)
4f977045 9341 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9342 }
8b3e34e4 9343
45bdbcfd
HH
9344 if (cpu_has_secondary_exec_ctrls())
9345 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9346
37e4c997
HZ
9347 if (nested_vmx_allowed(vcpu))
9348 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9349 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9350 else
9351 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9352 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9353
9354 if (nested_vmx_allowed(vcpu))
9355 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9356}
9357
d4330ef2
JR
9358static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9359{
7b8050f5
NHE
9360 if (func == 1 && nested)
9361 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9362}
9363
25d92081
YZ
9364static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9365 struct x86_exception *fault)
9366{
533558bc
JK
9367 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9368 u32 exit_reason;
25d92081
YZ
9369
9370 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9371 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9372 else
533558bc
JK
9373 exit_reason = EXIT_REASON_EPT_VIOLATION;
9374 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9375 vmcs12->guest_physical_address = fault->address;
9376}
9377
155a97a3
NHE
9378/* Callbacks for nested_ept_init_mmu_context: */
9379
9380static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9381{
9382 /* return the page table to be shadowed - in our case, EPT12 */
9383 return get_vmcs12(vcpu)->ept_pointer;
9384}
9385
ae1e2d10 9386static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9387{
ae1e2d10
PB
9388 u64 eptp;
9389
ad896af0 9390 WARN_ON(mmu_is_nested(vcpu));
ae1e2d10
PB
9391 eptp = nested_ept_get_cr3(vcpu);
9392 if ((eptp & VMX_EPT_AD_ENABLE_BIT) && !enable_ept_ad_bits)
9393 return 1;
9394
9395 kvm_mmu_unload(vcpu);
ad896af0 9396 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9397 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10
PB
9398 VMX_EPT_EXECUTE_ONLY_BIT,
9399 eptp & VMX_EPT_AD_ENABLE_BIT);
155a97a3
NHE
9400 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9401 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9402 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9403
9404 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9405 return 0;
155a97a3
NHE
9406}
9407
9408static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9409{
9410 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9411}
9412
19d5f10b
EK
9413static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9414 u16 error_code)
9415{
9416 bool inequality, bit;
9417
9418 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9419 inequality =
9420 (error_code & vmcs12->page_fault_error_code_mask) !=
9421 vmcs12->page_fault_error_code_match;
9422 return inequality ^ bit;
9423}
9424
feaf0c7d
GN
9425static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9426 struct x86_exception *fault)
9427{
9428 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9429
9430 WARN_ON(!is_guest_mode(vcpu));
9431
19d5f10b 9432 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9433 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9434 vmcs_read32(VM_EXIT_INTR_INFO),
9435 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9436 else
9437 kvm_inject_page_fault(vcpu, fault);
9438}
9439
6beb7bd5
JM
9440static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9441 struct vmcs12 *vmcs12);
9442
9443static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9444 struct vmcs12 *vmcs12)
9445{
9446 struct vcpu_vmx *vmx = to_vmx(vcpu);
6beb7bd5 9447 u64 hpa;
a2bcba50
WL
9448
9449 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9450 /*
9451 * Translate L1 physical address to host physical
9452 * address for vmcs02. Keep the page pinned, so this
9453 * physical address remains valid. We keep a reference
9454 * to it so we can release it later.
9455 */
9456 if (vmx->nested.apic_access_page) /* shouldn't happen */
9457 nested_release_page(vmx->nested.apic_access_page);
9458 vmx->nested.apic_access_page =
9459 nested_get_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9460 /*
9461 * If translation failed, no matter: This feature asks
9462 * to exit when accessing the given address, and if it
9463 * can never be accessed, this feature won't do
9464 * anything anyway.
9465 */
9466 if (vmx->nested.apic_access_page) {
9467 hpa = page_to_phys(vmx->nested.apic_access_page);
9468 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9469 } else {
9470 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9471 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9472 }
9473 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9474 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9475 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9476 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9477 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9478 }
a7c0b07d
WL
9479
9480 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
a7c0b07d
WL
9481 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9482 nested_release_page(vmx->nested.virtual_apic_page);
9483 vmx->nested.virtual_apic_page =
9484 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9485
9486 /*
6beb7bd5
JM
9487 * If translation failed, VM entry will fail because
9488 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9489 * Failing the vm entry is _not_ what the processor
9490 * does but it's basically the only possibility we
9491 * have. We could still enter the guest if CR8 load
9492 * exits are enabled, CR8 store exits are enabled, and
9493 * virtualize APIC access is disabled; in this case
9494 * the processor would never use the TPR shadow and we
9495 * could simply clear the bit from the execution
9496 * control. But such a configuration is useless, so
9497 * let's keep the code simple.
a7c0b07d 9498 */
6beb7bd5
JM
9499 if (vmx->nested.virtual_apic_page) {
9500 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9501 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9502 }
a7c0b07d
WL
9503 }
9504
705699a1 9505 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9506 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9507 kunmap(vmx->nested.pi_desc_page);
9508 nested_release_page(vmx->nested.pi_desc_page);
9509 }
9510 vmx->nested.pi_desc_page =
9511 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
705699a1
WV
9512 vmx->nested.pi_desc =
9513 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9514 if (!vmx->nested.pi_desc) {
9515 nested_release_page_clean(vmx->nested.pi_desc_page);
6beb7bd5 9516 return;
705699a1
WV
9517 }
9518 vmx->nested.pi_desc =
9519 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9520 (unsigned long)(vmcs12->posted_intr_desc_addr &
9521 (PAGE_SIZE - 1)));
6beb7bd5
JM
9522 vmcs_write64(POSTED_INTR_DESC_ADDR,
9523 page_to_phys(vmx->nested.pi_desc_page) +
9524 (unsigned long)(vmcs12->posted_intr_desc_addr &
9525 (PAGE_SIZE - 1)));
705699a1 9526 }
6beb7bd5
JM
9527 if (cpu_has_vmx_msr_bitmap() &&
9528 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9529 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9530 ;
9531 else
9532 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9533 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9534}
9535
f4124500
JK
9536static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9537{
9538 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9539 struct vcpu_vmx *vmx = to_vmx(vcpu);
9540
9541 if (vcpu->arch.virtual_tsc_khz == 0)
9542 return;
9543
9544 /* Make sure short timeouts reliably trigger an immediate vmexit.
9545 * hrtimer_start does not guarantee this. */
9546 if (preemption_timeout <= 1) {
9547 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9548 return;
9549 }
9550
9551 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9552 preemption_timeout *= 1000000;
9553 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9554 hrtimer_start(&vmx->nested.preemption_timer,
9555 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9556}
9557
3af18d9c
WV
9558static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9559 struct vmcs12 *vmcs12)
9560{
9561 int maxphyaddr;
9562 u64 addr;
9563
9564 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9565 return 0;
9566
9567 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9568 WARN_ON(1);
9569 return -EINVAL;
9570 }
9571 maxphyaddr = cpuid_maxphyaddr(vcpu);
9572
9573 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9574 ((addr + PAGE_SIZE) >> maxphyaddr))
9575 return -EINVAL;
9576
9577 return 0;
9578}
9579
9580/*
9581 * Merge L0's and L1's MSR bitmap, return false to indicate that
9582 * we do not use the hardware.
