]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/vmx.c
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly fasteoi = 1;
58fbbf26
KT
88module_param(fasteoi, bool, S_IRUGO);
89
5a71785d 90static bool __read_mostly enable_apicv = 1;
01e439be 91module_param(enable_apicv, bool, S_IRUGO);
83d4c286 92
abc4fc58
AG
93static bool __read_mostly enable_shadow_vmcs = 1;
94module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
95/*
96 * If nested=1, nested virtualization is supported, i.e., guests may use
97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98 * use VMX instructions.
99 */
476bc001 100static bool __read_mostly nested = 0;
801d3424
NHE
101module_param(nested, bool, S_IRUGO);
102
20300099
WL
103static u64 __read_mostly host_xss;
104
843e4330
KH
105static bool __read_mostly enable_pml = 1;
106module_param_named(pml, enable_pml, bool, S_IRUGO);
107
64903d61
HZ
108#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
109
64672c95
YJ
110/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
111static int __read_mostly cpu_preemption_timer_multi;
112static bool __read_mostly enable_preemption_timer = 1;
113#ifdef CONFIG_X86_64
114module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
115#endif
116
5037878e
GN
117#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
118#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
119#define KVM_VM_CR0_ALWAYS_ON \
120 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
121#define KVM_CR4_GUEST_OWNED_BITS \
122 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 123 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 124
cdc0e244
AK
125#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
126#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
127
78ac8b47
AK
128#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
129
f4124500
JK
130#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
131
16c2aec6
JD
132/*
133 * Hyper-V requires all of these, so mark them as supported even though
134 * they are just treated the same as all-context.
135 */
136#define VMX_VPID_EXTENT_SUPPORTED_MASK \
137 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
138 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
139 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
140 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
141
4b8d54f9
ZE
142/*
143 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
144 * ple_gap: upper bound on the amount of time between two successive
145 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 146 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
147 * ple_window: upper bound on the amount of time a guest is allowed to execute
148 * in a PAUSE loop. Tests indicate that most spinlocks are held for
149 * less than 2^12 cycles
150 * Time is measured based on a counter that runs at the same rate as the TSC,
151 * refer SDM volume 3b section 21.6.13 & 22.1.3.
152 */
b4a2d31d
RK
153#define KVM_VMX_DEFAULT_PLE_GAP 128
154#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
155#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
156#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
157#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
158 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
159
4b8d54f9
ZE
160static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
161module_param(ple_gap, int, S_IRUGO);
162
163static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
164module_param(ple_window, int, S_IRUGO);
165
b4a2d31d
RK
166/* Default doubles per-vcpu window every exit. */
167static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
168module_param(ple_window_grow, int, S_IRUGO);
169
170/* Default resets per-vcpu window every exit to ple_window. */
171static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
172module_param(ple_window_shrink, int, S_IRUGO);
173
174/* Default is to compute the maximum so we can never overflow. */
175static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
176static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
177module_param(ple_window_max, int, S_IRUGO);
178
83287ea4
AK
179extern const ulong vmx_return;
180
8bf00a52 181#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 182#define VMCS02_POOL_SIZE 1
61d2ef2c 183
a2fa3e9f
GH
184struct vmcs {
185 u32 revision_id;
186 u32 abort;
187 char data[0];
188};
189
d462b819
NHE
190/*
191 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
192 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
193 * loaded on this CPU (so we can clear them if the CPU goes down).
194 */
195struct loaded_vmcs {
196 struct vmcs *vmcs;
355f4fb1 197 struct vmcs *shadow_vmcs;
d462b819
NHE
198 int cpu;
199 int launched;
200 struct list_head loaded_vmcss_on_cpu_link;
201};
202
26bb0981
AK
203struct shared_msr_entry {
204 unsigned index;
205 u64 data;
d5696725 206 u64 mask;
26bb0981
AK
207};
208
a9d30f33
NHE
209/*
210 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
211 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
212 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
213 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
214 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
215 * More than one of these structures may exist, if L1 runs multiple L2 guests.
216 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
217 * underlying hardware which will be used to run L2.
218 * This structure is packed to ensure that its layout is identical across
219 * machines (necessary for live migration).
220 * If there are changes in this struct, VMCS12_REVISION must be changed.
221 */
22bd0358 222typedef u64 natural_width;
a9d30f33
NHE
223struct __packed vmcs12 {
224 /* According to the Intel spec, a VMCS region must start with the
225 * following two fields. Then follow implementation-specific data.
226 */
227 u32 revision_id;
228 u32 abort;
22bd0358 229
27d6c865
NHE
230 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
231 u32 padding[7]; /* room for future expansion */
232
22bd0358
NHE
233 u64 io_bitmap_a;
234 u64 io_bitmap_b;
235 u64 msr_bitmap;
236 u64 vm_exit_msr_store_addr;
237 u64 vm_exit_msr_load_addr;
238 u64 vm_entry_msr_load_addr;
239 u64 tsc_offset;
240 u64 virtual_apic_page_addr;
241 u64 apic_access_addr;
705699a1 242 u64 posted_intr_desc_addr;
22bd0358 243 u64 ept_pointer;
608406e2
WV
244 u64 eoi_exit_bitmap0;
245 u64 eoi_exit_bitmap1;
246 u64 eoi_exit_bitmap2;
247 u64 eoi_exit_bitmap3;
81dc01f7 248 u64 xss_exit_bitmap;
22bd0358
NHE
249 u64 guest_physical_address;
250 u64 vmcs_link_pointer;
c5f983f6 251 u64 pml_address;
22bd0358
NHE
252 u64 guest_ia32_debugctl;
253 u64 guest_ia32_pat;
254 u64 guest_ia32_efer;
255 u64 guest_ia32_perf_global_ctrl;
256 u64 guest_pdptr0;
257 u64 guest_pdptr1;
258 u64 guest_pdptr2;
259 u64 guest_pdptr3;
36be0b9d 260 u64 guest_bndcfgs;
22bd0358
NHE
261 u64 host_ia32_pat;
262 u64 host_ia32_efer;
263 u64 host_ia32_perf_global_ctrl;
264 u64 padding64[8]; /* room for future expansion */
265 /*
266 * To allow migration of L1 (complete with its L2 guests) between
267 * machines of different natural widths (32 or 64 bit), we cannot have
268 * unsigned long fields with no explict size. We use u64 (aliased
269 * natural_width) instead. Luckily, x86 is little-endian.
270 */
271 natural_width cr0_guest_host_mask;
272 natural_width cr4_guest_host_mask;
273 natural_width cr0_read_shadow;
274 natural_width cr4_read_shadow;
275 natural_width cr3_target_value0;
276 natural_width cr3_target_value1;
277 natural_width cr3_target_value2;
278 natural_width cr3_target_value3;
279 natural_width exit_qualification;
280 natural_width guest_linear_address;
281 natural_width guest_cr0;
282 natural_width guest_cr3;
283 natural_width guest_cr4;
284 natural_width guest_es_base;
285 natural_width guest_cs_base;
286 natural_width guest_ss_base;
287 natural_width guest_ds_base;
288 natural_width guest_fs_base;
289 natural_width guest_gs_base;
290 natural_width guest_ldtr_base;
291 natural_width guest_tr_base;
292 natural_width guest_gdtr_base;
293 natural_width guest_idtr_base;
294 natural_width guest_dr7;
295 natural_width guest_rsp;
296 natural_width guest_rip;
297 natural_width guest_rflags;
298 natural_width guest_pending_dbg_exceptions;
299 natural_width guest_sysenter_esp;
300 natural_width guest_sysenter_eip;
301 natural_width host_cr0;
302 natural_width host_cr3;
303 natural_width host_cr4;
304 natural_width host_fs_base;
305 natural_width host_gs_base;
306 natural_width host_tr_base;
307 natural_width host_gdtr_base;
308 natural_width host_idtr_base;
309 natural_width host_ia32_sysenter_esp;
310 natural_width host_ia32_sysenter_eip;
311 natural_width host_rsp;
312 natural_width host_rip;
313 natural_width paddingl[8]; /* room for future expansion */
314 u32 pin_based_vm_exec_control;
315 u32 cpu_based_vm_exec_control;
316 u32 exception_bitmap;
317 u32 page_fault_error_code_mask;
318 u32 page_fault_error_code_match;
319 u32 cr3_target_count;
320 u32 vm_exit_controls;
321 u32 vm_exit_msr_store_count;
322 u32 vm_exit_msr_load_count;
323 u32 vm_entry_controls;
324 u32 vm_entry_msr_load_count;
325 u32 vm_entry_intr_info_field;
326 u32 vm_entry_exception_error_code;
327 u32 vm_entry_instruction_len;
328 u32 tpr_threshold;
329 u32 secondary_vm_exec_control;
330 u32 vm_instruction_error;
331 u32 vm_exit_reason;
332 u32 vm_exit_intr_info;
333 u32 vm_exit_intr_error_code;
334 u32 idt_vectoring_info_field;
335 u32 idt_vectoring_error_code;
336 u32 vm_exit_instruction_len;
337 u32 vmx_instruction_info;
338 u32 guest_es_limit;
339 u32 guest_cs_limit;
340 u32 guest_ss_limit;
341 u32 guest_ds_limit;
342 u32 guest_fs_limit;
343 u32 guest_gs_limit;
344 u32 guest_ldtr_limit;
345 u32 guest_tr_limit;
346 u32 guest_gdtr_limit;
347 u32 guest_idtr_limit;
348 u32 guest_es_ar_bytes;
349 u32 guest_cs_ar_bytes;
350 u32 guest_ss_ar_bytes;
351 u32 guest_ds_ar_bytes;
352 u32 guest_fs_ar_bytes;
353 u32 guest_gs_ar_bytes;
354 u32 guest_ldtr_ar_bytes;
355 u32 guest_tr_ar_bytes;
356 u32 guest_interruptibility_info;
357 u32 guest_activity_state;
358 u32 guest_sysenter_cs;
359 u32 host_ia32_sysenter_cs;
0238ea91
JK
360 u32 vmx_preemption_timer_value;
361 u32 padding32[7]; /* room for future expansion */
22bd0358 362 u16 virtual_processor_id;
705699a1 363 u16 posted_intr_nv;
22bd0358
NHE
364 u16 guest_es_selector;
365 u16 guest_cs_selector;
366 u16 guest_ss_selector;
367 u16 guest_ds_selector;
368 u16 guest_fs_selector;
369 u16 guest_gs_selector;
370 u16 guest_ldtr_selector;
371 u16 guest_tr_selector;
608406e2 372 u16 guest_intr_status;
c5f983f6 373 u16 guest_pml_index;
22bd0358
NHE
374 u16 host_es_selector;
375 u16 host_cs_selector;
376 u16 host_ss_selector;
377 u16 host_ds_selector;
378 u16 host_fs_selector;
379 u16 host_gs_selector;
380 u16 host_tr_selector;
a9d30f33
NHE
381};
382
383/*
384 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
385 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
386 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
387 */
388#define VMCS12_REVISION 0x11e57ed0
389
390/*
391 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
392 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
393 * current implementation, 4K are reserved to avoid future complications.
394 */
395#define VMCS12_SIZE 0x1000
396
ff2f6fe9
NHE
397/* Used to remember the last vmcs02 used for some recently used vmcs12s */
398struct vmcs02_list {
399 struct list_head list;
400 gpa_t vmptr;
401 struct loaded_vmcs vmcs02;
402};
403
ec378aee
NHE
404/*
405 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
406 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
407 */
408struct nested_vmx {
409 /* Has the level1 guest done vmxon? */
410 bool vmxon;
3573e22c 411 gpa_t vmxon_ptr;
c5f983f6 412 bool pml_full;
a9d30f33
NHE
413
414 /* The guest-physical address of the current VMCS L1 keeps for L2 */
415 gpa_t current_vmptr;
416 /* The host-usable pointer to the above */
417 struct page *current_vmcs12_page;
418 struct vmcs12 *current_vmcs12;
4f2777bc
DM
419 /*
420 * Cache of the guest's VMCS, existing outside of guest memory.
421 * Loaded from guest memory during VMPTRLD. Flushed to guest
422 * memory during VMXOFF, VMCLEAR, VMPTRLD.
423 */
424 struct vmcs12 *cached_vmcs12;
012f83cb
AG
425 /*
426 * Indicates if the shadow vmcs must be updated with the
427 * data hold by vmcs12
428 */
429 bool sync_shadow_vmcs;
ff2f6fe9
NHE
430
431 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
432 struct list_head vmcs02_pool;
433 int vmcs02_num;
dccbfcf5 434 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
435 /* L2 must run next, and mustn't decide to exit to L1. */
436 bool nested_run_pending;
fe3ef05c
NHE
437 /*
438 * Guest pages referred to in vmcs02 with host-physical pointers, so
439 * we must keep them pinned while L2 runs.
440 */
441 struct page *apic_access_page;
a7c0b07d 442 struct page *virtual_apic_page;
705699a1
WV
443 struct page *pi_desc_page;
444 struct pi_desc *pi_desc;
445 bool pi_pending;
446 u16 posted_intr_nv;
f4124500 447
d048c098
RK
448 unsigned long *msr_bitmap;
449
f4124500
JK
450 struct hrtimer preemption_timer;
451 bool preemption_timer_expired;
2996fca0
JK
452
453 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
454 u64 vmcs01_debugctl;
b9c237bb 455
5c614b35
WL
456 u16 vpid02;
457 u16 last_vpid;
458
0115f9cb
DM
459 /*
460 * We only store the "true" versions of the VMX capability MSRs. We
461 * generate the "non-true" versions by setting the must-be-1 bits
462 * according to the SDM.
463 */
b9c237bb
WV
464 u32 nested_vmx_procbased_ctls_low;
465 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
466 u32 nested_vmx_secondary_ctls_low;
467 u32 nested_vmx_secondary_ctls_high;
468 u32 nested_vmx_pinbased_ctls_low;
469 u32 nested_vmx_pinbased_ctls_high;
470 u32 nested_vmx_exit_ctls_low;
471 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
472 u32 nested_vmx_entry_ctls_low;
473 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
474 u32 nested_vmx_misc_low;
475 u32 nested_vmx_misc_high;
476 u32 nested_vmx_ept_caps;
99b83ac8 477 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
478 u64 nested_vmx_basic;
479 u64 nested_vmx_cr0_fixed0;
480 u64 nested_vmx_cr0_fixed1;
481 u64 nested_vmx_cr4_fixed0;
482 u64 nested_vmx_cr4_fixed1;
483 u64 nested_vmx_vmcs_enum;
ec378aee
NHE
484};
485
01e439be 486#define POSTED_INTR_ON 0
ebbfc765
FW
487#define POSTED_INTR_SN 1
488
01e439be
YZ
489/* Posted-Interrupt Descriptor */
490struct pi_desc {
491 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
492 union {
493 struct {
494 /* bit 256 - Outstanding Notification */
495 u16 on : 1,
496 /* bit 257 - Suppress Notification */
497 sn : 1,
498 /* bit 271:258 - Reserved */
499 rsvd_1 : 14;
500 /* bit 279:272 - Notification Vector */
501 u8 nv;
502 /* bit 287:280 - Reserved */
503 u8 rsvd_2;
504 /* bit 319:288 - Notification Destination */
505 u32 ndst;
506 };
507 u64 control;
508 };
509 u32 rsvd[6];
01e439be
YZ
510} __aligned(64);
511
a20ed54d
YZ
512static bool pi_test_and_set_on(struct pi_desc *pi_desc)
513{
514 return test_and_set_bit(POSTED_INTR_ON,
515 (unsigned long *)&pi_desc->control);
516}
517
518static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
519{
520 return test_and_clear_bit(POSTED_INTR_ON,
521 (unsigned long *)&pi_desc->control);
522}
523
524static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
525{
526 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
527}
528
ebbfc765
FW
529static inline void pi_clear_sn(struct pi_desc *pi_desc)
530{
531 return clear_bit(POSTED_INTR_SN,
532 (unsigned long *)&pi_desc->control);
533}
534
535static inline void pi_set_sn(struct pi_desc *pi_desc)
536{
537 return set_bit(POSTED_INTR_SN,
538 (unsigned long *)&pi_desc->control);
539}
540
ad361091
PB
541static inline void pi_clear_on(struct pi_desc *pi_desc)
542{
543 clear_bit(POSTED_INTR_ON,
544 (unsigned long *)&pi_desc->control);
545}
546
ebbfc765
FW
547static inline int pi_test_on(struct pi_desc *pi_desc)
548{
549 return test_bit(POSTED_INTR_ON,
550 (unsigned long *)&pi_desc->control);
551}
552
553static inline int pi_test_sn(struct pi_desc *pi_desc)
554{
555 return test_bit(POSTED_INTR_SN,
556 (unsigned long *)&pi_desc->control);
557}
558
a2fa3e9f 559struct vcpu_vmx {
fb3f0f51 560 struct kvm_vcpu vcpu;
313dbd49 561 unsigned long host_rsp;
29bd8a78 562 u8 fail;
9d58b931 563 bool nmi_known_unmasked;
51aa01d1 564 u32 exit_intr_info;
1155f76a 565 u32 idt_vectoring_info;
6de12732 566 ulong rflags;
26bb0981 567 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
568 int nmsrs;
569 int save_nmsrs;
a547c6db 570 unsigned long host_idt_base;
a2fa3e9f 571#ifdef CONFIG_X86_64
44ea2b17
AK
572 u64 msr_host_kernel_gs_base;
573 u64 msr_guest_kernel_gs_base;
a2fa3e9f 574#endif
2961e876
GN
575 u32 vm_entry_controls_shadow;
576 u32 vm_exit_controls_shadow;
d462b819
NHE
577 /*
578 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
579 * non-nested (L1) guest, it always points to vmcs01. For a nested
580 * guest (L2), it points to a different VMCS.
581 */
582 struct loaded_vmcs vmcs01;
583 struct loaded_vmcs *loaded_vmcs;
584 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
585 struct msr_autoload {
586 unsigned nr;
587 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
588 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
589 } msr_autoload;
a2fa3e9f
GH
590 struct {
591 int loaded;
592 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
593#ifdef CONFIG_X86_64
594 u16 ds_sel, es_sel;
595#endif
152d3f2f
LV
596 int gs_ldt_reload_needed;
597 int fs_reload_needed;
da8999d3 598 u64 msr_host_bndcfgs;
d974baa3 599 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 600 } host_state;
9c8cba37 601 struct {
7ffd92c5 602 int vm86_active;
78ac8b47 603 ulong save_rflags;
f5f7b2fe
AK
604 struct kvm_segment segs[8];
605 } rmode;
606 struct {
607 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
608 struct kvm_save_segment {
609 u16 selector;
610 unsigned long base;
611 u32 limit;
612 u32 ar;
f5f7b2fe 613 } seg[8];
2fb92db1 614 } segment_cache;
2384d2b3 615 int vpid;
04fa4d32 616 bool emulation_required;
3b86cd99 617
a0861c02 618 u32 exit_reason;
4e47c7a6 619
01e439be
YZ
620 /* Posted interrupt descriptor */
621 struct pi_desc pi_desc;
622
ec378aee
NHE
623 /* Support for a guest hypervisor (nested VMX) */
624 struct nested_vmx nested;
a7653ecd
RK
625
626 /* Dynamic PLE window. */
627 int ple_window;
628 bool ple_window_dirty;
843e4330
KH
629
630 /* Support for PML */
631#define PML_ENTITY_NUM 512
632 struct page *pml_pg;
2680d6da 633
64672c95
YJ
634 /* apic deadline value in host tsc */
635 u64 hv_deadline_tsc;
636
2680d6da 637 u64 current_tsc_ratio;
1be0e61c
XG
638
639 bool guest_pkru_valid;
640 u32 guest_pkru;
641 u32 host_pkru;
3b84080b 642
37e4c997
HZ
643 /*
644 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
645 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
646 * in msr_ia32_feature_control_valid_bits.
647 */
3b84080b 648 u64 msr_ia32_feature_control;
37e4c997 649 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
650};
651
2fb92db1
AK
652enum segment_cache_field {
653 SEG_FIELD_SEL = 0,
654 SEG_FIELD_BASE = 1,
655 SEG_FIELD_LIMIT = 2,
656 SEG_FIELD_AR = 3,
657
658 SEG_FIELD_NR = 4
659};
660
a2fa3e9f
GH
661static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
662{
fb3f0f51 663 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
664}
665
efc64404
FW
666static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
667{
668 return &(to_vmx(vcpu)->pi_desc);
669}
670
22bd0358
NHE
671#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
672#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
673#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
674 [number##_HIGH] = VMCS12_OFFSET(name)+4
675
4607c2d7 676
fe2b201b 677static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
678 /*
679 * We do NOT shadow fields that are modified when L0
680 * traps and emulates any vmx instruction (e.g. VMPTRLD,
681 * VMXON...) executed by L1.
682 * For example, VM_INSTRUCTION_ERROR is read
683 * by L1 if a vmx instruction fails (part of the error path).
684 * Note the code assumes this logic. If for some reason
685 * we start shadowing these fields then we need to
686 * force a shadow sync when L0 emulates vmx instructions
687 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
688 * by nested_vmx_failValid)
689 */
690 VM_EXIT_REASON,
691 VM_EXIT_INTR_INFO,
692 VM_EXIT_INSTRUCTION_LEN,
693 IDT_VECTORING_INFO_FIELD,
694 IDT_VECTORING_ERROR_CODE,
695 VM_EXIT_INTR_ERROR_CODE,
696 EXIT_QUALIFICATION,
697 GUEST_LINEAR_ADDRESS,
698 GUEST_PHYSICAL_ADDRESS
699};
fe2b201b 700static int max_shadow_read_only_fields =
4607c2d7
AG
701 ARRAY_SIZE(shadow_read_only_fields);
702
fe2b201b 703static unsigned long shadow_read_write_fields[] = {
a7c0b07d 704 TPR_THRESHOLD,
4607c2d7
AG
705 GUEST_RIP,
706 GUEST_RSP,
707 GUEST_CR0,
708 GUEST_CR3,
709 GUEST_CR4,
710 GUEST_INTERRUPTIBILITY_INFO,
711 GUEST_RFLAGS,
712 GUEST_CS_SELECTOR,
713 GUEST_CS_AR_BYTES,
714 GUEST_CS_LIMIT,
715 GUEST_CS_BASE,
716 GUEST_ES_BASE,
36be0b9d 717 GUEST_BNDCFGS,
4607c2d7
AG
718 CR0_GUEST_HOST_MASK,
719 CR0_READ_SHADOW,
720 CR4_READ_SHADOW,
721 TSC_OFFSET,
722 EXCEPTION_BITMAP,
723 CPU_BASED_VM_EXEC_CONTROL,
724 VM_ENTRY_EXCEPTION_ERROR_CODE,
725 VM_ENTRY_INTR_INFO_FIELD,
726 VM_ENTRY_INSTRUCTION_LEN,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 HOST_FS_BASE,
729 HOST_GS_BASE,
730 HOST_FS_SELECTOR,
731 HOST_GS_SELECTOR
732};
fe2b201b 733static int max_shadow_read_write_fields =
4607c2d7
AG
734 ARRAY_SIZE(shadow_read_write_fields);
735
772e0318 736static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 737 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 738 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
739 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
740 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
741 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
742 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
743 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
744 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
745 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
746 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 747 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 748 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
749 FIELD(HOST_ES_SELECTOR, host_es_selector),
750 FIELD(HOST_CS_SELECTOR, host_cs_selector),
751 FIELD(HOST_SS_SELECTOR, host_ss_selector),
752 FIELD(HOST_DS_SELECTOR, host_ds_selector),
753 FIELD(HOST_FS_SELECTOR, host_fs_selector),
754 FIELD(HOST_GS_SELECTOR, host_gs_selector),
755 FIELD(HOST_TR_SELECTOR, host_tr_selector),
756 FIELD64(IO_BITMAP_A, io_bitmap_a),
757 FIELD64(IO_BITMAP_B, io_bitmap_b),
758 FIELD64(MSR_BITMAP, msr_bitmap),
759 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
760 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
761 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
762 FIELD64(TSC_OFFSET, tsc_offset),
763 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
764 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 765 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 766 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
767 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
768 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
769 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
770 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 771 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
772 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
773 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 774 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
775 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
776 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
777 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
778 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
779 FIELD64(GUEST_PDPTR0, guest_pdptr0),
780 FIELD64(GUEST_PDPTR1, guest_pdptr1),
781 FIELD64(GUEST_PDPTR2, guest_pdptr2),
782 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 783 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
784 FIELD64(HOST_IA32_PAT, host_ia32_pat),
785 FIELD64(HOST_IA32_EFER, host_ia32_efer),
786 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
787 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
788 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
789 FIELD(EXCEPTION_BITMAP, exception_bitmap),
790 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
791 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
792 FIELD(CR3_TARGET_COUNT, cr3_target_count),
793 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
794 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
795 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
796 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
797 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
798 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
799 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
800 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
801 FIELD(TPR_THRESHOLD, tpr_threshold),
802 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
803 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
804 FIELD(VM_EXIT_REASON, vm_exit_reason),
805 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
806 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
807 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
808 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
809 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
810 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
811 FIELD(GUEST_ES_LIMIT, guest_es_limit),
812 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
813 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
814 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
815 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
816 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
817 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
818 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
819 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
820 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
821 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
822 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
823 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
824 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
825 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
826 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
827 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
828 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
829 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
830 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
831 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
832 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 833 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
834 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
835 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
836 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
837 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
838 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
839 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
840 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
841 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
842 FIELD(EXIT_QUALIFICATION, exit_qualification),
843 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
844 FIELD(GUEST_CR0, guest_cr0),
845 FIELD(GUEST_CR3, guest_cr3),
846 FIELD(GUEST_CR4, guest_cr4),
847 FIELD(GUEST_ES_BASE, guest_es_base),
848 FIELD(GUEST_CS_BASE, guest_cs_base),
849 FIELD(GUEST_SS_BASE, guest_ss_base),
850 FIELD(GUEST_DS_BASE, guest_ds_base),
851 FIELD(GUEST_FS_BASE, guest_fs_base),
852 FIELD(GUEST_GS_BASE, guest_gs_base),
853 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
854 FIELD(GUEST_TR_BASE, guest_tr_base),
855 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
856 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
857 FIELD(GUEST_DR7, guest_dr7),
858 FIELD(GUEST_RSP, guest_rsp),
859 FIELD(GUEST_RIP, guest_rip),
860 FIELD(GUEST_RFLAGS, guest_rflags),
861 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
862 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
863 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
864 FIELD(HOST_CR0, host_cr0),
865 FIELD(HOST_CR3, host_cr3),
866 FIELD(HOST_CR4, host_cr4),
867 FIELD(HOST_FS_BASE, host_fs_base),
868 FIELD(HOST_GS_BASE, host_gs_base),
869 FIELD(HOST_TR_BASE, host_tr_base),
870 FIELD(HOST_GDTR_BASE, host_gdtr_base),
871 FIELD(HOST_IDTR_BASE, host_idtr_base),
872 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
873 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
874 FIELD(HOST_RSP, host_rsp),
875 FIELD(HOST_RIP, host_rip),
876};
22bd0358
NHE
877
878static inline short vmcs_field_to_offset(unsigned long field)
879{
a2ae9df7
PB
880 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
881
882 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
883 vmcs_field_to_offset_table[field] == 0)
884 return -ENOENT;
885
22bd0358
NHE
886 return vmcs_field_to_offset_table[field];
887}
888
a9d30f33
NHE
889static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
890{
4f2777bc 891 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
892}
893
894static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
895{
54bf36aa 896 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 897 if (is_error_page(page))
a9d30f33 898 return NULL;
32cad84f 899
a9d30f33
NHE
900 return page;
901}
902
903static void nested_release_page(struct page *page)
904{
905 kvm_release_page_dirty(page);
906}
907
908static void nested_release_page_clean(struct page *page)
909{
910 kvm_release_page_clean(page);
911}
912
995f00a6 913static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 914static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 915static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 916static bool vmx_xsaves_supported(void);
776e58ea 917static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
918static void vmx_set_segment(struct kvm_vcpu *vcpu,
919 struct kvm_segment *var, int seg);
920static void vmx_get_segment(struct kvm_vcpu *vcpu,
921 struct kvm_segment *var, int seg);
d99e4152
GN
922static bool guest_state_valid(struct kvm_vcpu *vcpu);
923static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 924static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 925static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 926static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 927
6aa8b732
AK
928static DEFINE_PER_CPU(struct vmcs *, vmxarea);
929static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
930/*
931 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
932 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
933 */
934static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 935
bf9f6ac8
FW
936/*
937 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
938 * can find which vCPU should be waken up.
939 */
940static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
941static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
942
23611332
RK
943enum {
944 VMX_IO_BITMAP_A,
945 VMX_IO_BITMAP_B,
946 VMX_MSR_BITMAP_LEGACY,
947 VMX_MSR_BITMAP_LONGMODE,
948 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
949 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
950 VMX_MSR_BITMAP_LEGACY_X2APIC,
951 VMX_MSR_BITMAP_LONGMODE_X2APIC,
952 VMX_VMREAD_BITMAP,
953 VMX_VMWRITE_BITMAP,
954 VMX_BITMAP_NR
955};
956
957static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
958
959#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
960#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
961#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
962#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
963#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
964#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
965#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
966#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
967#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
968#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 969
110312c8 970static bool cpu_has_load_ia32_efer;
8bf00a52 971static bool cpu_has_load_perf_global_ctrl;
110312c8 972
2384d2b3
SY
973static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
974static DEFINE_SPINLOCK(vmx_vpid_lock);
975
1c3d14fe 976static struct vmcs_config {
6aa8b732
AK
977 int size;
978 int order;
9ac7e3e8 979 u32 basic_cap;
6aa8b732 980 u32 revision_id;
1c3d14fe
YS
981 u32 pin_based_exec_ctrl;
982 u32 cpu_based_exec_ctrl;
f78e0e2e 983 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
984 u32 vmexit_ctrl;
985 u32 vmentry_ctrl;
986} vmcs_config;
6aa8b732 987
efff9e53 988static struct vmx_capability {
d56f546d
SY
989 u32 ept;
990 u32 vpid;
991} vmx_capability;
992
6aa8b732
AK
993#define VMX_SEGMENT_FIELD(seg) \
994 [VCPU_SREG_##seg] = { \
995 .selector = GUEST_##seg##_SELECTOR, \
996 .base = GUEST_##seg##_BASE, \
997 .limit = GUEST_##seg##_LIMIT, \
998 .ar_bytes = GUEST_##seg##_AR_BYTES, \
999 }
1000
772e0318 1001static const struct kvm_vmx_segment_field {
6aa8b732
AK
1002 unsigned selector;
1003 unsigned base;
1004 unsigned limit;
1005 unsigned ar_bytes;
1006} kvm_vmx_segment_fields[] = {
1007 VMX_SEGMENT_FIELD(CS),
1008 VMX_SEGMENT_FIELD(DS),
1009 VMX_SEGMENT_FIELD(ES),
1010 VMX_SEGMENT_FIELD(FS),
1011 VMX_SEGMENT_FIELD(GS),
1012 VMX_SEGMENT_FIELD(SS),
1013 VMX_SEGMENT_FIELD(TR),
1014 VMX_SEGMENT_FIELD(LDTR),
1015};
1016
26bb0981
AK
1017static u64 host_efer;
1018
6de4f3ad
AK
1019static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1020
4d56c8a7 1021/*
8c06585d 1022 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1023 * away by decrementing the array size.
1024 */
6aa8b732 1025static const u32 vmx_msr_index[] = {
05b3e0c2 1026#ifdef CONFIG_X86_64
44ea2b17 1027 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1028#endif
8c06585d 1029 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1030};
6aa8b732 1031
5bb16016 1032static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1033{
1034 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1035 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1036 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1037}
1038
6f05485d
JK
1039static inline bool is_debug(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, DB_VECTOR);
1042}
1043
1044static inline bool is_breakpoint(u32 intr_info)
1045{
1046 return is_exception_n(intr_info, BP_VECTOR);
1047}
1048
5bb16016
JK
1049static inline bool is_page_fault(u32 intr_info)
1050{
1051 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1052}
1053
31299944 1054static inline bool is_no_device(u32 intr_info)
2ab455cc 1055{
5bb16016 1056 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1057}
1058
31299944 1059static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1060{
5bb16016 1061 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1062}
1063
31299944 1064static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1065{
1066 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1067 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1068}
1069
31299944 1070static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1071{
1072 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1073 INTR_INFO_VALID_MASK)) ==
1074 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1075}
1076
31299944 1077static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1078{
04547156 1079 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1080}
1081
31299944 1082static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1083{
04547156 1084 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1085}
1086
35754c98 1087static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1088{
35754c98 1089 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1090}
1091
31299944 1092static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1093{
04547156
SY
1094 return vmcs_config.cpu_based_exec_ctrl &
1095 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1096}
1097
774ead3a 1098static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1099{
04547156
SY
1100 return vmcs_config.cpu_based_2nd_exec_ctrl &
1101 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1102}
1103
8d14695f
YZ
1104static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1105{
1106 return vmcs_config.cpu_based_2nd_exec_ctrl &
1107 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1108}
1109
83d4c286
YZ
1110static inline bool cpu_has_vmx_apic_register_virt(void)
1111{
1112 return vmcs_config.cpu_based_2nd_exec_ctrl &
1113 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1114}
1115
c7c9c56c
YZ
1116static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1117{
1118 return vmcs_config.cpu_based_2nd_exec_ctrl &
1119 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1120}
1121
64672c95
YJ
1122/*
1123 * Comment's format: document - errata name - stepping - processor name.
1124 * Refer from
1125 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1126 */
1127static u32 vmx_preemption_cpu_tfms[] = {
1128/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11290x000206E6,
1130/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1131/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1132/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11330x00020652,
1134/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11350x00020655,
1136/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1137/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1138/*
1139 * 320767.pdf - AAP86 - B1 -
1140 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1141 */
11420x000106E5,
1143/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11440x000106A0,
1145/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11460x000106A1,
1147/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11480x000106A4,
1149 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1150 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1151 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11520x000106A5,
1153};
1154
1155static inline bool cpu_has_broken_vmx_preemption_timer(void)
1156{
1157 u32 eax = cpuid_eax(0x00000001), i;
1158
1159 /* Clear the reserved bits */
1160 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1161 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1162 if (eax == vmx_preemption_cpu_tfms[i])
1163 return true;
1164
1165 return false;
1166}
1167
1168static inline bool cpu_has_vmx_preemption_timer(void)
1169{
64672c95
YJ
1170 return vmcs_config.pin_based_exec_ctrl &
1171 PIN_BASED_VMX_PREEMPTION_TIMER;
1172}
1173
01e439be
YZ
1174static inline bool cpu_has_vmx_posted_intr(void)
1175{
d6a858d1
PB
1176 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1177 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1178}
1179
1180static inline bool cpu_has_vmx_apicv(void)
1181{
1182 return cpu_has_vmx_apic_register_virt() &&
1183 cpu_has_vmx_virtual_intr_delivery() &&
1184 cpu_has_vmx_posted_intr();
1185}
1186
04547156
SY
1187static inline bool cpu_has_vmx_flexpriority(void)
1188{
1189 return cpu_has_vmx_tpr_shadow() &&
1190 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1191}
1192
e799794e
MT
1193static inline bool cpu_has_vmx_ept_execute_only(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1196}
1197
e799794e
MT
1198static inline bool cpu_has_vmx_ept_2m_page(void)
1199{
31299944 1200 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1201}
1202
878403b7
SY
1203static inline bool cpu_has_vmx_ept_1g_page(void)
1204{
31299944 1205 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1206}
1207
4bc9b982
SY
1208static inline bool cpu_has_vmx_ept_4levels(void)
1209{
1210 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1211}
1212
83c3a331
XH
1213static inline bool cpu_has_vmx_ept_ad_bits(void)
1214{
1215 return vmx_capability.ept & VMX_EPT_AD_BIT;
1216}
1217
31299944 1218static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1219{
31299944 1220 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1221}
1222
31299944 1223static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1224{
31299944 1225 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1226}
1227
518c8aee
GJ
1228static inline bool cpu_has_vmx_invvpid_single(void)
1229{
1230 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1231}
1232
b9d762fa
GJ
1233static inline bool cpu_has_vmx_invvpid_global(void)
1234{
1235 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1236}
1237
08d839c4
WL
1238static inline bool cpu_has_vmx_invvpid(void)
1239{
1240 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1241}
1242
31299944 1243static inline bool cpu_has_vmx_ept(void)
d56f546d 1244{
04547156
SY
1245 return vmcs_config.cpu_based_2nd_exec_ctrl &
1246 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1247}
1248
31299944 1249static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1250{
1251 return vmcs_config.cpu_based_2nd_exec_ctrl &
1252 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1253}
1254
31299944 1255static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1256{
1257 return vmcs_config.cpu_based_2nd_exec_ctrl &
1258 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1259}
1260
9ac7e3e8
JD
1261static inline bool cpu_has_vmx_basic_inout(void)
1262{
1263 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1264}
1265
35754c98 1266static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1267{
35754c98 1268 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1269}
1270
31299944 1271static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1272{
04547156
SY
1273 return vmcs_config.cpu_based_2nd_exec_ctrl &
1274 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1275}
1276
31299944 1277static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1278{
1279 return vmcs_config.cpu_based_2nd_exec_ctrl &
1280 SECONDARY_EXEC_RDTSCP;
1281}
1282
ad756a16
MJ
1283static inline bool cpu_has_vmx_invpcid(void)
1284{
1285 return vmcs_config.cpu_based_2nd_exec_ctrl &
1286 SECONDARY_EXEC_ENABLE_INVPCID;
1287}
1288
f5f48ee1
SY
1289static inline bool cpu_has_vmx_wbinvd_exit(void)
1290{
1291 return vmcs_config.cpu_based_2nd_exec_ctrl &
1292 SECONDARY_EXEC_WBINVD_EXITING;
1293}
1294
abc4fc58
AG
1295static inline bool cpu_has_vmx_shadow_vmcs(void)
1296{
1297 u64 vmx_msr;
1298 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1299 /* check if the cpu supports writing r/o exit information fields */
1300 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1301 return false;
1302
1303 return vmcs_config.cpu_based_2nd_exec_ctrl &
1304 SECONDARY_EXEC_SHADOW_VMCS;
1305}
1306
843e4330
KH
1307static inline bool cpu_has_vmx_pml(void)
1308{
1309 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1310}
1311
64903d61
HZ
1312static inline bool cpu_has_vmx_tsc_scaling(void)
1313{
1314 return vmcs_config.cpu_based_2nd_exec_ctrl &
1315 SECONDARY_EXEC_TSC_SCALING;
1316}
1317
04547156
SY
1318static inline bool report_flexpriority(void)
1319{
1320 return flexpriority_enabled;
1321}
1322
c7c2c709
JM
1323static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1324{
1325 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1326}
1327
fe3ef05c
NHE
1328static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1329{
1330 return vmcs12->cpu_based_vm_exec_control & bit;
1331}
1332
1333static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1334{
1335 return (vmcs12->cpu_based_vm_exec_control &
1336 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1337 (vmcs12->secondary_vm_exec_control & bit);
1338}
1339
f5c4368f 1340static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1341{
1342 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1343}
1344
f4124500
JK
1345static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1346{
1347 return vmcs12->pin_based_vm_exec_control &
1348 PIN_BASED_VMX_PREEMPTION_TIMER;
1349}
1350
155a97a3
NHE
1351static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1352{
1353 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1354}
1355
81dc01f7
WL
1356static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1357{
1358 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1359 vmx_xsaves_supported();
1360}
1361
c5f983f6
BD
1362static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1363{
1364 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1365}
1366
f2b93280
WV
1367static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1368{
1369 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1370}
1371
5c614b35
WL
1372static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1373{
1374 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1375}
1376
82f0dd4b
WV
1377static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1378{
1379 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1380}
1381
608406e2
WV
1382static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1383{
1384 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1385}
1386
705699a1
WV
1387static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1388{
1389 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1390}
1391
ef85b673 1392static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1393{
1394 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1395 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1396}
1397
533558bc
JK
1398static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1399 u32 exit_intr_info,
1400 unsigned long exit_qualification);
7c177938
NHE
1401static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1402 struct vmcs12 *vmcs12,
1403 u32 reason, unsigned long qualification);
1404
8b9cf98c 1405static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1406{
1407 int i;
1408
a2fa3e9f 1409 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1410 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1411 return i;
1412 return -1;
1413}
1414
2384d2b3
SY
1415static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1416{
1417 struct {
1418 u64 vpid : 16;
1419 u64 rsvd : 48;
1420 u64 gva;
1421 } operand = { vpid, 0, gva };
1422
4ecac3fd 1423 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1424 /* CF==1 or ZF==1 --> rc = -1 */
1425 "; ja 1f ; ud2 ; 1:"
1426 : : "a"(&operand), "c"(ext) : "cc", "memory");
1427}
1428
1439442c
SY
1429static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1430{
1431 struct {
1432 u64 eptp, gpa;
1433 } operand = {eptp, gpa};
1434
4ecac3fd 1435 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1436 /* CF==1 or ZF==1 --> rc = -1 */
1437 "; ja 1f ; ud2 ; 1:\n"
1438 : : "a" (&operand), "c" (ext) : "cc", "memory");
1439}
1440
26bb0981 1441static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1442{
1443 int i;
1444
8b9cf98c 1445 i = __find_msr_index(vmx, msr);
a75beee6 1446 if (i >= 0)
a2fa3e9f 1447 return &vmx->guest_msrs[i];
8b6d44c7 1448 return NULL;
7725f0ba
AK
1449}
1450
6aa8b732
AK
1451static void vmcs_clear(struct vmcs *vmcs)
1452{
1453 u64 phys_addr = __pa(vmcs);
1454 u8 error;
1455
4ecac3fd 1456 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1457 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1458 : "cc", "memory");
1459 if (error)
1460 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1461 vmcs, phys_addr);
1462}
1463
d462b819
NHE
1464static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1465{
1466 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1467 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1468 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1469 loaded_vmcs->cpu = -1;
1470 loaded_vmcs->launched = 0;
1471}
1472
7725b894
DX
1473static void vmcs_load(struct vmcs *vmcs)
1474{
1475 u64 phys_addr = __pa(vmcs);
1476 u8 error;
1477
1478 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1479 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1480 : "cc", "memory");
1481 if (error)
2844d849 1482 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1483 vmcs, phys_addr);
1484}
1485
2965faa5 1486#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1487/*
1488 * This bitmap is used to indicate whether the vmclear
1489 * operation is enabled on all cpus. All disabled by
1490 * default.