9583 */
9584static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9585 struct vmcs12 *vmcs12)
9586{
82f0dd4b 9587 int msr;
f2b93280 9588 struct page *page;
d048c098
RK
9589 unsigned long *msr_bitmap_l1;
9590 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9591
d048c098 9592 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9593 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9594 return false;
9595
9596 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
05d8d346 9597 if (!page)
f2b93280 9598 return false;
d048c098 9599 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 9600
d048c098
RK
9601 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9602
f2b93280 9603 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9604 if (nested_cpu_has_apic_reg_virt(vmcs12))
9605 for (msr = 0x800; msr <= 0x8ff; msr++)
9606 nested_vmx_disable_intercept_for_msr(
d048c098 9607 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9608 msr, MSR_TYPE_R);
d048c098
RK
9609
9610 nested_vmx_disable_intercept_for_msr(
9611 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9612 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9613 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9614
608406e2 9615 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9616 nested_vmx_disable_intercept_for_msr(
d048c098 9617 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9618 APIC_BASE_MSR + (APIC_EOI >> 4),
9619 MSR_TYPE_W);
9620 nested_vmx_disable_intercept_for_msr(
d048c098 9621 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9622 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9623 MSR_TYPE_W);
9624 }
82f0dd4b 9625 }
f2b93280
WV
9626 kunmap(page);
9627 nested_release_page_clean(page);
9628
9629 return true;
9630}
9631
9632static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9633 struct vmcs12 *vmcs12)
9634{
82f0dd4b 9635 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9636 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9637 !nested_cpu_has_vid(vmcs12) &&
9638 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9639 return 0;
9640
9641 /*
9642 * If virtualize x2apic mode is enabled,
9643 * virtualize apic access must be disabled.
9644 */
82f0dd4b
WV
9645 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9646 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9647 return -EINVAL;
9648
608406e2
WV
9649 /*
9650 * If virtual interrupt delivery is enabled,
9651 * we must exit on external interrupts.
9652 */
9653 if (nested_cpu_has_vid(vmcs12) &&
9654 !nested_exit_on_intr(vcpu))
9655 return -EINVAL;
9656
705699a1
WV
9657 /*
9658 * bits 15:8 should be zero in posted_intr_nv,
9659 * the descriptor address has been already checked
9660 * in nested_get_vmcs12_pages.
9661 */
9662 if (nested_cpu_has_posted_intr(vmcs12) &&
9663 (!nested_cpu_has_vid(vmcs12) ||
9664 !nested_exit_intr_ack_set(vcpu) ||
9665 vmcs12->posted_intr_nv & 0xff00))
9666 return -EINVAL;
9667
f2b93280
WV
9668 /* tpr shadow is needed by all apicv features. */
9669 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9670 return -EINVAL;
9671
9672 return 0;
3af18d9c
WV
9673}
9674
e9ac033e
EK
9675static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9676 unsigned long count_field,
92d71bc6 9677 unsigned long addr_field)
ff651cb6 9678{
92d71bc6 9679 int maxphyaddr;
e9ac033e
EK
9680 u64 count, addr;
9681
9682 if (vmcs12_read_any(vcpu, count_field, &count) ||
9683 vmcs12_read_any(vcpu, addr_field, &addr)) {
9684 WARN_ON(1);
9685 return -EINVAL;
9686 }
9687 if (count == 0)
9688 return 0;
92d71bc6 9689 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9690 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9691 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 9692 pr_debug_ratelimited(
e9ac033e
EK
9693 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9694 addr_field, maxphyaddr, count, addr);
9695 return -EINVAL;
9696 }
9697 return 0;
9698}
9699
9700static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9701 struct vmcs12 *vmcs12)
9702{
e9ac033e
EK
9703 if (vmcs12->vm_exit_msr_load_count == 0 &&
9704 vmcs12->vm_exit_msr_store_count == 0 &&
9705 vmcs12->vm_entry_msr_load_count == 0)
9706 return 0; /* Fast path */
e9ac033e 9707 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9708 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9709 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9710 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9711 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9712 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9713 return -EINVAL;
9714 return 0;
9715}
9716
9717static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9718 struct vmx_msr_entry *e)
9719{
9720 /* x2APIC MSR accesses are not allowed */
8a9781f7 9721 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9722 return -EINVAL;
9723 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9724 e->index == MSR_IA32_UCODE_REV)
9725 return -EINVAL;
9726 if (e->reserved != 0)
ff651cb6
WV
9727 return -EINVAL;
9728 return 0;
9729}
9730
e9ac033e
EK
9731static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9732 struct vmx_msr_entry *e)
ff651cb6
WV
9733{
9734 if (e->index == MSR_FS_BASE ||
9735 e->index == MSR_GS_BASE ||
e9ac033e
EK
9736 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9737 nested_vmx_msr_check_common(vcpu, e))
9738 return -EINVAL;
9739 return 0;
9740}
9741
9742static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9743 struct vmx_msr_entry *e)
9744{
9745 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9746 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9747 return -EINVAL;
9748 return 0;
9749}
9750
9751/*
9752 * Load guest's/host's msr at nested entry/exit.
9753 * return 0 for success, entry index for failure.
9754 */
9755static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9756{
9757 u32 i;
9758 struct vmx_msr_entry e;
9759 struct msr_data msr;
9760
9761 msr.host_initiated = false;
9762 for (i = 0; i < count; i++) {
54bf36aa
PB
9763 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9764 &e, sizeof(e))) {
bbe41b95 9765 pr_debug_ratelimited(
e9ac033e
EK
9766 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9767 __func__, i, gpa + i * sizeof(e));
ff651cb6 9768 goto fail;
e9ac033e
EK
9769 }
9770 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 9771 pr_debug_ratelimited(
e9ac033e
EK
9772 "%s check failed (%u, 0x%x, 0x%x)\n",
9773 __func__, i, e.index, e.reserved);
9774 goto fail;
9775 }
ff651cb6
WV
9776 msr.index = e.index;
9777 msr.data = e.value;
e9ac033e 9778 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 9779 pr_debug_ratelimited(
e9ac033e
EK
9780 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9781 __func__, i, e.index, e.value);
ff651cb6 9782 goto fail;
e9ac033e 9783 }
ff651cb6
WV
9784 }
9785 return 0;
9786fail:
9787 return i + 1;
9788}
9789
9790static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9791{
9792 u32 i;
9793 struct vmx_msr_entry e;
9794
9795 for (i = 0; i < count; i++) {
609e36d3 9796 struct msr_data msr_info;
54bf36aa
PB
9797 if (kvm_vcpu_read_guest(vcpu,
9798 gpa + i * sizeof(e),
9799 &e, 2 * sizeof(u32))) {
bbe41b95 9800 pr_debug_ratelimited(
e9ac033e
EK
9801 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9802 __func__, i, gpa + i * sizeof(e));
ff651cb6 9803 return -EINVAL;
e9ac033e
EK
9804 }
9805 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 9806 pr_debug_ratelimited(
e9ac033e
EK
9807 "%s check failed (%u, 0x%x, 0x%x)\n",
9808 __func__, i, e.index, e.reserved);
ff651cb6 9809 return -EINVAL;
e9ac033e 9810 }
609e36d3
PB
9811 msr_info.host_initiated = false;
9812 msr_info.index = e.index;
9813 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 9814 pr_debug_ratelimited(
e9ac033e
EK
9815 "%s cannot read MSR (%u, 0x%x)\n",
9816 __func__, i, e.index);
9817 return -EINVAL;
9818 }
54bf36aa
PB
9819 if (kvm_vcpu_write_guest(vcpu,
9820 gpa + i * sizeof(e) +
9821 offsetof(struct vmx_msr_entry, value),
9822 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 9823 pr_debug_ratelimited(
e9ac033e 9824 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9825 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9826 return -EINVAL;
9827 }
ff651cb6
WV
9828 }
9829 return 0;
9830}
9831
1dc35dac
LP
9832static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9833{
9834 unsigned long invalid_mask;
9835
9836 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9837 return (val & invalid_mask) == 0;
9838}
9839
9ed38ffa
LP
9840/*
9841 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9842 * emulating VM entry into a guest with EPT enabled.
9843 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9844 * is assigned to entry_failure_code on failure.
9845 */
9846static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 9847 u32 *entry_failure_code)
9ed38ffa 9848{
9ed38ffa 9849 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 9850 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
9851 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9852 return 1;
9853 }
9854
9855 /*
9856 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9857 * must not be dereferenced.
9858 */
9859 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9860 !nested_ept) {
9861 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9862 *entry_failure_code = ENTRY_FAIL_PDPTE;
9863 return 1;
9864 }
9865 }
9866
9867 vcpu->arch.cr3 = cr3;
9868 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9869 }
9870
9871 kvm_mmu_reset_context(vcpu);
9872 return 0;
9873}
9874
fe3ef05c
NHE
9875/*
9876 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9877 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9878 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9879 * guest in a way that will both be appropriate to L1's requests, and our
9880 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9881 * function also has additional necessary side-effects, like setting various
9882 * vcpu->arch fields.
ee146c1c
LP
9883 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9884 * is assigned to entry_failure_code on failure.
fe3ef05c 9885 */
ee146c1c 9886static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 9887 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
9888{
9889 struct vcpu_vmx *vmx = to_vmx(vcpu);
9890 u32 exec_control;
9891
9892 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9893 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9894 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9895 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9896 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9897 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9898 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9899 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9900 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9901 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9902 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9903 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9904 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9905 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9906 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9907 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9908 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9909 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9910 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9911 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9912 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9913 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9914 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9915 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9916 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9917 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9918 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9919 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9920 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9921 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9922 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9923 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9924 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9925 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9926 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9927 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9928
cf8b84f4
JM
9929 if (from_vmentry &&
9930 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
9931 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9932 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9933 } else {
9934 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9935 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9936 }
cf8b84f4
JM
9937 if (from_vmentry) {
9938 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9939 vmcs12->vm_entry_intr_info_field);
9940 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9941 vmcs12->vm_entry_exception_error_code);
9942 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9943 vmcs12->vm_entry_instruction_len);
9944 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9945 vmcs12->guest_interruptibility_info);
9946 } else {
9947 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9948 }
fe3ef05c 9949 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9950 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9951 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9952 vmcs12->guest_pending_dbg_exceptions);
9953 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9954 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9955
81dc01f7
WL
9956 if (nested_cpu_has_xsaves(vmcs12))
9957 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9958 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9959
f4124500 9960 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
9961
9962 /* Preemption timer setting is only taken from vmcs01. */
705699a1 9963 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
9964 exec_control |= vmcs_config.pin_based_exec_ctrl;
9965 if (vmx->hv_deadline_tsc == -1)
9966 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 9967
9314006d 9968 /* Posted interrupts setting is only taken from vmcs12. */
705699a1
WV
9969 if (nested_cpu_has_posted_intr(vmcs12)) {
9970 /*
9971 * Note that we use L0's vector here and in
9972 * vmx_deliver_nested_posted_interrupt.
9973 */
9974 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9975 vmx->nested.pi_pending = false;
0bcf261c 9976 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
6beb7bd5 9977 } else {
705699a1 9978 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 9979 }
705699a1 9980
f4124500 9981 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9982
f4124500
JK
9983 vmx->nested.preemption_timer_expired = false;
9984 if (nested_cpu_has_preemption_timer(vmcs12))
9985 vmx_start_preemption_timer(vcpu);
0238ea91 9986
fe3ef05c
NHE
9987 /*
9988 * Whether page-faults are trapped is determined by a combination of
9989 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9990 * If enable_ept, L0 doesn't care about page faults and we should
9991 * set all of these to L1's desires. However, if !enable_ept, L0 does
9992 * care about (at least some) page faults, and because it is not easy
9993 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9994 * to exit on each and every L2 page fault. This is done by setting
9995 * MASK=MATCH=0 and (see below) EB.PF=1.
9996 * Note that below we don't need special code to set EB.PF beyond the
9997 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9998 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9999 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10000 *
10001 * A problem with this approach (when !enable_ept) is that L1 may be
10002 * injected with more page faults than it asked for. This could have
10003 * caused problems, but in practice existing hypervisors don't care.
10004 * To fix this, we will need to emulate the PFEC checking (on the L1
10005 * page tables), using walk_addr(), when injecting PFs to L1.
10006 */
10007 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10008 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10009 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10010 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10011
10012 if (cpu_has_secondary_exec_ctrls()) {
f4124500 10013 exec_control = vmx_secondary_exec_control(vmx);
e2821620 10014
fe3ef05c 10015 /* Take the following fields only from vmcs12 */
696dfd95 10016 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 10017 SECONDARY_EXEC_RDTSCP |
696dfd95 10018 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
dfa169bb 10019 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c
NHE
10020 if (nested_cpu_has(vmcs12,
10021 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
10022 exec_control |= vmcs12->secondary_vm_exec_control;
10023
608406e2
WV
10024 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10025 vmcs_write64(EOI_EXIT_BITMAP0,
10026 vmcs12->eoi_exit_bitmap0);
10027 vmcs_write64(EOI_EXIT_BITMAP1,
10028 vmcs12->eoi_exit_bitmap1);
10029 vmcs_write64(EOI_EXIT_BITMAP2,
10030 vmcs12->eoi_exit_bitmap2);
10031 vmcs_write64(EOI_EXIT_BITMAP3,
10032 vmcs12->eoi_exit_bitmap3);
10033 vmcs_write16(GUEST_INTR_STATUS,
10034 vmcs12->guest_intr_status);
10035 }
10036
6beb7bd5
JM
10037 /*
10038 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10039 * nested_get_vmcs12_pages will either fix it up or
10040 * remove the VM execution control.
10041 */
10042 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10043 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10044
fe3ef05c
NHE
10045 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10046 }
10047
10048
10049 /*
10050 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10051 * Some constant fields are set here by vmx_set_constant_host_state().
10052 * Other fields are different per CPU, and will be set later when
10053 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10054 */
a547c6db 10055 vmx_set_constant_host_state(vmx);
fe3ef05c 10056
83bafef1
JM
10057 /*
10058 * Set the MSR load/store lists to match L0's settings.
10059 */
10060 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10061 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10062 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10063 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10064 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10065
fe3ef05c
NHE
10066 /*
10067 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10068 * entry, but only if the current (host) sp changed from the value
10069 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10070 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10071 * here we just force the write to happen on entry.
10072 */
10073 vmx->host_rsp = 0;
10074
10075 exec_control = vmx_exec_control(vmx); /* L0's desires */
10076 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10077 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10078 exec_control &= ~CPU_BASED_TPR_SHADOW;
10079 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10080
6beb7bd5
JM
10081 /*
10082 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10083 * nested_get_vmcs12_pages can't fix it up, the illegal value
10084 * will result in a VM entry failure.
10085 */
a7c0b07d 10086 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10087 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d
WL
10088 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10089 }
10090
fe3ef05c 10091 /*
3af18d9c 10092 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10093 * Rather, exit every time.
10094 */
fe3ef05c
NHE
10095 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10096 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10097
10098 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10099
10100 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10101 * bitwise-or of what L1 wants to trap for L2, and what we want to
10102 * trap. Note that CR0.TS also needs updating - we do this later.
10103 */
10104 update_exception_bitmap(vcpu);
10105 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10106 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10107
8049d651
NHE
10108 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10109 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10110 * bits are further modified by vmx_set_efer() below.
10111 */
f4124500 10112 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10113
10114 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10115 * emulated by vmx_set_efer(), below.
10116 */
2961e876 10117 vm_entry_controls_init(vmx,
8049d651
NHE
10118 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10119 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10120 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10121
cf8b84f4
JM
10122 if (from_vmentry &&
10123 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10124 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10125 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10126 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10127 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10128 }
fe3ef05c
NHE
10129
10130 set_cr4_guest_host_mask(vmx);
10131
cf8b84f4
JM
10132 if (from_vmentry &&
10133 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10134 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10135
27fc51b2
NHE
10136 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10137 vmcs_write64(TSC_OFFSET,
ea26e4ec 10138 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10139 else
ea26e4ec 10140 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10141 if (kvm_has_tsc_control)
10142 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10143
10144 if (enable_vpid) {
10145 /*
5c614b35
WL
10146 * There is no direct mapping between vpid02 and vpid12, the
10147 * vpid02 is per-vCPU for L0 and reused while the value of
10148 * vpid12 is changed w/ one invvpid during nested vmentry.