1491 */
1492static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1493
1494static inline void crash_enable_local_vmclear(int cpu)
1495{
1496 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1497}
1498
1499static inline void crash_disable_local_vmclear(int cpu)
1500{
1501 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1502}
1503
1504static inline int crash_local_vmclear_enabled(int cpu)
1505{
1506 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1507}
1508
1509static void crash_vmclear_local_loaded_vmcss(void)
1510{
1511 int cpu = raw_smp_processor_id();
1512 struct loaded_vmcs *v;
1513
1514 if (!crash_local_vmclear_enabled(cpu))
1515 return;
1516
1517 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1518 loaded_vmcss_on_cpu_link)
1519 vmcs_clear(v->vmcs);
1520}
1521#else
1522static inline void crash_enable_local_vmclear(int cpu) { }
1523static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1524#endif /* CONFIG_KEXEC_CORE */
8f536b76 1525
d462b819 1526static void __loaded_vmcs_clear(void *arg)
6aa8b732 1527{
d462b819 1528 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1529 int cpu = raw_smp_processor_id();
6aa8b732 1530
d462b819
NHE
1531 if (loaded_vmcs->cpu != cpu)
1532 return; /* vcpu migration can race with cpu offline */
1533 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1534 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1535 crash_disable_local_vmclear(cpu);
d462b819 1536 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1537
1538 /*
1539 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1540 * is before setting loaded_vmcs->vcpu to -1 which is done in
1541 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1542 * then adds the vmcs into percpu list before it is deleted.
1543 */
1544 smp_wmb();
1545
d462b819 1546 loaded_vmcs_init(loaded_vmcs);
8f536b76 1547 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1548}
1549
d462b819 1550static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1551{
e6c7d321
XG
1552 int cpu = loaded_vmcs->cpu;
1553
1554 if (cpu != -1)
1555 smp_call_function_single(cpu,
1556 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1557}
1558
dd5f5341 1559static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1560{
dd5f5341 1561 if (vpid == 0)
2384d2b3
SY
1562 return;
1563
518c8aee 1564 if (cpu_has_vmx_invvpid_single())
dd5f5341 1565 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1566}
1567
b9d762fa
GJ
1568static inline void vpid_sync_vcpu_global(void)
1569{
1570 if (cpu_has_vmx_invvpid_global())
1571 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1572}
1573
dd5f5341 1574static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1575{
1576 if (cpu_has_vmx_invvpid_single())
dd5f5341 1577 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1578 else
1579 vpid_sync_vcpu_global();
1580}
1581
1439442c
SY
1582static inline void ept_sync_global(void)
1583{
1584 if (cpu_has_vmx_invept_global())
1585 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1586}
1587
1588static inline void ept_sync_context(u64 eptp)
1589{
089d034e 1590 if (enable_ept) {
1439442c
SY
1591 if (cpu_has_vmx_invept_context())
1592 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1593 else
1594 ept_sync_global();
1595 }
1596}
1597
8a86aea9
PB
1598static __always_inline void vmcs_check16(unsigned long field)
1599{
1600 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1601 "16-bit accessor invalid for 64-bit field");
1602 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1603 "16-bit accessor invalid for 64-bit high field");
1604 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1605 "16-bit accessor invalid for 32-bit high field");
1606 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1607 "16-bit accessor invalid for natural width field");
1608}
1609
1610static __always_inline void vmcs_check32(unsigned long field)
1611{
1612 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1613 "32-bit accessor invalid for 16-bit field");
1614 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1615 "32-bit accessor invalid for natural width field");
1616}
1617
1618static __always_inline void vmcs_check64(unsigned long field)
1619{
1620 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1621 "64-bit accessor invalid for 16-bit field");
1622 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1623 "64-bit accessor invalid for 64-bit high field");
1624 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1625 "64-bit accessor invalid for 32-bit field");
1626 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1627 "64-bit accessor invalid for natural width field");
1628}
1629
1630static __always_inline void vmcs_checkl(unsigned long field)
1631{
1632 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1633 "Natural width accessor invalid for 16-bit field");
1634 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1635 "Natural width accessor invalid for 64-bit field");
1636 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1637 "Natural width accessor invalid for 64-bit high field");
1638 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1639 "Natural width accessor invalid for 32-bit field");
1640}
1641
1642static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1643{
5e520e62 1644 unsigned long value;
6aa8b732 1645
5e520e62
AK
1646 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1647 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1648 return value;
1649}
1650
96304217 1651static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1652{
8a86aea9
PB
1653 vmcs_check16(field);
1654 return __vmcs_readl(field);
6aa8b732
AK
1655}
1656
96304217 1657static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1658{
8a86aea9
PB
1659 vmcs_check32(field);
1660 return __vmcs_readl(field);
6aa8b732
AK
1661}
1662
96304217 1663static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1664{
8a86aea9 1665 vmcs_check64(field);
05b3e0c2 1666#ifdef CONFIG_X86_64
8a86aea9 1667 return __vmcs_readl(field);
6aa8b732 1668#else
8a86aea9 1669 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1670#endif
1671}
1672
8a86aea9
PB
1673static __always_inline unsigned long vmcs_readl(unsigned long field)
1674{
1675 vmcs_checkl(field);
1676 return __vmcs_readl(field);
1677}
1678
e52de1b8
AK
1679static noinline void vmwrite_error(unsigned long field, unsigned long value)
1680{
1681 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1682 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1683 dump_stack();
1684}
1685
8a86aea9 1686static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1687{
1688 u8 error;
1689
4ecac3fd 1690 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1691 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1692 if (unlikely(error))
1693 vmwrite_error(field, value);
6aa8b732
AK
1694}
1695
8a86aea9 1696static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1697{
8a86aea9
PB
1698 vmcs_check16(field);
1699 __vmcs_writel(field, value);
6aa8b732
AK
1700}
1701
8a86aea9 1702static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1703{
8a86aea9
PB
1704 vmcs_check32(field);
1705 __vmcs_writel(field, value);
6aa8b732
AK
1706}
1707
8a86aea9 1708static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1709{
8a86aea9
PB
1710 vmcs_check64(field);
1711 __vmcs_writel(field, value);
7682f2d0 1712#ifndef CONFIG_X86_64
6aa8b732 1713 asm volatile ("");
8a86aea9 1714 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1715#endif
1716}
1717
8a86aea9 1718static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1719{
8a86aea9
PB
1720 vmcs_checkl(field);
1721 __vmcs_writel(field, value);
2ab455cc
AL
1722}
1723
8a86aea9 1724static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1725{
8a86aea9
PB
1726 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1727 "vmcs_clear_bits does not support 64-bit fields");
1728 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1729}
1730
8a86aea9 1731static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1732{
8a86aea9
PB
1733 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1734 "vmcs_set_bits does not support 64-bit fields");
1735 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1736}
1737
8391ce44
PB
1738static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1739{
1740 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1741}
1742
2961e876
GN
1743static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1744{
1745 vmcs_write32(VM_ENTRY_CONTROLS, val);
1746 vmx->vm_entry_controls_shadow = val;
1747}
1748
1749static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1750{
1751 if (vmx->vm_entry_controls_shadow != val)
1752 vm_entry_controls_init(vmx, val);
1753}
1754
1755static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1756{
1757 return vmx->vm_entry_controls_shadow;
1758}
1759
1760
1761static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1762{
1763 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1764}
1765
1766static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1767{
1768 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1769}
1770
8391ce44
PB
1771static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1772{
1773 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1774}
1775
2961e876
GN
1776static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1777{
1778 vmcs_write32(VM_EXIT_CONTROLS, val);
1779 vmx->vm_exit_controls_shadow = val;
1780}
1781
1782static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1783{
1784 if (vmx->vm_exit_controls_shadow != val)
1785 vm_exit_controls_init(vmx, val);
1786}
1787
1788static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1789{
1790 return vmx->vm_exit_controls_shadow;
1791}
1792
1793
1794static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1795{
1796 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1797}
1798
1799static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1800{
1801 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1802}
1803
2fb92db1
AK
1804static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1805{
1806 vmx->segment_cache.bitmask = 0;
1807}
1808
1809static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1810 unsigned field)
1811{
1812 bool ret;
1813 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1814
1815 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1816 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1817 vmx->segment_cache.bitmask = 0;
1818 }
1819 ret = vmx->segment_cache.bitmask & mask;
1820 vmx->segment_cache.bitmask |= mask;
1821 return ret;
1822}
1823
1824static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1825{
1826 u16 *p = &vmx->segment_cache.seg[seg].selector;
1827
1828 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1829 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1830 return *p;
1831}
1832
1833static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1834{
1835 ulong *p = &vmx->segment_cache.seg[seg].base;
1836
1837 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1838 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1839 return *p;
1840}
1841
1842static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1843{
1844 u32 *p = &vmx->segment_cache.seg[seg].limit;
1845
1846 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1847 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1848 return *p;
1849}
1850
1851static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1852{
1853 u32 *p = &vmx->segment_cache.seg[seg].ar;
1854
1855 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1856 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1857 return *p;
1858}
1859
abd3f2d6
AK
1860static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1861{
1862 u32 eb;
1863
fd7373cc 1864 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1865 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1866 if ((vcpu->guest_debug &
1867 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1868 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1869 eb |= 1u << BP_VECTOR;
7ffd92c5 1870 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1871 eb = ~0;
089d034e 1872 if (enable_ept)
1439442c 1873 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1874
1875 /* When we are running a nested L2 guest and L1 specified for it a
1876 * certain exception bitmap, we must trap the same exceptions and pass
1877 * them to L1. When running L2, we will only handle the exceptions
1878 * specified above if L1 did not want them.
1879 */
1880 if (is_guest_mode(vcpu))
1881 eb |= get_vmcs12(vcpu)->exception_bitmap;
1882
abd3f2d6
AK
1883 vmcs_write32(EXCEPTION_BITMAP, eb);
1884}
1885
2961e876
GN
1886static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1887 unsigned long entry, unsigned long exit)
8bf00a52 1888{
2961e876
GN
1889 vm_entry_controls_clearbit(vmx, entry);
1890 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1891}
1892
61d2ef2c
AK
1893static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1894{
1895 unsigned i;
1896 struct msr_autoload *m = &vmx->msr_autoload;
1897
8bf00a52
GN
1898 switch (msr) {
1899 case MSR_EFER:
1900 if (cpu_has_load_ia32_efer) {
2961e876
GN
1901 clear_atomic_switch_msr_special(vmx,
1902 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1903 VM_EXIT_LOAD_IA32_EFER);
1904 return;
1905 }
1906 break;
1907 case MSR_CORE_PERF_GLOBAL_CTRL:
1908 if (cpu_has_load_perf_global_ctrl) {
2961e876 1909 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1910 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1911 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1912 return;
1913 }
1914 break;
110312c8
AK
1915 }
1916
61d2ef2c
AK
1917 for (i = 0; i < m->nr; ++i)
1918 if (m->guest[i].index == msr)
1919 break;
1920
1921 if (i == m->nr)
1922 return;
1923 --m->nr;
1924 m->guest[i] = m->guest[m->nr];
1925 m->host[i] = m->host[m->nr];
1926 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1927 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1928}
1929
2961e876
GN
1930static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1931 unsigned long entry, unsigned long exit,
1932 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1933 u64 guest_val, u64 host_val)
8bf00a52
GN
1934{
1935 vmcs_write64(guest_val_vmcs, guest_val);
1936 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1937 vm_entry_controls_setbit(vmx, entry);
1938 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1939}
1940
61d2ef2c
AK
1941static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1942 u64 guest_val, u64 host_val)
1943{
1944 unsigned i;
1945 struct msr_autoload *m = &vmx->msr_autoload;
1946
8bf00a52
GN
1947 switch (msr) {
1948 case MSR_EFER:
1949 if (cpu_has_load_ia32_efer) {
2961e876
GN
1950 add_atomic_switch_msr_special(vmx,
1951 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1952 VM_EXIT_LOAD_IA32_EFER,
1953 GUEST_IA32_EFER,
1954 HOST_IA32_EFER,
1955 guest_val, host_val);
1956 return;
1957 }
1958 break;
1959 case MSR_CORE_PERF_GLOBAL_CTRL:
1960 if (cpu_has_load_perf_global_ctrl) {
2961e876 1961 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1962 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1963 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1964 GUEST_IA32_PERF_GLOBAL_CTRL,
1965 HOST_IA32_PERF_GLOBAL_CTRL,
1966 guest_val, host_val);
1967 return;
1968 }
1969 break;
7099e2e1
RK
1970 case MSR_IA32_PEBS_ENABLE:
1971 /* PEBS needs a quiescent period after being disabled (to write
1972 * a record). Disabling PEBS through VMX MSR swapping doesn't
1973 * provide that period, so a CPU could write host's record into
1974 * guest's memory.
1975 */
1976 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1977 }
1978
61d2ef2c
AK
1979 for (i = 0; i < m->nr; ++i)
1980 if (m->guest[i].index == msr)
1981 break;
1982
e7fc6f93 1983 if (i == NR_AUTOLOAD_MSRS) {
60266204 1984 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1985 "Can't add msr %x\n", msr);
1986 return;
1987 } else if (i == m->nr) {
61d2ef2c
AK
1988 ++m->nr;
1989 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1990 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1991 }
1992
1993 m->guest[i].index = msr;
1994 m->guest[i].value = guest_val;
1995 m->host[i].index = msr;
1996 m->host[i].value = host_val;
1997}
1998
92c0d900 1999static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2000{
844a5fe2
PB
2001 u64 guest_efer = vmx->vcpu.arch.efer;
2002 u64 ignore_bits = 0;
2003
2004 if (!enable_ept) {
2005 /*
2006 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2007 * host CPUID is more efficient than testing guest CPUID
2008 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2009 */
2010 if (boot_cpu_has(X86_FEATURE_SMEP))
2011 guest_efer |= EFER_NX;
2012 else if (!(guest_efer & EFER_NX))
2013 ignore_bits |= EFER_NX;
2014 }
3a34a881 2015
51c6cf66 2016 /*
844a5fe2 2017 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2018 */
844a5fe2 2019 ignore_bits |= EFER_SCE;
51c6cf66
AK
2020#ifdef CONFIG_X86_64
2021 ignore_bits |= EFER_LMA | EFER_LME;
2022 /* SCE is meaningful only in long mode on Intel */
2023 if (guest_efer & EFER_LMA)
2024 ignore_bits &= ~(u64)EFER_SCE;
2025#endif
84ad33ef
AK
2026
2027 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2028
2029 /*
2030 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2031 * On CPUs that support "load IA32_EFER", always switch EFER
2032 * atomically, since it's faster than switching it manually.
2033 */
2034 if (cpu_has_load_ia32_efer ||
2035 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2036 if (!(guest_efer & EFER_LMA))
2037 guest_efer &= ~EFER_LME;
54b98bff
AL
2038 if (guest_efer != host_efer)
2039 add_atomic_switch_msr(vmx, MSR_EFER,
2040 guest_efer, host_efer);
84ad33ef 2041 return false;
844a5fe2
PB
2042 } else {
2043 guest_efer &= ~ignore_bits;
2044 guest_efer |= host_efer & ignore_bits;
2045
2046 vmx->guest_msrs[efer_offset].data = guest_efer;
2047 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2048
844a5fe2
PB
2049 return true;
2050 }
51c6cf66
AK
2051}
2052
e28baead
AL
2053#ifdef CONFIG_X86_32
2054/*
2055 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2056 * VMCS rather than the segment table. KVM uses this helper to figure
2057 * out the current bases to poke them into the VMCS before entry.
2058 */
2d49ec72
GN
2059static unsigned long segment_base(u16 selector)
2060{
8c2e41f7 2061 struct desc_struct *table;
2d49ec72
GN
2062 unsigned long v;
2063
8c2e41f7 2064 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2065 return 0;
2066
45fc8757 2067 table = get_current_gdt_ro();
2d49ec72 2068
8c2e41f7 2069 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2070 u16 ldt_selector = kvm_read_ldt();
2071
8c2e41f7 2072 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2073 return 0;
2074
8c2e41f7 2075 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2076 }
8c2e41f7 2077 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2078 return v;
2079}
e28baead 2080#endif
2d49ec72 2081
04d2cc77 2082static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2083{
04d2cc77 2084 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2085 int i;
04d2cc77 2086
a2fa3e9f 2087 if (vmx->host_state.loaded)
33ed6329
AK
2088 return;
2089
a2fa3e9f 2090 vmx->host_state.loaded = 1;
33ed6329
AK
2091 /*
2092 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2093 * allow segment selectors with cpl > 0 or ti == 1.
2094 */
d6e88aec 2095 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2096 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2097 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2098 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2099 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2100 vmx->host_state.fs_reload_needed = 0;
2101 } else {
33ed6329 2102 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2103 vmx->host_state.fs_reload_needed = 1;
33ed6329 2104 }
9581d442 2105 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2106 if (!(vmx->host_state.gs_sel & 7))
2107 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2108 else {
2109 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2110 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2111 }
2112
b2da15ac
AK
2113#ifdef CONFIG_X86_64
2114 savesegment(ds, vmx->host_state.ds_sel);
2115 savesegment(es, vmx->host_state.es_sel);
2116#endif
2117
33ed6329
AK
2118#ifdef CONFIG_X86_64
2119 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2120 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2121#else
a2fa3e9f
GH
2122 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2123 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2124#endif
707c0874
AK
2125
2126#ifdef CONFIG_X86_64
c8770e7b
AK
2127 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2128 if (is_long_mode(&vmx->vcpu))
44ea2b17 2129 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2130#endif
da8999d3
LJ
2131 if (boot_cpu_has(X86_FEATURE_MPX))
2132 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2133 for (i = 0; i < vmx->save_nmsrs; ++i)
2134 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2135 vmx->guest_msrs[i].data,
2136 vmx->guest_msrs[i].mask);
33ed6329
AK
2137}
2138
a9b21b62 2139static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2140{
a2fa3e9f 2141 if (!vmx->host_state.loaded)
33ed6329
AK
2142 return;
2143
e1beb1d3 2144 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2145 vmx->host_state.loaded = 0;
c8770e7b
AK
2146#ifdef CONFIG_X86_64
2147 if (is_long_mode(&vmx->vcpu))
2148 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2149#endif
152d3f2f 2150 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2151 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2152#ifdef CONFIG_X86_64
9581d442 2153 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2154#else
2155 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2156#endif
33ed6329 2157 }
0a77fe4c
AK
2158 if (vmx->host_state.fs_reload_needed)
2159 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2160#ifdef CONFIG_X86_64
2161 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2162 loadsegment(ds, vmx->host_state.ds_sel);
2163 loadsegment(es, vmx->host_state.es_sel);
2164 }
b2da15ac 2165#endif
b7ffc44d 2166 invalidate_tss_limit();
44ea2b17 2167#ifdef CONFIG_X86_64
c8770e7b 2168 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2169#endif
da8999d3
LJ
2170 if (vmx->host_state.msr_host_bndcfgs)
2171 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2172 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2173}
2174
a9b21b62
AK
2175static void vmx_load_host_state(struct vcpu_vmx *vmx)
2176{
2177 preempt_disable();
2178 __vmx_load_host_state(vmx);
2179 preempt_enable();
2180}
2181
28b835d6
FW
2182static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2183{
2184 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2185 struct pi_desc old, new;
2186 unsigned int dest;
2187
2188 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2189 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2190 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2191 return;
2192
2193 do {
2194 old.control = new.control = pi_desc->control;
2195
2196 /*
2197 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2198 * are two possible cases:
2199 * 1. After running 'pre_block', context switch
2200 * happened. For this case, 'sn' was set in
2201 * vmx_vcpu_put(), so we need to clear it here.
2202 * 2. After running 'pre_block', we were blocked,
2203 * and woken up by some other guy. For this case,
2204 * we don't need to do anything, 'pi_post_block'
2205 * will do everything for us. However, we cannot
2206 * check whether it is case #1 or case #2 here
2207 * (maybe, not needed), so we also clear sn here,
2208 * I think it is not a big deal.
2209 */
2210 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2211 if (vcpu->cpu != cpu) {
2212 dest = cpu_physical_id(cpu);
2213
2214 if (x2apic_enabled())
2215 new.ndst = dest;
2216 else
2217 new.ndst = (dest << 8) & 0xFF00;
2218 }
2219
2220 /* set 'NV' to 'notification vector' */
2221 new.nv = POSTED_INTR_VECTOR;
2222 }
2223
2224 /* Allow posting non-urgent interrupts */
2225 new.sn = 0;
2226 } while (cmpxchg(&pi_desc->control, old.control,
2227 new.control) != old.control);
2228}
1be0e61c 2229
c95ba92a
PF
2230static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2231{
2232 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2233 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2234}
2235
6aa8b732
AK
2236/*
2237 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2238 * vcpu mutex is already taken.
2239 */
15ad7146 2240static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2241{
a2fa3e9f 2242 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2243 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2244
b80c76ec 2245 if (!already_loaded) {
fe0e80be 2246 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2247 local_irq_disable();
8f536b76 2248 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2249
2250 /*
2251 * Read loaded_vmcs->cpu should be before fetching
2252 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2253 * See the comments in __loaded_vmcs_clear().
2254 */
2255 smp_rmb();
2256
d462b819
NHE
2257 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2258 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2259 crash_enable_local_vmclear(cpu);
92fe13be 2260 local_irq_enable();
b80c76ec
JM
2261 }
2262
2263 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2264 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2265 vmcs_load(vmx->loaded_vmcs->vmcs);
2266 }
2267
2268 if (!already_loaded) {
59c58ceb 2269 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2270 unsigned long sysenter_esp;
2271
2272 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2273
6aa8b732
AK
2274 /*
2275 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2276 * processors. See 22.2.4.
6aa8b732 2277 */
e0c23063
AL
2278 vmcs_writel(HOST_TR_BASE,
2279 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2280 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2281
b7ffc44d
AL
2282 /*
2283 * VM exits change the host TR limit to 0x67 after a VM
2284 * exit. This is okay, since 0x67 covers everything except
2285 * the IO bitmap and have have code to handle the IO bitmap
2286 * being lost after a VM exit.
2287 */
2288 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2289
6aa8b732
AK
2290 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2291 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2292
d462b819 2293 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2294 }
28b835d6 2295
2680d6da
OH
2296 /* Setup TSC multiplier */
2297 if (kvm_has_tsc_control &&
c95ba92a
PF
2298 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2299 decache_tsc_multiplier(vmx);
2680d6da 2300
28b835d6 2301 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2302 vmx->host_pkru = read_pkru();
28b835d6
FW
2303}
2304
2305static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2306{
2307 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2308
2309 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2310 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2311 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2312 return;
2313
2314 /* Set SN when the vCPU is preempted */
2315 if (vcpu->preempted)
2316 pi_set_sn(pi_desc);
6aa8b732
AK
2317}
2318
2319static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2320{
28b835d6
FW
2321 vmx_vcpu_pi_put(vcpu);
2322
a9b21b62 2323 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2324}
2325
edcafe3c
AK
2326static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2327
fe3ef05c
NHE
2328/*
2329 * Return the cr0 value that a nested guest would read. This is a combination
2330 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2331 * its hypervisor (cr0_read_shadow).
2332 */
2333static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2334{
2335 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2336 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2337}
2338static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2339{
2340 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2341 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2342}
2343
6aa8b732
AK
2344static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2345{
78ac8b47 2346 unsigned long rflags, save_rflags;
345dcaa8 2347
6de12732
AK
2348 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2349 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2350 rflags = vmcs_readl(GUEST_RFLAGS);
2351 if (to_vmx(vcpu)->rmode.vm86_active) {
2352 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2353 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2354 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2355 }
2356 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2357 }
6de12732 2358 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2359}
2360
2361static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2362{
6de12732
AK
2363 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2364 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2365 if (to_vmx(vcpu)->rmode.vm86_active) {
2366 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2367 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2368 }
6aa8b732
AK
2369 vmcs_writel(GUEST_RFLAGS, rflags);
2370}
2371
be94f6b7
HH
2372static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2373{
2374 return to_vmx(vcpu)->guest_pkru;
2375}
2376
37ccdcbe 2377static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2378{
2379 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2380 int ret = 0;
2381
2382 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2383 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2384 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2385 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2386
37ccdcbe 2387 return ret;
2809f5d2
GC
2388}
2389
2390static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2391{
2392 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2393 u32 interruptibility = interruptibility_old;
2394
2395 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2396
48005f64 2397 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2398 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2399 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2400 interruptibility |= GUEST_INTR_STATE_STI;
2401
2402 if ((interruptibility != interruptibility_old))
2403 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2404}
2405
6aa8b732
AK
2406static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2407{
2408 unsigned long rip;
6aa8b732 2409
5fdbf976 2410 rip = kvm_rip_read(vcpu);
6aa8b732 2411 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2412 kvm_rip_write(vcpu, rip);
6aa8b732 2413
2809f5d2
GC
2414 /* skipping an emulated instruction also counts */
2415 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2416}
2417
0b6ac343
NHE
2418/*
2419 * KVM wants to inject page-faults which it got to the guest. This function
2420 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2421 */
e011c663 2422static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2423{
2424 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2425
e011c663 2426 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2427 return 0;
2428
533558bc
JK
2429 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2430 vmcs_read32(VM_EXIT_INTR_INFO),
2431 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2432 return 1;
2433}
2434
298101da 2435static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2436 bool has_error_code, u32 error_code,
2437 bool reinject)
298101da 2438{
77ab6db0 2439 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2440 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2441
e011c663
GN
2442 if (!reinject && is_guest_mode(vcpu) &&
2443 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2444 return;
2445
8ab2d2e2 2446 if (has_error_code) {
77ab6db0 2447 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2448 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2449 }
77ab6db0 2450
7ffd92c5 2451 if (vmx->rmode.vm86_active) {
71f9833b
SH
2452 int inc_eip = 0;
2453 if (kvm_exception_is_soft(nr))
2454 inc_eip = vcpu->arch.event_exit_inst_len;
2455 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2456 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2457 return;
2458 }
2459
66fd3f7f
GN
2460 if (kvm_exception_is_soft(nr)) {
2461 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2462 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2463 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2464 } else
2465 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2466
2467 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2468}
2469
4e47c7a6
SY
2470static bool vmx_rdtscp_supported(void)
2471{
2472 return cpu_has_vmx_rdtscp();
2473}
2474
ad756a16
MJ
2475static bool vmx_invpcid_supported(void)
2476{
2477 return cpu_has_vmx_invpcid() && enable_ept;
2478}
2479
a75beee6
ED
2480/*
2481 * Swap MSR entry in host/guest MSR entry array.
2482 */
8b9cf98c 2483static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2484{
26bb0981 2485 struct shared_msr_entry tmp;
a2fa3e9f
GH
2486
2487 tmp = vmx->guest_msrs[to];
2488 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2489 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2490}
2491
8d14695f
YZ
2492static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2493{
2494 unsigned long *msr_bitmap;
2495
670125bd 2496 if (is_guest_mode(vcpu))
d048c098 2497 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2498 else if (cpu_has_secondary_exec_ctrls() &&
2499 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2500 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2501 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2502 if (is_long_mode(vcpu))
c63e4563 2503 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2504 else
c63e4563 2505 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2506 } else {
2507 if (is_long_mode(vcpu))
c63e4563 2508 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2509 else
c63e4563 2510 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2511 }
8d14695f
YZ
2512 } else {
2513 if (is_long_mode(vcpu))
2514 msr_bitmap = vmx_msr_bitmap_longmode;
2515 else
2516 msr_bitmap = vmx_msr_bitmap_legacy;
2517 }
2518
2519 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2520}
2521
e38aea3e
AK
2522/*
2523 * Set up the vmcs to automatically save and restore system
2524 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2525 * mode, as fiddling with msrs is very expensive.
2526 */
8b9cf98c 2527static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2528{
26bb0981 2529 int save_nmsrs, index;
e38aea3e 2530
a75beee6
ED
2531 save_nmsrs = 0;
2532#ifdef CONFIG_X86_64
8b9cf98c 2533 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2534 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2535 if (index >= 0)
8b9cf98c
RR
2536 move_msr_up(vmx, index, save_nmsrs++);
2537 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2538 if (index >= 0)
8b9cf98c
RR
2539 move_msr_up(vmx, index, save_nmsrs++);
2540 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2541 if (index >= 0)
8b9cf98c 2542 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2543 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2544 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2545 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2546 /*
8c06585d 2547 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2548 * if efer.sce is enabled.
2549 */
8c06585d 2550 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2551 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2552 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2553 }
2554#endif
92c0d900
AK
2555 index = __find_msr_index(vmx, MSR_EFER);
2556 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2557 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2558
26bb0981 2559 vmx->save_nmsrs = save_nmsrs;
5897297b 2560
8d14695f
YZ
2561 if (cpu_has_vmx_msr_bitmap())
2562 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2563}
2564
6aa8b732
AK
2565/*
2566 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2567 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2568 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2569 */
be7b263e 2570static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2571{
2572 u64 host_tsc, tsc_offset;
2573
4ea1636b 2574 host_tsc = rdtsc();
6aa8b732 2575 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2576 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2577}
2578
2579/*
99e3e30a 2580 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2581 */
99e3e30a 2582static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2583{
27fc51b2 2584 if (is_guest_mode(vcpu)) {
7991825b 2585 /*
27fc51b2
NHE
2586 * We're here if L1 chose not to trap WRMSR to TSC. According
2587 * to the spec, this should set L1's TSC; The offset that L1
2588 * set for L2 remains unchanged, and still needs to be added
2589 * to the newly set TSC to get L2's TSC.
7991825b 2590 */
27fc51b2 2591 struct vmcs12 *vmcs12;
27fc51b2
NHE
2592 /* recalculate vmcs02.TSC_OFFSET: */
2593 vmcs12 = get_vmcs12(vcpu);
2594 vmcs_write64(TSC_OFFSET, offset +
2595 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2596 vmcs12->tsc_offset : 0));
2597 } else {
489223ed
YY
2598 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2599 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2600 vmcs_write64(TSC_OFFSET, offset);
2601 }
6aa8b732
AK
2602}
2603
801d3424
NHE
2604static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2605{
2606 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2607 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2608}
2609
2610/*
2611 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2612 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2613 * all guests if the "nested" module option is off, and can also be disabled
2614 * for a single guest by disabling its VMX cpuid bit.
2615 */
2616static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2617{
2618 return nested && guest_cpuid_has_vmx(vcpu);
2619}
2620
b87a51ae
NHE
2621/*
2622 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2623 * returned for the various VMX controls MSRs when nested VMX is enabled.
2624 * The same values should also be used to verify that vmcs12 control fields are
2625 * valid during nested entry from L1 to L2.
2626 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2627 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2628 * bit in the high half is on if the corresponding bit in the control field
2629 * may be on. See also vmx_control_verify().
b87a51ae 2630 */
b9c237bb 2631static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2632{
2633 /*
2634 * Note that as a general rule, the high half of the MSRs (bits in
2635 * the control fields which may be 1) should be initialized by the
2636 * intersection of the underlying hardware's MSR (i.e., features which
2637 * can be supported) and the list of features we want to expose -
2638 * because they are known to be properly supported in our code.
2639 * Also, usually, the low half of the MSRs (bits which must be 1) can
2640 * be set to 0, meaning that L1 may turn off any of these bits. The
2641 * reason is that if one of these bits is necessary, it will appear
2642 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2643 * fields of vmcs01 and vmcs02, will turn these bits off - and
2644 * nested_vmx_exit_handled() will not pass related exits to L1.
2645 * These rules have exceptions below.
2646 */
2647
2648 /* pin-based controls */
eabeaacc 2649 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2650 vmx->nested.nested_vmx_pinbased_ctls_low,
2651 vmx->nested.nested_vmx_pinbased_ctls_high);
2652 vmx->nested.nested_vmx_pinbased_ctls_low |=
2653 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2654 vmx->nested.nested_vmx_pinbased_ctls_high &=
2655 PIN_BASED_EXT_INTR_MASK |
2656 PIN_BASED_NMI_EXITING |
2657 PIN_BASED_VIRTUAL_NMIS;
2658 vmx->nested.nested_vmx_pinbased_ctls_high |=
2659 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2660 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2661 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2662 vmx->nested.nested_vmx_pinbased_ctls_high |=
2663 PIN_BASED_POSTED_INTR;
b87a51ae 2664
3dbcd8da 2665 /* exit controls */
c0dfee58 2666 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2667 vmx->nested.nested_vmx_exit_ctls_low,
2668 vmx->nested.nested_vmx_exit_ctls_high);
2669 vmx->nested.nested_vmx_exit_ctls_low =
2670 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2671
b9c237bb 2672 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2673#ifdef CONFIG_X86_64
c0dfee58 2674 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2675#endif
f4124500 2676 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2677 vmx->nested.nested_vmx_exit_ctls_high |=
2678 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2679 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2680 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2681
a87036ad 2682 if (kvm_mpx_supported())
b9c237bb 2683 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2684
2996fca0 2685 /* We support free control of debug control saving. */
0115f9cb 2686 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2687
b87a51ae
NHE
2688 /* entry controls */
2689 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2690 vmx->nested.nested_vmx_entry_ctls_low,
2691 vmx->nested.nested_vmx_entry_ctls_high);
2692 vmx->nested.nested_vmx_entry_ctls_low =
2693 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2694 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2695#ifdef CONFIG_X86_64
2696 VM_ENTRY_IA32E_MODE |
2697#endif
2698 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2699 vmx->nested.nested_vmx_entry_ctls_high |=
2700 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2701 if (kvm_mpx_supported())
b9c237bb 2702 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2703
2996fca0 2704 /* We support free control of debug control loading. */
0115f9cb 2705 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2706
b87a51ae
NHE
2707 /* cpu-based controls */
2708 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2709 vmx->nested.nested_vmx_procbased_ctls_low,
2710 vmx->nested.nested_vmx_procbased_ctls_high);
2711 vmx->nested.nested_vmx_procbased_ctls_low =
2712 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2713 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2714 CPU_BASED_VIRTUAL_INTR_PENDING |
2715 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2716 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2717 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2718 CPU_BASED_CR3_STORE_EXITING |
2719#ifdef CONFIG_X86_64
2720 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2721#endif
2722 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2723 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2724 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2725 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2726 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2727 /*
2728 * We can allow some features even when not supported by the
2729 * hardware. For example, L1 can specify an MSR bitmap - and we
2730 * can use it to avoid exits to L1 - even when L0 runs L2
2731 * without MSR bitmaps.
2732 */
b9c237bb
WV
2733 vmx->nested.nested_vmx_procbased_ctls_high |=
2734 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2735 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2736
3dcdf3ec 2737 /* We support free control of CR3 access interception. */
0115f9cb 2738 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2739 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2740
b87a51ae
NHE
2741 /* secondary cpu-based controls */
2742 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2743 vmx->nested.nested_vmx_secondary_ctls_low,
2744 vmx->nested.nested_vmx_secondary_ctls_high);
2745 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2746 vmx->nested.nested_vmx_secondary_ctls_high &=
a5f46457 2747 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
d6851fbe 2748 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2749 SECONDARY_EXEC_RDTSCP |
1b07304c 2750 SECONDARY_EXEC_DESC |
f2b93280 2751 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2752 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2753 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2754 SECONDARY_EXEC_WBINVD_EXITING |
dfa169bb 2755 SECONDARY_EXEC_XSAVES;
c18911a2 2756
afa61f75
NHE
2757 if (enable_ept) {
2758 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2759 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2760 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2761 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2762 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2763 if (cpu_has_vmx_ept_execute_only())
2764 vmx->nested.nested_vmx_ept_caps |=
2765 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2766 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2767 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2768 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2769 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2770 if (enable_ept_ad_bits) {
2771 vmx->nested.nested_vmx_secondary_ctls_high |=
2772 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2773 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2774 }
afa61f75 2775 } else
b9c237bb 2776 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2777
ef697a71
PB
2778 /*
2779 * Old versions of KVM use the single-context version without
2780 * checking for support, so declare that it is supported even
2781 * though it is treated as global context. The alternative is
2782 * not failing the single-context invvpid, and it is worse.
2783 */
63cb6d5f
WL
2784 if (enable_vpid) {
2785 vmx->nested.nested_vmx_secondary_ctls_high |=
2786 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2787 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2788 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2789 } else
089d7b6e 2790 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2791
0790ec17
RK
2792 if (enable_unrestricted_guest)
2793 vmx->nested.nested_vmx_secondary_ctls_high |=
2794 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2795
c18911a2 2796 /* miscellaneous data */
b9c237bb
WV
2797 rdmsr(MSR_IA32_VMX_MISC,
2798 vmx->nested.nested_vmx_misc_low,
2799 vmx->nested.nested_vmx_misc_high);
2800 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2801 vmx->nested.nested_vmx_misc_low |=
2802 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2803 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2804 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2805
2806 /*
2807 * This MSR reports some information about VMX support. We
2808 * should return information about the VMX we emulate for the
2809 * guest, and the VMCS structure we give it - not about the
2810 * VMX support of the underlying hardware.
2811 */
2812 vmx->nested.nested_vmx_basic =
2813 VMCS12_REVISION |
2814 VMX_BASIC_TRUE_CTLS |
2815 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2816 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2817
2818 if (cpu_has_vmx_basic_inout())
2819 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2820
2821 /*
8322ebbb 2822 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2823 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2824 * We picked the standard core2 setting.
2825 */
2826#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2827#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2828 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2829 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2830
2831 /* These MSRs specify bits which the guest must keep fixed off. */
2832 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2833 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2834
2835 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2836 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2837}
2838
3899152c
DM
2839/*
2840 * if fixed0[i] == 1: val[i] must be 1
2841 * if fixed1[i] == 0: val[i] must be 0
2842 */
2843static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2844{
2845 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2846}
2847
2848static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2849{
3899152c 2850 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2851}
2852
2853static inline u64 vmx_control_msr(u32 low, u32 high)
2854{
2855 return low | ((u64)high << 32);
2856}
2857
62cc6b9d
DM
2858static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2859{
2860 superset &= mask;
2861 subset &= mask;
2862
2863 return (superset | subset) == superset;
2864}
2865
2866static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2867{
2868 const u64 feature_and_reserved =
2869 /* feature (except bit 48; see below) */
2870 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2871 /* reserved */
2872 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2873 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2874
2875 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2876 return -EINVAL;
2877
2878 /*
2879 * KVM does not emulate a version of VMX that constrains physical
2880 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2881 */
2882 if (data & BIT_ULL(48))
2883 return -EINVAL;
2884
2885 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2886 vmx_basic_vmcs_revision_id(data))
2887 return -EINVAL;
2888
2889 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2890 return -EINVAL;
2891
2892 vmx->nested.nested_vmx_basic = data;
2893 return 0;
2894}
2895
2896static int
2897vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2898{
2899 u64 supported;
2900 u32 *lowp, *highp;
2901
2902 switch (msr_index) {
2903 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2904 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2905 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2906 break;
2907 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2908 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2909 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2910 break;
2911 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2912 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2913 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2914 break;
2915 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2916 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2917 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2918 break;
2919 case MSR_IA32_VMX_PROCBASED_CTLS2:
2920 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2921 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2922 break;
2923 default:
2924 BUG();
2925 }
2926
2927 supported = vmx_control_msr(*lowp, *highp);
2928
2929 /* Check must-be-1 bits are still 1. */
2930 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2931 return -EINVAL;
2932
2933 /* Check must-be-0 bits are still 0. */
2934 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2935 return -EINVAL;
2936
2937 *lowp = data;
2938 *highp = data >> 32;
2939 return 0;
2940}
2941
2942static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2943{
2944 const u64 feature_and_reserved_bits =
2945 /* feature */
2946 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2947 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2948 /* reserved */
2949 GENMASK_ULL(13, 9) | BIT_ULL(31);
2950 u64 vmx_misc;
2951
2952 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2953 vmx->nested.nested_vmx_misc_high);
2954
2955 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2956 return -EINVAL;
2957
2958 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2959 PIN_BASED_VMX_PREEMPTION_TIMER) &&
2960 vmx_misc_preemption_timer_rate(data) !=
2961 vmx_misc_preemption_timer_rate(vmx_misc))
2962 return -EINVAL;
2963
2964 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2965 return -EINVAL;
2966
2967 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2968 return -EINVAL;
2969
2970 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2971 return -EINVAL;
2972
2973 vmx->nested.nested_vmx_misc_low = data;
2974 vmx->nested.nested_vmx_misc_high = data >> 32;
2975 return 0;
2976}
2977
2978static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2979{
2980 u64 vmx_ept_vpid_cap;
2981
2982 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2983 vmx->nested.nested_vmx_vpid_caps);
2984
2985 /* Every bit is either reserved or a feature bit. */
2986 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2987 return -EINVAL;
2988
2989 vmx->nested.nested_vmx_ept_caps = data;
2990 vmx->nested.nested_vmx_vpid_caps = data >> 32;
2991 return 0;
2992}
2993
2994static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2995{
2996 u64 *msr;
2997
2998 switch (msr_index) {
2999 case MSR_IA32_VMX_CR0_FIXED0:
3000 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3001 break;
3002 case MSR_IA32_VMX_CR4_FIXED0:
3003 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3004 break;
3005 default:
3006 BUG();
3007 }
3008
3009 /*
3010 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3011 * must be 1 in the restored value.