10149 * The vpid12 is allocated by L1 for L2, so it will not
10150 * influence global bitmap(for vpid01 and vpid02 allocation)
10151 * even if spawn a lot of nested vCPUs.
fe3ef05c 10152 */
5c614b35
WL
10153 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10154 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10155 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10156 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10157 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10158 }
10159 } else {
10160 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10161 vmx_flush_tlb(vcpu);
10162 }
10163
fe3ef05c
NHE
10164 }
10165
155a97a3 10166 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10167 if (nested_ept_init_mmu_context(vcpu)) {
10168 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10169 return 1;
10170 }
fb6c8198
JM
10171 } else if (nested_cpu_has2(vmcs12,
10172 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10173 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10174 }
10175
fe3ef05c 10176 /*
bd7e5b08
PB
10177 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10178 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10179 * The CR0_READ_SHADOW is what L2 should have expected to read given
10180 * the specifications by L1; It's not enough to take
10181 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10182 * have more bits than L1 expected.
10183 */
10184 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10185 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10186
10187 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10188 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10189
cf8b84f4
JM
10190 if (from_vmentry &&
10191 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10192 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10193 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10194 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10195 else
10196 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10197 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10198 vmx_set_efer(vcpu, vcpu->arch.efer);
10199
9ed38ffa 10200 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10201 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10202 entry_failure_code))
10203 return 1;
7ca29de2 10204
feaf0c7d
GN
10205 if (!enable_ept)
10206 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10207
3633cfc3
NHE
10208 /*
10209 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10210 */
10211 if (enable_ept) {
10212 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10213 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10214 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10215 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10216 }
10217
fe3ef05c
NHE
10218 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10219 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10220 return 0;
fe3ef05c
NHE
10221}
10222
ca0bde28 10223static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10224{
cd232ad0 10225 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10226
6dfacadd 10227 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10228 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10229 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10230
ca0bde28
JM
10231 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10232 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10233
ca0bde28
JM
10234 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10235 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10236
ca0bde28
JM
10237 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10238 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10239
7c177938 10240 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10241 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10242 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 10243 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
10244 vmx->nested.nested_vmx_secondary_ctls_low,
10245 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 10246 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10247 vmx->nested.nested_vmx_pinbased_ctls_low,
10248 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10249 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10250 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10251 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10252 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10253 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10254 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10255 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10256
3899152c 10257 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10258 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10259 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10260 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10261
10262 return 0;
10263}
10264
10265static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10266 u32 *exit_qual)
10267{
10268 bool ia32e;
10269
10270 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10271
3899152c 10272 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10273 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10274 return 1;
ca0bde28
JM
10275
10276 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10277 vmcs12->vmcs_link_pointer != -1ull) {
10278 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10279 return 1;
7c177938
NHE
10280 }
10281
384bb783 10282 /*
cb0c8cda 10283 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10284 * are performed on the field for the IA32_EFER MSR:
10285 * - Bits reserved in the IA32_EFER MSR must be 0.
10286 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10287 * the IA-32e mode guest VM-exit control. It must also be identical
10288 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10289 * CR0.PG) is 1.
10290 */
ca0bde28
JM
10291 if (to_vmx(vcpu)->nested.nested_run_pending &&
10292 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10293 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10294 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10295 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10296 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10297 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10298 return 1;
384bb783
JK
10299 }
10300
10301 /*
10302 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10303 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10304 * the values of the LMA and LME bits in the field must each be that of
10305 * the host address-space size VM-exit control.
10306 */
10307 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10308 ia32e = (vmcs12->vm_exit_controls &
10309 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10310 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10311 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10312 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10313 return 1;
ca0bde28
JM
10314 }
10315
10316 return 0;
10317}
10318
858e25c0
JM
10319static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10320{
10321 struct vcpu_vmx *vmx = to_vmx(vcpu);
10322 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10323 struct loaded_vmcs *vmcs02;
858e25c0
JM
10324 u32 msr_entry_idx;
10325 u32 exit_qual;
10326
10327 vmcs02 = nested_get_current_vmcs02(vmx);
10328 if (!vmcs02)
10329 return -ENOMEM;
10330
10331 enter_guest_mode(vcpu);
10332
10333 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10334 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10335
1279a6b1 10336 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10337 vmx_segment_cache_clear(vmx);
10338
10339 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10340 leave_guest_mode(vcpu);
1279a6b1 10341 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10342 nested_vmx_entry_failure(vcpu, vmcs12,
10343 EXIT_REASON_INVALID_STATE, exit_qual);
10344 return 1;
10345 }
10346
10347 nested_get_vmcs12_pages(vcpu, vmcs12);
10348
10349 msr_entry_idx = nested_vmx_load_msr(vcpu,
10350 vmcs12->vm_entry_msr_load_addr,
10351 vmcs12->vm_entry_msr_load_count);
10352 if (msr_entry_idx) {
10353 leave_guest_mode(vcpu);
1279a6b1 10354 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10355 nested_vmx_entry_failure(vcpu, vmcs12,
10356 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10357 return 1;
10358 }
10359
10360 vmcs12->launch_state = 1;
10361
10362 /*
10363 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10364 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10365 * returned as far as L1 is concerned. It will only return (and set
10366 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10367 */
10368 return 0;
10369}
10370
ca0bde28
JM
10371/*
10372 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10373 * for running an L2 nested guest.
10374 */
10375static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10376{
10377 struct vmcs12 *vmcs12;
10378 struct vcpu_vmx *vmx = to_vmx(vcpu);
ca0bde28
JM
10379 u32 exit_qual;
10380 int ret;
10381
10382 if (!nested_vmx_check_permission(vcpu))
10383 return 1;
10384
10385 if (!nested_vmx_check_vmcs12(vcpu))
10386 goto out;
10387
10388 vmcs12 = get_vmcs12(vcpu);
10389
10390 if (enable_shadow_vmcs)
10391 copy_shadow_to_vmcs12(vmx);
10392
10393 /*
10394 * The nested entry process starts with enforcing various prerequisites
10395 * on vmcs12 as required by the Intel SDM, and act appropriately when
10396 * they fail: As the SDM explains, some conditions should cause the
10397 * instruction to fail, while others will cause the instruction to seem
10398 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10399 * To speed up the normal (success) code path, we should avoid checking
10400 * for misconfigurations which will anyway be caught by the processor
10401 * when using the merged vmcs02.
10402 */
10403 if (vmcs12->launch_state == launch) {
10404 nested_vmx_failValid(vcpu,
10405 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10406 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10407 goto out;
10408 }
10409
10410 ret = check_vmentry_prereqs(vcpu, vmcs12);
10411 if (ret) {
10412 nested_vmx_failValid(vcpu, ret);
10413 goto out;
10414 }
10415
10416 /*
10417 * After this point, the trap flag no longer triggers a singlestep trap
10418 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10419 * This is not 100% correct; for performance reasons, we delegate most
10420 * of the checks on host state to the processor. If those fail,
10421 * the singlestep trap is missed.
10422 */
10423 skip_emulated_instruction(vcpu);
10424
10425 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10426 if (ret) {
10427 nested_vmx_entry_failure(vcpu, vmcs12,
10428 EXIT_REASON_INVALID_STATE, exit_qual);
10429 return 1;
384bb783
JK
10430 }
10431
7c177938
NHE
10432 /*
10433 * We're finally done with prerequisite checking, and can start with
10434 * the nested entry.
10435 */
10436
858e25c0
JM
10437 ret = enter_vmx_non_root_mode(vcpu, true);
10438 if (ret)
10439 return ret;
ff651cb6 10440
6dfacadd 10441 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10442 return kvm_vcpu_halt(vcpu);
6dfacadd 10443
7af40ad3
JK
10444 vmx->nested.nested_run_pending = 1;
10445
cd232ad0 10446 return 1;
eb277562
KH
10447
10448out:
6affcbed 10449 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10450}
10451
4704d0be
NHE
10452/*
10453 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10454 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10455 * This function returns the new value we should put in vmcs12.guest_cr0.
10456 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10457 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10458 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10459 * didn't trap the bit, because if L1 did, so would L0).
10460 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10461 * been modified by L2, and L1 knows it. So just leave the old value of
10462 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10463 * isn't relevant, because if L0 traps this bit it can set it to anything.
10464 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10465 * changed these bits, and therefore they need to be updated, but L0
10466 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10467 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10468 */
10469static inline unsigned long
10470vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10471{
10472 return
10473 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10474 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10475 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10476 vcpu->arch.cr0_guest_owned_bits));
10477}
10478
10479static inline unsigned long
10480vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10481{
10482 return
10483 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10484 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10485 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10486 vcpu->arch.cr4_guest_owned_bits));
10487}
10488
5f3d5799
JK
10489static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10490 struct vmcs12 *vmcs12)
10491{
10492 u32 idt_vectoring;
10493 unsigned int nr;
10494
851eb667 10495 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10496 nr = vcpu->arch.exception.nr;
10497 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10498
10499 if (kvm_exception_is_soft(nr)) {
10500 vmcs12->vm_exit_instruction_len =
10501 vcpu->arch.event_exit_inst_len;
10502 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10503 } else
10504 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10505
10506 if (vcpu->arch.exception.has_error_code) {
10507 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10508 vmcs12->idt_vectoring_error_code =
10509 vcpu->arch.exception.error_code;
10510 }
10511
10512 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10513 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10514 vmcs12->idt_vectoring_info_field =
10515 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10516 } else if (vcpu->arch.interrupt.pending) {
10517 nr = vcpu->arch.interrupt.nr;
10518 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10519
10520 if (vcpu->arch.interrupt.soft) {
10521 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10522 vmcs12->vm_entry_instruction_len =
10523 vcpu->arch.event_exit_inst_len;
10524 } else
10525 idt_vectoring |= INTR_TYPE_EXT_INTR;
10526
10527 vmcs12->idt_vectoring_info_field = idt_vectoring;
10528 }
10529}
10530
b6b8a145
JK
10531static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10532{
10533 struct vcpu_vmx *vmx = to_vmx(vcpu);
10534
acc9ab60
WL
10535 if (vcpu->arch.exception.pending ||
10536 vcpu->arch.nmi_injected ||
10537 vcpu->arch.interrupt.pending)
10538 return -EBUSY;
10539
f4124500
JK
10540 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10541 vmx->nested.preemption_timer_expired) {
10542 if (vmx->nested.nested_run_pending)
10543 return -EBUSY;
10544 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10545 return 0;
10546 }
10547
b6b8a145 10548 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 10549 if (vmx->nested.nested_run_pending)
b6b8a145
JK
10550 return -EBUSY;
10551 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10552 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10553 INTR_INFO_VALID_MASK, 0);
10554 /*
10555 * The NMI-triggered VM exit counts as injection:
10556 * clear this one and block further NMIs.
10557 */
10558 vcpu->arch.nmi_pending = 0;
10559 vmx_set_nmi_mask(vcpu, true);
10560 return 0;
10561 }
10562
10563 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10564 nested_exit_on_intr(vcpu)) {
10565 if (vmx->nested.nested_run_pending)
10566 return -EBUSY;
10567 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10568 return 0;
b6b8a145
JK
10569 }
10570
6342c50a
DH
10571 vmx_complete_nested_posted_interrupt(vcpu);
10572 return 0;
b6b8a145
JK
10573}
10574
f4124500
JK
10575static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10576{
10577 ktime_t remaining =
10578 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10579 u64 value;
10580
10581 if (ktime_to_ns(remaining) <= 0)
10582 return 0;
10583
10584 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10585 do_div(value, 1000000);
10586 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10587}
10588
4704d0be 10589/*
cf8b84f4
JM
10590 * Update the guest state fields of vmcs12 to reflect changes that
10591 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10592 * VM-entry controls is also updated, since this is really a guest
10593 * state bit.)
4704d0be 10594 */
cf8b84f4 10595static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 10596{
4704d0be
NHE
10597 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10598 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10599
4704d0be
NHE
10600 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10601 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10602 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10603
10604 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10605 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10606 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10607 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10608 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10609 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10610 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10611 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10612 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10613 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10614 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10615 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10616 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10617 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10618 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10619 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10620 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10621 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10622 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10623 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10624 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10625 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10626 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10627 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10628 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10629 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10630 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10631 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10632 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10633 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10634 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10635 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10636 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10637 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10638 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10639 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10640
4704d0be
NHE
10641 vmcs12->guest_interruptibility_info =
10642 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10643 vmcs12->guest_pending_dbg_exceptions =
10644 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10645 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10646 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10647 else
10648 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10649
f4124500
JK
10650 if (nested_cpu_has_preemption_timer(vmcs12)) {
10651 if (vmcs12->vm_exit_controls &
10652 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10653 vmcs12->vmx_preemption_timer_value =
10654 vmx_get_preemption_timer_value(vcpu);
10655 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10656 }
7854cbca 10657
3633cfc3
NHE
10658 /*
10659 * In some cases (usually, nested EPT), L2 is allowed to change its
10660 * own CR3 without exiting. If it has changed it, we must keep it.
10661 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10662 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10663 *
10664 * Additionally, restore L2's PDPTR to vmcs12.
10665 */
10666 if (enable_ept) {
f3531054 10667 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10668 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10669 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10670 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10671 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10672 }
10673
119a9c01
JD
10674 if (nested_cpu_has_ept(vmcs12))
10675 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10676
608406e2
WV
10677 if (nested_cpu_has_vid(vmcs12))
10678 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10679
c18911a2
JK
10680 vmcs12->vm_entry_controls =
10681 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10682 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10683
2996fca0
JK
10684 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10685 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10686 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10687 }
10688
4704d0be
NHE
10689 /* TODO: These cannot have changed unless we have MSR bitmaps and
10690 * the relevant bit asks not to trap the change */
b8c07d55 10691 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10692 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10693 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10694 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10695 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10696 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10697 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10698 if (kvm_mpx_supported())
36be0b9d 10699 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10700 if (nested_cpu_has_xsaves(vmcs12))
10701 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
cf8b84f4
JM
10702}
10703
10704/*
10705 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10706 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10707 * and this function updates it to reflect the changes to the guest state while
10708 * L2 was running (and perhaps made some exits which were handled directly by L0
10709 * without going back to L1), and to reflect the exit reason.
10710 * Note that we do not have to copy here all VMCS fields, just those that
10711 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10712 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10713 * which already writes to vmcs12 directly.
10714 */
10715static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10716 u32 exit_reason, u32 exit_intr_info,
10717 unsigned long exit_qualification)
10718{
10719 /* update guest state fields: */
10720 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
10721
10722 /* update exit information fields: */
10723
533558bc
JK
10724 vmcs12->vm_exit_reason = exit_reason;
10725 vmcs12->exit_qualification = exit_qualification;
4704d0be 10726
533558bc 10727 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10728 if ((vmcs12->vm_exit_intr_info &
10729 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10730 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10731 vmcs12->vm_exit_intr_error_code =
10732 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10733 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10734 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10735 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10736
5f3d5799
JK
10737 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10738 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10739 * instead of reading the real value. */
4704d0be 10740 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10741
10742 /*
10743 * Transfer the event that L0 or L1 may wanted to inject into
10744 * L2 to IDT_VECTORING_INFO_FIELD.
10745 */
10746 vmcs12_save_pending_event(vcpu, vmcs12);
10747 }
10748
10749 /*
10750 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10751 * preserved above and would only end up incorrectly in L1.
10752 */
10753 vcpu->arch.nmi_injected = false;
10754 kvm_clear_exception_queue(vcpu);
10755 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10756}
10757
10758/*
10759 * A part of what we need to when the nested L2 guest exits and we want to
10760 * run its L1 parent, is to reset L1's guest state to the host state specified
10761 * in vmcs12.