3012 */
3013 if (!is_bitwise_subset(data, *msr, -1ULL))
3014 return -EINVAL;
3015
3016 *msr = data;
3017 return 0;
3018}
3019
3020/*
3021 * Called when userspace is restoring VMX MSRs.
3022 *
3023 * Returns 0 on success, non-0 otherwise.
3024 */
3025static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3026{
b9c237bb
WV
3027 struct vcpu_vmx *vmx = to_vmx(vcpu);
3028
b87a51ae 3029 switch (msr_index) {
b87a51ae 3030 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3031 return vmx_restore_vmx_basic(vmx, data);
3032 case MSR_IA32_VMX_PINBASED_CTLS:
3033 case MSR_IA32_VMX_PROCBASED_CTLS:
3034 case MSR_IA32_VMX_EXIT_CTLS:
3035 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3036 /*
62cc6b9d
DM
3037 * The "non-true" VMX capability MSRs are generated from the
3038 * "true" MSRs, so we do not support restoring them directly.
3039 *
3040 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3041 * should restore the "true" MSRs with the must-be-1 bits
3042 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3043 * DEFAULT SETTINGS".
b87a51ae 3044 */
62cc6b9d
DM
3045 return -EINVAL;
3046 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3047 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3048 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3049 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3050 case MSR_IA32_VMX_PROCBASED_CTLS2:
3051 return vmx_restore_control_msr(vmx, msr_index, data);
3052 case MSR_IA32_VMX_MISC:
3053 return vmx_restore_vmx_misc(vmx, data);
3054 case MSR_IA32_VMX_CR0_FIXED0:
3055 case MSR_IA32_VMX_CR4_FIXED0:
3056 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3057 case MSR_IA32_VMX_CR0_FIXED1:
3058 case MSR_IA32_VMX_CR4_FIXED1:
3059 /*
3060 * These MSRs are generated based on the vCPU's CPUID, so we
3061 * do not support restoring them directly.
3062 */
3063 return -EINVAL;
3064 case MSR_IA32_VMX_EPT_VPID_CAP:
3065 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3066 case MSR_IA32_VMX_VMCS_ENUM:
3067 vmx->nested.nested_vmx_vmcs_enum = data;
3068 return 0;
3069 default:
b87a51ae 3070 /*
62cc6b9d 3071 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3072 */
62cc6b9d
DM
3073 return -EINVAL;
3074 }
3075}
3076
3077/* Returns 0 on success, non-0 otherwise. */
3078static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3079{
3080 struct vcpu_vmx *vmx = to_vmx(vcpu);
3081
3082 switch (msr_index) {
3083 case MSR_IA32_VMX_BASIC:
3084 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3085 break;
3086 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3087 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3088 *pdata = vmx_control_msr(
3089 vmx->nested.nested_vmx_pinbased_ctls_low,
3090 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3091 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3092 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3093 break;
3094 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3095 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3096 *pdata = vmx_control_msr(
3097 vmx->nested.nested_vmx_procbased_ctls_low,
3098 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3099 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3100 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3101 break;
3102 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3103 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3104 *pdata = vmx_control_msr(
3105 vmx->nested.nested_vmx_exit_ctls_low,
3106 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3107 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3108 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3109 break;
3110 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3111 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3112 *pdata = vmx_control_msr(
3113 vmx->nested.nested_vmx_entry_ctls_low,
3114 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3115 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3116 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3117 break;
3118 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3119 *pdata = vmx_control_msr(
3120 vmx->nested.nested_vmx_misc_low,
3121 vmx->nested.nested_vmx_misc_high);
b87a51ae 3122 break;
b87a51ae 3123 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3124 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3125 break;
3126 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3127 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3128 break;
3129 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3130 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3131 break;
3132 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3133 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3134 break;
3135 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3136 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3137 break;
3138 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3139 *pdata = vmx_control_msr(
3140 vmx->nested.nested_vmx_secondary_ctls_low,
3141 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3142 break;
3143 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3144 *pdata = vmx->nested.nested_vmx_ept_caps |
3145 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
3146 break;
3147 default:
b87a51ae 3148 return 1;
b3897a49
NHE
3149 }
3150
b87a51ae
NHE
3151 return 0;
3152}
3153
37e4c997
HZ
3154static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3155 uint64_t val)
3156{
3157 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3158
3159 return !(val & ~valid_bits);
3160}
3161
6aa8b732
AK
3162/*
3163 * Reads an msr value (of 'msr_index') into 'pdata'.
3164 * Returns 0 on success, non-0 otherwise.
3165 * Assumes vcpu_load() was already called.
3166 */
609e36d3 3167static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3168{
26bb0981 3169 struct shared_msr_entry *msr;
6aa8b732 3170
609e36d3 3171 switch (msr_info->index) {
05b3e0c2 3172#ifdef CONFIG_X86_64
6aa8b732 3173 case MSR_FS_BASE:
609e36d3 3174 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3175 break;
3176 case MSR_GS_BASE:
609e36d3 3177 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3178 break;
44ea2b17
AK
3179 case MSR_KERNEL_GS_BASE:
3180 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3181 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3182 break;
26bb0981 3183#endif
6aa8b732 3184 case MSR_EFER:
609e36d3 3185 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3186 case MSR_IA32_TSC:
be7b263e 3187 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3188 break;
3189 case MSR_IA32_SYSENTER_CS:
609e36d3 3190 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3191 break;
3192 case MSR_IA32_SYSENTER_EIP:
609e36d3 3193 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3194 break;
3195 case MSR_IA32_SYSENTER_ESP:
609e36d3 3196 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3197 break;
0dd376e7 3198 case MSR_IA32_BNDCFGS:
4439af9f 3199 if (!kvm_mpx_supported() || !guest_cpuid_has_mpx(vcpu))
93c4adc7 3200 return 1;
609e36d3 3201 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3202 break;
c45dcc71
AR
3203 case MSR_IA32_MCG_EXT_CTL:
3204 if (!msr_info->host_initiated &&
3205 !(to_vmx(vcpu)->msr_ia32_feature_control &
3206 FEATURE_CONTROL_LMCE))
cae50139 3207 return 1;
c45dcc71
AR
3208 msr_info->data = vcpu->arch.mcg_ext_ctl;
3209 break;
cae50139 3210 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3211 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3212 break;
3213 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3214 if (!nested_vmx_allowed(vcpu))
3215 return 1;
609e36d3 3216 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3217 case MSR_IA32_XSS:
3218 if (!vmx_xsaves_supported())
3219 return 1;
609e36d3 3220 msr_info->data = vcpu->arch.ia32_xss;
20300099 3221 break;
4e47c7a6 3222 case MSR_TSC_AUX:
81b1b9ca 3223 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3224 return 1;
3225 /* Otherwise falls through */
6aa8b732 3226 default:
609e36d3 3227 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3228 if (msr) {
609e36d3 3229 msr_info->data = msr->data;
3bab1f5d 3230 break;
6aa8b732 3231 }
609e36d3 3232 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3233 }
3234
6aa8b732
AK
3235 return 0;
3236}
3237
cae50139
JK
3238static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3239
6aa8b732
AK
3240/*
3241 * Writes msr value into into the appropriate "register".
3242 * Returns 0 on success, non-0 otherwise.
3243 * Assumes vcpu_load() was already called.
3244 */
8fe8ab46 3245static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3246{
a2fa3e9f 3247 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3248 struct shared_msr_entry *msr;
2cc51560 3249 int ret = 0;
8fe8ab46
WA
3250 u32 msr_index = msr_info->index;
3251 u64 data = msr_info->data;
2cc51560 3252
6aa8b732 3253 switch (msr_index) {
3bab1f5d 3254 case MSR_EFER:
8fe8ab46 3255 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3256 break;
16175a79 3257#ifdef CONFIG_X86_64
6aa8b732 3258 case MSR_FS_BASE:
2fb92db1 3259 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3260 vmcs_writel(GUEST_FS_BASE, data);
3261 break;
3262 case MSR_GS_BASE:
2fb92db1 3263 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3264 vmcs_writel(GUEST_GS_BASE, data);
3265 break;
44ea2b17
AK
3266 case MSR_KERNEL_GS_BASE:
3267 vmx_load_host_state(vmx);
3268 vmx->msr_guest_kernel_gs_base = data;
3269 break;
6aa8b732
AK
3270#endif
3271 case MSR_IA32_SYSENTER_CS:
3272 vmcs_write32(GUEST_SYSENTER_CS, data);
3273 break;
3274 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3275 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3276 break;
3277 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3278 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3279 break;
0dd376e7 3280 case MSR_IA32_BNDCFGS:
4439af9f 3281 if (!kvm_mpx_supported() || !guest_cpuid_has_mpx(vcpu))
93c4adc7 3282 return 1;
4531662d
JM
3283 if (is_noncanonical_address(data & PAGE_MASK) ||
3284 (data & MSR_IA32_BNDCFGS_RSVD))
3285 return 1;
0dd376e7
LJ
3286 vmcs_write64(GUEST_BNDCFGS, data);
3287 break;
af24a4e4 3288 case MSR_IA32_TSC:
8fe8ab46 3289 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3290 break;
468d472f
SY
3291 case MSR_IA32_CR_PAT:
3292 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3293 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3294 return 1;
468d472f
SY
3295 vmcs_write64(GUEST_IA32_PAT, data);
3296 vcpu->arch.pat = data;
3297 break;
3298 }
8fe8ab46 3299 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3300 break;
ba904635
WA
3301 case MSR_IA32_TSC_ADJUST:
3302 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3303 break;
c45dcc71
AR
3304 case MSR_IA32_MCG_EXT_CTL:
3305 if ((!msr_info->host_initiated &&
3306 !(to_vmx(vcpu)->msr_ia32_feature_control &
3307 FEATURE_CONTROL_LMCE)) ||
3308 (data & ~MCG_EXT_CTL_LMCE_EN))
3309 return 1;
3310 vcpu->arch.mcg_ext_ctl = data;
3311 break;
cae50139 3312 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3313 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3314 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3315 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3316 return 1;
3b84080b 3317 vmx->msr_ia32_feature_control = data;
cae50139
JK
3318 if (msr_info->host_initiated && data == 0)
3319 vmx_leave_nested(vcpu);
3320 break;
3321 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3322 if (!msr_info->host_initiated)
3323 return 1; /* they are read-only */
3324 if (!nested_vmx_allowed(vcpu))
3325 return 1;
3326 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3327 case MSR_IA32_XSS:
3328 if (!vmx_xsaves_supported())
3329 return 1;
3330 /*
3331 * The only supported bit as of Skylake is bit 8, but
3332 * it is not supported on KVM.
3333 */
3334 if (data != 0)
3335 return 1;
3336 vcpu->arch.ia32_xss = data;
3337 if (vcpu->arch.ia32_xss != host_xss)
3338 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3339 vcpu->arch.ia32_xss, host_xss);
3340 else
3341 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3342 break;
4e47c7a6 3343 case MSR_TSC_AUX:
81b1b9ca 3344 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3345 return 1;
3346 /* Check reserved bit, higher 32 bits should be zero */
3347 if ((data >> 32) != 0)
3348 return 1;
3349 /* Otherwise falls through */
6aa8b732 3350 default:
8b9cf98c 3351 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3352 if (msr) {
8b3c3104 3353 u64 old_msr_data = msr->data;
3bab1f5d 3354 msr->data = data;
2225fd56
AK
3355 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3356 preempt_disable();
8b3c3104
AH
3357 ret = kvm_set_shared_msr(msr->index, msr->data,
3358 msr->mask);
2225fd56 3359 preempt_enable();
8b3c3104
AH
3360 if (ret)
3361 msr->data = old_msr_data;
2225fd56 3362 }
3bab1f5d 3363 break;
6aa8b732 3364 }
8fe8ab46 3365 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3366 }
3367
2cc51560 3368 return ret;
6aa8b732
AK
3369}
3370
5fdbf976 3371static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3372{
5fdbf976
MT
3373 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3374 switch (reg) {
3375 case VCPU_REGS_RSP:
3376 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3377 break;
3378 case VCPU_REGS_RIP:
3379 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3380 break;
6de4f3ad
AK
3381 case VCPU_EXREG_PDPTR:
3382 if (enable_ept)
3383 ept_save_pdptrs(vcpu);
3384 break;
5fdbf976
MT
3385 default:
3386 break;
3387 }
6aa8b732
AK
3388}
3389
6aa8b732
AK
3390static __init int cpu_has_kvm_support(void)
3391{
6210e37b 3392 return cpu_has_vmx();
6aa8b732
AK
3393}
3394
3395static __init int vmx_disabled_by_bios(void)
3396{
3397 u64 msr;
3398
3399 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3400 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3401 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3402 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3403 && tboot_enabled())
3404 return 1;
23f3e991 3405 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3406 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3407 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3408 && !tboot_enabled()) {
3409 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3410 "activate TXT before enabling KVM\n");
cafd6659 3411 return 1;
f9335afe 3412 }
23f3e991
JC
3413 /* launched w/o TXT and VMX disabled */
3414 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3415 && !tboot_enabled())
3416 return 1;
cafd6659
SW
3417 }
3418
3419 return 0;
6aa8b732
AK
3420}
3421
7725b894
DX
3422static void kvm_cpu_vmxon(u64 addr)
3423{
fe0e80be 3424 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3425 intel_pt_handle_vmx(1);
3426
7725b894
DX
3427 asm volatile (ASM_VMX_VMXON_RAX
3428 : : "a"(&addr), "m"(addr)
3429 : "memory", "cc");
3430}
3431
13a34e06 3432static int hardware_enable(void)
6aa8b732
AK
3433{
3434 int cpu = raw_smp_processor_id();
3435 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3436 u64 old, test_bits;
6aa8b732 3437
1e02ce4c 3438 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3439 return -EBUSY;
3440
d462b819 3441 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3442 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3443 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3444
3445 /*
3446 * Now we can enable the vmclear operation in kdump
3447 * since the loaded_vmcss_on_cpu list on this cpu
3448 * has been initialized.
3449 *
3450 * Though the cpu is not in VMX operation now, there
3451 * is no problem to enable the vmclear operation
3452 * for the loaded_vmcss_on_cpu list is empty!
3453 */
3454 crash_enable_local_vmclear(cpu);
3455
6aa8b732 3456 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3457
3458 test_bits = FEATURE_CONTROL_LOCKED;
3459 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3460 if (tboot_enabled())
3461 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3462
3463 if ((old & test_bits) != test_bits) {
6aa8b732 3464 /* enable and lock */
cafd6659
SW
3465 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3466 }
fe0e80be
DH
3467 kvm_cpu_vmxon(phys_addr);
3468 ept_sync_global();
10474ae8
AG
3469
3470 return 0;
6aa8b732
AK
3471}
3472
d462b819 3473static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3474{
3475 int cpu = raw_smp_processor_id();
d462b819 3476 struct loaded_vmcs *v, *n;
543e4243 3477
d462b819
NHE
3478 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3479 loaded_vmcss_on_cpu_link)
3480 __loaded_vmcs_clear(v);
543e4243
AK
3481}
3482
710ff4a8
EH
3483
3484/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3485 * tricks.
3486 */
3487static void kvm_cpu_vmxoff(void)
6aa8b732 3488{
4ecac3fd 3489 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3490
3491 intel_pt_handle_vmx(0);
fe0e80be 3492 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3493}
3494
13a34e06 3495static void hardware_disable(void)
710ff4a8 3496{
fe0e80be
DH
3497 vmclear_local_loaded_vmcss();
3498 kvm_cpu_vmxoff();
710ff4a8
EH
3499}
3500
1c3d14fe 3501static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3502 u32 msr, u32 *result)
1c3d14fe
YS
3503{
3504 u32 vmx_msr_low, vmx_msr_high;
3505 u32 ctl = ctl_min | ctl_opt;
3506
3507 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3508
3509 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3510 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3511
3512 /* Ensure minimum (required) set of control bits are supported. */
3513 if (ctl_min & ~ctl)
002c7f7c 3514 return -EIO;
1c3d14fe
YS
3515
3516 *result = ctl;
3517 return 0;
3518}
3519
110312c8
AK
3520static __init bool allow_1_setting(u32 msr, u32 ctl)
3521{
3522 u32 vmx_msr_low, vmx_msr_high;
3523
3524 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3525 return vmx_msr_high & ctl;
3526}
3527
002c7f7c 3528static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3529{
3530 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3531 u32 min, opt, min2, opt2;
1c3d14fe
YS
3532 u32 _pin_based_exec_control = 0;
3533 u32 _cpu_based_exec_control = 0;
f78e0e2e 3534 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3535 u32 _vmexit_control = 0;
3536 u32 _vmentry_control = 0;
3537
10166744 3538 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3539#ifdef CONFIG_X86_64
3540 CPU_BASED_CR8_LOAD_EXITING |
3541 CPU_BASED_CR8_STORE_EXITING |
3542#endif
d56f546d
SY
3543 CPU_BASED_CR3_LOAD_EXITING |
3544 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3545 CPU_BASED_USE_IO_BITMAPS |
3546 CPU_BASED_MOV_DR_EXITING |
a7052897 3547 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3548 CPU_BASED_INVLPG_EXITING |
3549 CPU_BASED_RDPMC_EXITING;
443381a8 3550
668fffa3
MT
3551 if (!kvm_mwait_in_guest())
3552 min |= CPU_BASED_MWAIT_EXITING |
3553 CPU_BASED_MONITOR_EXITING;
3554
f78e0e2e 3555 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3556 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3557 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3558 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3559 &_cpu_based_exec_control) < 0)
002c7f7c 3560 return -EIO;
6e5d865c
YS
3561#ifdef CONFIG_X86_64
3562 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3563 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3564 ~CPU_BASED_CR8_STORE_EXITING;
3565#endif
f78e0e2e 3566 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3567 min2 = 0;
3568 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3569 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3570 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3571 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3572 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3573 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3574 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3575 SECONDARY_EXEC_RDTSCP |
83d4c286 3576 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3577 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3578 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3579 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3580 SECONDARY_EXEC_XSAVES |
8b3e34e4 3581 SECONDARY_EXEC_ENABLE_PML |
64903d61 3582 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3583 if (adjust_vmx_controls(min2, opt2,
3584 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3585 &_cpu_based_2nd_exec_control) < 0)
3586 return -EIO;
3587 }
3588#ifndef CONFIG_X86_64
3589 if (!(_cpu_based_2nd_exec_control &
3590 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3591 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3592#endif
83d4c286
YZ
3593
3594 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3595 _cpu_based_2nd_exec_control &= ~(
8d14695f 3596 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3597 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3598 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3599
d56f546d 3600 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3601 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3602 enabled */
5fff7d27
GN
3603 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3604 CPU_BASED_CR3_STORE_EXITING |
3605 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3606 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3607 vmx_capability.ept, vmx_capability.vpid);
3608 }
1c3d14fe 3609
91fa0f8e 3610 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3611#ifdef CONFIG_X86_64
3612 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3613#endif
a547c6db 3614 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3615 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3616 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3617 &_vmexit_control) < 0)
002c7f7c 3618 return -EIO;
1c3d14fe 3619
2c82878b
PB
3620 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3621 PIN_BASED_VIRTUAL_NMIS;
3622 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3623 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3624 &_pin_based_exec_control) < 0)
3625 return -EIO;
3626
1c17c3e6
PB
3627 if (cpu_has_broken_vmx_preemption_timer())
3628 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3629 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3630 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3631 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3632
c845f9c6 3633 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3634 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3635 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3636 &_vmentry_control) < 0)
002c7f7c 3637 return -EIO;
6aa8b732 3638
c68876fd 3639 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3640
3641 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3642 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3643 return -EIO;
1c3d14fe
YS
3644
3645#ifdef CONFIG_X86_64
3646 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3647 if (vmx_msr_high & (1u<<16))
002c7f7c 3648 return -EIO;
1c3d14fe
YS
3649#endif
3650
3651 /* Require Write-Back (WB) memory type for VMCS accesses. */
3652 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3653 return -EIO;
1c3d14fe 3654
002c7f7c 3655 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3656 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3657 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3658 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3659
002c7f7c
YS
3660 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3661 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3662 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3663 vmcs_conf->vmexit_ctrl = _vmexit_control;
3664 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3665
110312c8
AK
3666 cpu_has_load_ia32_efer =
3667 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3668 VM_ENTRY_LOAD_IA32_EFER)
3669 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3670 VM_EXIT_LOAD_IA32_EFER);
3671
8bf00a52
GN
3672 cpu_has_load_perf_global_ctrl =
3673 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3674 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3675 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3676 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3677
3678 /*
3679 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3680 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3681 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3682 *
3683 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3684 *
3685 * AAK155 (model 26)
3686 * AAP115 (model 30)
3687 * AAT100 (model 37)
3688 * BC86,AAY89,BD102 (model 44)
3689 * BA97 (model 46)
3690 *
3691 */
3692 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3693 switch (boot_cpu_data.x86_model) {
3694 case 26:
3695 case 30:
3696 case 37:
3697 case 44:
3698 case 46:
3699 cpu_has_load_perf_global_ctrl = false;
3700 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3701 "does not work properly. Using workaround\n");
3702 break;
3703 default:
3704 break;
3705 }
3706 }
3707
782511b0 3708 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3709 rdmsrl(MSR_IA32_XSS, host_xss);
3710
1c3d14fe 3711 return 0;
c68876fd 3712}
6aa8b732
AK
3713
3714static struct vmcs *alloc_vmcs_cpu(int cpu)
3715{
3716 int node = cpu_to_node(cpu);
3717 struct page *pages;
3718 struct vmcs *vmcs;
3719
96db800f 3720 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3721 if (!pages)
3722 return NULL;
3723 vmcs = page_address(pages);
1c3d14fe
YS
3724 memset(vmcs, 0, vmcs_config.size);
3725 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3726 return vmcs;
3727}
3728
3729static struct vmcs *alloc_vmcs(void)
3730{
d3b2c338 3731 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3732}
3733
3734static void free_vmcs(struct vmcs *vmcs)
3735{
1c3d14fe 3736 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3737}
3738
d462b819
NHE
3739/*
3740 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3741 */
3742static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3743{
3744 if (!loaded_vmcs->vmcs)
3745 return;
3746 loaded_vmcs_clear(loaded_vmcs);
3747 free_vmcs(loaded_vmcs->vmcs);
3748 loaded_vmcs->vmcs = NULL;
355f4fb1 3749 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3750}
3751
39959588 3752static void free_kvm_area(void)
6aa8b732
AK
3753{
3754 int cpu;
3755
3230bb47 3756 for_each_possible_cpu(cpu) {
6aa8b732 3757 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3758 per_cpu(vmxarea, cpu) = NULL;
3759 }
6aa8b732
AK
3760}
3761
fe2b201b
BD
3762static void init_vmcs_shadow_fields(void)
3763{
3764 int i, j;
3765
3766 /* No checks for read only fields yet */
3767
3768 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3769 switch (shadow_read_write_fields[i]) {
3770 case GUEST_BNDCFGS:
a87036ad 3771 if (!kvm_mpx_supported())
fe2b201b
BD
3772 continue;
3773 break;
3774 default:
3775 break;
3776 }
3777
3778 if (j < i)
3779 shadow_read_write_fields[j] =
3780 shadow_read_write_fields[i];
3781 j++;
3782 }
3783 max_shadow_read_write_fields = j;
3784
3785 /* shadowed fields guest access without vmexit */
3786 for (i = 0; i < max_shadow_read_write_fields; i++) {
3787 clear_bit(shadow_read_write_fields[i],
3788 vmx_vmwrite_bitmap);
3789 clear_bit(shadow_read_write_fields[i],
3790 vmx_vmread_bitmap);
3791 }
3792 for (i = 0; i < max_shadow_read_only_fields; i++)
3793 clear_bit(shadow_read_only_fields[i],
3794 vmx_vmread_bitmap);
3795}
3796
6aa8b732
AK
3797static __init int alloc_kvm_area(void)
3798{
3799 int cpu;
3800
3230bb47 3801 for_each_possible_cpu(cpu) {
6aa8b732
AK
3802 struct vmcs *vmcs;
3803
3804 vmcs = alloc_vmcs_cpu(cpu);
3805 if (!vmcs) {
3806 free_kvm_area();
3807 return -ENOMEM;
3808 }
3809
3810 per_cpu(vmxarea, cpu) = vmcs;
3811 }
3812 return 0;
3813}
3814
14168786
GN
3815static bool emulation_required(struct kvm_vcpu *vcpu)
3816{
3817 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3818}
3819
91b0aa2c 3820static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3821 struct kvm_segment *save)
6aa8b732 3822{
d99e4152
GN
3823 if (!emulate_invalid_guest_state) {
3824 /*
3825 * CS and SS RPL should be equal during guest entry according
3826 * to VMX spec, but in reality it is not always so. Since vcpu
3827 * is in the middle of the transition from real mode to
3828 * protected mode it is safe to assume that RPL 0 is a good
3829 * default value.
3830 */
3831 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3832 save->selector &= ~SEGMENT_RPL_MASK;
3833 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3834 save->s = 1;
6aa8b732 3835 }
d99e4152 3836 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3837}
3838
3839static void enter_pmode(struct kvm_vcpu *vcpu)
3840{
3841 unsigned long flags;
a89a8fb9 3842 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3843
d99e4152
GN
3844 /*
3845 * Update real mode segment cache. It may be not up-to-date if sement
3846 * register was written while vcpu was in a guest mode.
3847 */
3848 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3849 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3850 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3851 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3852 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3853 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3854
7ffd92c5 3855 vmx->rmode.vm86_active = 0;
6aa8b732 3856
2fb92db1
AK
3857 vmx_segment_cache_clear(vmx);
3858
f5f7b2fe 3859 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3860
3861 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3862 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3863 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3864 vmcs_writel(GUEST_RFLAGS, flags);
3865
66aee91a
RR
3866 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3867 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3868
3869 update_exception_bitmap(vcpu);
3870
91b0aa2c
GN
3871 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3872 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3873 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3874 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3875 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3876 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3877}
3878
f5f7b2fe 3879static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3880{
772e0318 3881 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3882 struct kvm_segment var = *save;
3883
3884 var.dpl = 0x3;
3885 if (seg == VCPU_SREG_CS)
3886 var.type = 0x3;
3887
3888 if (!emulate_invalid_guest_state) {
3889 var.selector = var.base >> 4;
3890 var.base = var.base & 0xffff0;
3891 var.limit = 0xffff;
3892 var.g = 0;
3893 var.db = 0;
3894 var.present = 1;
3895 var.s = 1;
3896 var.l = 0;
3897 var.unusable = 0;
3898 var.type = 0x3;
3899 var.avl = 0;
3900 if (save->base & 0xf)
3901 printk_once(KERN_WARNING "kvm: segment base is not "
3902 "paragraph aligned when entering "
3903 "protected mode (seg=%d)", seg);
3904 }
6aa8b732 3905
d99e4152 3906 vmcs_write16(sf->selector, var.selector);
96794e4e 3907 vmcs_writel(sf->base, var.base);
d99e4152
GN
3908 vmcs_write32(sf->limit, var.limit);
3909 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3910}
3911
3912static void enter_rmode(struct kvm_vcpu *vcpu)
3913{
3914 unsigned long flags;
a89a8fb9 3915 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3916
f5f7b2fe
AK
3917 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3918 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3919 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3920 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3921 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3922 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3923 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3924
7ffd92c5 3925 vmx->rmode.vm86_active = 1;
6aa8b732 3926
776e58ea
GN
3927 /*
3928 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3929 * vcpu. Warn the user that an update is overdue.
776e58ea 3930 */
4918c6ca 3931 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3932 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3933 "called before entering vcpu\n");
776e58ea 3934
2fb92db1
AK
3935 vmx_segment_cache_clear(vmx);
3936
4918c6ca 3937 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3938 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3939 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3940
3941 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3942 vmx->rmode.save_rflags = flags;
6aa8b732 3943
053de044 3944 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3945
3946 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3947 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3948 update_exception_bitmap(vcpu);
3949
d99e4152
GN
3950 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3951 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3952 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3953 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3954 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3955 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3956
8668a3c4 3957 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3958}
3959
401d10de
AS
3960static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3961{
3962 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3963 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3964
3965 if (!msr)
3966 return;
401d10de 3967
44ea2b17
AK
3968 /*
3969 * Force kernel_gs_base reloading before EFER changes, as control
3970 * of this msr depends on is_long_mode().
3971 */
3972 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3973 vcpu->arch.efer = efer;
401d10de 3974 if (efer & EFER_LMA) {
2961e876 3975 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3976 msr->data = efer;
3977 } else {
2961e876 3978 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3979
3980 msr->data = efer & ~EFER_LME;
3981 }
3982 setup_msrs(vmx);
3983}
3984
05b3e0c2 3985#ifdef CONFIG_X86_64
6aa8b732
AK
3986
3987static void enter_lmode(struct kvm_vcpu *vcpu)
3988{
3989 u32 guest_tr_ar;
3990
2fb92db1
AK
3991 vmx_segment_cache_clear(to_vmx(vcpu));
3992
6aa8b732 3993 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3994 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3995 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3996 __func__);
6aa8b732 3997 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3998 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3999 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4000 }
da38f438 4001 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4002}
4003
4004static void exit_lmode(struct kvm_vcpu *vcpu)
4005{
2961e876 4006 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4007 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4008}
4009
4010#endif
4011
dd5f5341 4012static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4013{
dd180b3e
XG
4014 if (enable_ept) {
4015 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4016 return;
995f00a6 4017 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4018 } else {
4019 vpid_sync_context(vpid);
dd180b3e 4020 }
2384d2b3
SY
4021}
4022
dd5f5341
WL
4023static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4024{
4025 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4026}
4027
fb6c8198
JM
4028static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4029{
4030 if (enable_ept)
4031 vmx_flush_tlb(vcpu);
4032}
4033
e8467fda
AK
4034static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4035{
4036 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4037
4038 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4039 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4040}
4041
aff48baa
AK
4042static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4043{
4044 if (enable_ept && is_paging(vcpu))
4045 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4046 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4047}
4048
25c4c276 4049static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4050{
fc78f519
AK
4051 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4052
4053 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4054 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4055}
4056
1439442c
SY
4057static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4058{
d0d538b9
GN
4059 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4060
6de4f3ad
AK
4061 if (!test_bit(VCPU_EXREG_PDPTR,
4062 (unsigned long *)&vcpu->arch.regs_dirty))
4063 return;
4064
1439442c 4065 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4066 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4067 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4068 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4069 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4070 }
4071}
4072
8f5d549f
AK
4073static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4074{
d0d538b9
GN
4075 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4076
8f5d549f 4077 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4078 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4079 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4080 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4081 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4082 }
6de4f3ad
AK
4083
4084 __set_bit(VCPU_EXREG_PDPTR,
4085 (unsigned long *)&vcpu->arch.regs_avail);
4086 __set_bit(VCPU_EXREG_PDPTR,
4087 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4088}
4089
3899152c
DM
4090static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4091{
4092 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4093 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4094 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4095
4096 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4097 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4098 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4099 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4100
4101 return fixed_bits_valid(val, fixed0, fixed1);
4102}
4103
4104static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4105{
4106 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4107 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4108
4109 return fixed_bits_valid(val, fixed0, fixed1);
4110}
4111
4112static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4113{
4114 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4115 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4116
4117 return fixed_bits_valid(val, fixed0, fixed1);
4118}
4119
4120/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4121#define nested_guest_cr4_valid nested_cr4_valid
4122#define nested_host_cr4_valid nested_cr4_valid
4123
5e1746d6 4124static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4125
4126static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4127 unsigned long cr0,
4128 struct kvm_vcpu *vcpu)
4129{
5233dd51
MT
4130 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4131 vmx_decache_cr3(vcpu);
1439442c
SY
4132 if (!(cr0 & X86_CR0_PG)) {
4133 /* From paging/starting to nonpaging */
4134 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4135 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4136 (CPU_BASED_CR3_LOAD_EXITING |
4137 CPU_BASED_CR3_STORE_EXITING));
4138 vcpu->arch.cr0 = cr0;
fc78f519 4139 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4140 } else if (!is_paging(vcpu)) {
4141 /* From nonpaging to paging */
4142 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4143 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4144 ~(CPU_BASED_CR3_LOAD_EXITING |
4145 CPU_BASED_CR3_STORE_EXITING));
4146 vcpu->arch.cr0 = cr0;
fc78f519 4147 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4148 }
95eb84a7
SY
4149
4150 if (!(cr0 & X86_CR0_WP))
4151 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4152}
4153
6aa8b732
AK
4154static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4155{
7ffd92c5 4156 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4157 unsigned long hw_cr0;
4158
5037878e 4159 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4160 if (enable_unrestricted_guest)
5037878e 4161 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4162 else {
5037878e 4163 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4164
218e763f
GN
4165 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4166 enter_pmode(vcpu);
6aa8b732 4167
218e763f
GN
4168 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4169 enter_rmode(vcpu);
4170 }
6aa8b732 4171
05b3e0c2 4172#ifdef CONFIG_X86_64
f6801dff 4173 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4174 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4175 enter_lmode(vcpu);
707d92fa 4176 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4177 exit_lmode(vcpu);
4178 }
4179#endif
4180
089d034e 4181 if (enable_ept)
1439442c
SY
4182 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4183
6aa8b732 4184 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4185 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4186 vcpu->arch.cr0 = cr0;
14168786
GN
4187
4188 /* depends on vcpu->arch.cr0 to be set to a new value */
4189 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4190}
4191
995f00a6 4192static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c
SY
4193{
4194 u64 eptp;
4195
4196 /* TODO write the value reading from MSR */
4197 eptp = VMX_EPT_DEFAULT_MT |
4198 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
995f00a6
PF
4199 if (enable_ept_ad_bits &&
4200 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
b38f9934 4201 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
4202 eptp |= (root_hpa & PAGE_MASK);
4203
4204 return eptp;
4205}
4206
6aa8b732
AK
4207static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4208{
1439442c
SY
4209 unsigned long guest_cr3;
4210 u64 eptp;
4211
4212 guest_cr3 = cr3;
089d034e 4213 if (enable_ept) {
995f00a6 4214 eptp = construct_eptp(vcpu, cr3);
1439442c 4215 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4216 if (is_paging(vcpu) || is_guest_mode(vcpu))
4217 guest_cr3 = kvm_read_cr3(vcpu);
4218 else
4219 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4220 ept_load_pdptrs(vcpu);
1439442c
SY
4221 }
4222
2384d2b3 4223 vmx_flush_tlb(vcpu);
1439442c 4224 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4225}
4226
5e1746d6 4227static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4228{
085e68ee
BS
4229 /*
4230 * Pass through host's Machine Check Enable value to hw_cr4, which
4231 * is in force while we are in guest mode. Do not let guests control
4232 * this bit, even if host CR4.MCE == 0.
4233 */
4234 unsigned long hw_cr4 =
4235 (cr4_read_shadow() & X86_CR4_MCE) |
4236 (cr4 & ~X86_CR4_MCE) |
4237 (to_vmx(vcpu)->rmode.vm86_active ?
4238 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4239
5e1746d6
NHE
4240 if (cr4 & X86_CR4_VMXE) {
4241 /*
4242 * To use VMXON (and later other VMX instructions), a guest
4243 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4244 * So basically the check on whether to allow nested VMX
4245 * is here.
4246 */
4247 if (!nested_vmx_allowed(vcpu))
4248 return 1;
1a0d74e6 4249 }
3899152c
DM
4250
4251 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4252 return 1;
4253
ad312c7c 4254 vcpu->arch.cr4 = cr4;
bc23008b
AK
4255 if (enable_ept) {
4256 if (!is_paging(vcpu)) {
4257 hw_cr4 &= ~X86_CR4_PAE;
4258 hw_cr4 |= X86_CR4_PSE;
4259 } else if (!(cr4 & X86_CR4_PAE)) {
4260 hw_cr4 &= ~X86_CR4_PAE;
4261 }
4262 }
1439442c 4263
656ec4a4
RK
4264 if (!enable_unrestricted_guest && !is_paging(vcpu))
4265 /*
ddba2628
HH
4266 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4267 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4268 * to be manually disabled when guest switches to non-paging
4269 * mode.
4270 *
4271 * If !enable_unrestricted_guest, the CPU is always running
4272 * with CR0.PG=1 and CR4 needs to be modified.
4273 * If enable_unrestricted_guest, the CPU automatically
4274 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4275 */
ddba2628 4276 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4277
1439442c
SY
4278 vmcs_writel(CR4_READ_SHADOW, cr4);
4279 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4280 return 0;
6aa8b732
AK
4281}
4282
6aa8b732
AK
4283static void vmx_get_segment(struct kvm_vcpu *vcpu,
4284 struct kvm_segment *var, int seg)
4285{
a9179499 4286 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4287 u32 ar;
4288
c6ad1153 4289 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4290 *var = vmx->rmode.segs[seg];
a9179499 4291 if (seg == VCPU_SREG_TR
2fb92db1 4292 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4293 return;
1390a28b
AK
4294 var->base = vmx_read_guest_seg_base(vmx, seg);
4295 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4296 return;
a9179499 4297 }
2fb92db1
AK
4298 var->base = vmx_read_guest_seg_base(vmx, seg);
4299 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4300 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4301 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4302 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4303 var->type = ar & 15;
4304 var->s = (ar >> 4) & 1;
4305 var->dpl = (ar >> 5) & 3;
03617c18
GN
4306 /*
4307 * Some userspaces do not preserve unusable property. Since usable
4308 * segment has to be present according to VMX spec we can use present
4309 * property to amend userspace bug by making unusable segment always
4310 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4311 * segment as unusable.
4312 */
4313 var->present = !var->unusable;
6aa8b732
AK
4314 var->avl = (ar >> 12) & 1;
4315 var->l = (ar >> 13) & 1;
4316 var->db = (ar >> 14) & 1;
4317 var->g = (ar >> 15) & 1;
6aa8b732
AK
4318}
4319
a9179499
AK
4320static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4321{
a9179499
AK
4322 struct kvm_segment s;
4323
4324 if (to_vmx(vcpu)->rmode.vm86_active) {
4325 vmx_get_segment(vcpu, &s, seg);
4326 return s.base;
4327 }
2fb92db1 4328 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4329}
4330
b09408d0 4331static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4332{
b09408d0
MT
4333 struct vcpu_vmx *vmx = to_vmx(vcpu);
4334
ae9fedc7 4335 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4336 return 0;
ae9fedc7
PB
4337 else {
4338 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4339 return VMX_AR_DPL(ar);
69c73028 4340 }
69c73028
AK
4341}
4342
653e3108 4343static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4344{
6aa8b732
AK
4345 u32 ar;
4346
f0495f9b 4347 if (var->unusable || !var->present)
6aa8b732
AK
4348 ar = 1 << 16;
4349 else {
4350 ar = var->type & 15;
4351 ar |= (var->s & 1) << 4;
4352 ar |= (var->dpl & 3) << 5;
4353 ar |= (var->present & 1) << 7;
4354 ar |= (var->avl & 1) << 12;
4355 ar |= (var->l & 1) << 13;
4356 ar |= (var->db & 1) << 14;
4357 ar |= (var->g & 1) << 15;
4358 }
653e3108
AK
4359
4360 return ar;
4361}
4362
4363static void vmx_set_segment(struct kvm_vcpu *vcpu,
4364 struct kvm_segment *var, int seg)
4365{
7ffd92c5 4366 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4367 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4368
2fb92db1
AK
4369 vmx_segment_cache_clear(vmx);
4370
1ecd50a9
GN
4371 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4372 vmx->rmode.segs[seg] = *var;
4373 if (seg == VCPU_SREG_TR)
4374 vmcs_write16(sf->selector, var->selector);
4375 else if (var->s)
4376 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4377 goto out;
653e3108 4378 }
1ecd50a9 4379
653e3108
AK
4380 vmcs_writel(sf->base, var->base);
4381 vmcs_write32(sf->limit, var->limit);
4382 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4383
4384 /*
4385 * Fix the "Accessed" bit in AR field of segment registers for older
4386 * qemu binaries.