10762 * This function is to be called not only on normal nested exit, but also on
10763 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10764 * Failures During or After Loading Guest State").
10765 * This function should be called when the active VMCS is L1's (vmcs01).
10766 */
733568f9
JK
10767static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10768 struct vmcs12 *vmcs12)
4704d0be 10769{
21feb4eb 10770 struct kvm_segment seg;
ca0bde28 10771 u32 entry_failure_code;
21feb4eb 10772
4704d0be
NHE
10773 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10774 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10775 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10776 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10777 else
10778 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10779 vmx_set_efer(vcpu, vcpu->arch.efer);
10780
10781 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10782 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10783 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10784 /*
10785 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
10786 * actually changed, because vmx_set_cr0 refers to efer set above.
10787 *
10788 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10789 * (KVM doesn't change it);
4704d0be 10790 */
bd7e5b08 10791 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 10792 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 10793
bd7e5b08 10794 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be
NHE
10795 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10796 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10797
29bf08f1 10798 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10799
1dc35dac
LP
10800 /*
10801 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10802 * couldn't have changed.
10803 */
10804 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10805 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 10806
feaf0c7d
GN
10807 if (!enable_ept)
10808 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10809
4704d0be
NHE
10810 if (enable_vpid) {
10811 /*
10812 * Trivially support vpid by letting L2s share their parent
10813 * L1's vpid. TODO: move to a more elaborate solution, giving
10814 * each L2 its own vpid and exposing the vpid feature to L1.
10815 */
10816 vmx_flush_tlb(vcpu);
10817 }
10818
10819
10820 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10821 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10822 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10823 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10824 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10825
36be0b9d
PB
10826 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10827 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10828 vmcs_write64(GUEST_BNDCFGS, 0);
10829
44811c02 10830 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10831 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10832 vcpu->arch.pat = vmcs12->host_ia32_pat;
10833 }
4704d0be
NHE
10834 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10835 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10836 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10837
21feb4eb
ACL
10838 /* Set L1 segment info according to Intel SDM
10839 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10840 seg = (struct kvm_segment) {
10841 .base = 0,
10842 .limit = 0xFFFFFFFF,
10843 .selector = vmcs12->host_cs_selector,
10844 .type = 11,
10845 .present = 1,
10846 .s = 1,
10847 .g = 1
10848 };
10849 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10850 seg.l = 1;
10851 else
10852 seg.db = 1;
10853 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10854 seg = (struct kvm_segment) {
10855 .base = 0,
10856 .limit = 0xFFFFFFFF,
10857 .type = 3,
10858 .present = 1,
10859 .s = 1,
10860 .db = 1,
10861 .g = 1
10862 };
10863 seg.selector = vmcs12->host_ds_selector;
10864 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10865 seg.selector = vmcs12->host_es_selector;
10866 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10867 seg.selector = vmcs12->host_ss_selector;
10868 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10869 seg.selector = vmcs12->host_fs_selector;
10870 seg.base = vmcs12->host_fs_base;
10871 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10872 seg.selector = vmcs12->host_gs_selector;
10873 seg.base = vmcs12->host_gs_base;
10874 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10875 seg = (struct kvm_segment) {
205befd9 10876 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10877 .limit = 0x67,
10878 .selector = vmcs12->host_tr_selector,
10879 .type = 11,
10880 .present = 1
10881 };
10882 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10883
503cd0c5
JK
10884 kvm_set_dr(vcpu, 7, 0x400);
10885 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10886
3af18d9c
WV
10887 if (cpu_has_vmx_msr_bitmap())
10888 vmx_set_msr_bitmap(vcpu);
10889
ff651cb6
WV
10890 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10891 vmcs12->vm_exit_msr_load_count))
10892 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10893}
10894
10895/*
10896 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10897 * and modify vmcs12 to make it see what it would expect to see there if
10898 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10899 */
533558bc
JK
10900static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10901 u32 exit_intr_info,
10902 unsigned long exit_qualification)
4704d0be
NHE
10903{
10904 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 10905 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 10906 u32 vm_inst_error = 0;
4704d0be 10907
5f3d5799
JK
10908 /* trying to cancel vmlaunch/vmresume is a bug */
10909 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10910
4704d0be 10911 leave_guest_mode(vcpu);
533558bc
JK
10912 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10913 exit_qualification);
4704d0be 10914
ff651cb6
WV
10915 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10916 vmcs12->vm_exit_msr_store_count))
10917 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10918
cf3215d9
JM
10919 if (unlikely(vmx->fail))
10920 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
10921
1279a6b1 10922 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
f3380ca5 10923
77b0f5d6
BD
10924 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10925 && nested_exit_intr_ack_set(vcpu)) {
10926 int irq = kvm_cpu_get_interrupt(vcpu);
10927 WARN_ON(irq < 0);
10928 vmcs12->vm_exit_intr_info = irq |
10929 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10930 }
10931
542060ea
JK
10932 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10933 vmcs12->exit_qualification,
10934 vmcs12->idt_vectoring_info_field,
10935 vmcs12->vm_exit_intr_info,
10936 vmcs12->vm_exit_intr_error_code,
10937 KVM_ISA_VMX);
4704d0be 10938
8391ce44
PB
10939 vm_entry_controls_reset_shadow(vmx);
10940 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
10941 vmx_segment_cache_clear(vmx);
10942
4704d0be
NHE
10943 /* if no vmcs02 cache requested, remove the one we used */
10944 if (VMCS02_POOL_SIZE == 0)
10945 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10946
10947 load_vmcs12_host_state(vcpu, vmcs12);
10948
9314006d 10949 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
10950 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10951 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 10952 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
10953 if (vmx->hv_deadline_tsc == -1)
10954 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10955 PIN_BASED_VMX_PREEMPTION_TIMER);
10956 else
10957 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10958 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
10959 if (kvm_has_tsc_control)
10960 decache_tsc_multiplier(vmx);
4704d0be 10961
dccbfcf5
RK
10962 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10963 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10964 vmx_set_virtual_x2apic_mode(vcpu,
10965 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
10966 } else if (!nested_cpu_has_ept(vmcs12) &&
10967 nested_cpu_has2(vmcs12,
10968 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10969 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 10970 }
4704d0be
NHE
10971
10972 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10973 vmx->host_rsp = 0;
10974
10975 /* Unpin physical memory we referred to in vmcs02 */
10976 if (vmx->nested.apic_access_page) {
10977 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10978 vmx->nested.apic_access_page = NULL;
4704d0be 10979 }
a7c0b07d
WL
10980 if (vmx->nested.virtual_apic_page) {
10981 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10982 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10983 }
705699a1
WV
10984 if (vmx->nested.pi_desc_page) {
10985 kunmap(vmx->nested.pi_desc_page);
10986 nested_release_page(vmx->nested.pi_desc_page);
10987 vmx->nested.pi_desc_page = NULL;
10988 vmx->nested.pi_desc = NULL;
10989 }
4704d0be 10990
38b99173
TC
10991 /*
10992 * We are now running in L2, mmu_notifier will force to reload the
10993 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10994 */
c83b6d15 10995 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 10996
4704d0be
NHE
10997 /*
10998 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10999 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11000 * success or failure flag accordingly.
11001 */
11002 if (unlikely(vmx->fail)) {
11003 vmx->fail = 0;
cf3215d9 11004 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11005 } else
11006 nested_vmx_succeed(vcpu);
012f83cb
AG
11007 if (enable_shadow_vmcs)
11008 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11009
11010 /* in case we halted in L2 */
11011 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11012}
11013
42124925
JK
11014/*
11015 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11016 */
11017static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11018{
2f707d97
WL
11019 if (is_guest_mode(vcpu)) {
11020 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11021 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11022 }
42124925
JK
11023 free_nested(to_vmx(vcpu));
11024}
11025
7c177938
NHE
11026/*
11027 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11028 * 23.7 "VM-entry failures during or after loading guest state" (this also
11029 * lists the acceptable exit-reason and exit-qualification parameters).