4387 * IA32 arch specifies that at the time of processor reset the
4388 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4389 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4390 * state vmexit when "unrestricted guest" mode is turned on.
4391 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4392 * tree. Newer qemu binaries with that qemu fix would not need this
4393 * kvm hack.
4394 */
4395 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4396 var->type |= 0x1; /* Accessed */
3a624e29 4397
f924d66d 4398 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4399
4400out:
98eb2f8b 4401 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4402}
4403
6aa8b732
AK
4404static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4405{
2fb92db1 4406 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4407
4408 *db = (ar >> 14) & 1;
4409 *l = (ar >> 13) & 1;
4410}
4411
89a27f4d 4412static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4413{
89a27f4d
GN
4414 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4415 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4416}
4417
89a27f4d 4418static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4419{
89a27f4d
GN
4420 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4421 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4422}
4423
89a27f4d 4424static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4425{
89a27f4d
GN
4426 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4427 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4428}
4429
89a27f4d 4430static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4431{
89a27f4d
GN
4432 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4433 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4434}
4435
648dfaa7
MG
4436static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4437{
4438 struct kvm_segment var;
4439 u32 ar;
4440
4441 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4442 var.dpl = 0x3;
0647f4aa
GN
4443 if (seg == VCPU_SREG_CS)
4444 var.type = 0x3;
648dfaa7
MG
4445 ar = vmx_segment_access_rights(&var);
4446
4447 if (var.base != (var.selector << 4))
4448 return false;
89efbed0 4449 if (var.limit != 0xffff)
648dfaa7 4450 return false;
07f42f5f 4451 if (ar != 0xf3)
648dfaa7
MG
4452 return false;
4453
4454 return true;
4455}
4456
4457static bool code_segment_valid(struct kvm_vcpu *vcpu)
4458{
4459 struct kvm_segment cs;
4460 unsigned int cs_rpl;
4461
4462 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4463 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4464
1872a3f4
AK
4465 if (cs.unusable)
4466 return false;
4d283ec9 4467 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4468 return false;
4469 if (!cs.s)
4470 return false;
4d283ec9 4471 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4472 if (cs.dpl > cs_rpl)
4473 return false;
1872a3f4 4474 } else {
648dfaa7
MG
4475 if (cs.dpl != cs_rpl)
4476 return false;
4477 }
4478 if (!cs.present)
4479 return false;
4480
4481 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4482 return true;
4483}
4484
4485static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4486{
4487 struct kvm_segment ss;
4488 unsigned int ss_rpl;
4489
4490 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4491 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4492
1872a3f4
AK
4493 if (ss.unusable)
4494 return true;
4495 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4496 return false;
4497 if (!ss.s)
4498 return false;
4499 if (ss.dpl != ss_rpl) /* DPL != RPL */
4500 return false;
4501 if (!ss.present)
4502 return false;
4503
4504 return true;
4505}
4506
4507static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4508{
4509 struct kvm_segment var;
4510 unsigned int rpl;
4511
4512 vmx_get_segment(vcpu, &var, seg);
b32a9918 4513 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4514
1872a3f4
AK
4515 if (var.unusable)
4516 return true;
648dfaa7
MG
4517 if (!var.s)
4518 return false;
4519 if (!var.present)
4520 return false;
4d283ec9 4521 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4522 if (var.dpl < rpl) /* DPL < RPL */
4523 return false;
4524 }
4525
4526 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4527 * rights flags
4528 */
4529 return true;
4530}
4531
4532static bool tr_valid(struct kvm_vcpu *vcpu)
4533{
4534 struct kvm_segment tr;
4535
4536 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4537
1872a3f4
AK
4538 if (tr.unusable)
4539 return false;
b32a9918 4540 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4541 return false;
1872a3f4 4542 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4543 return false;
4544 if (!tr.present)
4545 return false;
4546
4547 return true;
4548}
4549
4550static bool ldtr_valid(struct kvm_vcpu *vcpu)
4551{
4552 struct kvm_segment ldtr;
4553
4554 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4555
1872a3f4
AK
4556 if (ldtr.unusable)
4557 return true;
b32a9918 4558 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4559 return false;
4560 if (ldtr.type != 2)
4561 return false;
4562 if (!ldtr.present)
4563 return false;
4564
4565 return true;
4566}
4567
4568static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4569{
4570 struct kvm_segment cs, ss;
4571
4572 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4573 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4574
b32a9918
NA
4575 return ((cs.selector & SEGMENT_RPL_MASK) ==
4576 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4577}
4578
4579/*
4580 * Check if guest state is valid. Returns true if valid, false if
4581 * not.
4582 * We assume that registers are always usable
4583 */
4584static bool guest_state_valid(struct kvm_vcpu *vcpu)
4585{
c5e97c80
GN
4586 if (enable_unrestricted_guest)
4587 return true;
4588
648dfaa7 4589 /* real mode guest state checks */
f13882d8 4590 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4591 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4592 return false;
4593 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4594 return false;
4595 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4596 return false;
4597 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4598 return false;
4599 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4600 return false;
4601 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4602 return false;
4603 } else {
4604 /* protected mode guest state checks */
4605 if (!cs_ss_rpl_check(vcpu))
4606 return false;
4607 if (!code_segment_valid(vcpu))
4608 return false;
4609 if (!stack_segment_valid(vcpu))
4610 return false;
4611 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4612 return false;
4613 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4614 return false;
4615 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4616 return false;
4617 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4618 return false;
4619 if (!tr_valid(vcpu))
4620 return false;
4621 if (!ldtr_valid(vcpu))
4622 return false;
4623 }
4624 /* TODO:
4625 * - Add checks on RIP
4626 * - Add checks on RFLAGS
4627 */
4628
4629 return true;
4630}
4631
d77c26fc 4632static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4633{
40dcaa9f 4634 gfn_t fn;
195aefde 4635 u16 data = 0;
1f755a82 4636 int idx, r;
6aa8b732 4637
40dcaa9f 4638 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4639 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4640 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4641 if (r < 0)
10589a46 4642 goto out;
195aefde 4643 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4644 r = kvm_write_guest_page(kvm, fn++, &data,
4645 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4646 if (r < 0)
10589a46 4647 goto out;
195aefde
IE
4648 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4649 if (r < 0)
10589a46 4650 goto out;
195aefde
IE
4651 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4652 if (r < 0)
10589a46 4653 goto out;
195aefde 4654 data = ~0;
10589a46
MT
4655 r = kvm_write_guest_page(kvm, fn, &data,
4656 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4657 sizeof(u8));
10589a46 4658out:
40dcaa9f 4659 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4660 return r;
6aa8b732
AK
4661}
4662
b7ebfb05
SY
4663static int init_rmode_identity_map(struct kvm *kvm)
4664{
f51770ed 4665 int i, idx, r = 0;
ba049e93 4666 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4667 u32 tmp;
4668
089d034e 4669 if (!enable_ept)
f51770ed 4670 return 0;
a255d479
TC
4671
4672 /* Protect kvm->arch.ept_identity_pagetable_done. */
4673 mutex_lock(&kvm->slots_lock);
4674
f51770ed 4675 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4676 goto out2;
a255d479 4677
b927a3ce 4678 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4679
4680 r = alloc_identity_pagetable(kvm);
f51770ed 4681 if (r < 0)
a255d479
TC
4682 goto out2;
4683
40dcaa9f 4684 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4685 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4686 if (r < 0)
4687 goto out;
4688 /* Set up identity-mapping pagetable for EPT in real mode */
4689 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4690 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4691 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4692 r = kvm_write_guest_page(kvm, identity_map_pfn,
4693 &tmp, i * sizeof(tmp), sizeof(tmp));
4694 if (r < 0)
4695 goto out;
4696 }
4697 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4698
b7ebfb05 4699out:
40dcaa9f 4700 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4701
4702out2:
4703 mutex_unlock(&kvm->slots_lock);
f51770ed 4704 return r;
b7ebfb05
SY
4705}
4706
6aa8b732
AK
4707static void seg_setup(int seg)
4708{
772e0318 4709 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4710 unsigned int ar;
6aa8b732
AK
4711
4712 vmcs_write16(sf->selector, 0);
4713 vmcs_writel(sf->base, 0);
4714 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4715 ar = 0x93;
4716 if (seg == VCPU_SREG_CS)
4717 ar |= 0x08; /* code segment */
3a624e29
NK
4718
4719 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4720}
4721
f78e0e2e
SY
4722static int alloc_apic_access_page(struct kvm *kvm)
4723{
4484141a 4724 struct page *page;
f78e0e2e
SY
4725 int r = 0;
4726
79fac95e 4727 mutex_lock(&kvm->slots_lock);
c24ae0dc 4728 if (kvm->arch.apic_access_page_done)
f78e0e2e 4729 goto out;
1d8007bd
PB
4730 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4731 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4732 if (r)
4733 goto out;
72dc67a6 4734
73a6d941 4735 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4736 if (is_error_page(page)) {
4737 r = -EFAULT;
4738 goto out;
4739 }
4740
c24ae0dc
TC
4741 /*
4742 * Do not pin the page in memory, so that memory hot-unplug
4743 * is able to migrate it.
4744 */
4745 put_page(page);
4746 kvm->arch.apic_access_page_done = true;
f78e0e2e 4747out:
79fac95e 4748 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4749 return r;
4750}
4751
b7ebfb05
SY
4752static int alloc_identity_pagetable(struct kvm *kvm)
4753{
a255d479
TC
4754 /* Called with kvm->slots_lock held. */
4755
b7ebfb05
SY
4756 int r = 0;
4757
a255d479
TC
4758 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4759
1d8007bd
PB
4760 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4761 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4762
b7ebfb05
SY
4763 return r;
4764}
4765
991e7a0e 4766static int allocate_vpid(void)
2384d2b3
SY
4767{
4768 int vpid;
4769
919818ab 4770 if (!enable_vpid)
991e7a0e 4771 return 0;
2384d2b3
SY
4772 spin_lock(&vmx_vpid_lock);
4773 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4774 if (vpid < VMX_NR_VPIDS)
2384d2b3 4775 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4776 else
4777 vpid = 0;
2384d2b3 4778 spin_unlock(&vmx_vpid_lock);
991e7a0e 4779 return vpid;
2384d2b3
SY
4780}
4781
991e7a0e 4782static void free_vpid(int vpid)
cdbecfc3 4783{
991e7a0e 4784 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4785 return;
4786 spin_lock(&vmx_vpid_lock);
991e7a0e 4787 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4788 spin_unlock(&vmx_vpid_lock);
4789}
4790
8d14695f
YZ
4791#define MSR_TYPE_R 1
4792#define MSR_TYPE_W 2
4793static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4794 u32 msr, int type)
25c5f225 4795{
3e7c73e9 4796 int f = sizeof(unsigned long);
25c5f225
SY
4797
4798 if (!cpu_has_vmx_msr_bitmap())
4799 return;
4800
4801 /*
4802 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4803 * have the write-low and read-high bitmap offsets the wrong way round.
4804 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4805 */
25c5f225 4806 if (msr <= 0x1fff) {
8d14695f
YZ
4807 if (type & MSR_TYPE_R)
4808 /* read-low */
4809 __clear_bit(msr, msr_bitmap + 0x000 / f);
4810
4811 if (type & MSR_TYPE_W)
4812 /* write-low */
4813 __clear_bit(msr, msr_bitmap + 0x800 / f);
4814
25c5f225
SY
4815 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4816 msr &= 0x1fff;
8d14695f
YZ
4817 if (type & MSR_TYPE_R)
4818 /* read-high */
4819 __clear_bit(msr, msr_bitmap + 0x400 / f);
4820
4821 if (type & MSR_TYPE_W)
4822 /* write-high */
4823 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4824
4825 }
4826}
4827
f2b93280
WV
4828/*
4829 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4830 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4831 */
4832static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4833 unsigned long *msr_bitmap_nested,
4834 u32 msr, int type)
4835{
4836 int f = sizeof(unsigned long);
4837
4838 if (!cpu_has_vmx_msr_bitmap()) {
4839 WARN_ON(1);
4840 return;
4841 }
4842
4843 /*
4844 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4845 * have the write-low and read-high bitmap offsets the wrong way round.
4846 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4847 */
4848 if (msr <= 0x1fff) {
4849 if (type & MSR_TYPE_R &&
4850 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4851 /* read-low */
4852 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4853
4854 if (type & MSR_TYPE_W &&
4855 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4856 /* write-low */
4857 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4858
4859 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4860 msr &= 0x1fff;
4861 if (type & MSR_TYPE_R &&
4862 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4863 /* read-high */
4864 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4865
4866 if (type & MSR_TYPE_W &&
4867 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4868 /* write-high */
4869 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4870
4871 }
4872}
4873
5897297b
AK
4874static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4875{
4876 if (!longmode_only)
8d14695f
YZ
4877 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4878 msr, MSR_TYPE_R | MSR_TYPE_W);
4879 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4880 msr, MSR_TYPE_R | MSR_TYPE_W);
4881}
4882
2e69f865 4883static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4884{
f6e90f9e 4885 if (apicv_active) {
c63e4563 4886 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 4887 msr, type);
c63e4563 4888 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 4889 msr, type);
f6e90f9e 4890 } else {
f6e90f9e 4891 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 4892 msr, type);
f6e90f9e 4893 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 4894 msr, type);
f6e90f9e 4895 }
5897297b
AK
4896}
4897
d62caabb 4898static bool vmx_get_enable_apicv(void)
d50ab6c1 4899{
d62caabb 4900 return enable_apicv;
d50ab6c1
PB
4901}
4902
6342c50a 4903static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
4904{
4905 struct vcpu_vmx *vmx = to_vmx(vcpu);
4906 int max_irr;
4907 void *vapic_page;
4908 u16 status;
4909
4910 if (vmx->nested.pi_desc &&
4911 vmx->nested.pi_pending) {
4912 vmx->nested.pi_pending = false;
4913 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
6342c50a 4914 return;
705699a1
WV
4915
4916 max_irr = find_last_bit(
4917 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4918
4919 if (max_irr == 256)
6342c50a 4920 return;
705699a1
WV
4921
4922 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
4923 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4924 kunmap(vmx->nested.virtual_apic_page);
4925
4926 status = vmcs_read16(GUEST_INTR_STATUS);
4927 if ((u8)max_irr > ((u8)status & 0xff)) {
4928 status &= ~0xff;
4929 status |= (u8)max_irr;
4930 vmcs_write16(GUEST_INTR_STATUS, status);
4931 }
4932 }
705699a1
WV
4933}
4934
21bc8dc5
RK
4935static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4936{
4937#ifdef CONFIG_SMP
4938 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4939 struct vcpu_vmx *vmx = to_vmx(vcpu);
4940
4941 /*
4942 * Currently, we don't support urgent interrupt,
4943 * all interrupts are recognized as non-urgent
4944 * interrupt, so we cannot post interrupts when
4945 * 'SN' is set.
4946 *
4947 * If the vcpu is in guest mode, it means it is
4948 * running instead of being scheduled out and
4949 * waiting in the run queue, and that's the only
4950 * case when 'SN' is set currently, warning if
4951 * 'SN' is set.
4952 */
4953 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4954
21bc8dc5
RK
4955 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4956 POSTED_INTR_VECTOR);
4957 return true;
4958 }
4959#endif
4960 return false;
4961}
4962
705699a1
WV
4963static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4964 int vector)
4965{
4966 struct vcpu_vmx *vmx = to_vmx(vcpu);
4967
4968 if (is_guest_mode(vcpu) &&
4969 vector == vmx->nested.posted_intr_nv) {
4970 /* the PIR and ON have been set by L1. */
21bc8dc5 4971 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4972 /*
4973 * If a posted intr is not recognized by hardware,
4974 * we will accomplish it in the next vmentry.
4975 */
4976 vmx->nested.pi_pending = true;
4977 kvm_make_request(KVM_REQ_EVENT, vcpu);
4978 return 0;
4979 }
4980 return -1;
4981}
a20ed54d
YZ
4982/*
4983 * Send interrupt to vcpu via posted interrupt way.
4984 * 1. If target vcpu is running(non-root mode), send posted interrupt
4985 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4986 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4987 * interrupt from PIR in next vmentry.
4988 */
4989static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4990{
4991 struct vcpu_vmx *vmx = to_vmx(vcpu);
4992 int r;
4993
705699a1
WV
4994 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4995 if (!r)
4996 return;
4997
a20ed54d
YZ
4998 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4999 return;
5000
b95234c8
PB
5001 /* If a previous notification has sent the IPI, nothing to do. */
5002 if (pi_test_and_set_on(&vmx->pi_desc))
5003 return;
5004
5005 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
5006 kvm_vcpu_kick(vcpu);
5007}
5008
a3a8ff8e
NHE
5009/*
5010 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5011 * will not change in the lifetime of the guest.
5012 * Note that host-state that does change is set elsewhere. E.g., host-state
5013 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5014 */
a547c6db 5015static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5016{
5017 u32 low32, high32;
5018 unsigned long tmpl;
5019 struct desc_ptr dt;
04ac88ab 5020 unsigned long cr0, cr4;
a3a8ff8e 5021
04ac88ab
AL
5022 cr0 = read_cr0();
5023 WARN_ON(cr0 & X86_CR0_TS);
5024 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
a3a8ff8e
NHE
5025 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
5026
d974baa3 5027 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5028 cr4 = cr4_read_shadow();
d974baa3
AL
5029 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5030 vmx->host_state.vmcs_host_cr4 = cr4;
5031
a3a8ff8e 5032 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5033#ifdef CONFIG_X86_64
5034 /*
5035 * Load null selectors, so we can avoid reloading them in
5036 * __vmx_load_host_state(), in case userspace uses the null selectors
5037 * too (the expected case).
5038 */
5039 vmcs_write16(HOST_DS_SELECTOR, 0);
5040 vmcs_write16(HOST_ES_SELECTOR, 0);
5041#else
a3a8ff8e
NHE
5042 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5043 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5044#endif
a3a8ff8e
NHE
5045 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5046 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5047
5048 native_store_idt(&dt);
5049 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5050 vmx->host_idt_base = dt.address;
a3a8ff8e 5051
83287ea4 5052 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5053
5054 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5055 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5056 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5057 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5058
5059 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5060 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5061 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5062 }
5063}
5064
bf8179a0
NHE
5065static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5066{
5067 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5068 if (enable_ept)
5069 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5070 if (is_guest_mode(&vmx->vcpu))
5071 vmx->vcpu.arch.cr4_guest_owned_bits &=
5072 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5073 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5074}
5075
01e439be
YZ
5076static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5077{
5078 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5079
d62caabb 5080 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5081 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5082 /* Enable the preemption timer dynamically */
5083 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5084 return pin_based_exec_ctrl;
5085}
5086
d62caabb
AS
5087static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5088{
5089 struct vcpu_vmx *vmx = to_vmx(vcpu);
5090
5091 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5092 if (cpu_has_secondary_exec_ctrls()) {
5093 if (kvm_vcpu_apicv_active(vcpu))
5094 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5095 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5096 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5097 else
5098 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5099 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5100 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5101 }
5102
5103 if (cpu_has_vmx_msr_bitmap())
5104 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5105}
5106
bf8179a0
NHE
5107static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5108{
5109 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5110
5111 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5112 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5113
35754c98 5114 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5115 exec_control &= ~CPU_BASED_TPR_SHADOW;
5116#ifdef CONFIG_X86_64
5117 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5118 CPU_BASED_CR8_LOAD_EXITING;
5119#endif
5120 }
5121 if (!enable_ept)
5122 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5123 CPU_BASED_CR3_LOAD_EXITING |
5124 CPU_BASED_INVLPG_EXITING;
5125 return exec_control;
5126}
5127
5128static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5129{
5130 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 5131 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
5132 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5133 if (vmx->vpid == 0)
5134 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5135 if (!enable_ept) {
5136 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5137 enable_unrestricted_guest = 0;
ad756a16
MJ
5138 /* Enable INVPCID for non-ept guests may cause performance regression. */
5139 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5140 }
5141 if (!enable_unrestricted_guest)
5142 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5143 if (!ple_gap)
5144 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 5145 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
5146 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5147 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5148 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5149 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5150 (handle_vmptrld).
5151 We can NOT enable shadow_vmcs here because we don't have yet
5152 a current VMCS12
5153 */
5154 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5155
5156 if (!enable_pml)
5157 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5158
bf8179a0
NHE
5159 return exec_control;
5160}
5161
ce88decf
XG
5162static void ept_set_mmio_spte_mask(void)
5163{
5164 /*
5165 * EPT Misconfigurations can be generated if the value of bits 2:0
5166 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5167 */
dcdca5fe
PF
5168 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5169 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5170}
5171
f53cd63c 5172#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5173/*
5174 * Sets up the vmcs for emulated real mode.
5175 */
8b9cf98c 5176static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5177{
2e4ce7f5 5178#ifdef CONFIG_X86_64
6aa8b732 5179 unsigned long a;
2e4ce7f5 5180#endif
6aa8b732 5181 int i;
6aa8b732 5182
6aa8b732 5183 /* I/O */
3e7c73e9
AK
5184 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5185 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5186
4607c2d7
AG
5187 if (enable_shadow_vmcs) {
5188 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5189 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5190 }
25c5f225 5191 if (cpu_has_vmx_msr_bitmap())
5897297b 5192 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5193
6aa8b732
AK
5194 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5195
6aa8b732 5196 /* Control */
01e439be 5197 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5198 vmx->hv_deadline_tsc = -1;
6e5d865c 5199
bf8179a0 5200 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5201
dfa169bb 5202 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
5203 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5204 vmx_secondary_exec_control(vmx));
dfa169bb 5205 }
f78e0e2e 5206
d62caabb 5207 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5208 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5209 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5210 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5211 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5212
5213 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5214
0bcf261c 5215 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5216 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5217 }
5218
4b8d54f9
ZE
5219 if (ple_gap) {
5220 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5221 vmx->ple_window = ple_window;
5222 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5223 }
5224
c3707958
XG
5225 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5226 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5227 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5228
9581d442
AK
5229 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5230 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5231 vmx_set_constant_host_state(vmx);
05b3e0c2 5232#ifdef CONFIG_X86_64
6aa8b732
AK
5233 rdmsrl(MSR_FS_BASE, a);
5234 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5235 rdmsrl(MSR_GS_BASE, a);
5236 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5237#else
5238 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5239 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5240#endif
5241
2cc51560
ED
5242 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5243 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5244 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5245 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5246 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5247
74545705
RK
5248 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5249 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5250
03916db9 5251 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5252 u32 index = vmx_msr_index[i];
5253 u32 data_low, data_high;
a2fa3e9f 5254 int j = vmx->nmsrs;
6aa8b732
AK
5255
5256 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5257 continue;
432bd6cb
AK
5258 if (wrmsr_safe(index, data_low, data_high) < 0)
5259 continue;
26bb0981
AK
5260 vmx->guest_msrs[j].index = i;
5261 vmx->guest_msrs[j].data = 0;
d5696725 5262 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5263 ++vmx->nmsrs;
6aa8b732 5264 }
6aa8b732 5265
2961e876
GN
5266
5267 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5268
5269 /* 22.2.1, 20.8.1 */
2961e876 5270 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5271
bd7e5b08
PB
5272 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5273 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5274
bf8179a0 5275 set_cr4_guest_host_mask(vmx);
e00c8cf2 5276
f53cd63c
WL
5277 if (vmx_xsaves_supported())
5278 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5279
4e59516a
PF
5280 if (enable_pml) {
5281 ASSERT(vmx->pml_pg);
5282 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5283 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5284 }
5285
e00c8cf2
AK
5286 return 0;
5287}
5288
d28bc9dd 5289static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5290{
5291 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5292 struct msr_data apic_base_msr;
d28bc9dd 5293 u64 cr0;
e00c8cf2 5294
7ffd92c5 5295 vmx->rmode.vm86_active = 0;
e00c8cf2 5296
ad312c7c 5297 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5298 kvm_set_cr8(vcpu, 0);
5299
5300 if (!init_event) {
5301 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5302 MSR_IA32_APICBASE_ENABLE;
5303 if (kvm_vcpu_is_reset_bsp(vcpu))
5304 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5305 apic_base_msr.host_initiated = true;
5306 kvm_set_apic_base(vcpu, &apic_base_msr);
5307 }
e00c8cf2 5308
2fb92db1
AK
5309 vmx_segment_cache_clear(vmx);
5310
5706be0d 5311 seg_setup(VCPU_SREG_CS);
66450a21 5312 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5313 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5314
5315 seg_setup(VCPU_SREG_DS);
5316 seg_setup(VCPU_SREG_ES);
5317 seg_setup(VCPU_SREG_FS);
5318 seg_setup(VCPU_SREG_GS);
5319 seg_setup(VCPU_SREG_SS);
5320
5321 vmcs_write16(GUEST_TR_SELECTOR, 0);
5322 vmcs_writel(GUEST_TR_BASE, 0);
5323 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5324 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5325
5326 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5327 vmcs_writel(GUEST_LDTR_BASE, 0);
5328 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5329 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5330
d28bc9dd
NA
5331 if (!init_event) {
5332 vmcs_write32(GUEST_SYSENTER_CS, 0);
5333 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5334 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5335 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5336 }
e00c8cf2
AK
5337
5338 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5339 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5340
e00c8cf2
AK
5341 vmcs_writel(GUEST_GDTR_BASE, 0);
5342 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5343
5344 vmcs_writel(GUEST_IDTR_BASE, 0);
5345 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5346
443381a8 5347 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5348 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5349 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5350
e00c8cf2
AK
5351 setup_msrs(vmx);
5352
6aa8b732
AK
5353 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5354
d28bc9dd 5355 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5356 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5357 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5358 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5359 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5360 vmcs_write32(TPR_THRESHOLD, 0);
5361 }
5362
a73896cb 5363 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5364
d62caabb 5365 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5366 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5367
2384d2b3
SY
5368 if (vmx->vpid != 0)
5369 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5370
d28bc9dd 5371 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5372 vmx->vcpu.arch.cr0 = cr0;
f2463247 5373 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5374 vmx_set_cr4(vcpu, 0);
5690891b 5375 vmx_set_efer(vcpu, 0);
bd7e5b08 5376
d28bc9dd 5377 update_exception_bitmap(vcpu);
6aa8b732 5378
dd5f5341 5379 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5380}
5381
b6f1250e
NHE
5382/*
5383 * In nested virtualization, check if L1 asked to exit on external interrupts.
5384 * For most existing hypervisors, this will always return true.
5385 */
5386static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5387{
5388 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5389 PIN_BASED_EXT_INTR_MASK;
5390}
5391
77b0f5d6
BD
5392/*
5393 * In nested virtualization, check if L1 has set
5394 * VM_EXIT_ACK_INTR_ON_EXIT
5395 */
5396static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5397{
5398 return get_vmcs12(vcpu)->vm_exit_controls &
5399 VM_EXIT_ACK_INTR_ON_EXIT;
5400}
5401
ea8ceb83
JK
5402static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5403{
5404 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5405 PIN_BASED_NMI_EXITING;
5406}
5407
c9a7953f 5408static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5409{
47c0152e
PB
5410 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5411 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5412}
5413
c9a7953f 5414static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5415{
2c82878b 5416 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5417 enable_irq_window(vcpu);
5418 return;
5419 }
3b86cd99 5420
47c0152e
PB
5421 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5422 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5423}
5424
66fd3f7f 5425static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5426{
9c8cba37 5427 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5428 uint32_t intr;
5429 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5430
229456fc 5431 trace_kvm_inj_virq(irq);
2714d1d3 5432
fa89a817 5433 ++vcpu->stat.irq_injections;
7ffd92c5 5434 if (vmx->rmode.vm86_active) {
71f9833b
SH
5435 int inc_eip = 0;
5436 if (vcpu->arch.interrupt.soft)
5437 inc_eip = vcpu->arch.event_exit_inst_len;
5438 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5439 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5440 return;
5441 }
66fd3f7f
GN
5442 intr = irq | INTR_INFO_VALID_MASK;
5443 if (vcpu->arch.interrupt.soft) {
5444 intr |= INTR_TYPE_SOFT_INTR;
5445 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5446 vmx->vcpu.arch.event_exit_inst_len);
5447 } else
5448 intr |= INTR_TYPE_EXT_INTR;
5449 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5450}
5451
f08864b4
SY
5452static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5453{
66a5a347
JK
5454 struct vcpu_vmx *vmx = to_vmx(vcpu);
5455
c5a6d5f7 5456 if (!is_guest_mode(vcpu)) {
c5a6d5f7
WL
5457 ++vcpu->stat.nmi_injections;
5458 vmx->nmi_known_unmasked = false;
3b86cd99
JK
5459 }
5460
7ffd92c5 5461 if (vmx->rmode.vm86_active) {
71f9833b 5462 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5463 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5464 return;
5465 }
c5a6d5f7 5466
f08864b4
SY
5467 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5468 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5469}
5470
3cfc3092
JK
5471static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5472{
9d58b931
AK
5473 if (to_vmx(vcpu)->nmi_known_unmasked)
5474 return false;
c332c83a 5475 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5476}
5477
5478static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5479{
5480 struct vcpu_vmx *vmx = to_vmx(vcpu);
5481
2c82878b
PB
5482 vmx->nmi_known_unmasked = !masked;
5483 if (masked)
5484 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5485 GUEST_INTR_STATE_NMI);
5486 else
5487 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5488 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5489}
5490
2505dc9f
JK
5491static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5492{
b6b8a145
JK
5493 if (to_vmx(vcpu)->nested.nested_run_pending)
5494 return 0;
ea8ceb83 5495
2505dc9f
JK
5496 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5497 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5498 | GUEST_INTR_STATE_NMI));
5499}
5500
78646121
GN
5501static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5502{
b6b8a145
JK
5503 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5504 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5505 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5506 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5507}
5508
cbc94022
IE
5509static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5510{
5511 int ret;
cbc94022 5512
1d8007bd
PB
5513 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5514 PAGE_SIZE * 3);
cbc94022
IE
5515 if (ret)
5516 return ret;
bfc6d222 5517 kvm->arch.tss_addr = addr;
1f755a82 5518 return init_rmode_tss(kvm);
cbc94022
IE
5519}
5520
0ca1b4f4 5521static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5522{
77ab6db0 5523 switch (vec) {
77ab6db0 5524 case BP_VECTOR:
c573cd22
JK
5525 /*
5526 * Update instruction length as we may reinject the exception
5527 * from user space while in guest debugging mode.
5528 */
5529 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5530 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5531 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5532 return false;
5533 /* fall through */
5534 case DB_VECTOR:
5535 if (vcpu->guest_debug &
5536 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5537 return false;
d0bfb940
JK
5538 /* fall through */
5539 case DE_VECTOR:
77ab6db0
JK
5540 case OF_VECTOR:
5541 case BR_VECTOR:
5542 case UD_VECTOR:
5543 case DF_VECTOR:
5544 case SS_VECTOR:
5545 case GP_VECTOR:
5546 case MF_VECTOR:
0ca1b4f4
GN
5547 return true;
5548 break;
77ab6db0 5549 }
0ca1b4f4
GN
5550 return false;
5551}
5552
5553static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5554 int vec, u32 err_code)
5555{
5556 /*
5557 * Instruction with address size override prefix opcode 0x67
5558 * Cause the #SS fault with 0 error code in VM86 mode.
5559 */
5560 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5561 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5562 if (vcpu->arch.halt_request) {
5563 vcpu->arch.halt_request = 0;
5cb56059 5564 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5565 }
5566 return 1;
5567 }
5568 return 0;
5569 }
5570
5571 /*
5572 * Forward all other exceptions that are valid in real mode.
5573 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5574 * the required debugging infrastructure rework.
5575 */
5576 kvm_queue_exception(vcpu, vec);
5577 return 1;
6aa8b732
AK
5578}
5579
a0861c02
AK
5580/*
5581 * Trigger machine check on the host. We assume all the MSRs are already set up
5582 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5583 * We pass a fake environment to the machine check handler because we want
5584 * the guest to be always treated like user space, no matter what context
5585 * it used internally.
5586 */
5587static void kvm_machine_check(void)
5588{
5589#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5590 struct pt_regs regs = {
5591 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5592 .flags = X86_EFLAGS_IF,
5593 };
5594
5595 do_machine_check(&regs, 0);
5596#endif
5597}
5598
851ba692 5599static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5600{
5601 /* already handled by vcpu_run */
5602 return 1;
5603}
5604
851ba692 5605static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5606{
1155f76a 5607 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5608 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5609 u32 intr_info, ex_no, error_code;
42dbaa5a 5610 unsigned long cr2, rip, dr6;
6aa8b732
AK
5611 u32 vect_info;
5612 enum emulation_result er;
5613
1155f76a 5614 vect_info = vmx->idt_vectoring_info;
88786475 5615 intr_info = vmx->exit_intr_info;
6aa8b732 5616
a0861c02 5617 if (is_machine_check(intr_info))
851ba692 5618 return handle_machine_check(vcpu);
a0861c02 5619
ef85b673 5620 if (is_nmi(intr_info))
1b6269db 5621 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5622
7aa81cc0 5623 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5624 if (is_guest_mode(vcpu)) {
5625 kvm_queue_exception(vcpu, UD_VECTOR);
5626 return 1;
5627 }
51d8b661 5628 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5629 if (er != EMULATE_DONE)
7ee5d940 5630 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5631 return 1;
5632 }
5633
6aa8b732 5634 error_code = 0;
2e11384c 5635 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5636 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5637
5638 /*
5639 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5640 * MMIO, it is better to report an internal error.
5641 * See the comments in vmx_handle_exit.
5642 */
5643 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5644 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5645 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5646 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5647 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5648 vcpu->run->internal.data[0] = vect_info;
5649 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5650 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5651 return 0;
5652 }
5653
6aa8b732 5654 if (is_page_fault(intr_info)) {
1439442c 5655 /* EPT won't cause page fault directly */
cf3ace79 5656 BUG_ON(enable_ept);
6aa8b732 5657 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5658 trace_kvm_page_fault(cr2, error_code);
5659
3298b75c 5660 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5661 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5662 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5663 }
5664
d0bfb940 5665 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5666
5667 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5668 return handle_rmode_exception(vcpu, ex_no, error_code);
5669
42dbaa5a 5670 switch (ex_no) {
54a20552
EN
5671 case AC_VECTOR:
5672 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5673 return 1;
42dbaa5a
JK
5674 case DB_VECTOR:
5675 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5676 if (!(vcpu->guest_debug &
5677 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5678 vcpu->arch.dr6 &= ~15;
6f43ed01 5679 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5680 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5681 skip_emulated_instruction(vcpu);
5682
42dbaa5a
JK
5683 kvm_queue_exception(vcpu, DB_VECTOR);
5684 return 1;
5685 }
5686 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5687 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5688 /* fall through */
5689 case BP_VECTOR:
c573cd22
JK
5690 /*
5691 * Update instruction length as we may reinject #BP from
5692 * user space while in guest debugging mode. Reading it for
5693 * #DB as well causes no harm, it is not used in that case.
5694 */
5695 vmx->vcpu.arch.event_exit_inst_len =
5696 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5697 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5698 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5699 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5700 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5701 break;
5702 default:
d0bfb940
JK
5703 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5704 kvm_run->ex.exception = ex_no;
5705 kvm_run->ex.error_code = error_code;
42dbaa5a 5706 break;
6aa8b732 5707 }
6aa8b732
AK
5708 return 0;
5709}
5710
851ba692 5711static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5712{
1165f5fe 5713 ++vcpu->stat.irq_exits;
6aa8b732
AK
5714 return 1;
5715}
5716
851ba692 5717static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5718{
851ba692 5719 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5720 return 0;
5721}
6aa8b732 5722
851ba692 5723static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5724{
bfdaab09 5725 unsigned long exit_qualification;
6affcbed 5726 int size, in, string, ret;
039576c0 5727 unsigned port;
6aa8b732 5728
bfdaab09 5729 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5730 string = (exit_qualification & 16) != 0;
cf8f70bf 5731 in = (exit_qualification & 8) != 0;
e70669ab 5732
cf8f70bf 5733 ++vcpu->stat.io_exits;
e70669ab 5734
cf8f70bf 5735 if (string || in)
51d8b661 5736 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5737
cf8f70bf
GN
5738 port = exit_qualification >> 16;
5739 size = (exit_qualification & 7) + 1;
cf8f70bf 5740
6affcbed
KH
5741 ret = kvm_skip_emulated_instruction(vcpu);
5742
5743 /*
5744 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5745 * KVM_EXIT_DEBUG here.
5746 */
5747 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
5748}
5749
102d8325
IM
5750static void
5751vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5752{
5753 /*
5754 * Patch in the VMCALL instruction:
5755 */
5756 hypercall[0] = 0x0f;
5757 hypercall[1] = 0x01;
5758 hypercall[2] = 0xc1;
102d8325
IM
5759}
5760
0fa06071 5761/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5762static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5763{
eeadf9e7 5764 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5765 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5766 unsigned long orig_val = val;
5767
eeadf9e7
NHE
5768 /*
5769 * We get here when L2 changed cr0 in a way that did not change
5770 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5771 * but did change L0 shadowed bits. So we first calculate the
5772 * effective cr0 value that L1 would like to write into the
5773 * hardware. It consists of the L2-owned bits from the new
5774 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5775 */
1a0d74e6
JK
5776 val = (val & ~vmcs12->cr0_guest_host_mask) |
5777 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5778
3899152c 5779 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 5780 return 1;
1a0d74e6
JK
5781
5782 if (kvm_set_cr0(vcpu, val))
5783 return 1;
5784 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5785 return 0;
1a0d74e6
JK
5786 } else {
5787 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 5788 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 5789 return 1;
3899152c 5790
eeadf9e7 5791 return kvm_set_cr0(vcpu, val);
1a0d74e6 5792 }
eeadf9e7
NHE
5793}
5794
5795static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5796{
5797 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5798 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5799 unsigned long orig_val = val;
5800
5801 /* analogously to handle_set_cr0 */
5802 val = (val & ~vmcs12->cr4_guest_host_mask) |
5803 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5804 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5805 return 1;
1a0d74e6 5806 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5807 return 0;
5808 } else
5809 return kvm_set_cr4(vcpu, val);
5810}
5811
851ba692 5812static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5813{
229456fc 5814 unsigned long exit_qualification, val;
6aa8b732
AK
5815 int cr;
5816 int reg;
49a9b07e 5817 int err;
6affcbed 5818 int ret;
6aa8b732 5819
bfdaab09 5820 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5821 cr = exit_qualification & 15;
5822 reg = (exit_qualification >> 8) & 15;
5823 switch ((exit_qualification >> 4) & 3) {
5824 case 0: /* mov to cr */
1e32c079 5825 val = kvm_register_readl(vcpu, reg);
229456fc 5826 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5827 switch (cr) {
5828 case 0:
eeadf9e7 5829 err = handle_set_cr0(vcpu, val);
6affcbed 5830 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5831 case 3:
2390218b 5832 err = kvm_set_cr3(vcpu, val);
6affcbed 5833 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 5834 case 4:
eeadf9e7 5835 err = handle_set_cr4(vcpu, val);
6affcbed 5836 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
5837 case 8: {
5838 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5839 u8 cr8 = (u8)val;
eea1cff9 5840 err = kvm_set_cr8(vcpu, cr8);
6affcbed 5841 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 5842 if (lapic_in_kernel(vcpu))
6affcbed 5843 return ret;
0a5fff19 5844 if (cr8_prev <= cr8)
6affcbed
KH
5845 return ret;
5846 /*
5847 * TODO: we might be squashing a
5848 * KVM_GUESTDBG_SINGLESTEP-triggered
5849 * KVM_EXIT_DEBUG here.
5850 */
851ba692 5851 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5852 return 0;
5853 }
4b8073e4 5854 }
6aa8b732 5855 break;
25c4c276 5856 case 2: /* clts */
bd7e5b08
PB
5857 WARN_ONCE(1, "Guest should always own CR0.TS");
5858 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 5859 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 5860 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5861 case 1: /*mov from cr*/
5862 switch (cr) {
5863 case 3:
9f8fe504
AK
5864 val = kvm_read_cr3(vcpu);
5865 kvm_register_write(vcpu, reg, val);
5866 trace_kvm_cr_read(cr, val);
6affcbed 5867 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 5868 case 8:
229456fc
MT
5869 val = kvm_get_cr8(vcpu);
5870 kvm_register_write(vcpu, reg, val);
5871 trace_kvm_cr_read(cr, val);
6affcbed 5872 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5873 }
5874 break;
5875 case 3: /* lmsw */
a1f83a74 5876 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5877 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5878 kvm_lmsw(vcpu, val);
6aa8b732 5879
6affcbed 5880 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5881 default:
5882 break;
5883 }
851ba692 5884 vcpu->run->exit_reason = 0;
a737f256 5885 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5886 (int)(exit_qualification >> 4) & 3, cr);
5887 return 0;
5888}
5889
851ba692 5890static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5891{
bfdaab09 5892 unsigned long exit_qualification;
16f8a6f9
NA
5893 int dr, dr7, reg;
5894
5895 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5896 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5897
5898 /* First, if DR does not exist, trigger UD */
5899 if (!kvm_require_dr(vcpu, dr))
5900 return 1;
6aa8b732 5901
f2483415 5902 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5903 if (!kvm_require_cpl(vcpu, 0))
5904 return 1;
16f8a6f9
NA
5905 dr7 = vmcs_readl(GUEST_DR7);
5906 if (dr7 & DR7_GD) {
42dbaa5a
JK
5907 /*
5908 * As the vm-exit takes precedence over the debug trap, we
5909 * need to emulate the latter, either for the host or the
5910 * guest debugging itself.
5911 */
5912 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5913 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5914 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5915 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5916 vcpu->run->debug.arch.exception = DB_VECTOR;
5917 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5918 return 0;
5919 } else {
7305eb5d 5920 vcpu->arch.dr6 &= ~15;
6f43ed01 5921 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5922 kvm_queue_exception(vcpu, DB_VECTOR);
5923 return 1;
5924 }
5925 }
5926
81908bf4 5927 if (vcpu->guest_debug == 0) {
8f22372f
PB
5928 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5929 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5930
5931 /*
5932 * No more DR vmexits; force a reload of the debug registers
5933 * and reenter on this instruction. The next vmexit will
5934 * retrieve the full state of the debug registers.
5935 */
5936 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5937 return 1;
5938 }
5939
42dbaa5a
JK
5940 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5941 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5942 unsigned long val;
4c4d563b
JK
5943
5944 if (kvm_get_dr(vcpu, dr, &val))
5945 return 1;
5946 kvm_register_write(vcpu, reg, val);
020df079 5947 } else
5777392e 5948 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5949 return 1;
5950
6affcbed 5951 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
5952}
5953
73aaf249
JK
5954static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5955{
5956 return vcpu->arch.dr6;
5957}
5958
5959static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5960{
5961}
5962
81908bf4
PB
5963static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5964{
81908bf4
PB
5965 get_debugreg(vcpu->arch.db[0], 0);
5966 get_debugreg(vcpu->arch.db[1], 1);
5967 get_debugreg(vcpu->arch.db[2], 2);
5968 get_debugreg(vcpu->arch.db[3], 3);
5969 get_debugreg(vcpu->arch.dr6, 6);
5970 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5971
5972 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5973 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5974}
5975
020df079
GN
5976static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5977{
5978 vmcs_writel(GUEST_DR7, val);
5979}
5980
851ba692 5981static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5982{
6a908b62 5983 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
5984}
5985
851ba692 5986static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5987{
ad312c7c 5988 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5989 struct msr_data msr_info;
6aa8b732 5990
609e36d3
PB
5991 msr_info.index = ecx;
5992 msr_info.host_initiated = false;
5993 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5994 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5995 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5996 return 1;
5997 }
5998
609e36d3 5999 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6000
6aa8b732 6001 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6002 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6003 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6004 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6005}
6006
851ba692 6007static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6008{
8fe8ab46 6009 struct msr_data msr;
ad312c7c
ZX
6010 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6011 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6012 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6013
8fe8ab46
WA
6014 msr.data = data;
6015 msr.index = ecx;
6016 msr.host_initiated = false;
854e8bb1 6017 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6018 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6019 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6020 return 1;
6021 }
6022
59200273 6023 trace_kvm_msr_write(ecx, data);
6affcbed 6024 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6025}
6026
851ba692 6027static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6028{
eb90f341 6029 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6030 return 1;
6031}
6032
851ba692 6033static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6034{
47c0152e
PB
6035 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6036 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6037
3842d135
AK
6038 kvm_make_request(KVM_REQ_EVENT, vcpu);
6039
a26bf12a 6040 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6041 return 1;
6042}
6043
851ba692 6044static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6045{
d3bef15f 6046 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6047}
6048
851ba692 6049static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6050{
0d9c055e 6051 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6052}
6053
ec25d5e6
GN
6054static int handle_invd(struct kvm_vcpu *vcpu)
6055{
51d8b661 6056 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6057}
6058
851ba692 6059static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6060{
f9c617f6 6061 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6062
6063 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6064 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6065}
6066
fee84b07
AK
6067static int handle_rdpmc(struct kvm_vcpu *vcpu)
6068{
6069 int err;
6070
6071 err = kvm_rdpmc(vcpu);
6affcbed 6072 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6073}
6074
851ba692 6075static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6076{
6affcbed 6077 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6078}
6079
2acf923e
DC
6080static int handle_xsetbv(struct kvm_vcpu *vcpu)
6081{
6082 u64 new_bv = kvm_read_edx_eax(vcpu);
6083 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6084
6085 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6086 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6087 return 1;
6088}
6089
f53cd63c
WL
6090static int handle_xsaves(struct kvm_vcpu *vcpu)
6091{
6affcbed 6092 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6093 WARN(1, "this should never happen\n");
6094 return 1;
6095}
6096
6097static int handle_xrstors(struct kvm_vcpu *vcpu)
6098{
6affcbed 6099 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6100 WARN(1, "this should never happen\n");
6101 return 1;
6102}
6103
851ba692 6104static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6105{
58fbbf26
KT
6106 if (likely(fasteoi)) {
6107 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6108 int access_type, offset;
6109
6110 access_type = exit_qualification & APIC_ACCESS_TYPE;
6111 offset = exit_qualification & APIC_ACCESS_OFFSET;
6112 /*
6113 * Sane guest uses MOV to write EOI, with written value
6114 * not cared. So make a short-circuit here by avoiding
6115 * heavy instruction emulation.
6116 */
6117 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6118 (offset == APIC_EOI)) {
6119 kvm_lapic_set_eoi(vcpu);
6affcbed 6120 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6121 }
6122 }
51d8b661 6123 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6124}
6125
c7c9c56c
YZ
6126static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6127{
6128 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6129 int vector = exit_qualification & 0xff;
6130
6131 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6132 kvm_apic_set_eoi_accelerated(vcpu, vector);
6133 return 1;
6134}
6135
83d4c286
YZ
6136static int handle_apic_write(struct kvm_vcpu *vcpu)
6137{
6138 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6139 u32 offset = exit_qualification & 0xfff;
6140
6141 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6142 kvm_apic_write_nodecode(vcpu, offset);
6143 return 1;
6144}
6145
851ba692 6146static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6147{
60637aac 6148 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6149 unsigned long exit_qualification;
e269fb21
JK
6150 bool has_error_code = false;
6151 u32 error_code = 0;
37817f29 6152 u16 tss_selector;
7f3d35fd 6153 int reason, type, idt_v, idt_index;
64a7ec06
GN
6154
6155 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6156 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6157 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6158
6159 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6160
6161 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6162 if (reason == TASK_SWITCH_GATE && idt_v) {
6163 switch (type) {
6164 case INTR_TYPE_NMI_INTR:
6165 vcpu->arch.nmi_injected = false;
654f06fc 6166 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6167 break;
6168 case INTR_TYPE_EXT_INTR:
66fd3f7f 6169 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6170 kvm_clear_interrupt_queue(vcpu);
6171 break;
6172 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6173 if (vmx->idt_vectoring_info &
6174 VECTORING_INFO_DELIVER_CODE_MASK) {
6175 has_error_code = true;
6176 error_code =
6177 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6178 }
6179 /* fall through */
64a7ec06
GN
6180 case INTR_TYPE_SOFT_EXCEPTION:
6181 kvm_clear_exception_queue(vcpu);
6182 break;
6183 default:
6184 break;
6185 }
60637aac 6186 }
37817f29
IE
6187 tss_selector = exit_qualification;
6188
64a7ec06
GN
6189 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6190 type != INTR_TYPE_EXT_INTR &&
6191 type != INTR_TYPE_NMI_INTR))
6192 skip_emulated_instruction(vcpu);
6193
7f3d35fd
KW
6194 if (kvm_task_switch(vcpu, tss_selector,
6195 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6196 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6197 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6198 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6199 vcpu->run->internal.ndata = 0;
42dbaa5a 6200 return 0;
acb54517 6201 }
42dbaa5a 6202
42dbaa5a
JK
6203 /*
6204 * TODO: What about debug traps on tss switch?
6205 * Are we supposed to inject them and update dr6?
6206 */
6207
6208 return 1;
37817f29
IE
6209}
6210
851ba692 6211static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6212{
f9c617f6 6213 unsigned long exit_qualification;
1439442c 6214 gpa_t gpa;
4f5982a5 6215 u32 error_code;
1439442c 6216
f9c617f6 6217 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6218
0be9c7a8
GN
6219 /*
6220 * EPT violation happened while executing iret from NMI,
6221 * "blocked by NMI" bit has to be set before next VM entry.
6222 * There are errata that may cause this bit to not be set:
6223 * AAK134, BY25.
6224 */
bcd1c294 6225 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6226 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6227 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6228
1439442c 6229 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6230 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6231
27959a44 6232 /* Is it a read fault? */
ab22a473 6233 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6234 ? PFERR_USER_MASK : 0;
6235 /* Is it a write fault? */
ab22a473 6236 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6237 ? PFERR_WRITE_MASK : 0;
6238 /* Is it a fetch fault? */
ab22a473 6239 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6240 ? PFERR_FETCH_MASK : 0;
6241 /* ept page table entry is present? */
6242 error_code |= (exit_qualification &
6243 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6244 EPT_VIOLATION_EXECUTABLE))
6245 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6246
db1c056c 6247 vcpu->arch.gpa_available = true;
25d92081
YZ
6248 vcpu->arch.exit_qualification = exit_qualification;
6249
4f5982a5 6250 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6251}
6252
851ba692 6253static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6254{
f735d4af 6255 int ret;
68f89400
MT
6256 gpa_t gpa;
6257
6258 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6259 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6260 trace_kvm_fast_mmio(gpa);
6affcbed 6261 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6262 }
68f89400 6263
450869d6 6264 ret = handle_mmio_page_fault(vcpu, gpa, true);
db1c056c 6265 vcpu->arch.gpa_available = true;
b37fbea6 6266 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6267 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6268 EMULATE_DONE;
f8f55942
XG
6269
6270 if (unlikely(ret == RET_MMIO_PF_INVALID))
6271 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6272
b37fbea6 6273 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6274 return 1;
6275
6276 /* It is the real ept misconfig */
f735d4af 6277 WARN_ON(1);
68f89400 6278
851ba692
AK
6279 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6280 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6281
6282 return 0;
6283}
6284
851ba692 6285static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6286{
47c0152e
PB
6287 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6288 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6289 ++vcpu->stat.nmi_window_exits;
3842d135 6290 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6291
6292 return 1;
6293}
6294
80ced186 6295static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6296{
8b3079a5
AK
6297 struct vcpu_vmx *vmx = to_vmx(vcpu);
6298 enum emulation_result err = EMULATE_DONE;
80ced186 6299 int ret = 1;
49e9d557
AK
6300 u32 cpu_exec_ctrl;
6301 bool intr_window_requested;
b8405c18 6302 unsigned count = 130;
49e9d557
AK
6303
6304 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6305 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6306
98eb2f8b 6307 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6308 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6309 return handle_interrupt_window(&vmx->vcpu);
6310
72875d8a 6311 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6312 return 1;
6313
991eebf9 6314 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6315
ac0a48c3 6316 if (err == EMULATE_USER_EXIT) {
94452b9e 6317 ++vcpu->stat.mmio_exits;
80ced186
MG
6318 ret = 0;
6319 goto out;
6320 }
1d5a4d9b 6321
de5f70e0
AK
6322 if (err != EMULATE_DONE) {
6323 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6324 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6325 vcpu->run->internal.ndata = 0;
6d77dbfc 6326 return 0;
de5f70e0 6327 }
ea953ef0 6328
8d76c49e
GN
6329 if (vcpu->arch.halt_request) {
6330 vcpu->arch.halt_request = 0;
5cb56059 6331 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6332 goto out;
6333 }
6334
ea953ef0 6335 if (signal_pending(current))
80ced186 6336 goto out;
ea953ef0
MG
6337 if (need_resched())
6338 schedule();
6339 }
6340
80ced186
MG
6341out:
6342 return ret;
ea953ef0
MG
6343}
6344
b4a2d31d
RK
6345static int __grow_ple_window(int val)
6346{
6347 if (ple_window_grow < 1)
6348 return ple_window;
6349
6350 val = min(val, ple_window_actual_max);
6351
6352 if (ple_window_grow < ple_window)
6353 val *= ple_window_grow;
6354 else
6355 val += ple_window_grow;
6356
6357 return val;
6358}
6359
6360static int __shrink_ple_window(int val, int modifier, int minimum)
6361{
6362 if (modifier < 1)
6363 return ple_window;
6364
6365 if (modifier < ple_window)
6366 val /= modifier;
6367 else
6368 val -= modifier;
6369
6370 return max(val, minimum);
6371}
6372
6373static void grow_ple_window(struct kvm_vcpu *vcpu)
6374{
6375 struct vcpu_vmx *vmx = to_vmx(vcpu);
6376 int old = vmx->ple_window;
6377
6378 vmx->ple_window = __grow_ple_window(old);
6379
6380 if (vmx->ple_window != old)
6381 vmx->ple_window_dirty = true;
7b46268d
RK
6382
6383 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6384}
6385
6386static void shrink_ple_window(struct kvm_vcpu *vcpu)
6387{
6388 struct vcpu_vmx *vmx = to_vmx(vcpu);
6389 int old = vmx->ple_window;
6390
6391 vmx->ple_window = __shrink_ple_window(old,
6392 ple_window_shrink, ple_window);
6393
6394 if (vmx->ple_window != old)
6395 vmx->ple_window_dirty = true;
7b46268d
RK
6396
6397 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6398}
6399
6400/*
6401 * ple_window_actual_max is computed to be one grow_ple_window() below
6402 * ple_window_max. (See __grow_ple_window for the reason.)
6403 * This prevents overflows, because ple_window_max is int.
6404 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6405 * this process.
6406 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6407 */
6408static void update_ple_window_actual_max(void)
6409{
6410 ple_window_actual_max =
6411 __shrink_ple_window(max(ple_window_max, ple_window),
6412 ple_window_grow, INT_MIN);
6413}
6414
bf9f6ac8
FW
6415/*
6416 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6417 */
6418static void wakeup_handler(void)
6419{
6420 struct kvm_vcpu *vcpu;
6421 int cpu = smp_processor_id();
6422
6423 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6424 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6425 blocked_vcpu_list) {
6426 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6427
6428 if (pi_test_on(pi_desc) == 1)
6429 kvm_vcpu_kick(vcpu);
6430 }
6431 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6432}
6433
f160c7b7
JS
6434void vmx_enable_tdp(void)
6435{
6436 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6437 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6438 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6439 0ull, VMX_EPT_EXECUTABLE_MASK,
6440 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
995f00a6 6441 VMX_EPT_RWX_MASK);
f160c7b7
JS
6442
6443 ept_set_mmio_spte_mask();
6444 kvm_enable_tdp();
6445}
6446
f2c7648d
TC
6447static __init int hardware_setup(void)
6448{
34a1cd60
TC
6449 int r = -ENOMEM, i, msr;
6450
6451 rdmsrl_safe(MSR_EFER, &host_efer);
6452
6453 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6454 kvm_define_shared_msr(i, vmx_msr_index[i]);
6455
23611332
RK
6456 for (i = 0; i < VMX_BITMAP_NR; i++) {
6457 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6458 if (!vmx_bitmap[i])
6459 goto out;
6460 }
34a1cd60
TC
6461
6462 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6463 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6464 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6465
6466 /*
6467 * Allow direct access to the PC debug port (it is often used for I/O
6468 * delays, but the vmexits simply slow things down).
6469 */
6470 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6471 clear_bit(0x80, vmx_io_bitmap_a);
6472
6473 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6474
6475 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6476 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6477
34a1cd60
TC
6478 if (setup_vmcs_config(&vmcs_config) < 0) {
6479 r = -EIO;
23611332 6480 goto out;
baa03522 6481 }
f2c7648d
TC
6482
6483 if (boot_cpu_has(X86_FEATURE_NX))
6484 kvm_enable_efer_bits(EFER_NX);
6485
08d839c4
WL
6486 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6487 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6488 enable_vpid = 0;
08d839c4 6489
f2c7648d
TC
6490 if (!cpu_has_vmx_shadow_vmcs())
6491 enable_shadow_vmcs = 0;
6492 if (enable_shadow_vmcs)
6493 init_vmcs_shadow_fields();
6494
6495 if (!cpu_has_vmx_ept() ||
6496 !cpu_has_vmx_ept_4levels()) {
6497 enable_ept = 0;
6498 enable_unrestricted_guest = 0;
6499 enable_ept_ad_bits = 0;
6500 }
6501
fce6ac4c 6502 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6503 enable_ept_ad_bits = 0;
6504
6505 if (!cpu_has_vmx_unrestricted_guest())
6506 enable_unrestricted_guest = 0;
6507
ad15a296 6508 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6509 flexpriority_enabled = 0;
6510
ad15a296
PB
6511 /*
6512 * set_apic_access_page_addr() is used to reload apic access
6513 * page upon invalidation. No need to do anything if not
6514 * using the APIC_ACCESS_ADDR VMCS field.
6515 */
6516 if (!flexpriority_enabled)
f2c7648d 6517 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6518
6519 if (!cpu_has_vmx_tpr_shadow())
6520 kvm_x86_ops->update_cr8_intercept = NULL;
6521
6522 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6523 kvm_disable_largepages();
6524
6525 if (!cpu_has_vmx_ple())
6526 ple_gap = 0;
6527
76dfafd5 6528 if (!cpu_has_vmx_apicv()) {
f2c7648d 6529 enable_apicv = 0;
76dfafd5
PB
6530 kvm_x86_ops->sync_pir_to_irr = NULL;
6531 }
f2c7648d 6532
64903d61
HZ
6533 if (cpu_has_vmx_tsc_scaling()) {
6534 kvm_has_tsc_control = true;
6535 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6536 kvm_tsc_scaling_ratio_frac_bits = 48;
6537 }
6538
baa03522
TC
6539 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6540 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6541 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6542 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6543 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6544 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6545
c63e4563 6546 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6547 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6548 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6549 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6550 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6551 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6552 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6553 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6554
04bb92e4
WL
6555 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6556
40d8338d
RK
6557 for (msr = 0x800; msr <= 0x8ff; msr++) {
6558 if (msr == 0x839 /* TMCCT */)
6559 continue;
2e69f865 6560 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6561 }
3ce424e4 6562
f6e90f9e 6563 /*
2e69f865
RK
6564 * TPR reads and writes can be virtualized even if virtual interrupt
6565 * delivery is not in use.
f6e90f9e 6566 */
2e69f865
RK
6567 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6568 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6569
3ce424e4 6570 /* EOI */
2e69f865 6571 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6572 /* SELF-IPI */
2e69f865 6573 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6574
f160c7b7
JS
6575 if (enable_ept)
6576 vmx_enable_tdp();
6577 else
baa03522
TC
6578 kvm_disable_tdp();
6579
6580 update_ple_window_actual_max();
6581
843e4330
KH
6582 /*
6583 * Only enable PML when hardware supports PML feature, and both EPT
6584 * and EPT A/D bit features are enabled -- PML depends on them to work.
6585 */
6586 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6587 enable_pml = 0;
6588
6589 if (!enable_pml) {
6590 kvm_x86_ops->slot_enable_log_dirty = NULL;
6591 kvm_x86_ops->slot_disable_log_dirty = NULL;
6592 kvm_x86_ops->flush_log_dirty = NULL;
6593 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6594 }
6595
64672c95
YJ
6596 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6597 u64 vmx_msr;
6598
6599 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6600 cpu_preemption_timer_multi =
6601 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6602 } else {
6603 kvm_x86_ops->set_hv_timer = NULL;
6604 kvm_x86_ops->cancel_hv_timer = NULL;
6605 }
6606
bf9f6ac8
FW
6607 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6608
c45dcc71
AR
6609 kvm_mce_cap_supported |= MCG_LMCE_P;
6610
f2c7648d 6611 return alloc_kvm_area();
34a1cd60 6612
34a1cd60 6613out:
23611332
RK
6614 for (i = 0; i < VMX_BITMAP_NR; i++)
6615 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6616
6617 return r;
f2c7648d
TC
6618}
6619
6620static __exit void hardware_unsetup(void)
6621{
23611332
RK
6622 int i;
6623
6624 for (i = 0; i < VMX_BITMAP_NR; i++)
6625 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6626
f2c7648d
TC
6627 free_kvm_area();
6628}
6629
4b8d54f9
ZE
6630/*
6631 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6632 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6633 */
9fb41ba8 6634static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6635{
b4a2d31d
RK
6636 if (ple_gap)
6637 grow_ple_window(vcpu);
6638
4b8d54f9 6639 kvm_vcpu_on_spin(vcpu);
6affcbed 6640 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6641}
6642
87c00572 6643static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6644{
6affcbed 6645 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6646}
6647
87c00572
GS
6648static int handle_mwait(struct kvm_vcpu *vcpu)
6649{
6650 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6651 return handle_nop(vcpu);
6652}
6653
5f3d45e7
MD
6654static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6655{
6656 return 1;
6657}
6658
87c00572
GS
6659static int handle_monitor(struct kvm_vcpu *vcpu)
6660{
6661 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6662 return handle_nop(vcpu);
6663}
6664
ff2f6fe9
NHE
6665/*
6666 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6667 * We could reuse a single VMCS for all the L2 guests, but we also want the
6668 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6669 * allows keeping them loaded on the processor, and in the future will allow
6670 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6671 * every entry if they never change.
6672 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6673 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6674 *
6675 * The following functions allocate and free a vmcs02 in this pool.
6676 */
6677
6678/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6679static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6680{
6681 struct vmcs02_list *item;
6682 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6683 if (item->vmptr == vmx->nested.current_vmptr) {
6684 list_move(&item->list, &vmx->nested.vmcs02_pool);
6685 return &item->vmcs02;
6686 }
6687
6688 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6689 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6690 item = list_last_entry(&vmx->nested.vmcs02_pool,
6691 struct vmcs02_list, list);
ff2f6fe9
NHE
6692 item->vmptr = vmx->nested.current_vmptr;
6693 list_move(&item->list, &vmx->nested.vmcs02_pool);
6694 return &item->vmcs02;
6695 }
6696
6697 /* Create a new VMCS */
0fa24ce3 6698 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6699 if (!item)
6700 return NULL;
6701 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6702 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6703 if (!item->vmcs02.vmcs) {
6704 kfree(item);
6705 return NULL;
6706 }
6707 loaded_vmcs_init(&item->vmcs02);
6708 item->vmptr = vmx->nested.current_vmptr;
6709 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6710 vmx->nested.vmcs02_num++;
6711 return &item->vmcs02;
6712}
6713
6714/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6715static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6716{
6717 struct vmcs02_list *item;
6718 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6719 if (item->vmptr == vmptr) {
6720 free_loaded_vmcs(&item->vmcs02);
6721 list_del(&item->list);
6722 kfree(item);
6723 vmx->nested.vmcs02_num--;
6724 return;
6725 }
6726}
6727
6728/*
6729 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6730 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6731 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6732 */
6733static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6734{
6735 struct vmcs02_list *item, *n;
4fa7734c
PB
6736
6737 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6738 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6739 /*
6740 * Something will leak if the above WARN triggers. Better than
6741 * a use-after-free.
6742 */
6743 if (vmx->loaded_vmcs == &item->vmcs02)
6744 continue;
6745
6746 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6747 list_del(&item->list);
6748 kfree(item);
4fa7734c 6749 vmx->nested.vmcs02_num--;
ff2f6fe9 6750 }
ff2f6fe9
NHE
6751}
6752
0658fbaa
ACL
6753/*
6754 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6755 * set the success or error code of an emulated VMX instruction, as specified
6756 * by Vol 2B, VMX Instruction Reference, "Conventions".
6757 */
6758static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6759{
6760 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6761 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6762 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6763}
6764
6765static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6766{
6767 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6768 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6769 X86_EFLAGS_SF | X86_EFLAGS_OF))
6770 | X86_EFLAGS_CF);
6771}
6772
145c28dd 6773static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6774 u32 vm_instruction_error)
6775{
6776 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6777 /*
6778 * failValid writes the error number to the current VMCS, which
6779 * can't be done there isn't a current VMCS.
6780 */
6781 nested_vmx_failInvalid(vcpu);
6782 return;
6783 }
6784 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6785 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6786 X86_EFLAGS_SF | X86_EFLAGS_OF))
6787 | X86_EFLAGS_ZF);
6788 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6789 /*
6790 * We don't need to force a shadow sync because
6791 * VM_INSTRUCTION_ERROR is not shadowed
6792 */
6793}
145c28dd 6794
ff651cb6
WV
6795static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6796{
6797 /* TODO: not to reset guest simply here. */
6798 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 6799 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
6800}
6801
f4124500
JK
6802static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6803{
6804 struct vcpu_vmx *vmx =
6805 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6806
6807 vmx->nested.preemption_timer_expired = true;
6808 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6809 kvm_vcpu_kick(&vmx->vcpu);
6810
6811 return HRTIMER_NORESTART;
6812}
6813
19677e32
BD
6814/*
6815 * Decode the memory-address operand of a vmx instruction, as recorded on an
6816 * exit caused by such an instruction (run by a guest hypervisor).
6817 * On success, returns 0. When the operand is invalid, returns 1 and throws
6818 * #UD or #GP.
6819 */
6820static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6821 unsigned long exit_qualification,
f9eb4af6 6822 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6823{
f9eb4af6
EK
6824 gva_t off;
6825 bool exn;
6826 struct kvm_segment s;
6827
19677e32
BD
6828 /*
6829 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6830 * Execution", on an exit, vmx_instruction_info holds most of the
6831 * addressing components of the operand. Only the displacement part
6832 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6833 * For how an actual address is calculated from all these components,
6834 * refer to Vol. 1, "Operand Addressing".
6835 */
6836 int scaling = vmx_instruction_info & 3;
6837 int addr_size = (vmx_instruction_info >> 7) & 7;
6838 bool is_reg = vmx_instruction_info & (1u << 10);
6839 int seg_reg = (vmx_instruction_info >> 15) & 7;
6840 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6841 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6842 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6843 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6844
6845 if (is_reg) {
6846 kvm_queue_exception(vcpu, UD_VECTOR);
6847 return 1;
6848 }
6849
6850 /* Addr = segment_base + offset */
6851 /* offset = base + [index * scale] + displacement */
f9eb4af6 6852 off = exit_qualification; /* holds the displacement */
19677e32 6853 if (base_is_valid)
f9eb4af6 6854 off += kvm_register_read(vcpu, base_reg);
19677e32 6855 if (index_is_valid)
f9eb4af6
EK
6856 off += kvm_register_read(vcpu, index_reg)<<scaling;
6857 vmx_get_segment(vcpu, &s, seg_reg);
6858 *ret = s.base + off;
19677e32
BD
6859
6860 if (addr_size == 1) /* 32 bit */
6861 *ret &= 0xffffffff;
6862
f9eb4af6
EK
6863 /* Checks for #GP/#SS exceptions. */
6864 exn = false;
ff30ef40
QC
6865 if (is_long_mode(vcpu)) {
6866 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6867 * non-canonical form. This is the only check on the memory
6868 * destination for long mode!
6869 */
6870 exn = is_noncanonical_address(*ret);
6871 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
6872 /* Protected mode: apply checks for segment validity in the
6873 * following order:
6874 * - segment type check (#GP(0) may be thrown)
6875 * - usability check (#GP(0)/#SS(0))
6876 * - limit check (#GP(0)/#SS(0))
6877 */
6878 if (wr)
6879 /* #GP(0) if the destination operand is located in a
6880 * read-only data segment or any code segment.
6881 */
6882 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6883 else
6884 /* #GP(0) if the source operand is located in an
6885 * execute-only code segment
6886 */
6887 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
6888 if (exn) {
6889 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6890 return 1;
6891 }
f9eb4af6
EK
6892 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6893 */
6894 exn = (s.unusable != 0);
6895 /* Protected mode: #GP(0)/#SS(0) if the memory
6896 * operand is outside the segment limit.
6897 */
6898 exn = exn || (off + sizeof(u64) > s.limit);
6899 }
6900 if (exn) {
6901 kvm_queue_exception_e(vcpu,
6902 seg_reg == VCPU_SREG_SS ?
6903 SS_VECTOR : GP_VECTOR,
6904 0);
6905 return 1;
6906 }
6907
19677e32
BD
6908 return 0;
6909}
6910
cbf71279 6911static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
6912{
6913 gva_t gva;
3573e22c 6914 struct x86_exception e;
3573e22c
BD
6915
6916 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6917 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6918 return 1;
6919
cbf71279
RK
6920 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6921 sizeof(*vmpointer), &e)) {
3573e22c
BD
6922 kvm_inject_page_fault(vcpu, &e);
6923 return 1;
6924 }
6925
3573e22c
BD
6926 return 0;
6927}
6928
e29acc55
JM
6929static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6930{
6931 struct vcpu_vmx *vmx = to_vmx(vcpu);
6932 struct vmcs *shadow_vmcs;
6933
6934 if (cpu_has_vmx_msr_bitmap()) {
6935 vmx->nested.msr_bitmap =
6936 (unsigned long *)__get_free_page(GFP_KERNEL);
6937 if (!vmx->nested.msr_bitmap)
6938 goto out_msr_bitmap;
6939 }
6940
6941 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
6942 if (!vmx->nested.cached_vmcs12)
6943 goto out_cached_vmcs12;
6944
6945 if (enable_shadow_vmcs) {
6946 shadow_vmcs = alloc_vmcs();
6947 if (!shadow_vmcs)
6948 goto out_shadow_vmcs;
6949 /* mark vmcs as shadow */
6950 shadow_vmcs->revision_id |= (1u << 31);
6951 /* init shadow vmcs */
6952 vmcs_clear(shadow_vmcs);
6953 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
6954 }
6955
6956 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6957 vmx->nested.vmcs02_num = 0;
6958
6959 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6960 HRTIMER_MODE_REL_PINNED);
6961 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6962
6963 vmx->nested.vmxon = true;
6964 return 0;
6965
6966out_shadow_vmcs:
6967 kfree(vmx->nested.cached_vmcs12);
6968
6969out_cached_vmcs12:
6970 free_page((unsigned long)vmx->nested.msr_bitmap);
6971
6972out_msr_bitmap:
6973 return -ENOMEM;
6974}
6975
ec378aee
NHE
6976/*
6977 * Emulate the VMXON instruction.
6978 * Currently, we just remember that VMX is active, and do not save or even
6979 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6980 * do not currently need to store anything in that guest-allocated memory
6981 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6982 * argument is different from the VMXON pointer (which the spec says they do).
6983 */
6984static int handle_vmon(struct kvm_vcpu *vcpu)
6985{
e29acc55 6986 int ret;
cbf71279
RK
6987 gpa_t vmptr;
6988 struct page *page;
ec378aee 6989 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
6990 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6991 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 6992
70f3aac9
JM
6993 /*
6994 * The Intel VMX Instruction Reference lists a bunch of bits that are
6995 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
6996 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
6997 * Otherwise, we should fail with #UD. But most faulting conditions
6998 * have already been checked by hardware, prior to the VM-exit for
6999 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7000 * that bit set to 1 in non-root mode.
ec378aee 7001 */
70f3aac9 7002 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7003 kvm_queue_exception(vcpu, UD_VECTOR);
7004 return 1;
7005 }
7006
145c28dd
AG
7007 if (vmx->nested.vmxon) {
7008 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7009 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7010 }
b3897a49 7011
3b84080b 7012 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7013 != VMXON_NEEDED_FEATURES) {
7014 kvm_inject_gp(vcpu, 0);
7015 return 1;
7016 }
7017
cbf71279 7018 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7019 return 1;
cbf71279
RK
7020
7021 /*
7022 * SDM 3: 24.11.5
7023 * The first 4 bytes of VMXON region contain the supported
7024 * VMCS revision identifier
7025 *
7026 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7027 * which replaces physical address width with 32
7028 */
7029 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7030 nested_vmx_failInvalid(vcpu);
7031 return kvm_skip_emulated_instruction(vcpu);
7032 }
7033
7034 page = nested_get_page(vcpu, vmptr);
7035 if (page == NULL) {
7036 nested_vmx_failInvalid(vcpu);
7037 return kvm_skip_emulated_instruction(vcpu);
7038 }
7039 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7040 kunmap(page);
7041 nested_release_page_clean(page);
7042 nested_vmx_failInvalid(vcpu);
7043 return kvm_skip_emulated_instruction(vcpu);
7044 }
7045 kunmap(page);
7046 nested_release_page_clean(page);
7047
7048 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7049 ret = enter_vmx_operation(vcpu);
7050 if (ret)
7051 return ret;
ec378aee 7052
a25eb114 7053 nested_vmx_succeed(vcpu);
6affcbed 7054 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7055}
7056
7057/*
7058 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7059 * for running VMX instructions (except VMXON, whose prerequisites are
7060 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7061 * Note that many of these exceptions have priority over VM exits, so they
7062 * don't have to be checked again here.
ec378aee
NHE
7063 */
7064static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7065{
70f3aac9 7066 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7067 kvm_queue_exception(vcpu, UD_VECTOR);
7068 return 0;
7069 }
ec378aee
NHE
7070 return 1;
7071}
7072
e7953d7f
AG
7073static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7074{
9a2a05b9
PB
7075 if (vmx->nested.current_vmptr == -1ull)
7076 return;
7077
7078 /* current_vmptr and current_vmcs12 are always set/reset together */
7079 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7080 return;
7081
012f83cb 7082 if (enable_shadow_vmcs) {
9a2a05b9
PB
7083 /* copy to memory all shadowed fields in case
7084 they were modified */
7085 copy_shadow_to_vmcs12(vmx);
7086 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
7087 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7088 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 7089 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 7090 }
705699a1 7091 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7092
7093 /* Flush VMCS12 to guest memory */
7094 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7095 VMCS12_SIZE);
7096
e7953d7f
AG
7097 kunmap(vmx->nested.current_vmcs12_page);
7098 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
7099 vmx->nested.current_vmptr = -1ull;
7100 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
7101}
7102
ec378aee
NHE
7103/*
7104 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7105 * just stops using VMX.
7106 */
7107static void free_nested(struct vcpu_vmx *vmx)
7108{
7109 if (!vmx->nested.vmxon)
7110 return;
9a2a05b9 7111
ec378aee 7112 vmx->nested.vmxon = false;
5c614b35 7113 free_vpid(vmx->nested.vpid02);
9a2a05b9 7114 nested_release_vmcs12(vmx);
d048c098
RK
7115 if (vmx->nested.msr_bitmap) {
7116 free_page((unsigned long)vmx->nested.msr_bitmap);
7117 vmx->nested.msr_bitmap = NULL;
7118 }
355f4fb1
JM
7119 if (enable_shadow_vmcs) {
7120 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7121 free_vmcs(vmx->vmcs01.shadow_vmcs);
7122 vmx->vmcs01.shadow_vmcs = NULL;
7123 }
4f2777bc 7124 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7125 /* Unpin physical memory we referred to in current vmcs02 */
7126 if (vmx->nested.apic_access_page) {
7127 nested_release_page(vmx->nested.apic_access_page);
48d89b92 7128 vmx->nested.apic_access_page = NULL;
fe3ef05c 7129 }
a7c0b07d
WL
7130 if (vmx->nested.virtual_apic_page) {
7131 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 7132 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7133 }
705699a1
WV
7134 if (vmx->nested.pi_desc_page) {
7135 kunmap(vmx->nested.pi_desc_page);
7136 nested_release_page(vmx->nested.pi_desc_page);
7137 vmx->nested.pi_desc_page = NULL;
7138 vmx->nested.pi_desc = NULL;
7139 }
ff2f6fe9
NHE
7140
7141 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7142}
7143
7144/* Emulate the VMXOFF instruction */
7145static int handle_vmoff(struct kvm_vcpu *vcpu)
7146{
7147 if (!nested_vmx_check_permission(vcpu))
7148 return 1;
7149 free_nested(to_vmx(vcpu));
a25eb114 7150 nested_vmx_succeed(vcpu);
6affcbed 7151 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7152}
7153
27d6c865
NHE
7154/* Emulate the VMCLEAR instruction */
7155static int handle_vmclear(struct kvm_vcpu *vcpu)
7156{
7157 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7158 u32 zero = 0;
27d6c865 7159 gpa_t vmptr;
27d6c865
NHE
7160
7161 if (!nested_vmx_check_permission(vcpu))
7162 return 1;
7163
cbf71279 7164 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7165 return 1;
27d6c865 7166
cbf71279
RK
7167 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7168 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7169 return kvm_skip_emulated_instruction(vcpu);
7170 }
7171
7172 if (vmptr == vmx->nested.vmxon_ptr) {
7173 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7174 return kvm_skip_emulated_instruction(vcpu);
7175 }
7176
9a2a05b9 7177 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7178 nested_release_vmcs12(vmx);
27d6c865 7179
587d7e72
JM
7180 kvm_vcpu_write_guest(vcpu,
7181 vmptr + offsetof(struct vmcs12, launch_state),
7182 &zero, sizeof(zero));
27d6c865
NHE
7183
7184 nested_free_vmcs02(vmx, vmptr);
7185
27d6c865 7186 nested_vmx_succeed(vcpu);
6affcbed 7187 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7188}
7189
cd232ad0
NHE
7190static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7191
7192/* Emulate the VMLAUNCH instruction */
7193static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7194{
7195 return nested_vmx_run(vcpu, true);
7196}
7197
7198/* Emulate the VMRESUME instruction */
7199static int handle_vmresume(struct kvm_vcpu *vcpu)
7200{
7201
7202 return nested_vmx_run(vcpu, false);
7203}
7204
49f705c5
NHE
7205enum vmcs_field_type {
7206 VMCS_FIELD_TYPE_U16 = 0,
7207 VMCS_FIELD_TYPE_U64 = 1,
7208 VMCS_FIELD_TYPE_U32 = 2,
7209 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7210};
7211
7212static inline int vmcs_field_type(unsigned long field)
7213{
7214 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7215 return VMCS_FIELD_TYPE_U32;
7216 return (field >> 13) & 0x3 ;
7217}
7218
7219static inline int vmcs_field_readonly(unsigned long field)
7220{
7221 return (((field >> 10) & 0x3) == 1);
7222}
7223
7224/*
7225 * Read a vmcs12 field. Since these can have varying lengths and we return
7226 * one type, we chose the biggest type (u64) and zero-extend the return value
7227 * to that size. Note that the caller, handle_vmread, might need to use only
7228 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7229 * 64-bit fields are to be returned).