11030 * It should only be called before L2 actually succeeded to run, and when
11031 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11032 */
11033static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11034 struct vmcs12 *vmcs12,
11035 u32 reason, unsigned long qualification)
11036{
11037 load_vmcs12_host_state(vcpu, vmcs12);
11038 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11039 vmcs12->exit_qualification = qualification;
11040 nested_vmx_succeed(vcpu);
012f83cb
AG
11041 if (enable_shadow_vmcs)
11042 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11043}
11044
8a76d7f2
JR
11045static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11046 struct x86_instruction_info *info,
11047 enum x86_intercept_stage stage)
11048{
11049 return X86EMUL_CONTINUE;
11050}
11051
64672c95
YJ
11052#ifdef CONFIG_X86_64
11053/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11054static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11055 u64 divisor, u64 *result)
11056{
11057 u64 low = a << shift, high = a >> (64 - shift);
11058
11059 /* To avoid the overflow on divq */
11060 if (high >= divisor)
11061 return 1;
11062
11063 /* Low hold the result, high hold rem which is discarded */
11064 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11065 "rm" (divisor), "0" (low), "1" (high));
11066 *result = low;
11067
11068 return 0;
11069}
11070
11071static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11072{
11073 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11074 u64 tscl = rdtsc();
11075 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11076 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11077
11078 /* Convert to host delta tsc if tsc scaling is enabled */
11079 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11080 u64_shl_div_u64(delta_tsc,
11081 kvm_tsc_scaling_ratio_frac_bits,
11082 vcpu->arch.tsc_scaling_ratio,
11083 &delta_tsc))
11084 return -ERANGE;
11085
11086 /*
11087 * If the delta tsc can't fit in the 32 bit after the multi shift,
11088 * we can't use the preemption timer.
11089 * It's possible that it fits on later vmentries, but checking
11090 * on every vmentry is costly so we just use an hrtimer.
11091 */
11092 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11093 return -ERANGE;
11094
11095 vmx->hv_deadline_tsc = tscl + delta_tsc;
11096 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11097 PIN_BASED_VMX_PREEMPTION_TIMER);
11098 return 0;
11099}
11100
11101static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11102{
11103 struct vcpu_vmx *vmx = to_vmx(vcpu);
11104 vmx->hv_deadline_tsc = -1;
11105 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11106 PIN_BASED_VMX_PREEMPTION_TIMER);
11107}
11108#endif
11109
48d89b92 11110static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11111{
b4a2d31d
RK
11112 if (ple_gap)
11113 shrink_ple_window(vcpu);
ae97a3b8
RK
11114}
11115
843e4330
KH
11116static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11117 struct kvm_memory_slot *slot)
11118{
11119 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11120 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11121}
11122
11123static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11124 struct kvm_memory_slot *slot)
11125{
11126 kvm_mmu_slot_set_dirty(kvm, slot);
11127}
11128
11129static void vmx_flush_log_dirty(struct kvm *kvm)
11130{
11131 kvm_flush_pml_buffers(kvm);
11132}
11133
11134static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11135 struct kvm_memory_slot *memslot,
11136 gfn_t offset, unsigned long mask)
11137{
11138 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11139}
11140
bf9f6ac8
FW
11141/*
11142 * This routine does the following things for vCPU which is going
11143 * to be blocked if VT-d PI is enabled.
11144 * - Store the vCPU to the wakeup list, so when interrupts happen
11145 * we can find the right vCPU to wake up.
11146 * - Change the Posted-interrupt descriptor as below:
11147 * 'NDST' <-- vcpu->pre_pcpu
11148 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11149 * - If 'ON' is set during this process, which means at least one
11150 * interrupt is posted for this vCPU, we cannot block it, in
11151 * this case, return 1, otherwise, return 0.
11152 *
11153 */
bc22512b 11154static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11155{
11156 unsigned long flags;
11157 unsigned int dest;
11158 struct pi_desc old, new;
11159 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11160
11161 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11162 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11163 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11164 return 0;
11165
11166 vcpu->pre_pcpu = vcpu->cpu;
11167 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11168 vcpu->pre_pcpu), flags);
11169 list_add_tail(&vcpu->blocked_vcpu_list,
11170 &per_cpu(blocked_vcpu_on_cpu,
11171 vcpu->pre_pcpu));
11172 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11173 vcpu->pre_pcpu), flags);
11174
11175 do {
11176 old.control = new.control = pi_desc->control;
11177
11178 /*
11179 * We should not block the vCPU if
11180 * an interrupt is posted for it.
11181 */
11182 if (pi_test_on(pi_desc) == 1) {
11183 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11184 vcpu->pre_pcpu), flags);
11185 list_del(&vcpu->blocked_vcpu_list);
11186 spin_unlock_irqrestore(
11187 &per_cpu(blocked_vcpu_on_cpu_lock,
11188 vcpu->pre_pcpu), flags);
11189 vcpu->pre_pcpu = -1;
11190
11191 return 1;
11192 }
11193
11194 WARN((pi_desc->sn == 1),
11195 "Warning: SN field of posted-interrupts "
11196 "is set before blocking\n");
11197
11198 /*
11199 * Since vCPU can be preempted during this process,
11200 * vcpu->cpu could be different with pre_pcpu, we
11201 * need to set pre_pcpu as the destination of wakeup
11202 * notification event, then we can find the right vCPU
11203 * to wakeup in wakeup handler if interrupts happen
11204 * when the vCPU is in blocked state.
11205 */
11206 dest = cpu_physical_id(vcpu->pre_pcpu);
11207
11208 if (x2apic_enabled())
11209 new.ndst = dest;
11210 else
11211 new.ndst = (dest << 8) & 0xFF00;
11212
11213 /* set 'NV' to 'wakeup vector' */
11214 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11215 } while (cmpxchg(&pi_desc->control, old.control,
11216 new.control) != old.control);
11217
11218 return 0;
11219}
11220
bc22512b
YJ
11221static int vmx_pre_block(struct kvm_vcpu *vcpu)
11222{
11223 if (pi_pre_block(vcpu))
11224 return 1;
11225
64672c95
YJ
11226 if (kvm_lapic_hv_timer_in_use(vcpu))
11227 kvm_lapic_switch_to_sw_timer(vcpu);
11228
bc22512b
YJ
11229 return 0;
11230}
11231
11232static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11233{
11234 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11235 struct pi_desc old, new;
11236 unsigned int dest;
11237 unsigned long flags;
11238
11239 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11240 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11241 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11242 return;
11243
11244 do {
11245 old.control = new.control = pi_desc->control;
11246
11247 dest = cpu_physical_id(vcpu->cpu);
11248
11249 if (x2apic_enabled())
11250 new.ndst = dest;
11251 else
11252 new.ndst = (dest << 8) & 0xFF00;
11253
11254 /* Allow posting non-urgent interrupts */
11255 new.sn = 0;
11256
11257 /* set 'NV' to 'notification vector' */
11258 new.nv = POSTED_INTR_VECTOR;
11259 } while (cmpxchg(&pi_desc->control, old.control,
11260 new.control) != old.control);
11261
11262 if(vcpu->pre_pcpu != -1) {
11263 spin_lock_irqsave(
11264 &per_cpu(blocked_vcpu_on_cpu_lock,
11265 vcpu->pre_pcpu), flags);
11266 list_del(&vcpu->blocked_vcpu_list);
11267 spin_unlock_irqrestore(
11268 &per_cpu(blocked_vcpu_on_cpu_lock,
11269 vcpu->pre_pcpu), flags);
11270 vcpu->pre_pcpu = -1;
11271 }
11272}
11273
bc22512b
YJ
11274static void vmx_post_block(struct kvm_vcpu *vcpu)
11275{
64672c95
YJ
11276 if (kvm_x86_ops->set_hv_timer)
11277 kvm_lapic_switch_to_hv_timer(vcpu);
11278
bc22512b
YJ
11279 pi_post_block(vcpu);
11280}
11281
efc64404
FW
11282/*
11283 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11284 *
11285 * @kvm: kvm
11286 * @host_irq: host irq of the interrupt
11287 * @guest_irq: gsi of the interrupt
11288 * @set: set or unset PI
11289 * returns 0 on success, < 0 on failure
11290 */
11291static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11292 uint32_t guest_irq, bool set)
11293{
11294 struct kvm_kernel_irq_routing_entry *e;
11295 struct kvm_irq_routing_table *irq_rt;
11296 struct kvm_lapic_irq irq;
11297 struct kvm_vcpu *vcpu;
11298 struct vcpu_data vcpu_info;
11299 int idx, ret = -EINVAL;
11300
11301 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11302 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11303 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11304 return 0;
11305
11306 idx = srcu_read_lock(&kvm->irq_srcu);
11307 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11308 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11309
11310 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11311 if (e->type != KVM_IRQ_ROUTING_MSI)
11312 continue;
11313 /*
11314 * VT-d PI cannot support posting multicast/broadcast
11315 * interrupts to a vCPU, we still use interrupt remapping
11316 * for these kind of interrupts.