7230 */
a2ae9df7
PB
7231static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7232 unsigned long field, u64 *ret)
49f705c5
NHE
7233{
7234 short offset = vmcs_field_to_offset(field);
7235 char *p;
7236
7237 if (offset < 0)
a2ae9df7 7238 return offset;
49f705c5
NHE
7239
7240 p = ((char *)(get_vmcs12(vcpu))) + offset;
7241
7242 switch (vmcs_field_type(field)) {
7243 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7244 *ret = *((natural_width *)p);
a2ae9df7 7245 return 0;
49f705c5
NHE
7246 case VMCS_FIELD_TYPE_U16:
7247 *ret = *((u16 *)p);
a2ae9df7 7248 return 0;
49f705c5
NHE
7249 case VMCS_FIELD_TYPE_U32:
7250 *ret = *((u32 *)p);
a2ae9df7 7251 return 0;
49f705c5
NHE
7252 case VMCS_FIELD_TYPE_U64:
7253 *ret = *((u64 *)p);
a2ae9df7 7254 return 0;
49f705c5 7255 default:
a2ae9df7
PB
7256 WARN_ON(1);
7257 return -ENOENT;
49f705c5
NHE
7258 }
7259}
7260
20b97fea 7261
a2ae9df7
PB
7262static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7263 unsigned long field, u64 field_value){
20b97fea
AG
7264 short offset = vmcs_field_to_offset(field);
7265 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7266 if (offset < 0)
a2ae9df7 7267 return offset;
20b97fea
AG
7268
7269 switch (vmcs_field_type(field)) {
7270 case VMCS_FIELD_TYPE_U16:
7271 *(u16 *)p = field_value;
a2ae9df7 7272 return 0;
20b97fea
AG
7273 case VMCS_FIELD_TYPE_U32:
7274 *(u32 *)p = field_value;
a2ae9df7 7275 return 0;
20b97fea
AG
7276 case VMCS_FIELD_TYPE_U64:
7277 *(u64 *)p = field_value;
a2ae9df7 7278 return 0;
20b97fea
AG
7279 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7280 *(natural_width *)p = field_value;
a2ae9df7 7281 return 0;
20b97fea 7282 default:
a2ae9df7
PB
7283 WARN_ON(1);
7284 return -ENOENT;
20b97fea
AG
7285 }
7286
7287}
7288
16f5b903
AG
7289static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7290{
7291 int i;
7292 unsigned long field;
7293 u64 field_value;
355f4fb1 7294 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7295 const unsigned long *fields = shadow_read_write_fields;
7296 const int num_fields = max_shadow_read_write_fields;
16f5b903 7297
282da870
JK
7298 preempt_disable();
7299
16f5b903
AG
7300 vmcs_load(shadow_vmcs);
7301
7302 for (i = 0; i < num_fields; i++) {
7303 field = fields[i];
7304 switch (vmcs_field_type(field)) {
7305 case VMCS_FIELD_TYPE_U16:
7306 field_value = vmcs_read16(field);
7307 break;
7308 case VMCS_FIELD_TYPE_U32:
7309 field_value = vmcs_read32(field);
7310 break;
7311 case VMCS_FIELD_TYPE_U64:
7312 field_value = vmcs_read64(field);
7313 break;
7314 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7315 field_value = vmcs_readl(field);
7316 break;
a2ae9df7
PB
7317 default:
7318 WARN_ON(1);
7319 continue;
16f5b903
AG
7320 }
7321 vmcs12_write_any(&vmx->vcpu, field, field_value);
7322 }
7323
7324 vmcs_clear(shadow_vmcs);
7325 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7326
7327 preempt_enable();
16f5b903
AG
7328}
7329
c3114420
AG
7330static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7331{
c2bae893
MK
7332 const unsigned long *fields[] = {
7333 shadow_read_write_fields,
7334 shadow_read_only_fields
c3114420 7335 };
c2bae893 7336 const int max_fields[] = {
c3114420
AG
7337 max_shadow_read_write_fields,
7338 max_shadow_read_only_fields
7339 };
7340 int i, q;
7341 unsigned long field;
7342 u64 field_value = 0;
355f4fb1 7343 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7344
7345 vmcs_load(shadow_vmcs);
7346
c2bae893 7347 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7348 for (i = 0; i < max_fields[q]; i++) {
7349 field = fields[q][i];
7350 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7351
7352 switch (vmcs_field_type(field)) {
7353 case VMCS_FIELD_TYPE_U16:
7354 vmcs_write16(field, (u16)field_value);
7355 break;
7356 case VMCS_FIELD_TYPE_U32:
7357 vmcs_write32(field, (u32)field_value);
7358 break;
7359 case VMCS_FIELD_TYPE_U64:
7360 vmcs_write64(field, (u64)field_value);
7361 break;
7362 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7363 vmcs_writel(field, (long)field_value);
7364 break;
a2ae9df7
PB
7365 default:
7366 WARN_ON(1);
7367 break;
c3114420
AG
7368 }
7369 }
7370 }
7371
7372 vmcs_clear(shadow_vmcs);
7373 vmcs_load(vmx->loaded_vmcs->vmcs);
7374}
7375
49f705c5
NHE
7376/*
7377 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7378 * used before) all generate the same failure when it is missing.
7379 */
7380static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7381{
7382 struct vcpu_vmx *vmx = to_vmx(vcpu);
7383 if (vmx->nested.current_vmptr == -1ull) {
7384 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7385 return 0;
7386 }
7387 return 1;
7388}
7389
7390static int handle_vmread(struct kvm_vcpu *vcpu)
7391{
7392 unsigned long field;
7393 u64 field_value;
7394 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7395 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7396 gva_t gva = 0;
7397
eb277562 7398 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7399 return 1;
7400
6affcbed
KH
7401 if (!nested_vmx_check_vmcs12(vcpu))
7402 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7403
7404 /* Decode instruction info and find the field to read */
27e6fb5d 7405 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7406 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7407 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7408 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7409 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7410 }
7411 /*
7412 * Now copy part of this value to register or memory, as requested.
7413 * Note that the number of bits actually copied is 32 or 64 depending
7414 * on the guest's mode (32 or 64 bit), not on the given field's length.
7415 */
7416 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7417 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7418 field_value);
7419 } else {
7420 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7421 vmx_instruction_info, true, &gva))
49f705c5 7422 return 1;
70f3aac9 7423 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7424 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7425 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7426 }
7427
7428 nested_vmx_succeed(vcpu);
6affcbed 7429 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7430}
7431
7432
7433static int handle_vmwrite(struct kvm_vcpu *vcpu)
7434{
7435 unsigned long field;
7436 gva_t gva;
7437 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7438 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7439 /* The value to write might be 32 or 64 bits, depending on L1's long
7440 * mode, and eventually we need to write that into a field of several
7441 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7442 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7443 * bits into the vmcs12 field.
7444 */
7445 u64 field_value = 0;
7446 struct x86_exception e;
7447
eb277562 7448 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7449 return 1;
7450
6affcbed
KH
7451 if (!nested_vmx_check_vmcs12(vcpu))
7452 return kvm_skip_emulated_instruction(vcpu);
eb277562 7453
49f705c5 7454 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7455 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7456 (((vmx_instruction_info) >> 3) & 0xf));
7457 else {
7458 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7459 vmx_instruction_info, false, &gva))
49f705c5
NHE
7460 return 1;
7461 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7462 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7463 kvm_inject_page_fault(vcpu, &e);
7464 return 1;
7465 }
7466 }
7467
7468
27e6fb5d 7469 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7470 if (vmcs_field_readonly(field)) {
7471 nested_vmx_failValid(vcpu,
7472 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7473 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7474 }
7475
a2ae9df7 7476 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7477 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7478 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7479 }
7480
7481 nested_vmx_succeed(vcpu);
6affcbed 7482 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7483}
7484
a8bc284e
JM
7485static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7486{
7487 vmx->nested.current_vmptr = vmptr;
7488 if (enable_shadow_vmcs) {
7489 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7490 SECONDARY_EXEC_SHADOW_VMCS);
7491 vmcs_write64(VMCS_LINK_POINTER,
7492 __pa(vmx->vmcs01.shadow_vmcs));
7493 vmx->nested.sync_shadow_vmcs = true;
7494 }
7495}
7496
63846663
NHE
7497/* Emulate the VMPTRLD instruction */
7498static int handle_vmptrld(struct kvm_vcpu *vcpu)
7499{
7500 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7501 gpa_t vmptr;
63846663
NHE
7502
7503 if (!nested_vmx_check_permission(vcpu))
7504 return 1;
7505
cbf71279 7506 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7507 return 1;
63846663 7508
cbf71279
RK
7509 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7510 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7511 return kvm_skip_emulated_instruction(vcpu);
7512 }
7513
7514 if (vmptr == vmx->nested.vmxon_ptr) {
7515 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7516 return kvm_skip_emulated_instruction(vcpu);
7517 }
7518
63846663
NHE
7519 if (vmx->nested.current_vmptr != vmptr) {
7520 struct vmcs12 *new_vmcs12;
7521 struct page *page;
7522 page = nested_get_page(vcpu, vmptr);
7523 if (page == NULL) {
7524 nested_vmx_failInvalid(vcpu);
6affcbed 7525 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7526 }
7527 new_vmcs12 = kmap(page);
7528 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7529 kunmap(page);
7530 nested_release_page_clean(page);
7531 nested_vmx_failValid(vcpu,
7532 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7533 return kvm_skip_emulated_instruction(vcpu);
63846663 7534 }
63846663 7535
9a2a05b9 7536 nested_release_vmcs12(vmx);
63846663
NHE
7537 vmx->nested.current_vmcs12 = new_vmcs12;
7538 vmx->nested.current_vmcs12_page = page;
4f2777bc
DM
7539 /*
7540 * Load VMCS12 from guest memory since it is not already
7541 * cached.
7542 */
7543 memcpy(vmx->nested.cached_vmcs12,
7544 vmx->nested.current_vmcs12, VMCS12_SIZE);
a8bc284e 7545 set_current_vmptr(vmx, vmptr);
63846663
NHE
7546 }
7547
7548 nested_vmx_succeed(vcpu);
6affcbed 7549 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7550}
7551
6a4d7550
NHE
7552/* Emulate the VMPTRST instruction */
7553static int handle_vmptrst(struct kvm_vcpu *vcpu)
7554{
7555 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7556 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7557 gva_t vmcs_gva;
7558 struct x86_exception e;
7559
7560 if (!nested_vmx_check_permission(vcpu))
7561 return 1;
7562
7563 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7564 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7565 return 1;
70f3aac9 7566 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7567 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7568 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7569 sizeof(u64), &e)) {
7570 kvm_inject_page_fault(vcpu, &e);
7571 return 1;
7572 }
7573 nested_vmx_succeed(vcpu);
6affcbed 7574 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7575}
7576
bfd0a56b
NHE
7577/* Emulate the INVEPT instruction */
7578static int handle_invept(struct kvm_vcpu *vcpu)
7579{
b9c237bb 7580 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7581 u32 vmx_instruction_info, types;
7582 unsigned long type;
7583 gva_t gva;
7584 struct x86_exception e;
7585 struct {
7586 u64 eptp, gpa;
7587 } operand;
bfd0a56b 7588
b9c237bb
WV
7589 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7590 SECONDARY_EXEC_ENABLE_EPT) ||
7591 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7592 kvm_queue_exception(vcpu, UD_VECTOR);
7593 return 1;
7594 }
7595
7596 if (!nested_vmx_check_permission(vcpu))
7597 return 1;
7598
bfd0a56b 7599 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7600 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7601
b9c237bb 7602 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7603
85c856b3 7604 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7605 nested_vmx_failValid(vcpu,
7606 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7607 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7608 }
7609
7610 /* According to the Intel VMX instruction reference, the memory
7611 * operand is read even if it isn't needed (e.g., for type==global)
7612 */
7613 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7614 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7615 return 1;
7616 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7617 sizeof(operand), &e)) {
7618 kvm_inject_page_fault(vcpu, &e);
7619 return 1;
7620 }
7621
7622 switch (type) {
bfd0a56b 7623 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7624 /*
7625 * TODO: track mappings and invalidate
7626 * single context requests appropriately
7627 */
7628 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7629 kvm_mmu_sync_roots(vcpu);
77c3913b 7630 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7631 nested_vmx_succeed(vcpu);
7632 break;
7633 default:
7634 BUG_ON(1);
7635 break;
7636 }
7637
6affcbed 7638 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7639}
7640
a642fc30
PM
7641static int handle_invvpid(struct kvm_vcpu *vcpu)
7642{
99b83ac8
WL
7643 struct vcpu_vmx *vmx = to_vmx(vcpu);
7644 u32 vmx_instruction_info;
7645 unsigned long type, types;
7646 gva_t gva;
7647 struct x86_exception e;
40352605
JM
7648 struct {
7649 u64 vpid;
7650 u64 gla;
7651 } operand;
99b83ac8
WL
7652
7653 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7654 SECONDARY_EXEC_ENABLE_VPID) ||
7655 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7656 kvm_queue_exception(vcpu, UD_VECTOR);
7657 return 1;
7658 }
7659
7660 if (!nested_vmx_check_permission(vcpu))
7661 return 1;
7662
7663 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7664 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7665
bcdde302
JD
7666 types = (vmx->nested.nested_vmx_vpid_caps &
7667 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7668
85c856b3 7669 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7670 nested_vmx_failValid(vcpu,
7671 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7672 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7673 }
7674
7675 /* according to the intel vmx instruction reference, the memory
7676 * operand is read even if it isn't needed (e.g., for type==global)
7677 */
7678 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7679 vmx_instruction_info, false, &gva))
7680 return 1;
40352605
JM
7681 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7682 sizeof(operand), &e)) {
99b83ac8
WL
7683 kvm_inject_page_fault(vcpu, &e);
7684 return 1;
7685 }
40352605
JM
7686 if (operand.vpid >> 16) {
7687 nested_vmx_failValid(vcpu,
7688 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7689 return kvm_skip_emulated_instruction(vcpu);
7690 }
99b83ac8
WL
7691
7692 switch (type) {
bcdde302 7693 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
40352605
JM
7694 if (is_noncanonical_address(operand.gla)) {
7695 nested_vmx_failValid(vcpu,
7696 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7697 return kvm_skip_emulated_instruction(vcpu);
7698 }
7699 /* fall through */
ef697a71 7700 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7701 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7702 if (!operand.vpid) {
bcdde302
JD
7703 nested_vmx_failValid(vcpu,
7704 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7705 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7706 }
7707 break;
99b83ac8 7708 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7709 break;
7710 default:
bcdde302 7711 WARN_ON_ONCE(1);
6affcbed 7712 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7713 }
7714
bcdde302
JD
7715 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7716 nested_vmx_succeed(vcpu);
7717
6affcbed 7718 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7719}
7720
843e4330
KH
7721static int handle_pml_full(struct kvm_vcpu *vcpu)
7722{
7723 unsigned long exit_qualification;
7724
7725 trace_kvm_pml_full(vcpu->vcpu_id);
7726
7727 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7728
7729 /*
7730 * PML buffer FULL happened while executing iret from NMI,
7731 * "blocked by NMI" bit has to be set before next VM entry.
7732 */
7733 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7734 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7735 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7736 GUEST_INTR_STATE_NMI);
7737
7738 /*
7739 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7740 * here.., and there's no userspace involvement needed for PML.
7741 */
7742 return 1;
7743}
7744
64672c95
YJ
7745static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7746{
7747 kvm_lapic_expired_hv_timer(vcpu);
7748 return 1;
7749}
7750
6aa8b732
AK
7751/*
7752 * The exit handlers return 1 if the exit was handled fully and guest execution
7753 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7754 * to be done to userspace and return 0.
7755 */
772e0318 7756static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7757 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7758 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7759 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7760 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7761 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7762 [EXIT_REASON_CR_ACCESS] = handle_cr,
7763 [EXIT_REASON_DR_ACCESS] = handle_dr,
7764 [EXIT_REASON_CPUID] = handle_cpuid,
7765 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7766 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7767 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7768 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7769 [EXIT_REASON_INVD] = handle_invd,
a7052897 7770 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7771 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7772 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7773 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7774 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7775 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7776 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7777 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7778 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7779 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7780 [EXIT_REASON_VMOFF] = handle_vmoff,
7781 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7782 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7783 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7784 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7785 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7786 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7787 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7788 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7789 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7790 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7791 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7792 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7793 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7794 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7795 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7796 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7797 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7798 [EXIT_REASON_XSAVES] = handle_xsaves,
7799 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7800 [EXIT_REASON_PML_FULL] = handle_pml_full,
64672c95 7801 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
7802};
7803
7804static const int kvm_vmx_max_exit_handlers =
50a3485c 7805 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7806
908a7bdd
JK
7807static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7808 struct vmcs12 *vmcs12)
7809{
7810 unsigned long exit_qualification;
7811 gpa_t bitmap, last_bitmap;
7812 unsigned int port;
7813 int size;
7814 u8 b;
7815
908a7bdd 7816 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7817 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7818
7819 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7820
7821 port = exit_qualification >> 16;
7822 size = (exit_qualification & 7) + 1;
7823
7824 last_bitmap = (gpa_t)-1;
7825 b = -1;
7826
7827 while (size > 0) {
7828 if (port < 0x8000)
7829 bitmap = vmcs12->io_bitmap_a;
7830 else if (port < 0x10000)
7831 bitmap = vmcs12->io_bitmap_b;
7832 else
1d804d07 7833 return true;
908a7bdd
JK
7834 bitmap += (port & 0x7fff) / 8;
7835
7836 if (last_bitmap != bitmap)
54bf36aa 7837 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7838 return true;
908a7bdd 7839 if (b & (1 << (port & 7)))
1d804d07 7840 return true;
908a7bdd
JK
7841
7842 port++;
7843 size--;
7844 last_bitmap = bitmap;
7845 }
7846
1d804d07 7847 return false;
908a7bdd
JK
7848}
7849
644d711a
NHE
7850/*
7851 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7852 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7853 * disinterest in the current event (read or write a specific MSR) by using an
7854 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7855 */
7856static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7857 struct vmcs12 *vmcs12, u32 exit_reason)
7858{
7859 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7860 gpa_t bitmap;
7861
cbd29cb6 7862 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7863 return true;
644d711a
NHE
7864
7865 /*
7866 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7867 * for the four combinations of read/write and low/high MSR numbers.
7868 * First we need to figure out which of the four to use:
7869 */
7870 bitmap = vmcs12->msr_bitmap;
7871 if (exit_reason == EXIT_REASON_MSR_WRITE)
7872 bitmap += 2048;
7873 if (msr_index >= 0xc0000000) {
7874 msr_index -= 0xc0000000;
7875 bitmap += 1024;
7876 }
7877
7878 /* Then read the msr_index'th bit from this bitmap: */
7879 if (msr_index < 1024*8) {
7880 unsigned char b;
54bf36aa 7881 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7882 return true;
644d711a
NHE
7883 return 1 & (b >> (msr_index & 7));
7884 } else
1d804d07 7885 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7886}
7887
7888/*
7889 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7890 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7891 * intercept (via guest_host_mask etc.) the current event.
7892 */
7893static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7894 struct vmcs12 *vmcs12)
7895{
7896 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7897 int cr = exit_qualification & 15;
e1d39b17
JS
7898 int reg;
7899 unsigned long val;
644d711a
NHE
7900
7901 switch ((exit_qualification >> 4) & 3) {
7902 case 0: /* mov to cr */
e1d39b17
JS
7903 reg = (exit_qualification >> 8) & 15;
7904 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7905 switch (cr) {
7906 case 0:
7907 if (vmcs12->cr0_guest_host_mask &
7908 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7909 return true;
644d711a
NHE
7910 break;
7911 case 3:
7912 if ((vmcs12->cr3_target_count >= 1 &&
7913 vmcs12->cr3_target_value0 == val) ||
7914 (vmcs12->cr3_target_count >= 2 &&
7915 vmcs12->cr3_target_value1 == val) ||
7916 (vmcs12->cr3_target_count >= 3 &&
7917 vmcs12->cr3_target_value2 == val) ||
7918 (vmcs12->cr3_target_count >= 4 &&
7919 vmcs12->cr3_target_value3 == val))
1d804d07 7920 return false;
644d711a 7921 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7922 return true;
644d711a
NHE
7923 break;
7924 case 4:
7925 if (vmcs12->cr4_guest_host_mask &
7926 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7927 return true;
644d711a
NHE
7928 break;
7929 case 8:
7930 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7931 return true;
644d711a
NHE
7932 break;
7933 }
7934 break;
7935 case 2: /* clts */
7936 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7937 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7938 return true;
644d711a
NHE
7939 break;
7940 case 1: /* mov from cr */
7941 switch (cr) {
7942 case 3:
7943 if (vmcs12->cpu_based_vm_exec_control &
7944 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7945 return true;
644d711a
NHE
7946 break;
7947 case 8:
7948 if (vmcs12->cpu_based_vm_exec_control &
7949 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7950 return true;
644d711a
NHE
7951 break;
7952 }
7953 break;
7954 case 3: /* lmsw */
7955 /*
7956 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7957 * cr0. Other attempted changes are ignored, with no exit.
7958 */
e1d39b17 7959 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
7960 if (vmcs12->cr0_guest_host_mask & 0xe &
7961 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7962 return true;
644d711a
NHE
7963 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7964 !(vmcs12->cr0_read_shadow & 0x1) &&
7965 (val & 0x1))
1d804d07 7966 return true;
644d711a
NHE
7967 break;
7968 }
1d804d07 7969 return false;
644d711a
NHE
7970}
7971
7972/*
7973 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7974 * should handle it ourselves in L0 (and then continue L2). Only call this
7975 * when in is_guest_mode (L2).
7976 */
7977static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7978{
644d711a
NHE
7979 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7980 struct vcpu_vmx *vmx = to_vmx(vcpu);
7981 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7982 u32 exit_reason = vmx->exit_reason;
644d711a 7983
542060ea
JK
7984 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7985 vmcs_readl(EXIT_QUALIFICATION),
7986 vmx->idt_vectoring_info,
7987 intr_info,
7988 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7989 KVM_ISA_VMX);
7990
644d711a 7991 if (vmx->nested.nested_run_pending)
1d804d07 7992 return false;
644d711a
NHE
7993
7994 if (unlikely(vmx->fail)) {
bd80158a
JK
7995 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7996 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7997 return true;
644d711a
NHE
7998 }
7999
8000 switch (exit_reason) {
8001 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8002 if (is_nmi(intr_info))
1d804d07 8003 return false;
644d711a
NHE
8004 else if (is_page_fault(intr_info))
8005 return enable_ept;
e504c909 8006 else if (is_no_device(intr_info) &&
ccf9844e 8007 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8008 return false;
6f05485d
JK
8009 else if (is_debug(intr_info) &&
8010 vcpu->guest_debug &
8011 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8012 return false;
8013 else if (is_breakpoint(intr_info) &&
8014 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8015 return false;
644d711a
NHE
8016 return vmcs12->exception_bitmap &
8017 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8018 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8019 return false;
644d711a 8020 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8021 return true;
644d711a 8022 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8023 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8024 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8025 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8026 case EXIT_REASON_TASK_SWITCH:
1d804d07 8027 return true;
644d711a 8028 case EXIT_REASON_CPUID:
1d804d07 8029 return true;
644d711a
NHE
8030 case EXIT_REASON_HLT:
8031 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8032 case EXIT_REASON_INVD:
1d804d07 8033 return true;
644d711a
NHE
8034 case EXIT_REASON_INVLPG:
8035 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8036 case EXIT_REASON_RDPMC:
8037 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8038 case EXIT_REASON_RDRAND:
8039 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8040 case EXIT_REASON_RDSEED:
8041 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8042 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8043 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8044 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8045 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8046 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8047 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8048 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8049 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8050 /*
8051 * VMX instructions trap unconditionally. This allows L1 to
8052 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8053 */
1d804d07 8054 return true;
644d711a
NHE
8055 case EXIT_REASON_CR_ACCESS:
8056 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8057 case EXIT_REASON_DR_ACCESS:
8058 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8059 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8060 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8061 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8062 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8063 case EXIT_REASON_MSR_READ:
8064 case EXIT_REASON_MSR_WRITE:
8065 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8066 case EXIT_REASON_INVALID_STATE:
1d804d07 8067 return true;
644d711a
NHE
8068 case EXIT_REASON_MWAIT_INSTRUCTION:
8069 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8070 case EXIT_REASON_MONITOR_TRAP_FLAG:
8071 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8072 case EXIT_REASON_MONITOR_INSTRUCTION:
8073 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8074 case EXIT_REASON_PAUSE_INSTRUCTION:
8075 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8076 nested_cpu_has2(vmcs12,
8077 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8078 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8079 return false;
644d711a 8080 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8081 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8082 case EXIT_REASON_APIC_ACCESS:
8083 return nested_cpu_has2(vmcs12,
8084 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8085 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8086 case EXIT_REASON_EOI_INDUCED:
8087 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8088 return true;
644d711a 8089 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8090 /*
8091 * L0 always deals with the EPT violation. If nested EPT is
8092 * used, and the nested mmu code discovers that the address is
8093 * missing in the guest EPT table (EPT12), the EPT violation
8094 * will be injected with nested_ept_inject_page_fault()
8095 */
1d804d07 8096 return false;
644d711a 8097 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8098 /*
8099 * L2 never uses directly L1's EPT, but rather L0's own EPT
8100 * table (shadow on EPT) or a merged EPT table that L0 built
8101 * (EPT on EPT). So any problems with the structure of the
8102 * table is L0's fault.
8103 */
1d804d07 8104 return false;
644d711a
NHE
8105 case EXIT_REASON_WBINVD:
8106 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8107 case EXIT_REASON_XSETBV:
1d804d07 8108 return true;
81dc01f7
WL
8109 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8110 /*
8111 * This should never happen, since it is not possible to
8112 * set XSS to a non-zero value---neither in L1 nor in L2.
8113 * If if it were, XSS would have to be checked against
8114 * the XSS exit bitmap in vmcs12.
8115 */
8116 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8117 case EXIT_REASON_PREEMPTION_TIMER:
8118 return false;
ab007cc9 8119 case EXIT_REASON_PML_FULL:
03efce6f 8120 /* We emulate PML support to L1. */
ab007cc9 8121 return false;
644d711a 8122 default:
1d804d07 8123 return true;
644d711a
NHE
8124 }
8125}
8126
586f9607
AK
8127static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8128{
8129 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8130 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8131}
8132
a3eaa864 8133static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8134{
a3eaa864
KH
8135 if (vmx->pml_pg) {
8136 __free_page(vmx->pml_pg);
8137 vmx->pml_pg = NULL;
8138 }
843e4330
KH
8139}
8140
54bf36aa 8141static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8142{
54bf36aa 8143 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8144 u64 *pml_buf;
8145 u16 pml_idx;
8146
8147 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8148
8149 /* Do nothing if PML buffer is empty */
8150 if (pml_idx == (PML_ENTITY_NUM - 1))
8151 return;
8152
8153 /* PML index always points to next available PML buffer entity */
8154 if (pml_idx >= PML_ENTITY_NUM)
8155 pml_idx = 0;
8156 else
8157 pml_idx++;
8158
8159 pml_buf = page_address(vmx->pml_pg);
8160 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8161 u64 gpa;
8162
8163 gpa = pml_buf[pml_idx];
8164 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8165 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8166 }
8167
8168 /* reset PML index */
8169 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8170}
8171
8172/*
8173 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8174 * Called before reporting dirty_bitmap to userspace.
8175 */
8176static void kvm_flush_pml_buffers(struct kvm *kvm)
8177{
8178 int i;
8179 struct kvm_vcpu *vcpu;
8180 /*
8181 * We only need to kick vcpu out of guest mode here, as PML buffer
8182 * is flushed at beginning of all VMEXITs, and it's obvious that only
8183 * vcpus running in guest are possible to have unflushed GPAs in PML
8184 * buffer.
8185 */
8186 kvm_for_each_vcpu(i, vcpu, kvm)
8187 kvm_vcpu_kick(vcpu);
8188}
8189
4eb64dce
PB
8190static void vmx_dump_sel(char *name, uint32_t sel)
8191{
8192 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8193 name, vmcs_read16(sel),
4eb64dce
PB
8194 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8195 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8196 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8197}
8198
8199static void vmx_dump_dtsel(char *name, uint32_t limit)
8200{
8201 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8202 name, vmcs_read32(limit),
8203 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8204}
8205
8206static void dump_vmcs(void)
8207{
8208 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8209 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8210 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8211 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8212 u32 secondary_exec_control = 0;
8213 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8214 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8215 int i, n;
8216
8217 if (cpu_has_secondary_exec_ctrls())
8218 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8219
8220 pr_err("*** Guest State ***\n");
8221 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8222 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8223 vmcs_readl(CR0_GUEST_HOST_MASK));
8224 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8225 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8226 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8227 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8228 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8229 {
845c5b40
PB
8230 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8231 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8232 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8233 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8234 }
8235 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8236 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8237 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8238 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8239 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8240 vmcs_readl(GUEST_SYSENTER_ESP),
8241 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8242 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8243 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8244 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8245 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8246 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8247 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8248 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8249 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8250 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8251 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8252 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8253 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8254 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8255 efer, vmcs_read64(GUEST_IA32_PAT));
8256 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8257 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8258 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8259 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8260 pr_err("PerfGlobCtl = 0x%016llx\n",
8261 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8262 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8263 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8264 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8265 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8266 vmcs_read32(GUEST_ACTIVITY_STATE));
8267 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8268 pr_err("InterruptStatus = %04x\n",
8269 vmcs_read16(GUEST_INTR_STATUS));
8270
8271 pr_err("*** Host State ***\n");
8272 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8273 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8274 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8275 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8276 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8277 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8278 vmcs_read16(HOST_TR_SELECTOR));
8279 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8280 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8281 vmcs_readl(HOST_TR_BASE));
8282 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8283 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8284 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8285 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8286 vmcs_readl(HOST_CR4));
8287 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8288 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8289 vmcs_read32(HOST_IA32_SYSENTER_CS),
8290 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8291 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8292 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8293 vmcs_read64(HOST_IA32_EFER),
8294 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8295 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8296 pr_err("PerfGlobCtl = 0x%016llx\n",
8297 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8298
8299 pr_err("*** Control State ***\n");
8300 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8301 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8302 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8303 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8304 vmcs_read32(EXCEPTION_BITMAP),
8305 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8306 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8307 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8308 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8309 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8310 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8311 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8312 vmcs_read32(VM_EXIT_INTR_INFO),
8313 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8314 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8315 pr_err(" reason=%08x qualification=%016lx\n",
8316 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8317 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8318 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8319 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8320 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8321 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8322 pr_err("TSC Multiplier = 0x%016llx\n",
8323 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8324 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8325 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8326 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8327 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8328 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8329 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8330 n = vmcs_read32(CR3_TARGET_COUNT);
8331 for (i = 0; i + 1 < n; i += 4)
8332 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8333 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8334 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8335 if (i < n)
8336 pr_err("CR3 target%u=%016lx\n",
8337 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8338 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8339 pr_err("PLE Gap=%08x Window=%08x\n",
8340 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8341 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8342 pr_err("Virtual processor ID = 0x%04x\n",
8343 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8344}
8345
6aa8b732
AK
8346/*
8347 * The guest has exited. See if we can fix it or if we need userspace
8348 * assistance.
8349 */
851ba692 8350static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8351{
29bd8a78 8352 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8353 u32 exit_reason = vmx->exit_reason;
1155f76a 8354 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8355
8b89fe1f 8356 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
db1c056c 8357 vcpu->arch.gpa_available = false;
8b89fe1f 8358
843e4330
KH
8359 /*
8360 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8361 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8362 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8363 * mode as if vcpus is in root mode, the PML buffer must has been
8364 * flushed already.
8365 */
8366 if (enable_pml)
54bf36aa 8367 vmx_flush_pml_buffer(vcpu);
843e4330 8368
80ced186 8369 /* If guest state is invalid, start emulating */
14168786 8370 if (vmx->emulation_required)
80ced186 8371 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8372
644d711a 8373 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8374 nested_vmx_vmexit(vcpu, exit_reason,
8375 vmcs_read32(VM_EXIT_INTR_INFO),
8376 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8377 return 1;
8378 }
8379
5120702e 8380 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8381 dump_vmcs();
5120702e
MG
8382 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8383 vcpu->run->fail_entry.hardware_entry_failure_reason
8384 = exit_reason;
8385 return 0;
8386 }
8387
29bd8a78 8388 if (unlikely(vmx->fail)) {
851ba692
AK
8389 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8390 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8391 = vmcs_read32(VM_INSTRUCTION_ERROR);
8392 return 0;
8393 }
6aa8b732 8394
b9bf6882
XG
8395 /*
8396 * Note:
8397 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8398 * delivery event since it indicates guest is accessing MMIO.
8399 * The vm-exit can be triggered again after return to guest that
8400 * will cause infinite loop.
8401 */
d77c26fc 8402 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8403 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8404 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8405 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8406 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8407 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8408 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8409 vcpu->run->internal.ndata = 2;
8410 vcpu->run->internal.data[0] = vectoring_info;
8411 vcpu->run->internal.data[1] = exit_reason;
8412 return 0;
8413 }
3b86cd99 8414
6aa8b732
AK
8415 if (exit_reason < kvm_vmx_max_exit_handlers
8416 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8417 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8418 else {
6c6c5e03
RK
8419 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8420 exit_reason);
2bc19dc3
MT
8421 kvm_queue_exception(vcpu, UD_VECTOR);
8422 return 1;
6aa8b732 8423 }
6aa8b732
AK
8424}
8425
95ba8273 8426static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8427{
a7c0b07d
WL
8428 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8429
8430 if (is_guest_mode(vcpu) &&
8431 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8432 return;
8433
95ba8273 8434 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8435 vmcs_write32(TPR_THRESHOLD, 0);
8436 return;
8437 }
8438
95ba8273 8439 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8440}
8441
8d14695f
YZ
8442static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8443{
8444 u32 sec_exec_control;
8445
dccbfcf5
RK
8446 /* Postpone execution until vmcs01 is the current VMCS. */
8447 if (is_guest_mode(vcpu)) {
8448 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8449 return;
8450 }
8451
f6e90f9e 8452 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8453 return;
8454
35754c98 8455 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8456 return;
8457
8458 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8459
8460 if (set) {
8461 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8462 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8463 } else {
8464 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8465 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8466 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8467 }
8468 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8469
8470 vmx_set_msr_bitmap(vcpu);
8471}
8472
38b99173
TC
8473static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8474{
8475 struct vcpu_vmx *vmx = to_vmx(vcpu);
8476
8477 /*
8478 * Currently we do not handle the nested case where L2 has an
8479 * APIC access page of its own; that page is still pinned.
8480 * Hence, we skip the case where the VCPU is in guest mode _and_
8481 * L1 prepared an APIC access page for L2.
8482 *
8483 * For the case where L1 and L2 share the same APIC access page
8484 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8485 * in the vmcs12), this function will only update either the vmcs01
8486 * or the vmcs02. If the former, the vmcs02 will be updated by
8487 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8488 * the next L2->L1 exit.
8489 */
8490 if (!is_guest_mode(vcpu) ||
4f2777bc 8491 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8492 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8493 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8494 vmx_flush_tlb_ept_only(vcpu);
8495 }
38b99173
TC
8496}
8497
67c9dddc 8498static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8499{
8500 u16 status;
8501 u8 old;
8502
67c9dddc
PB
8503 if (max_isr == -1)
8504 max_isr = 0;
c7c9c56c
YZ
8505
8506 status = vmcs_read16(GUEST_INTR_STATUS);
8507 old = status >> 8;
67c9dddc 8508 if (max_isr != old) {
c7c9c56c 8509 status &= 0xff;
67c9dddc 8510 status |= max_isr << 8;
c7c9c56c
YZ
8511 vmcs_write16(GUEST_INTR_STATUS, status);
8512 }
8513}
8514
8515static void vmx_set_rvi(int vector)
8516{
8517 u16 status;
8518 u8 old;
8519
4114c27d
WW
8520 if (vector == -1)
8521 vector = 0;
8522
c7c9c56c
YZ
8523 status = vmcs_read16(GUEST_INTR_STATUS);
8524 old = (u8)status & 0xff;
8525 if ((u8)vector != old) {
8526 status &= ~0xff;
8527 status |= (u8)vector;
8528 vmcs_write16(GUEST_INTR_STATUS, status);
8529 }
8530}
8531
8532static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8533{
4114c27d
WW
8534 if (!is_guest_mode(vcpu)) {
8535 vmx_set_rvi(max_irr);
8536 return;
8537 }
8538
c7c9c56c
YZ
8539 if (max_irr == -1)
8540 return;
8541
963fee16 8542 /*
4114c27d
WW
8543 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8544 * handles it.
963fee16 8545 */
4114c27d 8546 if (nested_exit_on_intr(vcpu))
963fee16
WL
8547 return;
8548
963fee16 8549 /*
4114c27d 8550 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8551 * is run without virtual interrupt delivery.
8552 */
8553 if (!kvm_event_needs_reinjection(vcpu) &&
8554 vmx_interrupt_allowed(vcpu)) {
8555 kvm_queue_interrupt(vcpu, max_irr, false);
8556 vmx_inject_irq(vcpu);
8557 }
c7c9c56c
YZ
8558}
8559
76dfafd5 8560static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8561{
8562 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8563 int max_irr;
810e6def 8564
76dfafd5
PB
8565 WARN_ON(!vcpu->arch.apicv_active);
8566 if (pi_test_on(&vmx->pi_desc)) {
8567 pi_clear_on(&vmx->pi_desc);
8568 /*
8569 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8570 * But on x86 this is just a compiler barrier anyway.
8571 */
8572 smp_mb__after_atomic();
8573 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8574 } else {
8575 max_irr = kvm_lapic_find_highest_irr(vcpu);
8576 }
8577 vmx_hwapic_irr_update(vcpu, max_irr);
8578 return max_irr;
810e6def
PB
8579}
8580
6308630b 8581static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8582{
d62caabb 8583 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8584 return;
8585
c7c9c56c
YZ
8586 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8587 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8588 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8589 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8590}
8591
967235d3
PB
8592static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8593{
8594 struct vcpu_vmx *vmx = to_vmx(vcpu);
8595
8596 pi_clear_on(&vmx->pi_desc);
8597 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8598}
8599
51aa01d1 8600static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8601{
00eba012
AK
8602 u32 exit_intr_info;
8603
8604 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8605 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8606 return;
8607
c5ca8e57 8608 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8609 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8610
8611 /* Handle machine checks before interrupts are enabled */
00eba012 8612 if (is_machine_check(exit_intr_info))
a0861c02
AK
8613 kvm_machine_check();
8614
20f65983 8615 /* We need to handle NMIs before interrupts are enabled */
ef85b673 8616 if (is_nmi(exit_intr_info)) {
ff9d07a0 8617 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8618 asm("int $2");
ff9d07a0
ZY
8619 kvm_after_handle_nmi(&vmx->vcpu);
8620 }
51aa01d1 8621}
20f65983 8622
a547c6db
YZ
8623static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8624{
8625 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8626 register void *__sp asm(_ASM_SP);
a547c6db 8627
a547c6db
YZ
8628 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8629 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8630 unsigned int vector;
8631 unsigned long entry;
8632 gate_desc *desc;
8633 struct vcpu_vmx *vmx = to_vmx(vcpu);
8634#ifdef CONFIG_X86_64
8635 unsigned long tmp;
8636#endif
8637
8638 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8639 desc = (gate_desc *)vmx->host_idt_base + vector;
8640 entry = gate_offset(*desc);
8641 asm volatile(
8642#ifdef CONFIG_X86_64
8643 "mov %%" _ASM_SP ", %[sp]\n\t"
8644 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8645 "push $%c[ss]\n\t"
8646 "push %[sp]\n\t"
8647#endif
8648 "pushf\n\t"
a547c6db
YZ
8649 __ASM_SIZE(push) " $%c[cs]\n\t"
8650 "call *%[entry]\n\t"
8651 :
8652#ifdef CONFIG_X86_64
3f62de5f 8653 [sp]"=&r"(tmp),
a547c6db 8654#endif
3f62de5f 8655 "+r"(__sp)
a547c6db
YZ
8656 :
8657 [entry]"r"(entry),
8658 [ss]"i"(__KERNEL_DS),
8659 [cs]"i"(__KERNEL_CS)
8660 );
f2485b3e 8661 }
a547c6db
YZ
8662}
8663
6d396b55
PB
8664static bool vmx_has_high_real_mode_segbase(void)
8665{
8666 return enable_unrestricted_guest || emulate_invalid_guest_state;
8667}
8668
da8999d3
LJ
8669static bool vmx_mpx_supported(void)
8670{
8671 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8672 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8673}
8674
55412b2e
WL
8675static bool vmx_xsaves_supported(void)
8676{
8677 return vmcs_config.cpu_based_2nd_exec_ctrl &
8678 SECONDARY_EXEC_XSAVES;
8679}
8680
51aa01d1
AK
8681static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8682{
c5ca8e57 8683 u32 exit_intr_info;
51aa01d1
AK
8684 bool unblock_nmi;
8685 u8 vector;
8686 bool idtv_info_valid;
8687
8688 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8689
2c82878b
PB
8690 if (vmx->nmi_known_unmasked)
8691 return;
8692 /*
8693 * Can't use vmx->exit_intr_info since we're not sure what
8694 * the exit reason is.
8695 */
8696 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8697 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8698 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8699 /*
8700 * SDM 3: 27.7.1.2 (September 2008)
8701 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8702 * a guest IRET fault.
8703 * SDM 3: 23.2.2 (September 2008)
8704 * Bit 12 is undefined in any of the following cases:
8705 * If the VM exit sets the valid bit in the IDT-vectoring
8706 * information field.
8707 * If the VM exit is due to a double fault.
8708 */
8709 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8710 vector != DF_VECTOR && !idtv_info_valid)
8711 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8712 GUEST_INTR_STATE_NMI);
8713 else
8714 vmx->nmi_known_unmasked =
8715 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8716 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
8717}
8718
3ab66e8a 8719static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8720 u32 idt_vectoring_info,
8721 int instr_len_field,
8722 int error_code_field)
51aa01d1 8723{
51aa01d1
AK
8724 u8 vector;
8725 int type;
8726 bool idtv_info_valid;
8727
8728 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8729
3ab66e8a
JK
8730 vcpu->arch.nmi_injected = false;
8731 kvm_clear_exception_queue(vcpu);
8732 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8733
8734 if (!idtv_info_valid)
8735 return;
8736
3ab66e8a 8737 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8738
668f612f
AK
8739 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8740 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8741
64a7ec06 8742 switch (type) {
37b96e98 8743 case INTR_TYPE_NMI_INTR:
3ab66e8a 8744 vcpu->arch.nmi_injected = true;
668f612f 8745 /*
7b4a25cb 8746 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8747 * Clear bit "block by NMI" before VM entry if a NMI
8748 * delivery faulted.