11317 *
11318 * For lowest-priority interrupts, we only support
11319 * those with single CPU as the destination, e.g. user
11320 * configures the interrupts via /proc/irq or uses
11321 * irqbalance to make the interrupts single-CPU.
11322 *
11323 * We will support full lowest-priority interrupt later.
11324 */
11325
37131313 11326 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11327 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11328 /*
11329 * Make sure the IRTE is in remapped mode if
11330 * we don't handle it in posted mode.
11331 */
11332 ret = irq_set_vcpu_affinity(host_irq, NULL);
11333 if (ret < 0) {
11334 printk(KERN_INFO
11335 "failed to back to remapped mode, irq: %u\n",
11336 host_irq);
11337 goto out;
11338 }
11339
efc64404 11340 continue;
23a1c257 11341 }
efc64404
FW
11342
11343 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11344 vcpu_info.vector = irq.vector;
11345
b6ce9780 11346 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11347 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11348
11349 if (set)
11350 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11351 else {
11352 /* suppress notification event before unposting */
11353 pi_set_sn(vcpu_to_pi_desc(vcpu));
11354 ret = irq_set_vcpu_affinity(host_irq, NULL);
11355 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11356 }
11357
11358 if (ret < 0) {
11359 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11360 __func__);
11361 goto out;
11362 }
11363 }
11364
11365 ret = 0;
11366out:
11367 srcu_read_unlock(&kvm->irq_srcu, idx);
11368 return ret;
11369}
11370
c45dcc71
AR
11371static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11372{
11373 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11374 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11375 FEATURE_CONTROL_LMCE;
11376 else
11377 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11378 ~FEATURE_CONTROL_LMCE;
11379}
11380
404f6aac 11381static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11382 .cpu_has_kvm_support = cpu_has_kvm_support,
11383 .disabled_by_bios = vmx_disabled_by_bios,
11384 .hardware_setup = hardware_setup,
11385 .hardware_unsetup = hardware_unsetup,
002c7f7c 11386 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11387 .hardware_enable = hardware_enable,
11388 .hardware_disable = hardware_disable,
04547156 11389 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11390 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11391
11392 .vcpu_create = vmx_create_vcpu,
11393 .vcpu_free = vmx_free_vcpu,
04d2cc77 11394 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11395
04d2cc77 11396 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11397 .vcpu_load = vmx_vcpu_load,
11398 .vcpu_put = vmx_vcpu_put,
11399
a96036b8 11400 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11401 .get_msr = vmx_get_msr,
11402 .set_msr = vmx_set_msr,
11403 .get_segment_base = vmx_get_segment_base,
11404 .get_segment = vmx_get_segment,
11405 .set_segment = vmx_set_segment,
2e4d2653 11406 .get_cpl = vmx_get_cpl,
6aa8b732 11407 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11408 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11409 .decache_cr3 = vmx_decache_cr3,
25c4c276 11410 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11411 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11412 .set_cr3 = vmx_set_cr3,
11413 .set_cr4 = vmx_set_cr4,
6aa8b732 11414 .set_efer = vmx_set_efer,
6aa8b732
AK
11415 .get_idt = vmx_get_idt,
11416 .set_idt = vmx_set_idt,
11417 .get_gdt = vmx_get_gdt,
11418 .set_gdt = vmx_set_gdt,
73aaf249
JK
11419 .get_dr6 = vmx_get_dr6,
11420 .set_dr6 = vmx_set_dr6,
020df079 11421 .set_dr7 = vmx_set_dr7,
81908bf4 11422 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11423 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11424 .get_rflags = vmx_get_rflags,
11425 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11426
11427 .get_pkru = vmx_get_pkru,
11428
6aa8b732 11429 .tlb_flush = vmx_flush_tlb,
6aa8b732 11430
6aa8b732 11431 .run = vmx_vcpu_run,
6062d012 11432 .handle_exit = vmx_handle_exit,
6aa8b732 11433 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11434 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11435 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11436 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11437 .set_irq = vmx_inject_irq,
95ba8273 11438 .set_nmi = vmx_inject_nmi,
298101da 11439 .queue_exception = vmx_queue_exception,
b463a6f7 11440 .cancel_injection = vmx_cancel_injection,
78646121 11441 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11442 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11443 .get_nmi_mask = vmx_get_nmi_mask,
11444 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11445 .enable_nmi_window = enable_nmi_window,
11446 .enable_irq_window = enable_irq_window,
11447 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11448 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11449 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11450 .get_enable_apicv = vmx_get_enable_apicv,
11451 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11452 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11453 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11454 .hwapic_irr_update = vmx_hwapic_irr_update,
11455 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11456 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11457 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11458
cbc94022 11459 .set_tss_addr = vmx_set_tss_addr,
67253af5 11460 .get_tdp_level = get_ept_level,
4b12f0de 11461 .get_mt_mask = vmx_get_mt_mask,
229456fc 11462
586f9607 11463 .get_exit_info = vmx_get_exit_info,
586f9607 11464
17cc3935 11465 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11466
11467 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11468
11469 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11470 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11471
11472 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11473
11474 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11475
11476 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11477
11478 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11479
11480 .check_intercept = vmx_check_intercept,
a547c6db 11481 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11482 .mpx_supported = vmx_mpx_supported,
55412b2e 11483 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11484
11485 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11486
11487 .sched_in = vmx_sched_in,
843e4330
KH
11488
11489 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11490 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11491 .flush_log_dirty = vmx_flush_log_dirty,
11492 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11493
bf9f6ac8
FW
11494 .pre_block = vmx_pre_block,
11495 .post_block = vmx_post_block,
11496
25462f7f 11497 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11498
11499 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11500
11501#ifdef CONFIG_X86_64
11502 .set_hv_timer = vmx_set_hv_timer,
11503 .cancel_hv_timer = vmx_cancel_hv_timer,
11504#endif
c45dcc71
AR
11505
11506 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11507};
11508
11509static int __init vmx_init(void)
11510{
34a1cd60
TC
11511 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11512 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11513 if (r)
34a1cd60 11514 return r;
25c5f225 11515
2965faa5 11516#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11517 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11518 crash_vmclear_local_loaded_vmcss);
11519#endif
11520
fdef3ad1 11521 return 0;
6aa8b732
AK
11522}
11523
11524static void __exit vmx_exit(void)
11525{
2965faa5 11526#ifdef CONFIG_KEXEC_CORE
3b63a43f 11527 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11528 synchronize_rcu();
11529#endif
11530
cb498ea2 11531 kvm_exit();
6aa8b732
AK
11532}
11533
11534module_init(vmx_init)
11535module_exit(vmx_exit)