668f612f 8749 */
3ab66e8a 8750 vmx_set_nmi_mask(vcpu, false);
37b96e98 8751 break;
37b96e98 8752 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8753 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8754 /* fall through */
8755 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8756 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8757 u32 err = vmcs_read32(error_code_field);
851eb667 8758 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8759 } else
851eb667 8760 kvm_requeue_exception(vcpu, vector);
37b96e98 8761 break;
66fd3f7f 8762 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8763 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8764 /* fall through */
37b96e98 8765 case INTR_TYPE_EXT_INTR:
3ab66e8a 8766 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8767 break;
8768 default:
8769 break;
f7d9238f 8770 }
cf393f75
AK
8771}
8772
83422e17
AK
8773static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8774{
3ab66e8a 8775 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8776 VM_EXIT_INSTRUCTION_LEN,
8777 IDT_VECTORING_ERROR_CODE);
8778}
8779
b463a6f7
AK
8780static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8781{
3ab66e8a 8782 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8783 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8784 VM_ENTRY_INSTRUCTION_LEN,
8785 VM_ENTRY_EXCEPTION_ERROR_CODE);
8786
8787 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8788}
8789
d7cd9796
GN
8790static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8791{
8792 int i, nr_msrs;
8793 struct perf_guest_switch_msr *msrs;
8794
8795 msrs = perf_guest_get_msrs(&nr_msrs);
8796
8797 if (!msrs)
8798 return;
8799
8800 for (i = 0; i < nr_msrs; i++)
8801 if (msrs[i].host == msrs[i].guest)
8802 clear_atomic_switch_msr(vmx, msrs[i].msr);
8803 else
8804 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8805 msrs[i].host);
8806}
8807
33365e7a 8808static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
8809{
8810 struct vcpu_vmx *vmx = to_vmx(vcpu);
8811 u64 tscl;
8812 u32 delta_tsc;
8813
8814 if (vmx->hv_deadline_tsc == -1)
8815 return;
8816
8817 tscl = rdtsc();
8818 if (vmx->hv_deadline_tsc > tscl)
8819 /* sure to be 32 bit only because checked on set_hv_timer */
8820 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8821 cpu_preemption_timer_multi);
8822 else
8823 delta_tsc = 0;
8824
8825 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8826}
8827
a3b5ba49 8828static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8829{
a2fa3e9f 8830 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8831 unsigned long debugctlmsr, cr4;
104f226b 8832
104f226b
AK
8833 /* Don't enter VMX if guest state is invalid, let the exit handler
8834 start emulation until we arrive back to a valid state */
14168786 8835 if (vmx->emulation_required)
104f226b
AK
8836 return;
8837
a7653ecd
RK
8838 if (vmx->ple_window_dirty) {
8839 vmx->ple_window_dirty = false;
8840 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8841 }
8842
012f83cb
AG
8843 if (vmx->nested.sync_shadow_vmcs) {
8844 copy_vmcs12_to_shadow(vmx);
8845 vmx->nested.sync_shadow_vmcs = false;
8846 }
8847
104f226b
AK
8848 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8849 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8850 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8851 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8852
1e02ce4c 8853 cr4 = cr4_read_shadow();
d974baa3
AL
8854 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8855 vmcs_writel(HOST_CR4, cr4);
8856 vmx->host_state.vmcs_host_cr4 = cr4;
8857 }
8858
104f226b
AK
8859 /* When single-stepping over STI and MOV SS, we must clear the
8860 * corresponding interruptibility bits in the guest state. Otherwise
8861 * vmentry fails as it then expects bit 14 (BS) in pending debug
8862 * exceptions being set, but that's not correct for the guest debugging
8863 * case. */
8864 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8865 vmx_set_interrupt_shadow(vcpu, 0);
8866
1be0e61c
XG
8867 if (vmx->guest_pkru_valid)
8868 __write_pkru(vmx->guest_pkru);
8869
d7cd9796 8870 atomic_switch_perf_msrs(vmx);
2a7921b7 8871 debugctlmsr = get_debugctlmsr();
d7cd9796 8872
64672c95
YJ
8873 vmx_arm_hv_timer(vcpu);
8874
d462b819 8875 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8876 asm(
6aa8b732 8877 /* Store host registers */
b188c81f
AK
8878 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8879 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8880 "push %%" _ASM_CX " \n\t"
8881 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8882 "je 1f \n\t"
b188c81f 8883 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8884 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8885 "1: \n\t"
d3edefc0 8886 /* Reload cr2 if changed */
b188c81f
AK
8887 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8888 "mov %%cr2, %%" _ASM_DX " \n\t"
8889 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8890 "je 2f \n\t"
b188c81f 8891 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8892 "2: \n\t"
6aa8b732 8893 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8894 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8895 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8896 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8897 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8898 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8899 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8900 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8901 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8902#ifdef CONFIG_X86_64
e08aa78a
AK
8903 "mov %c[r8](%0), %%r8 \n\t"
8904 "mov %c[r9](%0), %%r9 \n\t"
8905 "mov %c[r10](%0), %%r10 \n\t"
8906 "mov %c[r11](%0), %%r11 \n\t"
8907 "mov %c[r12](%0), %%r12 \n\t"
8908 "mov %c[r13](%0), %%r13 \n\t"
8909 "mov %c[r14](%0), %%r14 \n\t"
8910 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8911#endif
b188c81f 8912 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8913
6aa8b732 8914 /* Enter guest mode */
83287ea4 8915 "jne 1f \n\t"
4ecac3fd 8916 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8917 "jmp 2f \n\t"
8918 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8919 "2: "
6aa8b732 8920 /* Save guest registers, load host registers, keep flags */
b188c81f 8921 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8922 "pop %0 \n\t"
b188c81f
AK
8923 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8924 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8925 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8926 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8927 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8928 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8929 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8930#ifdef CONFIG_X86_64
e08aa78a
AK
8931 "mov %%r8, %c[r8](%0) \n\t"
8932 "mov %%r9, %c[r9](%0) \n\t"
8933 "mov %%r10, %c[r10](%0) \n\t"
8934 "mov %%r11, %c[r11](%0) \n\t"
8935 "mov %%r12, %c[r12](%0) \n\t"
8936 "mov %%r13, %c[r13](%0) \n\t"
8937 "mov %%r14, %c[r14](%0) \n\t"
8938 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8939#endif
b188c81f
AK
8940 "mov %%cr2, %%" _ASM_AX " \n\t"
8941 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8942
b188c81f 8943 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8944 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8945 ".pushsection .rodata \n\t"
8946 ".global vmx_return \n\t"
8947 "vmx_return: " _ASM_PTR " 2b \n\t"
8948 ".popsection"
e08aa78a 8949 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8950 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8951 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8952 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8953 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8954 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8955 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8956 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8957 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8958 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8959 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8960#ifdef CONFIG_X86_64
ad312c7c
ZX
8961 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8962 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8963 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8964 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8965 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8966 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8967 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8968 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8969#endif
40712fae
AK
8970 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8971 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8972 : "cc", "memory"
8973#ifdef CONFIG_X86_64
b188c81f 8974 , "rax", "rbx", "rdi", "rsi"
c2036300 8975 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8976#else
8977 , "eax", "ebx", "edi", "esi"
c2036300
LV
8978#endif
8979 );
6aa8b732 8980
2a7921b7
GN
8981 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8982 if (debugctlmsr)
8983 update_debugctlmsr(debugctlmsr);
8984
aa67f609
AK
8985#ifndef CONFIG_X86_64
8986 /*
8987 * The sysexit path does not restore ds/es, so we must set them to
8988 * a reasonable value ourselves.
8989 *
8990 * We can't defer this to vmx_load_host_state() since that function
8991 * may be executed in interrupt context, which saves and restore segments
8992 * around it, nullifying its effect.
8993 */
8994 loadsegment(ds, __USER_DS);
8995 loadsegment(es, __USER_DS);
8996#endif
8997
6de4f3ad 8998 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8999 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9000 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9001 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9002 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9003 vcpu->arch.regs_dirty = 0;
9004
1155f76a
AK
9005 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9006
d462b819 9007 vmx->loaded_vmcs->launched = 1;
1b6269db 9008
51aa01d1 9009 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 9010
1be0e61c
XG
9011 /*
9012 * eager fpu is enabled if PKEY is supported and CR4 is switched
9013 * back on host, so it is safe to read guest PKRU from current
9014 * XSAVE.
9015 */
9016 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9017 vmx->guest_pkru = __read_pkru();
9018 if (vmx->guest_pkru != vmx->host_pkru) {
9019 vmx->guest_pkru_valid = true;
9020 __write_pkru(vmx->host_pkru);
9021 } else
9022 vmx->guest_pkru_valid = false;
9023 }
9024
e0b890d3
GN
9025 /*
9026 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9027 * we did not inject a still-pending event to L1 now because of
9028 * nested_run_pending, we need to re-enable this bit.
9029 */
9030 if (vmx->nested.nested_run_pending)
9031 kvm_make_request(KVM_REQ_EVENT, vcpu);
9032
9033 vmx->nested.nested_run_pending = 0;
9034
51aa01d1
AK
9035 vmx_complete_atomic_exit(vmx);
9036 vmx_recover_nmi_blocking(vmx);
cf393f75 9037 vmx_complete_interrupts(vmx);
6aa8b732
AK
9038}
9039
1279a6b1 9040static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9041{
9042 struct vcpu_vmx *vmx = to_vmx(vcpu);
9043 int cpu;
9044
1279a6b1 9045 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9046 return;
9047
9048 cpu = get_cpu();
1279a6b1 9049 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9050 vmx_vcpu_put(vcpu);
9051 vmx_vcpu_load(vcpu, cpu);
9052 vcpu->cpu = cpu;
9053 put_cpu();
9054}
9055
2f1fe811
JM
9056/*
9057 * Ensure that the current vmcs of the logical processor is the
9058 * vmcs01 of the vcpu before calling free_nested().
9059 */
9060static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9061{
9062 struct vcpu_vmx *vmx = to_vmx(vcpu);
9063 int r;
9064
9065 r = vcpu_load(vcpu);
9066 BUG_ON(r);
1279a6b1 9067 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9068 free_nested(vmx);
9069 vcpu_put(vcpu);
9070}
9071
6aa8b732
AK
9072static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9073{
fb3f0f51
RR
9074 struct vcpu_vmx *vmx = to_vmx(vcpu);
9075
843e4330 9076 if (enable_pml)
a3eaa864 9077 vmx_destroy_pml_buffer(vmx);
991e7a0e 9078 free_vpid(vmx->vpid);
4fa7734c 9079 leave_guest_mode(vcpu);
2f1fe811 9080 vmx_free_vcpu_nested(vcpu);
4fa7734c 9081 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9082 kfree(vmx->guest_msrs);
9083 kvm_vcpu_uninit(vcpu);
a4770347 9084 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9085}
9086
fb3f0f51 9087static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9088{
fb3f0f51 9089 int err;
c16f862d 9090 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9091 int cpu;
6aa8b732 9092
a2fa3e9f 9093 if (!vmx)
fb3f0f51
RR
9094 return ERR_PTR(-ENOMEM);
9095
991e7a0e 9096 vmx->vpid = allocate_vpid();
2384d2b3 9097
fb3f0f51
RR
9098 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9099 if (err)
9100 goto free_vcpu;
965b58a5 9101
4e59516a
PF
9102 err = -ENOMEM;
9103
9104 /*
9105 * If PML is turned on, failure on enabling PML just results in failure
9106 * of creating the vcpu, therefore we can simplify PML logic (by
9107 * avoiding dealing with cases, such as enabling PML partially on vcpus
9108 * for the guest, etc.
9109 */
9110 if (enable_pml) {
9111 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9112 if (!vmx->pml_pg)
9113 goto uninit_vcpu;
9114 }
9115
a2fa3e9f 9116 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9117 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9118 > PAGE_SIZE);
0123be42 9119
4e59516a
PF
9120 if (!vmx->guest_msrs)
9121 goto free_pml;
965b58a5 9122
d462b819
NHE
9123 vmx->loaded_vmcs = &vmx->vmcs01;
9124 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9125 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9126 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9127 goto free_msrs;
d462b819 9128 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9129
15ad7146
AK
9130 cpu = get_cpu();
9131 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9132 vmx->vcpu.cpu = cpu;
8b9cf98c 9133 err = vmx_vcpu_setup(vmx);
fb3f0f51 9134 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9135 put_cpu();
fb3f0f51
RR
9136 if (err)
9137 goto free_vmcs;
35754c98 9138 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9139 err = alloc_apic_access_page(kvm);
9140 if (err)
5e4a0b3c 9141 goto free_vmcs;
a63cb560 9142 }
fb3f0f51 9143
b927a3ce
SY
9144 if (enable_ept) {
9145 if (!kvm->arch.ept_identity_map_addr)
9146 kvm->arch.ept_identity_map_addr =
9147 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9148 err = init_rmode_identity_map(kvm);
9149 if (err)
93ea5388 9150 goto free_vmcs;
b927a3ce 9151 }
b7ebfb05 9152
5c614b35 9153 if (nested) {
b9c237bb 9154 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9155 vmx->nested.vpid02 = allocate_vpid();
9156 }
b9c237bb 9157
705699a1 9158 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
9159 vmx->nested.current_vmptr = -1ull;
9160 vmx->nested.current_vmcs12 = NULL;
9161
37e4c997
HZ
9162 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9163
fb3f0f51
RR
9164 return &vmx->vcpu;
9165
9166free_vmcs:
5c614b35 9167 free_vpid(vmx->nested.vpid02);
5f3fbc34 9168 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9169free_msrs:
fb3f0f51 9170 kfree(vmx->guest_msrs);
4e59516a
PF
9171free_pml:
9172 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9173uninit_vcpu:
9174 kvm_vcpu_uninit(&vmx->vcpu);
9175free_vcpu:
991e7a0e 9176 free_vpid(vmx->vpid);
a4770347 9177 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9178 return ERR_PTR(err);
6aa8b732
AK
9179}
9180
002c7f7c
YS
9181static void __init vmx_check_processor_compat(void *rtn)
9182{
9183 struct vmcs_config vmcs_conf;
9184
9185 *(int *)rtn = 0;
9186 if (setup_vmcs_config(&vmcs_conf) < 0)
9187 *(int *)rtn = -EIO;
9188 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9189 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9190 smp_processor_id());
9191 *(int *)rtn = -EIO;
9192 }
9193}
9194
67253af5
SY
9195static int get_ept_level(void)
9196{
9197 return VMX_EPT_DEFAULT_GAW + 1;
9198}
9199
4b12f0de 9200static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9201{
b18d5431
XG
9202 u8 cache;
9203 u64 ipat = 0;
4b12f0de 9204
522c68c4 9205 /* For VT-d and EPT combination
606decd6 9206 * 1. MMIO: always map as UC
522c68c4
SY
9207 * 2. EPT with VT-d:
9208 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9209 * result, try to trust guest.
522c68c4
SY
9210 * b. VT-d with snooping control feature: snooping control feature of
9211 * VT-d engine can guarantee the cache correctness. Just set it
9212 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9213 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9214 * consistent with host MTRR
9215 */
606decd6
PB
9216 if (is_mmio) {
9217 cache = MTRR_TYPE_UNCACHABLE;
9218 goto exit;
9219 }
9220
9221 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9222 ipat = VMX_EPT_IPAT_BIT;
9223 cache = MTRR_TYPE_WRBACK;
9224 goto exit;
9225 }
9226
9227 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9228 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9229 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9230 cache = MTRR_TYPE_WRBACK;
9231 else
9232 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9233 goto exit;
9234 }
9235
ff53604b 9236 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9237
9238exit:
9239 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9240}
9241
17cc3935 9242static int vmx_get_lpage_level(void)
344f414f 9243{
878403b7
SY
9244 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9245 return PT_DIRECTORY_LEVEL;
9246 else
9247 /* For shadow and EPT supported 1GB page */
9248 return PT_PDPE_LEVEL;
344f414f
JR
9249}
9250
feda805f
XG
9251static void vmcs_set_secondary_exec_control(u32 new_ctl)
9252{
9253 /*
9254 * These bits in the secondary execution controls field
9255 * are dynamic, the others are mostly based on the hypervisor
9256 * architecture and the guest's CPUID. Do not touch the
9257 * dynamic bits.
9258 */
9259 u32 mask =
9260 SECONDARY_EXEC_SHADOW_VMCS |
9261 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9262 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9263
9264 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9265
9266 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9267 (new_ctl & ~mask) | (cur_ctl & mask));
9268}
9269
8322ebbb
DM
9270/*
9271 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9272 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9273 */
9274static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9275{
9276 struct vcpu_vmx *vmx = to_vmx(vcpu);
9277 struct kvm_cpuid_entry2 *entry;
9278
9279 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9280 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9281
9282#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9283 if (entry && (entry->_reg & (_cpuid_mask))) \
9284 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9285} while (0)
9286
9287 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9288 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9289 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9290 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9291 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9292 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9293 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9294 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9295 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9296 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9297 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9298 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9299 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9300 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9301 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9302
9303 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9304 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9305 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9306 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9307 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9308 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9309 cr4_fixed1_update(bit(11), ecx, bit(2));
9310
9311#undef cr4_fixed1_update
9312}
9313
0e851880
SY
9314static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9315{
4e47c7a6
SY
9316 struct kvm_cpuid_entry2 *best;
9317 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9318 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9319
4e47c7a6 9320 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9321 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9322 if (!rdtscp_enabled)
feda805f 9323 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9324
8b97265a 9325 if (nested) {
1cea0ce6 9326 if (rdtscp_enabled)
8b97265a
PB
9327 vmx->nested.nested_vmx_secondary_ctls_high |=
9328 SECONDARY_EXEC_RDTSCP;
9329 else
9330 vmx->nested.nested_vmx_secondary_ctls_high &=
9331 ~SECONDARY_EXEC_RDTSCP;
9332 }
4e47c7a6 9333 }
ad756a16 9334
ad756a16
MJ
9335 /* Exposing INVPCID only when PCID is exposed */
9336 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9337 if (vmx_invpcid_supported() &&
29541bb8
XG
9338 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9339 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9340 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9341
ad756a16 9342 if (best)
4f977045 9343 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9344 }
8b3e34e4 9345
45bdbcfd
HH
9346 if (cpu_has_secondary_exec_ctrls())
9347 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9348
37e4c997
HZ
9349 if (nested_vmx_allowed(vcpu))
9350 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9351 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9352 else
9353 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9354 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9355
9356 if (nested_vmx_allowed(vcpu))
9357 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9358}
9359
d4330ef2
JR
9360static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9361{
7b8050f5
NHE
9362 if (func == 1 && nested)
9363 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9364}
9365
25d92081
YZ
9366static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9367 struct x86_exception *fault)
9368{
533558bc 9369 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9370 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9371 u32 exit_reason;
c5f983f6 9372 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9373
c5f983f6
BD
9374 if (vmx->nested.pml_full) {
9375 exit_reason = EXIT_REASON_PML_FULL;
9376 vmx->nested.pml_full = false;
9377 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9378 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9379 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9380 else
533558bc 9381 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9382
9383 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9384 vmcs12->guest_physical_address = fault->address;
9385}
9386
995f00a6
PF
9387static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9388{
9389 return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9390}
9391
155a97a3
NHE
9392/* Callbacks for nested_ept_init_mmu_context: */
9393
9394static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9395{
9396 /* return the page table to be shadowed - in our case, EPT12 */
9397 return get_vmcs12(vcpu)->ept_pointer;
9398}
9399
ae1e2d10 9400static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9401{
995f00a6 9402 bool wants_ad;
ae1e2d10 9403
ad896af0 9404 WARN_ON(mmu_is_nested(vcpu));
995f00a6
PF
9405 wants_ad = nested_ept_ad_enabled(vcpu);
9406 if (wants_ad && !enable_ept_ad_bits)
ae1e2d10
PB
9407 return 1;
9408
9409 kvm_mmu_unload(vcpu);
ad896af0 9410 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9411 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9412 VMX_EPT_EXECUTE_ONLY_BIT,
995f00a6 9413 wants_ad);
155a97a3
NHE
9414 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9415 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9416 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9417
9418 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9419 return 0;
155a97a3
NHE
9420}
9421
9422static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9423{
9424 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9425}
9426
19d5f10b
EK
9427static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9428 u16 error_code)
9429{
9430 bool inequality, bit;
9431
9432 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9433 inequality =
9434 (error_code & vmcs12->page_fault_error_code_mask) !=
9435 vmcs12->page_fault_error_code_match;
9436 return inequality ^ bit;
9437}
9438
feaf0c7d
GN
9439static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9440 struct x86_exception *fault)
9441{
9442 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9443
9444 WARN_ON(!is_guest_mode(vcpu));
9445
19d5f10b 9446 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9447 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9448 vmcs_read32(VM_EXIT_INTR_INFO),
9449 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9450 else
9451 kvm_inject_page_fault(vcpu, fault);
9452}
9453
6beb7bd5
JM
9454static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9455 struct vmcs12 *vmcs12);
9456
9457static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9458 struct vmcs12 *vmcs12)
9459{
9460 struct vcpu_vmx *vmx = to_vmx(vcpu);
6beb7bd5 9461 u64 hpa;
a2bcba50
WL
9462
9463 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9464 /*
9465 * Translate L1 physical address to host physical
9466 * address for vmcs02. Keep the page pinned, so this
9467 * physical address remains valid. We keep a reference
9468 * to it so we can release it later.
9469 */
9470 if (vmx->nested.apic_access_page) /* shouldn't happen */
9471 nested_release_page(vmx->nested.apic_access_page);
9472 vmx->nested.apic_access_page =
9473 nested_get_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9474 /*
9475 * If translation failed, no matter: This feature asks
9476 * to exit when accessing the given address, and if it
9477 * can never be accessed, this feature won't do
9478 * anything anyway.
9479 */
9480 if (vmx->nested.apic_access_page) {
9481 hpa = page_to_phys(vmx->nested.apic_access_page);
9482 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9483 } else {
9484 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9485 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9486 }
9487 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9488 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9489 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9490 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9491 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9492 }
a7c0b07d
WL
9493
9494 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
a7c0b07d
WL
9495 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9496 nested_release_page(vmx->nested.virtual_apic_page);
9497 vmx->nested.virtual_apic_page =
9498 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9499
9500 /*
6beb7bd5
JM
9501 * If translation failed, VM entry will fail because
9502 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9503 * Failing the vm entry is _not_ what the processor
9504 * does but it's basically the only possibility we
9505 * have. We could still enter the guest if CR8 load
9506 * exits are enabled, CR8 store exits are enabled, and
9507 * virtualize APIC access is disabled; in this case
9508 * the processor would never use the TPR shadow and we
9509 * could simply clear the bit from the execution
9510 * control. But such a configuration is useless, so
9511 * let's keep the code simple.
a7c0b07d 9512 */
6beb7bd5
JM
9513 if (vmx->nested.virtual_apic_page) {
9514 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9515 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9516 }
a7c0b07d
WL
9517 }
9518
705699a1 9519 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9520 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9521 kunmap(vmx->nested.pi_desc_page);
9522 nested_release_page(vmx->nested.pi_desc_page);
9523 }
9524 vmx->nested.pi_desc_page =
9525 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
705699a1
WV
9526 vmx->nested.pi_desc =
9527 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9528 if (!vmx->nested.pi_desc) {
9529 nested_release_page_clean(vmx->nested.pi_desc_page);
6beb7bd5 9530 return;
705699a1
WV
9531 }
9532 vmx->nested.pi_desc =
9533 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9534 (unsigned long)(vmcs12->posted_intr_desc_addr &
9535 (PAGE_SIZE - 1)));
6beb7bd5
JM
9536 vmcs_write64(POSTED_INTR_DESC_ADDR,
9537 page_to_phys(vmx->nested.pi_desc_page) +
9538 (unsigned long)(vmcs12->posted_intr_desc_addr &
9539 (PAGE_SIZE - 1)));
705699a1 9540 }
6beb7bd5
JM
9541 if (cpu_has_vmx_msr_bitmap() &&
9542 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9543 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9544 ;
9545 else
9546 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9547 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9548}
9549
f4124500
JK
9550static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9551{
9552 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9553 struct vcpu_vmx *vmx = to_vmx(vcpu);
9554
9555 if (vcpu->arch.virtual_tsc_khz == 0)
9556 return;
9557
9558 /* Make sure short timeouts reliably trigger an immediate vmexit.
9559 * hrtimer_start does not guarantee this. */
9560 if (preemption_timeout <= 1) {
9561 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9562 return;
9563 }
9564
9565 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9566 preemption_timeout *= 1000000;
9567 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9568 hrtimer_start(&vmx->nested.preemption_timer,
9569 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9570}
9571
3af18d9c
WV
9572static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9573 struct vmcs12 *vmcs12)
9574{
9575 int maxphyaddr;
9576 u64 addr;
9577
9578 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9579 return 0;
9580
9581 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9582 WARN_ON(1);
9583 return -EINVAL;
9584 }
9585 maxphyaddr = cpuid_maxphyaddr(vcpu);
9586
9587 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9588 ((addr + PAGE_SIZE) >> maxphyaddr))
9589 return -EINVAL;
9590
9591 return 0;
9592}
9593
9594/*
9595 * Merge L0's and L1's MSR bitmap, return false to indicate that
9596 * we do not use the hardware.
9597 */
9598static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9599 struct vmcs12 *vmcs12)
9600{
82f0dd4b 9601 int msr;
f2b93280 9602 struct page *page;
d048c098
RK
9603 unsigned long *msr_bitmap_l1;
9604 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 9605
d048c098 9606 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
9607 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9608 return false;
9609
9610 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
05d8d346 9611 if (!page)
f2b93280 9612 return false;
d048c098 9613 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 9614
d048c098
RK
9615 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9616
f2b93280 9617 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9618 if (nested_cpu_has_apic_reg_virt(vmcs12))
9619 for (msr = 0x800; msr <= 0x8ff; msr++)
9620 nested_vmx_disable_intercept_for_msr(
d048c098 9621 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 9622 msr, MSR_TYPE_R);
d048c098
RK
9623
9624 nested_vmx_disable_intercept_for_msr(
9625 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
9626 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9627 MSR_TYPE_R | MSR_TYPE_W);
d048c098 9628
608406e2 9629 if (nested_cpu_has_vid(vmcs12)) {
608406e2 9630 nested_vmx_disable_intercept_for_msr(
d048c098 9631 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9632 APIC_BASE_MSR + (APIC_EOI >> 4),
9633 MSR_TYPE_W);
9634 nested_vmx_disable_intercept_for_msr(
d048c098 9635 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
9636 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9637 MSR_TYPE_W);
9638 }
82f0dd4b 9639 }
f2b93280
WV
9640 kunmap(page);
9641 nested_release_page_clean(page);
9642
9643 return true;
9644}
9645
9646static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9647 struct vmcs12 *vmcs12)
9648{
82f0dd4b 9649 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9650 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9651 !nested_cpu_has_vid(vmcs12) &&
9652 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9653 return 0;
9654
9655 /*
9656 * If virtualize x2apic mode is enabled,
9657 * virtualize apic access must be disabled.
9658 */
82f0dd4b
WV
9659 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9660 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9661 return -EINVAL;
9662
608406e2
WV
9663 /*
9664 * If virtual interrupt delivery is enabled,
9665 * we must exit on external interrupts.
9666 */
9667 if (nested_cpu_has_vid(vmcs12) &&
9668 !nested_exit_on_intr(vcpu))
9669 return -EINVAL;
9670
705699a1
WV
9671 /*
9672 * bits 15:8 should be zero in posted_intr_nv,
9673 * the descriptor address has been already checked
9674 * in nested_get_vmcs12_pages.
9675 */
9676 if (nested_cpu_has_posted_intr(vmcs12) &&
9677 (!nested_cpu_has_vid(vmcs12) ||
9678 !nested_exit_intr_ack_set(vcpu) ||
9679 vmcs12->posted_intr_nv & 0xff00))
9680 return -EINVAL;
9681
f2b93280
WV
9682 /* tpr shadow is needed by all apicv features. */
9683 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9684 return -EINVAL;
9685
9686 return 0;
3af18d9c
WV
9687}
9688
e9ac033e
EK
9689static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9690 unsigned long count_field,
92d71bc6 9691 unsigned long addr_field)
ff651cb6 9692{
92d71bc6 9693 int maxphyaddr;
e9ac033e
EK
9694 u64 count, addr;
9695
9696 if (vmcs12_read_any(vcpu, count_field, &count) ||
9697 vmcs12_read_any(vcpu, addr_field, &addr)) {
9698 WARN_ON(1);
9699 return -EINVAL;
9700 }
9701 if (count == 0)
9702 return 0;
92d71bc6 9703 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9704 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9705 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 9706 pr_debug_ratelimited(
e9ac033e
EK
9707 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9708 addr_field, maxphyaddr, count, addr);
9709 return -EINVAL;
9710 }
9711 return 0;
9712}
9713
9714static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9715 struct vmcs12 *vmcs12)
9716{
e9ac033e
EK
9717 if (vmcs12->vm_exit_msr_load_count == 0 &&
9718 vmcs12->vm_exit_msr_store_count == 0 &&
9719 vmcs12->vm_entry_msr_load_count == 0)
9720 return 0; /* Fast path */
e9ac033e 9721 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9722 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9723 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9724 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9725 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9726 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9727 return -EINVAL;
9728 return 0;
9729}
9730
c5f983f6
BD
9731static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9732 struct vmcs12 *vmcs12)
9733{
9734 u64 address = vmcs12->pml_address;
9735 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9736
9737 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9738 if (!nested_cpu_has_ept(vmcs12) ||
9739 !IS_ALIGNED(address, 4096) ||
9740 address >> maxphyaddr)
9741 return -EINVAL;
9742 }
9743
9744 return 0;
9745}
9746
e9ac033e
EK
9747static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9748 struct vmx_msr_entry *e)
9749{
9750 /* x2APIC MSR accesses are not allowed */
8a9781f7 9751 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9752 return -EINVAL;
9753 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9754 e->index == MSR_IA32_UCODE_REV)
9755 return -EINVAL;
9756 if (e->reserved != 0)
ff651cb6
WV
9757 return -EINVAL;
9758 return 0;
9759}
9760
e9ac033e
EK
9761static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9762 struct vmx_msr_entry *e)
ff651cb6
WV
9763{
9764 if (e->index == MSR_FS_BASE ||
9765 e->index == MSR_GS_BASE ||
e9ac033e
EK
9766 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9767 nested_vmx_msr_check_common(vcpu, e))
9768 return -EINVAL;
9769 return 0;
9770}
9771
9772static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9773 struct vmx_msr_entry *e)
9774{
9775 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9776 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9777 return -EINVAL;
9778 return 0;
9779}
9780
9781/*
9782 * Load guest's/host's msr at nested entry/exit.
9783 * return 0 for success, entry index for failure.
9784 */
9785static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9786{
9787 u32 i;
9788 struct vmx_msr_entry e;
9789 struct msr_data msr;
9790
9791 msr.host_initiated = false;
9792 for (i = 0; i < count; i++) {
54bf36aa
PB
9793 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9794 &e, sizeof(e))) {
bbe41b95 9795 pr_debug_ratelimited(
e9ac033e
EK
9796 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9797 __func__, i, gpa + i * sizeof(e));
ff651cb6 9798 goto fail;
e9ac033e
EK
9799 }
9800 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 9801 pr_debug_ratelimited(
e9ac033e
EK
9802 "%s check failed (%u, 0x%x, 0x%x)\n",
9803 __func__, i, e.index, e.reserved);
9804 goto fail;
9805 }
ff651cb6
WV
9806 msr.index = e.index;
9807 msr.data = e.value;
e9ac033e 9808 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 9809 pr_debug_ratelimited(
e9ac033e
EK
9810 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9811 __func__, i, e.index, e.value);
ff651cb6 9812 goto fail;
e9ac033e 9813 }
ff651cb6
WV
9814 }
9815 return 0;
9816fail:
9817 return i + 1;
9818}
9819
9820static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9821{
9822 u32 i;
9823 struct vmx_msr_entry e;
9824
9825 for (i = 0; i < count; i++) {
609e36d3 9826 struct msr_data msr_info;
54bf36aa
PB
9827 if (kvm_vcpu_read_guest(vcpu,
9828 gpa + i * sizeof(e),
9829 &e, 2 * sizeof(u32))) {
bbe41b95 9830 pr_debug_ratelimited(
e9ac033e
EK
9831 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9832 __func__, i, gpa + i * sizeof(e));
ff651cb6 9833 return -EINVAL;
e9ac033e
EK
9834 }
9835 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 9836 pr_debug_ratelimited(
e9ac033e
EK
9837 "%s check failed (%u, 0x%x, 0x%x)\n",
9838 __func__, i, e.index, e.reserved);
ff651cb6 9839 return -EINVAL;
e9ac033e 9840 }
609e36d3
PB
9841 msr_info.host_initiated = false;
9842 msr_info.index = e.index;
9843 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 9844 pr_debug_ratelimited(
e9ac033e
EK
9845 "%s cannot read MSR (%u, 0x%x)\n",
9846 __func__, i, e.index);
9847 return -EINVAL;
9848 }
54bf36aa
PB
9849 if (kvm_vcpu_write_guest(vcpu,
9850 gpa + i * sizeof(e) +
9851 offsetof(struct vmx_msr_entry, value),
9852 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 9853 pr_debug_ratelimited(
e9ac033e 9854 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9855 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9856 return -EINVAL;
9857 }
ff651cb6
WV
9858 }
9859 return 0;
9860}
9861
1dc35dac
LP
9862static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9863{
9864 unsigned long invalid_mask;
9865
9866 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9867 return (val & invalid_mask) == 0;
9868}
9869
9ed38ffa
LP
9870/*
9871 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9872 * emulating VM entry into a guest with EPT enabled.
9873 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9874 * is assigned to entry_failure_code on failure.
9875 */
9876static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 9877 u32 *entry_failure_code)
9ed38ffa 9878{
9ed38ffa 9879 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 9880 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
9881 *entry_failure_code = ENTRY_FAIL_DEFAULT;
9882 return 1;
9883 }
9884
9885 /*
9886 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9887 * must not be dereferenced.
9888 */
9889 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9890 !nested_ept) {
9891 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9892 *entry_failure_code = ENTRY_FAIL_PDPTE;
9893 return 1;
9894 }
9895 }
9896
9897 vcpu->arch.cr3 = cr3;
9898 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9899 }
9900
9901 kvm_mmu_reset_context(vcpu);
9902 return 0;
9903}
9904
fe3ef05c
NHE
9905/*
9906 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9907 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9908 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9909 * guest in a way that will both be appropriate to L1's requests, and our
9910 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9911 * function also has additional necessary side-effects, like setting various
9912 * vcpu->arch fields.
ee146c1c
LP
9913 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9914 * is assigned to entry_failure_code on failure.
fe3ef05c 9915 */
ee146c1c 9916static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 9917 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
9918{
9919 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 9920 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
9921
9922 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9923 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9924 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9925 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9926 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9927 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9928 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9929 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9930 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9931 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9932 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9933 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9934 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9935 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9936 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9937 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9938 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9939 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9940 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9941 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9942 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9943 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9944 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9945 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9946 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9947 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9948 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9949 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9950 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9951 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9952 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9953 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9954 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9955 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9956 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9957 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9958
cf8b84f4
JM
9959 if (from_vmentry &&
9960 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
9961 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9962 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9963 } else {
9964 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9965 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9966 }
cf8b84f4
JM
9967 if (from_vmentry) {
9968 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9969 vmcs12->vm_entry_intr_info_field);
9970 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9971 vmcs12->vm_entry_exception_error_code);
9972 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9973 vmcs12->vm_entry_instruction_len);
9974 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9975 vmcs12->guest_interruptibility_info);
9976 } else {
9977 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9978 }
fe3ef05c 9979 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9980 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9981 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9982 vmcs12->guest_pending_dbg_exceptions);
9983 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9984 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9985
81dc01f7
WL
9986 if (nested_cpu_has_xsaves(vmcs12))
9987 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9988 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9989
f4124500 9990 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
9991
9992 /* Preemption timer setting is only taken from vmcs01. */
705699a1 9993 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
9994 exec_control |= vmcs_config.pin_based_exec_ctrl;
9995 if (vmx->hv_deadline_tsc == -1)
9996 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 9997
9314006d 9998 /* Posted interrupts setting is only taken from vmcs12. */
705699a1
WV
9999 if (nested_cpu_has_posted_intr(vmcs12)) {
10000 /*
10001 * Note that we use L0's vector here and in
10002 * vmx_deliver_nested_posted_interrupt.
10003 */
10004 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10005 vmx->nested.pi_pending = false;
0bcf261c 10006 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
6beb7bd5 10007 } else {
705699a1 10008 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10009 }
705699a1 10010
f4124500 10011 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10012
f4124500
JK
10013 vmx->nested.preemption_timer_expired = false;
10014 if (nested_cpu_has_preemption_timer(vmcs12))
10015 vmx_start_preemption_timer(vcpu);
0238ea91 10016
fe3ef05c
NHE
10017 /*
10018 * Whether page-faults are trapped is determined by a combination of
10019 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10020 * If enable_ept, L0 doesn't care about page faults and we should
10021 * set all of these to L1's desires. However, if !enable_ept, L0 does
10022 * care about (at least some) page faults, and because it is not easy
10023 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10024 * to exit on each and every L2 page fault. This is done by setting
10025 * MASK=MATCH=0 and (see below) EB.PF=1.
10026 * Note that below we don't need special code to set EB.PF beyond the
10027 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10028 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10029 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10030 *
10031 * A problem with this approach (when !enable_ept) is that L1 may be
10032 * injected with more page faults than it asked for. This could have
10033 * caused problems, but in practice existing hypervisors don't care.
10034 * To fix this, we will need to emulate the PFEC checking (on the L1
10035 * page tables), using walk_addr(), when injecting PFs to L1.
10036 */
10037 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10038 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10039 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10040 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10041
10042 if (cpu_has_secondary_exec_ctrls()) {
f4124500 10043 exec_control = vmx_secondary_exec_control(vmx);
e2821620 10044
fe3ef05c 10045 /* Take the following fields only from vmcs12 */
696dfd95 10046 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 10047 SECONDARY_EXEC_RDTSCP |
696dfd95 10048 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
dfa169bb 10049 SECONDARY_EXEC_APIC_REGISTER_VIRT);
fe3ef05c 10050 if (nested_cpu_has(vmcs12,
03efce6f
BD
10051 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10052 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10053 ~SECONDARY_EXEC_ENABLE_PML;
10054 exec_control |= vmcs12_exec_ctrl;
10055 }
fe3ef05c 10056
608406e2
WV
10057 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10058 vmcs_write64(EOI_EXIT_BITMAP0,
10059 vmcs12->eoi_exit_bitmap0);
10060 vmcs_write64(EOI_EXIT_BITMAP1,
10061 vmcs12->eoi_exit_bitmap1);
10062 vmcs_write64(EOI_EXIT_BITMAP2,
10063 vmcs12->eoi_exit_bitmap2);
10064 vmcs_write64(EOI_EXIT_BITMAP3,
10065 vmcs12->eoi_exit_bitmap3);
10066 vmcs_write16(GUEST_INTR_STATUS,
10067 vmcs12->guest_intr_status);
10068 }
10069
6beb7bd5
JM
10070 /*
10071 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10072 * nested_get_vmcs12_pages will either fix it up or
10073 * remove the VM execution control.
10074 */
10075 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10076 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10077
fe3ef05c
NHE
10078 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10079 }
10080
10081
10082 /*
10083 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10084 * Some constant fields are set here by vmx_set_constant_host_state().
10085 * Other fields are different per CPU, and will be set later when
10086 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10087 */
a547c6db 10088 vmx_set_constant_host_state(vmx);
fe3ef05c 10089
83bafef1
JM
10090 /*
10091 * Set the MSR load/store lists to match L0's settings.
10092 */
10093 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10094 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10095 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10096 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10097 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10098
fe3ef05c
NHE
10099 /*
10100 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10101 * entry, but only if the current (host) sp changed from the value
10102 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10103 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10104 * here we just force the write to happen on entry.
10105 */
10106 vmx->host_rsp = 0;
10107
10108 exec_control = vmx_exec_control(vmx); /* L0's desires */
10109 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10110 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10111 exec_control &= ~CPU_BASED_TPR_SHADOW;
10112 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10113
6beb7bd5
JM
10114 /*
10115 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10116 * nested_get_vmcs12_pages can't fix it up, the illegal value
10117 * will result in a VM entry failure.
10118 */
a7c0b07d 10119 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10120 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d
WL
10121 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10122 }
10123
fe3ef05c 10124 /*
3af18d9c 10125 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10126 * Rather, exit every time.
10127 */
fe3ef05c
NHE
10128 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10129 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10130
10131 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10132
10133 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10134 * bitwise-or of what L1 wants to trap for L2, and what we want to
10135 * trap. Note that CR0.TS also needs updating - we do this later.
10136 */
10137 update_exception_bitmap(vcpu);
10138 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10139 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10140
8049d651
NHE
10141 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10142 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10143 * bits are further modified by vmx_set_efer() below.
10144 */
f4124500 10145 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10146
10147 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10148 * emulated by vmx_set_efer(), below.
10149 */
2961e876 10150 vm_entry_controls_init(vmx,
8049d651
NHE
10151 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10152 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10153 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10154
cf8b84f4
JM
10155 if (from_vmentry &&
10156 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10157 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10158 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10159 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10160 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10161 }
fe3ef05c
NHE
10162
10163 set_cr4_guest_host_mask(vmx);
10164
cf8b84f4
JM
10165 if (from_vmentry &&
10166 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10167 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10168
27fc51b2
NHE
10169 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10170 vmcs_write64(TSC_OFFSET,
ea26e4ec 10171 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10172 else
ea26e4ec 10173 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10174 if (kvm_has_tsc_control)
10175 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10176
10177 if (enable_vpid) {
10178 /*
5c614b35
WL
10179 * There is no direct mapping between vpid02 and vpid12, the
10180 * vpid02 is per-vCPU for L0 and reused while the value of
10181 * vpid12 is changed w/ one invvpid during nested vmentry.
10182 * The vpid12 is allocated by L1 for L2, so it will not
10183 * influence global bitmap(for vpid01 and vpid02 allocation)
10184 * even if spawn a lot of nested vCPUs.
fe3ef05c 10185 */
5c614b35
WL
10186 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10187 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10188 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10189 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10190 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10191 }
10192 } else {
10193 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10194 vmx_flush_tlb(vcpu);
10195 }
10196
fe3ef05c
NHE
10197 }
10198
1fb883bb
LP
10199 if (enable_pml) {
10200 /*
10201 * Conceptually we want to copy the PML address and index from
10202 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10203 * since we always flush the log on each vmexit, this happens
10204 * to be equivalent to simply resetting the fields in vmcs02.
10205 */
10206 ASSERT(vmx->pml_pg);
10207 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10208 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10209 }
10210
155a97a3 10211 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10212 if (nested_ept_init_mmu_context(vcpu)) {
10213 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10214 return 1;
10215 }
fb6c8198
JM
10216 } else if (nested_cpu_has2(vmcs12,
10217 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10218 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10219 }
10220
fe3ef05c 10221 /*
bd7e5b08
PB
10222 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10223 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10224 * The CR0_READ_SHADOW is what L2 should have expected to read given
10225 * the specifications by L1; It's not enough to take
10226 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10227 * have more bits than L1 expected.
10228 */
10229 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10230 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10231
10232 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10233 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10234
cf8b84f4
JM
10235 if (from_vmentry &&
10236 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10237 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10238 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10239 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10240 else
10241 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10242 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10243 vmx_set_efer(vcpu, vcpu->arch.efer);
10244
9ed38ffa 10245 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10246 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10247 entry_failure_code))
10248 return 1;
7ca29de2 10249
feaf0c7d
GN
10250 if (!enable_ept)
10251 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10252
3633cfc3
NHE
10253 /*
10254 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10255 */
10256 if (enable_ept) {
10257 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10258 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10259 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10260 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10261 }
10262
fe3ef05c
NHE
10263 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10264 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10265 return 0;
fe3ef05c
NHE
10266}
10267
ca0bde28 10268static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10269{
cd232ad0 10270 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10271
6dfacadd 10272 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10273 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10274 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10275
ca0bde28
JM
10276 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10277 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10278
ca0bde28
JM
10279 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10280 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10281
ca0bde28
JM
10282 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10283 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10284
c5f983f6
BD
10285 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10286 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10287
7c177938 10288 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10289 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10290 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10291 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10292 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10293 vmx->nested.nested_vmx_secondary_ctls_low,
10294 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10295 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10296 vmx->nested.nested_vmx_pinbased_ctls_low,
10297 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10298 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10299 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10300 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10301 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10302 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10303 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10304 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10305
c7c2c709
JM
10306 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10307 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10308
3899152c 10309 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10310 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10311 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10312 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10313
10314 return 0;
10315}
10316
10317static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10318 u32 *exit_qual)
10319{
10320 bool ia32e;
10321
10322 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10323
3899152c 10324 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10325 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10326 return 1;
ca0bde28
JM
10327
10328 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10329 vmcs12->vmcs_link_pointer != -1ull) {
10330 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10331 return 1;
7c177938
NHE
10332 }
10333
384bb783 10334 /*
cb0c8cda 10335 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10336 * are performed on the field for the IA32_EFER MSR:
10337 * - Bits reserved in the IA32_EFER MSR must be 0.
10338 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10339 * the IA-32e mode guest VM-exit control. It must also be identical
10340 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10341 * CR0.PG) is 1.
10342 */
ca0bde28
JM
10343 if (to_vmx(vcpu)->nested.nested_run_pending &&
10344 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10345 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10346 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10347 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10348 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10349 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10350 return 1;
384bb783
JK
10351 }
10352
10353 /*
10354 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10355 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10356 * the values of the LMA and LME bits in the field must each be that of
10357 * the host address-space size VM-exit control.
10358 */
10359 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10360 ia32e = (vmcs12->vm_exit_controls &
10361 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10362 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10363 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10364 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10365 return 1;
ca0bde28
JM
10366 }
10367
10368 return 0;
10369}
10370
858e25c0
JM
10371static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10372{
10373 struct vcpu_vmx *vmx = to_vmx(vcpu);
10374 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10375 struct loaded_vmcs *vmcs02;
858e25c0
JM
10376 u32 msr_entry_idx;
10377 u32 exit_qual;
10378
10379 vmcs02 = nested_get_current_vmcs02(vmx);
10380 if (!vmcs02)
10381 return -ENOMEM;
10382
10383 enter_guest_mode(vcpu);
10384
10385 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10386 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10387
1279a6b1 10388 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10389 vmx_segment_cache_clear(vmx);
10390
10391 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10392 leave_guest_mode(vcpu);
1279a6b1 10393 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10394 nested_vmx_entry_failure(vcpu, vmcs12,
10395 EXIT_REASON_INVALID_STATE, exit_qual);
10396 return 1;
10397 }
10398
10399 nested_get_vmcs12_pages(vcpu, vmcs12);
10400
10401 msr_entry_idx = nested_vmx_load_msr(vcpu,
10402 vmcs12->vm_entry_msr_load_addr,
10403 vmcs12->vm_entry_msr_load_count);
10404 if (msr_entry_idx) {
10405 leave_guest_mode(vcpu);
1279a6b1 10406 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10407 nested_vmx_entry_failure(vcpu, vmcs12,
10408 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10409 return 1;
10410 }
10411
10412 vmcs12->launch_state = 1;
10413
10414 /*
10415 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10416 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10417 * returned as far as L1 is concerned. It will only return (and set
10418 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10419 */
10420 return 0;
10421}
10422
ca0bde28
JM
10423/*
10424 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10425 * for running an L2 nested guest.
10426 */
10427static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10428{
10429 struct vmcs12 *vmcs12;
10430 struct vcpu_vmx *vmx = to_vmx(vcpu);
ca0bde28
JM
10431 u32 exit_qual;
10432 int ret;
10433
10434 if (!nested_vmx_check_permission(vcpu))
10435 return 1;
10436
10437 if (!nested_vmx_check_vmcs12(vcpu))
10438 goto out;
10439
10440 vmcs12 = get_vmcs12(vcpu);
10441
10442 if (enable_shadow_vmcs)
10443 copy_shadow_to_vmcs12(vmx);
10444
10445 /*
10446 * The nested entry process starts with enforcing various prerequisites
10447 * on vmcs12 as required by the Intel SDM, and act appropriately when
10448 * they fail: As the SDM explains, some conditions should cause the
10449 * instruction to fail, while others will cause the instruction to seem
10450 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10451 * To speed up the normal (success) code path, we should avoid checking
10452 * for misconfigurations which will anyway be caught by the processor
10453 * when using the merged vmcs02.
10454 */
10455 if (vmcs12->launch_state == launch) {
10456 nested_vmx_failValid(vcpu,
10457 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10458 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10459 goto out;
10460 }
10461
10462 ret = check_vmentry_prereqs(vcpu, vmcs12);
10463 if (ret) {
10464 nested_vmx_failValid(vcpu, ret);
10465 goto out;
10466 }
10467
10468 /*
10469 * After this point, the trap flag no longer triggers a singlestep trap
10470 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10471 * This is not 100% correct; for performance reasons, we delegate most
10472 * of the checks on host state to the processor. If those fail,
10473 * the singlestep trap is missed.
10474 */
10475 skip_emulated_instruction(vcpu);
10476
10477 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10478 if (ret) {
10479 nested_vmx_entry_failure(vcpu, vmcs12,
10480 EXIT_REASON_INVALID_STATE, exit_qual);
10481 return 1;
384bb783
JK
10482 }
10483
7c177938
NHE
10484 /*
10485 * We're finally done with prerequisite checking, and can start with
10486 * the nested entry.
10487 */
10488
858e25c0
JM
10489 ret = enter_vmx_non_root_mode(vcpu, true);
10490 if (ret)
10491 return ret;
ff651cb6 10492
6dfacadd 10493 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10494 return kvm_vcpu_halt(vcpu);
6dfacadd 10495
7af40ad3
JK
10496 vmx->nested.nested_run_pending = 1;
10497
cd232ad0 10498 return 1;
eb277562
KH
10499
10500out:
6affcbed 10501 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10502}
10503
4704d0be
NHE
10504/*
10505 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10506 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10507 * This function returns the new value we should put in vmcs12.guest_cr0.
10508 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10509 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10510 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10511 * didn't trap the bit, because if L1 did, so would L0).
10512 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10513 * been modified by L2, and L1 knows it. So just leave the old value of
10514 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10515 * isn't relevant, because if L0 traps this bit it can set it to anything.
10516 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10517 * changed these bits, and therefore they need to be updated, but L0
10518 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10519 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10520 */
10521static inline unsigned long
10522vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10523{
10524 return
10525 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10526 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10527 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10528 vcpu->arch.cr0_guest_owned_bits));
10529}
10530
10531static inline unsigned long
10532vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10533{
10534 return
10535 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10536 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10537 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10538 vcpu->arch.cr4_guest_owned_bits));
10539}
10540
5f3d5799
JK
10541static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10542 struct vmcs12 *vmcs12)
10543{
10544 u32 idt_vectoring;
10545 unsigned int nr;
10546
851eb667 10547 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10548 nr = vcpu->arch.exception.nr;
10549 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10550
10551 if (kvm_exception_is_soft(nr)) {
10552 vmcs12->vm_exit_instruction_len =
10553 vcpu->arch.event_exit_inst_len;
10554 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10555 } else
10556 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10557
10558 if (vcpu->arch.exception.has_error_code) {
10559 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10560 vmcs12->idt_vectoring_error_code =
10561 vcpu->arch.exception.error_code;
10562 }
10563
10564 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10565 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10566 vmcs12->idt_vectoring_info_field =
10567 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10568 } else if (vcpu->arch.interrupt.pending) {
10569 nr = vcpu->arch.interrupt.nr;
10570 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10571
10572 if (vcpu->arch.interrupt.soft) {
10573 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10574 vmcs12->vm_entry_instruction_len =
10575 vcpu->arch.event_exit_inst_len;
10576 } else
10577 idt_vectoring |= INTR_TYPE_EXT_INTR;
10578
10579 vmcs12->idt_vectoring_info_field = idt_vectoring;
10580 }
10581}
10582
b6b8a145
JK
10583static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10584{
10585 struct vcpu_vmx *vmx = to_vmx(vcpu);
10586
acc9ab60
WL
10587 if (vcpu->arch.exception.pending ||
10588 vcpu->arch.nmi_injected ||
10589 vcpu->arch.interrupt.pending)
10590 return -EBUSY;
10591
f4124500
JK
10592 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10593 vmx->nested.preemption_timer_expired) {
10594 if (vmx->nested.nested_run_pending)
10595 return -EBUSY;
10596 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10597 return 0;
10598 }
10599
b6b8a145 10600 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 10601 if (vmx->nested.nested_run_pending)
b6b8a145
JK
10602 return -EBUSY;
10603 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10604 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10605 INTR_INFO_VALID_MASK, 0);
10606 /*
10607 * The NMI-triggered VM exit counts as injection:
10608 * clear this one and block further NMIs.
10609 */
10610 vcpu->arch.nmi_pending = 0;
10611 vmx_set_nmi_mask(vcpu, true);
10612 return 0;
10613 }
10614
10615 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10616 nested_exit_on_intr(vcpu)) {
10617 if (vmx->nested.nested_run_pending)
10618 return -EBUSY;
10619 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10620 return 0;
b6b8a145
JK
10621 }
10622
6342c50a
DH
10623 vmx_complete_nested_posted_interrupt(vcpu);
10624 return 0;
b6b8a145
JK
10625}
10626
f4124500
JK
10627static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10628{
10629 ktime_t remaining =
10630 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10631 u64 value;
10632
10633 if (ktime_to_ns(remaining) <= 0)
10634 return 0;
10635
10636 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10637 do_div(value, 1000000);
10638 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10639}
10640
4704d0be 10641/*
cf8b84f4
JM
10642 * Update the guest state fields of vmcs12 to reflect changes that
10643 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10644 * VM-entry controls is also updated, since this is really a guest
10645 * state bit.)
4704d0be 10646 */
cf8b84f4 10647static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 10648{
4704d0be
NHE
10649 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10650 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10651
4704d0be
NHE
10652 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10653 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10654 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10655
10656 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10657 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10658 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10659 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10660 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10661 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10662 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10663 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10664 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10665 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10666 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10667 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10668 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10669 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10670 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10671 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10672 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10673 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10674 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10675 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10676 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10677 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10678 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10679 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10680 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10681 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10682 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10683 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10684 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10685 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10686 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10687 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10688 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10689 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10690 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10691 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10692
4704d0be
NHE
10693 vmcs12->guest_interruptibility_info =
10694 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10695 vmcs12->guest_pending_dbg_exceptions =
10696 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10697 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10698 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10699 else
10700 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10701
f4124500
JK
10702 if (nested_cpu_has_preemption_timer(vmcs12)) {
10703 if (vmcs12->vm_exit_controls &
10704 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10705 vmcs12->vmx_preemption_timer_value =
10706 vmx_get_preemption_timer_value(vcpu);
10707 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10708 }
7854cbca 10709
3633cfc3
NHE
10710 /*
10711 * In some cases (usually, nested EPT), L2 is allowed to change its
10712 * own CR3 without exiting. If it has changed it, we must keep it.
10713 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10714 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10715 *
10716 * Additionally, restore L2's PDPTR to vmcs12.
10717 */
10718 if (enable_ept) {
f3531054 10719 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10720 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10721 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10722 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10723 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10724 }
10725
d281e13b 10726 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 10727
608406e2
WV
10728 if (nested_cpu_has_vid(vmcs12))
10729 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10730
c18911a2
JK
10731 vmcs12->vm_entry_controls =
10732 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10733 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10734
2996fca0
JK
10735 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10736 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10737 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10738 }
10739
4704d0be
NHE
10740 /* TODO: These cannot have changed unless we have MSR bitmaps and
10741 * the relevant bit asks not to trap the change */
b8c07d55 10742 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10743 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10744 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10745 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10746 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10747 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10748 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10749 if (kvm_mpx_supported())
36be0b9d 10750 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
10751}
10752
10753/*
10754 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10755 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10756 * and this function updates it to reflect the changes to the guest state while
10757 * L2 was running (and perhaps made some exits which were handled directly by L0
10758 * without going back to L1), and to reflect the exit reason.
10759 * Note that we do not have to copy here all VMCS fields, just those that
10760 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10761 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10762 * which already writes to vmcs12 directly.
10763 */
10764static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10765 u32 exit_reason, u32 exit_intr_info,
10766 unsigned long exit_qualification)
10767{
10768 /* update guest state fields: */
10769 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
10770
10771 /* update exit information fields: */
10772
533558bc
JK
10773 vmcs12->vm_exit_reason = exit_reason;
10774 vmcs12->exit_qualification = exit_qualification;
4704d0be 10775
533558bc 10776 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10777 if ((vmcs12->vm_exit_intr_info &
10778 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10779 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10780 vmcs12->vm_exit_intr_error_code =
10781 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10782 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10783 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10784 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10785
5f3d5799
JK
10786 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10787 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10788 * instead of reading the real value. */
4704d0be 10789 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10790
10791 /*
10792 * Transfer the event that L0 or L1 may wanted to inject into
10793 * L2 to IDT_VECTORING_INFO_FIELD.
10794 */
10795 vmcs12_save_pending_event(vcpu, vmcs12);
10796 }
10797
10798 /*
10799 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10800 * preserved above and would only end up incorrectly in L1.
10801 */
10802 vcpu->arch.nmi_injected = false;
10803 kvm_clear_exception_queue(vcpu);
10804 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10805}
10806
10807/*
10808 * A part of what we need to when the nested L2 guest exits and we want to
10809 * run its L1 parent, is to reset L1's guest state to the host state specified
10810 * in vmcs12.
10811 * This function is to be called not only on normal nested exit, but also on
10812 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10813 * Failures During or After Loading Guest State").
10814 * This function should be called when the active VMCS is L1's (vmcs01).
10815 */
733568f9
JK
10816static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10817 struct vmcs12 *vmcs12)
4704d0be 10818{
21feb4eb 10819 struct kvm_segment seg;
ca0bde28 10820 u32 entry_failure_code;
21feb4eb 10821
4704d0be
NHE
10822 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10823 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10824 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10825 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10826 else
10827 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10828 vmx_set_efer(vcpu, vcpu->arch.efer);
10829
10830 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10831 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10832 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10833 /*
10834 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
10835 * actually changed, because vmx_set_cr0 refers to efer set above.
10836 *
10837 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10838 * (KVM doesn't change it);
4704d0be 10839 */
bd7e5b08 10840 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 10841 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 10842
bd7e5b08 10843 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be
NHE
10844 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10845 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10846
29bf08f1 10847 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10848
1dc35dac
LP
10849 /*
10850 * Only PDPTE load can fail as the value of cr3 was checked on entry and
10851 * couldn't have changed.
10852 */
10853 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10854 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 10855
feaf0c7d
GN
10856 if (!enable_ept)
10857 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10858
4704d0be
NHE
10859 if (enable_vpid) {
10860 /*
10861 * Trivially support vpid by letting L2s share their parent
10862 * L1's vpid. TODO: move to a more elaborate solution, giving
10863 * each L2 its own vpid and exposing the vpid feature to L1.
10864 */
10865 vmx_flush_tlb(vcpu);
10866 }
10867
10868
10869 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10870 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10871 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10872 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10873 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10874
36be0b9d
PB
10875 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10876 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10877 vmcs_write64(GUEST_BNDCFGS, 0);
10878
44811c02 10879 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10880 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10881 vcpu->arch.pat = vmcs12->host_ia32_pat;
10882 }
4704d0be
NHE
10883 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10884 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10885 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10886
21feb4eb
ACL
10887 /* Set L1 segment info according to Intel SDM
10888 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10889 seg = (struct kvm_segment) {
10890 .base = 0,
10891 .limit = 0xFFFFFFFF,
10892 .selector = vmcs12->host_cs_selector,
10893 .type = 11,
10894 .present = 1,
10895 .s = 1,
10896 .g = 1
10897 };
10898 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10899 seg.l = 1;
10900 else
10901 seg.db = 1;
10902 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10903 seg = (struct kvm_segment) {
10904 .base = 0,
10905 .limit = 0xFFFFFFFF,
10906 .type = 3,
10907 .present = 1,
10908 .s = 1,
10909 .db = 1,
10910 .g = 1
10911 };
10912 seg.selector = vmcs12->host_ds_selector;
10913 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10914 seg.selector = vmcs12->host_es_selector;
10915 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10916 seg.selector = vmcs12->host_ss_selector;
10917 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10918 seg.selector = vmcs12->host_fs_selector;
10919 seg.base = vmcs12->host_fs_base;
10920 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10921 seg.selector = vmcs12->host_gs_selector;
10922 seg.base = vmcs12->host_gs_base;
10923 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10924 seg = (struct kvm_segment) {
205befd9 10925 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10926 .limit = 0x67,
10927 .selector = vmcs12->host_tr_selector,
10928 .type = 11,
10929 .present = 1
10930 };
10931 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10932
503cd0c5
JK
10933 kvm_set_dr(vcpu, 7, 0x400);
10934 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10935
3af18d9c
WV
10936 if (cpu_has_vmx_msr_bitmap())
10937 vmx_set_msr_bitmap(vcpu);
10938
ff651cb6
WV
10939 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10940 vmcs12->vm_exit_msr_load_count))
10941 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10942}
10943
10944/*
10945 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10946 * and modify vmcs12 to make it see what it would expect to see there if
10947 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10948 */
533558bc
JK
10949static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10950 u32 exit_intr_info,
10951 unsigned long exit_qualification)
4704d0be
NHE
10952{
10953 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be 10954 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
cf3215d9 10955 u32 vm_inst_error = 0;
4704d0be 10956
5f3d5799
JK
10957 /* trying to cancel vmlaunch/vmresume is a bug */
10958 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10959
4704d0be 10960 leave_guest_mode(vcpu);
533558bc
JK
10961 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10962 exit_qualification);
4704d0be 10963
ff651cb6
WV
10964 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10965 vmcs12->vm_exit_msr_store_count))
10966 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10967
cf3215d9
JM
10968 if (unlikely(vmx->fail))
10969 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
10970
1279a6b1 10971 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
f3380ca5 10972
77b0f5d6
BD
10973 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10974 && nested_exit_intr_ack_set(vcpu)) {
10975 int irq = kvm_cpu_get_interrupt(vcpu);
10976 WARN_ON(irq < 0);
10977 vmcs12->vm_exit_intr_info = irq |
10978 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10979 }
10980
542060ea
JK
10981 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10982 vmcs12->exit_qualification,
10983 vmcs12->idt_vectoring_info_field,
10984 vmcs12->vm_exit_intr_info,
10985 vmcs12->vm_exit_intr_error_code,
10986 KVM_ISA_VMX);
4704d0be 10987
8391ce44
PB
10988 vm_entry_controls_reset_shadow(vmx);
10989 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
10990 vmx_segment_cache_clear(vmx);
10991
4704d0be
NHE
10992 /* if no vmcs02 cache requested, remove the one we used */
10993 if (VMCS02_POOL_SIZE == 0)
10994 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10995
10996 load_vmcs12_host_state(vcpu, vmcs12);
10997
9314006d 10998 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
10999 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11000 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11001 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11002 if (vmx->hv_deadline_tsc == -1)
11003 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11004 PIN_BASED_VMX_PREEMPTION_TIMER);
11005 else
11006 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11007 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11008 if (kvm_has_tsc_control)
11009 decache_tsc_multiplier(vmx);
4704d0be 11010
dccbfcf5
RK
11011 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11012 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11013 vmx_set_virtual_x2apic_mode(vcpu,
11014 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11015 } else if (!nested_cpu_has_ept(vmcs12) &&
11016 nested_cpu_has2(vmcs12,
11017 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11018 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11019 }
4704d0be
NHE
11020
11021 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11022 vmx->host_rsp = 0;
11023
11024 /* Unpin physical memory we referred to in vmcs02 */
11025 if (vmx->nested.apic_access_page) {
11026 nested_release_page(vmx->nested.apic_access_page);
48d89b92 11027 vmx->nested.apic_access_page = NULL;
4704d0be 11028 }
a7c0b07d
WL
11029 if (vmx->nested.virtual_apic_page) {
11030 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 11031 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11032 }
705699a1
WV
11033 if (vmx->nested.pi_desc_page) {
11034 kunmap(vmx->nested.pi_desc_page);
11035 nested_release_page(vmx->nested.pi_desc_page);
11036 vmx->nested.pi_desc_page = NULL;
11037 vmx->nested.pi_desc = NULL;
11038 }
4704d0be 11039
38b99173
TC
11040 /*
11041 * We are now running in L2, mmu_notifier will force to reload the
11042 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11043 */
c83b6d15 11044 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11045
4704d0be
NHE
11046 /*
11047 * Exiting from L2 to L1, we're now back to L1 which thinks it just
11048 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11049 * success or failure flag accordingly.
11050 */
11051 if (unlikely(vmx->fail)) {
11052 vmx->fail = 0;
cf3215d9 11053 nested_vmx_failValid(vcpu, vm_inst_error);
4704d0be
NHE
11054 } else
11055 nested_vmx_succeed(vcpu);
012f83cb
AG
11056 if (enable_shadow_vmcs)
11057 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11058
11059 /* in case we halted in L2 */
11060 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
11061}
11062
42124925
JK
11063/*
11064 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11065 */
11066static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11067{
2f707d97
WL
11068 if (is_guest_mode(vcpu)) {
11069 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11070 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11071 }
42124925
JK
11072 free_nested(to_vmx(vcpu));
11073}
11074
7c177938
NHE
11075/*
11076 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11077 * 23.7 "VM-entry failures during or after loading guest state" (this also
11078 * lists the acceptable exit-reason and exit-qualification parameters).
11079 * It should only be called before L2 actually succeeded to run, and when
11080 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11081 */
11082static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11083 struct vmcs12 *vmcs12,
11084 u32 reason, unsigned long qualification)
11085{
11086 load_vmcs12_host_state(vcpu, vmcs12);
11087 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11088 vmcs12->exit_qualification = qualification;
11089 nested_vmx_succeed(vcpu);
012f83cb
AG
11090 if (enable_shadow_vmcs)
11091 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11092}
11093
8a76d7f2
JR
11094static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11095 struct x86_instruction_info *info,
11096 enum x86_intercept_stage stage)
11097{
11098 return X86EMUL_CONTINUE;
11099}
11100
64672c95
YJ
11101#ifdef CONFIG_X86_64
11102/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11103static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11104 u64 divisor, u64 *result)
11105{
11106 u64 low = a << shift, high = a >> (64 - shift);
11107
11108 /* To avoid the overflow on divq */
11109 if (high >= divisor)
11110 return 1;
11111
11112 /* Low hold the result, high hold rem which is discarded */
11113 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11114 "rm" (divisor), "0" (low), "1" (high));
11115 *result = low;
11116
11117 return 0;
11118}
11119
11120static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11121{
11122 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11123 u64 tscl = rdtsc();
11124 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11125 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11126
11127 /* Convert to host delta tsc if tsc scaling is enabled */
11128 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11129 u64_shl_div_u64(delta_tsc,
11130 kvm_tsc_scaling_ratio_frac_bits,
11131 vcpu->arch.tsc_scaling_ratio,
11132 &delta_tsc))
11133 return -ERANGE;
11134
11135 /*
11136 * If the delta tsc can't fit in the 32 bit after the multi shift,
11137 * we can't use the preemption timer.
11138 * It's possible that it fits on later vmentries, but checking
11139 * on every vmentry is costly so we just use an hrtimer.
11140 */
11141 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11142 return -ERANGE;
11143
11144 vmx->hv_deadline_tsc = tscl + delta_tsc;
11145 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11146 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11147
11148 return delta_tsc == 0;
64672c95
YJ
11149}
11150
11151static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11152{
11153 struct vcpu_vmx *vmx = to_vmx(vcpu);
11154 vmx->hv_deadline_tsc = -1;
11155 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11156 PIN_BASED_VMX_PREEMPTION_TIMER);
11157}
11158#endif
11159
48d89b92 11160static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11161{
b4a2d31d
RK
11162 if (ple_gap)
11163 shrink_ple_window(vcpu);
ae97a3b8
RK
11164}
11165
843e4330
KH
11166static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11167 struct kvm_memory_slot *slot)
11168{
11169 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11170 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11171}
11172
11173static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11174 struct kvm_memory_slot *slot)
11175{
11176 kvm_mmu_slot_set_dirty(kvm, slot);
11177}
11178
11179static void vmx_flush_log_dirty(struct kvm *kvm)
11180{
11181 kvm_flush_pml_buffers(kvm);
11182}
11183
c5f983f6
BD
11184static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11185{
11186 struct vmcs12 *vmcs12;
11187 struct vcpu_vmx *vmx = to_vmx(vcpu);
11188 gpa_t gpa;
11189 struct page *page = NULL;
11190 u64 *pml_address;
11191
11192 if (is_guest_mode(vcpu)) {
11193 WARN_ON_ONCE(vmx->nested.pml_full);
11194
11195 /*
11196 * Check if PML is enabled for the nested guest.
11197 * Whether eptp bit 6 is set is already checked
11198 * as part of A/D emulation.
11199 */
11200 vmcs12 = get_vmcs12(vcpu);
11201 if (!nested_cpu_has_pml(vmcs12))
11202 return 0;
11203
4769886b 11204 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11205 vmx->nested.pml_full = true;
11206 return 1;
11207 }
11208
11209 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11210
11211 page = nested_get_page(vcpu, vmcs12->pml_address);
11212 if (!page)
11213 return 0;
11214
11215 pml_address = kmap(page);
11216 pml_address[vmcs12->guest_pml_index--] = gpa;
11217 kunmap(page);
11218 nested_release_page_clean(page);
11219 }
11220
11221 return 0;
11222}
11223
843e4330
KH
11224static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11225 struct kvm_memory_slot *memslot,
11226 gfn_t offset, unsigned long mask)
11227{
11228 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11229}
11230
bf9f6ac8
FW
11231/*
11232 * This routine does the following things for vCPU which is going
11233 * to be blocked if VT-d PI is enabled.
11234 * - Store the vCPU to the wakeup list, so when interrupts happen
11235 * we can find the right vCPU to wake up.
11236 * - Change the Posted-interrupt descriptor as below:
11237 * 'NDST' <-- vcpu->pre_pcpu
11238 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11239 * - If 'ON' is set during this process, which means at least one
11240 * interrupt is posted for this vCPU, we cannot block it, in
11241 * this case, return 1, otherwise, return 0.
11242 *
11243 */
bc22512b 11244static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11245{
11246 unsigned long flags;
11247 unsigned int dest;
11248 struct pi_desc old, new;
11249 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11250
11251 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11252 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11253 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11254 return 0;
11255
11256 vcpu->pre_pcpu = vcpu->cpu;
11257 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11258 vcpu->pre_pcpu), flags);
11259 list_add_tail(&vcpu->blocked_vcpu_list,
11260 &per_cpu(blocked_vcpu_on_cpu,
11261 vcpu->pre_pcpu));
11262 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11263 vcpu->pre_pcpu), flags);
11264
11265 do {
11266 old.control = new.control = pi_desc->control;
11267
11268 /*
11269 * We should not block the vCPU if
11270 * an interrupt is posted for it.
11271 */
11272 if (pi_test_on(pi_desc) == 1) {
11273 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11274 vcpu->pre_pcpu), flags);
11275 list_del(&vcpu->blocked_vcpu_list);
11276 spin_unlock_irqrestore(
11277 &per_cpu(blocked_vcpu_on_cpu_lock,
11278 vcpu->pre_pcpu), flags);
11279 vcpu->pre_pcpu = -1;
11280
11281 return 1;
11282 }
11283
11284 WARN((pi_desc->sn == 1),
11285 "Warning: SN field of posted-interrupts "
11286 "is set before blocking\n");
11287
11288 /*
11289 * Since vCPU can be preempted during this process,
11290 * vcpu->cpu could be different with pre_pcpu, we
11291 * need to set pre_pcpu as the destination of wakeup
11292 * notification event, then we can find the right vCPU
11293 * to wakeup in wakeup handler if interrupts happen
11294 * when the vCPU is in blocked state.
11295 */
11296 dest = cpu_physical_id(vcpu->pre_pcpu);
11297
11298 if (x2apic_enabled())
11299 new.ndst = dest;
11300 else
11301 new.ndst = (dest << 8) & 0xFF00;
11302
11303 /* set 'NV' to 'wakeup vector' */
11304 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11305 } while (cmpxchg(&pi_desc->control, old.control,
11306 new.control) != old.control);
11307
11308 return 0;
11309}
11310
bc22512b
YJ
11311static int vmx_pre_block(struct kvm_vcpu *vcpu)
11312{
11313 if (pi_pre_block(vcpu))
11314 return 1;
11315
64672c95
YJ
11316 if (kvm_lapic_hv_timer_in_use(vcpu))
11317 kvm_lapic_switch_to_sw_timer(vcpu);
11318
bc22512b
YJ
11319 return 0;
11320}
11321
11322static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8
FW
11323{
11324 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11325 struct pi_desc old, new;
11326 unsigned int dest;
11327 unsigned long flags;
11328
11329 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11330 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11331 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11332 return;
11333
11334 do {
11335 old.control = new.control = pi_desc->control;
11336
11337 dest = cpu_physical_id(vcpu->cpu);
11338
11339 if (x2apic_enabled())
11340 new.ndst = dest;
11341 else
11342 new.ndst = (dest << 8) & 0xFF00;
11343
11344 /* Allow posting non-urgent interrupts */
11345 new.sn = 0;
11346
11347 /* set 'NV' to 'notification vector' */
11348 new.nv = POSTED_INTR_VECTOR;
11349 } while (cmpxchg(&pi_desc->control, old.control,
11350 new.control) != old.control);
11351
11352 if(vcpu->pre_pcpu != -1) {
11353 spin_lock_irqsave(
11354 &per_cpu(blocked_vcpu_on_cpu_lock,
11355 vcpu->pre_pcpu), flags);
11356 list_del(&vcpu->blocked_vcpu_list);
11357 spin_unlock_irqrestore(
11358 &per_cpu(blocked_vcpu_on_cpu_lock,
11359 vcpu->pre_pcpu), flags);
11360 vcpu->pre_pcpu = -1;
11361 }
11362}
11363
bc22512b
YJ
11364static void vmx_post_block(struct kvm_vcpu *vcpu)
11365{
64672c95
YJ
11366 if (kvm_x86_ops->set_hv_timer)
11367 kvm_lapic_switch_to_hv_timer(vcpu);
11368
bc22512b
YJ
11369 pi_post_block(vcpu);
11370}
11371
efc64404
FW
11372/*
11373 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11374 *
11375 * @kvm: kvm
11376 * @host_irq: host irq of the interrupt
11377 * @guest_irq: gsi of the interrupt
11378 * @set: set or unset PI
11379 * returns 0 on success, < 0 on failure
11380 */
11381static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11382 uint32_t guest_irq, bool set)
11383{
11384 struct kvm_kernel_irq_routing_entry *e;
11385 struct kvm_irq_routing_table *irq_rt;
11386 struct kvm_lapic_irq irq;
11387 struct kvm_vcpu *vcpu;
11388 struct vcpu_data vcpu_info;
11389 int idx, ret = -EINVAL;
11390
11391 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11392 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11393 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11394 return 0;
11395
11396 idx = srcu_read_lock(&kvm->irq_srcu);
11397 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11398 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11399
11400 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11401 if (e->type != KVM_IRQ_ROUTING_MSI)
11402 continue;
11403 /*
11404 * VT-d PI cannot support posting multicast/broadcast
11405 * interrupts to a vCPU, we still use interrupt remapping
11406 * for these kind of interrupts.
11407 *
11408 * For lowest-priority interrupts, we only support
11409 * those with single CPU as the destination, e.g. user
11410 * configures the interrupts via /proc/irq or uses
11411 * irqbalance to make the interrupts single-CPU.
11412 *
11413 * We will support full lowest-priority interrupt later.
11414 */
11415
37131313 11416 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11417 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11418 /*
11419 * Make sure the IRTE is in remapped mode if
11420 * we don't handle it in posted mode.
11421 */
11422 ret = irq_set_vcpu_affinity(host_irq, NULL);
11423 if (ret < 0) {
11424 printk(KERN_INFO
11425 "failed to back to remapped mode, irq: %u\n",
11426 host_irq);
11427 goto out;
11428 }
11429
efc64404 11430 continue;
23a1c257 11431 }
efc64404
FW
11432
11433 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11434 vcpu_info.vector = irq.vector;
11435
b6ce9780 11436 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11437 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11438
11439 if (set)
11440 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11441 else {
11442 /* suppress notification event before unposting */
11443 pi_set_sn(vcpu_to_pi_desc(vcpu));
11444 ret = irq_set_vcpu_affinity(host_irq, NULL);
11445 pi_clear_sn(vcpu_to_pi_desc(vcpu));
11446 }
11447
11448 if (ret < 0) {
11449 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11450 __func__);
11451 goto out;
11452 }
11453 }
11454
11455 ret = 0;
11456out:
11457 srcu_read_unlock(&kvm->irq_srcu, idx);
11458 return ret;
11459}
11460
c45dcc71
AR
11461static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11462{
11463 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11464 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11465 FEATURE_CONTROL_LMCE;
11466 else
11467 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11468 ~FEATURE_CONTROL_LMCE;
11469}
11470
404f6aac 11471static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11472 .cpu_has_kvm_support = cpu_has_kvm_support,
11473 .disabled_by_bios = vmx_disabled_by_bios,
11474 .hardware_setup = hardware_setup,
11475 .hardware_unsetup = hardware_unsetup,
002c7f7c 11476 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11477 .hardware_enable = hardware_enable,
11478 .hardware_disable = hardware_disable,
04547156 11479 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11480 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11481
11482 .vcpu_create = vmx_create_vcpu,
11483 .vcpu_free = vmx_free_vcpu,
04d2cc77 11484 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11485
04d2cc77 11486 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11487 .vcpu_load = vmx_vcpu_load,
11488 .vcpu_put = vmx_vcpu_put,
11489
a96036b8 11490 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11491 .get_msr = vmx_get_msr,
11492 .set_msr = vmx_set_msr,
11493 .get_segment_base = vmx_get_segment_base,
11494 .get_segment = vmx_get_segment,
11495 .set_segment = vmx_set_segment,
2e4d2653 11496 .get_cpl = vmx_get_cpl,
6aa8b732 11497 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11498 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11499 .decache_cr3 = vmx_decache_cr3,
25c4c276 11500 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11501 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11502 .set_cr3 = vmx_set_cr3,
11503 .set_cr4 = vmx_set_cr4,
6aa8b732 11504 .set_efer = vmx_set_efer,
6aa8b732
AK
11505 .get_idt = vmx_get_idt,
11506 .set_idt = vmx_set_idt,
11507 .get_gdt = vmx_get_gdt,
11508 .set_gdt = vmx_set_gdt,
73aaf249
JK
11509 .get_dr6 = vmx_get_dr6,
11510 .set_dr6 = vmx_set_dr6,
020df079 11511 .set_dr7 = vmx_set_dr7,
81908bf4 11512 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11513 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11514 .get_rflags = vmx_get_rflags,
11515 .set_rflags = vmx_set_rflags,
be94f6b7
HH
11516
11517 .get_pkru = vmx_get_pkru,
11518
6aa8b732 11519 .tlb_flush = vmx_flush_tlb,
6aa8b732 11520
6aa8b732 11521 .run = vmx_vcpu_run,
6062d012 11522 .handle_exit = vmx_handle_exit,
6aa8b732 11523 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11524 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11525 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11526 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11527 .set_irq = vmx_inject_irq,
95ba8273 11528 .set_nmi = vmx_inject_nmi,
298101da 11529 .queue_exception = vmx_queue_exception,
b463a6f7 11530 .cancel_injection = vmx_cancel_injection,
78646121 11531 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 11532 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
11533 .get_nmi_mask = vmx_get_nmi_mask,
11534 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
11535 .enable_nmi_window = enable_nmi_window,
11536 .enable_irq_window = enable_irq_window,
11537 .update_cr8_intercept = update_cr8_intercept,
8d14695f 11538 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 11539 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
11540 .get_enable_apicv = vmx_get_enable_apicv,
11541 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 11542 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 11543 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
11544 .hwapic_irr_update = vmx_hwapic_irr_update,
11545 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
11546 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11547 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 11548
cbc94022 11549 .set_tss_addr = vmx_set_tss_addr,
67253af5 11550 .get_tdp_level = get_ept_level,
4b12f0de 11551 .get_mt_mask = vmx_get_mt_mask,
229456fc 11552
586f9607 11553 .get_exit_info = vmx_get_exit_info,
586f9607 11554
17cc3935 11555 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
11556
11557 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
11558
11559 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 11560 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
11561
11562 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
11563
11564 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
11565
11566 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
11567
11568 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
11569
11570 .check_intercept = vmx_check_intercept,
a547c6db 11571 .handle_external_intr = vmx_handle_external_intr,
da8999d3 11572 .mpx_supported = vmx_mpx_supported,
55412b2e 11573 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11574
11575 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11576
11577 .sched_in = vmx_sched_in,
843e4330
KH
11578
11579 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11580 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11581 .flush_log_dirty = vmx_flush_log_dirty,
11582 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 11583 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 11584
bf9f6ac8
FW
11585 .pre_block = vmx_pre_block,
11586 .post_block = vmx_post_block,
11587
25462f7f 11588 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11589
11590 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
11591
11592#ifdef CONFIG_X86_64
11593 .set_hv_timer = vmx_set_hv_timer,
11594 .cancel_hv_timer = vmx_cancel_hv_timer,
11595#endif
c45dcc71
AR
11596
11597 .setup_mce = vmx_setup_mce,
6aa8b732
AK
11598};
11599
11600static int __init vmx_init(void)
11601{
34a1cd60
TC
11602 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11603 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11604 if (r)
34a1cd60 11605 return r;
25c5f225 11606
2965faa5 11607#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11608 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11609 crash_vmclear_local_loaded_vmcss);
11610#endif
11611
fdef3ad1 11612 return 0;
6aa8b732
AK
11613}
11614
11615static void __exit vmx_exit(void)
11616{
2965faa5 11617#ifdef CONFIG_KEXEC_CORE
3b63a43f 11618 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11619 synchronize_rcu();
11620#endif
11621
cb498ea2 11622 kvm_exit();
6aa8b732
AK
11623}
11624
11625module_init(vmx_init)
11626module_exit(vmx_exit)